• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  */
6 
7 #define pr_fmt(fmt)    "iommu: " fmt
8 
9 #include <linux/amba/bus.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/host1x_context_bus.h>
20 #include <linux/iommu.h>
21 #include <linux/idr.h>
22 #include <linux/err.h>
23 #include <linux/pci.h>
24 #include <linux/pci-ats.h>
25 #include <linux/bitops.h>
26 #include <linux/platform_device.h>
27 #include <linux/property.h>
28 #include <linux/fsl/mc.h>
29 #include <linux/module.h>
30 #include <linux/cc_platform.h>
31 #include <trace/events/iommu.h>
32 #include <linux/sched/mm.h>
33 #include <trace/hooks/iommu.h>
34 
35 #include "dma-iommu.h"
36 
37 #include "iommu-sva.h"
38 
39 static struct kset *iommu_group_kset;
40 static DEFINE_IDA(iommu_group_ida);
41 
42 static unsigned int iommu_def_domain_type __read_mostly;
43 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
44 static u32 iommu_cmd_line __read_mostly;
45 
46 struct iommu_group {
47 	struct kobject kobj;
48 	struct kobject *devices_kobj;
49 	struct list_head devices;
50 	struct xarray pasid_array;
51 	struct mutex mutex;
52 	void *iommu_data;
53 	void (*iommu_data_release)(void *iommu_data);
54 	char *name;
55 	int id;
56 	struct iommu_domain *default_domain;
57 	struct iommu_domain *blocking_domain;
58 	struct iommu_domain *domain;
59 	struct list_head entry;
60 	unsigned int owner_cnt;
61 	void *owner;
62 };
63 
64 struct group_device {
65 	struct list_head list;
66 	struct device *dev;
67 	char *name;
68 };
69 
70 struct iommu_group_attribute {
71 	struct attribute attr;
72 	ssize_t (*show)(struct iommu_group *group, char *buf);
73 	ssize_t (*store)(struct iommu_group *group,
74 			 const char *buf, size_t count);
75 };
76 
77 static const char * const iommu_group_resv_type_string[] = {
78 	[IOMMU_RESV_DIRECT]			= "direct",
79 	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
80 	[IOMMU_RESV_RESERVED]			= "reserved",
81 	[IOMMU_RESV_MSI]			= "msi",
82 	[IOMMU_RESV_SW_MSI]			= "msi",
83 };
84 
85 #define IOMMU_CMD_LINE_DMA_API		BIT(0)
86 #define IOMMU_CMD_LINE_STRICT		BIT(1)
87 
88 static int iommu_bus_notifier(struct notifier_block *nb,
89 			      unsigned long action, void *data);
90 static int iommu_alloc_default_domain(struct iommu_group *group,
91 				      struct device *dev);
92 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
93 						 unsigned type);
94 static int __iommu_attach_device(struct iommu_domain *domain,
95 				 struct device *dev);
96 static int __iommu_attach_group(struct iommu_domain *domain,
97 				struct iommu_group *group);
98 static int __iommu_group_set_domain(struct iommu_group *group,
99 				    struct iommu_domain *new_domain);
100 static int iommu_create_device_direct_mappings(struct iommu_group *group,
101 					       struct device *dev);
102 static struct iommu_group *iommu_group_get_for_dev(struct device *dev);
103 static ssize_t iommu_group_store_type(struct iommu_group *group,
104 				      const char *buf, size_t count);
105 
106 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
107 struct iommu_group_attribute iommu_group_attr_##_name =		\
108 	__ATTR(_name, _mode, _show, _store)
109 
110 #define to_iommu_group_attr(_attr)	\
111 	container_of(_attr, struct iommu_group_attribute, attr)
112 #define to_iommu_group(_kobj)		\
113 	container_of(_kobj, struct iommu_group, kobj)
114 
115 static LIST_HEAD(iommu_device_list);
116 static DEFINE_SPINLOCK(iommu_device_lock);
117 
118 static struct bus_type * const iommu_buses[] = {
119 	&platform_bus_type,
120 #ifdef CONFIG_PCI
121 	&pci_bus_type,
122 #endif
123 #ifdef CONFIG_ARM_AMBA
124 	&amba_bustype,
125 #endif
126 #ifdef CONFIG_FSL_MC_BUS
127 	&fsl_mc_bus_type,
128 #endif
129 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS
130 	&host1x_context_device_bus_type,
131 #endif
132 };
133 
134 /*
135  * Use a function instead of an array here because the domain-type is a
136  * bit-field, so an array would waste memory.
137  */
iommu_domain_type_str(unsigned int t)138 static const char *iommu_domain_type_str(unsigned int t)
139 {
140 	switch (t) {
141 	case IOMMU_DOMAIN_BLOCKED:
142 		return "Blocked";
143 	case IOMMU_DOMAIN_IDENTITY:
144 		return "Passthrough";
145 	case IOMMU_DOMAIN_UNMANAGED:
146 		return "Unmanaged";
147 	case IOMMU_DOMAIN_DMA:
148 	case IOMMU_DOMAIN_DMA_FQ:
149 		return "Translated";
150 	default:
151 		return "Unknown";
152 	}
153 }
154 
iommu_subsys_init(void)155 static int __init iommu_subsys_init(void)
156 {
157 	struct notifier_block *nb;
158 
159 	if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
160 		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
161 			iommu_set_default_passthrough(false);
162 		else
163 			iommu_set_default_translated(false);
164 
165 		if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
166 			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
167 			iommu_set_default_translated(false);
168 		}
169 	}
170 
171 	if (!iommu_default_passthrough() && !iommu_dma_strict)
172 		iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
173 
174 	pr_info("Default domain type: %s %s\n",
175 		iommu_domain_type_str(iommu_def_domain_type),
176 		(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
177 			"(set via kernel command line)" : "");
178 
179 	if (!iommu_default_passthrough())
180 		pr_info("DMA domain TLB invalidation policy: %s mode %s\n",
181 			iommu_dma_strict ? "strict" : "lazy",
182 			(iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
183 				"(set via kernel command line)" : "");
184 
185 	nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL);
186 	if (!nb)
187 		return -ENOMEM;
188 
189 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) {
190 		nb[i].notifier_call = iommu_bus_notifier;
191 		bus_register_notifier(iommu_buses[i], &nb[i]);
192 	}
193 
194 	return 0;
195 }
196 subsys_initcall(iommu_subsys_init);
197 
remove_iommu_group(struct device * dev,void * data)198 static int remove_iommu_group(struct device *dev, void *data)
199 {
200 	if (dev->iommu && dev->iommu->iommu_dev == data)
201 		iommu_release_device(dev);
202 
203 	return 0;
204 }
205 
206 /**
207  * iommu_device_register() - Register an IOMMU hardware instance
208  * @iommu: IOMMU handle for the instance
209  * @ops:   IOMMU ops to associate with the instance
210  * @hwdev: (optional) actual instance device, used for fwnode lookup
211  *
212  * Return: 0 on success, or an error.
213  */
iommu_device_register(struct iommu_device * iommu,const struct iommu_ops * ops,struct device * hwdev)214 int iommu_device_register(struct iommu_device *iommu,
215 			  const struct iommu_ops *ops, struct device *hwdev)
216 {
217 	int err = 0;
218 
219 	/* We need to be able to take module references appropriately */
220 	if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
221 		return -EINVAL;
222 	/*
223 	 * Temporarily enforce global restriction to a single driver. This was
224 	 * already the de-facto behaviour, since any possible combination of
225 	 * existing drivers would compete for at least the PCI or platform bus.
226 	 */
227 	if (iommu_buses[0]->iommu_ops && iommu_buses[0]->iommu_ops != ops
228 				&& !trace_android_vh_bus_iommu_probe_enabled())
229 		return -EBUSY;
230 
231 	iommu->ops = ops;
232 	if (hwdev)
233 		iommu->fwnode = dev_fwnode(hwdev);
234 
235 	spin_lock(&iommu_device_lock);
236 	list_add_tail(&iommu->list, &iommu_device_list);
237 	spin_unlock(&iommu_device_lock);
238 
239 	for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++) {
240 		bool skip = false;
241 
242 		trace_android_vh_bus_iommu_probe(iommu, iommu_buses[i], &skip);
243 		if (skip)
244 			continue;
245 		iommu_buses[i]->iommu_ops = ops;
246 		err = bus_iommu_probe(iommu_buses[i]);
247 	}
248 	if (err)
249 		iommu_device_unregister(iommu);
250 	return err;
251 }
252 EXPORT_SYMBOL_GPL(iommu_device_register);
253 
iommu_device_unregister(struct iommu_device * iommu)254 void iommu_device_unregister(struct iommu_device *iommu)
255 {
256 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++)
257 		bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group);
258 
259 	spin_lock(&iommu_device_lock);
260 	list_del(&iommu->list);
261 	spin_unlock(&iommu_device_lock);
262 }
263 EXPORT_SYMBOL_GPL(iommu_device_unregister);
264 
dev_iommu_get(struct device * dev)265 static struct dev_iommu *dev_iommu_get(struct device *dev)
266 {
267 	struct dev_iommu *param = dev->iommu;
268 
269 	if (param)
270 		return param;
271 
272 	param = kzalloc(sizeof(*param), GFP_KERNEL);
273 	if (!param)
274 		return NULL;
275 
276 	mutex_init(&param->lock);
277 	dev->iommu = param;
278 	return param;
279 }
280 
dev_iommu_free(struct device * dev)281 static void dev_iommu_free(struct device *dev)
282 {
283 	struct dev_iommu *param = dev->iommu;
284 
285 	dev->iommu = NULL;
286 	if (param->fwspec) {
287 		fwnode_handle_put(param->fwspec->iommu_fwnode);
288 		kfree(param->fwspec);
289 	}
290 	kfree(param);
291 }
292 
dev_iommu_get_max_pasids(struct device * dev)293 static u32 dev_iommu_get_max_pasids(struct device *dev)
294 {
295 	u32 max_pasids = 0, bits = 0;
296 	int ret;
297 
298 	if (dev_is_pci(dev)) {
299 		ret = pci_max_pasids(to_pci_dev(dev));
300 		if (ret > 0)
301 			max_pasids = ret;
302 	} else {
303 		ret = device_property_read_u32(dev, "pasid-num-bits", &bits);
304 		if (!ret)
305 			max_pasids = 1UL << bits;
306 	}
307 
308 	return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids);
309 }
310 
311 DEFINE_MUTEX(iommu_probe_device_lock);
312 
__iommu_probe_device(struct device * dev,struct list_head * group_list)313 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
314 {
315 	const struct iommu_ops *ops = dev->bus->iommu_ops;
316 	struct iommu_device *iommu_dev;
317 	struct iommu_group *group;
318 	int ret;
319 
320 	if (!ops)
321 		return -ENODEV;
322 	/*
323 	 * Serialise to avoid races between IOMMU drivers registering in
324 	 * parallel and/or the "replay" calls from ACPI/OF code via client
325 	 * driver probe. Once the latter have been cleaned up we should
326 	 * probably be able to use device_lock() here to minimise the scope,
327 	 * but for now enforcing a simple global ordering is fine.
328 	 */
329 	lockdep_assert_held(&iommu_probe_device_lock);
330 	if (!dev_iommu_get(dev)) {
331 		ret = -ENOMEM;
332 		goto err_out;
333 	}
334 
335 	if (!try_module_get(ops->owner)) {
336 		ret = -EINVAL;
337 		goto err_free;
338 	}
339 
340 	iommu_dev = ops->probe_device(dev);
341 	if (IS_ERR(iommu_dev)) {
342 		ret = PTR_ERR(iommu_dev);
343 		goto out_module_put;
344 	}
345 
346 	dev->iommu->iommu_dev = iommu_dev;
347 	dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev);
348 
349 	group = iommu_group_get_for_dev(dev);
350 	if (IS_ERR(group)) {
351 		ret = PTR_ERR(group);
352 		goto out_release;
353 	}
354 
355 	mutex_lock(&group->mutex);
356 	if (group_list && !group->default_domain && list_empty(&group->entry))
357 		list_add_tail(&group->entry, group_list);
358 	mutex_unlock(&group->mutex);
359 	iommu_group_put(group);
360 
361 	iommu_device_link(iommu_dev, dev);
362 
363 	return 0;
364 
365 out_release:
366 	if (ops->release_device)
367 		ops->release_device(dev);
368 
369 out_module_put:
370 	module_put(ops->owner);
371 
372 err_free:
373 	dev_iommu_free(dev);
374 
375 err_out:
376 	return ret;
377 }
378 
iommu_probe_device(struct device * dev)379 int iommu_probe_device(struct device *dev)
380 {
381 	const struct iommu_ops *ops;
382 	struct iommu_group *group;
383 	int ret;
384 
385 	mutex_lock(&iommu_probe_device_lock);
386 	ret = __iommu_probe_device(dev, NULL);
387 	mutex_unlock(&iommu_probe_device_lock);
388 	if (ret)
389 		goto err_out;
390 
391 	group = iommu_group_get(dev);
392 	if (!group) {
393 		ret = -ENODEV;
394 		goto err_release;
395 	}
396 
397 	/*
398 	 * Try to allocate a default domain - needs support from the
399 	 * IOMMU driver. There are still some drivers which don't
400 	 * support default domains, so the return value is not yet
401 	 * checked.
402 	 */
403 	mutex_lock(&group->mutex);
404 	iommu_alloc_default_domain(group, dev);
405 
406 	/*
407 	 * If device joined an existing group which has been claimed, don't
408 	 * attach the default domain.
409 	 */
410 	if (group->default_domain && !group->owner) {
411 		ret = __iommu_attach_device(group->default_domain, dev);
412 		if (ret) {
413 			mutex_unlock(&group->mutex);
414 			iommu_group_put(group);
415 			goto err_release;
416 		}
417 	}
418 
419 	iommu_create_device_direct_mappings(group, dev);
420 
421 	mutex_unlock(&group->mutex);
422 	iommu_group_put(group);
423 
424 	ops = dev_iommu_ops(dev);
425 	if (ops->probe_finalize)
426 		ops->probe_finalize(dev);
427 
428 	return 0;
429 
430 err_release:
431 	iommu_release_device(dev);
432 
433 err_out:
434 	return ret;
435 
436 }
437 
iommu_release_device(struct device * dev)438 void iommu_release_device(struct device *dev)
439 {
440 	const struct iommu_ops *ops;
441 
442 	if (!dev->iommu)
443 		return;
444 
445 	iommu_device_unlink(dev->iommu->iommu_dev, dev);
446 
447 	ops = dev_iommu_ops(dev);
448 	if (ops->release_device)
449 		ops->release_device(dev);
450 
451 	iommu_group_remove_device(dev);
452 	module_put(ops->owner);
453 	dev_iommu_free(dev);
454 }
455 
iommu_set_def_domain_type(char * str)456 static int __init iommu_set_def_domain_type(char *str)
457 {
458 	bool pt;
459 	int ret;
460 
461 	ret = kstrtobool(str, &pt);
462 	if (ret)
463 		return ret;
464 
465 	if (pt)
466 		iommu_set_default_passthrough(true);
467 	else
468 		iommu_set_default_translated(true);
469 
470 	return 0;
471 }
472 early_param("iommu.passthrough", iommu_set_def_domain_type);
473 
iommu_dma_setup(char * str)474 static int __init iommu_dma_setup(char *str)
475 {
476 	int ret = kstrtobool(str, &iommu_dma_strict);
477 
478 	if (!ret)
479 		iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
480 	return ret;
481 }
482 early_param("iommu.strict", iommu_dma_setup);
483 
iommu_set_dma_strict(void)484 void iommu_set_dma_strict(void)
485 {
486 	iommu_dma_strict = true;
487 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
488 		iommu_def_domain_type = IOMMU_DOMAIN_DMA;
489 }
490 
iommu_group_attr_show(struct kobject * kobj,struct attribute * __attr,char * buf)491 static ssize_t iommu_group_attr_show(struct kobject *kobj,
492 				     struct attribute *__attr, char *buf)
493 {
494 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
495 	struct iommu_group *group = to_iommu_group(kobj);
496 	ssize_t ret = -EIO;
497 
498 	if (attr->show)
499 		ret = attr->show(group, buf);
500 	return ret;
501 }
502 
iommu_group_attr_store(struct kobject * kobj,struct attribute * __attr,const char * buf,size_t count)503 static ssize_t iommu_group_attr_store(struct kobject *kobj,
504 				      struct attribute *__attr,
505 				      const char *buf, size_t count)
506 {
507 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
508 	struct iommu_group *group = to_iommu_group(kobj);
509 	ssize_t ret = -EIO;
510 
511 	if (attr->store)
512 		ret = attr->store(group, buf, count);
513 	return ret;
514 }
515 
516 static const struct sysfs_ops iommu_group_sysfs_ops = {
517 	.show = iommu_group_attr_show,
518 	.store = iommu_group_attr_store,
519 };
520 
iommu_group_create_file(struct iommu_group * group,struct iommu_group_attribute * attr)521 static int iommu_group_create_file(struct iommu_group *group,
522 				   struct iommu_group_attribute *attr)
523 {
524 	return sysfs_create_file(&group->kobj, &attr->attr);
525 }
526 
iommu_group_remove_file(struct iommu_group * group,struct iommu_group_attribute * attr)527 static void iommu_group_remove_file(struct iommu_group *group,
528 				    struct iommu_group_attribute *attr)
529 {
530 	sysfs_remove_file(&group->kobj, &attr->attr);
531 }
532 
iommu_group_show_name(struct iommu_group * group,char * buf)533 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
534 {
535 	return sprintf(buf, "%s\n", group->name);
536 }
537 
538 /**
539  * iommu_insert_resv_region - Insert a new region in the
540  * list of reserved regions.
541  * @new: new region to insert
542  * @regions: list of regions
543  *
544  * Elements are sorted by start address and overlapping segments
545  * of the same type are merged.
546  */
iommu_insert_resv_region(struct iommu_resv_region * new,struct list_head * regions)547 static int iommu_insert_resv_region(struct iommu_resv_region *new,
548 				    struct list_head *regions)
549 {
550 	struct iommu_resv_region *iter, *tmp, *nr, *top;
551 	LIST_HEAD(stack);
552 
553 	nr = iommu_alloc_resv_region(new->start, new->length,
554 				     new->prot, new->type, GFP_KERNEL);
555 	if (!nr)
556 		return -ENOMEM;
557 
558 	/* First add the new element based on start address sorting */
559 	list_for_each_entry(iter, regions, list) {
560 		if (nr->start < iter->start ||
561 		    (nr->start == iter->start && nr->type <= iter->type))
562 			break;
563 	}
564 	list_add_tail(&nr->list, &iter->list);
565 
566 	/* Merge overlapping segments of type nr->type in @regions, if any */
567 	list_for_each_entry_safe(iter, tmp, regions, list) {
568 		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
569 
570 		/* no merge needed on elements of different types than @new */
571 		if (iter->type != new->type) {
572 			list_move_tail(&iter->list, &stack);
573 			continue;
574 		}
575 
576 		/* look for the last stack element of same type as @iter */
577 		list_for_each_entry_reverse(top, &stack, list)
578 			if (top->type == iter->type)
579 				goto check_overlap;
580 
581 		list_move_tail(&iter->list, &stack);
582 		continue;
583 
584 check_overlap:
585 		top_end = top->start + top->length - 1;
586 
587 		if (iter->start > top_end + 1) {
588 			list_move_tail(&iter->list, &stack);
589 		} else {
590 			top->length = max(top_end, iter_end) - top->start + 1;
591 			list_del(&iter->list);
592 			kfree(iter);
593 		}
594 	}
595 	list_splice(&stack, regions);
596 	return 0;
597 }
598 
599 static int
iommu_insert_device_resv_regions(struct list_head * dev_resv_regions,struct list_head * group_resv_regions)600 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
601 				 struct list_head *group_resv_regions)
602 {
603 	struct iommu_resv_region *entry;
604 	int ret = 0;
605 
606 	list_for_each_entry(entry, dev_resv_regions, list) {
607 		ret = iommu_insert_resv_region(entry, group_resv_regions);
608 		if (ret)
609 			break;
610 	}
611 	return ret;
612 }
613 
iommu_get_group_resv_regions(struct iommu_group * group,struct list_head * head)614 int iommu_get_group_resv_regions(struct iommu_group *group,
615 				 struct list_head *head)
616 {
617 	struct group_device *device;
618 	int ret = 0;
619 
620 	mutex_lock(&group->mutex);
621 	list_for_each_entry(device, &group->devices, list) {
622 		struct list_head dev_resv_regions;
623 
624 		/*
625 		 * Non-API groups still expose reserved_regions in sysfs,
626 		 * so filter out calls that get here that way.
627 		 */
628 		if (!device->dev->iommu)
629 			break;
630 
631 		INIT_LIST_HEAD(&dev_resv_regions);
632 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
633 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
634 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
635 		if (ret)
636 			break;
637 	}
638 	mutex_unlock(&group->mutex);
639 	return ret;
640 }
641 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
642 
iommu_group_show_resv_regions(struct iommu_group * group,char * buf)643 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
644 					     char *buf)
645 {
646 	struct iommu_resv_region *region, *next;
647 	struct list_head group_resv_regions;
648 	char *str = buf;
649 
650 	INIT_LIST_HEAD(&group_resv_regions);
651 	iommu_get_group_resv_regions(group, &group_resv_regions);
652 
653 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
654 		str += sprintf(str, "0x%016llx 0x%016llx %s\n",
655 			       (long long int)region->start,
656 			       (long long int)(region->start +
657 						region->length - 1),
658 			       iommu_group_resv_type_string[region->type]);
659 		kfree(region);
660 	}
661 
662 	return (str - buf);
663 }
664 
iommu_group_show_type(struct iommu_group * group,char * buf)665 static ssize_t iommu_group_show_type(struct iommu_group *group,
666 				     char *buf)
667 {
668 	char *type = "unknown\n";
669 
670 	mutex_lock(&group->mutex);
671 	if (group->default_domain) {
672 		switch (group->default_domain->type) {
673 		case IOMMU_DOMAIN_BLOCKED:
674 			type = "blocked\n";
675 			break;
676 		case IOMMU_DOMAIN_IDENTITY:
677 			type = "identity\n";
678 			break;
679 		case IOMMU_DOMAIN_UNMANAGED:
680 			type = "unmanaged\n";
681 			break;
682 		case IOMMU_DOMAIN_DMA:
683 			type = "DMA\n";
684 			break;
685 		case IOMMU_DOMAIN_DMA_FQ:
686 			type = "DMA-FQ\n";
687 			break;
688 		}
689 	}
690 	mutex_unlock(&group->mutex);
691 	strcpy(buf, type);
692 
693 	return strlen(type);
694 }
695 
696 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
697 
698 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
699 			iommu_group_show_resv_regions, NULL);
700 
701 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
702 			iommu_group_store_type);
703 
iommu_group_release(struct kobject * kobj)704 static void iommu_group_release(struct kobject *kobj)
705 {
706 	struct iommu_group *group = to_iommu_group(kobj);
707 
708 	pr_debug("Releasing group %d\n", group->id);
709 
710 	if (group->iommu_data_release)
711 		group->iommu_data_release(group->iommu_data);
712 
713 	ida_free(&iommu_group_ida, group->id);
714 
715 	if (group->default_domain)
716 		iommu_domain_free(group->default_domain);
717 	if (group->blocking_domain)
718 		iommu_domain_free(group->blocking_domain);
719 
720 	kfree(group->name);
721 	kfree(group);
722 }
723 
724 static struct kobj_type iommu_group_ktype = {
725 	.sysfs_ops = &iommu_group_sysfs_ops,
726 	.release = iommu_group_release,
727 };
728 
729 /**
730  * iommu_group_alloc - Allocate a new group
731  *
732  * This function is called by an iommu driver to allocate a new iommu
733  * group.  The iommu group represents the minimum granularity of the iommu.
734  * Upon successful return, the caller holds a reference to the supplied
735  * group in order to hold the group until devices are added.  Use
736  * iommu_group_put() to release this extra reference count, allowing the
737  * group to be automatically reclaimed once it has no devices or external
738  * references.
739  */
iommu_group_alloc(void)740 struct iommu_group *iommu_group_alloc(void)
741 {
742 	struct iommu_group *group;
743 	int ret;
744 
745 	group = kzalloc(sizeof(*group), GFP_KERNEL);
746 	if (!group)
747 		return ERR_PTR(-ENOMEM);
748 
749 	group->kobj.kset = iommu_group_kset;
750 	mutex_init(&group->mutex);
751 	INIT_LIST_HEAD(&group->devices);
752 	INIT_LIST_HEAD(&group->entry);
753 	xa_init(&group->pasid_array);
754 
755 	ret = ida_alloc(&iommu_group_ida, GFP_KERNEL);
756 	if (ret < 0) {
757 		kfree(group);
758 		return ERR_PTR(ret);
759 	}
760 	group->id = ret;
761 
762 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
763 				   NULL, "%d", group->id);
764 	if (ret) {
765 		kobject_put(&group->kobj);
766 		return ERR_PTR(ret);
767 	}
768 
769 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
770 	if (!group->devices_kobj) {
771 		kobject_put(&group->kobj); /* triggers .release & free */
772 		return ERR_PTR(-ENOMEM);
773 	}
774 
775 	/*
776 	 * The devices_kobj holds a reference on the group kobject, so
777 	 * as long as that exists so will the group.  We can therefore
778 	 * use the devices_kobj for reference counting.
779 	 */
780 	kobject_put(&group->kobj);
781 
782 	ret = iommu_group_create_file(group,
783 				      &iommu_group_attr_reserved_regions);
784 	if (ret) {
785 		kobject_put(group->devices_kobj);
786 		return ERR_PTR(ret);
787 	}
788 
789 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
790 	if (ret) {
791 		kobject_put(group->devices_kobj);
792 		return ERR_PTR(ret);
793 	}
794 
795 	pr_debug("Allocated group %d\n", group->id);
796 
797 	return group;
798 }
799 EXPORT_SYMBOL_GPL(iommu_group_alloc);
800 
iommu_group_get_by_id(int id)801 struct iommu_group *iommu_group_get_by_id(int id)
802 {
803 	struct kobject *group_kobj;
804 	struct iommu_group *group;
805 	const char *name;
806 
807 	if (!iommu_group_kset)
808 		return NULL;
809 
810 	name = kasprintf(GFP_KERNEL, "%d", id);
811 	if (!name)
812 		return NULL;
813 
814 	group_kobj = kset_find_obj(iommu_group_kset, name);
815 	kfree(name);
816 
817 	if (!group_kobj)
818 		return NULL;
819 
820 	group = container_of(group_kobj, struct iommu_group, kobj);
821 	BUG_ON(group->id != id);
822 
823 	kobject_get(group->devices_kobj);
824 	kobject_put(&group->kobj);
825 
826 	return group;
827 }
828 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
829 
830 /**
831  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
832  * @group: the group
833  *
834  * iommu drivers can store data in the group for use when doing iommu
835  * operations.  This function provides a way to retrieve it.  Caller
836  * should hold a group reference.
837  */
iommu_group_get_iommudata(struct iommu_group * group)838 void *iommu_group_get_iommudata(struct iommu_group *group)
839 {
840 	return group->iommu_data;
841 }
842 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
843 
844 /**
845  * iommu_group_set_iommudata - set iommu_data for a group
846  * @group: the group
847  * @iommu_data: new data
848  * @release: release function for iommu_data
849  *
850  * iommu drivers can store data in the group for use when doing iommu
851  * operations.  This function provides a way to set the data after
852  * the group has been allocated.  Caller should hold a group reference.
853  */
iommu_group_set_iommudata(struct iommu_group * group,void * iommu_data,void (* release)(void * iommu_data))854 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
855 			       void (*release)(void *iommu_data))
856 {
857 	group->iommu_data = iommu_data;
858 	group->iommu_data_release = release;
859 }
860 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
861 
862 /**
863  * iommu_group_set_name - set name for a group
864  * @group: the group
865  * @name: name
866  *
867  * Allow iommu driver to set a name for a group.  When set it will
868  * appear in a name attribute file under the group in sysfs.
869  */
iommu_group_set_name(struct iommu_group * group,const char * name)870 int iommu_group_set_name(struct iommu_group *group, const char *name)
871 {
872 	int ret;
873 
874 	if (group->name) {
875 		iommu_group_remove_file(group, &iommu_group_attr_name);
876 		kfree(group->name);
877 		group->name = NULL;
878 		if (!name)
879 			return 0;
880 	}
881 
882 	group->name = kstrdup(name, GFP_KERNEL);
883 	if (!group->name)
884 		return -ENOMEM;
885 
886 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
887 	if (ret) {
888 		kfree(group->name);
889 		group->name = NULL;
890 		return ret;
891 	}
892 
893 	return 0;
894 }
895 EXPORT_SYMBOL_GPL(iommu_group_set_name);
896 
iommu_create_device_direct_mappings(struct iommu_group * group,struct device * dev)897 static int iommu_create_device_direct_mappings(struct iommu_group *group,
898 					       struct device *dev)
899 {
900 	struct iommu_domain *domain = group->default_domain;
901 	struct iommu_resv_region *entry;
902 	struct list_head mappings;
903 	unsigned long pg_size;
904 	int ret = 0;
905 
906 	if (!domain || !iommu_is_dma_domain(domain))
907 		return 0;
908 
909 	BUG_ON(!domain->pgsize_bitmap);
910 
911 	pg_size = 1UL << __ffs(domain->pgsize_bitmap);
912 	INIT_LIST_HEAD(&mappings);
913 
914 	iommu_get_resv_regions(dev, &mappings);
915 
916 	/* We need to consider overlapping regions for different devices */
917 	list_for_each_entry(entry, &mappings, list) {
918 		dma_addr_t start, end, addr;
919 		size_t map_size = 0;
920 
921 		start = ALIGN(entry->start, pg_size);
922 		end   = ALIGN(entry->start + entry->length, pg_size);
923 
924 		if (entry->type != IOMMU_RESV_DIRECT &&
925 		    entry->type != IOMMU_RESV_DIRECT_RELAXABLE)
926 			continue;
927 
928 		for (addr = start; addr <= end; addr += pg_size) {
929 			phys_addr_t phys_addr;
930 
931 			if (addr == end)
932 				goto map_end;
933 
934 			phys_addr = iommu_iova_to_phys(domain, addr);
935 			if (!phys_addr) {
936 				map_size += pg_size;
937 				continue;
938 			}
939 
940 map_end:
941 			if (map_size) {
942 				ret = iommu_map(domain, addr - map_size,
943 						addr - map_size, map_size,
944 						entry->prot);
945 				if (ret)
946 					goto out;
947 				map_size = 0;
948 			}
949 		}
950 
951 	}
952 
953 	iommu_flush_iotlb_all(domain);
954 
955 out:
956 	iommu_put_resv_regions(dev, &mappings);
957 
958 	return ret;
959 }
960 
iommu_is_attach_deferred(struct device * dev)961 static bool iommu_is_attach_deferred(struct device *dev)
962 {
963 	const struct iommu_ops *ops = dev_iommu_ops(dev);
964 
965 	if (ops->is_attach_deferred)
966 		return ops->is_attach_deferred(dev);
967 
968 	return false;
969 }
970 
971 /**
972  * iommu_group_add_device - add a device to an iommu group
973  * @group: the group into which to add the device (reference should be held)
974  * @dev: the device
975  *
976  * This function is called by an iommu driver to add a device into a
977  * group.  Adding a device increments the group reference count.
978  */
iommu_group_add_device(struct iommu_group * group,struct device * dev)979 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
980 {
981 	int ret, i = 0;
982 	struct group_device *device;
983 
984 	device = kzalloc(sizeof(*device), GFP_KERNEL);
985 	if (!device)
986 		return -ENOMEM;
987 
988 	device->dev = dev;
989 
990 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
991 	if (ret)
992 		goto err_free_device;
993 
994 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
995 rename:
996 	if (!device->name) {
997 		ret = -ENOMEM;
998 		goto err_remove_link;
999 	}
1000 
1001 	ret = sysfs_create_link_nowarn(group->devices_kobj,
1002 				       &dev->kobj, device->name);
1003 	if (ret) {
1004 		if (ret == -EEXIST && i >= 0) {
1005 			/*
1006 			 * Account for the slim chance of collision
1007 			 * and append an instance to the name.
1008 			 */
1009 			kfree(device->name);
1010 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
1011 						 kobject_name(&dev->kobj), i++);
1012 			goto rename;
1013 		}
1014 		goto err_free_name;
1015 	}
1016 
1017 	kobject_get(group->devices_kobj);
1018 
1019 	dev->iommu_group = group;
1020 
1021 	mutex_lock(&group->mutex);
1022 	list_add_tail(&device->list, &group->devices);
1023 	if (group->domain  && !iommu_is_attach_deferred(dev))
1024 		ret = __iommu_attach_device(group->domain, dev);
1025 	mutex_unlock(&group->mutex);
1026 	if (ret)
1027 		goto err_put_group;
1028 
1029 	trace_add_device_to_group(group->id, dev);
1030 
1031 	dev_info(dev, "Adding to iommu group %d\n", group->id);
1032 
1033 	return 0;
1034 
1035 err_put_group:
1036 	mutex_lock(&group->mutex);
1037 	list_del(&device->list);
1038 	mutex_unlock(&group->mutex);
1039 	dev->iommu_group = NULL;
1040 	kobject_put(group->devices_kobj);
1041 	sysfs_remove_link(group->devices_kobj, device->name);
1042 err_free_name:
1043 	kfree(device->name);
1044 err_remove_link:
1045 	sysfs_remove_link(&dev->kobj, "iommu_group");
1046 err_free_device:
1047 	kfree(device);
1048 	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
1049 	return ret;
1050 }
1051 EXPORT_SYMBOL_GPL(iommu_group_add_device);
1052 
1053 /**
1054  * iommu_group_remove_device - remove a device from it's current group
1055  * @dev: device to be removed
1056  *
1057  * This function is called by an iommu driver to remove the device from
1058  * it's current group.  This decrements the iommu group reference count.
1059  */
iommu_group_remove_device(struct device * dev)1060 void iommu_group_remove_device(struct device *dev)
1061 {
1062 	struct iommu_group *group = dev->iommu_group;
1063 	struct group_device *tmp_device, *device = NULL;
1064 
1065 	if (!group)
1066 		return;
1067 
1068 	dev_info(dev, "Removing from iommu group %d\n", group->id);
1069 
1070 	mutex_lock(&group->mutex);
1071 	list_for_each_entry(tmp_device, &group->devices, list) {
1072 		if (tmp_device->dev == dev) {
1073 			device = tmp_device;
1074 			list_del(&device->list);
1075 			break;
1076 		}
1077 	}
1078 	mutex_unlock(&group->mutex);
1079 
1080 	if (!device)
1081 		return;
1082 
1083 	sysfs_remove_link(group->devices_kobj, device->name);
1084 	sysfs_remove_link(&dev->kobj, "iommu_group");
1085 
1086 	trace_remove_device_from_group(group->id, dev);
1087 
1088 	kfree(device->name);
1089 	kfree(device);
1090 	dev->iommu_group = NULL;
1091 	kobject_put(group->devices_kobj);
1092 }
1093 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
1094 
iommu_group_device_count(struct iommu_group * group)1095 static int iommu_group_device_count(struct iommu_group *group)
1096 {
1097 	struct group_device *entry;
1098 	int ret = 0;
1099 
1100 	list_for_each_entry(entry, &group->devices, list)
1101 		ret++;
1102 
1103 	return ret;
1104 }
1105 
__iommu_group_for_each_dev(struct iommu_group * group,void * data,int (* fn)(struct device *,void *))1106 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
1107 				      int (*fn)(struct device *, void *))
1108 {
1109 	struct group_device *device;
1110 	int ret = 0;
1111 
1112 	list_for_each_entry(device, &group->devices, list) {
1113 		ret = fn(device->dev, data);
1114 		if (ret)
1115 			break;
1116 	}
1117 	return ret;
1118 }
1119 
1120 /**
1121  * iommu_group_for_each_dev - iterate over each device in the group
1122  * @group: the group
1123  * @data: caller opaque data to be passed to callback function
1124  * @fn: caller supplied callback function
1125  *
1126  * This function is called by group users to iterate over group devices.
1127  * Callers should hold a reference count to the group during callback.
1128  * The group->mutex is held across callbacks, which will block calls to
1129  * iommu_group_add/remove_device.
1130  */
iommu_group_for_each_dev(struct iommu_group * group,void * data,int (* fn)(struct device *,void *))1131 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1132 			     int (*fn)(struct device *, void *))
1133 {
1134 	int ret;
1135 
1136 	mutex_lock(&group->mutex);
1137 	ret = __iommu_group_for_each_dev(group, data, fn);
1138 	mutex_unlock(&group->mutex);
1139 
1140 	return ret;
1141 }
1142 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1143 
1144 /**
1145  * iommu_group_get - Return the group for a device and increment reference
1146  * @dev: get the group that this device belongs to
1147  *
1148  * This function is called by iommu drivers and users to get the group
1149  * for the specified device.  If found, the group is returned and the group
1150  * reference in incremented, else NULL.
1151  */
iommu_group_get(struct device * dev)1152 struct iommu_group *iommu_group_get(struct device *dev)
1153 {
1154 	struct iommu_group *group = dev->iommu_group;
1155 
1156 	if (group)
1157 		kobject_get(group->devices_kobj);
1158 
1159 	return group;
1160 }
1161 EXPORT_SYMBOL_GPL(iommu_group_get);
1162 
1163 /**
1164  * iommu_group_ref_get - Increment reference on a group
1165  * @group: the group to use, must not be NULL
1166  *
1167  * This function is called by iommu drivers to take additional references on an
1168  * existing group.  Returns the given group for convenience.
1169  */
iommu_group_ref_get(struct iommu_group * group)1170 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1171 {
1172 	kobject_get(group->devices_kobj);
1173 	return group;
1174 }
1175 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1176 
1177 /**
1178  * iommu_group_put - Decrement group reference
1179  * @group: the group to use
1180  *
1181  * This function is called by iommu drivers and users to release the
1182  * iommu group.  Once the reference count is zero, the group is released.
1183  */
iommu_group_put(struct iommu_group * group)1184 void iommu_group_put(struct iommu_group *group)
1185 {
1186 	if (group)
1187 		kobject_put(group->devices_kobj);
1188 }
1189 EXPORT_SYMBOL_GPL(iommu_group_put);
1190 
1191 /**
1192  * iommu_register_device_fault_handler() - Register a device fault handler
1193  * @dev: the device
1194  * @handler: the fault handler
1195  * @data: private data passed as argument to the handler
1196  *
1197  * When an IOMMU fault event is received, this handler gets called with the
1198  * fault event and data as argument. The handler should return 0 on success. If
1199  * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
1200  * complete the fault by calling iommu_page_response() with one of the following
1201  * response code:
1202  * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
1203  * - IOMMU_PAGE_RESP_INVALID: terminate the fault
1204  * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
1205  *   page faults if possible.
1206  *
1207  * Return 0 if the fault handler was installed successfully, or an error.
1208  */
iommu_register_device_fault_handler(struct device * dev,iommu_dev_fault_handler_t handler,void * data)1209 int iommu_register_device_fault_handler(struct device *dev,
1210 					iommu_dev_fault_handler_t handler,
1211 					void *data)
1212 {
1213 	struct dev_iommu *param = dev->iommu;
1214 	int ret = 0;
1215 
1216 	if (!param)
1217 		return -EINVAL;
1218 
1219 	mutex_lock(&param->lock);
1220 	/* Only allow one fault handler registered for each device */
1221 	if (param->fault_param) {
1222 		ret = -EBUSY;
1223 		goto done_unlock;
1224 	}
1225 
1226 	get_device(dev);
1227 	param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
1228 	if (!param->fault_param) {
1229 		put_device(dev);
1230 		ret = -ENOMEM;
1231 		goto done_unlock;
1232 	}
1233 	param->fault_param->handler = handler;
1234 	param->fault_param->data = data;
1235 	mutex_init(&param->fault_param->lock);
1236 	INIT_LIST_HEAD(&param->fault_param->faults);
1237 
1238 done_unlock:
1239 	mutex_unlock(&param->lock);
1240 
1241 	return ret;
1242 }
1243 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
1244 
1245 /**
1246  * iommu_unregister_device_fault_handler() - Unregister the device fault handler
1247  * @dev: the device
1248  *
1249  * Remove the device fault handler installed with
1250  * iommu_register_device_fault_handler().
1251  *
1252  * Return 0 on success, or an error.
1253  */
iommu_unregister_device_fault_handler(struct device * dev)1254 int iommu_unregister_device_fault_handler(struct device *dev)
1255 {
1256 	struct dev_iommu *param = dev->iommu;
1257 	int ret = 0;
1258 
1259 	if (!param)
1260 		return -EINVAL;
1261 
1262 	mutex_lock(&param->lock);
1263 
1264 	if (!param->fault_param)
1265 		goto unlock;
1266 
1267 	/* we cannot unregister handler if there are pending faults */
1268 	if (!list_empty(&param->fault_param->faults)) {
1269 		ret = -EBUSY;
1270 		goto unlock;
1271 	}
1272 
1273 	kfree(param->fault_param);
1274 	param->fault_param = NULL;
1275 	put_device(dev);
1276 unlock:
1277 	mutex_unlock(&param->lock);
1278 
1279 	return ret;
1280 }
1281 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1282 
1283 /**
1284  * iommu_report_device_fault() - Report fault event to device driver
1285  * @dev: the device
1286  * @evt: fault event data
1287  *
1288  * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1289  * handler. When this function fails and the fault is recoverable, it is the
1290  * caller's responsibility to complete the fault.
1291  *
1292  * Return 0 on success, or an error.
1293  */
iommu_report_device_fault(struct device * dev,struct iommu_fault_event * evt)1294 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1295 {
1296 	struct dev_iommu *param = dev->iommu;
1297 	struct iommu_fault_event *evt_pending = NULL;
1298 	struct iommu_fault_param *fparam;
1299 	int ret = 0;
1300 
1301 	if (!param || !evt)
1302 		return -EINVAL;
1303 
1304 	/* we only report device fault if there is a handler registered */
1305 	mutex_lock(&param->lock);
1306 	fparam = param->fault_param;
1307 	if (!fparam || !fparam->handler) {
1308 		ret = -EINVAL;
1309 		goto done_unlock;
1310 	}
1311 
1312 	if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1313 	    (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1314 		evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1315 				      GFP_KERNEL);
1316 		if (!evt_pending) {
1317 			ret = -ENOMEM;
1318 			goto done_unlock;
1319 		}
1320 		mutex_lock(&fparam->lock);
1321 		list_add_tail(&evt_pending->list, &fparam->faults);
1322 		mutex_unlock(&fparam->lock);
1323 	}
1324 
1325 	ret = fparam->handler(&evt->fault, fparam->data);
1326 	if (ret && evt_pending) {
1327 		mutex_lock(&fparam->lock);
1328 		list_del(&evt_pending->list);
1329 		mutex_unlock(&fparam->lock);
1330 		kfree(evt_pending);
1331 	}
1332 done_unlock:
1333 	mutex_unlock(&param->lock);
1334 	return ret;
1335 }
1336 EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1337 
iommu_page_response(struct device * dev,struct iommu_page_response * msg)1338 int iommu_page_response(struct device *dev,
1339 			struct iommu_page_response *msg)
1340 {
1341 	bool needs_pasid;
1342 	int ret = -EINVAL;
1343 	struct iommu_fault_event *evt;
1344 	struct iommu_fault_page_request *prm;
1345 	struct dev_iommu *param = dev->iommu;
1346 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1347 	bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID;
1348 
1349 	if (!ops->page_response)
1350 		return -ENODEV;
1351 
1352 	if (!param || !param->fault_param)
1353 		return -EINVAL;
1354 
1355 	if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1356 	    msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1357 		return -EINVAL;
1358 
1359 	/* Only send response if there is a fault report pending */
1360 	mutex_lock(&param->fault_param->lock);
1361 	if (list_empty(&param->fault_param->faults)) {
1362 		dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1363 		goto done_unlock;
1364 	}
1365 	/*
1366 	 * Check if we have a matching page request pending to respond,
1367 	 * otherwise return -EINVAL
1368 	 */
1369 	list_for_each_entry(evt, &param->fault_param->faults, list) {
1370 		prm = &evt->fault.prm;
1371 		if (prm->grpid != msg->grpid)
1372 			continue;
1373 
1374 		/*
1375 		 * If the PASID is required, the corresponding request is
1376 		 * matched using the group ID, the PASID valid bit and the PASID
1377 		 * value. Otherwise only the group ID matches request and
1378 		 * response.
1379 		 */
1380 		needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
1381 		if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid))
1382 			continue;
1383 
1384 		if (!needs_pasid && has_pasid) {
1385 			/* No big deal, just clear it. */
1386 			msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID;
1387 			msg->pasid = 0;
1388 		}
1389 
1390 		ret = ops->page_response(dev, evt, msg);
1391 		list_del(&evt->list);
1392 		kfree(evt);
1393 		break;
1394 	}
1395 
1396 done_unlock:
1397 	mutex_unlock(&param->fault_param->lock);
1398 	return ret;
1399 }
1400 EXPORT_SYMBOL_GPL(iommu_page_response);
1401 
1402 /**
1403  * iommu_group_id - Return ID for a group
1404  * @group: the group to ID
1405  *
1406  * Return the unique ID for the group matching the sysfs group number.
1407  */
iommu_group_id(struct iommu_group * group)1408 int iommu_group_id(struct iommu_group *group)
1409 {
1410 	return group->id;
1411 }
1412 EXPORT_SYMBOL_GPL(iommu_group_id);
1413 
1414 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1415 					       unsigned long *devfns);
1416 
1417 /*
1418  * To consider a PCI device isolated, we require ACS to support Source
1419  * Validation, Request Redirection, Completer Redirection, and Upstream
1420  * Forwarding.  This effectively means that devices cannot spoof their
1421  * requester ID, requests and completions cannot be redirected, and all
1422  * transactions are forwarded upstream, even as it passes through a
1423  * bridge where the target device is downstream.
1424  */
1425 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1426 
1427 /*
1428  * For multifunction devices which are not isolated from each other, find
1429  * all the other non-isolated functions and look for existing groups.  For
1430  * each function, we also need to look for aliases to or from other devices
1431  * that may already have a group.
1432  */
get_pci_function_alias_group(struct pci_dev * pdev,unsigned long * devfns)1433 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1434 							unsigned long *devfns)
1435 {
1436 	struct pci_dev *tmp = NULL;
1437 	struct iommu_group *group;
1438 
1439 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1440 		return NULL;
1441 
1442 	for_each_pci_dev(tmp) {
1443 		if (tmp == pdev || tmp->bus != pdev->bus ||
1444 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1445 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1446 			continue;
1447 
1448 		group = get_pci_alias_group(tmp, devfns);
1449 		if (group) {
1450 			pci_dev_put(tmp);
1451 			return group;
1452 		}
1453 	}
1454 
1455 	return NULL;
1456 }
1457 
1458 /*
1459  * Look for aliases to or from the given device for existing groups. DMA
1460  * aliases are only supported on the same bus, therefore the search
1461  * space is quite small (especially since we're really only looking at pcie
1462  * device, and therefore only expect multiple slots on the root complex or
1463  * downstream switch ports).  It's conceivable though that a pair of
1464  * multifunction devices could have aliases between them that would cause a
1465  * loop.  To prevent this, we use a bitmap to track where we've been.
1466  */
get_pci_alias_group(struct pci_dev * pdev,unsigned long * devfns)1467 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1468 					       unsigned long *devfns)
1469 {
1470 	struct pci_dev *tmp = NULL;
1471 	struct iommu_group *group;
1472 
1473 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1474 		return NULL;
1475 
1476 	group = iommu_group_get(&pdev->dev);
1477 	if (group)
1478 		return group;
1479 
1480 	for_each_pci_dev(tmp) {
1481 		if (tmp == pdev || tmp->bus != pdev->bus)
1482 			continue;
1483 
1484 		/* We alias them or they alias us */
1485 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
1486 			group = get_pci_alias_group(tmp, devfns);
1487 			if (group) {
1488 				pci_dev_put(tmp);
1489 				return group;
1490 			}
1491 
1492 			group = get_pci_function_alias_group(tmp, devfns);
1493 			if (group) {
1494 				pci_dev_put(tmp);
1495 				return group;
1496 			}
1497 		}
1498 	}
1499 
1500 	return NULL;
1501 }
1502 
1503 struct group_for_pci_data {
1504 	struct pci_dev *pdev;
1505 	struct iommu_group *group;
1506 };
1507 
1508 /*
1509  * DMA alias iterator callback, return the last seen device.  Stop and return
1510  * the IOMMU group if we find one along the way.
1511  */
get_pci_alias_or_group(struct pci_dev * pdev,u16 alias,void * opaque)1512 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1513 {
1514 	struct group_for_pci_data *data = opaque;
1515 
1516 	data->pdev = pdev;
1517 	data->group = iommu_group_get(&pdev->dev);
1518 
1519 	return data->group != NULL;
1520 }
1521 
1522 /*
1523  * Generic device_group call-back function. It just allocates one
1524  * iommu-group per device.
1525  */
generic_device_group(struct device * dev)1526 struct iommu_group *generic_device_group(struct device *dev)
1527 {
1528 	return iommu_group_alloc();
1529 }
1530 EXPORT_SYMBOL_GPL(generic_device_group);
1531 
1532 /*
1533  * Use standard PCI bus topology, isolation features, and DMA alias quirks
1534  * to find or create an IOMMU group for a device.
1535  */
pci_device_group(struct device * dev)1536 struct iommu_group *pci_device_group(struct device *dev)
1537 {
1538 	struct pci_dev *pdev = to_pci_dev(dev);
1539 	struct group_for_pci_data data;
1540 	struct pci_bus *bus;
1541 	struct iommu_group *group = NULL;
1542 	u64 devfns[4] = { 0 };
1543 
1544 	if (WARN_ON(!dev_is_pci(dev)))
1545 		return ERR_PTR(-EINVAL);
1546 
1547 	/*
1548 	 * Find the upstream DMA alias for the device.  A device must not
1549 	 * be aliased due to topology in order to have its own IOMMU group.
1550 	 * If we find an alias along the way that already belongs to a
1551 	 * group, use it.
1552 	 */
1553 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1554 		return data.group;
1555 
1556 	pdev = data.pdev;
1557 
1558 	/*
1559 	 * Continue upstream from the point of minimum IOMMU granularity
1560 	 * due to aliases to the point where devices are protected from
1561 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1562 	 * group, use it.
1563 	 */
1564 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1565 		if (!bus->self)
1566 			continue;
1567 
1568 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1569 			break;
1570 
1571 		pdev = bus->self;
1572 
1573 		group = iommu_group_get(&pdev->dev);
1574 		if (group)
1575 			return group;
1576 	}
1577 
1578 	/*
1579 	 * Look for existing groups on device aliases.  If we alias another
1580 	 * device or another device aliases us, use the same group.
1581 	 */
1582 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1583 	if (group)
1584 		return group;
1585 
1586 	/*
1587 	 * Look for existing groups on non-isolated functions on the same
1588 	 * slot and aliases of those funcions, if any.  No need to clear
1589 	 * the search bitmap, the tested devfns are still valid.
1590 	 */
1591 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1592 	if (group)
1593 		return group;
1594 
1595 	/* No shared group found, allocate new */
1596 	return iommu_group_alloc();
1597 }
1598 EXPORT_SYMBOL_GPL(pci_device_group);
1599 
1600 /* Get the IOMMU group for device on fsl-mc bus */
fsl_mc_device_group(struct device * dev)1601 struct iommu_group *fsl_mc_device_group(struct device *dev)
1602 {
1603 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1604 	struct iommu_group *group;
1605 
1606 	group = iommu_group_get(cont_dev);
1607 	if (!group)
1608 		group = iommu_group_alloc();
1609 	return group;
1610 }
1611 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1612 
iommu_get_def_domain_type(struct device * dev)1613 static int iommu_get_def_domain_type(struct device *dev)
1614 {
1615 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1616 
1617 	if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
1618 		return IOMMU_DOMAIN_DMA;
1619 
1620 	if (ops->def_domain_type)
1621 		return ops->def_domain_type(dev);
1622 
1623 	return 0;
1624 }
1625 
iommu_group_alloc_default_domain(struct bus_type * bus,struct iommu_group * group,unsigned int type)1626 static int iommu_group_alloc_default_domain(struct bus_type *bus,
1627 					    struct iommu_group *group,
1628 					    unsigned int type)
1629 {
1630 	struct iommu_domain *dom;
1631 
1632 	dom = __iommu_domain_alloc(bus, type);
1633 	if (!dom && type != IOMMU_DOMAIN_DMA) {
1634 		dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA);
1635 		if (dom)
1636 			pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1637 				type, group->name);
1638 	}
1639 
1640 	if (!dom)
1641 		return -ENOMEM;
1642 
1643 	group->default_domain = dom;
1644 	if (!group->domain)
1645 		group->domain = dom;
1646 	return 0;
1647 }
1648 
iommu_alloc_default_domain(struct iommu_group * group,struct device * dev)1649 static int iommu_alloc_default_domain(struct iommu_group *group,
1650 				      struct device *dev)
1651 {
1652 	unsigned int type;
1653 
1654 	if (group->default_domain)
1655 		return 0;
1656 
1657 	type = iommu_get_def_domain_type(dev) ? : iommu_def_domain_type;
1658 
1659 	return iommu_group_alloc_default_domain(dev->bus, group, type);
1660 }
1661 
1662 /**
1663  * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1664  * @dev: target device
1665  *
1666  * This function is intended to be called by IOMMU drivers and extended to
1667  * support common, bus-defined algorithms when determining or creating the
1668  * IOMMU group for a device.  On success, the caller will hold a reference
1669  * to the returned IOMMU group, which will already include the provided
1670  * device.  The reference should be released with iommu_group_put().
1671  */
iommu_group_get_for_dev(struct device * dev)1672 static struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1673 {
1674 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1675 	struct iommu_group *group;
1676 	int ret;
1677 
1678 	group = iommu_group_get(dev);
1679 	if (group)
1680 		return group;
1681 
1682 	group = ops->device_group(dev);
1683 	if (WARN_ON_ONCE(group == NULL))
1684 		return ERR_PTR(-EINVAL);
1685 
1686 	if (IS_ERR(group))
1687 		return group;
1688 
1689 	ret = iommu_group_add_device(group, dev);
1690 	if (ret)
1691 		goto out_put_group;
1692 
1693 	return group;
1694 
1695 out_put_group:
1696 	iommu_group_put(group);
1697 
1698 	return ERR_PTR(ret);
1699 }
1700 
iommu_group_default_domain(struct iommu_group * group)1701 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1702 {
1703 	return group->default_domain;
1704 }
1705 
probe_iommu_group(struct device * dev,void * data)1706 static int probe_iommu_group(struct device *dev, void *data)
1707 {
1708 	struct list_head *group_list = data;
1709 	struct iommu_group *group;
1710 	int ret;
1711 
1712 	/* Device is probed already if in a group */
1713 	group = iommu_group_get(dev);
1714 	if (group) {
1715 		iommu_group_put(group);
1716 		return 0;
1717 	}
1718 
1719 	mutex_lock(&iommu_probe_device_lock);
1720 	ret = __iommu_probe_device(dev, group_list);
1721 	mutex_unlock(&iommu_probe_device_lock);
1722 	if (ret == -ENODEV)
1723 		ret = 0;
1724 
1725 	return ret;
1726 }
1727 
iommu_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)1728 static int iommu_bus_notifier(struct notifier_block *nb,
1729 			      unsigned long action, void *data)
1730 {
1731 	struct device *dev = data;
1732 
1733 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1734 		int ret;
1735 
1736 		ret = iommu_probe_device(dev);
1737 		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1738 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1739 		iommu_release_device(dev);
1740 		return NOTIFY_OK;
1741 	}
1742 
1743 	return 0;
1744 }
1745 
1746 struct __group_domain_type {
1747 	struct device *dev;
1748 	unsigned int type;
1749 };
1750 
probe_get_default_domain_type(struct device * dev,void * data)1751 static int probe_get_default_domain_type(struct device *dev, void *data)
1752 {
1753 	struct __group_domain_type *gtype = data;
1754 	unsigned int type = iommu_get_def_domain_type(dev);
1755 
1756 	if (type) {
1757 		if (gtype->type && gtype->type != type) {
1758 			dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n",
1759 				 iommu_domain_type_str(type),
1760 				 dev_name(gtype->dev),
1761 				 iommu_domain_type_str(gtype->type));
1762 			gtype->type = 0;
1763 		}
1764 
1765 		if (!gtype->dev) {
1766 			gtype->dev  = dev;
1767 			gtype->type = type;
1768 		}
1769 	}
1770 
1771 	return 0;
1772 }
1773 
probe_alloc_default_domain(struct bus_type * bus,struct iommu_group * group)1774 static void probe_alloc_default_domain(struct bus_type *bus,
1775 				       struct iommu_group *group)
1776 {
1777 	struct __group_domain_type gtype;
1778 
1779 	if (group->default_domain)
1780 		return;
1781 
1782 	memset(&gtype, 0, sizeof(gtype));
1783 
1784 	/* Ask for default domain requirements of all devices in the group */
1785 	__iommu_group_for_each_dev(group, &gtype,
1786 				   probe_get_default_domain_type);
1787 
1788 	if (!gtype.type)
1789 		gtype.type = iommu_def_domain_type;
1790 
1791 	iommu_group_alloc_default_domain(bus, group, gtype.type);
1792 
1793 }
1794 
iommu_group_do_dma_attach(struct device * dev,void * data)1795 static int iommu_group_do_dma_attach(struct device *dev, void *data)
1796 {
1797 	struct iommu_domain *domain = data;
1798 	int ret = 0;
1799 
1800 	if (!iommu_is_attach_deferred(dev))
1801 		ret = __iommu_attach_device(domain, dev);
1802 
1803 	return ret;
1804 }
1805 
__iommu_group_dma_attach(struct iommu_group * group)1806 static int __iommu_group_dma_attach(struct iommu_group *group)
1807 {
1808 	return __iommu_group_for_each_dev(group, group->default_domain,
1809 					  iommu_group_do_dma_attach);
1810 }
1811 
iommu_group_do_probe_finalize(struct device * dev,void * data)1812 static int iommu_group_do_probe_finalize(struct device *dev, void *data)
1813 {
1814 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1815 
1816 	if (ops->probe_finalize)
1817 		ops->probe_finalize(dev);
1818 
1819 	return 0;
1820 }
1821 
__iommu_group_dma_finalize(struct iommu_group * group)1822 static void __iommu_group_dma_finalize(struct iommu_group *group)
1823 {
1824 	__iommu_group_for_each_dev(group, group->default_domain,
1825 				   iommu_group_do_probe_finalize);
1826 }
1827 
iommu_do_create_direct_mappings(struct device * dev,void * data)1828 static int iommu_do_create_direct_mappings(struct device *dev, void *data)
1829 {
1830 	struct iommu_group *group = data;
1831 
1832 	iommu_create_device_direct_mappings(group, dev);
1833 
1834 	return 0;
1835 }
1836 
iommu_group_create_direct_mappings(struct iommu_group * group)1837 static int iommu_group_create_direct_mappings(struct iommu_group *group)
1838 {
1839 	return __iommu_group_for_each_dev(group, group,
1840 					  iommu_do_create_direct_mappings);
1841 }
1842 
bus_iommu_probe(struct bus_type * bus)1843 int bus_iommu_probe(struct bus_type *bus)
1844 {
1845 	struct iommu_group *group, *next;
1846 	LIST_HEAD(group_list);
1847 	int ret;
1848 
1849 	/*
1850 	 * This code-path does not allocate the default domain when
1851 	 * creating the iommu group, so do it after the groups are
1852 	 * created.
1853 	 */
1854 	ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1855 	if (ret)
1856 		return ret;
1857 
1858 	list_for_each_entry_safe(group, next, &group_list, entry) {
1859 		mutex_lock(&group->mutex);
1860 
1861 		/* Remove item from the list */
1862 		list_del_init(&group->entry);
1863 
1864 		/* Try to allocate default domain */
1865 		probe_alloc_default_domain(bus, group);
1866 
1867 		if (!group->default_domain) {
1868 			mutex_unlock(&group->mutex);
1869 			continue;
1870 		}
1871 
1872 		iommu_group_create_direct_mappings(group);
1873 
1874 		ret = __iommu_group_dma_attach(group);
1875 
1876 		mutex_unlock(&group->mutex);
1877 
1878 		if (ret)
1879 			break;
1880 
1881 		__iommu_group_dma_finalize(group);
1882 	}
1883 
1884 	return ret;
1885 }
1886 
iommu_present(struct bus_type * bus)1887 bool iommu_present(struct bus_type *bus)
1888 {
1889 	return bus->iommu_ops != NULL;
1890 }
1891 EXPORT_SYMBOL_GPL(iommu_present);
1892 
1893 /**
1894  * device_iommu_capable() - check for a general IOMMU capability
1895  * @dev: device to which the capability would be relevant, if available
1896  * @cap: IOMMU capability
1897  *
1898  * Return: true if an IOMMU is present and supports the given capability
1899  * for the given device, otherwise false.
1900  */
device_iommu_capable(struct device * dev,enum iommu_cap cap)1901 bool device_iommu_capable(struct device *dev, enum iommu_cap cap)
1902 {
1903 	const struct iommu_ops *ops;
1904 
1905 	if (!dev->iommu || !dev->iommu->iommu_dev)
1906 		return false;
1907 
1908 	ops = dev_iommu_ops(dev);
1909 	if (!ops->capable)
1910 		return false;
1911 
1912 	return ops->capable(dev, cap);
1913 }
1914 EXPORT_SYMBOL_GPL(device_iommu_capable);
1915 
1916 /**
1917  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1918  * @domain: iommu domain
1919  * @handler: fault handler
1920  * @token: user data, will be passed back to the fault handler
1921  *
1922  * This function should be used by IOMMU users which want to be notified
1923  * whenever an IOMMU fault happens.
1924  *
1925  * The fault handler itself should return 0 on success, and an appropriate
1926  * error code otherwise.
1927  */
iommu_set_fault_handler(struct iommu_domain * domain,iommu_fault_handler_t handler,void * token)1928 void iommu_set_fault_handler(struct iommu_domain *domain,
1929 					iommu_fault_handler_t handler,
1930 					void *token)
1931 {
1932 	BUG_ON(!domain);
1933 
1934 	domain->handler = handler;
1935 	domain->handler_token = token;
1936 }
1937 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1938 
__iommu_domain_alloc(struct bus_type * bus,unsigned type)1939 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1940 						 unsigned type)
1941 {
1942 	struct iommu_domain *domain;
1943 
1944 	if (bus == NULL || bus->iommu_ops == NULL)
1945 		return NULL;
1946 
1947 	domain = bus->iommu_ops->domain_alloc(type);
1948 	if (!domain)
1949 		return NULL;
1950 
1951 	domain->type = type;
1952 	/*
1953 	 * If not already set, assume all sizes by default; the driver
1954 	 * may override this later
1955 	 */
1956 	if (!domain->pgsize_bitmap)
1957 		domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap;
1958 
1959 	if (!domain->ops)
1960 		domain->ops = bus->iommu_ops->default_domain_ops;
1961 
1962 	if (iommu_is_dma_domain(domain) && iommu_get_dma_cookie(domain)) {
1963 		iommu_domain_free(domain);
1964 		domain = NULL;
1965 	}
1966 	return domain;
1967 }
1968 
iommu_domain_alloc(struct bus_type * bus)1969 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1970 {
1971 	return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1972 }
1973 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1974 
iommu_domain_free(struct iommu_domain * domain)1975 void iommu_domain_free(struct iommu_domain *domain)
1976 {
1977 	if (domain->type == IOMMU_DOMAIN_SVA)
1978 		mmdrop(domain->mm);
1979 	iommu_put_dma_cookie(domain);
1980 	domain->ops->free(domain);
1981 }
1982 EXPORT_SYMBOL_GPL(iommu_domain_free);
1983 
1984 /*
1985  * Put the group's domain back to the appropriate core-owned domain - either the
1986  * standard kernel-mode DMA configuration or an all-DMA-blocked domain.
1987  */
__iommu_group_set_core_domain(struct iommu_group * group)1988 static void __iommu_group_set_core_domain(struct iommu_group *group)
1989 {
1990 	struct iommu_domain *new_domain;
1991 	int ret;
1992 
1993 	if (group->owner)
1994 		new_domain = group->blocking_domain;
1995 	else
1996 		new_domain = group->default_domain;
1997 
1998 	ret = __iommu_group_set_domain(group, new_domain);
1999 	WARN(ret, "iommu driver failed to attach the default/blocking domain");
2000 }
2001 
__iommu_attach_device(struct iommu_domain * domain,struct device * dev)2002 static int __iommu_attach_device(struct iommu_domain *domain,
2003 				 struct device *dev)
2004 {
2005 	int ret;
2006 
2007 	if (unlikely(domain->ops->attach_dev == NULL))
2008 		return -ENODEV;
2009 
2010 	ret = domain->ops->attach_dev(domain, dev);
2011 	if (!ret)
2012 		trace_attach_device_to_domain(dev);
2013 	return ret;
2014 }
2015 
iommu_attach_device(struct iommu_domain * domain,struct device * dev)2016 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
2017 {
2018 	struct iommu_group *group;
2019 	int ret;
2020 
2021 	group = iommu_group_get(dev);
2022 	if (!group)
2023 		return -ENODEV;
2024 
2025 	/*
2026 	 * Lock the group to make sure the device-count doesn't
2027 	 * change while we are attaching
2028 	 */
2029 	mutex_lock(&group->mutex);
2030 	ret = -EINVAL;
2031 	if (iommu_group_device_count(group) != 1)
2032 		goto out_unlock;
2033 
2034 	ret = __iommu_attach_group(domain, group);
2035 
2036 out_unlock:
2037 	mutex_unlock(&group->mutex);
2038 	iommu_group_put(group);
2039 
2040 	return ret;
2041 }
2042 EXPORT_SYMBOL_GPL(iommu_attach_device);
2043 
iommu_deferred_attach(struct device * dev,struct iommu_domain * domain)2044 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2045 {
2046 	if (iommu_is_attach_deferred(dev))
2047 		return __iommu_attach_device(domain, dev);
2048 
2049 	return 0;
2050 }
2051 
__iommu_detach_device(struct iommu_domain * domain,struct device * dev)2052 static void __iommu_detach_device(struct iommu_domain *domain,
2053 				  struct device *dev)
2054 {
2055 	if (iommu_is_attach_deferred(dev))
2056 		return;
2057 
2058 	domain->ops->detach_dev(domain, dev);
2059 	trace_detach_device_from_domain(dev);
2060 }
2061 
iommu_detach_device(struct iommu_domain * domain,struct device * dev)2062 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2063 {
2064 	struct iommu_group *group;
2065 
2066 	group = iommu_group_get(dev);
2067 	if (!group)
2068 		return;
2069 
2070 	mutex_lock(&group->mutex);
2071 	if (WARN_ON(domain != group->domain) ||
2072 	    WARN_ON(iommu_group_device_count(group) != 1))
2073 		goto out_unlock;
2074 	__iommu_group_set_core_domain(group);
2075 
2076 out_unlock:
2077 	mutex_unlock(&group->mutex);
2078 	iommu_group_put(group);
2079 }
2080 EXPORT_SYMBOL_GPL(iommu_detach_device);
2081 
iommu_get_domain_for_dev(struct device * dev)2082 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2083 {
2084 	struct iommu_domain *domain;
2085 	struct iommu_group *group;
2086 
2087 	group = iommu_group_get(dev);
2088 	if (!group)
2089 		return NULL;
2090 
2091 	domain = group->domain;
2092 
2093 	iommu_group_put(group);
2094 
2095 	return domain;
2096 }
2097 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2098 
2099 /*
2100  * For IOMMU_DOMAIN_DMA implementations which already provide their own
2101  * guarantees that the group and its default domain are valid and correct.
2102  */
iommu_get_dma_domain(struct device * dev)2103 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2104 {
2105 	return dev->iommu_group->default_domain;
2106 }
2107 
2108 /*
2109  * IOMMU groups are really the natural working unit of the IOMMU, but
2110  * the IOMMU API works on domains and devices.  Bridge that gap by
2111  * iterating over the devices in a group.  Ideally we'd have a single
2112  * device which represents the requestor ID of the group, but we also
2113  * allow IOMMU drivers to create policy defined minimum sets, where
2114  * the physical hardware may be able to distiguish members, but we
2115  * wish to group them at a higher level (ex. untrusted multi-function
2116  * PCI devices).  Thus we attach each device.
2117  */
iommu_group_do_attach_device(struct device * dev,void * data)2118 static int iommu_group_do_attach_device(struct device *dev, void *data)
2119 {
2120 	struct iommu_domain *domain = data;
2121 
2122 	return __iommu_attach_device(domain, dev);
2123 }
2124 
__iommu_attach_group(struct iommu_domain * domain,struct iommu_group * group)2125 static int __iommu_attach_group(struct iommu_domain *domain,
2126 				struct iommu_group *group)
2127 {
2128 	int ret;
2129 
2130 	if (group->domain && group->domain != group->default_domain &&
2131 	    group->domain != group->blocking_domain)
2132 		return -EBUSY;
2133 
2134 	ret = __iommu_group_for_each_dev(group, domain,
2135 					 iommu_group_do_attach_device);
2136 	if (ret == 0) {
2137 		group->domain = domain;
2138 	} else {
2139 		/*
2140 		 * To recover from the case when certain device within the
2141 		 * group fails to attach to the new domain, we need force
2142 		 * attaching all devices back to the old domain. The old
2143 		 * domain is compatible for all devices in the group,
2144 		 * hence the iommu driver should always return success.
2145 		 */
2146 		struct iommu_domain *old_domain = group->domain;
2147 
2148 		group->domain = NULL;
2149 		WARN(__iommu_group_set_domain(group, old_domain),
2150 		     "iommu driver failed to attach a compatible domain");
2151 	}
2152 
2153 	return ret;
2154 }
2155 
iommu_attach_group(struct iommu_domain * domain,struct iommu_group * group)2156 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2157 {
2158 	int ret;
2159 
2160 	mutex_lock(&group->mutex);
2161 	ret = __iommu_attach_group(domain, group);
2162 	mutex_unlock(&group->mutex);
2163 
2164 	return ret;
2165 }
2166 EXPORT_SYMBOL_GPL(iommu_attach_group);
2167 
iommu_group_do_detach_device(struct device * dev,void * data)2168 static int iommu_group_do_detach_device(struct device *dev, void *data)
2169 {
2170 	struct iommu_domain *domain = data;
2171 
2172 	__iommu_detach_device(domain, dev);
2173 
2174 	return 0;
2175 }
2176 
__iommu_group_set_domain(struct iommu_group * group,struct iommu_domain * new_domain)2177 static int __iommu_group_set_domain(struct iommu_group *group,
2178 				    struct iommu_domain *new_domain)
2179 {
2180 	int ret;
2181 
2182 	if (group->domain == new_domain)
2183 		return 0;
2184 
2185 	/*
2186 	 * New drivers should support default domains and so the detach_dev() op
2187 	 * will never be called. Otherwise the NULL domain represents some
2188 	 * platform specific behavior.
2189 	 */
2190 	if (!new_domain) {
2191 		if (WARN_ON(!group->domain->ops->detach_dev))
2192 			return -EINVAL;
2193 		__iommu_group_for_each_dev(group, group->domain,
2194 					   iommu_group_do_detach_device);
2195 		group->domain = NULL;
2196 		return 0;
2197 	}
2198 
2199 	/*
2200 	 * Changing the domain is done by calling attach_dev() on the new
2201 	 * domain. This switch does not have to be atomic and DMA can be
2202 	 * discarded during the transition. DMA must only be able to access
2203 	 * either new_domain or group->domain, never something else.
2204 	 *
2205 	 * Note that this is called in error unwind paths, attaching to a
2206 	 * domain that has already been attached cannot fail.
2207 	 */
2208 	ret = __iommu_group_for_each_dev(group, new_domain,
2209 					 iommu_group_do_attach_device);
2210 	if (ret)
2211 		return ret;
2212 	group->domain = new_domain;
2213 	return 0;
2214 }
2215 
iommu_detach_group(struct iommu_domain * domain,struct iommu_group * group)2216 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2217 {
2218 	mutex_lock(&group->mutex);
2219 	__iommu_group_set_core_domain(group);
2220 	mutex_unlock(&group->mutex);
2221 }
2222 EXPORT_SYMBOL_GPL(iommu_detach_group);
2223 
iommu_iova_to_phys(struct iommu_domain * domain,dma_addr_t iova)2224 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2225 {
2226 	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2227 		return iova;
2228 
2229 	if (domain->type == IOMMU_DOMAIN_BLOCKED)
2230 		return 0;
2231 
2232 	return domain->ops->iova_to_phys(domain, iova);
2233 }
2234 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2235 
iommu_pgsize(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,size_t * count)2236 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2237 			   phys_addr_t paddr, size_t size, size_t *count)
2238 {
2239 	unsigned int pgsize_idx, pgsize_idx_next;
2240 	unsigned long pgsizes;
2241 	size_t offset, pgsize, pgsize_next;
2242 	unsigned long addr_merge = paddr | iova;
2243 
2244 	/* Page sizes supported by the hardware and small enough for @size */
2245 	pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2246 
2247 	/* Constrain the page sizes further based on the maximum alignment */
2248 	if (likely(addr_merge))
2249 		pgsizes &= GENMASK(__ffs(addr_merge), 0);
2250 
2251 	/* Make sure we have at least one suitable page size */
2252 	BUG_ON(!pgsizes);
2253 
2254 	/* Pick the biggest page size remaining */
2255 	pgsize_idx = __fls(pgsizes);
2256 	pgsize = BIT(pgsize_idx);
2257 	if (!count)
2258 		return pgsize;
2259 
2260 	/* Find the next biggest support page size, if it exists */
2261 	pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2262 	if (!pgsizes)
2263 		goto out_set_count;
2264 
2265 	pgsize_idx_next = __ffs(pgsizes);
2266 	pgsize_next = BIT(pgsize_idx_next);
2267 
2268 	/*
2269 	 * There's no point trying a bigger page size unless the virtual
2270 	 * and physical addresses are similarly offset within the larger page.
2271 	 */
2272 	if ((iova ^ paddr) & (pgsize_next - 1))
2273 		goto out_set_count;
2274 
2275 	/* Calculate the offset to the next page size alignment boundary */
2276 	offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2277 
2278 	/*
2279 	 * If size is big enough to accommodate the larger page, reduce
2280 	 * the number of smaller pages.
2281 	 */
2282 	if (offset + pgsize_next <= size)
2283 		size = offset;
2284 
2285 out_set_count:
2286 	*count = size >> pgsize_idx;
2287 	return pgsize;
2288 }
2289 
__iommu_map_pages(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp,size_t * mapped)2290 static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova,
2291 			     phys_addr_t paddr, size_t size, int prot,
2292 			     gfp_t gfp, size_t *mapped)
2293 {
2294 	const struct iommu_domain_ops *ops = domain->ops;
2295 	size_t pgsize, count;
2296 	int ret;
2297 
2298 	pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2299 
2300 	pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2301 		 iova, &paddr, pgsize, count);
2302 
2303 	if (ops->map_pages) {
2304 		ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2305 				     gfp, mapped);
2306 	} else {
2307 		ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
2308 		*mapped = ret ? 0 : pgsize;
2309 	}
2310 
2311 	return ret;
2312 }
2313 
__iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)2314 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2315 		       phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2316 {
2317 	const struct iommu_domain_ops *ops = domain->ops;
2318 	unsigned long orig_iova = iova;
2319 	unsigned int min_pagesz;
2320 	size_t orig_size = size;
2321 	phys_addr_t orig_paddr = paddr;
2322 	int ret = 0;
2323 
2324 	if (unlikely(!(ops->map || ops->map_pages) ||
2325 		     domain->pgsize_bitmap == 0UL))
2326 		return -ENODEV;
2327 
2328 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2329 		return -EINVAL;
2330 
2331 	/* find out the minimum page size supported */
2332 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2333 
2334 	/*
2335 	 * both the virtual address and the physical one, as well as
2336 	 * the size of the mapping, must be aligned (at least) to the
2337 	 * size of the smallest page supported by the hardware
2338 	 */
2339 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2340 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2341 		       iova, &paddr, size, min_pagesz);
2342 		return -EINVAL;
2343 	}
2344 
2345 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2346 
2347 	while (size) {
2348 		size_t mapped = 0;
2349 
2350 		ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp,
2351 					&mapped);
2352 		/*
2353 		 * Some pages may have been mapped, even if an error occurred,
2354 		 * so we should account for those so they can be unmapped.
2355 		 */
2356 		size -= mapped;
2357 
2358 		if (ret)
2359 			break;
2360 
2361 		iova += mapped;
2362 		paddr += mapped;
2363 	}
2364 
2365 	/* unroll mapping in case something went wrong */
2366 	if (ret)
2367 		iommu_unmap(domain, orig_iova, orig_size - size);
2368 	else
2369 		trace_map(orig_iova, orig_paddr, orig_size);
2370 
2371 	return ret;
2372 }
2373 
_iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)2374 static int _iommu_map(struct iommu_domain *domain, unsigned long iova,
2375 		      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2376 {
2377 	const struct iommu_domain_ops *ops = domain->ops;
2378 	int ret;
2379 
2380 	ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2381 	if (ret == 0 && ops->iotlb_sync_map)
2382 		ops->iotlb_sync_map(domain, iova, size);
2383 
2384 	return ret;
2385 }
2386 
iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot)2387 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2388 	      phys_addr_t paddr, size_t size, int prot)
2389 {
2390 	might_sleep();
2391 	return _iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL);
2392 }
2393 EXPORT_SYMBOL_GPL(iommu_map);
2394 
iommu_map_atomic(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot)2395 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova,
2396 	      phys_addr_t paddr, size_t size, int prot)
2397 {
2398 	return _iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC);
2399 }
2400 EXPORT_SYMBOL_GPL(iommu_map_atomic);
2401 
__iommu_unmap_pages(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2402 static size_t __iommu_unmap_pages(struct iommu_domain *domain,
2403 				  unsigned long iova, size_t size,
2404 				  struct iommu_iotlb_gather *iotlb_gather)
2405 {
2406 	const struct iommu_domain_ops *ops = domain->ops;
2407 	size_t pgsize, count;
2408 
2409 	pgsize = iommu_pgsize(domain, iova, iova, size, &count);
2410 	return ops->unmap_pages ?
2411 	       ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) :
2412 	       ops->unmap(domain, iova, pgsize, iotlb_gather);
2413 }
2414 
__iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2415 static size_t __iommu_unmap(struct iommu_domain *domain,
2416 			    unsigned long iova, size_t size,
2417 			    struct iommu_iotlb_gather *iotlb_gather)
2418 {
2419 	const struct iommu_domain_ops *ops = domain->ops;
2420 	size_t unmapped_page, unmapped = 0;
2421 	unsigned long orig_iova = iova;
2422 	unsigned int min_pagesz;
2423 
2424 	if (unlikely(!(ops->unmap || ops->unmap_pages) ||
2425 		     domain->pgsize_bitmap == 0UL))
2426 		return 0;
2427 
2428 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2429 		return 0;
2430 
2431 	/* find out the minimum page size supported */
2432 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2433 
2434 	/*
2435 	 * The virtual address, as well as the size of the mapping, must be
2436 	 * aligned (at least) to the size of the smallest page supported
2437 	 * by the hardware
2438 	 */
2439 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
2440 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2441 		       iova, size, min_pagesz);
2442 		return 0;
2443 	}
2444 
2445 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2446 
2447 	/*
2448 	 * Keep iterating until we either unmap 'size' bytes (or more)
2449 	 * or we hit an area that isn't mapped.
2450 	 */
2451 	while (unmapped < size) {
2452 		unmapped_page = __iommu_unmap_pages(domain, iova,
2453 						    size - unmapped,
2454 						    iotlb_gather);
2455 		if (!unmapped_page)
2456 			break;
2457 
2458 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2459 			 iova, unmapped_page);
2460 
2461 		iova += unmapped_page;
2462 		unmapped += unmapped_page;
2463 	}
2464 
2465 	trace_unmap(orig_iova, size, unmapped);
2466 	return unmapped;
2467 }
2468 
iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size)2469 size_t iommu_unmap(struct iommu_domain *domain,
2470 		   unsigned long iova, size_t size)
2471 {
2472 	struct iommu_iotlb_gather iotlb_gather;
2473 	size_t ret;
2474 
2475 	iommu_iotlb_gather_init(&iotlb_gather);
2476 	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2477 	iommu_iotlb_sync(domain, &iotlb_gather);
2478 
2479 	return ret;
2480 }
2481 EXPORT_SYMBOL_GPL(iommu_unmap);
2482 
iommu_unmap_fast(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2483 size_t iommu_unmap_fast(struct iommu_domain *domain,
2484 			unsigned long iova, size_t size,
2485 			struct iommu_iotlb_gather *iotlb_gather)
2486 {
2487 	return __iommu_unmap(domain, iova, size, iotlb_gather);
2488 }
2489 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2490 
__iommu_map_sg(struct iommu_domain * domain,unsigned long iova,struct scatterlist * sg,unsigned int nents,int prot,gfp_t gfp)2491 static ssize_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2492 		struct scatterlist *sg, unsigned int nents, int prot,
2493 		gfp_t gfp)
2494 {
2495 	const struct iommu_domain_ops *ops = domain->ops;
2496 	size_t len = 0, mapped = 0;
2497 	phys_addr_t start;
2498 	unsigned int i = 0;
2499 	int ret;
2500 
2501 	while (i <= nents) {
2502 		phys_addr_t s_phys = sg_phys(sg);
2503 
2504 		if (len && s_phys != start + len) {
2505 			ret = __iommu_map(domain, iova + mapped, start,
2506 					len, prot, gfp);
2507 
2508 			if (ret)
2509 				goto out_err;
2510 
2511 			mapped += len;
2512 			len = 0;
2513 		}
2514 
2515 		if (sg_is_dma_bus_address(sg))
2516 			goto next;
2517 
2518 		if (len) {
2519 			len += sg->length;
2520 		} else {
2521 			len = sg->length;
2522 			start = s_phys;
2523 		}
2524 
2525 next:
2526 		if (++i < nents)
2527 			sg = sg_next(sg);
2528 	}
2529 
2530 	if (ops->iotlb_sync_map)
2531 		ops->iotlb_sync_map(domain, iova, mapped);
2532 	return mapped;
2533 
2534 out_err:
2535 	/* undo mappings already done */
2536 	iommu_unmap(domain, iova, mapped);
2537 
2538 	return ret;
2539 }
2540 
iommu_map_sg(struct iommu_domain * domain,unsigned long iova,struct scatterlist * sg,unsigned int nents,int prot)2541 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2542 		     struct scatterlist *sg, unsigned int nents, int prot)
2543 {
2544 	might_sleep();
2545 	return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL);
2546 }
2547 EXPORT_SYMBOL_GPL(iommu_map_sg);
2548 
iommu_map_sg_atomic(struct iommu_domain * domain,unsigned long iova,struct scatterlist * sg,unsigned int nents,int prot)2549 ssize_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova,
2550 		    struct scatterlist *sg, unsigned int nents, int prot)
2551 {
2552 	return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
2553 }
2554 
2555 /**
2556  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2557  * @domain: the iommu domain where the fault has happened
2558  * @dev: the device where the fault has happened
2559  * @iova: the faulting address
2560  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2561  *
2562  * This function should be called by the low-level IOMMU implementations
2563  * whenever IOMMU faults happen, to allow high-level users, that are
2564  * interested in such events, to know about them.
2565  *
2566  * This event may be useful for several possible use cases:
2567  * - mere logging of the event
2568  * - dynamic TLB/PTE loading
2569  * - if restarting of the faulting device is required
2570  *
2571  * Returns 0 on success and an appropriate error code otherwise (if dynamic
2572  * PTE/TLB loading will one day be supported, implementations will be able
2573  * to tell whether it succeeded or not according to this return value).
2574  *
2575  * Specifically, -ENOSYS is returned if a fault handler isn't installed
2576  * (though fault handlers can also return -ENOSYS, in case they want to
2577  * elicit the default behavior of the IOMMU drivers).
2578  */
report_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags)2579 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2580 		       unsigned long iova, int flags)
2581 {
2582 	int ret = -ENOSYS;
2583 
2584 	/*
2585 	 * if upper layers showed interest and installed a fault handler,
2586 	 * invoke it.
2587 	 */
2588 	if (domain->handler)
2589 		ret = domain->handler(domain, dev, iova, flags,
2590 						domain->handler_token);
2591 
2592 	trace_io_page_fault(dev, iova, flags);
2593 	return ret;
2594 }
2595 EXPORT_SYMBOL_GPL(report_iommu_fault);
2596 
iommu_init(void)2597 static int __init iommu_init(void)
2598 {
2599 	iommu_group_kset = kset_create_and_add("iommu_groups",
2600 					       NULL, kernel_kobj);
2601 	BUG_ON(!iommu_group_kset);
2602 
2603 	iommu_debugfs_setup();
2604 
2605 	return 0;
2606 }
2607 core_initcall(iommu_init);
2608 
iommu_enable_nesting(struct iommu_domain * domain)2609 int iommu_enable_nesting(struct iommu_domain *domain)
2610 {
2611 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2612 		return -EINVAL;
2613 	if (!domain->ops->enable_nesting)
2614 		return -EINVAL;
2615 	return domain->ops->enable_nesting(domain);
2616 }
2617 EXPORT_SYMBOL_GPL(iommu_enable_nesting);
2618 
iommu_set_pgtable_quirks(struct iommu_domain * domain,unsigned long quirk)2619 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2620 		unsigned long quirk)
2621 {
2622 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2623 		return -EINVAL;
2624 	if (!domain->ops->set_pgtable_quirks)
2625 		return -EINVAL;
2626 	return domain->ops->set_pgtable_quirks(domain, quirk);
2627 }
2628 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2629 
iommu_get_resv_regions(struct device * dev,struct list_head * list)2630 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2631 {
2632 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2633 
2634 	if (ops->get_resv_regions)
2635 		ops->get_resv_regions(dev, list);
2636 }
2637 
2638 /**
2639  * iommu_put_resv_regions - release resered regions
2640  * @dev: device for which to free reserved regions
2641  * @list: reserved region list for device
2642  *
2643  * This releases a reserved region list acquired by iommu_get_resv_regions().
2644  */
iommu_put_resv_regions(struct device * dev,struct list_head * list)2645 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2646 {
2647 	struct iommu_resv_region *entry, *next;
2648 
2649 	list_for_each_entry_safe(entry, next, list, list) {
2650 		if (entry->free)
2651 			entry->free(dev, entry);
2652 		else
2653 			kfree(entry);
2654 	}
2655 }
2656 EXPORT_SYMBOL(iommu_put_resv_regions);
2657 
iommu_alloc_resv_region(phys_addr_t start,size_t length,int prot,enum iommu_resv_type type,gfp_t gfp)2658 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2659 						  size_t length, int prot,
2660 						  enum iommu_resv_type type,
2661 						  gfp_t gfp)
2662 {
2663 	struct iommu_resv_region *region;
2664 
2665 	region = kzalloc(sizeof(*region), gfp);
2666 	if (!region)
2667 		return NULL;
2668 
2669 	INIT_LIST_HEAD(&region->list);
2670 	region->start = start;
2671 	region->length = length;
2672 	region->prot = prot;
2673 	region->type = type;
2674 	return region;
2675 }
2676 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2677 
iommu_set_default_passthrough(bool cmd_line)2678 void iommu_set_default_passthrough(bool cmd_line)
2679 {
2680 	if (cmd_line)
2681 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2682 	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2683 }
2684 
iommu_set_default_translated(bool cmd_line)2685 void iommu_set_default_translated(bool cmd_line)
2686 {
2687 	if (cmd_line)
2688 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2689 	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2690 }
2691 
iommu_default_passthrough(void)2692 bool iommu_default_passthrough(void)
2693 {
2694 	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2695 }
2696 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2697 
iommu_ops_from_fwnode(struct fwnode_handle * fwnode)2698 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2699 {
2700 	const struct iommu_ops *ops = NULL;
2701 	struct iommu_device *iommu;
2702 
2703 	spin_lock(&iommu_device_lock);
2704 	list_for_each_entry(iommu, &iommu_device_list, list)
2705 		if (iommu->fwnode == fwnode) {
2706 			ops = iommu->ops;
2707 			break;
2708 		}
2709 	spin_unlock(&iommu_device_lock);
2710 	return ops;
2711 }
2712 
iommu_fwspec_init(struct device * dev,struct fwnode_handle * iommu_fwnode,const struct iommu_ops * ops)2713 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2714 		      const struct iommu_ops *ops)
2715 {
2716 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2717 
2718 	if (fwspec)
2719 		return ops == fwspec->ops ? 0 : -EINVAL;
2720 
2721 	if (!dev_iommu_get(dev))
2722 		return -ENOMEM;
2723 
2724 	/* Preallocate for the overwhelmingly common case of 1 ID */
2725 	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2726 	if (!fwspec)
2727 		return -ENOMEM;
2728 
2729 	of_node_get(to_of_node(iommu_fwnode));
2730 	fwspec->iommu_fwnode = iommu_fwnode;
2731 	fwspec->ops = ops;
2732 	dev_iommu_fwspec_set(dev, fwspec);
2733 	return 0;
2734 }
2735 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2736 
iommu_fwspec_free(struct device * dev)2737 void iommu_fwspec_free(struct device *dev)
2738 {
2739 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2740 
2741 	if (fwspec) {
2742 		fwnode_handle_put(fwspec->iommu_fwnode);
2743 		kfree(fwspec);
2744 		dev_iommu_fwspec_set(dev, NULL);
2745 	}
2746 }
2747 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2748 
iommu_fwspec_add_ids(struct device * dev,u32 * ids,int num_ids)2749 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2750 {
2751 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2752 	int i, new_num;
2753 
2754 	if (!fwspec)
2755 		return -EINVAL;
2756 
2757 	new_num = fwspec->num_ids + num_ids;
2758 	if (new_num > 1) {
2759 		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2760 				  GFP_KERNEL);
2761 		if (!fwspec)
2762 			return -ENOMEM;
2763 
2764 		dev_iommu_fwspec_set(dev, fwspec);
2765 	}
2766 
2767 	for (i = 0; i < num_ids; i++)
2768 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2769 
2770 	fwspec->num_ids = new_num;
2771 	return 0;
2772 }
2773 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2774 
2775 /*
2776  * Per device IOMMU features.
2777  */
iommu_dev_enable_feature(struct device * dev,enum iommu_dev_features feat)2778 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2779 {
2780 	if (dev->iommu && dev->iommu->iommu_dev) {
2781 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2782 
2783 		if (ops->dev_enable_feat)
2784 			return ops->dev_enable_feat(dev, feat);
2785 	}
2786 
2787 	return -ENODEV;
2788 }
2789 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2790 
2791 /*
2792  * The device drivers should do the necessary cleanups before calling this.
2793  */
iommu_dev_disable_feature(struct device * dev,enum iommu_dev_features feat)2794 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2795 {
2796 	if (dev->iommu && dev->iommu->iommu_dev) {
2797 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2798 
2799 		if (ops->dev_disable_feat)
2800 			return ops->dev_disable_feat(dev, feat);
2801 	}
2802 
2803 	return -EBUSY;
2804 }
2805 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2806 
2807 /*
2808  * Changes the default domain of an iommu group that has *only* one device
2809  *
2810  * @group: The group for which the default domain should be changed
2811  * @prev_dev: The device in the group (this is used to make sure that the device
2812  *	 hasn't changed after the caller has called this function)
2813  * @type: The type of the new default domain that gets associated with the group
2814  *
2815  * Returns 0 on success and error code on failure
2816  *
2817  * Note:
2818  * 1. Presently, this function is called only when user requests to change the
2819  *    group's default domain type through /sys/kernel/iommu_groups/<grp_id>/type
2820  *    Please take a closer look if intended to use for other purposes.
2821  */
iommu_change_dev_def_domain(struct iommu_group * group,struct device * prev_dev,int type)2822 static int iommu_change_dev_def_domain(struct iommu_group *group,
2823 				       struct device *prev_dev, int type)
2824 {
2825 	struct iommu_domain *prev_dom;
2826 	struct group_device *grp_dev;
2827 	int ret, dev_def_dom;
2828 	struct device *dev;
2829 
2830 	mutex_lock(&group->mutex);
2831 
2832 	if (group->default_domain != group->domain) {
2833 		dev_err_ratelimited(prev_dev, "Group not assigned to default domain\n");
2834 		ret = -EBUSY;
2835 		goto out;
2836 	}
2837 
2838 	/*
2839 	 * iommu group wasn't locked while acquiring device lock in
2840 	 * iommu_group_store_type(). So, make sure that the device count hasn't
2841 	 * changed while acquiring device lock.
2842 	 *
2843 	 * Changing default domain of an iommu group with two or more devices
2844 	 * isn't supported because there could be a potential deadlock. Consider
2845 	 * the following scenario. T1 is trying to acquire device locks of all
2846 	 * the devices in the group and before it could acquire all of them,
2847 	 * there could be another thread T2 (from different sub-system and use
2848 	 * case) that has already acquired some of the device locks and might be
2849 	 * waiting for T1 to release other device locks.
2850 	 */
2851 	if (iommu_group_device_count(group) != 1) {
2852 		dev_err_ratelimited(prev_dev, "Cannot change default domain: Group has more than one device\n");
2853 		ret = -EINVAL;
2854 		goto out;
2855 	}
2856 
2857 	/* Since group has only one device */
2858 	grp_dev = list_first_entry(&group->devices, struct group_device, list);
2859 	dev = grp_dev->dev;
2860 
2861 	if (prev_dev != dev) {
2862 		dev_err_ratelimited(prev_dev, "Cannot change default domain: Device has been changed\n");
2863 		ret = -EBUSY;
2864 		goto out;
2865 	}
2866 
2867 	prev_dom = group->default_domain;
2868 	if (!prev_dom) {
2869 		ret = -EINVAL;
2870 		goto out;
2871 	}
2872 
2873 	dev_def_dom = iommu_get_def_domain_type(dev);
2874 	if (!type) {
2875 		/*
2876 		 * If the user hasn't requested any specific type of domain and
2877 		 * if the device supports both the domains, then default to the
2878 		 * domain the device was booted with
2879 		 */
2880 		type = dev_def_dom ? : iommu_def_domain_type;
2881 	} else if (dev_def_dom && type != dev_def_dom) {
2882 		dev_err_ratelimited(prev_dev, "Device cannot be in %s domain\n",
2883 				    iommu_domain_type_str(type));
2884 		ret = -EINVAL;
2885 		goto out;
2886 	}
2887 
2888 	/*
2889 	 * Switch to a new domain only if the requested domain type is different
2890 	 * from the existing default domain type
2891 	 */
2892 	if (prev_dom->type == type) {
2893 		ret = 0;
2894 		goto out;
2895 	}
2896 
2897 	/* We can bring up a flush queue without tearing down the domain */
2898 	if (type == IOMMU_DOMAIN_DMA_FQ && prev_dom->type == IOMMU_DOMAIN_DMA) {
2899 		ret = iommu_dma_init_fq(prev_dom);
2900 		if (!ret)
2901 			prev_dom->type = IOMMU_DOMAIN_DMA_FQ;
2902 		goto out;
2903 	}
2904 
2905 	/* Sets group->default_domain to the newly allocated domain */
2906 	ret = iommu_group_alloc_default_domain(dev->bus, group, type);
2907 	if (ret)
2908 		goto out;
2909 
2910 	ret = iommu_create_device_direct_mappings(group, dev);
2911 	if (ret)
2912 		goto free_new_domain;
2913 
2914 	ret = __iommu_attach_device(group->default_domain, dev);
2915 	if (ret)
2916 		goto free_new_domain;
2917 
2918 	group->domain = group->default_domain;
2919 
2920 	/*
2921 	 * Release the mutex here because ops->probe_finalize() call-back of
2922 	 * some vendor IOMMU drivers calls arm_iommu_attach_device() which
2923 	 * in-turn might call back into IOMMU core code, where it tries to take
2924 	 * group->mutex, resulting in a deadlock.
2925 	 */
2926 	mutex_unlock(&group->mutex);
2927 
2928 	/* Make sure dma_ops is appropriatley set */
2929 	iommu_group_do_probe_finalize(dev, group->default_domain);
2930 	iommu_domain_free(prev_dom);
2931 	return 0;
2932 
2933 free_new_domain:
2934 	iommu_domain_free(group->default_domain);
2935 	group->default_domain = prev_dom;
2936 	group->domain = prev_dom;
2937 
2938 out:
2939 	mutex_unlock(&group->mutex);
2940 
2941 	return ret;
2942 }
2943 
2944 /*
2945  * Changing the default domain through sysfs requires the users to unbind the
2946  * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
2947  * transition. Return failure if this isn't met.
2948  *
2949  * We need to consider the race between this and the device release path.
2950  * device_lock(dev) is used here to guarantee that the device release path
2951  * will not be entered at the same time.
2952  */
iommu_group_store_type(struct iommu_group * group,const char * buf,size_t count)2953 static ssize_t iommu_group_store_type(struct iommu_group *group,
2954 				      const char *buf, size_t count)
2955 {
2956 	struct group_device *grp_dev;
2957 	struct device *dev;
2958 	int ret, req_type;
2959 
2960 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
2961 		return -EACCES;
2962 
2963 	if (WARN_ON(!group) || !group->default_domain)
2964 		return -EINVAL;
2965 
2966 	if (sysfs_streq(buf, "identity"))
2967 		req_type = IOMMU_DOMAIN_IDENTITY;
2968 	else if (sysfs_streq(buf, "DMA"))
2969 		req_type = IOMMU_DOMAIN_DMA;
2970 	else if (sysfs_streq(buf, "DMA-FQ"))
2971 		req_type = IOMMU_DOMAIN_DMA_FQ;
2972 	else if (sysfs_streq(buf, "auto"))
2973 		req_type = 0;
2974 	else
2975 		return -EINVAL;
2976 
2977 	/*
2978 	 * Lock/Unlock the group mutex here before device lock to
2979 	 * 1. Make sure that the iommu group has only one device (this is a
2980 	 *    prerequisite for step 2)
2981 	 * 2. Get struct *dev which is needed to lock device
2982 	 */
2983 	mutex_lock(&group->mutex);
2984 	if (iommu_group_device_count(group) != 1) {
2985 		mutex_unlock(&group->mutex);
2986 		pr_err_ratelimited("Cannot change default domain: Group has more than one device\n");
2987 		return -EINVAL;
2988 	}
2989 
2990 	/* Since group has only one device */
2991 	grp_dev = list_first_entry(&group->devices, struct group_device, list);
2992 	dev = grp_dev->dev;
2993 	get_device(dev);
2994 
2995 	/*
2996 	 * Don't hold the group mutex because taking group mutex first and then
2997 	 * the device lock could potentially cause a deadlock as below. Assume
2998 	 * two threads T1 and T2. T1 is trying to change default domain of an
2999 	 * iommu group and T2 is trying to hot unplug a device or release [1] VF
3000 	 * of a PCIe device which is in the same iommu group. T1 takes group
3001 	 * mutex and before it could take device lock assume T2 has taken device
3002 	 * lock and is yet to take group mutex. Now, both the threads will be
3003 	 * waiting for the other thread to release lock. Below, lock order was
3004 	 * suggested.
3005 	 * device_lock(dev);
3006 	 *	mutex_lock(&group->mutex);
3007 	 *		iommu_change_dev_def_domain();
3008 	 *	mutex_unlock(&group->mutex);
3009 	 * device_unlock(dev);
3010 	 *
3011 	 * [1] Typical device release path
3012 	 * device_lock() from device/driver core code
3013 	 *  -> bus_notifier()
3014 	 *   -> iommu_bus_notifier()
3015 	 *    -> iommu_release_device()
3016 	 *     -> ops->release_device() vendor driver calls back iommu core code
3017 	 *      -> mutex_lock() from iommu core code
3018 	 */
3019 	mutex_unlock(&group->mutex);
3020 
3021 	/* Check if the device in the group still has a driver bound to it */
3022 	device_lock(dev);
3023 	if (device_is_bound(dev) && !(req_type == IOMMU_DOMAIN_DMA_FQ &&
3024 	    group->default_domain->type == IOMMU_DOMAIN_DMA)) {
3025 		pr_err_ratelimited("Device is still bound to driver\n");
3026 		ret = -EBUSY;
3027 		goto out;
3028 	}
3029 
3030 	ret = iommu_change_dev_def_domain(group, dev, req_type);
3031 	ret = ret ?: count;
3032 
3033 out:
3034 	device_unlock(dev);
3035 	put_device(dev);
3036 
3037 	return ret;
3038 }
3039 
iommu_is_default_domain(struct iommu_group * group)3040 static bool iommu_is_default_domain(struct iommu_group *group)
3041 {
3042 	if (group->domain == group->default_domain)
3043 		return true;
3044 
3045 	/*
3046 	 * If the default domain was set to identity and it is still an identity
3047 	 * domain then we consider this a pass. This happens because of
3048 	 * amd_iommu_init_device() replacing the default idenytity domain with an
3049 	 * identity domain that has a different configuration for AMDGPU.
3050 	 */
3051 	if (group->default_domain &&
3052 	    group->default_domain->type == IOMMU_DOMAIN_IDENTITY &&
3053 	    group->domain && group->domain->type == IOMMU_DOMAIN_IDENTITY)
3054 		return true;
3055 	return false;
3056 }
3057 
3058 /**
3059  * iommu_device_use_default_domain() - Device driver wants to handle device
3060  *                                     DMA through the kernel DMA API.
3061  * @dev: The device.
3062  *
3063  * The device driver about to bind @dev wants to do DMA through the kernel
3064  * DMA API. Return 0 if it is allowed, otherwise an error.
3065  */
iommu_device_use_default_domain(struct device * dev)3066 int iommu_device_use_default_domain(struct device *dev)
3067 {
3068 	struct iommu_group *group = iommu_group_get(dev);
3069 	int ret = 0;
3070 
3071 	if (!group)
3072 		return 0;
3073 
3074 	mutex_lock(&group->mutex);
3075 	if (group->owner_cnt) {
3076 		if (group->owner || !iommu_is_default_domain(group) ||
3077 		    !xa_empty(&group->pasid_array)) {
3078 			ret = -EBUSY;
3079 			goto unlock_out;
3080 		}
3081 	}
3082 
3083 	group->owner_cnt++;
3084 
3085 unlock_out:
3086 	mutex_unlock(&group->mutex);
3087 	iommu_group_put(group);
3088 
3089 	return ret;
3090 }
3091 
3092 /**
3093  * iommu_device_unuse_default_domain() - Device driver stops handling device
3094  *                                       DMA through the kernel DMA API.
3095  * @dev: The device.
3096  *
3097  * The device driver doesn't want to do DMA through kernel DMA API anymore.
3098  * It must be called after iommu_device_use_default_domain().
3099  */
iommu_device_unuse_default_domain(struct device * dev)3100 void iommu_device_unuse_default_domain(struct device *dev)
3101 {
3102 	struct iommu_group *group = iommu_group_get(dev);
3103 
3104 	if (!group)
3105 		return;
3106 
3107 	mutex_lock(&group->mutex);
3108 	if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array)))
3109 		group->owner_cnt--;
3110 
3111 	mutex_unlock(&group->mutex);
3112 	iommu_group_put(group);
3113 }
3114 
__iommu_group_alloc_blocking_domain(struct iommu_group * group)3115 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group)
3116 {
3117 	struct group_device *dev =
3118 		list_first_entry(&group->devices, struct group_device, list);
3119 
3120 	if (group->blocking_domain)
3121 		return 0;
3122 
3123 	group->blocking_domain =
3124 		__iommu_domain_alloc(dev->dev->bus, IOMMU_DOMAIN_BLOCKED);
3125 	if (!group->blocking_domain) {
3126 		/*
3127 		 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED
3128 		 * create an empty domain instead.
3129 		 */
3130 		group->blocking_domain = __iommu_domain_alloc(
3131 			dev->dev->bus, IOMMU_DOMAIN_UNMANAGED);
3132 		if (!group->blocking_domain)
3133 			return -EINVAL;
3134 	}
3135 	return 0;
3136 }
3137 
3138 /**
3139  * iommu_group_claim_dma_owner() - Set DMA ownership of a group
3140  * @group: The group.
3141  * @owner: Caller specified pointer. Used for exclusive ownership.
3142  *
3143  * This is to support backward compatibility for vfio which manages
3144  * the dma ownership in iommu_group level. New invocations on this
3145  * interface should be prohibited.
3146  */
iommu_group_claim_dma_owner(struct iommu_group * group,void * owner)3147 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner)
3148 {
3149 	int ret = 0;
3150 
3151 	mutex_lock(&group->mutex);
3152 	if (group->owner_cnt) {
3153 		ret = -EPERM;
3154 		goto unlock_out;
3155 	} else {
3156 		if ((group->domain && group->domain != group->default_domain) ||
3157 		    !xa_empty(&group->pasid_array)) {
3158 			ret = -EBUSY;
3159 			goto unlock_out;
3160 		}
3161 
3162 		ret = __iommu_group_alloc_blocking_domain(group);
3163 		if (ret)
3164 			goto unlock_out;
3165 
3166 		ret = __iommu_group_set_domain(group, group->blocking_domain);
3167 		if (ret)
3168 			goto unlock_out;
3169 		group->owner = owner;
3170 	}
3171 
3172 	group->owner_cnt++;
3173 unlock_out:
3174 	mutex_unlock(&group->mutex);
3175 
3176 	return ret;
3177 }
3178 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner);
3179 
3180 /**
3181  * iommu_group_release_dma_owner() - Release DMA ownership of a group
3182  * @group: The group.
3183  *
3184  * Release the DMA ownership claimed by iommu_group_claim_dma_owner().
3185  */
iommu_group_release_dma_owner(struct iommu_group * group)3186 void iommu_group_release_dma_owner(struct iommu_group *group)
3187 {
3188 	int ret;
3189 
3190 	mutex_lock(&group->mutex);
3191 	if (WARN_ON(!group->owner_cnt || !group->owner ||
3192 		    !xa_empty(&group->pasid_array)))
3193 		goto unlock_out;
3194 
3195 	group->owner_cnt = 0;
3196 	group->owner = NULL;
3197 	ret = __iommu_group_set_domain(group, group->default_domain);
3198 	WARN(ret, "iommu driver failed to attach the default domain");
3199 
3200 unlock_out:
3201 	mutex_unlock(&group->mutex);
3202 }
3203 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner);
3204 
3205 /**
3206  * iommu_group_dma_owner_claimed() - Query group dma ownership status
3207  * @group: The group.
3208  *
3209  * This provides status query on a given group. It is racy and only for
3210  * non-binding status reporting.
3211  */
iommu_group_dma_owner_claimed(struct iommu_group * group)3212 bool iommu_group_dma_owner_claimed(struct iommu_group *group)
3213 {
3214 	unsigned int user;
3215 
3216 	mutex_lock(&group->mutex);
3217 	user = group->owner_cnt;
3218 	mutex_unlock(&group->mutex);
3219 
3220 	return user;
3221 }
3222 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed);
3223 
__iommu_set_group_pasid(struct iommu_domain * domain,struct iommu_group * group,ioasid_t pasid)3224 static int __iommu_set_group_pasid(struct iommu_domain *domain,
3225 				   struct iommu_group *group, ioasid_t pasid)
3226 {
3227 	struct group_device *device;
3228 	int ret = 0;
3229 
3230 	list_for_each_entry(device, &group->devices, list) {
3231 		ret = domain->ops->set_dev_pasid(domain, device->dev, pasid);
3232 		if (ret)
3233 			break;
3234 	}
3235 
3236 	return ret;
3237 }
3238 
__iommu_remove_group_pasid(struct iommu_group * group,ioasid_t pasid)3239 static void __iommu_remove_group_pasid(struct iommu_group *group,
3240 				       ioasid_t pasid)
3241 {
3242 	struct group_device *device;
3243 	const struct iommu_ops *ops;
3244 
3245 	list_for_each_entry(device, &group->devices, list) {
3246 		ops = dev_iommu_ops(device->dev);
3247 		ops->remove_dev_pasid(device->dev, pasid);
3248 	}
3249 }
3250 
3251 /*
3252  * iommu_attach_device_pasid() - Attach a domain to pasid of device
3253  * @domain: the iommu domain.
3254  * @dev: the attached device.
3255  * @pasid: the pasid of the device.
3256  *
3257  * Return: 0 on success, or an error.
3258  */
iommu_attach_device_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid)3259 int iommu_attach_device_pasid(struct iommu_domain *domain,
3260 			      struct device *dev, ioasid_t pasid)
3261 {
3262 	struct iommu_group *group;
3263 	void *curr;
3264 	int ret;
3265 
3266 	if (!domain->ops->set_dev_pasid)
3267 		return -EOPNOTSUPP;
3268 
3269 	group = iommu_group_get(dev);
3270 	if (!group)
3271 		return -ENODEV;
3272 
3273 	mutex_lock(&group->mutex);
3274 	curr = xa_cmpxchg(&group->pasid_array, pasid, NULL, domain, GFP_KERNEL);
3275 	if (curr) {
3276 		ret = xa_err(curr) ? : -EBUSY;
3277 		goto out_unlock;
3278 	}
3279 
3280 	ret = __iommu_set_group_pasid(domain, group, pasid);
3281 	if (ret) {
3282 		__iommu_remove_group_pasid(group, pasid);
3283 		xa_erase(&group->pasid_array, pasid);
3284 	}
3285 out_unlock:
3286 	mutex_unlock(&group->mutex);
3287 	iommu_group_put(group);
3288 
3289 	return ret;
3290 }
3291 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid);
3292 
3293 /*
3294  * iommu_detach_device_pasid() - Detach the domain from pasid of device
3295  * @domain: the iommu domain.
3296  * @dev: the attached device.
3297  * @pasid: the pasid of the device.
3298  *
3299  * The @domain must have been attached to @pasid of the @dev with
3300  * iommu_attach_device_pasid().
3301  */
iommu_detach_device_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid)3302 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev,
3303 			       ioasid_t pasid)
3304 {
3305 	struct iommu_group *group = iommu_group_get(dev);
3306 
3307 	mutex_lock(&group->mutex);
3308 	__iommu_remove_group_pasid(group, pasid);
3309 	WARN_ON(xa_erase(&group->pasid_array, pasid) != domain);
3310 	mutex_unlock(&group->mutex);
3311 
3312 	iommu_group_put(group);
3313 }
3314 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid);
3315 
3316 /*
3317  * iommu_get_domain_for_dev_pasid() - Retrieve domain for @pasid of @dev
3318  * @dev: the queried device
3319  * @pasid: the pasid of the device
3320  * @type: matched domain type, 0 for any match
3321  *
3322  * This is a variant of iommu_get_domain_for_dev(). It returns the existing
3323  * domain attached to pasid of a device. Callers must hold a lock around this
3324  * function, and both iommu_attach/detach_dev_pasid() whenever a domain of
3325  * type is being manipulated. This API does not internally resolve races with
3326  * attach/detach.
3327  *
3328  * Return: attached domain on success, NULL otherwise.
3329  */
iommu_get_domain_for_dev_pasid(struct device * dev,ioasid_t pasid,unsigned int type)3330 struct iommu_domain *iommu_get_domain_for_dev_pasid(struct device *dev,
3331 						    ioasid_t pasid,
3332 						    unsigned int type)
3333 {
3334 	struct iommu_domain *domain;
3335 	struct iommu_group *group;
3336 
3337 	group = iommu_group_get(dev);
3338 	if (!group)
3339 		return NULL;
3340 
3341 	xa_lock(&group->pasid_array);
3342 	domain = xa_load(&group->pasid_array, pasid);
3343 	if (type && domain && domain->type != type)
3344 		domain = ERR_PTR(-EBUSY);
3345 	xa_unlock(&group->pasid_array);
3346 	iommu_group_put(group);
3347 
3348 	return domain;
3349 }
3350 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev_pasid);
3351 
iommu_sva_domain_alloc(struct device * dev,struct mm_struct * mm)3352 struct iommu_domain *iommu_sva_domain_alloc(struct device *dev,
3353 					    struct mm_struct *mm)
3354 {
3355 	const struct iommu_ops *ops = dev_iommu_ops(dev);
3356 	struct iommu_domain *domain;
3357 
3358 	domain = ops->domain_alloc(IOMMU_DOMAIN_SVA);
3359 	if (!domain)
3360 		return NULL;
3361 
3362 	domain->type = IOMMU_DOMAIN_SVA;
3363 	mmgrab(mm);
3364 	domain->mm = mm;
3365 	domain->iopf_handler = iommu_sva_handle_iopf;
3366 	domain->fault_data = mm;
3367 
3368 	return domain;
3369 }
3370