1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Linux INET6 implementation
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 */
8
9 #ifndef _NET_IPV6_H
10 #define _NET_IPV6_H
11
12 #include <linux/ipv6.h>
13 #include <linux/hardirq.h>
14 #include <linux/jhash.h>
15 #include <linux/refcount.h>
16 #include <linux/jump_label_ratelimit.h>
17 #include <net/if_inet6.h>
18 #include <net/flow.h>
19 #include <net/flow_dissector.h>
20 #include <net/inet_dscp.h>
21 #include <net/snmp.h>
22 #include <net/netns/hash.h>
23
24 struct ip_tunnel_info;
25
26 #define SIN6_LEN_RFC2133 24
27
28 #define IPV6_MAXPLEN 65535
29
30 /*
31 * NextHeader field of IPv6 header
32 */
33
34 #define NEXTHDR_HOP 0 /* Hop-by-hop option header. */
35 #define NEXTHDR_IPV4 4 /* IPv4 in IPv6 */
36 #define NEXTHDR_TCP 6 /* TCP segment. */
37 #define NEXTHDR_UDP 17 /* UDP message. */
38 #define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */
39 #define NEXTHDR_ROUTING 43 /* Routing header. */
40 #define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */
41 #define NEXTHDR_GRE 47 /* GRE header. */
42 #define NEXTHDR_ESP 50 /* Encapsulating security payload. */
43 #define NEXTHDR_AUTH 51 /* Authentication header. */
44 #define NEXTHDR_ICMP 58 /* ICMP for IPv6. */
45 #define NEXTHDR_NONE 59 /* No next header */
46 #define NEXTHDR_DEST 60 /* Destination options header. */
47 #define NEXTHDR_SCTP 132 /* SCTP message. */
48 #define NEXTHDR_MOBILITY 135 /* Mobility header. */
49
50 #define NEXTHDR_MAX 255
51
52 #define IPV6_DEFAULT_HOPLIMIT 64
53 #define IPV6_DEFAULT_MCASTHOPS 1
54
55 /* Limits on Hop-by-Hop and Destination options.
56 *
57 * Per RFC8200 there is no limit on the maximum number or lengths of options in
58 * Hop-by-Hop or Destination options other then the packet must fit in an MTU.
59 * We allow configurable limits in order to mitigate potential denial of
60 * service attacks.
61 *
62 * There are three limits that may be set:
63 * - Limit the number of options in a Hop-by-Hop or Destination options
64 * extension header
65 * - Limit the byte length of a Hop-by-Hop or Destination options extension
66 * header
67 * - Disallow unknown options
68 *
69 * The limits are expressed in corresponding sysctls:
70 *
71 * ipv6.sysctl.max_dst_opts_cnt
72 * ipv6.sysctl.max_hbh_opts_cnt
73 * ipv6.sysctl.max_dst_opts_len
74 * ipv6.sysctl.max_hbh_opts_len
75 *
76 * max_*_opts_cnt is the number of TLVs that are allowed for Destination
77 * options or Hop-by-Hop options. If the number is less than zero then unknown
78 * TLVs are disallowed and the number of known options that are allowed is the
79 * absolute value. Setting the value to INT_MAX indicates no limit.
80 *
81 * max_*_opts_len is the length limit in bytes of a Destination or
82 * Hop-by-Hop options extension header. Setting the value to INT_MAX
83 * indicates no length limit.
84 *
85 * If a limit is exceeded when processing an extension header the packet is
86 * silently discarded.
87 */
88
89 /* Default limits for Hop-by-Hop and Destination options */
90 #define IP6_DEFAULT_MAX_DST_OPTS_CNT 8
91 #define IP6_DEFAULT_MAX_HBH_OPTS_CNT 8
92 #define IP6_DEFAULT_MAX_DST_OPTS_LEN INT_MAX /* No limit */
93 #define IP6_DEFAULT_MAX_HBH_OPTS_LEN INT_MAX /* No limit */
94
95 /*
96 * Addr type
97 *
98 * type - unicast | multicast
99 * scope - local | site | global
100 * v4 - compat
101 * v4mapped
102 * any
103 * loopback
104 */
105
106 #define IPV6_ADDR_ANY 0x0000U
107
108 #define IPV6_ADDR_UNICAST 0x0001U
109 #define IPV6_ADDR_MULTICAST 0x0002U
110
111 #define IPV6_ADDR_LOOPBACK 0x0010U
112 #define IPV6_ADDR_LINKLOCAL 0x0020U
113 #define IPV6_ADDR_SITELOCAL 0x0040U
114
115 #define IPV6_ADDR_COMPATv4 0x0080U
116
117 #define IPV6_ADDR_SCOPE_MASK 0x00f0U
118
119 #define IPV6_ADDR_MAPPED 0x1000U
120
121 /*
122 * Addr scopes
123 */
124 #define IPV6_ADDR_MC_SCOPE(a) \
125 ((a)->s6_addr[1] & 0x0f) /* nonstandard */
126 #define __IPV6_ADDR_SCOPE_INVALID -1
127 #define IPV6_ADDR_SCOPE_NODELOCAL 0x01
128 #define IPV6_ADDR_SCOPE_LINKLOCAL 0x02
129 #define IPV6_ADDR_SCOPE_SITELOCAL 0x05
130 #define IPV6_ADDR_SCOPE_ORGLOCAL 0x08
131 #define IPV6_ADDR_SCOPE_GLOBAL 0x0e
132
133 /*
134 * Addr flags
135 */
136 #define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \
137 ((a)->s6_addr[1] & 0x10)
138 #define IPV6_ADDR_MC_FLAG_PREFIX(a) \
139 ((a)->s6_addr[1] & 0x20)
140 #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \
141 ((a)->s6_addr[1] & 0x40)
142
143 /*
144 * fragmentation header
145 */
146
147 struct frag_hdr {
148 __u8 nexthdr;
149 __u8 reserved;
150 __be16 frag_off;
151 __be32 identification;
152 };
153
154 /*
155 * Jumbo payload option, as described in RFC 2675 2.
156 */
157 struct hop_jumbo_hdr {
158 u8 nexthdr;
159 u8 hdrlen;
160 u8 tlv_type; /* IPV6_TLV_JUMBO, 0xC2 */
161 u8 tlv_len; /* 4 */
162 __be32 jumbo_payload_len;
163 };
164
165 #define IP6_MF 0x0001
166 #define IP6_OFFSET 0xFFF8
167
168 struct ip6_fraglist_iter {
169 struct ipv6hdr *tmp_hdr;
170 struct sk_buff *frag;
171 int offset;
172 unsigned int hlen;
173 __be32 frag_id;
174 u8 nexthdr;
175 };
176
177 int ip6_fraglist_init(struct sk_buff *skb, unsigned int hlen, u8 *prevhdr,
178 u8 nexthdr, __be32 frag_id,
179 struct ip6_fraglist_iter *iter);
180 void ip6_fraglist_prepare(struct sk_buff *skb, struct ip6_fraglist_iter *iter);
181
ip6_fraglist_next(struct ip6_fraglist_iter * iter)182 static inline struct sk_buff *ip6_fraglist_next(struct ip6_fraglist_iter *iter)
183 {
184 struct sk_buff *skb = iter->frag;
185
186 iter->frag = skb->next;
187 skb_mark_not_on_list(skb);
188
189 return skb;
190 }
191
192 struct ip6_frag_state {
193 u8 *prevhdr;
194 unsigned int hlen;
195 unsigned int mtu;
196 unsigned int left;
197 int offset;
198 int ptr;
199 int hroom;
200 int troom;
201 __be32 frag_id;
202 u8 nexthdr;
203 };
204
205 void ip6_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int mtu,
206 unsigned short needed_tailroom, int hdr_room, u8 *prevhdr,
207 u8 nexthdr, __be32 frag_id, struct ip6_frag_state *state);
208 struct sk_buff *ip6_frag_next(struct sk_buff *skb,
209 struct ip6_frag_state *state);
210
211 #define IP6_REPLY_MARK(net, mark) \
212 ((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0)
213
214 #include <net/sock.h>
215
216 /* sysctls */
217 extern int sysctl_mld_max_msf;
218 extern int sysctl_mld_qrv;
219
220 #define _DEVINC(net, statname, mod, idev, field) \
221 ({ \
222 struct inet6_dev *_idev = (idev); \
223 if (likely(_idev != NULL)) \
224 mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\
225 mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\
226 })
227
228 /* per device counters are atomic_long_t */
229 #define _DEVINCATOMIC(net, statname, mod, idev, field) \
230 ({ \
231 struct inet6_dev *_idev = (idev); \
232 if (likely(_idev != NULL)) \
233 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
234 mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\
235 })
236
237 /* per device and per net counters are atomic_long_t */
238 #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \
239 ({ \
240 struct inet6_dev *_idev = (idev); \
241 if (likely(_idev != NULL)) \
242 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
243 SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\
244 })
245
246 #define _DEVADD(net, statname, mod, idev, field, val) \
247 ({ \
248 struct inet6_dev *_idev = (idev); \
249 if (likely(_idev != NULL)) \
250 mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \
251 mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\
252 })
253
254 #define _DEVUPD(net, statname, mod, idev, field, val) \
255 ({ \
256 struct inet6_dev *_idev = (idev); \
257 if (likely(_idev != NULL)) \
258 mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \
259 mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\
260 })
261
262 /* MIBs */
263
264 #define IP6_INC_STATS(net, idev,field) \
265 _DEVINC(net, ipv6, , idev, field)
266 #define __IP6_INC_STATS(net, idev,field) \
267 _DEVINC(net, ipv6, __, idev, field)
268 #define IP6_ADD_STATS(net, idev,field,val) \
269 _DEVADD(net, ipv6, , idev, field, val)
270 #define __IP6_ADD_STATS(net, idev,field,val) \
271 _DEVADD(net, ipv6, __, idev, field, val)
272 #define IP6_UPD_PO_STATS(net, idev,field,val) \
273 _DEVUPD(net, ipv6, , idev, field, val)
274 #define __IP6_UPD_PO_STATS(net, idev,field,val) \
275 _DEVUPD(net, ipv6, __, idev, field, val)
276 #define ICMP6_INC_STATS(net, idev, field) \
277 _DEVINCATOMIC(net, icmpv6, , idev, field)
278 #define __ICMP6_INC_STATS(net, idev, field) \
279 _DEVINCATOMIC(net, icmpv6, __, idev, field)
280
281 #define ICMP6MSGOUT_INC_STATS(net, idev, field) \
282 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
283 #define ICMP6MSGIN_INC_STATS(net, idev, field) \
284 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field)
285
286 struct ip6_ra_chain {
287 struct ip6_ra_chain *next;
288 struct sock *sk;
289 int sel;
290 void (*destructor)(struct sock *);
291 };
292
293 extern struct ip6_ra_chain *ip6_ra_chain;
294 extern rwlock_t ip6_ra_lock;
295
296 /*
297 This structure is prepared by protocol, when parsing
298 ancillary data and passed to IPv6.
299 */
300
301 struct ipv6_txoptions {
302 refcount_t refcnt;
303 /* Length of this structure */
304 int tot_len;
305
306 /* length of extension headers */
307
308 __u16 opt_flen; /* after fragment hdr */
309 __u16 opt_nflen; /* before fragment hdr */
310
311 struct ipv6_opt_hdr *hopopt;
312 struct ipv6_opt_hdr *dst0opt;
313 struct ipv6_rt_hdr *srcrt; /* Routing Header */
314 struct ipv6_opt_hdr *dst1opt;
315 struct rcu_head rcu;
316 /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */
317 };
318
319 /* flowlabel_reflect sysctl values */
320 enum flowlabel_reflect {
321 FLOWLABEL_REFLECT_ESTABLISHED = 1,
322 FLOWLABEL_REFLECT_TCP_RESET = 2,
323 FLOWLABEL_REFLECT_ICMPV6_ECHO_REPLIES = 4,
324 };
325
326 struct ip6_flowlabel {
327 struct ip6_flowlabel __rcu *next;
328 __be32 label;
329 atomic_t users;
330 struct in6_addr dst;
331 struct ipv6_txoptions *opt;
332 unsigned long linger;
333 struct rcu_head rcu;
334 u8 share;
335 union {
336 struct pid *pid;
337 kuid_t uid;
338 } owner;
339 unsigned long lastuse;
340 unsigned long expires;
341 struct net *fl_net;
342 };
343
344 #define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF)
345 #define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF)
346 #define IPV6_FLOWLABEL_STATELESS_FLAG cpu_to_be32(0x00080000)
347
348 #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK)
349 #define IPV6_TCLASS_SHIFT 20
350
351 struct ipv6_fl_socklist {
352 struct ipv6_fl_socklist __rcu *next;
353 struct ip6_flowlabel *fl;
354 struct rcu_head rcu;
355 };
356
357 struct ipcm6_cookie {
358 struct sockcm_cookie sockc;
359 __s16 hlimit;
360 __s16 tclass;
361 __u16 gso_size;
362 __s8 dontfrag;
363 struct ipv6_txoptions *opt;
364 };
365
ipcm6_init(struct ipcm6_cookie * ipc6)366 static inline void ipcm6_init(struct ipcm6_cookie *ipc6)
367 {
368 *ipc6 = (struct ipcm6_cookie) {
369 .hlimit = -1,
370 .tclass = -1,
371 .dontfrag = -1,
372 };
373 }
374
ipcm6_init_sk(struct ipcm6_cookie * ipc6,const struct ipv6_pinfo * np)375 static inline void ipcm6_init_sk(struct ipcm6_cookie *ipc6,
376 const struct ipv6_pinfo *np)
377 {
378 *ipc6 = (struct ipcm6_cookie) {
379 .hlimit = -1,
380 .tclass = np->tclass,
381 .dontfrag = np->dontfrag,
382 };
383 }
384
txopt_get(const struct ipv6_pinfo * np)385 static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np)
386 {
387 struct ipv6_txoptions *opt;
388
389 rcu_read_lock();
390 opt = rcu_dereference(np->opt);
391 if (opt) {
392 if (!refcount_inc_not_zero(&opt->refcnt))
393 opt = NULL;
394 else
395 opt = rcu_pointer_handoff(opt);
396 }
397 rcu_read_unlock();
398 return opt;
399 }
400
txopt_put(struct ipv6_txoptions * opt)401 static inline void txopt_put(struct ipv6_txoptions *opt)
402 {
403 if (opt && refcount_dec_and_test(&opt->refcnt))
404 kfree_rcu(opt, rcu);
405 }
406
407 #if IS_ENABLED(CONFIG_IPV6)
408 struct ip6_flowlabel *__fl6_sock_lookup(struct sock *sk, __be32 label);
409
410 extern struct static_key_false_deferred ipv6_flowlabel_exclusive;
fl6_sock_lookup(struct sock * sk,__be32 label)411 static inline struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk,
412 __be32 label)
413 {
414 if (static_branch_unlikely(&ipv6_flowlabel_exclusive.key) &&
415 READ_ONCE(sock_net(sk)->ipv6.flowlabel_has_excl))
416 return __fl6_sock_lookup(sk, label) ? : ERR_PTR(-ENOENT);
417
418 return NULL;
419 }
420 #endif
421
422 struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space,
423 struct ip6_flowlabel *fl,
424 struct ipv6_txoptions *fopt);
425 void fl6_free_socklist(struct sock *sk);
426 int ipv6_flowlabel_opt(struct sock *sk, sockptr_t optval, int optlen);
427 int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq,
428 int flags);
429 int ip6_flowlabel_init(void);
430 void ip6_flowlabel_cleanup(void);
431 bool ip6_autoflowlabel(struct net *net, const struct ipv6_pinfo *np);
432
fl6_sock_release(struct ip6_flowlabel * fl)433 static inline void fl6_sock_release(struct ip6_flowlabel *fl)
434 {
435 if (fl)
436 atomic_dec(&fl->users);
437 }
438
439 void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info);
440
441 void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6,
442 struct icmp6hdr *thdr, int len);
443
444 int ip6_ra_control(struct sock *sk, int sel);
445
446 int ipv6_parse_hopopts(struct sk_buff *skb);
447
448 struct ipv6_txoptions *ipv6_dup_options(struct sock *sk,
449 struct ipv6_txoptions *opt);
450 struct ipv6_txoptions *ipv6_renew_options(struct sock *sk,
451 struct ipv6_txoptions *opt,
452 int newtype,
453 struct ipv6_opt_hdr *newopt);
454 struct ipv6_txoptions *__ipv6_fixup_options(struct ipv6_txoptions *opt_space,
455 struct ipv6_txoptions *opt);
456
457 static inline struct ipv6_txoptions *
ipv6_fixup_options(struct ipv6_txoptions * opt_space,struct ipv6_txoptions * opt)458 ipv6_fixup_options(struct ipv6_txoptions *opt_space, struct ipv6_txoptions *opt)
459 {
460 if (!opt)
461 return NULL;
462 return __ipv6_fixup_options(opt_space, opt);
463 }
464
465 bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb,
466 const struct inet6_skb_parm *opt);
467 struct ipv6_txoptions *ipv6_update_options(struct sock *sk,
468 struct ipv6_txoptions *opt);
469
470 /* This helper is specialized for BIG TCP needs.
471 * It assumes the hop_jumbo_hdr will immediately follow the IPV6 header.
472 * It assumes headers are already in skb->head.
473 * Returns 0, or IPPROTO_TCP if a BIG TCP packet is there.
474 */
ipv6_has_hopopt_jumbo(const struct sk_buff * skb)475 static inline int ipv6_has_hopopt_jumbo(const struct sk_buff *skb)
476 {
477 const struct hop_jumbo_hdr *jhdr;
478 const struct ipv6hdr *nhdr;
479
480 if (likely(skb->len <= GRO_LEGACY_MAX_SIZE))
481 return 0;
482
483 if (skb->protocol != htons(ETH_P_IPV6))
484 return 0;
485
486 if (skb_network_offset(skb) +
487 sizeof(struct ipv6hdr) +
488 sizeof(struct hop_jumbo_hdr) > skb_headlen(skb))
489 return 0;
490
491 nhdr = ipv6_hdr(skb);
492
493 if (nhdr->nexthdr != NEXTHDR_HOP)
494 return 0;
495
496 jhdr = (const struct hop_jumbo_hdr *) (nhdr + 1);
497 if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 ||
498 jhdr->nexthdr != IPPROTO_TCP)
499 return 0;
500 return jhdr->nexthdr;
501 }
502
ipv6_accept_ra(struct inet6_dev * idev)503 static inline bool ipv6_accept_ra(struct inet6_dev *idev)
504 {
505 /* If forwarding is enabled, RA are not accepted unless the special
506 * hybrid mode (accept_ra=2) is enabled.
507 */
508 return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 :
509 idev->cnf.accept_ra;
510 }
511
512 #define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */
513 #define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */
514 #define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */
515
516 int __ipv6_addr_type(const struct in6_addr *addr);
ipv6_addr_type(const struct in6_addr * addr)517 static inline int ipv6_addr_type(const struct in6_addr *addr)
518 {
519 return __ipv6_addr_type(addr) & 0xffff;
520 }
521
ipv6_addr_scope(const struct in6_addr * addr)522 static inline int ipv6_addr_scope(const struct in6_addr *addr)
523 {
524 return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK;
525 }
526
__ipv6_addr_src_scope(int type)527 static inline int __ipv6_addr_src_scope(int type)
528 {
529 return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16);
530 }
531
ipv6_addr_src_scope(const struct in6_addr * addr)532 static inline int ipv6_addr_src_scope(const struct in6_addr *addr)
533 {
534 return __ipv6_addr_src_scope(__ipv6_addr_type(addr));
535 }
536
__ipv6_addr_needs_scope_id(int type)537 static inline bool __ipv6_addr_needs_scope_id(int type)
538 {
539 return type & IPV6_ADDR_LINKLOCAL ||
540 (type & IPV6_ADDR_MULTICAST &&
541 (type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)));
542 }
543
ipv6_iface_scope_id(const struct in6_addr * addr,int iface)544 static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface)
545 {
546 return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0;
547 }
548
ipv6_addr_cmp(const struct in6_addr * a1,const struct in6_addr * a2)549 static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2)
550 {
551 return memcmp(a1, a2, sizeof(struct in6_addr));
552 }
553
554 static inline bool
ipv6_masked_addr_cmp(const struct in6_addr * a1,const struct in6_addr * m,const struct in6_addr * a2)555 ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m,
556 const struct in6_addr *a2)
557 {
558 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
559 const unsigned long *ul1 = (const unsigned long *)a1;
560 const unsigned long *ulm = (const unsigned long *)m;
561 const unsigned long *ul2 = (const unsigned long *)a2;
562
563 return !!(((ul1[0] ^ ul2[0]) & ulm[0]) |
564 ((ul1[1] ^ ul2[1]) & ulm[1]));
565 #else
566 return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) |
567 ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) |
568 ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) |
569 ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3]));
570 #endif
571 }
572
ipv6_addr_prefix(struct in6_addr * pfx,const struct in6_addr * addr,int plen)573 static inline void ipv6_addr_prefix(struct in6_addr *pfx,
574 const struct in6_addr *addr,
575 int plen)
576 {
577 /* caller must guarantee 0 <= plen <= 128 */
578 int o = plen >> 3,
579 b = plen & 0x7;
580
581 memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr));
582 memcpy(pfx->s6_addr, addr, o);
583 if (b != 0)
584 pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b);
585 }
586
ipv6_addr_prefix_copy(struct in6_addr * addr,const struct in6_addr * pfx,int plen)587 static inline void ipv6_addr_prefix_copy(struct in6_addr *addr,
588 const struct in6_addr *pfx,
589 int plen)
590 {
591 /* caller must guarantee 0 <= plen <= 128 */
592 int o = plen >> 3,
593 b = plen & 0x7;
594
595 memcpy(addr->s6_addr, pfx, o);
596 if (b != 0) {
597 addr->s6_addr[o] &= ~(0xff00 >> b);
598 addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b));
599 }
600 }
601
__ipv6_addr_set_half(__be32 * addr,__be32 wh,__be32 wl)602 static inline void __ipv6_addr_set_half(__be32 *addr,
603 __be32 wh, __be32 wl)
604 {
605 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
606 #if defined(__BIG_ENDIAN)
607 if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) {
608 *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl));
609 return;
610 }
611 #elif defined(__LITTLE_ENDIAN)
612 if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) {
613 *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh));
614 return;
615 }
616 #endif
617 #endif
618 addr[0] = wh;
619 addr[1] = wl;
620 }
621
ipv6_addr_set(struct in6_addr * addr,__be32 w1,__be32 w2,__be32 w3,__be32 w4)622 static inline void ipv6_addr_set(struct in6_addr *addr,
623 __be32 w1, __be32 w2,
624 __be32 w3, __be32 w4)
625 {
626 __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2);
627 __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4);
628 }
629
ipv6_addr_equal(const struct in6_addr * a1,const struct in6_addr * a2)630 static inline bool ipv6_addr_equal(const struct in6_addr *a1,
631 const struct in6_addr *a2)
632 {
633 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
634 const unsigned long *ul1 = (const unsigned long *)a1;
635 const unsigned long *ul2 = (const unsigned long *)a2;
636
637 return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL;
638 #else
639 return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
640 (a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
641 (a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
642 (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0;
643 #endif
644 }
645
646 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
__ipv6_prefix_equal64_half(const __be64 * a1,const __be64 * a2,unsigned int len)647 static inline bool __ipv6_prefix_equal64_half(const __be64 *a1,
648 const __be64 *a2,
649 unsigned int len)
650 {
651 if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len))))
652 return false;
653 return true;
654 }
655
ipv6_prefix_equal(const struct in6_addr * addr1,const struct in6_addr * addr2,unsigned int prefixlen)656 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
657 const struct in6_addr *addr2,
658 unsigned int prefixlen)
659 {
660 const __be64 *a1 = (const __be64 *)addr1;
661 const __be64 *a2 = (const __be64 *)addr2;
662
663 if (prefixlen >= 64) {
664 if (a1[0] ^ a2[0])
665 return false;
666 return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64);
667 }
668 return __ipv6_prefix_equal64_half(a1, a2, prefixlen);
669 }
670 #else
ipv6_prefix_equal(const struct in6_addr * addr1,const struct in6_addr * addr2,unsigned int prefixlen)671 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
672 const struct in6_addr *addr2,
673 unsigned int prefixlen)
674 {
675 const __be32 *a1 = addr1->s6_addr32;
676 const __be32 *a2 = addr2->s6_addr32;
677 unsigned int pdw, pbi;
678
679 /* check complete u32 in prefix */
680 pdw = prefixlen >> 5;
681 if (pdw && memcmp(a1, a2, pdw << 2))
682 return false;
683
684 /* check incomplete u32 in prefix */
685 pbi = prefixlen & 0x1f;
686 if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi))))
687 return false;
688
689 return true;
690 }
691 #endif
692
ipv6_addr_any(const struct in6_addr * a)693 static inline bool ipv6_addr_any(const struct in6_addr *a)
694 {
695 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
696 const unsigned long *ul = (const unsigned long *)a;
697
698 return (ul[0] | ul[1]) == 0UL;
699 #else
700 return (a->s6_addr32[0] | a->s6_addr32[1] |
701 a->s6_addr32[2] | a->s6_addr32[3]) == 0;
702 #endif
703 }
704
ipv6_addr_hash(const struct in6_addr * a)705 static inline u32 ipv6_addr_hash(const struct in6_addr *a)
706 {
707 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
708 const unsigned long *ul = (const unsigned long *)a;
709 unsigned long x = ul[0] ^ ul[1];
710
711 return (u32)(x ^ (x >> 32));
712 #else
713 return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^
714 a->s6_addr32[2] ^ a->s6_addr32[3]);
715 #endif
716 }
717
718 /* more secured version of ipv6_addr_hash() */
__ipv6_addr_jhash(const struct in6_addr * a,const u32 initval)719 static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval)
720 {
721 return jhash2((__force const u32 *)a->s6_addr32,
722 ARRAY_SIZE(a->s6_addr32), initval);
723 }
724
ipv6_addr_loopback(const struct in6_addr * a)725 static inline bool ipv6_addr_loopback(const struct in6_addr *a)
726 {
727 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
728 const __be64 *be = (const __be64 *)a;
729
730 return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL;
731 #else
732 return (a->s6_addr32[0] | a->s6_addr32[1] |
733 a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0;
734 #endif
735 }
736
737 /*
738 * Note that we must __force cast these to unsigned long to make sparse happy,
739 * since all of the endian-annotated types are fixed size regardless of arch.
740 */
ipv6_addr_v4mapped(const struct in6_addr * a)741 static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
742 {
743 return (
744 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
745 *(unsigned long *)a |
746 #else
747 (__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
748 #endif
749 (__force unsigned long)(a->s6_addr32[2] ^
750 cpu_to_be32(0x0000ffff))) == 0UL;
751 }
752
ipv6_addr_v4mapped_any(const struct in6_addr * a)753 static inline bool ipv6_addr_v4mapped_any(const struct in6_addr *a)
754 {
755 return ipv6_addr_v4mapped(a) && ipv4_is_zeronet(a->s6_addr32[3]);
756 }
757
ipv6_addr_v4mapped_loopback(const struct in6_addr * a)758 static inline bool ipv6_addr_v4mapped_loopback(const struct in6_addr *a)
759 {
760 return ipv6_addr_v4mapped(a) && ipv4_is_loopback(a->s6_addr32[3]);
761 }
762
ipv6_portaddr_hash(const struct net * net,const struct in6_addr * addr6,unsigned int port)763 static inline u32 ipv6_portaddr_hash(const struct net *net,
764 const struct in6_addr *addr6,
765 unsigned int port)
766 {
767 unsigned int hash, mix = net_hash_mix(net);
768
769 if (ipv6_addr_any(addr6))
770 hash = jhash_1word(0, mix);
771 else if (ipv6_addr_v4mapped(addr6))
772 hash = jhash_1word((__force u32)addr6->s6_addr32[3], mix);
773 else
774 hash = jhash2((__force u32 *)addr6->s6_addr32, 4, mix);
775
776 return hash ^ port;
777 }
778
779 /*
780 * Check for a RFC 4843 ORCHID address
781 * (Overlay Routable Cryptographic Hash Identifiers)
782 */
ipv6_addr_orchid(const struct in6_addr * a)783 static inline bool ipv6_addr_orchid(const struct in6_addr *a)
784 {
785 return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010);
786 }
787
ipv6_addr_is_multicast(const struct in6_addr * addr)788 static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr)
789 {
790 return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000);
791 }
792
ipv6_addr_set_v4mapped(const __be32 addr,struct in6_addr * v4mapped)793 static inline void ipv6_addr_set_v4mapped(const __be32 addr,
794 struct in6_addr *v4mapped)
795 {
796 ipv6_addr_set(v4mapped,
797 0, 0,
798 htonl(0x0000FFFF),
799 addr);
800 }
801
802 /*
803 * find the first different bit between two addresses
804 * length of address must be a multiple of 32bits
805 */
__ipv6_addr_diff32(const void * token1,const void * token2,int addrlen)806 static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen)
807 {
808 const __be32 *a1 = token1, *a2 = token2;
809 int i;
810
811 addrlen >>= 2;
812
813 for (i = 0; i < addrlen; i++) {
814 __be32 xb = a1[i] ^ a2[i];
815 if (xb)
816 return i * 32 + 31 - __fls(ntohl(xb));
817 }
818
819 /*
820 * we should *never* get to this point since that
821 * would mean the addrs are equal
822 *
823 * However, we do get to it 8) And exacly, when
824 * addresses are equal 8)
825 *
826 * ip route add 1111::/128 via ...
827 * ip route add 1111::/64 via ...
828 * and we are here.
829 *
830 * Ideally, this function should stop comparison
831 * at prefix length. It does not, but it is still OK,
832 * if returned value is greater than prefix length.
833 * --ANK (980803)
834 */
835 return addrlen << 5;
836 }
837
838 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
__ipv6_addr_diff64(const void * token1,const void * token2,int addrlen)839 static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen)
840 {
841 const __be64 *a1 = token1, *a2 = token2;
842 int i;
843
844 addrlen >>= 3;
845
846 for (i = 0; i < addrlen; i++) {
847 __be64 xb = a1[i] ^ a2[i];
848 if (xb)
849 return i * 64 + 63 - __fls(be64_to_cpu(xb));
850 }
851
852 return addrlen << 6;
853 }
854 #endif
855
__ipv6_addr_diff(const void * token1,const void * token2,int addrlen)856 static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen)
857 {
858 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
859 if (__builtin_constant_p(addrlen) && !(addrlen & 7))
860 return __ipv6_addr_diff64(token1, token2, addrlen);
861 #endif
862 return __ipv6_addr_diff32(token1, token2, addrlen);
863 }
864
ipv6_addr_diff(const struct in6_addr * a1,const struct in6_addr * a2)865 static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2)
866 {
867 return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr));
868 }
869
870 __be32 ipv6_select_ident(struct net *net,
871 const struct in6_addr *daddr,
872 const struct in6_addr *saddr);
873 __be32 ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb);
874
875 int ip6_dst_hoplimit(struct dst_entry *dst);
876
ip6_sk_dst_hoplimit(struct ipv6_pinfo * np,struct flowi6 * fl6,struct dst_entry * dst)877 static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6,
878 struct dst_entry *dst)
879 {
880 int hlimit;
881
882 if (ipv6_addr_is_multicast(&fl6->daddr))
883 hlimit = np->mcast_hops;
884 else
885 hlimit = np->hop_limit;
886 if (hlimit < 0)
887 hlimit = ip6_dst_hoplimit(dst);
888 return hlimit;
889 }
890
891 /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store
892 * Equivalent to : flow->v6addrs.src = iph->saddr;
893 * flow->v6addrs.dst = iph->daddr;
894 */
iph_to_flow_copy_v6addrs(struct flow_keys * flow,const struct ipv6hdr * iph)895 static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow,
896 const struct ipv6hdr *iph)
897 {
898 BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) !=
899 offsetof(typeof(flow->addrs), v6addrs.src) +
900 sizeof(flow->addrs.v6addrs.src));
901 memcpy(&flow->addrs.v6addrs, &iph->addrs, sizeof(flow->addrs.v6addrs));
902 flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
903 }
904
905 #if IS_ENABLED(CONFIG_IPV6)
906
ipv6_can_nonlocal_bind(struct net * net,struct inet_sock * inet)907 static inline bool ipv6_can_nonlocal_bind(struct net *net,
908 struct inet_sock *inet)
909 {
910 return net->ipv6.sysctl.ip_nonlocal_bind ||
911 inet->freebind || inet->transparent;
912 }
913
914 /* Sysctl settings for net ipv6.auto_flowlabels */
915 #define IP6_AUTO_FLOW_LABEL_OFF 0
916 #define IP6_AUTO_FLOW_LABEL_OPTOUT 1
917 #define IP6_AUTO_FLOW_LABEL_OPTIN 2
918 #define IP6_AUTO_FLOW_LABEL_FORCED 3
919
920 #define IP6_AUTO_FLOW_LABEL_MAX IP6_AUTO_FLOW_LABEL_FORCED
921
922 #define IP6_DEFAULT_AUTO_FLOW_LABELS IP6_AUTO_FLOW_LABEL_OPTOUT
923
ip6_make_flowlabel(struct net * net,struct sk_buff * skb,__be32 flowlabel,bool autolabel,struct flowi6 * fl6)924 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
925 __be32 flowlabel, bool autolabel,
926 struct flowi6 *fl6)
927 {
928 u32 hash;
929
930 /* @flowlabel may include more than a flow label, eg, the traffic class.
931 * Here we want only the flow label value.
932 */
933 flowlabel &= IPV6_FLOWLABEL_MASK;
934
935 if (flowlabel ||
936 net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF ||
937 (!autolabel &&
938 net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED))
939 return flowlabel;
940
941 hash = skb_get_hash_flowi6(skb, fl6);
942
943 /* Since this is being sent on the wire obfuscate hash a bit
944 * to minimize possbility that any useful information to an
945 * attacker is leaked. Only lower 20 bits are relevant.
946 */
947 hash = rol32(hash, 16);
948
949 flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK;
950
951 if (net->ipv6.sysctl.flowlabel_state_ranges)
952 flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG;
953
954 return flowlabel;
955 }
956
ip6_default_np_autolabel(struct net * net)957 static inline int ip6_default_np_autolabel(struct net *net)
958 {
959 switch (net->ipv6.sysctl.auto_flowlabels) {
960 case IP6_AUTO_FLOW_LABEL_OFF:
961 case IP6_AUTO_FLOW_LABEL_OPTIN:
962 default:
963 return 0;
964 case IP6_AUTO_FLOW_LABEL_OPTOUT:
965 case IP6_AUTO_FLOW_LABEL_FORCED:
966 return 1;
967 }
968 }
969 #else
ip6_make_flowlabel(struct net * net,struct sk_buff * skb,__be32 flowlabel,bool autolabel,struct flowi6 * fl6)970 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
971 __be32 flowlabel, bool autolabel,
972 struct flowi6 *fl6)
973 {
974 return flowlabel;
975 }
ip6_default_np_autolabel(struct net * net)976 static inline int ip6_default_np_autolabel(struct net *net)
977 {
978 return 0;
979 }
980 #endif
981
982 #if IS_ENABLED(CONFIG_IPV6)
ip6_multipath_hash_policy(const struct net * net)983 static inline int ip6_multipath_hash_policy(const struct net *net)
984 {
985 return net->ipv6.sysctl.multipath_hash_policy;
986 }
ip6_multipath_hash_fields(const struct net * net)987 static inline u32 ip6_multipath_hash_fields(const struct net *net)
988 {
989 return net->ipv6.sysctl.multipath_hash_fields;
990 }
991 #else
ip6_multipath_hash_policy(const struct net * net)992 static inline int ip6_multipath_hash_policy(const struct net *net)
993 {
994 return 0;
995 }
ip6_multipath_hash_fields(const struct net * net)996 static inline u32 ip6_multipath_hash_fields(const struct net *net)
997 {
998 return 0;
999 }
1000 #endif
1001
1002 /*
1003 * Header manipulation
1004 */
ip6_flow_hdr(struct ipv6hdr * hdr,unsigned int tclass,__be32 flowlabel)1005 static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass,
1006 __be32 flowlabel)
1007 {
1008 *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel;
1009 }
1010
ip6_flowinfo(const struct ipv6hdr * hdr)1011 static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr)
1012 {
1013 return *(__be32 *)hdr & IPV6_FLOWINFO_MASK;
1014 }
1015
ip6_flowlabel(const struct ipv6hdr * hdr)1016 static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr)
1017 {
1018 return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK;
1019 }
1020
ip6_tclass(__be32 flowinfo)1021 static inline u8 ip6_tclass(__be32 flowinfo)
1022 {
1023 return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT;
1024 }
1025
ip6_dscp(__be32 flowinfo)1026 static inline dscp_t ip6_dscp(__be32 flowinfo)
1027 {
1028 return inet_dsfield_to_dscp(ip6_tclass(flowinfo));
1029 }
1030
ip6_make_flowinfo(unsigned int tclass,__be32 flowlabel)1031 static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel)
1032 {
1033 return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel;
1034 }
1035
flowi6_get_flowlabel(const struct flowi6 * fl6)1036 static inline __be32 flowi6_get_flowlabel(const struct flowi6 *fl6)
1037 {
1038 return fl6->flowlabel & IPV6_FLOWLABEL_MASK;
1039 }
1040
1041 /*
1042 * Prototypes exported by ipv6
1043 */
1044
1045 /*
1046 * rcv function (called from netdevice level)
1047 */
1048
1049 int ipv6_rcv(struct sk_buff *skb, struct net_device *dev,
1050 struct packet_type *pt, struct net_device *orig_dev);
1051 void ipv6_list_rcv(struct list_head *head, struct packet_type *pt,
1052 struct net_device *orig_dev);
1053
1054 int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb);
1055
1056 /*
1057 * upper-layer output functions
1058 */
1059 int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6,
1060 __u32 mark, struct ipv6_txoptions *opt, int tclass, u32 priority);
1061
1062 int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr);
1063
1064 int ip6_append_data(struct sock *sk,
1065 int getfrag(void *from, char *to, int offset, int len,
1066 int odd, struct sk_buff *skb),
1067 void *from, size_t length, int transhdrlen,
1068 struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
1069 struct rt6_info *rt, unsigned int flags);
1070
1071 int ip6_push_pending_frames(struct sock *sk);
1072
1073 void ip6_flush_pending_frames(struct sock *sk);
1074
1075 int ip6_send_skb(struct sk_buff *skb);
1076
1077 struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue,
1078 struct inet_cork_full *cork,
1079 struct inet6_cork *v6_cork);
1080 struct sk_buff *ip6_make_skb(struct sock *sk,
1081 int getfrag(void *from, char *to, int offset,
1082 int len, int odd, struct sk_buff *skb),
1083 void *from, size_t length, int transhdrlen,
1084 struct ipcm6_cookie *ipc6,
1085 struct rt6_info *rt, unsigned int flags,
1086 struct inet_cork_full *cork);
1087
ip6_finish_skb(struct sock * sk)1088 static inline struct sk_buff *ip6_finish_skb(struct sock *sk)
1089 {
1090 return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork,
1091 &inet6_sk(sk)->cork);
1092 }
1093
1094 int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst,
1095 struct flowi6 *fl6);
1096 struct dst_entry *ip6_dst_lookup_flow(struct net *net, const struct sock *sk, struct flowi6 *fl6,
1097 const struct in6_addr *final_dst);
1098 struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6,
1099 const struct in6_addr *final_dst,
1100 bool connected);
1101 struct dst_entry *ip6_dst_lookup_tunnel(struct sk_buff *skb,
1102 struct net_device *dev,
1103 struct net *net, struct socket *sock,
1104 struct in6_addr *saddr,
1105 const struct ip_tunnel_info *info,
1106 u8 protocol, bool use_cache);
1107 struct dst_entry *ip6_blackhole_route(struct net *net,
1108 struct dst_entry *orig_dst);
1109
1110 /*
1111 * skb processing functions
1112 */
1113
1114 int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb);
1115 int ip6_forward(struct sk_buff *skb);
1116 int ip6_input(struct sk_buff *skb);
1117 int ip6_mc_input(struct sk_buff *skb);
1118 void ip6_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int nexthdr,
1119 bool have_final);
1120
1121 int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
1122 int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
1123
1124 /*
1125 * Extension header (options) processing
1126 */
1127
1128 void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
1129 u8 *proto, struct in6_addr **daddr_p,
1130 struct in6_addr *saddr);
1131 void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
1132 u8 *proto);
1133
1134 int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp,
1135 __be16 *frag_offp);
1136
1137 bool ipv6_ext_hdr(u8 nexthdr);
1138
1139 enum {
1140 IP6_FH_F_FRAG = (1 << 0),
1141 IP6_FH_F_AUTH = (1 << 1),
1142 IP6_FH_F_SKIP_RH = (1 << 2),
1143 };
1144
1145 /* find specified header and get offset to it */
1146 int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target,
1147 unsigned short *fragoff, int *fragflg);
1148
1149 int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type);
1150
1151 struct in6_addr *fl6_update_dst(struct flowi6 *fl6,
1152 const struct ipv6_txoptions *opt,
1153 struct in6_addr *orig);
1154
1155 /*
1156 * socket options (ipv6_sockglue.c)
1157 */
1158 DECLARE_STATIC_KEY_FALSE(ip6_min_hopcount);
1159
1160 int do_ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
1161 unsigned int optlen);
1162 int ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
1163 unsigned int optlen);
1164 int do_ipv6_getsockopt(struct sock *sk, int level, int optname,
1165 sockptr_t optval, sockptr_t optlen);
1166 int ipv6_getsockopt(struct sock *sk, int level, int optname,
1167 char __user *optval, int __user *optlen);
1168
1169 int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr,
1170 int addr_len);
1171 int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len);
1172 int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr,
1173 int addr_len);
1174 int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr);
1175 void ip6_datagram_release_cb(struct sock *sk);
1176
1177 int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len,
1178 int *addr_len);
1179 int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len,
1180 int *addr_len);
1181 void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port,
1182 u32 info, u8 *payload);
1183 void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info);
1184 void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu);
1185
1186 void inet6_cleanup_sock(struct sock *sk);
1187 void inet6_sock_destruct(struct sock *sk);
1188 int inet6_release(struct socket *sock);
1189 int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len);
1190 int inet6_getname(struct socket *sock, struct sockaddr *uaddr,
1191 int peer);
1192 int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
1193 int inet6_compat_ioctl(struct socket *sock, unsigned int cmd,
1194 unsigned long arg);
1195
1196 int inet6_hash_connect(struct inet_timewait_death_row *death_row,
1197 struct sock *sk);
1198 int inet6_sendmsg(struct socket *sock, struct msghdr *msg, size_t size);
1199 int inet6_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1200 int flags);
1201
1202 /*
1203 * reassembly.c
1204 */
1205 extern const struct proto_ops inet6_stream_ops;
1206 extern const struct proto_ops inet6_dgram_ops;
1207 extern const struct proto_ops inet6_sockraw_ops;
1208
1209 struct group_source_req;
1210 struct group_filter;
1211
1212 int ip6_mc_source(int add, int omode, struct sock *sk,
1213 struct group_source_req *pgsr);
1214 int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf,
1215 struct sockaddr_storage *list);
1216 int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf,
1217 sockptr_t optval, size_t ss_offset);
1218
1219 #ifdef CONFIG_PROC_FS
1220 int ac6_proc_init(struct net *net);
1221 void ac6_proc_exit(struct net *net);
1222 int raw6_proc_init(void);
1223 void raw6_proc_exit(void);
1224 int tcp6_proc_init(struct net *net);
1225 void tcp6_proc_exit(struct net *net);
1226 int udp6_proc_init(struct net *net);
1227 void udp6_proc_exit(struct net *net);
1228 int udplite6_proc_init(void);
1229 void udplite6_proc_exit(void);
1230 int ipv6_misc_proc_init(void);
1231 void ipv6_misc_proc_exit(void);
1232 int snmp6_register_dev(struct inet6_dev *idev);
1233 int snmp6_unregister_dev(struct inet6_dev *idev);
1234
1235 #else
ac6_proc_init(struct net * net)1236 static inline int ac6_proc_init(struct net *net) { return 0; }
ac6_proc_exit(struct net * net)1237 static inline void ac6_proc_exit(struct net *net) { }
snmp6_register_dev(struct inet6_dev * idev)1238 static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; }
snmp6_unregister_dev(struct inet6_dev * idev)1239 static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; }
1240 #endif
1241
1242 #ifdef CONFIG_SYSCTL
1243 struct ctl_table *ipv6_icmp_sysctl_init(struct net *net);
1244 struct ctl_table *ipv6_route_sysctl_init(struct net *net);
1245 int ipv6_sysctl_register(void);
1246 void ipv6_sysctl_unregister(void);
1247 #endif
1248
1249 int ipv6_sock_mc_join(struct sock *sk, int ifindex,
1250 const struct in6_addr *addr);
1251 int ipv6_sock_mc_join_ssm(struct sock *sk, int ifindex,
1252 const struct in6_addr *addr, unsigned int mode);
1253 int ipv6_sock_mc_drop(struct sock *sk, int ifindex,
1254 const struct in6_addr *addr);
1255
ip6_sock_set_v6only(struct sock * sk)1256 static inline int ip6_sock_set_v6only(struct sock *sk)
1257 {
1258 if (inet_sk(sk)->inet_num)
1259 return -EINVAL;
1260 lock_sock(sk);
1261 sk->sk_ipv6only = true;
1262 release_sock(sk);
1263 return 0;
1264 }
1265
ip6_sock_set_recverr(struct sock * sk)1266 static inline void ip6_sock_set_recverr(struct sock *sk)
1267 {
1268 lock_sock(sk);
1269 inet6_sk(sk)->recverr = true;
1270 release_sock(sk);
1271 }
1272
__ip6_sock_set_addr_preferences(struct sock * sk,int val)1273 static inline int __ip6_sock_set_addr_preferences(struct sock *sk, int val)
1274 {
1275 unsigned int pref = 0;
1276 unsigned int prefmask = ~0;
1277
1278 /* check PUBLIC/TMP/PUBTMP_DEFAULT conflicts */
1279 switch (val & (IPV6_PREFER_SRC_PUBLIC |
1280 IPV6_PREFER_SRC_TMP |
1281 IPV6_PREFER_SRC_PUBTMP_DEFAULT)) {
1282 case IPV6_PREFER_SRC_PUBLIC:
1283 pref |= IPV6_PREFER_SRC_PUBLIC;
1284 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1285 IPV6_PREFER_SRC_TMP);
1286 break;
1287 case IPV6_PREFER_SRC_TMP:
1288 pref |= IPV6_PREFER_SRC_TMP;
1289 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1290 IPV6_PREFER_SRC_TMP);
1291 break;
1292 case IPV6_PREFER_SRC_PUBTMP_DEFAULT:
1293 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1294 IPV6_PREFER_SRC_TMP);
1295 break;
1296 case 0:
1297 break;
1298 default:
1299 return -EINVAL;
1300 }
1301
1302 /* check HOME/COA conflicts */
1303 switch (val & (IPV6_PREFER_SRC_HOME | IPV6_PREFER_SRC_COA)) {
1304 case IPV6_PREFER_SRC_HOME:
1305 prefmask &= ~IPV6_PREFER_SRC_COA;
1306 break;
1307 case IPV6_PREFER_SRC_COA:
1308 pref |= IPV6_PREFER_SRC_COA;
1309 break;
1310 case 0:
1311 break;
1312 default:
1313 return -EINVAL;
1314 }
1315
1316 /* check CGA/NONCGA conflicts */
1317 switch (val & (IPV6_PREFER_SRC_CGA|IPV6_PREFER_SRC_NONCGA)) {
1318 case IPV6_PREFER_SRC_CGA:
1319 case IPV6_PREFER_SRC_NONCGA:
1320 case 0:
1321 break;
1322 default:
1323 return -EINVAL;
1324 }
1325
1326 inet6_sk(sk)->srcprefs = (inet6_sk(sk)->srcprefs & prefmask) | pref;
1327 return 0;
1328 }
1329
ip6_sock_set_addr_preferences(struct sock * sk,int val)1330 static inline int ip6_sock_set_addr_preferences(struct sock *sk, int val)
1331 {
1332 int ret;
1333
1334 lock_sock(sk);
1335 ret = __ip6_sock_set_addr_preferences(sk, val);
1336 release_sock(sk);
1337 return ret;
1338 }
1339
ip6_sock_set_recvpktinfo(struct sock * sk)1340 static inline void ip6_sock_set_recvpktinfo(struct sock *sk)
1341 {
1342 lock_sock(sk);
1343 inet6_sk(sk)->rxopt.bits.rxinfo = true;
1344 release_sock(sk);
1345 }
1346
1347 #endif /* _NET_IPV6_H */
1348