• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <linux/bpf_verifier.h>
36 #include <linux/nodemask.h>
37 #include <linux/nospec.h>
38 
39 #include <asm/barrier.h>
40 #include <asm/unaligned.h>
41 
42 /* Registers */
43 #define BPF_R0	regs[BPF_REG_0]
44 #define BPF_R1	regs[BPF_REG_1]
45 #define BPF_R2	regs[BPF_REG_2]
46 #define BPF_R3	regs[BPF_REG_3]
47 #define BPF_R4	regs[BPF_REG_4]
48 #define BPF_R5	regs[BPF_REG_5]
49 #define BPF_R6	regs[BPF_REG_6]
50 #define BPF_R7	regs[BPF_REG_7]
51 #define BPF_R8	regs[BPF_REG_8]
52 #define BPF_R9	regs[BPF_REG_9]
53 #define BPF_R10	regs[BPF_REG_10]
54 
55 /* Named registers */
56 #define DST	regs[insn->dst_reg]
57 #define SRC	regs[insn->src_reg]
58 #define FP	regs[BPF_REG_FP]
59 #define AX	regs[BPF_REG_AX]
60 #define ARG1	regs[BPF_REG_ARG1]
61 #define CTX	regs[BPF_REG_CTX]
62 #define IMM	insn->imm
63 
64 /* No hurry in this branch
65  *
66  * Exported for the bpf jit load helper.
67  */
bpf_internal_load_pointer_neg_helper(const struct sk_buff * skb,int k,unsigned int size)68 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
69 {
70 	u8 *ptr = NULL;
71 
72 	if (k >= SKF_NET_OFF) {
73 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
74 	} else if (k >= SKF_LL_OFF) {
75 		if (unlikely(!skb_mac_header_was_set(skb)))
76 			return NULL;
77 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
78 	}
79 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
80 		return ptr;
81 
82 	return NULL;
83 }
84 
bpf_prog_alloc_no_stats(unsigned int size,gfp_t gfp_extra_flags)85 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
86 {
87 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
88 	struct bpf_prog_aux *aux;
89 	struct bpf_prog *fp;
90 
91 	size = round_up(size, PAGE_SIZE);
92 	fp = __vmalloc(size, gfp_flags);
93 	if (fp == NULL)
94 		return NULL;
95 
96 	aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT | gfp_extra_flags);
97 	if (aux == NULL) {
98 		vfree(fp);
99 		return NULL;
100 	}
101 	fp->active = alloc_percpu_gfp(int, GFP_KERNEL_ACCOUNT | gfp_extra_flags);
102 	if (!fp->active) {
103 		vfree(fp);
104 		kfree(aux);
105 		return NULL;
106 	}
107 
108 	fp->pages = size / PAGE_SIZE;
109 	fp->aux = aux;
110 	fp->aux->prog = fp;
111 	fp->jit_requested = ebpf_jit_enabled();
112 	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
113 #ifdef CONFIG_CGROUP_BPF
114 	aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
115 #endif
116 
117 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
118 	mutex_init(&fp->aux->used_maps_mutex);
119 	mutex_init(&fp->aux->dst_mutex);
120 
121 	return fp;
122 }
123 
bpf_prog_alloc(unsigned int size,gfp_t gfp_extra_flags)124 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
125 {
126 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
127 	struct bpf_prog *prog;
128 	int cpu;
129 
130 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
131 	if (!prog)
132 		return NULL;
133 
134 	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
135 	if (!prog->stats) {
136 		free_percpu(prog->active);
137 		kfree(prog->aux);
138 		vfree(prog);
139 		return NULL;
140 	}
141 
142 	for_each_possible_cpu(cpu) {
143 		struct bpf_prog_stats *pstats;
144 
145 		pstats = per_cpu_ptr(prog->stats, cpu);
146 		u64_stats_init(&pstats->syncp);
147 	}
148 	return prog;
149 }
150 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
151 
bpf_prog_alloc_jited_linfo(struct bpf_prog * prog)152 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
153 {
154 	if (!prog->aux->nr_linfo || !prog->jit_requested)
155 		return 0;
156 
157 	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
158 					  sizeof(*prog->aux->jited_linfo),
159 					  GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
160 	if (!prog->aux->jited_linfo)
161 		return -ENOMEM;
162 
163 	return 0;
164 }
165 
bpf_prog_jit_attempt_done(struct bpf_prog * prog)166 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
167 {
168 	if (prog->aux->jited_linfo &&
169 	    (!prog->jited || !prog->aux->jited_linfo[0])) {
170 		kvfree(prog->aux->jited_linfo);
171 		prog->aux->jited_linfo = NULL;
172 	}
173 
174 	kfree(prog->aux->kfunc_tab);
175 	prog->aux->kfunc_tab = NULL;
176 }
177 
178 /* The jit engine is responsible to provide an array
179  * for insn_off to the jited_off mapping (insn_to_jit_off).
180  *
181  * The idx to this array is the insn_off.  Hence, the insn_off
182  * here is relative to the prog itself instead of the main prog.
183  * This array has one entry for each xlated bpf insn.
184  *
185  * jited_off is the byte off to the end of the jited insn.
186  *
187  * Hence, with
188  * insn_start:
189  *      The first bpf insn off of the prog.  The insn off
190  *      here is relative to the main prog.
191  *      e.g. if prog is a subprog, insn_start > 0
192  * linfo_idx:
193  *      The prog's idx to prog->aux->linfo and jited_linfo
194  *
195  * jited_linfo[linfo_idx] = prog->bpf_func
196  *
197  * For i > linfo_idx,
198  *
199  * jited_linfo[i] = prog->bpf_func +
200  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
201  */
bpf_prog_fill_jited_linfo(struct bpf_prog * prog,const u32 * insn_to_jit_off)202 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
203 			       const u32 *insn_to_jit_off)
204 {
205 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
206 	const struct bpf_line_info *linfo;
207 	void **jited_linfo;
208 
209 	if (!prog->aux->jited_linfo)
210 		/* Userspace did not provide linfo */
211 		return;
212 
213 	linfo_idx = prog->aux->linfo_idx;
214 	linfo = &prog->aux->linfo[linfo_idx];
215 	insn_start = linfo[0].insn_off;
216 	insn_end = insn_start + prog->len;
217 
218 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
219 	jited_linfo[0] = prog->bpf_func;
220 
221 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
222 
223 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
224 		/* The verifier ensures that linfo[i].insn_off is
225 		 * strictly increasing
226 		 */
227 		jited_linfo[i] = prog->bpf_func +
228 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
229 }
230 
bpf_prog_realloc(struct bpf_prog * fp_old,unsigned int size,gfp_t gfp_extra_flags)231 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
232 				  gfp_t gfp_extra_flags)
233 {
234 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
235 	struct bpf_prog *fp;
236 	u32 pages;
237 
238 	size = round_up(size, PAGE_SIZE);
239 	pages = size / PAGE_SIZE;
240 	if (pages <= fp_old->pages)
241 		return fp_old;
242 
243 	fp = __vmalloc(size, gfp_flags);
244 	if (fp) {
245 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
246 		fp->pages = pages;
247 		fp->aux->prog = fp;
248 
249 		/* We keep fp->aux from fp_old around in the new
250 		 * reallocated structure.
251 		 */
252 		fp_old->aux = NULL;
253 		fp_old->stats = NULL;
254 		fp_old->active = NULL;
255 		__bpf_prog_free(fp_old);
256 	}
257 
258 	return fp;
259 }
260 
__bpf_prog_free(struct bpf_prog * fp)261 void __bpf_prog_free(struct bpf_prog *fp)
262 {
263 	if (fp->aux) {
264 		mutex_destroy(&fp->aux->used_maps_mutex);
265 		mutex_destroy(&fp->aux->dst_mutex);
266 		kfree(fp->aux->poke_tab);
267 		kfree(fp->aux);
268 	}
269 	free_percpu(fp->stats);
270 	free_percpu(fp->active);
271 	vfree(fp);
272 }
273 
bpf_prog_calc_tag(struct bpf_prog * fp)274 int bpf_prog_calc_tag(struct bpf_prog *fp)
275 {
276 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
277 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
278 	u32 digest[SHA1_DIGEST_WORDS];
279 	u32 ws[SHA1_WORKSPACE_WORDS];
280 	u32 i, bsize, psize, blocks;
281 	struct bpf_insn *dst;
282 	bool was_ld_map;
283 	u8 *raw, *todo;
284 	__be32 *result;
285 	__be64 *bits;
286 
287 	raw = vmalloc(raw_size);
288 	if (!raw)
289 		return -ENOMEM;
290 
291 	sha1_init(digest);
292 	memset(ws, 0, sizeof(ws));
293 
294 	/* We need to take out the map fd for the digest calculation
295 	 * since they are unstable from user space side.
296 	 */
297 	dst = (void *)raw;
298 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
299 		dst[i] = fp->insnsi[i];
300 		if (!was_ld_map &&
301 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
302 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
303 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
304 			was_ld_map = true;
305 			dst[i].imm = 0;
306 		} else if (was_ld_map &&
307 			   dst[i].code == 0 &&
308 			   dst[i].dst_reg == 0 &&
309 			   dst[i].src_reg == 0 &&
310 			   dst[i].off == 0) {
311 			was_ld_map = false;
312 			dst[i].imm = 0;
313 		} else {
314 			was_ld_map = false;
315 		}
316 	}
317 
318 	psize = bpf_prog_insn_size(fp);
319 	memset(&raw[psize], 0, raw_size - psize);
320 	raw[psize++] = 0x80;
321 
322 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
323 	blocks = bsize / SHA1_BLOCK_SIZE;
324 	todo   = raw;
325 	if (bsize - psize >= sizeof(__be64)) {
326 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
327 	} else {
328 		bits = (__be64 *)(todo + bsize + bits_offset);
329 		blocks++;
330 	}
331 	*bits = cpu_to_be64((psize - 1) << 3);
332 
333 	while (blocks--) {
334 		sha1_transform(digest, todo, ws);
335 		todo += SHA1_BLOCK_SIZE;
336 	}
337 
338 	result = (__force __be32 *)digest;
339 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
340 		result[i] = cpu_to_be32(digest[i]);
341 	memcpy(fp->tag, result, sizeof(fp->tag));
342 
343 	vfree(raw);
344 	return 0;
345 }
346 
bpf_adj_delta_to_imm(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)347 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
348 				s32 end_new, s32 curr, const bool probe_pass)
349 {
350 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
351 	s32 delta = end_new - end_old;
352 	s64 imm = insn->imm;
353 
354 	if (curr < pos && curr + imm + 1 >= end_old)
355 		imm += delta;
356 	else if (curr >= end_new && curr + imm + 1 < end_new)
357 		imm -= delta;
358 	if (imm < imm_min || imm > imm_max)
359 		return -ERANGE;
360 	if (!probe_pass)
361 		insn->imm = imm;
362 	return 0;
363 }
364 
bpf_adj_delta_to_off(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)365 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
366 				s32 end_new, s32 curr, const bool probe_pass)
367 {
368 	const s32 off_min = S16_MIN, off_max = S16_MAX;
369 	s32 delta = end_new - end_old;
370 	s32 off = insn->off;
371 
372 	if (curr < pos && curr + off + 1 >= end_old)
373 		off += delta;
374 	else if (curr >= end_new && curr + off + 1 < end_new)
375 		off -= delta;
376 	if (off < off_min || off > off_max)
377 		return -ERANGE;
378 	if (!probe_pass)
379 		insn->off = off;
380 	return 0;
381 }
382 
bpf_adj_branches(struct bpf_prog * prog,u32 pos,s32 end_old,s32 end_new,const bool probe_pass)383 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
384 			    s32 end_new, const bool probe_pass)
385 {
386 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
387 	struct bpf_insn *insn = prog->insnsi;
388 	int ret = 0;
389 
390 	for (i = 0; i < insn_cnt; i++, insn++) {
391 		u8 code;
392 
393 		/* In the probing pass we still operate on the original,
394 		 * unpatched image in order to check overflows before we
395 		 * do any other adjustments. Therefore skip the patchlet.
396 		 */
397 		if (probe_pass && i == pos) {
398 			i = end_new;
399 			insn = prog->insnsi + end_old;
400 		}
401 		if (bpf_pseudo_func(insn)) {
402 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
403 						   end_new, i, probe_pass);
404 			if (ret)
405 				return ret;
406 			continue;
407 		}
408 		code = insn->code;
409 		if ((BPF_CLASS(code) != BPF_JMP &&
410 		     BPF_CLASS(code) != BPF_JMP32) ||
411 		    BPF_OP(code) == BPF_EXIT)
412 			continue;
413 		/* Adjust offset of jmps if we cross patch boundaries. */
414 		if (BPF_OP(code) == BPF_CALL) {
415 			if (insn->src_reg != BPF_PSEUDO_CALL)
416 				continue;
417 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
418 						   end_new, i, probe_pass);
419 		} else {
420 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
421 						   end_new, i, probe_pass);
422 		}
423 		if (ret)
424 			break;
425 	}
426 
427 	return ret;
428 }
429 
bpf_adj_linfo(struct bpf_prog * prog,u32 off,u32 delta)430 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
431 {
432 	struct bpf_line_info *linfo;
433 	u32 i, nr_linfo;
434 
435 	nr_linfo = prog->aux->nr_linfo;
436 	if (!nr_linfo || !delta)
437 		return;
438 
439 	linfo = prog->aux->linfo;
440 
441 	for (i = 0; i < nr_linfo; i++)
442 		if (off < linfo[i].insn_off)
443 			break;
444 
445 	/* Push all off < linfo[i].insn_off by delta */
446 	for (; i < nr_linfo; i++)
447 		linfo[i].insn_off += delta;
448 }
449 
bpf_patch_insn_single(struct bpf_prog * prog,u32 off,const struct bpf_insn * patch,u32 len)450 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
451 				       const struct bpf_insn *patch, u32 len)
452 {
453 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
454 	const u32 cnt_max = S16_MAX;
455 	struct bpf_prog *prog_adj;
456 	int err;
457 
458 	/* Since our patchlet doesn't expand the image, we're done. */
459 	if (insn_delta == 0) {
460 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
461 		return prog;
462 	}
463 
464 	insn_adj_cnt = prog->len + insn_delta;
465 
466 	/* Reject anything that would potentially let the insn->off
467 	 * target overflow when we have excessive program expansions.
468 	 * We need to probe here before we do any reallocation where
469 	 * we afterwards may not fail anymore.
470 	 */
471 	if (insn_adj_cnt > cnt_max &&
472 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
473 		return ERR_PTR(err);
474 
475 	/* Several new instructions need to be inserted. Make room
476 	 * for them. Likely, there's no need for a new allocation as
477 	 * last page could have large enough tailroom.
478 	 */
479 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
480 				    GFP_USER);
481 	if (!prog_adj)
482 		return ERR_PTR(-ENOMEM);
483 
484 	prog_adj->len = insn_adj_cnt;
485 
486 	/* Patching happens in 3 steps:
487 	 *
488 	 * 1) Move over tail of insnsi from next instruction onwards,
489 	 *    so we can patch the single target insn with one or more
490 	 *    new ones (patching is always from 1 to n insns, n > 0).
491 	 * 2) Inject new instructions at the target location.
492 	 * 3) Adjust branch offsets if necessary.
493 	 */
494 	insn_rest = insn_adj_cnt - off - len;
495 
496 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
497 		sizeof(*patch) * insn_rest);
498 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
499 
500 	/* We are guaranteed to not fail at this point, otherwise
501 	 * the ship has sailed to reverse to the original state. An
502 	 * overflow cannot happen at this point.
503 	 */
504 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
505 
506 	bpf_adj_linfo(prog_adj, off, insn_delta);
507 
508 	return prog_adj;
509 }
510 
bpf_remove_insns(struct bpf_prog * prog,u32 off,u32 cnt)511 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
512 {
513 	/* Branch offsets can't overflow when program is shrinking, no need
514 	 * to call bpf_adj_branches(..., true) here
515 	 */
516 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
517 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
518 	prog->len -= cnt;
519 
520 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
521 }
522 
bpf_prog_kallsyms_del_subprogs(struct bpf_prog * fp)523 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
524 {
525 	int i;
526 
527 	for (i = 0; i < fp->aux->func_cnt; i++)
528 		bpf_prog_kallsyms_del(fp->aux->func[i]);
529 }
530 
bpf_prog_kallsyms_del_all(struct bpf_prog * fp)531 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
532 {
533 	bpf_prog_kallsyms_del_subprogs(fp);
534 	bpf_prog_kallsyms_del(fp);
535 }
536 
537 #ifdef CONFIG_BPF_JIT
538 /* All BPF JIT sysctl knobs here. */
539 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
540 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
541 int bpf_jit_harden   __read_mostly;
542 long bpf_jit_limit   __read_mostly;
543 long bpf_jit_limit_max __read_mostly;
544 
545 static void
bpf_prog_ksym_set_addr(struct bpf_prog * prog)546 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
547 {
548 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
549 
550 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
551 	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
552 }
553 
554 static void
bpf_prog_ksym_set_name(struct bpf_prog * prog)555 bpf_prog_ksym_set_name(struct bpf_prog *prog)
556 {
557 	char *sym = prog->aux->ksym.name;
558 	const char *end = sym + KSYM_NAME_LEN;
559 	const struct btf_type *type;
560 	const char *func_name;
561 
562 	BUILD_BUG_ON(sizeof("bpf_prog_") +
563 		     sizeof(prog->tag) * 2 +
564 		     /* name has been null terminated.
565 		      * We should need +1 for the '_' preceding
566 		      * the name.  However, the null character
567 		      * is double counted between the name and the
568 		      * sizeof("bpf_prog_") above, so we omit
569 		      * the +1 here.
570 		      */
571 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
572 
573 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
574 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
575 
576 	/* prog->aux->name will be ignored if full btf name is available */
577 	if (prog->aux->func_info_cnt) {
578 		type = btf_type_by_id(prog->aux->btf,
579 				      prog->aux->func_info[prog->aux->func_idx].type_id);
580 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
581 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
582 		return;
583 	}
584 
585 	if (prog->aux->name[0])
586 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
587 	else
588 		*sym = 0;
589 }
590 
bpf_get_ksym_start(struct latch_tree_node * n)591 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
592 {
593 	return container_of(n, struct bpf_ksym, tnode)->start;
594 }
595 
bpf_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)596 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
597 					  struct latch_tree_node *b)
598 {
599 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
600 }
601 
bpf_tree_comp(void * key,struct latch_tree_node * n)602 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
603 {
604 	unsigned long val = (unsigned long)key;
605 	const struct bpf_ksym *ksym;
606 
607 	ksym = container_of(n, struct bpf_ksym, tnode);
608 
609 	if (val < ksym->start)
610 		return -1;
611 	/* Ensure that we detect return addresses as part of the program, when
612 	 * the final instruction is a call for a program part of the stack
613 	 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
614 	 */
615 	if (val > ksym->end)
616 		return  1;
617 
618 	return 0;
619 }
620 
621 static const struct latch_tree_ops bpf_tree_ops = {
622 	.less	= bpf_tree_less,
623 	.comp	= bpf_tree_comp,
624 };
625 
626 static DEFINE_SPINLOCK(bpf_lock);
627 static LIST_HEAD(bpf_kallsyms);
628 static struct latch_tree_root bpf_tree __cacheline_aligned;
629 
bpf_ksym_add(struct bpf_ksym * ksym)630 void bpf_ksym_add(struct bpf_ksym *ksym)
631 {
632 	spin_lock_bh(&bpf_lock);
633 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
634 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
635 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
636 	spin_unlock_bh(&bpf_lock);
637 }
638 
__bpf_ksym_del(struct bpf_ksym * ksym)639 static void __bpf_ksym_del(struct bpf_ksym *ksym)
640 {
641 	if (list_empty(&ksym->lnode))
642 		return;
643 
644 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
645 	list_del_rcu(&ksym->lnode);
646 }
647 
bpf_ksym_del(struct bpf_ksym * ksym)648 void bpf_ksym_del(struct bpf_ksym *ksym)
649 {
650 	spin_lock_bh(&bpf_lock);
651 	__bpf_ksym_del(ksym);
652 	spin_unlock_bh(&bpf_lock);
653 }
654 
bpf_prog_kallsyms_candidate(const struct bpf_prog * fp)655 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
656 {
657 	return fp->jited && !bpf_prog_was_classic(fp);
658 }
659 
bpf_prog_kallsyms_add(struct bpf_prog * fp)660 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
661 {
662 	if (!bpf_prog_kallsyms_candidate(fp) ||
663 	    !bpf_capable())
664 		return;
665 
666 	bpf_prog_ksym_set_addr(fp);
667 	bpf_prog_ksym_set_name(fp);
668 	fp->aux->ksym.prog = true;
669 
670 	bpf_ksym_add(&fp->aux->ksym);
671 }
672 
bpf_prog_kallsyms_del(struct bpf_prog * fp)673 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
674 {
675 	if (!bpf_prog_kallsyms_candidate(fp))
676 		return;
677 
678 	bpf_ksym_del(&fp->aux->ksym);
679 }
680 
bpf_ksym_find(unsigned long addr)681 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
682 {
683 	struct latch_tree_node *n;
684 
685 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
686 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
687 }
688 
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)689 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
690 				 unsigned long *off, char *sym)
691 {
692 	struct bpf_ksym *ksym;
693 	char *ret = NULL;
694 
695 	rcu_read_lock();
696 	ksym = bpf_ksym_find(addr);
697 	if (ksym) {
698 		unsigned long symbol_start = ksym->start;
699 		unsigned long symbol_end = ksym->end;
700 
701 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
702 
703 		ret = sym;
704 		if (size)
705 			*size = symbol_end - symbol_start;
706 		if (off)
707 			*off  = addr - symbol_start;
708 	}
709 	rcu_read_unlock();
710 
711 	return ret;
712 }
713 
is_bpf_text_address(unsigned long addr)714 bool is_bpf_text_address(unsigned long addr)
715 {
716 	bool ret;
717 
718 	rcu_read_lock();
719 	ret = bpf_ksym_find(addr) != NULL;
720 	rcu_read_unlock();
721 
722 	return ret;
723 }
724 
bpf_prog_ksym_find(unsigned long addr)725 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
726 {
727 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
728 
729 	return ksym && ksym->prog ?
730 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
731 	       NULL;
732 }
733 
search_bpf_extables(unsigned long addr)734 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
735 {
736 	const struct exception_table_entry *e = NULL;
737 	struct bpf_prog *prog;
738 
739 	rcu_read_lock();
740 	prog = bpf_prog_ksym_find(addr);
741 	if (!prog)
742 		goto out;
743 	if (!prog->aux->num_exentries)
744 		goto out;
745 
746 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
747 out:
748 	rcu_read_unlock();
749 	return e;
750 }
751 
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)752 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
753 		    char *sym)
754 {
755 	struct bpf_ksym *ksym;
756 	unsigned int it = 0;
757 	int ret = -ERANGE;
758 
759 	if (!bpf_jit_kallsyms_enabled())
760 		return ret;
761 
762 	rcu_read_lock();
763 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
764 		if (it++ != symnum)
765 			continue;
766 
767 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
768 
769 		*value = ksym->start;
770 		*type  = BPF_SYM_ELF_TYPE;
771 
772 		ret = 0;
773 		break;
774 	}
775 	rcu_read_unlock();
776 
777 	return ret;
778 }
779 
bpf_jit_add_poke_descriptor(struct bpf_prog * prog,struct bpf_jit_poke_descriptor * poke)780 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
781 				struct bpf_jit_poke_descriptor *poke)
782 {
783 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
784 	static const u32 poke_tab_max = 1024;
785 	u32 slot = prog->aux->size_poke_tab;
786 	u32 size = slot + 1;
787 
788 	if (size > poke_tab_max)
789 		return -ENOSPC;
790 	if (poke->tailcall_target || poke->tailcall_target_stable ||
791 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
792 		return -EINVAL;
793 
794 	switch (poke->reason) {
795 	case BPF_POKE_REASON_TAIL_CALL:
796 		if (!poke->tail_call.map)
797 			return -EINVAL;
798 		break;
799 	default:
800 		return -EINVAL;
801 	}
802 
803 	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
804 	if (!tab)
805 		return -ENOMEM;
806 
807 	memcpy(&tab[slot], poke, sizeof(*poke));
808 	prog->aux->size_poke_tab = size;
809 	prog->aux->poke_tab = tab;
810 
811 	return slot;
812 }
813 
814 /*
815  * BPF program pack allocator.
816  *
817  * Most BPF programs are pretty small. Allocating a hole page for each
818  * program is sometime a waste. Many small bpf program also adds pressure
819  * to instruction TLB. To solve this issue, we introduce a BPF program pack
820  * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
821  * to host BPF programs.
822  */
823 #define BPF_PROG_CHUNK_SHIFT	6
824 #define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
825 #define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
826 
827 struct bpf_prog_pack {
828 	struct list_head list;
829 	void *ptr;
830 	unsigned long bitmap[];
831 };
832 
bpf_jit_fill_hole_with_zero(void * area,unsigned int size)833 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
834 {
835 	memset(area, 0, size);
836 }
837 
838 #define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
839 
840 static DEFINE_MUTEX(pack_mutex);
841 static LIST_HEAD(pack_list);
842 
843 /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
844  * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
845  */
846 #ifdef PMD_SIZE
847 #define BPF_PROG_PACK_SIZE (PMD_SIZE * num_possible_nodes())
848 #else
849 #define BPF_PROG_PACK_SIZE PAGE_SIZE
850 #endif
851 
852 #define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
853 
alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)854 static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
855 {
856 	struct bpf_prog_pack *pack;
857 
858 	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
859 		       GFP_KERNEL);
860 	if (!pack)
861 		return NULL;
862 	pack->ptr = module_alloc(BPF_PROG_PACK_SIZE);
863 	if (!pack->ptr) {
864 		kfree(pack);
865 		return NULL;
866 	}
867 	bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
868 	bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
869 	list_add_tail(&pack->list, &pack_list);
870 
871 	set_vm_flush_reset_perms(pack->ptr);
872 	set_memory_ro((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE);
873 	set_memory_x((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE);
874 	return pack;
875 }
876 
bpf_prog_pack_alloc(u32 size,bpf_jit_fill_hole_t bpf_fill_ill_insns)877 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
878 {
879 	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
880 	struct bpf_prog_pack *pack;
881 	unsigned long pos;
882 	void *ptr = NULL;
883 
884 	mutex_lock(&pack_mutex);
885 	if (size > BPF_PROG_PACK_SIZE) {
886 		size = round_up(size, PAGE_SIZE);
887 		ptr = module_alloc(size);
888 		if (ptr) {
889 			bpf_fill_ill_insns(ptr, size);
890 			set_vm_flush_reset_perms(ptr);
891 			set_memory_ro((unsigned long)ptr, size / PAGE_SIZE);
892 			set_memory_x((unsigned long)ptr, size / PAGE_SIZE);
893 		}
894 		goto out;
895 	}
896 	list_for_each_entry(pack, &pack_list, list) {
897 		pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
898 						 nbits, 0);
899 		if (pos < BPF_PROG_CHUNK_COUNT)
900 			goto found_free_area;
901 	}
902 
903 	pack = alloc_new_pack(bpf_fill_ill_insns);
904 	if (!pack)
905 		goto out;
906 
907 	pos = 0;
908 
909 found_free_area:
910 	bitmap_set(pack->bitmap, pos, nbits);
911 	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
912 
913 out:
914 	mutex_unlock(&pack_mutex);
915 	return ptr;
916 }
917 
bpf_prog_pack_free(struct bpf_binary_header * hdr)918 void bpf_prog_pack_free(struct bpf_binary_header *hdr)
919 {
920 	struct bpf_prog_pack *pack = NULL, *tmp;
921 	unsigned int nbits;
922 	unsigned long pos;
923 
924 	mutex_lock(&pack_mutex);
925 	if (hdr->size > BPF_PROG_PACK_SIZE) {
926 		module_memfree(hdr);
927 		goto out;
928 	}
929 
930 	list_for_each_entry(tmp, &pack_list, list) {
931 		if ((void *)hdr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > (void *)hdr) {
932 			pack = tmp;
933 			break;
934 		}
935 	}
936 
937 	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
938 		goto out;
939 
940 	nbits = BPF_PROG_SIZE_TO_NBITS(hdr->size);
941 	pos = ((unsigned long)hdr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
942 
943 	WARN_ONCE(bpf_arch_text_invalidate(hdr, hdr->size),
944 		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
945 
946 	bitmap_clear(pack->bitmap, pos, nbits);
947 	if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
948 				       BPF_PROG_CHUNK_COUNT, 0) == 0) {
949 		list_del(&pack->list);
950 		module_memfree(pack->ptr);
951 		kfree(pack);
952 	}
953 out:
954 	mutex_unlock(&pack_mutex);
955 }
956 
957 static atomic_long_t bpf_jit_current;
958 
959 /* Can be overridden by an arch's JIT compiler if it has a custom,
960  * dedicated BPF backend memory area, or if neither of the two
961  * below apply.
962  */
bpf_jit_alloc_exec_limit(void)963 u64 __weak bpf_jit_alloc_exec_limit(void)
964 {
965 #if defined(MODULES_VADDR)
966 	return MODULES_END - MODULES_VADDR;
967 #else
968 	return VMALLOC_END - VMALLOC_START;
969 #endif
970 }
971 
bpf_jit_charge_init(void)972 static int __init bpf_jit_charge_init(void)
973 {
974 	/* Only used as heuristic here to derive limit. */
975 	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
976 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
977 					    PAGE_SIZE), LONG_MAX);
978 	return 0;
979 }
980 pure_initcall(bpf_jit_charge_init);
981 
bpf_jit_charge_modmem(u32 size)982 int bpf_jit_charge_modmem(u32 size)
983 {
984 	if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
985 		if (!bpf_capable()) {
986 			atomic_long_sub(size, &bpf_jit_current);
987 			return -EPERM;
988 		}
989 	}
990 
991 	return 0;
992 }
993 
bpf_jit_uncharge_modmem(u32 size)994 void bpf_jit_uncharge_modmem(u32 size)
995 {
996 	atomic_long_sub(size, &bpf_jit_current);
997 }
998 
bpf_jit_alloc_exec(unsigned long size)999 void *__weak bpf_jit_alloc_exec(unsigned long size)
1000 {
1001 	return module_alloc(size);
1002 }
1003 
bpf_jit_free_exec(void * addr)1004 void __weak bpf_jit_free_exec(void *addr)
1005 {
1006 	module_memfree(addr);
1007 }
1008 
1009 struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,bpf_jit_fill_hole_t bpf_fill_ill_insns)1010 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1011 		     unsigned int alignment,
1012 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1013 {
1014 	struct bpf_binary_header *hdr;
1015 	u32 size, hole, start;
1016 
1017 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1018 		     alignment > BPF_IMAGE_ALIGNMENT);
1019 
1020 	/* Most of BPF filters are really small, but if some of them
1021 	 * fill a page, allow at least 128 extra bytes to insert a
1022 	 * random section of illegal instructions.
1023 	 */
1024 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1025 
1026 	if (bpf_jit_charge_modmem(size))
1027 		return NULL;
1028 	hdr = bpf_jit_alloc_exec(size);
1029 	if (!hdr) {
1030 		bpf_jit_uncharge_modmem(size);
1031 		return NULL;
1032 	}
1033 
1034 	/* Fill space with illegal/arch-dep instructions. */
1035 	bpf_fill_ill_insns(hdr, size);
1036 
1037 	hdr->size = size;
1038 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1039 		     PAGE_SIZE - sizeof(*hdr));
1040 	start = prandom_u32_max(hole) & ~(alignment - 1);
1041 
1042 	/* Leave a random number of instructions before BPF code. */
1043 	*image_ptr = &hdr->image[start];
1044 
1045 	return hdr;
1046 }
1047 
bpf_jit_binary_free(struct bpf_binary_header * hdr)1048 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1049 {
1050 	u32 size = hdr->size;
1051 
1052 	bpf_jit_free_exec(hdr);
1053 	bpf_jit_uncharge_modmem(size);
1054 }
1055 
1056 /* Allocate jit binary from bpf_prog_pack allocator.
1057  * Since the allocated memory is RO+X, the JIT engine cannot write directly
1058  * to the memory. To solve this problem, a RW buffer is also allocated at
1059  * as the same time. The JIT engine should calculate offsets based on the
1060  * RO memory address, but write JITed program to the RW buffer. Once the
1061  * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1062  * the JITed program to the RO memory.
1063  */
1064 struct bpf_binary_header *
bpf_jit_binary_pack_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,struct bpf_binary_header ** rw_header,u8 ** rw_image,bpf_jit_fill_hole_t bpf_fill_ill_insns)1065 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1066 			  unsigned int alignment,
1067 			  struct bpf_binary_header **rw_header,
1068 			  u8 **rw_image,
1069 			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1070 {
1071 	struct bpf_binary_header *ro_header;
1072 	u32 size, hole, start;
1073 
1074 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1075 		     alignment > BPF_IMAGE_ALIGNMENT);
1076 
1077 	/* add 16 bytes for a random section of illegal instructions */
1078 	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1079 
1080 	if (bpf_jit_charge_modmem(size))
1081 		return NULL;
1082 	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1083 	if (!ro_header) {
1084 		bpf_jit_uncharge_modmem(size);
1085 		return NULL;
1086 	}
1087 
1088 	*rw_header = kvmalloc(size, GFP_KERNEL);
1089 	if (!*rw_header) {
1090 		bpf_arch_text_copy(&ro_header->size, &size, sizeof(size));
1091 		bpf_prog_pack_free(ro_header);
1092 		bpf_jit_uncharge_modmem(size);
1093 		return NULL;
1094 	}
1095 
1096 	/* Fill space with illegal/arch-dep instructions. */
1097 	bpf_fill_ill_insns(*rw_header, size);
1098 	(*rw_header)->size = size;
1099 
1100 	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1101 		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1102 	start = prandom_u32_max(hole) & ~(alignment - 1);
1103 
1104 	*image_ptr = &ro_header->image[start];
1105 	*rw_image = &(*rw_header)->image[start];
1106 
1107 	return ro_header;
1108 }
1109 
1110 /* Copy JITed text from rw_header to its final location, the ro_header. */
bpf_jit_binary_pack_finalize(struct bpf_prog * prog,struct bpf_binary_header * ro_header,struct bpf_binary_header * rw_header)1111 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1112 				 struct bpf_binary_header *ro_header,
1113 				 struct bpf_binary_header *rw_header)
1114 {
1115 	void *ptr;
1116 
1117 	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1118 
1119 	kvfree(rw_header);
1120 
1121 	if (IS_ERR(ptr)) {
1122 		bpf_prog_pack_free(ro_header);
1123 		return PTR_ERR(ptr);
1124 	}
1125 	return 0;
1126 }
1127 
1128 /* bpf_jit_binary_pack_free is called in two different scenarios:
1129  *   1) when the program is freed after;
1130  *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1131  * For case 2), we need to free both the RO memory and the RW buffer.
1132  *
1133  * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1134  * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1135  * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1136  * bpf_arch_text_copy (when jit fails).
1137  */
bpf_jit_binary_pack_free(struct bpf_binary_header * ro_header,struct bpf_binary_header * rw_header)1138 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1139 			      struct bpf_binary_header *rw_header)
1140 {
1141 	u32 size = ro_header->size;
1142 
1143 	bpf_prog_pack_free(ro_header);
1144 	kvfree(rw_header);
1145 	bpf_jit_uncharge_modmem(size);
1146 }
1147 
1148 struct bpf_binary_header *
bpf_jit_binary_pack_hdr(const struct bpf_prog * fp)1149 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1150 {
1151 	unsigned long real_start = (unsigned long)fp->bpf_func;
1152 	unsigned long addr;
1153 
1154 	addr = real_start & BPF_PROG_CHUNK_MASK;
1155 	return (void *)addr;
1156 }
1157 
1158 static inline struct bpf_binary_header *
bpf_jit_binary_hdr(const struct bpf_prog * fp)1159 bpf_jit_binary_hdr(const struct bpf_prog *fp)
1160 {
1161 	unsigned long real_start = (unsigned long)fp->bpf_func;
1162 	unsigned long addr;
1163 
1164 	addr = real_start & PAGE_MASK;
1165 	return (void *)addr;
1166 }
1167 
1168 /* This symbol is only overridden by archs that have different
1169  * requirements than the usual eBPF JITs, f.e. when they only
1170  * implement cBPF JIT, do not set images read-only, etc.
1171  */
bpf_jit_free(struct bpf_prog * fp)1172 void __weak bpf_jit_free(struct bpf_prog *fp)
1173 {
1174 	if (fp->jited) {
1175 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1176 
1177 		bpf_jit_binary_free(hdr);
1178 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1179 	}
1180 
1181 	bpf_prog_unlock_free(fp);
1182 }
1183 
bpf_jit_get_func_addr(const struct bpf_prog * prog,const struct bpf_insn * insn,bool extra_pass,u64 * func_addr,bool * func_addr_fixed)1184 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1185 			  const struct bpf_insn *insn, bool extra_pass,
1186 			  u64 *func_addr, bool *func_addr_fixed)
1187 {
1188 	s16 off = insn->off;
1189 	s32 imm = insn->imm;
1190 	u8 *addr;
1191 
1192 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1193 	if (!*func_addr_fixed) {
1194 		/* Place-holder address till the last pass has collected
1195 		 * all addresses for JITed subprograms in which case we
1196 		 * can pick them up from prog->aux.
1197 		 */
1198 		if (!extra_pass)
1199 			addr = NULL;
1200 		else if (prog->aux->func &&
1201 			 off >= 0 && off < prog->aux->func_cnt)
1202 			addr = (u8 *)prog->aux->func[off]->bpf_func;
1203 		else
1204 			return -EINVAL;
1205 	} else {
1206 		/* Address of a BPF helper call. Since part of the core
1207 		 * kernel, it's always at a fixed location. __bpf_call_base
1208 		 * and the helper with imm relative to it are both in core
1209 		 * kernel.
1210 		 */
1211 		addr = (u8 *)__bpf_call_base + imm;
1212 	}
1213 
1214 	*func_addr = (unsigned long)addr;
1215 	return 0;
1216 }
1217 
bpf_jit_blind_insn(const struct bpf_insn * from,const struct bpf_insn * aux,struct bpf_insn * to_buff,bool emit_zext)1218 static int bpf_jit_blind_insn(const struct bpf_insn *from,
1219 			      const struct bpf_insn *aux,
1220 			      struct bpf_insn *to_buff,
1221 			      bool emit_zext)
1222 {
1223 	struct bpf_insn *to = to_buff;
1224 	u32 imm_rnd = get_random_u32();
1225 	s16 off;
1226 
1227 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1228 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1229 
1230 	/* Constraints on AX register:
1231 	 *
1232 	 * AX register is inaccessible from user space. It is mapped in
1233 	 * all JITs, and used here for constant blinding rewrites. It is
1234 	 * typically "stateless" meaning its contents are only valid within
1235 	 * the executed instruction, but not across several instructions.
1236 	 * There are a few exceptions however which are further detailed
1237 	 * below.
1238 	 *
1239 	 * Constant blinding is only used by JITs, not in the interpreter.
1240 	 * The interpreter uses AX in some occasions as a local temporary
1241 	 * register e.g. in DIV or MOD instructions.
1242 	 *
1243 	 * In restricted circumstances, the verifier can also use the AX
1244 	 * register for rewrites as long as they do not interfere with
1245 	 * the above cases!
1246 	 */
1247 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1248 		goto out;
1249 
1250 	if (from->imm == 0 &&
1251 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1252 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1253 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1254 		goto out;
1255 	}
1256 
1257 	switch (from->code) {
1258 	case BPF_ALU | BPF_ADD | BPF_K:
1259 	case BPF_ALU | BPF_SUB | BPF_K:
1260 	case BPF_ALU | BPF_AND | BPF_K:
1261 	case BPF_ALU | BPF_OR  | BPF_K:
1262 	case BPF_ALU | BPF_XOR | BPF_K:
1263 	case BPF_ALU | BPF_MUL | BPF_K:
1264 	case BPF_ALU | BPF_MOV | BPF_K:
1265 	case BPF_ALU | BPF_DIV | BPF_K:
1266 	case BPF_ALU | BPF_MOD | BPF_K:
1267 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1268 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1269 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1270 		break;
1271 
1272 	case BPF_ALU64 | BPF_ADD | BPF_K:
1273 	case BPF_ALU64 | BPF_SUB | BPF_K:
1274 	case BPF_ALU64 | BPF_AND | BPF_K:
1275 	case BPF_ALU64 | BPF_OR  | BPF_K:
1276 	case BPF_ALU64 | BPF_XOR | BPF_K:
1277 	case BPF_ALU64 | BPF_MUL | BPF_K:
1278 	case BPF_ALU64 | BPF_MOV | BPF_K:
1279 	case BPF_ALU64 | BPF_DIV | BPF_K:
1280 	case BPF_ALU64 | BPF_MOD | BPF_K:
1281 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1282 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1283 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1284 		break;
1285 
1286 	case BPF_JMP | BPF_JEQ  | BPF_K:
1287 	case BPF_JMP | BPF_JNE  | BPF_K:
1288 	case BPF_JMP | BPF_JGT  | BPF_K:
1289 	case BPF_JMP | BPF_JLT  | BPF_K:
1290 	case BPF_JMP | BPF_JGE  | BPF_K:
1291 	case BPF_JMP | BPF_JLE  | BPF_K:
1292 	case BPF_JMP | BPF_JSGT | BPF_K:
1293 	case BPF_JMP | BPF_JSLT | BPF_K:
1294 	case BPF_JMP | BPF_JSGE | BPF_K:
1295 	case BPF_JMP | BPF_JSLE | BPF_K:
1296 	case BPF_JMP | BPF_JSET | BPF_K:
1297 		/* Accommodate for extra offset in case of a backjump. */
1298 		off = from->off;
1299 		if (off < 0)
1300 			off -= 2;
1301 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1302 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1303 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1304 		break;
1305 
1306 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1307 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1308 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1309 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1310 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1311 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1312 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1313 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1314 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1315 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1316 	case BPF_JMP32 | BPF_JSET | BPF_K:
1317 		/* Accommodate for extra offset in case of a backjump. */
1318 		off = from->off;
1319 		if (off < 0)
1320 			off -= 2;
1321 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1322 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1323 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1324 				      off);
1325 		break;
1326 
1327 	case BPF_LD | BPF_IMM | BPF_DW:
1328 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1329 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1330 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1331 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1332 		break;
1333 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1334 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1335 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1336 		if (emit_zext)
1337 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1338 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1339 		break;
1340 
1341 	case BPF_ST | BPF_MEM | BPF_DW:
1342 	case BPF_ST | BPF_MEM | BPF_W:
1343 	case BPF_ST | BPF_MEM | BPF_H:
1344 	case BPF_ST | BPF_MEM | BPF_B:
1345 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1346 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1347 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1348 		break;
1349 	}
1350 out:
1351 	return to - to_buff;
1352 }
1353 
bpf_prog_clone_create(struct bpf_prog * fp_other,gfp_t gfp_extra_flags)1354 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1355 					      gfp_t gfp_extra_flags)
1356 {
1357 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1358 	struct bpf_prog *fp;
1359 
1360 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1361 	if (fp != NULL) {
1362 		/* aux->prog still points to the fp_other one, so
1363 		 * when promoting the clone to the real program,
1364 		 * this still needs to be adapted.
1365 		 */
1366 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1367 	}
1368 
1369 	return fp;
1370 }
1371 
bpf_prog_clone_free(struct bpf_prog * fp)1372 static void bpf_prog_clone_free(struct bpf_prog *fp)
1373 {
1374 	/* aux was stolen by the other clone, so we cannot free
1375 	 * it from this path! It will be freed eventually by the
1376 	 * other program on release.
1377 	 *
1378 	 * At this point, we don't need a deferred release since
1379 	 * clone is guaranteed to not be locked.
1380 	 */
1381 	fp->aux = NULL;
1382 	fp->stats = NULL;
1383 	fp->active = NULL;
1384 	__bpf_prog_free(fp);
1385 }
1386 
bpf_jit_prog_release_other(struct bpf_prog * fp,struct bpf_prog * fp_other)1387 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1388 {
1389 	/* We have to repoint aux->prog to self, as we don't
1390 	 * know whether fp here is the clone or the original.
1391 	 */
1392 	fp->aux->prog = fp;
1393 	bpf_prog_clone_free(fp_other);
1394 }
1395 
bpf_jit_blind_constants(struct bpf_prog * prog)1396 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1397 {
1398 	struct bpf_insn insn_buff[16], aux[2];
1399 	struct bpf_prog *clone, *tmp;
1400 	int insn_delta, insn_cnt;
1401 	struct bpf_insn *insn;
1402 	int i, rewritten;
1403 
1404 	if (!prog->blinding_requested || prog->blinded)
1405 		return prog;
1406 
1407 	clone = bpf_prog_clone_create(prog, GFP_USER);
1408 	if (!clone)
1409 		return ERR_PTR(-ENOMEM);
1410 
1411 	insn_cnt = clone->len;
1412 	insn = clone->insnsi;
1413 
1414 	for (i = 0; i < insn_cnt; i++, insn++) {
1415 		if (bpf_pseudo_func(insn)) {
1416 			/* ld_imm64 with an address of bpf subprog is not
1417 			 * a user controlled constant. Don't randomize it,
1418 			 * since it will conflict with jit_subprogs() logic.
1419 			 */
1420 			insn++;
1421 			i++;
1422 			continue;
1423 		}
1424 
1425 		/* We temporarily need to hold the original ld64 insn
1426 		 * so that we can still access the first part in the
1427 		 * second blinding run.
1428 		 */
1429 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1430 		    insn[1].code == 0)
1431 			memcpy(aux, insn, sizeof(aux));
1432 
1433 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1434 						clone->aux->verifier_zext);
1435 		if (!rewritten)
1436 			continue;
1437 
1438 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1439 		if (IS_ERR(tmp)) {
1440 			/* Patching may have repointed aux->prog during
1441 			 * realloc from the original one, so we need to
1442 			 * fix it up here on error.
1443 			 */
1444 			bpf_jit_prog_release_other(prog, clone);
1445 			return tmp;
1446 		}
1447 
1448 		clone = tmp;
1449 		insn_delta = rewritten - 1;
1450 
1451 		/* Walk new program and skip insns we just inserted. */
1452 		insn = clone->insnsi + i + insn_delta;
1453 		insn_cnt += insn_delta;
1454 		i        += insn_delta;
1455 	}
1456 
1457 	clone->blinded = 1;
1458 	return clone;
1459 }
1460 #endif /* CONFIG_BPF_JIT */
1461 
1462 /* Base function for offset calculation. Needs to go into .text section,
1463  * therefore keeping it non-static as well; will also be used by JITs
1464  * anyway later on, so do not let the compiler omit it. This also needs
1465  * to go into kallsyms for correlation from e.g. bpftool, so naming
1466  * must not change.
1467  */
__bpf_call_base(u64 r1,u64 r2,u64 r3,u64 r4,u64 r5)1468 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1469 {
1470 	return 0;
1471 }
1472 EXPORT_SYMBOL_GPL(__bpf_call_base);
1473 
1474 /* All UAPI available opcodes. */
1475 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1476 	/* 32 bit ALU operations. */		\
1477 	/*   Register based. */			\
1478 	INSN_3(ALU, ADD,  X),			\
1479 	INSN_3(ALU, SUB,  X),			\
1480 	INSN_3(ALU, AND,  X),			\
1481 	INSN_3(ALU, OR,   X),			\
1482 	INSN_3(ALU, LSH,  X),			\
1483 	INSN_3(ALU, RSH,  X),			\
1484 	INSN_3(ALU, XOR,  X),			\
1485 	INSN_3(ALU, MUL,  X),			\
1486 	INSN_3(ALU, MOV,  X),			\
1487 	INSN_3(ALU, ARSH, X),			\
1488 	INSN_3(ALU, DIV,  X),			\
1489 	INSN_3(ALU, MOD,  X),			\
1490 	INSN_2(ALU, NEG),			\
1491 	INSN_3(ALU, END, TO_BE),		\
1492 	INSN_3(ALU, END, TO_LE),		\
1493 	/*   Immediate based. */		\
1494 	INSN_3(ALU, ADD,  K),			\
1495 	INSN_3(ALU, SUB,  K),			\
1496 	INSN_3(ALU, AND,  K),			\
1497 	INSN_3(ALU, OR,   K),			\
1498 	INSN_3(ALU, LSH,  K),			\
1499 	INSN_3(ALU, RSH,  K),			\
1500 	INSN_3(ALU, XOR,  K),			\
1501 	INSN_3(ALU, MUL,  K),			\
1502 	INSN_3(ALU, MOV,  K),			\
1503 	INSN_3(ALU, ARSH, K),			\
1504 	INSN_3(ALU, DIV,  K),			\
1505 	INSN_3(ALU, MOD,  K),			\
1506 	/* 64 bit ALU operations. */		\
1507 	/*   Register based. */			\
1508 	INSN_3(ALU64, ADD,  X),			\
1509 	INSN_3(ALU64, SUB,  X),			\
1510 	INSN_3(ALU64, AND,  X),			\
1511 	INSN_3(ALU64, OR,   X),			\
1512 	INSN_3(ALU64, LSH,  X),			\
1513 	INSN_3(ALU64, RSH,  X),			\
1514 	INSN_3(ALU64, XOR,  X),			\
1515 	INSN_3(ALU64, MUL,  X),			\
1516 	INSN_3(ALU64, MOV,  X),			\
1517 	INSN_3(ALU64, ARSH, X),			\
1518 	INSN_3(ALU64, DIV,  X),			\
1519 	INSN_3(ALU64, MOD,  X),			\
1520 	INSN_2(ALU64, NEG),			\
1521 	/*   Immediate based. */		\
1522 	INSN_3(ALU64, ADD,  K),			\
1523 	INSN_3(ALU64, SUB,  K),			\
1524 	INSN_3(ALU64, AND,  K),			\
1525 	INSN_3(ALU64, OR,   K),			\
1526 	INSN_3(ALU64, LSH,  K),			\
1527 	INSN_3(ALU64, RSH,  K),			\
1528 	INSN_3(ALU64, XOR,  K),			\
1529 	INSN_3(ALU64, MUL,  K),			\
1530 	INSN_3(ALU64, MOV,  K),			\
1531 	INSN_3(ALU64, ARSH, K),			\
1532 	INSN_3(ALU64, DIV,  K),			\
1533 	INSN_3(ALU64, MOD,  K),			\
1534 	/* Call instruction. */			\
1535 	INSN_2(JMP, CALL),			\
1536 	/* Exit instruction. */			\
1537 	INSN_2(JMP, EXIT),			\
1538 	/* 32-bit Jump instructions. */		\
1539 	/*   Register based. */			\
1540 	INSN_3(JMP32, JEQ,  X),			\
1541 	INSN_3(JMP32, JNE,  X),			\
1542 	INSN_3(JMP32, JGT,  X),			\
1543 	INSN_3(JMP32, JLT,  X),			\
1544 	INSN_3(JMP32, JGE,  X),			\
1545 	INSN_3(JMP32, JLE,  X),			\
1546 	INSN_3(JMP32, JSGT, X),			\
1547 	INSN_3(JMP32, JSLT, X),			\
1548 	INSN_3(JMP32, JSGE, X),			\
1549 	INSN_3(JMP32, JSLE, X),			\
1550 	INSN_3(JMP32, JSET, X),			\
1551 	/*   Immediate based. */		\
1552 	INSN_3(JMP32, JEQ,  K),			\
1553 	INSN_3(JMP32, JNE,  K),			\
1554 	INSN_3(JMP32, JGT,  K),			\
1555 	INSN_3(JMP32, JLT,  K),			\
1556 	INSN_3(JMP32, JGE,  K),			\
1557 	INSN_3(JMP32, JLE,  K),			\
1558 	INSN_3(JMP32, JSGT, K),			\
1559 	INSN_3(JMP32, JSLT, K),			\
1560 	INSN_3(JMP32, JSGE, K),			\
1561 	INSN_3(JMP32, JSLE, K),			\
1562 	INSN_3(JMP32, JSET, K),			\
1563 	/* Jump instructions. */		\
1564 	/*   Register based. */			\
1565 	INSN_3(JMP, JEQ,  X),			\
1566 	INSN_3(JMP, JNE,  X),			\
1567 	INSN_3(JMP, JGT,  X),			\
1568 	INSN_3(JMP, JLT,  X),			\
1569 	INSN_3(JMP, JGE,  X),			\
1570 	INSN_3(JMP, JLE,  X),			\
1571 	INSN_3(JMP, JSGT, X),			\
1572 	INSN_3(JMP, JSLT, X),			\
1573 	INSN_3(JMP, JSGE, X),			\
1574 	INSN_3(JMP, JSLE, X),			\
1575 	INSN_3(JMP, JSET, X),			\
1576 	/*   Immediate based. */		\
1577 	INSN_3(JMP, JEQ,  K),			\
1578 	INSN_3(JMP, JNE,  K),			\
1579 	INSN_3(JMP, JGT,  K),			\
1580 	INSN_3(JMP, JLT,  K),			\
1581 	INSN_3(JMP, JGE,  K),			\
1582 	INSN_3(JMP, JLE,  K),			\
1583 	INSN_3(JMP, JSGT, K),			\
1584 	INSN_3(JMP, JSLT, K),			\
1585 	INSN_3(JMP, JSGE, K),			\
1586 	INSN_3(JMP, JSLE, K),			\
1587 	INSN_3(JMP, JSET, K),			\
1588 	INSN_2(JMP, JA),			\
1589 	/* Store instructions. */		\
1590 	/*   Register based. */			\
1591 	INSN_3(STX, MEM,  B),			\
1592 	INSN_3(STX, MEM,  H),			\
1593 	INSN_3(STX, MEM,  W),			\
1594 	INSN_3(STX, MEM,  DW),			\
1595 	INSN_3(STX, ATOMIC, W),			\
1596 	INSN_3(STX, ATOMIC, DW),		\
1597 	/*   Immediate based. */		\
1598 	INSN_3(ST, MEM, B),			\
1599 	INSN_3(ST, MEM, H),			\
1600 	INSN_3(ST, MEM, W),			\
1601 	INSN_3(ST, MEM, DW),			\
1602 	/* Load instructions. */		\
1603 	/*   Register based. */			\
1604 	INSN_3(LDX, MEM, B),			\
1605 	INSN_3(LDX, MEM, H),			\
1606 	INSN_3(LDX, MEM, W),			\
1607 	INSN_3(LDX, MEM, DW),			\
1608 	/*   Immediate based. */		\
1609 	INSN_3(LD, IMM, DW)
1610 
bpf_opcode_in_insntable(u8 code)1611 bool bpf_opcode_in_insntable(u8 code)
1612 {
1613 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1614 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1615 	static const bool public_insntable[256] = {
1616 		[0 ... 255] = false,
1617 		/* Now overwrite non-defaults ... */
1618 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1619 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1620 		[BPF_LD | BPF_ABS | BPF_B] = true,
1621 		[BPF_LD | BPF_ABS | BPF_H] = true,
1622 		[BPF_LD | BPF_ABS | BPF_W] = true,
1623 		[BPF_LD | BPF_IND | BPF_B] = true,
1624 		[BPF_LD | BPF_IND | BPF_H] = true,
1625 		[BPF_LD | BPF_IND | BPF_W] = true,
1626 	};
1627 #undef BPF_INSN_3_TBL
1628 #undef BPF_INSN_2_TBL
1629 	return public_insntable[code];
1630 }
1631 
1632 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
bpf_probe_read_kernel(void * dst,u32 size,const void * unsafe_ptr)1633 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1634 {
1635 	memset(dst, 0, size);
1636 	return -EFAULT;
1637 }
1638 
1639 /**
1640  *	___bpf_prog_run - run eBPF program on a given context
1641  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1642  *	@insn: is the array of eBPF instructions
1643  *
1644  * Decode and execute eBPF instructions.
1645  *
1646  * Return: whatever value is in %BPF_R0 at program exit
1647  */
___bpf_prog_run(u64 * regs,const struct bpf_insn * insn)1648 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1649 {
1650 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1651 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1652 	static const void * const jumptable[256] __annotate_jump_table = {
1653 		[0 ... 255] = &&default_label,
1654 		/* Now overwrite non-defaults ... */
1655 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1656 		/* Non-UAPI available opcodes. */
1657 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1658 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1659 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1660 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1661 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1662 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1663 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1664 	};
1665 #undef BPF_INSN_3_LBL
1666 #undef BPF_INSN_2_LBL
1667 	u32 tail_call_cnt = 0;
1668 
1669 #define CONT	 ({ insn++; goto select_insn; })
1670 #define CONT_JMP ({ insn++; goto select_insn; })
1671 
1672 select_insn:
1673 	goto *jumptable[insn->code];
1674 
1675 	/* Explicitly mask the register-based shift amounts with 63 or 31
1676 	 * to avoid undefined behavior. Normally this won't affect the
1677 	 * generated code, for example, in case of native 64 bit archs such
1678 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1679 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1680 	 * the BPF shift operations to machine instructions which produce
1681 	 * implementation-defined results in such a case; the resulting
1682 	 * contents of the register may be arbitrary, but program behaviour
1683 	 * as a whole remains defined. In other words, in case of JIT backends,
1684 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1685 	 */
1686 	/* ALU (shifts) */
1687 #define SHT(OPCODE, OP)					\
1688 	ALU64_##OPCODE##_X:				\
1689 		DST = DST OP (SRC & 63);		\
1690 		CONT;					\
1691 	ALU_##OPCODE##_X:				\
1692 		DST = (u32) DST OP ((u32) SRC & 31);	\
1693 		CONT;					\
1694 	ALU64_##OPCODE##_K:				\
1695 		DST = DST OP IMM;			\
1696 		CONT;					\
1697 	ALU_##OPCODE##_K:				\
1698 		DST = (u32) DST OP (u32) IMM;		\
1699 		CONT;
1700 	/* ALU (rest) */
1701 #define ALU(OPCODE, OP)					\
1702 	ALU64_##OPCODE##_X:				\
1703 		DST = DST OP SRC;			\
1704 		CONT;					\
1705 	ALU_##OPCODE##_X:				\
1706 		DST = (u32) DST OP (u32) SRC;		\
1707 		CONT;					\
1708 	ALU64_##OPCODE##_K:				\
1709 		DST = DST OP IMM;			\
1710 		CONT;					\
1711 	ALU_##OPCODE##_K:				\
1712 		DST = (u32) DST OP (u32) IMM;		\
1713 		CONT;
1714 	ALU(ADD,  +)
1715 	ALU(SUB,  -)
1716 	ALU(AND,  &)
1717 	ALU(OR,   |)
1718 	ALU(XOR,  ^)
1719 	ALU(MUL,  *)
1720 	SHT(LSH, <<)
1721 	SHT(RSH, >>)
1722 #undef SHT
1723 #undef ALU
1724 	ALU_NEG:
1725 		DST = (u32) -DST;
1726 		CONT;
1727 	ALU64_NEG:
1728 		DST = -DST;
1729 		CONT;
1730 	ALU_MOV_X:
1731 		DST = (u32) SRC;
1732 		CONT;
1733 	ALU_MOV_K:
1734 		DST = (u32) IMM;
1735 		CONT;
1736 	ALU64_MOV_X:
1737 		DST = SRC;
1738 		CONT;
1739 	ALU64_MOV_K:
1740 		DST = IMM;
1741 		CONT;
1742 	LD_IMM_DW:
1743 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1744 		insn++;
1745 		CONT;
1746 	ALU_ARSH_X:
1747 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1748 		CONT;
1749 	ALU_ARSH_K:
1750 		DST = (u64) (u32) (((s32) DST) >> IMM);
1751 		CONT;
1752 	ALU64_ARSH_X:
1753 		(*(s64 *) &DST) >>= (SRC & 63);
1754 		CONT;
1755 	ALU64_ARSH_K:
1756 		(*(s64 *) &DST) >>= IMM;
1757 		CONT;
1758 	ALU64_MOD_X:
1759 		div64_u64_rem(DST, SRC, &AX);
1760 		DST = AX;
1761 		CONT;
1762 	ALU_MOD_X:
1763 		AX = (u32) DST;
1764 		DST = do_div(AX, (u32) SRC);
1765 		CONT;
1766 	ALU64_MOD_K:
1767 		div64_u64_rem(DST, IMM, &AX);
1768 		DST = AX;
1769 		CONT;
1770 	ALU_MOD_K:
1771 		AX = (u32) DST;
1772 		DST = do_div(AX, (u32) IMM);
1773 		CONT;
1774 	ALU64_DIV_X:
1775 		DST = div64_u64(DST, SRC);
1776 		CONT;
1777 	ALU_DIV_X:
1778 		AX = (u32) DST;
1779 		do_div(AX, (u32) SRC);
1780 		DST = (u32) AX;
1781 		CONT;
1782 	ALU64_DIV_K:
1783 		DST = div64_u64(DST, IMM);
1784 		CONT;
1785 	ALU_DIV_K:
1786 		AX = (u32) DST;
1787 		do_div(AX, (u32) IMM);
1788 		DST = (u32) AX;
1789 		CONT;
1790 	ALU_END_TO_BE:
1791 		switch (IMM) {
1792 		case 16:
1793 			DST = (__force u16) cpu_to_be16(DST);
1794 			break;
1795 		case 32:
1796 			DST = (__force u32) cpu_to_be32(DST);
1797 			break;
1798 		case 64:
1799 			DST = (__force u64) cpu_to_be64(DST);
1800 			break;
1801 		}
1802 		CONT;
1803 	ALU_END_TO_LE:
1804 		switch (IMM) {
1805 		case 16:
1806 			DST = (__force u16) cpu_to_le16(DST);
1807 			break;
1808 		case 32:
1809 			DST = (__force u32) cpu_to_le32(DST);
1810 			break;
1811 		case 64:
1812 			DST = (__force u64) cpu_to_le64(DST);
1813 			break;
1814 		}
1815 		CONT;
1816 
1817 	/* CALL */
1818 	JMP_CALL:
1819 		/* Function call scratches BPF_R1-BPF_R5 registers,
1820 		 * preserves BPF_R6-BPF_R9, and stores return value
1821 		 * into BPF_R0.
1822 		 */
1823 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1824 						       BPF_R4, BPF_R5);
1825 		CONT;
1826 
1827 	JMP_CALL_ARGS:
1828 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1829 							    BPF_R3, BPF_R4,
1830 							    BPF_R5,
1831 							    insn + insn->off + 1);
1832 		CONT;
1833 
1834 	JMP_TAIL_CALL: {
1835 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1836 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1837 		struct bpf_prog *prog;
1838 		u32 index = BPF_R3;
1839 
1840 		if (unlikely(index >= array->map.max_entries))
1841 			goto out;
1842 
1843 		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
1844 			goto out;
1845 
1846 		tail_call_cnt++;
1847 
1848 		prog = READ_ONCE(array->ptrs[index]);
1849 		if (!prog)
1850 			goto out;
1851 
1852 		/* ARG1 at this point is guaranteed to point to CTX from
1853 		 * the verifier side due to the fact that the tail call is
1854 		 * handled like a helper, that is, bpf_tail_call_proto,
1855 		 * where arg1_type is ARG_PTR_TO_CTX.
1856 		 */
1857 		insn = prog->insnsi;
1858 		goto select_insn;
1859 out:
1860 		CONT;
1861 	}
1862 	JMP_JA:
1863 		insn += insn->off;
1864 		CONT;
1865 	JMP_EXIT:
1866 		return BPF_R0;
1867 	/* JMP */
1868 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
1869 	JMP_##OPCODE##_X:					\
1870 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
1871 			insn += insn->off;			\
1872 			CONT_JMP;				\
1873 		}						\
1874 		CONT;						\
1875 	JMP32_##OPCODE##_X:					\
1876 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
1877 			insn += insn->off;			\
1878 			CONT_JMP;				\
1879 		}						\
1880 		CONT;						\
1881 	JMP_##OPCODE##_K:					\
1882 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
1883 			insn += insn->off;			\
1884 			CONT_JMP;				\
1885 		}						\
1886 		CONT;						\
1887 	JMP32_##OPCODE##_K:					\
1888 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
1889 			insn += insn->off;			\
1890 			CONT_JMP;				\
1891 		}						\
1892 		CONT;
1893 	COND_JMP(u, JEQ, ==)
1894 	COND_JMP(u, JNE, !=)
1895 	COND_JMP(u, JGT, >)
1896 	COND_JMP(u, JLT, <)
1897 	COND_JMP(u, JGE, >=)
1898 	COND_JMP(u, JLE, <=)
1899 	COND_JMP(u, JSET, &)
1900 	COND_JMP(s, JSGT, >)
1901 	COND_JMP(s, JSLT, <)
1902 	COND_JMP(s, JSGE, >=)
1903 	COND_JMP(s, JSLE, <=)
1904 #undef COND_JMP
1905 	/* ST, STX and LDX*/
1906 	ST_NOSPEC:
1907 		/* Speculation barrier for mitigating Speculative Store Bypass.
1908 		 * In case of arm64, we rely on the firmware mitigation as
1909 		 * controlled via the ssbd kernel parameter. Whenever the
1910 		 * mitigation is enabled, it works for all of the kernel code
1911 		 * with no need to provide any additional instructions here.
1912 		 * In case of x86, we use 'lfence' insn for mitigation. We
1913 		 * reuse preexisting logic from Spectre v1 mitigation that
1914 		 * happens to produce the required code on x86 for v4 as well.
1915 		 */
1916 		barrier_nospec();
1917 		CONT;
1918 #define LDST(SIZEOP, SIZE)						\
1919 	STX_MEM_##SIZEOP:						\
1920 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1921 		CONT;							\
1922 	ST_MEM_##SIZEOP:						\
1923 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1924 		CONT;							\
1925 	LDX_MEM_##SIZEOP:						\
1926 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1927 		CONT;							\
1928 	LDX_PROBE_MEM_##SIZEOP:						\
1929 		bpf_probe_read_kernel(&DST, sizeof(SIZE),		\
1930 				      (const void *)(long) (SRC + insn->off));	\
1931 		DST = *((SIZE *)&DST);					\
1932 		CONT;
1933 
1934 	LDST(B,   u8)
1935 	LDST(H,  u16)
1936 	LDST(W,  u32)
1937 	LDST(DW, u64)
1938 #undef LDST
1939 
1940 #define ATOMIC_ALU_OP(BOP, KOP)						\
1941 		case BOP:						\
1942 			if (BPF_SIZE(insn->code) == BPF_W)		\
1943 				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
1944 					     (DST + insn->off));	\
1945 			else						\
1946 				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
1947 					       (DST + insn->off));	\
1948 			break;						\
1949 		case BOP | BPF_FETCH:					\
1950 			if (BPF_SIZE(insn->code) == BPF_W)		\
1951 				SRC = (u32) atomic_fetch_##KOP(		\
1952 					(u32) SRC,			\
1953 					(atomic_t *)(unsigned long) (DST + insn->off)); \
1954 			else						\
1955 				SRC = (u64) atomic64_fetch_##KOP(	\
1956 					(u64) SRC,			\
1957 					(atomic64_t *)(unsigned long) (DST + insn->off)); \
1958 			break;
1959 
1960 	STX_ATOMIC_DW:
1961 	STX_ATOMIC_W:
1962 		switch (IMM) {
1963 		ATOMIC_ALU_OP(BPF_ADD, add)
1964 		ATOMIC_ALU_OP(BPF_AND, and)
1965 		ATOMIC_ALU_OP(BPF_OR, or)
1966 		ATOMIC_ALU_OP(BPF_XOR, xor)
1967 #undef ATOMIC_ALU_OP
1968 
1969 		case BPF_XCHG:
1970 			if (BPF_SIZE(insn->code) == BPF_W)
1971 				SRC = (u32) atomic_xchg(
1972 					(atomic_t *)(unsigned long) (DST + insn->off),
1973 					(u32) SRC);
1974 			else
1975 				SRC = (u64) atomic64_xchg(
1976 					(atomic64_t *)(unsigned long) (DST + insn->off),
1977 					(u64) SRC);
1978 			break;
1979 		case BPF_CMPXCHG:
1980 			if (BPF_SIZE(insn->code) == BPF_W)
1981 				BPF_R0 = (u32) atomic_cmpxchg(
1982 					(atomic_t *)(unsigned long) (DST + insn->off),
1983 					(u32) BPF_R0, (u32) SRC);
1984 			else
1985 				BPF_R0 = (u64) atomic64_cmpxchg(
1986 					(atomic64_t *)(unsigned long) (DST + insn->off),
1987 					(u64) BPF_R0, (u64) SRC);
1988 			break;
1989 
1990 		default:
1991 			goto default_label;
1992 		}
1993 		CONT;
1994 
1995 	default_label:
1996 		/* If we ever reach this, we have a bug somewhere. Die hard here
1997 		 * instead of just returning 0; we could be somewhere in a subprog,
1998 		 * so execution could continue otherwise which we do /not/ want.
1999 		 *
2000 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2001 		 */
2002 		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2003 			insn->code, insn->imm);
2004 		BUG_ON(1);
2005 		return 0;
2006 }
2007 
2008 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2009 #define DEFINE_BPF_PROG_RUN(stack_size) \
2010 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2011 { \
2012 	u64 stack[stack_size / sizeof(u64)]; \
2013 	u64 regs[MAX_BPF_EXT_REG] = {}; \
2014 \
2015 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2016 	ARG1 = (u64) (unsigned long) ctx; \
2017 	return ___bpf_prog_run(regs, insn); \
2018 }
2019 
2020 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2021 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2022 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2023 				      const struct bpf_insn *insn) \
2024 { \
2025 	u64 stack[stack_size / sizeof(u64)]; \
2026 	u64 regs[MAX_BPF_EXT_REG]; \
2027 \
2028 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2029 	BPF_R1 = r1; \
2030 	BPF_R2 = r2; \
2031 	BPF_R3 = r3; \
2032 	BPF_R4 = r4; \
2033 	BPF_R5 = r5; \
2034 	return ___bpf_prog_run(regs, insn); \
2035 }
2036 
2037 #define EVAL1(FN, X) FN(X)
2038 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2039 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2040 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2041 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2042 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2043 
2044 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2045 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2046 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2047 
2048 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2049 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2050 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2051 
2052 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2053 
2054 static unsigned int (*interpreters[])(const void *ctx,
2055 				      const struct bpf_insn *insn) = {
2056 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2057 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2058 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2059 };
2060 #undef PROG_NAME_LIST
2061 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2062 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2063 				  const struct bpf_insn *insn) = {
2064 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2065 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2066 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2067 };
2068 #undef PROG_NAME_LIST
2069 
bpf_patch_call_args(struct bpf_insn * insn,u32 stack_depth)2070 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2071 {
2072 	stack_depth = max_t(u32, stack_depth, 1);
2073 	insn->off = (s16) insn->imm;
2074 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2075 		__bpf_call_base_args;
2076 	insn->code = BPF_JMP | BPF_CALL_ARGS;
2077 }
2078 
2079 #else
__bpf_prog_ret0_warn(const void * ctx,const struct bpf_insn * insn)2080 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2081 					 const struct bpf_insn *insn)
2082 {
2083 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2084 	 * is not working properly, so warn about it!
2085 	 */
2086 	WARN_ON_ONCE(1);
2087 	return 0;
2088 }
2089 #endif
2090 
bpf_prog_map_compatible(struct bpf_map * map,const struct bpf_prog * fp)2091 bool bpf_prog_map_compatible(struct bpf_map *map,
2092 			     const struct bpf_prog *fp)
2093 {
2094 	enum bpf_prog_type prog_type = resolve_prog_type(fp);
2095 	bool ret;
2096 
2097 	if (fp->kprobe_override)
2098 		return false;
2099 
2100 	spin_lock(&map->owner.lock);
2101 	if (!map->owner.type) {
2102 		/* There's no owner yet where we could check for
2103 		 * compatibility.
2104 		 */
2105 		map->owner.type  = prog_type;
2106 		map->owner.jited = fp->jited;
2107 		map->owner.xdp_has_frags = fp->aux->xdp_has_frags;
2108 		ret = true;
2109 	} else {
2110 		ret = map->owner.type  == prog_type &&
2111 		      map->owner.jited == fp->jited &&
2112 		      map->owner.xdp_has_frags == fp->aux->xdp_has_frags;
2113 	}
2114 	spin_unlock(&map->owner.lock);
2115 
2116 	return ret;
2117 }
2118 
bpf_check_tail_call(const struct bpf_prog * fp)2119 static int bpf_check_tail_call(const struct bpf_prog *fp)
2120 {
2121 	struct bpf_prog_aux *aux = fp->aux;
2122 	int i, ret = 0;
2123 
2124 	mutex_lock(&aux->used_maps_mutex);
2125 	for (i = 0; i < aux->used_map_cnt; i++) {
2126 		struct bpf_map *map = aux->used_maps[i];
2127 
2128 		if (!map_type_contains_progs(map))
2129 			continue;
2130 
2131 		if (!bpf_prog_map_compatible(map, fp)) {
2132 			ret = -EINVAL;
2133 			goto out;
2134 		}
2135 	}
2136 
2137 out:
2138 	mutex_unlock(&aux->used_maps_mutex);
2139 	return ret;
2140 }
2141 
bpf_prog_select_func(struct bpf_prog * fp)2142 static void bpf_prog_select_func(struct bpf_prog *fp)
2143 {
2144 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2145 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2146 
2147 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2148 #else
2149 	fp->bpf_func = __bpf_prog_ret0_warn;
2150 #endif
2151 }
2152 
2153 /**
2154  *	bpf_prog_select_runtime - select exec runtime for BPF program
2155  *	@fp: bpf_prog populated with BPF program
2156  *	@err: pointer to error variable
2157  *
2158  * Try to JIT eBPF program, if JIT is not available, use interpreter.
2159  * The BPF program will be executed via bpf_prog_run() function.
2160  *
2161  * Return: the &fp argument along with &err set to 0 for success or
2162  * a negative errno code on failure
2163  */
bpf_prog_select_runtime(struct bpf_prog * fp,int * err)2164 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2165 {
2166 	/* In case of BPF to BPF calls, verifier did all the prep
2167 	 * work with regards to JITing, etc.
2168 	 */
2169 	bool jit_needed = false;
2170 
2171 	if (fp->bpf_func)
2172 		goto finalize;
2173 
2174 	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2175 	    bpf_prog_has_kfunc_call(fp))
2176 		jit_needed = true;
2177 
2178 	bpf_prog_select_func(fp);
2179 
2180 	/* eBPF JITs can rewrite the program in case constant
2181 	 * blinding is active. However, in case of error during
2182 	 * blinding, bpf_int_jit_compile() must always return a
2183 	 * valid program, which in this case would simply not
2184 	 * be JITed, but falls back to the interpreter.
2185 	 */
2186 	if (!bpf_prog_is_dev_bound(fp->aux)) {
2187 		*err = bpf_prog_alloc_jited_linfo(fp);
2188 		if (*err)
2189 			return fp;
2190 
2191 		fp = bpf_int_jit_compile(fp);
2192 		bpf_prog_jit_attempt_done(fp);
2193 		if (!fp->jited && jit_needed) {
2194 			*err = -ENOTSUPP;
2195 			return fp;
2196 		}
2197 	} else {
2198 		*err = bpf_prog_offload_compile(fp);
2199 		if (*err)
2200 			return fp;
2201 	}
2202 
2203 finalize:
2204 	bpf_prog_lock_ro(fp);
2205 
2206 	/* The tail call compatibility check can only be done at
2207 	 * this late stage as we need to determine, if we deal
2208 	 * with JITed or non JITed program concatenations and not
2209 	 * all eBPF JITs might immediately support all features.
2210 	 */
2211 	*err = bpf_check_tail_call(fp);
2212 
2213 	return fp;
2214 }
2215 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2216 
__bpf_prog_ret1(const void * ctx,const struct bpf_insn * insn)2217 static unsigned int __bpf_prog_ret1(const void *ctx,
2218 				    const struct bpf_insn *insn)
2219 {
2220 	return 1;
2221 }
2222 
2223 static struct bpf_prog_dummy {
2224 	struct bpf_prog prog;
2225 } dummy_bpf_prog = {
2226 	.prog = {
2227 		.bpf_func = __bpf_prog_ret1,
2228 	},
2229 };
2230 
2231 struct bpf_empty_prog_array bpf_empty_prog_array = {
2232 	.null_prog = NULL,
2233 };
2234 EXPORT_SYMBOL(bpf_empty_prog_array);
2235 
bpf_prog_array_alloc(u32 prog_cnt,gfp_t flags)2236 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2237 {
2238 	if (prog_cnt)
2239 		return kzalloc(sizeof(struct bpf_prog_array) +
2240 			       sizeof(struct bpf_prog_array_item) *
2241 			       (prog_cnt + 1),
2242 			       flags);
2243 
2244 	return &bpf_empty_prog_array.hdr;
2245 }
2246 
bpf_prog_array_free(struct bpf_prog_array * progs)2247 void bpf_prog_array_free(struct bpf_prog_array *progs)
2248 {
2249 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2250 		return;
2251 	kfree_rcu(progs, rcu);
2252 }
2253 
__bpf_prog_array_free_sleepable_cb(struct rcu_head * rcu)2254 static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2255 {
2256 	struct bpf_prog_array *progs;
2257 
2258 	progs = container_of(rcu, struct bpf_prog_array, rcu);
2259 	kfree_rcu(progs, rcu);
2260 }
2261 
bpf_prog_array_free_sleepable(struct bpf_prog_array * progs)2262 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2263 {
2264 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2265 		return;
2266 	call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2267 }
2268 
bpf_prog_array_length(struct bpf_prog_array * array)2269 int bpf_prog_array_length(struct bpf_prog_array *array)
2270 {
2271 	struct bpf_prog_array_item *item;
2272 	u32 cnt = 0;
2273 
2274 	for (item = array->items; item->prog; item++)
2275 		if (item->prog != &dummy_bpf_prog.prog)
2276 			cnt++;
2277 	return cnt;
2278 }
2279 
bpf_prog_array_is_empty(struct bpf_prog_array * array)2280 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2281 {
2282 	struct bpf_prog_array_item *item;
2283 
2284 	for (item = array->items; item->prog; item++)
2285 		if (item->prog != &dummy_bpf_prog.prog)
2286 			return false;
2287 	return true;
2288 }
2289 
bpf_prog_array_copy_core(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt)2290 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2291 				     u32 *prog_ids,
2292 				     u32 request_cnt)
2293 {
2294 	struct bpf_prog_array_item *item;
2295 	int i = 0;
2296 
2297 	for (item = array->items; item->prog; item++) {
2298 		if (item->prog == &dummy_bpf_prog.prog)
2299 			continue;
2300 		prog_ids[i] = item->prog->aux->id;
2301 		if (++i == request_cnt) {
2302 			item++;
2303 			break;
2304 		}
2305 	}
2306 
2307 	return !!(item->prog);
2308 }
2309 
bpf_prog_array_copy_to_user(struct bpf_prog_array * array,__u32 __user * prog_ids,u32 cnt)2310 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2311 				__u32 __user *prog_ids, u32 cnt)
2312 {
2313 	unsigned long err = 0;
2314 	bool nospc;
2315 	u32 *ids;
2316 
2317 	/* users of this function are doing:
2318 	 * cnt = bpf_prog_array_length();
2319 	 * if (cnt > 0)
2320 	 *     bpf_prog_array_copy_to_user(..., cnt);
2321 	 * so below kcalloc doesn't need extra cnt > 0 check.
2322 	 */
2323 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2324 	if (!ids)
2325 		return -ENOMEM;
2326 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2327 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2328 	kfree(ids);
2329 	if (err)
2330 		return -EFAULT;
2331 	if (nospc)
2332 		return -ENOSPC;
2333 	return 0;
2334 }
2335 
bpf_prog_array_delete_safe(struct bpf_prog_array * array,struct bpf_prog * old_prog)2336 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2337 				struct bpf_prog *old_prog)
2338 {
2339 	struct bpf_prog_array_item *item;
2340 
2341 	for (item = array->items; item->prog; item++)
2342 		if (item->prog == old_prog) {
2343 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2344 			break;
2345 		}
2346 }
2347 
2348 /**
2349  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2350  *                                   index into the program array with
2351  *                                   a dummy no-op program.
2352  * @array: a bpf_prog_array
2353  * @index: the index of the program to replace
2354  *
2355  * Skips over dummy programs, by not counting them, when calculating
2356  * the position of the program to replace.
2357  *
2358  * Return:
2359  * * 0		- Success
2360  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2361  * * -ENOENT	- Index out of range
2362  */
bpf_prog_array_delete_safe_at(struct bpf_prog_array * array,int index)2363 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2364 {
2365 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2366 }
2367 
2368 /**
2369  * bpf_prog_array_update_at() - Updates the program at the given index
2370  *                              into the program array.
2371  * @array: a bpf_prog_array
2372  * @index: the index of the program to update
2373  * @prog: the program to insert into the array
2374  *
2375  * Skips over dummy programs, by not counting them, when calculating
2376  * the position of the program to update.
2377  *
2378  * Return:
2379  * * 0		- Success
2380  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2381  * * -ENOENT	- Index out of range
2382  */
bpf_prog_array_update_at(struct bpf_prog_array * array,int index,struct bpf_prog * prog)2383 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2384 			     struct bpf_prog *prog)
2385 {
2386 	struct bpf_prog_array_item *item;
2387 
2388 	if (unlikely(index < 0))
2389 		return -EINVAL;
2390 
2391 	for (item = array->items; item->prog; item++) {
2392 		if (item->prog == &dummy_bpf_prog.prog)
2393 			continue;
2394 		if (!index) {
2395 			WRITE_ONCE(item->prog, prog);
2396 			return 0;
2397 		}
2398 		index--;
2399 	}
2400 	return -ENOENT;
2401 }
2402 
bpf_prog_array_copy(struct bpf_prog_array * old_array,struct bpf_prog * exclude_prog,struct bpf_prog * include_prog,u64 bpf_cookie,struct bpf_prog_array ** new_array)2403 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2404 			struct bpf_prog *exclude_prog,
2405 			struct bpf_prog *include_prog,
2406 			u64 bpf_cookie,
2407 			struct bpf_prog_array **new_array)
2408 {
2409 	int new_prog_cnt, carry_prog_cnt = 0;
2410 	struct bpf_prog_array_item *existing, *new;
2411 	struct bpf_prog_array *array;
2412 	bool found_exclude = false;
2413 
2414 	/* Figure out how many existing progs we need to carry over to
2415 	 * the new array.
2416 	 */
2417 	if (old_array) {
2418 		existing = old_array->items;
2419 		for (; existing->prog; existing++) {
2420 			if (existing->prog == exclude_prog) {
2421 				found_exclude = true;
2422 				continue;
2423 			}
2424 			if (existing->prog != &dummy_bpf_prog.prog)
2425 				carry_prog_cnt++;
2426 			if (existing->prog == include_prog)
2427 				return -EEXIST;
2428 		}
2429 	}
2430 
2431 	if (exclude_prog && !found_exclude)
2432 		return -ENOENT;
2433 
2434 	/* How many progs (not NULL) will be in the new array? */
2435 	new_prog_cnt = carry_prog_cnt;
2436 	if (include_prog)
2437 		new_prog_cnt += 1;
2438 
2439 	/* Do we have any prog (not NULL) in the new array? */
2440 	if (!new_prog_cnt) {
2441 		*new_array = NULL;
2442 		return 0;
2443 	}
2444 
2445 	/* +1 as the end of prog_array is marked with NULL */
2446 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2447 	if (!array)
2448 		return -ENOMEM;
2449 	new = array->items;
2450 
2451 	/* Fill in the new prog array */
2452 	if (carry_prog_cnt) {
2453 		existing = old_array->items;
2454 		for (; existing->prog; existing++) {
2455 			if (existing->prog == exclude_prog ||
2456 			    existing->prog == &dummy_bpf_prog.prog)
2457 				continue;
2458 
2459 			new->prog = existing->prog;
2460 			new->bpf_cookie = existing->bpf_cookie;
2461 			new++;
2462 		}
2463 	}
2464 	if (include_prog) {
2465 		new->prog = include_prog;
2466 		new->bpf_cookie = bpf_cookie;
2467 		new++;
2468 	}
2469 	new->prog = NULL;
2470 	*new_array = array;
2471 	return 0;
2472 }
2473 
bpf_prog_array_copy_info(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt,u32 * prog_cnt)2474 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2475 			     u32 *prog_ids, u32 request_cnt,
2476 			     u32 *prog_cnt)
2477 {
2478 	u32 cnt = 0;
2479 
2480 	if (array)
2481 		cnt = bpf_prog_array_length(array);
2482 
2483 	*prog_cnt = cnt;
2484 
2485 	/* return early if user requested only program count or nothing to copy */
2486 	if (!request_cnt || !cnt)
2487 		return 0;
2488 
2489 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2490 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2491 								     : 0;
2492 }
2493 
__bpf_free_used_maps(struct bpf_prog_aux * aux,struct bpf_map ** used_maps,u32 len)2494 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2495 			  struct bpf_map **used_maps, u32 len)
2496 {
2497 	struct bpf_map *map;
2498 	u32 i;
2499 
2500 	for (i = 0; i < len; i++) {
2501 		map = used_maps[i];
2502 		if (map->ops->map_poke_untrack)
2503 			map->ops->map_poke_untrack(map, aux);
2504 		bpf_map_put(map);
2505 	}
2506 }
2507 
bpf_free_used_maps(struct bpf_prog_aux * aux)2508 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2509 {
2510 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2511 	kfree(aux->used_maps);
2512 }
2513 
__bpf_free_used_btfs(struct bpf_prog_aux * aux,struct btf_mod_pair * used_btfs,u32 len)2514 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2515 			  struct btf_mod_pair *used_btfs, u32 len)
2516 {
2517 #ifdef CONFIG_BPF_SYSCALL
2518 	struct btf_mod_pair *btf_mod;
2519 	u32 i;
2520 
2521 	for (i = 0; i < len; i++) {
2522 		btf_mod = &used_btfs[i];
2523 		if (btf_mod->module)
2524 			module_put(btf_mod->module);
2525 		btf_put(btf_mod->btf);
2526 	}
2527 #endif
2528 }
2529 
bpf_free_used_btfs(struct bpf_prog_aux * aux)2530 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2531 {
2532 	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2533 	kfree(aux->used_btfs);
2534 }
2535 
bpf_prog_free_deferred(struct work_struct * work)2536 static void bpf_prog_free_deferred(struct work_struct *work)
2537 {
2538 	struct bpf_prog_aux *aux;
2539 	int i;
2540 
2541 	aux = container_of(work, struct bpf_prog_aux, work);
2542 #ifdef CONFIG_BPF_SYSCALL
2543 	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2544 #endif
2545 #ifdef CONFIG_CGROUP_BPF
2546 	if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2547 		bpf_cgroup_atype_put(aux->cgroup_atype);
2548 #endif
2549 	bpf_free_used_maps(aux);
2550 	bpf_free_used_btfs(aux);
2551 	if (bpf_prog_is_dev_bound(aux))
2552 		bpf_prog_offload_destroy(aux->prog);
2553 #ifdef CONFIG_PERF_EVENTS
2554 	if (aux->prog->has_callchain_buf)
2555 		put_callchain_buffers();
2556 #endif
2557 	if (aux->dst_trampoline)
2558 		bpf_trampoline_put(aux->dst_trampoline);
2559 	for (i = 0; i < aux->func_cnt; i++) {
2560 		/* We can just unlink the subprog poke descriptor table as
2561 		 * it was originally linked to the main program and is also
2562 		 * released along with it.
2563 		 */
2564 		aux->func[i]->aux->poke_tab = NULL;
2565 		bpf_jit_free(aux->func[i]);
2566 	}
2567 	if (aux->func_cnt) {
2568 		kfree(aux->func);
2569 		bpf_prog_unlock_free(aux->prog);
2570 	} else {
2571 		bpf_jit_free(aux->prog);
2572 	}
2573 }
2574 
bpf_prog_free(struct bpf_prog * fp)2575 void bpf_prog_free(struct bpf_prog *fp)
2576 {
2577 	struct bpf_prog_aux *aux = fp->aux;
2578 
2579 	if (aux->dst_prog)
2580 		bpf_prog_put(aux->dst_prog);
2581 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2582 	schedule_work(&aux->work);
2583 }
2584 EXPORT_SYMBOL_GPL(bpf_prog_free);
2585 
2586 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2587 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2588 
bpf_user_rnd_init_once(void)2589 void bpf_user_rnd_init_once(void)
2590 {
2591 	prandom_init_once(&bpf_user_rnd_state);
2592 }
2593 
BPF_CALL_0(bpf_user_rnd_u32)2594 BPF_CALL_0(bpf_user_rnd_u32)
2595 {
2596 	/* Should someone ever have the rather unwise idea to use some
2597 	 * of the registers passed into this function, then note that
2598 	 * this function is called from native eBPF and classic-to-eBPF
2599 	 * transformations. Register assignments from both sides are
2600 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2601 	 */
2602 	struct rnd_state *state;
2603 	u32 res;
2604 
2605 	state = &get_cpu_var(bpf_user_rnd_state);
2606 	res = prandom_u32_state(state);
2607 	put_cpu_var(bpf_user_rnd_state);
2608 
2609 	return res;
2610 }
2611 
BPF_CALL_0(bpf_get_raw_cpu_id)2612 BPF_CALL_0(bpf_get_raw_cpu_id)
2613 {
2614 	return raw_smp_processor_id();
2615 }
2616 
2617 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2618 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2619 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2620 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2621 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2622 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2623 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2624 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2625 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2626 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2627 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2628 
2629 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2630 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2631 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2632 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2633 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2634 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2635 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
2636 
2637 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2638 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2639 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2640 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2641 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2642 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2643 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2644 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2645 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2646 const struct bpf_func_proto bpf_set_retval_proto __weak;
2647 const struct bpf_func_proto bpf_get_retval_proto __weak;
2648 
bpf_get_trace_printk_proto(void)2649 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2650 {
2651 	return NULL;
2652 }
2653 
bpf_get_trace_vprintk_proto(void)2654 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2655 {
2656 	return NULL;
2657 }
2658 
2659 u64 __weak
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)2660 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2661 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2662 {
2663 	return -ENOTSUPP;
2664 }
2665 EXPORT_SYMBOL_GPL(bpf_event_output);
2666 
2667 /* Always built-in helper functions. */
2668 const struct bpf_func_proto bpf_tail_call_proto = {
2669 	.func		= NULL,
2670 	.gpl_only	= false,
2671 	.ret_type	= RET_VOID,
2672 	.arg1_type	= ARG_PTR_TO_CTX,
2673 	.arg2_type	= ARG_CONST_MAP_PTR,
2674 	.arg3_type	= ARG_ANYTHING,
2675 };
2676 
2677 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2678  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2679  * eBPF and implicitly also cBPF can get JITed!
2680  */
bpf_int_jit_compile(struct bpf_prog * prog)2681 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2682 {
2683 	return prog;
2684 }
2685 
2686 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2687  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2688  */
bpf_jit_compile(struct bpf_prog * prog)2689 void __weak bpf_jit_compile(struct bpf_prog *prog)
2690 {
2691 }
2692 
bpf_helper_changes_pkt_data(void * func)2693 bool __weak bpf_helper_changes_pkt_data(void *func)
2694 {
2695 	return false;
2696 }
2697 
2698 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2699  * analysis code and wants explicit zero extension inserted by verifier.
2700  * Otherwise, return FALSE.
2701  *
2702  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2703  * you don't override this. JITs that don't want these extra insns can detect
2704  * them using insn_is_zext.
2705  */
bpf_jit_needs_zext(void)2706 bool __weak bpf_jit_needs_zext(void)
2707 {
2708 	return false;
2709 }
2710 
2711 /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
bpf_jit_supports_subprog_tailcalls(void)2712 bool __weak bpf_jit_supports_subprog_tailcalls(void)
2713 {
2714 	return false;
2715 }
2716 
bpf_jit_supports_kfunc_call(void)2717 bool __weak bpf_jit_supports_kfunc_call(void)
2718 {
2719 	return false;
2720 }
2721 
2722 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2723  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2724  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2725 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2726 			 int len)
2727 {
2728 	return -EFAULT;
2729 }
2730 
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * addr1,void * addr2)2731 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2732 			      void *addr1, void *addr2)
2733 {
2734 	return -ENOTSUPP;
2735 }
2736 
bpf_arch_text_copy(void * dst,void * src,size_t len)2737 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
2738 {
2739 	return ERR_PTR(-ENOTSUPP);
2740 }
2741 
bpf_arch_text_invalidate(void * dst,size_t len)2742 int __weak bpf_arch_text_invalidate(void *dst, size_t len)
2743 {
2744 	return -ENOTSUPP;
2745 }
2746 
2747 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2748 EXPORT_SYMBOL(bpf_stats_enabled_key);
2749 
2750 /* All definitions of tracepoints related to BPF. */
2751 #define CREATE_TRACE_POINTS
2752 #include <linux/bpf_trace.h>
2753 
2754 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2755 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2756