• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2016-2021 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7 
8 #include "habanalabs.h"
9 
10 #include <linux/slab.h>
11 
hl_encaps_handle_do_release(struct kref * ref)12 void hl_encaps_handle_do_release(struct kref *ref)
13 {
14 	struct hl_cs_encaps_sig_handle *handle =
15 		container_of(ref, struct hl_cs_encaps_sig_handle, refcount);
16 	struct hl_encaps_signals_mgr *mgr = &handle->ctx->sig_mgr;
17 
18 	spin_lock(&mgr->lock);
19 	idr_remove(&mgr->handles, handle->id);
20 	spin_unlock(&mgr->lock);
21 
22 	hl_ctx_put(handle->ctx);
23 	kfree(handle);
24 }
25 
hl_encaps_handle_do_release_sob(struct kref * ref)26 static void hl_encaps_handle_do_release_sob(struct kref *ref)
27 {
28 	struct hl_cs_encaps_sig_handle *handle =
29 		container_of(ref, struct hl_cs_encaps_sig_handle, refcount);
30 	struct hl_encaps_signals_mgr *mgr = &handle->ctx->sig_mgr;
31 
32 	/* if we're here, then there was a signals reservation but cs with
33 	 * encaps signals wasn't submitted, so need to put refcount
34 	 * to hw_sob taken at the reservation.
35 	 */
36 	hw_sob_put(handle->hw_sob);
37 
38 	spin_lock(&mgr->lock);
39 	idr_remove(&mgr->handles, handle->id);
40 	spin_unlock(&mgr->lock);
41 
42 	hl_ctx_put(handle->ctx);
43 	kfree(handle);
44 }
45 
hl_encaps_sig_mgr_init(struct hl_encaps_signals_mgr * mgr)46 static void hl_encaps_sig_mgr_init(struct hl_encaps_signals_mgr *mgr)
47 {
48 	spin_lock_init(&mgr->lock);
49 	idr_init(&mgr->handles);
50 }
51 
hl_encaps_sig_mgr_fini(struct hl_device * hdev,struct hl_encaps_signals_mgr * mgr)52 static void hl_encaps_sig_mgr_fini(struct hl_device *hdev,
53 			struct hl_encaps_signals_mgr *mgr)
54 {
55 	struct hl_cs_encaps_sig_handle *handle;
56 	struct idr *idp;
57 	u32 id;
58 
59 	idp = &mgr->handles;
60 
61 	if (!idr_is_empty(idp)) {
62 		dev_warn(hdev->dev, "device released while some encaps signals handles are still allocated\n");
63 		idr_for_each_entry(idp, handle, id)
64 			kref_put(&handle->refcount,
65 					hl_encaps_handle_do_release_sob);
66 	}
67 
68 	idr_destroy(&mgr->handles);
69 }
70 
hl_ctx_fini(struct hl_ctx * ctx)71 static void hl_ctx_fini(struct hl_ctx *ctx)
72 {
73 	struct hl_device *hdev = ctx->hdev;
74 	int i;
75 
76 	/* Release all allocated HW block mapped list entries and destroy
77 	 * the mutex.
78 	 */
79 	hl_hw_block_mem_fini(ctx);
80 
81 	/*
82 	 * If we arrived here, there are no jobs waiting for this context
83 	 * on its queues so we can safely remove it.
84 	 * This is because for each CS, we increment the ref count and for
85 	 * every CS that was finished we decrement it and we won't arrive
86 	 * to this function unless the ref count is 0
87 	 */
88 
89 	for (i = 0 ; i < hdev->asic_prop.max_pending_cs ; i++)
90 		hl_fence_put(ctx->cs_pending[i]);
91 
92 	kfree(ctx->cs_pending);
93 
94 	if (ctx->asid != HL_KERNEL_ASID_ID) {
95 		dev_dbg(hdev->dev, "closing user context %d\n", ctx->asid);
96 
97 		/* The engines are stopped as there is no executing CS, but the
98 		 * Coresight might be still working by accessing addresses
99 		 * related to the stopped engines. Hence stop it explicitly.
100 		 */
101 		if (hdev->in_debug)
102 			hl_device_set_debug_mode(hdev, ctx, false);
103 
104 		hdev->asic_funcs->ctx_fini(ctx);
105 
106 		hl_dec_ctx_fini(ctx);
107 
108 		hl_cb_va_pool_fini(ctx);
109 		hl_vm_ctx_fini(ctx);
110 		hl_asid_free(hdev, ctx->asid);
111 		hl_encaps_sig_mgr_fini(hdev, &ctx->sig_mgr);
112 	} else {
113 		dev_dbg(hdev->dev, "closing kernel context\n");
114 		hdev->asic_funcs->ctx_fini(ctx);
115 		hl_vm_ctx_fini(ctx);
116 		hl_mmu_ctx_fini(ctx);
117 	}
118 }
119 
hl_ctx_do_release(struct kref * ref)120 void hl_ctx_do_release(struct kref *ref)
121 {
122 	struct hl_ctx *ctx;
123 
124 	ctx = container_of(ref, struct hl_ctx, refcount);
125 
126 	hl_ctx_fini(ctx);
127 
128 	if (ctx->hpriv) {
129 		struct hl_fpriv *hpriv = ctx->hpriv;
130 
131 		mutex_lock(&hpriv->ctx_lock);
132 		hpriv->ctx = NULL;
133 		mutex_unlock(&hpriv->ctx_lock);
134 
135 		hl_hpriv_put(hpriv);
136 	}
137 
138 	kfree(ctx);
139 }
140 
hl_ctx_create(struct hl_device * hdev,struct hl_fpriv * hpriv)141 int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv)
142 {
143 	struct hl_ctx_mgr *ctx_mgr = &hpriv->ctx_mgr;
144 	struct hl_ctx *ctx;
145 	int rc;
146 
147 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
148 	if (!ctx) {
149 		rc = -ENOMEM;
150 		goto out_err;
151 	}
152 
153 	mutex_lock(&ctx_mgr->lock);
154 	rc = idr_alloc(&ctx_mgr->handles, ctx, 1, 0, GFP_KERNEL);
155 	mutex_unlock(&ctx_mgr->lock);
156 
157 	if (rc < 0) {
158 		dev_err(hdev->dev, "Failed to allocate IDR for a new CTX\n");
159 		goto free_ctx;
160 	}
161 
162 	ctx->handle = rc;
163 
164 	rc = hl_ctx_init(hdev, ctx, false);
165 	if (rc)
166 		goto remove_from_idr;
167 
168 	hl_hpriv_get(hpriv);
169 	ctx->hpriv = hpriv;
170 
171 	/* TODO: remove for multiple contexts per process */
172 	hpriv->ctx = ctx;
173 
174 	/* TODO: remove the following line for multiple process support */
175 	hdev->is_compute_ctx_active = true;
176 
177 	return 0;
178 
179 remove_from_idr:
180 	mutex_lock(&ctx_mgr->lock);
181 	idr_remove(&ctx_mgr->handles, ctx->handle);
182 	mutex_unlock(&ctx_mgr->lock);
183 free_ctx:
184 	kfree(ctx);
185 out_err:
186 	return rc;
187 }
188 
hl_ctx_init(struct hl_device * hdev,struct hl_ctx * ctx,bool is_kernel_ctx)189 int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx)
190 {
191 	int rc = 0, i;
192 
193 	ctx->hdev = hdev;
194 
195 	kref_init(&ctx->refcount);
196 
197 	ctx->cs_sequence = 1;
198 	spin_lock_init(&ctx->cs_lock);
199 	atomic_set(&ctx->thread_ctx_switch_token, 1);
200 	ctx->thread_ctx_switch_wait_token = 0;
201 	ctx->cs_pending = kcalloc(hdev->asic_prop.max_pending_cs,
202 				sizeof(struct hl_fence *),
203 				GFP_KERNEL);
204 	if (!ctx->cs_pending)
205 		return -ENOMEM;
206 
207 	INIT_LIST_HEAD(&ctx->outcome_store.used_list);
208 	INIT_LIST_HEAD(&ctx->outcome_store.free_list);
209 	hash_init(ctx->outcome_store.outcome_map);
210 	for (i = 0; i < ARRAY_SIZE(ctx->outcome_store.nodes_pool); ++i)
211 		list_add(&ctx->outcome_store.nodes_pool[i].list_link,
212 			 &ctx->outcome_store.free_list);
213 
214 	hl_hw_block_mem_init(ctx);
215 
216 	if (is_kernel_ctx) {
217 		ctx->asid = HL_KERNEL_ASID_ID; /* Kernel driver gets ASID 0 */
218 		rc = hl_vm_ctx_init(ctx);
219 		if (rc) {
220 			dev_err(hdev->dev, "Failed to init mem ctx module\n");
221 			rc = -ENOMEM;
222 			goto err_hw_block_mem_fini;
223 		}
224 
225 		rc = hdev->asic_funcs->ctx_init(ctx);
226 		if (rc) {
227 			dev_err(hdev->dev, "ctx_init failed\n");
228 			goto err_vm_ctx_fini;
229 		}
230 	} else {
231 		ctx->asid = hl_asid_alloc(hdev);
232 		if (!ctx->asid) {
233 			dev_err(hdev->dev, "No free ASID, failed to create context\n");
234 			rc = -ENOMEM;
235 			goto err_hw_block_mem_fini;
236 		}
237 
238 		rc = hl_vm_ctx_init(ctx);
239 		if (rc) {
240 			dev_err(hdev->dev, "Failed to init mem ctx module\n");
241 			rc = -ENOMEM;
242 			goto err_asid_free;
243 		}
244 
245 		rc = hl_cb_va_pool_init(ctx);
246 		if (rc) {
247 			dev_err(hdev->dev,
248 				"Failed to init VA pool for mapped CB\n");
249 			goto err_vm_ctx_fini;
250 		}
251 
252 		rc = hdev->asic_funcs->ctx_init(ctx);
253 		if (rc) {
254 			dev_err(hdev->dev, "ctx_init failed\n");
255 			goto err_cb_va_pool_fini;
256 		}
257 
258 		hl_encaps_sig_mgr_init(&ctx->sig_mgr);
259 
260 		dev_dbg(hdev->dev, "create user context %d\n", ctx->asid);
261 	}
262 
263 	return 0;
264 
265 err_cb_va_pool_fini:
266 	hl_cb_va_pool_fini(ctx);
267 err_vm_ctx_fini:
268 	hl_vm_ctx_fini(ctx);
269 err_asid_free:
270 	if (ctx->asid != HL_KERNEL_ASID_ID)
271 		hl_asid_free(hdev, ctx->asid);
272 err_hw_block_mem_fini:
273 	hl_hw_block_mem_fini(ctx);
274 	kfree(ctx->cs_pending);
275 
276 	return rc;
277 }
278 
hl_ctx_get_unless_zero(struct hl_ctx * ctx)279 static int hl_ctx_get_unless_zero(struct hl_ctx *ctx)
280 {
281 	return kref_get_unless_zero(&ctx->refcount);
282 }
283 
hl_ctx_get(struct hl_ctx * ctx)284 void hl_ctx_get(struct hl_ctx *ctx)
285 {
286 	kref_get(&ctx->refcount);
287 }
288 
hl_ctx_put(struct hl_ctx * ctx)289 int hl_ctx_put(struct hl_ctx *ctx)
290 {
291 	return kref_put(&ctx->refcount, hl_ctx_do_release);
292 }
293 
hl_get_compute_ctx(struct hl_device * hdev)294 struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev)
295 {
296 	struct hl_ctx *ctx = NULL;
297 	struct hl_fpriv *hpriv;
298 
299 	mutex_lock(&hdev->fpriv_list_lock);
300 
301 	list_for_each_entry(hpriv, &hdev->fpriv_list, dev_node) {
302 		mutex_lock(&hpriv->ctx_lock);
303 		ctx = hpriv->ctx;
304 		if (ctx && !hl_ctx_get_unless_zero(ctx))
305 			ctx = NULL;
306 		mutex_unlock(&hpriv->ctx_lock);
307 
308 		/* There can only be a single user which has opened the compute device, so exit
309 		 * immediately once we find its context or if we see that it has been released
310 		 */
311 		break;
312 	}
313 
314 	mutex_unlock(&hdev->fpriv_list_lock);
315 
316 	return ctx;
317 }
318 
319 /*
320  * hl_ctx_get_fence_locked - get CS fence under CS lock
321  *
322  * @ctx: pointer to the context structure.
323  * @seq: CS sequences number
324  *
325  * @return valid fence pointer on success, NULL if fence is gone, otherwise
326  *         error pointer.
327  *
328  * NOTE: this function shall be called with cs_lock locked
329  */
hl_ctx_get_fence_locked(struct hl_ctx * ctx,u64 seq)330 static struct hl_fence *hl_ctx_get_fence_locked(struct hl_ctx *ctx, u64 seq)
331 {
332 	struct asic_fixed_properties *asic_prop = &ctx->hdev->asic_prop;
333 	struct hl_fence *fence;
334 
335 	if (seq >= ctx->cs_sequence)
336 		return ERR_PTR(-EINVAL);
337 
338 	if (seq + asic_prop->max_pending_cs < ctx->cs_sequence)
339 		return NULL;
340 
341 	fence = ctx->cs_pending[seq & (asic_prop->max_pending_cs - 1)];
342 	hl_fence_get(fence);
343 	return fence;
344 }
345 
hl_ctx_get_fence(struct hl_ctx * ctx,u64 seq)346 struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq)
347 {
348 	struct hl_fence *fence;
349 
350 	spin_lock(&ctx->cs_lock);
351 
352 	fence = hl_ctx_get_fence_locked(ctx, seq);
353 
354 	spin_unlock(&ctx->cs_lock);
355 
356 	return fence;
357 }
358 
359 /*
360  * hl_ctx_get_fences - get multiple CS fences under the same CS lock
361  *
362  * @ctx: pointer to the context structure.
363  * @seq_arr: array of CS sequences to wait for
364  * @fence: fence array to store the CS fences
365  * @arr_len: length of seq_arr and fence_arr
366  *
367  * @return 0 on success, otherwise non 0 error code
368  */
hl_ctx_get_fences(struct hl_ctx * ctx,u64 * seq_arr,struct hl_fence ** fence,u32 arr_len)369 int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr,
370 				struct hl_fence **fence, u32 arr_len)
371 {
372 	struct hl_fence **fence_arr_base = fence;
373 	int i, rc = 0;
374 
375 	spin_lock(&ctx->cs_lock);
376 
377 	for (i = 0; i < arr_len; i++, fence++) {
378 		u64 seq = seq_arr[i];
379 
380 		*fence = hl_ctx_get_fence_locked(ctx, seq);
381 
382 		if (IS_ERR(*fence)) {
383 			dev_err(ctx->hdev->dev,
384 				"Failed to get fence for CS with seq 0x%llx\n",
385 					seq);
386 			rc = PTR_ERR(*fence);
387 			break;
388 		}
389 	}
390 
391 	spin_unlock(&ctx->cs_lock);
392 
393 	if (rc)
394 		hl_fences_put(fence_arr_base, i);
395 
396 	return rc;
397 }
398 
399 /*
400  * hl_ctx_mgr_init - initialize the context manager
401  *
402  * @ctx_mgr: pointer to context manager structure
403  *
404  * This manager is an object inside the hpriv object of the user process.
405  * The function is called when a user process opens the FD.
406  */
hl_ctx_mgr_init(struct hl_ctx_mgr * ctx_mgr)407 void hl_ctx_mgr_init(struct hl_ctx_mgr *ctx_mgr)
408 {
409 	mutex_init(&ctx_mgr->lock);
410 	idr_init(&ctx_mgr->handles);
411 }
412 
413 /*
414  * hl_ctx_mgr_fini - finalize the context manager
415  *
416  * @hdev: pointer to device structure
417  * @ctx_mgr: pointer to context manager structure
418  *
419  * This function goes over all the contexts in the manager and frees them.
420  * It is called when a process closes the FD.
421  */
hl_ctx_mgr_fini(struct hl_device * hdev,struct hl_ctx_mgr * ctx_mgr)422 void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *ctx_mgr)
423 {
424 	struct hl_ctx *ctx;
425 	struct idr *idp;
426 	u32 id;
427 
428 	idp = &ctx_mgr->handles;
429 
430 	idr_for_each_entry(idp, ctx, id)
431 		kref_put(&ctx->refcount, hl_ctx_do_release);
432 
433 	idr_destroy(&ctx_mgr->handles);
434 	mutex_destroy(&ctx_mgr->lock);
435 }
436