1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/kernfs/dir.c - kernfs directory implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 */
9
10 #include <linux/sched.h>
11 #include <linux/fs.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
17
18 #include "kernfs-internal.h"
19
20 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
21 /*
22 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
23 * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
24 * will perform wakeups when releasing console_sem. Holding rename_lock
25 * will introduce deadlock if the scheduler reads the kernfs_name in the
26 * wakeup path.
27 */
28 static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
29 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by pr_cont_lock */
30 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */
31
32 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
33
__kernfs_active(struct kernfs_node * kn)34 static bool __kernfs_active(struct kernfs_node *kn)
35 {
36 return atomic_read(&kn->active) >= 0;
37 }
38
kernfs_active(struct kernfs_node * kn)39 static bool kernfs_active(struct kernfs_node *kn)
40 {
41 lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem);
42 return __kernfs_active(kn);
43 }
44
kernfs_lockdep(struct kernfs_node * kn)45 static bool kernfs_lockdep(struct kernfs_node *kn)
46 {
47 #ifdef CONFIG_DEBUG_LOCK_ALLOC
48 return kn->flags & KERNFS_LOCKDEP;
49 #else
50 return false;
51 #endif
52 }
53
kernfs_name_locked(struct kernfs_node * kn,char * buf,size_t buflen)54 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
55 {
56 if (!kn)
57 return strlcpy(buf, "(null)", buflen);
58
59 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
60 }
61
62 /* kernfs_node_depth - compute depth from @from to @to */
kernfs_depth(struct kernfs_node * from,struct kernfs_node * to)63 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
64 {
65 size_t depth = 0;
66
67 while (to->parent && to != from) {
68 depth++;
69 to = to->parent;
70 }
71 return depth;
72 }
73
kernfs_common_ancestor(struct kernfs_node * a,struct kernfs_node * b)74 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
75 struct kernfs_node *b)
76 {
77 size_t da, db;
78 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
79
80 if (ra != rb)
81 return NULL;
82
83 da = kernfs_depth(ra->kn, a);
84 db = kernfs_depth(rb->kn, b);
85
86 while (da > db) {
87 a = a->parent;
88 da--;
89 }
90 while (db > da) {
91 b = b->parent;
92 db--;
93 }
94
95 /* worst case b and a will be the same at root */
96 while (b != a) {
97 b = b->parent;
98 a = a->parent;
99 }
100
101 return a;
102 }
103
104 /**
105 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
106 * where kn_from is treated as root of the path.
107 * @kn_from: kernfs node which should be treated as root for the path
108 * @kn_to: kernfs node to which path is needed
109 * @buf: buffer to copy the path into
110 * @buflen: size of @buf
111 *
112 * We need to handle couple of scenarios here:
113 * [1] when @kn_from is an ancestor of @kn_to at some level
114 * kn_from: /n1/n2/n3
115 * kn_to: /n1/n2/n3/n4/n5
116 * result: /n4/n5
117 *
118 * [2] when @kn_from is on a different hierarchy and we need to find common
119 * ancestor between @kn_from and @kn_to.
120 * kn_from: /n1/n2/n3/n4
121 * kn_to: /n1/n2/n5
122 * result: /../../n5
123 * OR
124 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
125 * kn_to: /n1/n2/n3 [depth=3]
126 * result: /../..
127 *
128 * [3] when @kn_to is NULL result will be "(null)"
129 *
130 * Returns the length of the full path. If the full length is equal to or
131 * greater than @buflen, @buf contains the truncated path with the trailing
132 * '\0'. On error, -errno is returned.
133 */
kernfs_path_from_node_locked(struct kernfs_node * kn_to,struct kernfs_node * kn_from,char * buf,size_t buflen)134 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
135 struct kernfs_node *kn_from,
136 char *buf, size_t buflen)
137 {
138 struct kernfs_node *kn, *common;
139 const char parent_str[] = "/..";
140 size_t depth_from, depth_to, len = 0;
141 int i, j;
142
143 if (!kn_to)
144 return strlcpy(buf, "(null)", buflen);
145
146 if (!kn_from)
147 kn_from = kernfs_root(kn_to)->kn;
148
149 if (kn_from == kn_to)
150 return strlcpy(buf, "/", buflen);
151
152 if (!buf)
153 return -EINVAL;
154
155 common = kernfs_common_ancestor(kn_from, kn_to);
156 if (WARN_ON(!common))
157 return -EINVAL;
158
159 depth_to = kernfs_depth(common, kn_to);
160 depth_from = kernfs_depth(common, kn_from);
161
162 buf[0] = '\0';
163
164 for (i = 0; i < depth_from; i++)
165 len += strlcpy(buf + len, parent_str,
166 len < buflen ? buflen - len : 0);
167
168 /* Calculate how many bytes we need for the rest */
169 for (i = depth_to - 1; i >= 0; i--) {
170 for (kn = kn_to, j = 0; j < i; j++)
171 kn = kn->parent;
172 len += strlcpy(buf + len, "/",
173 len < buflen ? buflen - len : 0);
174 len += strlcpy(buf + len, kn->name,
175 len < buflen ? buflen - len : 0);
176 }
177
178 return len;
179 }
180
181 /**
182 * kernfs_name - obtain the name of a given node
183 * @kn: kernfs_node of interest
184 * @buf: buffer to copy @kn's name into
185 * @buflen: size of @buf
186 *
187 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
188 * similar to strlcpy(). It returns the length of @kn's name and if @buf
189 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
190 *
191 * Fills buffer with "(null)" if @kn is NULL.
192 *
193 * This function can be called from any context.
194 */
kernfs_name(struct kernfs_node * kn,char * buf,size_t buflen)195 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
196 {
197 unsigned long flags;
198 int ret;
199
200 spin_lock_irqsave(&kernfs_rename_lock, flags);
201 ret = kernfs_name_locked(kn, buf, buflen);
202 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
203 return ret;
204 }
205
206 /**
207 * kernfs_path_from_node - build path of node @to relative to @from.
208 * @from: parent kernfs_node relative to which we need to build the path
209 * @to: kernfs_node of interest
210 * @buf: buffer to copy @to's path into
211 * @buflen: size of @buf
212 *
213 * Builds @to's path relative to @from in @buf. @from and @to must
214 * be on the same kernfs-root. If @from is not parent of @to, then a relative
215 * path (which includes '..'s) as needed to reach from @from to @to is
216 * returned.
217 *
218 * Returns the length of the full path. If the full length is equal to or
219 * greater than @buflen, @buf contains the truncated path with the trailing
220 * '\0'. On error, -errno is returned.
221 */
kernfs_path_from_node(struct kernfs_node * to,struct kernfs_node * from,char * buf,size_t buflen)222 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
223 char *buf, size_t buflen)
224 {
225 unsigned long flags;
226 int ret;
227
228 spin_lock_irqsave(&kernfs_rename_lock, flags);
229 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
230 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
231 return ret;
232 }
233 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
234
235 /**
236 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
237 * @kn: kernfs_node of interest
238 *
239 * This function can be called from any context.
240 */
pr_cont_kernfs_name(struct kernfs_node * kn)241 void pr_cont_kernfs_name(struct kernfs_node *kn)
242 {
243 unsigned long flags;
244
245 spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
246
247 kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
248 pr_cont("%s", kernfs_pr_cont_buf);
249
250 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
251 }
252
253 /**
254 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
255 * @kn: kernfs_node of interest
256 *
257 * This function can be called from any context.
258 */
pr_cont_kernfs_path(struct kernfs_node * kn)259 void pr_cont_kernfs_path(struct kernfs_node *kn)
260 {
261 unsigned long flags;
262 int sz;
263
264 spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
265
266 sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
267 sizeof(kernfs_pr_cont_buf));
268 if (sz < 0) {
269 pr_cont("(error)");
270 goto out;
271 }
272
273 if (sz >= sizeof(kernfs_pr_cont_buf)) {
274 pr_cont("(name too long)");
275 goto out;
276 }
277
278 pr_cont("%s", kernfs_pr_cont_buf);
279
280 out:
281 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
282 }
283
284 /**
285 * kernfs_get_parent - determine the parent node and pin it
286 * @kn: kernfs_node of interest
287 *
288 * Determines @kn's parent, pins and returns it. This function can be
289 * called from any context.
290 */
kernfs_get_parent(struct kernfs_node * kn)291 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
292 {
293 struct kernfs_node *parent;
294 unsigned long flags;
295
296 spin_lock_irqsave(&kernfs_rename_lock, flags);
297 parent = kn->parent;
298 kernfs_get(parent);
299 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
300
301 return parent;
302 }
303
304 /**
305 * kernfs_name_hash
306 * @name: Null terminated string to hash
307 * @ns: Namespace tag to hash
308 *
309 * Returns 31 bit hash of ns + name (so it fits in an off_t )
310 */
kernfs_name_hash(const char * name,const void * ns)311 static unsigned int kernfs_name_hash(const char *name, const void *ns)
312 {
313 unsigned long hash = init_name_hash(ns);
314 unsigned int len = strlen(name);
315 while (len--)
316 hash = partial_name_hash(*name++, hash);
317 hash = end_name_hash(hash);
318 hash &= 0x7fffffffU;
319 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
320 if (hash < 2)
321 hash += 2;
322 if (hash >= INT_MAX)
323 hash = INT_MAX - 1;
324 return hash;
325 }
326
kernfs_name_compare(unsigned int hash,const char * name,const void * ns,const struct kernfs_node * kn)327 static int kernfs_name_compare(unsigned int hash, const char *name,
328 const void *ns, const struct kernfs_node *kn)
329 {
330 if (hash < kn->hash)
331 return -1;
332 if (hash > kn->hash)
333 return 1;
334 if (ns < kn->ns)
335 return -1;
336 if (ns > kn->ns)
337 return 1;
338 return strcmp(name, kn->name);
339 }
340
kernfs_sd_compare(const struct kernfs_node * left,const struct kernfs_node * right)341 static int kernfs_sd_compare(const struct kernfs_node *left,
342 const struct kernfs_node *right)
343 {
344 return kernfs_name_compare(left->hash, left->name, left->ns, right);
345 }
346
347 /**
348 * kernfs_link_sibling - link kernfs_node into sibling rbtree
349 * @kn: kernfs_node of interest
350 *
351 * Link @kn into its sibling rbtree which starts from
352 * @kn->parent->dir.children.
353 *
354 * Locking:
355 * kernfs_rwsem held exclusive
356 *
357 * RETURNS:
358 * 0 on susccess -EEXIST on failure.
359 */
kernfs_link_sibling(struct kernfs_node * kn)360 static int kernfs_link_sibling(struct kernfs_node *kn)
361 {
362 struct rb_node **node = &kn->parent->dir.children.rb_node;
363 struct rb_node *parent = NULL;
364
365 while (*node) {
366 struct kernfs_node *pos;
367 int result;
368
369 pos = rb_to_kn(*node);
370 parent = *node;
371 result = kernfs_sd_compare(kn, pos);
372 if (result < 0)
373 node = &pos->rb.rb_left;
374 else if (result > 0)
375 node = &pos->rb.rb_right;
376 else
377 return -EEXIST;
378 }
379
380 /* add new node and rebalance the tree */
381 rb_link_node(&kn->rb, parent, node);
382 rb_insert_color(&kn->rb, &kn->parent->dir.children);
383
384 /* successfully added, account subdir number */
385 if (kernfs_type(kn) == KERNFS_DIR)
386 kn->parent->dir.subdirs++;
387 kernfs_inc_rev(kn->parent);
388
389 return 0;
390 }
391
392 /**
393 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
394 * @kn: kernfs_node of interest
395 *
396 * Try to unlink @kn from its sibling rbtree which starts from
397 * kn->parent->dir.children. Returns %true if @kn was actually
398 * removed, %false if @kn wasn't on the rbtree.
399 *
400 * Locking:
401 * kernfs_rwsem held exclusive
402 */
kernfs_unlink_sibling(struct kernfs_node * kn)403 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
404 {
405 if (RB_EMPTY_NODE(&kn->rb))
406 return false;
407
408 if (kernfs_type(kn) == KERNFS_DIR)
409 kn->parent->dir.subdirs--;
410 kernfs_inc_rev(kn->parent);
411
412 rb_erase(&kn->rb, &kn->parent->dir.children);
413 RB_CLEAR_NODE(&kn->rb);
414 return true;
415 }
416
417 /**
418 * kernfs_get_active - get an active reference to kernfs_node
419 * @kn: kernfs_node to get an active reference to
420 *
421 * Get an active reference of @kn. This function is noop if @kn
422 * is NULL.
423 *
424 * RETURNS:
425 * Pointer to @kn on success, NULL on failure.
426 */
kernfs_get_active(struct kernfs_node * kn)427 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
428 {
429 if (unlikely(!kn))
430 return NULL;
431
432 if (!atomic_inc_unless_negative(&kn->active))
433 return NULL;
434
435 if (kernfs_lockdep(kn))
436 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
437 return kn;
438 }
439
440 /**
441 * kernfs_put_active - put an active reference to kernfs_node
442 * @kn: kernfs_node to put an active reference to
443 *
444 * Put an active reference to @kn. This function is noop if @kn
445 * is NULL.
446 */
kernfs_put_active(struct kernfs_node * kn)447 void kernfs_put_active(struct kernfs_node *kn)
448 {
449 int v;
450
451 if (unlikely(!kn))
452 return;
453
454 if (kernfs_lockdep(kn))
455 rwsem_release(&kn->dep_map, _RET_IP_);
456 v = atomic_dec_return(&kn->active);
457 if (likely(v != KN_DEACTIVATED_BIAS))
458 return;
459
460 wake_up_all(&kernfs_root(kn)->deactivate_waitq);
461 }
462
463 /**
464 * kernfs_drain - drain kernfs_node
465 * @kn: kernfs_node to drain
466 *
467 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
468 * removers may invoke this function concurrently on @kn and all will
469 * return after draining is complete.
470 */
kernfs_drain(struct kernfs_node * kn)471 static void kernfs_drain(struct kernfs_node *kn)
472 __releases(&kernfs_root(kn)->kernfs_rwsem)
473 __acquires(&kernfs_root(kn)->kernfs_rwsem)
474 {
475 struct kernfs_root *root = kernfs_root(kn);
476
477 lockdep_assert_held_write(&root->kernfs_rwsem);
478 WARN_ON_ONCE(kernfs_active(kn));
479
480 /*
481 * Skip draining if already fully drained. This avoids draining and its
482 * lockdep annotations for nodes which have never been activated
483 * allowing embedding kernfs_remove() in create error paths without
484 * worrying about draining.
485 */
486 if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS &&
487 !kernfs_should_drain_open_files(kn))
488 return;
489
490 up_write(&root->kernfs_rwsem);
491
492 if (kernfs_lockdep(kn)) {
493 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
494 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
495 lock_contended(&kn->dep_map, _RET_IP_);
496 }
497
498 wait_event(root->deactivate_waitq,
499 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
500
501 if (kernfs_lockdep(kn)) {
502 lock_acquired(&kn->dep_map, _RET_IP_);
503 rwsem_release(&kn->dep_map, _RET_IP_);
504 }
505
506 if (kernfs_should_drain_open_files(kn))
507 kernfs_drain_open_files(kn);
508
509 down_write(&root->kernfs_rwsem);
510 }
511
512 /**
513 * kernfs_get - get a reference count on a kernfs_node
514 * @kn: the target kernfs_node
515 */
kernfs_get(struct kernfs_node * kn)516 void kernfs_get(struct kernfs_node *kn)
517 {
518 if (kn) {
519 WARN_ON(!atomic_read(&kn->count));
520 atomic_inc(&kn->count);
521 }
522 }
523 EXPORT_SYMBOL_GPL(kernfs_get);
524
525 /**
526 * kernfs_put - put a reference count on a kernfs_node
527 * @kn: the target kernfs_node
528 *
529 * Put a reference count of @kn and destroy it if it reached zero.
530 */
kernfs_put(struct kernfs_node * kn)531 void kernfs_put(struct kernfs_node *kn)
532 {
533 struct kernfs_node *parent;
534 struct kernfs_root *root;
535
536 if (!kn || !atomic_dec_and_test(&kn->count))
537 return;
538 root = kernfs_root(kn);
539 repeat:
540 /*
541 * Moving/renaming is always done while holding reference.
542 * kn->parent won't change beneath us.
543 */
544 parent = kn->parent;
545
546 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
547 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
548 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
549
550 if (kernfs_type(kn) == KERNFS_LINK)
551 kernfs_put(kn->symlink.target_kn);
552
553 kfree_const(kn->name);
554
555 if (kn->iattr) {
556 simple_xattrs_free(&kn->iattr->xattrs);
557 kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
558 }
559 spin_lock(&kernfs_idr_lock);
560 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
561 spin_unlock(&kernfs_idr_lock);
562 kmem_cache_free(kernfs_node_cache, kn);
563
564 kn = parent;
565 if (kn) {
566 if (atomic_dec_and_test(&kn->count))
567 goto repeat;
568 } else {
569 /* just released the root kn, free @root too */
570 idr_destroy(&root->ino_idr);
571 kfree(root);
572 }
573 }
574 EXPORT_SYMBOL_GPL(kernfs_put);
575
576 /**
577 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
578 * @dentry: the dentry in question
579 *
580 * Return the kernfs_node associated with @dentry. If @dentry is not a
581 * kernfs one, %NULL is returned.
582 *
583 * While the returned kernfs_node will stay accessible as long as @dentry
584 * is accessible, the returned node can be in any state and the caller is
585 * fully responsible for determining what's accessible.
586 */
kernfs_node_from_dentry(struct dentry * dentry)587 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
588 {
589 if (dentry->d_sb->s_op == &kernfs_sops)
590 return kernfs_dentry_node(dentry);
591 return NULL;
592 }
593
__kernfs_new_node(struct kernfs_root * root,struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)594 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
595 struct kernfs_node *parent,
596 const char *name, umode_t mode,
597 kuid_t uid, kgid_t gid,
598 unsigned flags)
599 {
600 struct kernfs_node *kn;
601 u32 id_highbits;
602 int ret;
603
604 name = kstrdup_const(name, GFP_KERNEL);
605 if (!name)
606 return NULL;
607
608 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
609 if (!kn)
610 goto err_out1;
611
612 idr_preload(GFP_KERNEL);
613 spin_lock(&kernfs_idr_lock);
614 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
615 if (ret >= 0 && ret < root->last_id_lowbits)
616 root->id_highbits++;
617 id_highbits = root->id_highbits;
618 root->last_id_lowbits = ret;
619 spin_unlock(&kernfs_idr_lock);
620 idr_preload_end();
621 if (ret < 0)
622 goto err_out2;
623
624 kn->id = (u64)id_highbits << 32 | ret;
625
626 atomic_set(&kn->count, 1);
627 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
628 RB_CLEAR_NODE(&kn->rb);
629
630 kn->name = name;
631 kn->mode = mode;
632 kn->flags = flags;
633
634 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
635 struct iattr iattr = {
636 .ia_valid = ATTR_UID | ATTR_GID,
637 .ia_uid = uid,
638 .ia_gid = gid,
639 };
640
641 ret = __kernfs_setattr(kn, &iattr);
642 if (ret < 0)
643 goto err_out3;
644 }
645
646 if (parent) {
647 ret = security_kernfs_init_security(parent, kn);
648 if (ret)
649 goto err_out3;
650 }
651
652 return kn;
653
654 err_out3:
655 spin_lock(&kernfs_idr_lock);
656 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
657 spin_unlock(&kernfs_idr_lock);
658 err_out2:
659 kmem_cache_free(kernfs_node_cache, kn);
660 err_out1:
661 kfree_const(name);
662 return NULL;
663 }
664
kernfs_new_node(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)665 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
666 const char *name, umode_t mode,
667 kuid_t uid, kgid_t gid,
668 unsigned flags)
669 {
670 struct kernfs_node *kn;
671
672 if (parent->mode & S_ISGID) {
673 /* this code block imitates inode_init_owner() for
674 * kernfs
675 */
676
677 if (parent->iattr)
678 gid = parent->iattr->ia_gid;
679
680 if (flags & KERNFS_DIR)
681 mode |= S_ISGID;
682 }
683
684 kn = __kernfs_new_node(kernfs_root(parent), parent,
685 name, mode, uid, gid, flags);
686 if (kn) {
687 kernfs_get(parent);
688 kn->parent = parent;
689 }
690 return kn;
691 }
692
693 /*
694 * kernfs_find_and_get_node_by_id - get kernfs_node from node id
695 * @root: the kernfs root
696 * @id: the target node id
697 *
698 * @id's lower 32bits encode ino and upper gen. If the gen portion is
699 * zero, all generations are matched.
700 *
701 * RETURNS:
702 * NULL on failure. Return a kernfs node with reference counter incremented
703 */
kernfs_find_and_get_node_by_id(struct kernfs_root * root,u64 id)704 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
705 u64 id)
706 {
707 struct kernfs_node *kn;
708 ino_t ino = kernfs_id_ino(id);
709 u32 gen = kernfs_id_gen(id);
710
711 spin_lock(&kernfs_idr_lock);
712
713 kn = idr_find(&root->ino_idr, (u32)ino);
714 if (!kn)
715 goto err_unlock;
716
717 if (sizeof(ino_t) >= sizeof(u64)) {
718 /* we looked up with the low 32bits, compare the whole */
719 if (kernfs_ino(kn) != ino)
720 goto err_unlock;
721 } else {
722 /* 0 matches all generations */
723 if (unlikely(gen && kernfs_gen(kn) != gen))
724 goto err_unlock;
725 }
726
727 /*
728 * We should fail if @kn has never been activated and guarantee success
729 * if the caller knows that @kn is active. Both can be achieved by
730 * __kernfs_active() which tests @kn->active without kernfs_rwsem.
731 */
732 if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count)))
733 goto err_unlock;
734
735 spin_unlock(&kernfs_idr_lock);
736 return kn;
737 err_unlock:
738 spin_unlock(&kernfs_idr_lock);
739 return NULL;
740 }
741
742 /**
743 * kernfs_add_one - add kernfs_node to parent without warning
744 * @kn: kernfs_node to be added
745 *
746 * The caller must already have initialized @kn->parent. This
747 * function increments nlink of the parent's inode if @kn is a
748 * directory and link into the children list of the parent.
749 *
750 * RETURNS:
751 * 0 on success, -EEXIST if entry with the given name already
752 * exists.
753 */
kernfs_add_one(struct kernfs_node * kn)754 int kernfs_add_one(struct kernfs_node *kn)
755 {
756 struct kernfs_node *parent = kn->parent;
757 struct kernfs_root *root = kernfs_root(parent);
758 struct kernfs_iattrs *ps_iattr;
759 bool has_ns;
760 int ret;
761
762 down_write(&root->kernfs_rwsem);
763
764 ret = -EINVAL;
765 has_ns = kernfs_ns_enabled(parent);
766 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
767 has_ns ? "required" : "invalid", parent->name, kn->name))
768 goto out_unlock;
769
770 if (kernfs_type(parent) != KERNFS_DIR)
771 goto out_unlock;
772
773 ret = -ENOENT;
774 if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR))
775 goto out_unlock;
776
777 kn->hash = kernfs_name_hash(kn->name, kn->ns);
778
779 ret = kernfs_link_sibling(kn);
780 if (ret)
781 goto out_unlock;
782
783 /* Update timestamps on the parent */
784 ps_iattr = parent->iattr;
785 if (ps_iattr) {
786 ktime_get_real_ts64(&ps_iattr->ia_ctime);
787 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
788 }
789
790 up_write(&root->kernfs_rwsem);
791
792 /*
793 * Activate the new node unless CREATE_DEACTIVATED is requested.
794 * If not activated here, the kernfs user is responsible for
795 * activating the node with kernfs_activate(). A node which hasn't
796 * been activated is not visible to userland and its removal won't
797 * trigger deactivation.
798 */
799 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
800 kernfs_activate(kn);
801 return 0;
802
803 out_unlock:
804 up_write(&root->kernfs_rwsem);
805 return ret;
806 }
807
808 /**
809 * kernfs_find_ns - find kernfs_node with the given name
810 * @parent: kernfs_node to search under
811 * @name: name to look for
812 * @ns: the namespace tag to use
813 *
814 * Look for kernfs_node with name @name under @parent. Returns pointer to
815 * the found kernfs_node on success, %NULL on failure.
816 */
kernfs_find_ns(struct kernfs_node * parent,const unsigned char * name,const void * ns)817 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
818 const unsigned char *name,
819 const void *ns)
820 {
821 struct rb_node *node = parent->dir.children.rb_node;
822 bool has_ns = kernfs_ns_enabled(parent);
823 unsigned int hash;
824
825 lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem);
826
827 if (has_ns != (bool)ns) {
828 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
829 has_ns ? "required" : "invalid", parent->name, name);
830 return NULL;
831 }
832
833 hash = kernfs_name_hash(name, ns);
834 while (node) {
835 struct kernfs_node *kn;
836 int result;
837
838 kn = rb_to_kn(node);
839 result = kernfs_name_compare(hash, name, ns, kn);
840 if (result < 0)
841 node = node->rb_left;
842 else if (result > 0)
843 node = node->rb_right;
844 else
845 return kn;
846 }
847 return NULL;
848 }
849
kernfs_walk_ns(struct kernfs_node * parent,const unsigned char * path,const void * ns)850 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
851 const unsigned char *path,
852 const void *ns)
853 {
854 size_t len;
855 char *p, *name;
856
857 lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem);
858
859 spin_lock_irq(&kernfs_pr_cont_lock);
860
861 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
862
863 if (len >= sizeof(kernfs_pr_cont_buf)) {
864 spin_unlock_irq(&kernfs_pr_cont_lock);
865 return NULL;
866 }
867
868 p = kernfs_pr_cont_buf;
869
870 while ((name = strsep(&p, "/")) && parent) {
871 if (*name == '\0')
872 continue;
873 parent = kernfs_find_ns(parent, name, ns);
874 }
875
876 spin_unlock_irq(&kernfs_pr_cont_lock);
877
878 return parent;
879 }
880
881 /**
882 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
883 * @parent: kernfs_node to search under
884 * @name: name to look for
885 * @ns: the namespace tag to use
886 *
887 * Look for kernfs_node with name @name under @parent and get a reference
888 * if found. This function may sleep and returns pointer to the found
889 * kernfs_node on success, %NULL on failure.
890 */
kernfs_find_and_get_ns(struct kernfs_node * parent,const char * name,const void * ns)891 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
892 const char *name, const void *ns)
893 {
894 struct kernfs_node *kn;
895 struct kernfs_root *root = kernfs_root(parent);
896
897 down_read(&root->kernfs_rwsem);
898 kn = kernfs_find_ns(parent, name, ns);
899 kernfs_get(kn);
900 up_read(&root->kernfs_rwsem);
901
902 return kn;
903 }
904 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
905
906 /**
907 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
908 * @parent: kernfs_node to search under
909 * @path: path to look for
910 * @ns: the namespace tag to use
911 *
912 * Look for kernfs_node with path @path under @parent and get a reference
913 * if found. This function may sleep and returns pointer to the found
914 * kernfs_node on success, %NULL on failure.
915 */
kernfs_walk_and_get_ns(struct kernfs_node * parent,const char * path,const void * ns)916 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
917 const char *path, const void *ns)
918 {
919 struct kernfs_node *kn;
920 struct kernfs_root *root = kernfs_root(parent);
921
922 down_read(&root->kernfs_rwsem);
923 kn = kernfs_walk_ns(parent, path, ns);
924 kernfs_get(kn);
925 up_read(&root->kernfs_rwsem);
926
927 return kn;
928 }
929
930 /**
931 * kernfs_create_root - create a new kernfs hierarchy
932 * @scops: optional syscall operations for the hierarchy
933 * @flags: KERNFS_ROOT_* flags
934 * @priv: opaque data associated with the new directory
935 *
936 * Returns the root of the new hierarchy on success, ERR_PTR() value on
937 * failure.
938 */
kernfs_create_root(struct kernfs_syscall_ops * scops,unsigned int flags,void * priv)939 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
940 unsigned int flags, void *priv)
941 {
942 struct kernfs_root *root;
943 struct kernfs_node *kn;
944
945 root = kzalloc(sizeof(*root), GFP_KERNEL);
946 if (!root)
947 return ERR_PTR(-ENOMEM);
948
949 idr_init(&root->ino_idr);
950 init_rwsem(&root->kernfs_rwsem);
951 INIT_LIST_HEAD(&root->supers);
952
953 /*
954 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino.
955 * High bits generation. The starting value for both ino and
956 * genenration is 1. Initialize upper 32bit allocation
957 * accordingly.
958 */
959 if (sizeof(ino_t) >= sizeof(u64))
960 root->id_highbits = 0;
961 else
962 root->id_highbits = 1;
963
964 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
965 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
966 KERNFS_DIR);
967 if (!kn) {
968 idr_destroy(&root->ino_idr);
969 kfree(root);
970 return ERR_PTR(-ENOMEM);
971 }
972
973 kn->priv = priv;
974 kn->dir.root = root;
975
976 root->syscall_ops = scops;
977 root->flags = flags;
978 root->kn = kn;
979 init_waitqueue_head(&root->deactivate_waitq);
980
981 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
982 kernfs_activate(kn);
983
984 return root;
985 }
986
987 /**
988 * kernfs_destroy_root - destroy a kernfs hierarchy
989 * @root: root of the hierarchy to destroy
990 *
991 * Destroy the hierarchy anchored at @root by removing all existing
992 * directories and destroying @root.
993 */
kernfs_destroy_root(struct kernfs_root * root)994 void kernfs_destroy_root(struct kernfs_root *root)
995 {
996 /*
997 * kernfs_remove holds kernfs_rwsem from the root so the root
998 * shouldn't be freed during the operation.
999 */
1000 kernfs_get(root->kn);
1001 kernfs_remove(root->kn);
1002 kernfs_put(root->kn); /* will also free @root */
1003 }
1004
1005 /**
1006 * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root
1007 * @root: root to use to lookup
1008 */
kernfs_root_to_node(struct kernfs_root * root)1009 struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root)
1010 {
1011 return root->kn;
1012 }
1013
1014 /**
1015 * kernfs_create_dir_ns - create a directory
1016 * @parent: parent in which to create a new directory
1017 * @name: name of the new directory
1018 * @mode: mode of the new directory
1019 * @uid: uid of the new directory
1020 * @gid: gid of the new directory
1021 * @priv: opaque data associated with the new directory
1022 * @ns: optional namespace tag of the directory
1023 *
1024 * Returns the created node on success, ERR_PTR() value on failure.
1025 */
kernfs_create_dir_ns(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,void * priv,const void * ns)1026 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1027 const char *name, umode_t mode,
1028 kuid_t uid, kgid_t gid,
1029 void *priv, const void *ns)
1030 {
1031 struct kernfs_node *kn;
1032 int rc;
1033
1034 /* allocate */
1035 kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1036 uid, gid, KERNFS_DIR);
1037 if (!kn)
1038 return ERR_PTR(-ENOMEM);
1039
1040 kn->dir.root = parent->dir.root;
1041 kn->ns = ns;
1042 kn->priv = priv;
1043
1044 /* link in */
1045 rc = kernfs_add_one(kn);
1046 if (!rc)
1047 return kn;
1048
1049 kernfs_put(kn);
1050 return ERR_PTR(rc);
1051 }
1052
1053 /**
1054 * kernfs_create_empty_dir - create an always empty directory
1055 * @parent: parent in which to create a new directory
1056 * @name: name of the new directory
1057 *
1058 * Returns the created node on success, ERR_PTR() value on failure.
1059 */
kernfs_create_empty_dir(struct kernfs_node * parent,const char * name)1060 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1061 const char *name)
1062 {
1063 struct kernfs_node *kn;
1064 int rc;
1065
1066 /* allocate */
1067 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1068 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1069 if (!kn)
1070 return ERR_PTR(-ENOMEM);
1071
1072 kn->flags |= KERNFS_EMPTY_DIR;
1073 kn->dir.root = parent->dir.root;
1074 kn->ns = NULL;
1075 kn->priv = NULL;
1076
1077 /* link in */
1078 rc = kernfs_add_one(kn);
1079 if (!rc)
1080 return kn;
1081
1082 kernfs_put(kn);
1083 return ERR_PTR(rc);
1084 }
1085
kernfs_dop_revalidate(struct dentry * dentry,unsigned int flags)1086 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
1087 {
1088 struct kernfs_node *kn;
1089 struct kernfs_root *root;
1090
1091 if (flags & LOOKUP_RCU)
1092 return -ECHILD;
1093
1094 /* Negative hashed dentry? */
1095 if (d_really_is_negative(dentry)) {
1096 struct kernfs_node *parent;
1097
1098 /* If the kernfs parent node has changed discard and
1099 * proceed to ->lookup.
1100 */
1101 spin_lock(&dentry->d_lock);
1102 parent = kernfs_dentry_node(dentry->d_parent);
1103 if (parent) {
1104 spin_unlock(&dentry->d_lock);
1105 root = kernfs_root(parent);
1106 down_read(&root->kernfs_rwsem);
1107 if (kernfs_dir_changed(parent, dentry)) {
1108 up_read(&root->kernfs_rwsem);
1109 return 0;
1110 }
1111 up_read(&root->kernfs_rwsem);
1112 } else
1113 spin_unlock(&dentry->d_lock);
1114
1115 /* The kernfs parent node hasn't changed, leave the
1116 * dentry negative and return success.
1117 */
1118 return 1;
1119 }
1120
1121 kn = kernfs_dentry_node(dentry);
1122 root = kernfs_root(kn);
1123 down_read(&root->kernfs_rwsem);
1124
1125 /* The kernfs node has been deactivated */
1126 if (!kernfs_active(kn))
1127 goto out_bad;
1128
1129 /* The kernfs node has been moved? */
1130 if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
1131 goto out_bad;
1132
1133 /* The kernfs node has been renamed */
1134 if (strcmp(dentry->d_name.name, kn->name) != 0)
1135 goto out_bad;
1136
1137 /* The kernfs node has been moved to a different namespace */
1138 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
1139 kernfs_info(dentry->d_sb)->ns != kn->ns)
1140 goto out_bad;
1141
1142 up_read(&root->kernfs_rwsem);
1143 return 1;
1144 out_bad:
1145 up_read(&root->kernfs_rwsem);
1146 return 0;
1147 }
1148
1149 const struct dentry_operations kernfs_dops = {
1150 .d_revalidate = kernfs_dop_revalidate,
1151 };
1152
kernfs_iop_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1153 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1154 struct dentry *dentry,
1155 unsigned int flags)
1156 {
1157 struct kernfs_node *parent = dir->i_private;
1158 struct kernfs_node *kn;
1159 struct kernfs_root *root;
1160 struct inode *inode = NULL;
1161 const void *ns = NULL;
1162
1163 root = kernfs_root(parent);
1164 down_read(&root->kernfs_rwsem);
1165 if (kernfs_ns_enabled(parent))
1166 ns = kernfs_info(dir->i_sb)->ns;
1167
1168 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1169 /* attach dentry and inode */
1170 if (kn) {
1171 /* Inactive nodes are invisible to the VFS so don't
1172 * create a negative.
1173 */
1174 if (!kernfs_active(kn)) {
1175 up_read(&root->kernfs_rwsem);
1176 return NULL;
1177 }
1178 inode = kernfs_get_inode(dir->i_sb, kn);
1179 if (!inode)
1180 inode = ERR_PTR(-ENOMEM);
1181 }
1182 /*
1183 * Needed for negative dentry validation.
1184 * The negative dentry can be created in kernfs_iop_lookup()
1185 * or transforms from positive dentry in dentry_unlink_inode()
1186 * called from vfs_rmdir().
1187 */
1188 if (!IS_ERR(inode))
1189 kernfs_set_rev(parent, dentry);
1190 up_read(&root->kernfs_rwsem);
1191
1192 /* instantiate and hash (possibly negative) dentry */
1193 return d_splice_alias(inode, dentry);
1194 }
1195
kernfs_iop_mkdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)1196 static int kernfs_iop_mkdir(struct user_namespace *mnt_userns,
1197 struct inode *dir, struct dentry *dentry,
1198 umode_t mode)
1199 {
1200 struct kernfs_node *parent = dir->i_private;
1201 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1202 int ret;
1203
1204 if (!scops || !scops->mkdir)
1205 return -EPERM;
1206
1207 if (!kernfs_get_active(parent))
1208 return -ENODEV;
1209
1210 ret = scops->mkdir(parent, dentry->d_name.name, mode);
1211
1212 kernfs_put_active(parent);
1213 return ret;
1214 }
1215
kernfs_iop_rmdir(struct inode * dir,struct dentry * dentry)1216 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1217 {
1218 struct kernfs_node *kn = kernfs_dentry_node(dentry);
1219 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1220 int ret;
1221
1222 if (!scops || !scops->rmdir)
1223 return -EPERM;
1224
1225 if (!kernfs_get_active(kn))
1226 return -ENODEV;
1227
1228 ret = scops->rmdir(kn);
1229
1230 kernfs_put_active(kn);
1231 return ret;
1232 }
1233
kernfs_iop_rename(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1234 static int kernfs_iop_rename(struct user_namespace *mnt_userns,
1235 struct inode *old_dir, struct dentry *old_dentry,
1236 struct inode *new_dir, struct dentry *new_dentry,
1237 unsigned int flags)
1238 {
1239 struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1240 struct kernfs_node *new_parent = new_dir->i_private;
1241 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1242 int ret;
1243
1244 if (flags)
1245 return -EINVAL;
1246
1247 if (!scops || !scops->rename)
1248 return -EPERM;
1249
1250 if (!kernfs_get_active(kn))
1251 return -ENODEV;
1252
1253 if (!kernfs_get_active(new_parent)) {
1254 kernfs_put_active(kn);
1255 return -ENODEV;
1256 }
1257
1258 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1259
1260 kernfs_put_active(new_parent);
1261 kernfs_put_active(kn);
1262 return ret;
1263 }
1264
1265 const struct inode_operations kernfs_dir_iops = {
1266 .lookup = kernfs_iop_lookup,
1267 .permission = kernfs_iop_permission,
1268 .setattr = kernfs_iop_setattr,
1269 .getattr = kernfs_iop_getattr,
1270 .listxattr = kernfs_iop_listxattr,
1271
1272 .mkdir = kernfs_iop_mkdir,
1273 .rmdir = kernfs_iop_rmdir,
1274 .rename = kernfs_iop_rename,
1275 };
1276
kernfs_leftmost_descendant(struct kernfs_node * pos)1277 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1278 {
1279 struct kernfs_node *last;
1280
1281 while (true) {
1282 struct rb_node *rbn;
1283
1284 last = pos;
1285
1286 if (kernfs_type(pos) != KERNFS_DIR)
1287 break;
1288
1289 rbn = rb_first(&pos->dir.children);
1290 if (!rbn)
1291 break;
1292
1293 pos = rb_to_kn(rbn);
1294 }
1295
1296 return last;
1297 }
1298
1299 /**
1300 * kernfs_next_descendant_post - find the next descendant for post-order walk
1301 * @pos: the current position (%NULL to initiate traversal)
1302 * @root: kernfs_node whose descendants to walk
1303 *
1304 * Find the next descendant to visit for post-order traversal of @root's
1305 * descendants. @root is included in the iteration and the last node to be
1306 * visited.
1307 */
kernfs_next_descendant_post(struct kernfs_node * pos,struct kernfs_node * root)1308 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1309 struct kernfs_node *root)
1310 {
1311 struct rb_node *rbn;
1312
1313 lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem);
1314
1315 /* if first iteration, visit leftmost descendant which may be root */
1316 if (!pos)
1317 return kernfs_leftmost_descendant(root);
1318
1319 /* if we visited @root, we're done */
1320 if (pos == root)
1321 return NULL;
1322
1323 /* if there's an unvisited sibling, visit its leftmost descendant */
1324 rbn = rb_next(&pos->rb);
1325 if (rbn)
1326 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1327
1328 /* no sibling left, visit parent */
1329 return pos->parent;
1330 }
1331
kernfs_activate_one(struct kernfs_node * kn)1332 static void kernfs_activate_one(struct kernfs_node *kn)
1333 {
1334 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1335
1336 kn->flags |= KERNFS_ACTIVATED;
1337
1338 if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING)))
1339 return;
1340
1341 WARN_ON_ONCE(kn->parent && RB_EMPTY_NODE(&kn->rb));
1342 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1343
1344 atomic_sub(KN_DEACTIVATED_BIAS, &kn->active);
1345 }
1346
1347 /**
1348 * kernfs_activate - activate a node which started deactivated
1349 * @kn: kernfs_node whose subtree is to be activated
1350 *
1351 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1352 * needs to be explicitly activated. A node which hasn't been activated
1353 * isn't visible to userland and deactivation is skipped during its
1354 * removal. This is useful to construct atomic init sequences where
1355 * creation of multiple nodes should either succeed or fail atomically.
1356 *
1357 * The caller is responsible for ensuring that this function is not called
1358 * after kernfs_remove*() is invoked on @kn.
1359 */
kernfs_activate(struct kernfs_node * kn)1360 void kernfs_activate(struct kernfs_node *kn)
1361 {
1362 struct kernfs_node *pos;
1363 struct kernfs_root *root = kernfs_root(kn);
1364
1365 down_write(&root->kernfs_rwsem);
1366
1367 pos = NULL;
1368 while ((pos = kernfs_next_descendant_post(pos, kn)))
1369 kernfs_activate_one(pos);
1370
1371 up_write(&root->kernfs_rwsem);
1372 }
1373
1374 /**
1375 * kernfs_show - show or hide a node
1376 * @kn: kernfs_node to show or hide
1377 * @show: whether to show or hide
1378 *
1379 * If @show is %false, @kn is marked hidden and deactivated. A hidden node is
1380 * ignored in future activaitons. If %true, the mark is removed and activation
1381 * state is restored. This function won't implicitly activate a new node in a
1382 * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet.
1383 *
1384 * To avoid recursion complexities, directories aren't supported for now.
1385 */
kernfs_show(struct kernfs_node * kn,bool show)1386 void kernfs_show(struct kernfs_node *kn, bool show)
1387 {
1388 struct kernfs_root *root = kernfs_root(kn);
1389
1390 if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR))
1391 return;
1392
1393 down_write(&root->kernfs_rwsem);
1394
1395 if (show) {
1396 kn->flags &= ~KERNFS_HIDDEN;
1397 if (kn->flags & KERNFS_ACTIVATED)
1398 kernfs_activate_one(kn);
1399 } else {
1400 kn->flags |= KERNFS_HIDDEN;
1401 if (kernfs_active(kn))
1402 atomic_add(KN_DEACTIVATED_BIAS, &kn->active);
1403 kernfs_drain(kn);
1404 }
1405
1406 up_write(&root->kernfs_rwsem);
1407 }
1408
__kernfs_remove(struct kernfs_node * kn)1409 static void __kernfs_remove(struct kernfs_node *kn)
1410 {
1411 struct kernfs_node *pos;
1412
1413 /* Short-circuit if non-root @kn has already finished removal. */
1414 if (!kn)
1415 return;
1416
1417 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1418
1419 /*
1420 * This is for kernfs_remove_self() which plays with active ref
1421 * after removal.
1422 */
1423 if (kn->parent && RB_EMPTY_NODE(&kn->rb))
1424 return;
1425
1426 pr_debug("kernfs %s: removing\n", kn->name);
1427
1428 /* prevent new usage by marking all nodes removing and deactivating */
1429 pos = NULL;
1430 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1431 pos->flags |= KERNFS_REMOVING;
1432 if (kernfs_active(pos))
1433 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1434 }
1435
1436 /* deactivate and unlink the subtree node-by-node */
1437 do {
1438 pos = kernfs_leftmost_descendant(kn);
1439
1440 /*
1441 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's
1442 * base ref could have been put by someone else by the time
1443 * the function returns. Make sure it doesn't go away
1444 * underneath us.
1445 */
1446 kernfs_get(pos);
1447
1448 kernfs_drain(pos);
1449
1450 /*
1451 * kernfs_unlink_sibling() succeeds once per node. Use it
1452 * to decide who's responsible for cleanups.
1453 */
1454 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1455 struct kernfs_iattrs *ps_iattr =
1456 pos->parent ? pos->parent->iattr : NULL;
1457
1458 /* update timestamps on the parent */
1459 if (ps_iattr) {
1460 ktime_get_real_ts64(&ps_iattr->ia_ctime);
1461 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1462 }
1463
1464 kernfs_put(pos);
1465 }
1466
1467 kernfs_put(pos);
1468 } while (pos != kn);
1469 }
1470
1471 /**
1472 * kernfs_remove - remove a kernfs_node recursively
1473 * @kn: the kernfs_node to remove
1474 *
1475 * Remove @kn along with all its subdirectories and files.
1476 */
kernfs_remove(struct kernfs_node * kn)1477 void kernfs_remove(struct kernfs_node *kn)
1478 {
1479 struct kernfs_root *root;
1480
1481 if (!kn)
1482 return;
1483
1484 root = kernfs_root(kn);
1485
1486 down_write(&root->kernfs_rwsem);
1487 __kernfs_remove(kn);
1488 up_write(&root->kernfs_rwsem);
1489 }
1490
1491 /**
1492 * kernfs_break_active_protection - break out of active protection
1493 * @kn: the self kernfs_node
1494 *
1495 * The caller must be running off of a kernfs operation which is invoked
1496 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1497 * this function must also be matched with an invocation of
1498 * kernfs_unbreak_active_protection().
1499 *
1500 * This function releases the active reference of @kn the caller is
1501 * holding. Once this function is called, @kn may be removed at any point
1502 * and the caller is solely responsible for ensuring that the objects it
1503 * dereferences are accessible.
1504 */
kernfs_break_active_protection(struct kernfs_node * kn)1505 void kernfs_break_active_protection(struct kernfs_node *kn)
1506 {
1507 /*
1508 * Take out ourself out of the active ref dependency chain. If
1509 * we're called without an active ref, lockdep will complain.
1510 */
1511 kernfs_put_active(kn);
1512 }
1513
1514 /**
1515 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1516 * @kn: the self kernfs_node
1517 *
1518 * If kernfs_break_active_protection() was called, this function must be
1519 * invoked before finishing the kernfs operation. Note that while this
1520 * function restores the active reference, it doesn't and can't actually
1521 * restore the active protection - @kn may already or be in the process of
1522 * being removed. Once kernfs_break_active_protection() is invoked, that
1523 * protection is irreversibly gone for the kernfs operation instance.
1524 *
1525 * While this function may be called at any point after
1526 * kernfs_break_active_protection() is invoked, its most useful location
1527 * would be right before the enclosing kernfs operation returns.
1528 */
kernfs_unbreak_active_protection(struct kernfs_node * kn)1529 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1530 {
1531 /*
1532 * @kn->active could be in any state; however, the increment we do
1533 * here will be undone as soon as the enclosing kernfs operation
1534 * finishes and this temporary bump can't break anything. If @kn
1535 * is alive, nothing changes. If @kn is being deactivated, the
1536 * soon-to-follow put will either finish deactivation or restore
1537 * deactivated state. If @kn is already removed, the temporary
1538 * bump is guaranteed to be gone before @kn is released.
1539 */
1540 atomic_inc(&kn->active);
1541 if (kernfs_lockdep(kn))
1542 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1543 }
1544
1545 /**
1546 * kernfs_remove_self - remove a kernfs_node from its own method
1547 * @kn: the self kernfs_node to remove
1548 *
1549 * The caller must be running off of a kernfs operation which is invoked
1550 * with an active reference - e.g. one of kernfs_ops. This can be used to
1551 * implement a file operation which deletes itself.
1552 *
1553 * For example, the "delete" file for a sysfs device directory can be
1554 * implemented by invoking kernfs_remove_self() on the "delete" file
1555 * itself. This function breaks the circular dependency of trying to
1556 * deactivate self while holding an active ref itself. It isn't necessary
1557 * to modify the usual removal path to use kernfs_remove_self(). The
1558 * "delete" implementation can simply invoke kernfs_remove_self() on self
1559 * before proceeding with the usual removal path. kernfs will ignore later
1560 * kernfs_remove() on self.
1561 *
1562 * kernfs_remove_self() can be called multiple times concurrently on the
1563 * same kernfs_node. Only the first one actually performs removal and
1564 * returns %true. All others will wait until the kernfs operation which
1565 * won self-removal finishes and return %false. Note that the losers wait
1566 * for the completion of not only the winning kernfs_remove_self() but also
1567 * the whole kernfs_ops which won the arbitration. This can be used to
1568 * guarantee, for example, all concurrent writes to a "delete" file to
1569 * finish only after the whole operation is complete.
1570 */
kernfs_remove_self(struct kernfs_node * kn)1571 bool kernfs_remove_self(struct kernfs_node *kn)
1572 {
1573 bool ret;
1574 struct kernfs_root *root = kernfs_root(kn);
1575
1576 down_write(&root->kernfs_rwsem);
1577 kernfs_break_active_protection(kn);
1578
1579 /*
1580 * SUICIDAL is used to arbitrate among competing invocations. Only
1581 * the first one will actually perform removal. When the removal
1582 * is complete, SUICIDED is set and the active ref is restored
1583 * while kernfs_rwsem for held exclusive. The ones which lost
1584 * arbitration waits for SUICIDED && drained which can happen only
1585 * after the enclosing kernfs operation which executed the winning
1586 * instance of kernfs_remove_self() finished.
1587 */
1588 if (!(kn->flags & KERNFS_SUICIDAL)) {
1589 kn->flags |= KERNFS_SUICIDAL;
1590 __kernfs_remove(kn);
1591 kn->flags |= KERNFS_SUICIDED;
1592 ret = true;
1593 } else {
1594 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1595 DEFINE_WAIT(wait);
1596
1597 while (true) {
1598 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1599
1600 if ((kn->flags & KERNFS_SUICIDED) &&
1601 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1602 break;
1603
1604 up_write(&root->kernfs_rwsem);
1605 schedule();
1606 down_write(&root->kernfs_rwsem);
1607 }
1608 finish_wait(waitq, &wait);
1609 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1610 ret = false;
1611 }
1612
1613 /*
1614 * This must be done while kernfs_rwsem held exclusive; otherwise,
1615 * waiting for SUICIDED && deactivated could finish prematurely.
1616 */
1617 kernfs_unbreak_active_protection(kn);
1618
1619 up_write(&root->kernfs_rwsem);
1620 return ret;
1621 }
1622
1623 /**
1624 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1625 * @parent: parent of the target
1626 * @name: name of the kernfs_node to remove
1627 * @ns: namespace tag of the kernfs_node to remove
1628 *
1629 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1630 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1631 */
kernfs_remove_by_name_ns(struct kernfs_node * parent,const char * name,const void * ns)1632 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1633 const void *ns)
1634 {
1635 struct kernfs_node *kn;
1636 struct kernfs_root *root;
1637
1638 if (!parent) {
1639 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1640 name);
1641 return -ENOENT;
1642 }
1643
1644 root = kernfs_root(parent);
1645 down_write(&root->kernfs_rwsem);
1646
1647 kn = kernfs_find_ns(parent, name, ns);
1648 if (kn) {
1649 kernfs_get(kn);
1650 __kernfs_remove(kn);
1651 kernfs_put(kn);
1652 }
1653
1654 up_write(&root->kernfs_rwsem);
1655
1656 if (kn)
1657 return 0;
1658 else
1659 return -ENOENT;
1660 }
1661
1662 /**
1663 * kernfs_rename_ns - move and rename a kernfs_node
1664 * @kn: target node
1665 * @new_parent: new parent to put @sd under
1666 * @new_name: new name
1667 * @new_ns: new namespace tag
1668 */
kernfs_rename_ns(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name,const void * new_ns)1669 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1670 const char *new_name, const void *new_ns)
1671 {
1672 struct kernfs_node *old_parent;
1673 struct kernfs_root *root;
1674 const char *old_name = NULL;
1675 int error;
1676
1677 /* can't move or rename root */
1678 if (!kn->parent)
1679 return -EINVAL;
1680
1681 root = kernfs_root(kn);
1682 down_write(&root->kernfs_rwsem);
1683
1684 error = -ENOENT;
1685 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1686 (new_parent->flags & KERNFS_EMPTY_DIR))
1687 goto out;
1688
1689 error = 0;
1690 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1691 (strcmp(kn->name, new_name) == 0))
1692 goto out; /* nothing to rename */
1693
1694 error = -EEXIST;
1695 if (kernfs_find_ns(new_parent, new_name, new_ns))
1696 goto out;
1697
1698 /* rename kernfs_node */
1699 if (strcmp(kn->name, new_name) != 0) {
1700 error = -ENOMEM;
1701 new_name = kstrdup_const(new_name, GFP_KERNEL);
1702 if (!new_name)
1703 goto out;
1704 } else {
1705 new_name = NULL;
1706 }
1707
1708 /*
1709 * Move to the appropriate place in the appropriate directories rbtree.
1710 */
1711 kernfs_unlink_sibling(kn);
1712 kernfs_get(new_parent);
1713
1714 /* rename_lock protects ->parent and ->name accessors */
1715 spin_lock_irq(&kernfs_rename_lock);
1716
1717 old_parent = kn->parent;
1718 kn->parent = new_parent;
1719
1720 kn->ns = new_ns;
1721 if (new_name) {
1722 old_name = kn->name;
1723 kn->name = new_name;
1724 }
1725
1726 spin_unlock_irq(&kernfs_rename_lock);
1727
1728 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1729 kernfs_link_sibling(kn);
1730
1731 kernfs_put(old_parent);
1732 kfree_const(old_name);
1733
1734 error = 0;
1735 out:
1736 up_write(&root->kernfs_rwsem);
1737 return error;
1738 }
1739
1740 /* Relationship between mode and the DT_xxx types */
dt_type(struct kernfs_node * kn)1741 static inline unsigned char dt_type(struct kernfs_node *kn)
1742 {
1743 return (kn->mode >> 12) & 15;
1744 }
1745
kernfs_dir_fop_release(struct inode * inode,struct file * filp)1746 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1747 {
1748 kernfs_put(filp->private_data);
1749 return 0;
1750 }
1751
kernfs_dir_pos(const void * ns,struct kernfs_node * parent,loff_t hash,struct kernfs_node * pos)1752 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1753 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1754 {
1755 if (pos) {
1756 int valid = kernfs_active(pos) &&
1757 pos->parent == parent && hash == pos->hash;
1758 kernfs_put(pos);
1759 if (!valid)
1760 pos = NULL;
1761 }
1762 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1763 struct rb_node *node = parent->dir.children.rb_node;
1764 while (node) {
1765 pos = rb_to_kn(node);
1766
1767 if (hash < pos->hash)
1768 node = node->rb_left;
1769 else if (hash > pos->hash)
1770 node = node->rb_right;
1771 else
1772 break;
1773 }
1774 }
1775 /* Skip over entries which are dying/dead or in the wrong namespace */
1776 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1777 struct rb_node *node = rb_next(&pos->rb);
1778 if (!node)
1779 pos = NULL;
1780 else
1781 pos = rb_to_kn(node);
1782 }
1783 return pos;
1784 }
1785
kernfs_dir_next_pos(const void * ns,struct kernfs_node * parent,ino_t ino,struct kernfs_node * pos)1786 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1787 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1788 {
1789 pos = kernfs_dir_pos(ns, parent, ino, pos);
1790 if (pos) {
1791 do {
1792 struct rb_node *node = rb_next(&pos->rb);
1793 if (!node)
1794 pos = NULL;
1795 else
1796 pos = rb_to_kn(node);
1797 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1798 }
1799 return pos;
1800 }
1801
kernfs_fop_readdir(struct file * file,struct dir_context * ctx)1802 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1803 {
1804 struct dentry *dentry = file->f_path.dentry;
1805 struct kernfs_node *parent = kernfs_dentry_node(dentry);
1806 struct kernfs_node *pos = file->private_data;
1807 struct kernfs_root *root;
1808 const void *ns = NULL;
1809
1810 if (!dir_emit_dots(file, ctx))
1811 return 0;
1812
1813 root = kernfs_root(parent);
1814 down_read(&root->kernfs_rwsem);
1815
1816 if (kernfs_ns_enabled(parent))
1817 ns = kernfs_info(dentry->d_sb)->ns;
1818
1819 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1820 pos;
1821 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1822 const char *name = pos->name;
1823 unsigned int type = dt_type(pos);
1824 int len = strlen(name);
1825 ino_t ino = kernfs_ino(pos);
1826
1827 ctx->pos = pos->hash;
1828 file->private_data = pos;
1829 kernfs_get(pos);
1830
1831 up_read(&root->kernfs_rwsem);
1832 if (!dir_emit(ctx, name, len, ino, type))
1833 return 0;
1834 down_read(&root->kernfs_rwsem);
1835 }
1836 up_read(&root->kernfs_rwsem);
1837 file->private_data = NULL;
1838 ctx->pos = INT_MAX;
1839 return 0;
1840 }
1841
1842 const struct file_operations kernfs_dir_fops = {
1843 .read = generic_read_dir,
1844 .iterate_shared = kernfs_fop_readdir,
1845 .release = kernfs_dir_fop_release,
1846 .llseek = generic_file_llseek,
1847 };
1848