• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/dir.c - kernfs directory implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/fs.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
17 
18 #include "kernfs-internal.h"
19 
20 static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
21 /*
22  * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
23  * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
24  * will perform wakeups when releasing console_sem. Holding rename_lock
25  * will introduce deadlock if the scheduler reads the kernfs_name in the
26  * wakeup path.
27  */
28 static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
29 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by pr_cont_lock */
30 static DEFINE_SPINLOCK(kernfs_idr_lock);	/* root->ino_idr */
31 
32 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
33 
__kernfs_active(struct kernfs_node * kn)34 static bool __kernfs_active(struct kernfs_node *kn)
35 {
36 	return atomic_read(&kn->active) >= 0;
37 }
38 
kernfs_active(struct kernfs_node * kn)39 static bool kernfs_active(struct kernfs_node *kn)
40 {
41 	lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem);
42 	return __kernfs_active(kn);
43 }
44 
kernfs_lockdep(struct kernfs_node * kn)45 static bool kernfs_lockdep(struct kernfs_node *kn)
46 {
47 #ifdef CONFIG_DEBUG_LOCK_ALLOC
48 	return kn->flags & KERNFS_LOCKDEP;
49 #else
50 	return false;
51 #endif
52 }
53 
kernfs_name_locked(struct kernfs_node * kn,char * buf,size_t buflen)54 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
55 {
56 	if (!kn)
57 		return strlcpy(buf, "(null)", buflen);
58 
59 	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
60 }
61 
62 /* kernfs_node_depth - compute depth from @from to @to */
kernfs_depth(struct kernfs_node * from,struct kernfs_node * to)63 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
64 {
65 	size_t depth = 0;
66 
67 	while (to->parent && to != from) {
68 		depth++;
69 		to = to->parent;
70 	}
71 	return depth;
72 }
73 
kernfs_common_ancestor(struct kernfs_node * a,struct kernfs_node * b)74 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
75 						  struct kernfs_node *b)
76 {
77 	size_t da, db;
78 	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
79 
80 	if (ra != rb)
81 		return NULL;
82 
83 	da = kernfs_depth(ra->kn, a);
84 	db = kernfs_depth(rb->kn, b);
85 
86 	while (da > db) {
87 		a = a->parent;
88 		da--;
89 	}
90 	while (db > da) {
91 		b = b->parent;
92 		db--;
93 	}
94 
95 	/* worst case b and a will be the same at root */
96 	while (b != a) {
97 		b = b->parent;
98 		a = a->parent;
99 	}
100 
101 	return a;
102 }
103 
104 /**
105  * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
106  * where kn_from is treated as root of the path.
107  * @kn_from: kernfs node which should be treated as root for the path
108  * @kn_to: kernfs node to which path is needed
109  * @buf: buffer to copy the path into
110  * @buflen: size of @buf
111  *
112  * We need to handle couple of scenarios here:
113  * [1] when @kn_from is an ancestor of @kn_to at some level
114  * kn_from: /n1/n2/n3
115  * kn_to:   /n1/n2/n3/n4/n5
116  * result:  /n4/n5
117  *
118  * [2] when @kn_from is on a different hierarchy and we need to find common
119  * ancestor between @kn_from and @kn_to.
120  * kn_from: /n1/n2/n3/n4
121  * kn_to:   /n1/n2/n5
122  * result:  /../../n5
123  * OR
124  * kn_from: /n1/n2/n3/n4/n5   [depth=5]
125  * kn_to:   /n1/n2/n3         [depth=3]
126  * result:  /../..
127  *
128  * [3] when @kn_to is NULL result will be "(null)"
129  *
130  * Returns the length of the full path.  If the full length is equal to or
131  * greater than @buflen, @buf contains the truncated path with the trailing
132  * '\0'.  On error, -errno is returned.
133  */
kernfs_path_from_node_locked(struct kernfs_node * kn_to,struct kernfs_node * kn_from,char * buf,size_t buflen)134 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
135 					struct kernfs_node *kn_from,
136 					char *buf, size_t buflen)
137 {
138 	struct kernfs_node *kn, *common;
139 	const char parent_str[] = "/..";
140 	size_t depth_from, depth_to, len = 0;
141 	int i, j;
142 
143 	if (!kn_to)
144 		return strlcpy(buf, "(null)", buflen);
145 
146 	if (!kn_from)
147 		kn_from = kernfs_root(kn_to)->kn;
148 
149 	if (kn_from == kn_to)
150 		return strlcpy(buf, "/", buflen);
151 
152 	if (!buf)
153 		return -EINVAL;
154 
155 	common = kernfs_common_ancestor(kn_from, kn_to);
156 	if (WARN_ON(!common))
157 		return -EINVAL;
158 
159 	depth_to = kernfs_depth(common, kn_to);
160 	depth_from = kernfs_depth(common, kn_from);
161 
162 	buf[0] = '\0';
163 
164 	for (i = 0; i < depth_from; i++)
165 		len += strlcpy(buf + len, parent_str,
166 			       len < buflen ? buflen - len : 0);
167 
168 	/* Calculate how many bytes we need for the rest */
169 	for (i = depth_to - 1; i >= 0; i--) {
170 		for (kn = kn_to, j = 0; j < i; j++)
171 			kn = kn->parent;
172 		len += strlcpy(buf + len, "/",
173 			       len < buflen ? buflen - len : 0);
174 		len += strlcpy(buf + len, kn->name,
175 			       len < buflen ? buflen - len : 0);
176 	}
177 
178 	return len;
179 }
180 
181 /**
182  * kernfs_name - obtain the name of a given node
183  * @kn: kernfs_node of interest
184  * @buf: buffer to copy @kn's name into
185  * @buflen: size of @buf
186  *
187  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
188  * similar to strlcpy().  It returns the length of @kn's name and if @buf
189  * isn't long enough, it's filled upto @buflen-1 and nul terminated.
190  *
191  * Fills buffer with "(null)" if @kn is NULL.
192  *
193  * This function can be called from any context.
194  */
kernfs_name(struct kernfs_node * kn,char * buf,size_t buflen)195 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
196 {
197 	unsigned long flags;
198 	int ret;
199 
200 	spin_lock_irqsave(&kernfs_rename_lock, flags);
201 	ret = kernfs_name_locked(kn, buf, buflen);
202 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
203 	return ret;
204 }
205 
206 /**
207  * kernfs_path_from_node - build path of node @to relative to @from.
208  * @from: parent kernfs_node relative to which we need to build the path
209  * @to: kernfs_node of interest
210  * @buf: buffer to copy @to's path into
211  * @buflen: size of @buf
212  *
213  * Builds @to's path relative to @from in @buf. @from and @to must
214  * be on the same kernfs-root. If @from is not parent of @to, then a relative
215  * path (which includes '..'s) as needed to reach from @from to @to is
216  * returned.
217  *
218  * Returns the length of the full path.  If the full length is equal to or
219  * greater than @buflen, @buf contains the truncated path with the trailing
220  * '\0'.  On error, -errno is returned.
221  */
kernfs_path_from_node(struct kernfs_node * to,struct kernfs_node * from,char * buf,size_t buflen)222 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
223 			  char *buf, size_t buflen)
224 {
225 	unsigned long flags;
226 	int ret;
227 
228 	spin_lock_irqsave(&kernfs_rename_lock, flags);
229 	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
230 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
231 	return ret;
232 }
233 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
234 
235 /**
236  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
237  * @kn: kernfs_node of interest
238  *
239  * This function can be called from any context.
240  */
pr_cont_kernfs_name(struct kernfs_node * kn)241 void pr_cont_kernfs_name(struct kernfs_node *kn)
242 {
243 	unsigned long flags;
244 
245 	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
246 
247 	kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
248 	pr_cont("%s", kernfs_pr_cont_buf);
249 
250 	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
251 }
252 
253 /**
254  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
255  * @kn: kernfs_node of interest
256  *
257  * This function can be called from any context.
258  */
pr_cont_kernfs_path(struct kernfs_node * kn)259 void pr_cont_kernfs_path(struct kernfs_node *kn)
260 {
261 	unsigned long flags;
262 	int sz;
263 
264 	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
265 
266 	sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
267 				   sizeof(kernfs_pr_cont_buf));
268 	if (sz < 0) {
269 		pr_cont("(error)");
270 		goto out;
271 	}
272 
273 	if (sz >= sizeof(kernfs_pr_cont_buf)) {
274 		pr_cont("(name too long)");
275 		goto out;
276 	}
277 
278 	pr_cont("%s", kernfs_pr_cont_buf);
279 
280 out:
281 	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
282 }
283 
284 /**
285  * kernfs_get_parent - determine the parent node and pin it
286  * @kn: kernfs_node of interest
287  *
288  * Determines @kn's parent, pins and returns it.  This function can be
289  * called from any context.
290  */
kernfs_get_parent(struct kernfs_node * kn)291 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
292 {
293 	struct kernfs_node *parent;
294 	unsigned long flags;
295 
296 	spin_lock_irqsave(&kernfs_rename_lock, flags);
297 	parent = kn->parent;
298 	kernfs_get(parent);
299 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
300 
301 	return parent;
302 }
303 
304 /**
305  *	kernfs_name_hash
306  *	@name: Null terminated string to hash
307  *	@ns:   Namespace tag to hash
308  *
309  *	Returns 31 bit hash of ns + name (so it fits in an off_t )
310  */
kernfs_name_hash(const char * name,const void * ns)311 static unsigned int kernfs_name_hash(const char *name, const void *ns)
312 {
313 	unsigned long hash = init_name_hash(ns);
314 	unsigned int len = strlen(name);
315 	while (len--)
316 		hash = partial_name_hash(*name++, hash);
317 	hash = end_name_hash(hash);
318 	hash &= 0x7fffffffU;
319 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
320 	if (hash < 2)
321 		hash += 2;
322 	if (hash >= INT_MAX)
323 		hash = INT_MAX - 1;
324 	return hash;
325 }
326 
kernfs_name_compare(unsigned int hash,const char * name,const void * ns,const struct kernfs_node * kn)327 static int kernfs_name_compare(unsigned int hash, const char *name,
328 			       const void *ns, const struct kernfs_node *kn)
329 {
330 	if (hash < kn->hash)
331 		return -1;
332 	if (hash > kn->hash)
333 		return 1;
334 	if (ns < kn->ns)
335 		return -1;
336 	if (ns > kn->ns)
337 		return 1;
338 	return strcmp(name, kn->name);
339 }
340 
kernfs_sd_compare(const struct kernfs_node * left,const struct kernfs_node * right)341 static int kernfs_sd_compare(const struct kernfs_node *left,
342 			     const struct kernfs_node *right)
343 {
344 	return kernfs_name_compare(left->hash, left->name, left->ns, right);
345 }
346 
347 /**
348  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
349  *	@kn: kernfs_node of interest
350  *
351  *	Link @kn into its sibling rbtree which starts from
352  *	@kn->parent->dir.children.
353  *
354  *	Locking:
355  *	kernfs_rwsem held exclusive
356  *
357  *	RETURNS:
358  *	0 on susccess -EEXIST on failure.
359  */
kernfs_link_sibling(struct kernfs_node * kn)360 static int kernfs_link_sibling(struct kernfs_node *kn)
361 {
362 	struct rb_node **node = &kn->parent->dir.children.rb_node;
363 	struct rb_node *parent = NULL;
364 
365 	while (*node) {
366 		struct kernfs_node *pos;
367 		int result;
368 
369 		pos = rb_to_kn(*node);
370 		parent = *node;
371 		result = kernfs_sd_compare(kn, pos);
372 		if (result < 0)
373 			node = &pos->rb.rb_left;
374 		else if (result > 0)
375 			node = &pos->rb.rb_right;
376 		else
377 			return -EEXIST;
378 	}
379 
380 	/* add new node and rebalance the tree */
381 	rb_link_node(&kn->rb, parent, node);
382 	rb_insert_color(&kn->rb, &kn->parent->dir.children);
383 
384 	/* successfully added, account subdir number */
385 	if (kernfs_type(kn) == KERNFS_DIR)
386 		kn->parent->dir.subdirs++;
387 	kernfs_inc_rev(kn->parent);
388 
389 	return 0;
390 }
391 
392 /**
393  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
394  *	@kn: kernfs_node of interest
395  *
396  *	Try to unlink @kn from its sibling rbtree which starts from
397  *	kn->parent->dir.children.  Returns %true if @kn was actually
398  *	removed, %false if @kn wasn't on the rbtree.
399  *
400  *	Locking:
401  *	kernfs_rwsem held exclusive
402  */
kernfs_unlink_sibling(struct kernfs_node * kn)403 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
404 {
405 	if (RB_EMPTY_NODE(&kn->rb))
406 		return false;
407 
408 	if (kernfs_type(kn) == KERNFS_DIR)
409 		kn->parent->dir.subdirs--;
410 	kernfs_inc_rev(kn->parent);
411 
412 	rb_erase(&kn->rb, &kn->parent->dir.children);
413 	RB_CLEAR_NODE(&kn->rb);
414 	return true;
415 }
416 
417 /**
418  *	kernfs_get_active - get an active reference to kernfs_node
419  *	@kn: kernfs_node to get an active reference to
420  *
421  *	Get an active reference of @kn.  This function is noop if @kn
422  *	is NULL.
423  *
424  *	RETURNS:
425  *	Pointer to @kn on success, NULL on failure.
426  */
kernfs_get_active(struct kernfs_node * kn)427 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
428 {
429 	if (unlikely(!kn))
430 		return NULL;
431 
432 	if (!atomic_inc_unless_negative(&kn->active))
433 		return NULL;
434 
435 	if (kernfs_lockdep(kn))
436 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
437 	return kn;
438 }
439 
440 /**
441  *	kernfs_put_active - put an active reference to kernfs_node
442  *	@kn: kernfs_node to put an active reference to
443  *
444  *	Put an active reference to @kn.  This function is noop if @kn
445  *	is NULL.
446  */
kernfs_put_active(struct kernfs_node * kn)447 void kernfs_put_active(struct kernfs_node *kn)
448 {
449 	int v;
450 
451 	if (unlikely(!kn))
452 		return;
453 
454 	if (kernfs_lockdep(kn))
455 		rwsem_release(&kn->dep_map, _RET_IP_);
456 	v = atomic_dec_return(&kn->active);
457 	if (likely(v != KN_DEACTIVATED_BIAS))
458 		return;
459 
460 	wake_up_all(&kernfs_root(kn)->deactivate_waitq);
461 }
462 
463 /**
464  * kernfs_drain - drain kernfs_node
465  * @kn: kernfs_node to drain
466  *
467  * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
468  * removers may invoke this function concurrently on @kn and all will
469  * return after draining is complete.
470  */
kernfs_drain(struct kernfs_node * kn)471 static void kernfs_drain(struct kernfs_node *kn)
472 	__releases(&kernfs_root(kn)->kernfs_rwsem)
473 	__acquires(&kernfs_root(kn)->kernfs_rwsem)
474 {
475 	struct kernfs_root *root = kernfs_root(kn);
476 
477 	lockdep_assert_held_write(&root->kernfs_rwsem);
478 	WARN_ON_ONCE(kernfs_active(kn));
479 
480 	/*
481 	 * Skip draining if already fully drained. This avoids draining and its
482 	 * lockdep annotations for nodes which have never been activated
483 	 * allowing embedding kernfs_remove() in create error paths without
484 	 * worrying about draining.
485 	 */
486 	if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS &&
487 	    !kernfs_should_drain_open_files(kn))
488 		return;
489 
490 	up_write(&root->kernfs_rwsem);
491 
492 	if (kernfs_lockdep(kn)) {
493 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
494 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
495 			lock_contended(&kn->dep_map, _RET_IP_);
496 	}
497 
498 	wait_event(root->deactivate_waitq,
499 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
500 
501 	if (kernfs_lockdep(kn)) {
502 		lock_acquired(&kn->dep_map, _RET_IP_);
503 		rwsem_release(&kn->dep_map, _RET_IP_);
504 	}
505 
506 	if (kernfs_should_drain_open_files(kn))
507 		kernfs_drain_open_files(kn);
508 
509 	down_write(&root->kernfs_rwsem);
510 }
511 
512 /**
513  * kernfs_get - get a reference count on a kernfs_node
514  * @kn: the target kernfs_node
515  */
kernfs_get(struct kernfs_node * kn)516 void kernfs_get(struct kernfs_node *kn)
517 {
518 	if (kn) {
519 		WARN_ON(!atomic_read(&kn->count));
520 		atomic_inc(&kn->count);
521 	}
522 }
523 EXPORT_SYMBOL_GPL(kernfs_get);
524 
525 /**
526  * kernfs_put - put a reference count on a kernfs_node
527  * @kn: the target kernfs_node
528  *
529  * Put a reference count of @kn and destroy it if it reached zero.
530  */
kernfs_put(struct kernfs_node * kn)531 void kernfs_put(struct kernfs_node *kn)
532 {
533 	struct kernfs_node *parent;
534 	struct kernfs_root *root;
535 
536 	if (!kn || !atomic_dec_and_test(&kn->count))
537 		return;
538 	root = kernfs_root(kn);
539  repeat:
540 	/*
541 	 * Moving/renaming is always done while holding reference.
542 	 * kn->parent won't change beneath us.
543 	 */
544 	parent = kn->parent;
545 
546 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
547 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
548 		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
549 
550 	if (kernfs_type(kn) == KERNFS_LINK)
551 		kernfs_put(kn->symlink.target_kn);
552 
553 	kfree_const(kn->name);
554 
555 	if (kn->iattr) {
556 		simple_xattrs_free(&kn->iattr->xattrs);
557 		kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
558 	}
559 	spin_lock(&kernfs_idr_lock);
560 	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
561 	spin_unlock(&kernfs_idr_lock);
562 	kmem_cache_free(kernfs_node_cache, kn);
563 
564 	kn = parent;
565 	if (kn) {
566 		if (atomic_dec_and_test(&kn->count))
567 			goto repeat;
568 	} else {
569 		/* just released the root kn, free @root too */
570 		idr_destroy(&root->ino_idr);
571 		kfree(root);
572 	}
573 }
574 EXPORT_SYMBOL_GPL(kernfs_put);
575 
576 /**
577  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
578  * @dentry: the dentry in question
579  *
580  * Return the kernfs_node associated with @dentry.  If @dentry is not a
581  * kernfs one, %NULL is returned.
582  *
583  * While the returned kernfs_node will stay accessible as long as @dentry
584  * is accessible, the returned node can be in any state and the caller is
585  * fully responsible for determining what's accessible.
586  */
kernfs_node_from_dentry(struct dentry * dentry)587 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
588 {
589 	if (dentry->d_sb->s_op == &kernfs_sops)
590 		return kernfs_dentry_node(dentry);
591 	return NULL;
592 }
593 
__kernfs_new_node(struct kernfs_root * root,struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)594 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
595 					     struct kernfs_node *parent,
596 					     const char *name, umode_t mode,
597 					     kuid_t uid, kgid_t gid,
598 					     unsigned flags)
599 {
600 	struct kernfs_node *kn;
601 	u32 id_highbits;
602 	int ret;
603 
604 	name = kstrdup_const(name, GFP_KERNEL);
605 	if (!name)
606 		return NULL;
607 
608 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
609 	if (!kn)
610 		goto err_out1;
611 
612 	idr_preload(GFP_KERNEL);
613 	spin_lock(&kernfs_idr_lock);
614 	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
615 	if (ret >= 0 && ret < root->last_id_lowbits)
616 		root->id_highbits++;
617 	id_highbits = root->id_highbits;
618 	root->last_id_lowbits = ret;
619 	spin_unlock(&kernfs_idr_lock);
620 	idr_preload_end();
621 	if (ret < 0)
622 		goto err_out2;
623 
624 	kn->id = (u64)id_highbits << 32 | ret;
625 
626 	atomic_set(&kn->count, 1);
627 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
628 	RB_CLEAR_NODE(&kn->rb);
629 
630 	kn->name = name;
631 	kn->mode = mode;
632 	kn->flags = flags;
633 
634 	if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
635 		struct iattr iattr = {
636 			.ia_valid = ATTR_UID | ATTR_GID,
637 			.ia_uid = uid,
638 			.ia_gid = gid,
639 		};
640 
641 		ret = __kernfs_setattr(kn, &iattr);
642 		if (ret < 0)
643 			goto err_out3;
644 	}
645 
646 	if (parent) {
647 		ret = security_kernfs_init_security(parent, kn);
648 		if (ret)
649 			goto err_out3;
650 	}
651 
652 	return kn;
653 
654  err_out3:
655 	spin_lock(&kernfs_idr_lock);
656 	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
657 	spin_unlock(&kernfs_idr_lock);
658  err_out2:
659 	kmem_cache_free(kernfs_node_cache, kn);
660  err_out1:
661 	kfree_const(name);
662 	return NULL;
663 }
664 
kernfs_new_node(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)665 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
666 				    const char *name, umode_t mode,
667 				    kuid_t uid, kgid_t gid,
668 				    unsigned flags)
669 {
670 	struct kernfs_node *kn;
671 
672 	if (parent->mode & S_ISGID) {
673 		/* this code block imitates inode_init_owner() for
674 		 * kernfs
675 		 */
676 
677 		if (parent->iattr)
678 			gid = parent->iattr->ia_gid;
679 
680 		if (flags & KERNFS_DIR)
681 			mode |= S_ISGID;
682 	}
683 
684 	kn = __kernfs_new_node(kernfs_root(parent), parent,
685 			       name, mode, uid, gid, flags);
686 	if (kn) {
687 		kernfs_get(parent);
688 		kn->parent = parent;
689 	}
690 	return kn;
691 }
692 
693 /*
694  * kernfs_find_and_get_node_by_id - get kernfs_node from node id
695  * @root: the kernfs root
696  * @id: the target node id
697  *
698  * @id's lower 32bits encode ino and upper gen.  If the gen portion is
699  * zero, all generations are matched.
700  *
701  * RETURNS:
702  * NULL on failure. Return a kernfs node with reference counter incremented
703  */
kernfs_find_and_get_node_by_id(struct kernfs_root * root,u64 id)704 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
705 						   u64 id)
706 {
707 	struct kernfs_node *kn;
708 	ino_t ino = kernfs_id_ino(id);
709 	u32 gen = kernfs_id_gen(id);
710 
711 	spin_lock(&kernfs_idr_lock);
712 
713 	kn = idr_find(&root->ino_idr, (u32)ino);
714 	if (!kn)
715 		goto err_unlock;
716 
717 	if (sizeof(ino_t) >= sizeof(u64)) {
718 		/* we looked up with the low 32bits, compare the whole */
719 		if (kernfs_ino(kn) != ino)
720 			goto err_unlock;
721 	} else {
722 		/* 0 matches all generations */
723 		if (unlikely(gen && kernfs_gen(kn) != gen))
724 			goto err_unlock;
725 	}
726 
727 	/*
728 	 * We should fail if @kn has never been activated and guarantee success
729 	 * if the caller knows that @kn is active. Both can be achieved by
730 	 * __kernfs_active() which tests @kn->active without kernfs_rwsem.
731 	 */
732 	if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count)))
733 		goto err_unlock;
734 
735 	spin_unlock(&kernfs_idr_lock);
736 	return kn;
737 err_unlock:
738 	spin_unlock(&kernfs_idr_lock);
739 	return NULL;
740 }
741 
742 /**
743  *	kernfs_add_one - add kernfs_node to parent without warning
744  *	@kn: kernfs_node to be added
745  *
746  *	The caller must already have initialized @kn->parent.  This
747  *	function increments nlink of the parent's inode if @kn is a
748  *	directory and link into the children list of the parent.
749  *
750  *	RETURNS:
751  *	0 on success, -EEXIST if entry with the given name already
752  *	exists.
753  */
kernfs_add_one(struct kernfs_node * kn)754 int kernfs_add_one(struct kernfs_node *kn)
755 {
756 	struct kernfs_node *parent = kn->parent;
757 	struct kernfs_root *root = kernfs_root(parent);
758 	struct kernfs_iattrs *ps_iattr;
759 	bool has_ns;
760 	int ret;
761 
762 	down_write(&root->kernfs_rwsem);
763 
764 	ret = -EINVAL;
765 	has_ns = kernfs_ns_enabled(parent);
766 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
767 		 has_ns ? "required" : "invalid", parent->name, kn->name))
768 		goto out_unlock;
769 
770 	if (kernfs_type(parent) != KERNFS_DIR)
771 		goto out_unlock;
772 
773 	ret = -ENOENT;
774 	if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR))
775 		goto out_unlock;
776 
777 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
778 
779 	ret = kernfs_link_sibling(kn);
780 	if (ret)
781 		goto out_unlock;
782 
783 	/* Update timestamps on the parent */
784 	ps_iattr = parent->iattr;
785 	if (ps_iattr) {
786 		ktime_get_real_ts64(&ps_iattr->ia_ctime);
787 		ps_iattr->ia_mtime = ps_iattr->ia_ctime;
788 	}
789 
790 	up_write(&root->kernfs_rwsem);
791 
792 	/*
793 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
794 	 * If not activated here, the kernfs user is responsible for
795 	 * activating the node with kernfs_activate().  A node which hasn't
796 	 * been activated is not visible to userland and its removal won't
797 	 * trigger deactivation.
798 	 */
799 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
800 		kernfs_activate(kn);
801 	return 0;
802 
803 out_unlock:
804 	up_write(&root->kernfs_rwsem);
805 	return ret;
806 }
807 
808 /**
809  * kernfs_find_ns - find kernfs_node with the given name
810  * @parent: kernfs_node to search under
811  * @name: name to look for
812  * @ns: the namespace tag to use
813  *
814  * Look for kernfs_node with name @name under @parent.  Returns pointer to
815  * the found kernfs_node on success, %NULL on failure.
816  */
kernfs_find_ns(struct kernfs_node * parent,const unsigned char * name,const void * ns)817 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
818 					  const unsigned char *name,
819 					  const void *ns)
820 {
821 	struct rb_node *node = parent->dir.children.rb_node;
822 	bool has_ns = kernfs_ns_enabled(parent);
823 	unsigned int hash;
824 
825 	lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem);
826 
827 	if (has_ns != (bool)ns) {
828 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
829 		     has_ns ? "required" : "invalid", parent->name, name);
830 		return NULL;
831 	}
832 
833 	hash = kernfs_name_hash(name, ns);
834 	while (node) {
835 		struct kernfs_node *kn;
836 		int result;
837 
838 		kn = rb_to_kn(node);
839 		result = kernfs_name_compare(hash, name, ns, kn);
840 		if (result < 0)
841 			node = node->rb_left;
842 		else if (result > 0)
843 			node = node->rb_right;
844 		else
845 			return kn;
846 	}
847 	return NULL;
848 }
849 
kernfs_walk_ns(struct kernfs_node * parent,const unsigned char * path,const void * ns)850 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
851 					  const unsigned char *path,
852 					  const void *ns)
853 {
854 	size_t len;
855 	char *p, *name;
856 
857 	lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem);
858 
859 	spin_lock_irq(&kernfs_pr_cont_lock);
860 
861 	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
862 
863 	if (len >= sizeof(kernfs_pr_cont_buf)) {
864 		spin_unlock_irq(&kernfs_pr_cont_lock);
865 		return NULL;
866 	}
867 
868 	p = kernfs_pr_cont_buf;
869 
870 	while ((name = strsep(&p, "/")) && parent) {
871 		if (*name == '\0')
872 			continue;
873 		parent = kernfs_find_ns(parent, name, ns);
874 	}
875 
876 	spin_unlock_irq(&kernfs_pr_cont_lock);
877 
878 	return parent;
879 }
880 
881 /**
882  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
883  * @parent: kernfs_node to search under
884  * @name: name to look for
885  * @ns: the namespace tag to use
886  *
887  * Look for kernfs_node with name @name under @parent and get a reference
888  * if found.  This function may sleep and returns pointer to the found
889  * kernfs_node on success, %NULL on failure.
890  */
kernfs_find_and_get_ns(struct kernfs_node * parent,const char * name,const void * ns)891 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
892 					   const char *name, const void *ns)
893 {
894 	struct kernfs_node *kn;
895 	struct kernfs_root *root = kernfs_root(parent);
896 
897 	down_read(&root->kernfs_rwsem);
898 	kn = kernfs_find_ns(parent, name, ns);
899 	kernfs_get(kn);
900 	up_read(&root->kernfs_rwsem);
901 
902 	return kn;
903 }
904 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
905 
906 /**
907  * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
908  * @parent: kernfs_node to search under
909  * @path: path to look for
910  * @ns: the namespace tag to use
911  *
912  * Look for kernfs_node with path @path under @parent and get a reference
913  * if found.  This function may sleep and returns pointer to the found
914  * kernfs_node on success, %NULL on failure.
915  */
kernfs_walk_and_get_ns(struct kernfs_node * parent,const char * path,const void * ns)916 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
917 					   const char *path, const void *ns)
918 {
919 	struct kernfs_node *kn;
920 	struct kernfs_root *root = kernfs_root(parent);
921 
922 	down_read(&root->kernfs_rwsem);
923 	kn = kernfs_walk_ns(parent, path, ns);
924 	kernfs_get(kn);
925 	up_read(&root->kernfs_rwsem);
926 
927 	return kn;
928 }
929 
930 /**
931  * kernfs_create_root - create a new kernfs hierarchy
932  * @scops: optional syscall operations for the hierarchy
933  * @flags: KERNFS_ROOT_* flags
934  * @priv: opaque data associated with the new directory
935  *
936  * Returns the root of the new hierarchy on success, ERR_PTR() value on
937  * failure.
938  */
kernfs_create_root(struct kernfs_syscall_ops * scops,unsigned int flags,void * priv)939 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
940 				       unsigned int flags, void *priv)
941 {
942 	struct kernfs_root *root;
943 	struct kernfs_node *kn;
944 
945 	root = kzalloc(sizeof(*root), GFP_KERNEL);
946 	if (!root)
947 		return ERR_PTR(-ENOMEM);
948 
949 	idr_init(&root->ino_idr);
950 	init_rwsem(&root->kernfs_rwsem);
951 	INIT_LIST_HEAD(&root->supers);
952 
953 	/*
954 	 * On 64bit ino setups, id is ino.  On 32bit, low 32bits are ino.
955 	 * High bits generation.  The starting value for both ino and
956 	 * genenration is 1.  Initialize upper 32bit allocation
957 	 * accordingly.
958 	 */
959 	if (sizeof(ino_t) >= sizeof(u64))
960 		root->id_highbits = 0;
961 	else
962 		root->id_highbits = 1;
963 
964 	kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
965 			       GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
966 			       KERNFS_DIR);
967 	if (!kn) {
968 		idr_destroy(&root->ino_idr);
969 		kfree(root);
970 		return ERR_PTR(-ENOMEM);
971 	}
972 
973 	kn->priv = priv;
974 	kn->dir.root = root;
975 
976 	root->syscall_ops = scops;
977 	root->flags = flags;
978 	root->kn = kn;
979 	init_waitqueue_head(&root->deactivate_waitq);
980 
981 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
982 		kernfs_activate(kn);
983 
984 	return root;
985 }
986 
987 /**
988  * kernfs_destroy_root - destroy a kernfs hierarchy
989  * @root: root of the hierarchy to destroy
990  *
991  * Destroy the hierarchy anchored at @root by removing all existing
992  * directories and destroying @root.
993  */
kernfs_destroy_root(struct kernfs_root * root)994 void kernfs_destroy_root(struct kernfs_root *root)
995 {
996 	/*
997 	 *  kernfs_remove holds kernfs_rwsem from the root so the root
998 	 *  shouldn't be freed during the operation.
999 	 */
1000 	kernfs_get(root->kn);
1001 	kernfs_remove(root->kn);
1002 	kernfs_put(root->kn); /* will also free @root */
1003 }
1004 
1005 /**
1006  * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root
1007  * @root: root to use to lookup
1008  */
kernfs_root_to_node(struct kernfs_root * root)1009 struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root)
1010 {
1011 	return root->kn;
1012 }
1013 
1014 /**
1015  * kernfs_create_dir_ns - create a directory
1016  * @parent: parent in which to create a new directory
1017  * @name: name of the new directory
1018  * @mode: mode of the new directory
1019  * @uid: uid of the new directory
1020  * @gid: gid of the new directory
1021  * @priv: opaque data associated with the new directory
1022  * @ns: optional namespace tag of the directory
1023  *
1024  * Returns the created node on success, ERR_PTR() value on failure.
1025  */
kernfs_create_dir_ns(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,void * priv,const void * ns)1026 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1027 					 const char *name, umode_t mode,
1028 					 kuid_t uid, kgid_t gid,
1029 					 void *priv, const void *ns)
1030 {
1031 	struct kernfs_node *kn;
1032 	int rc;
1033 
1034 	/* allocate */
1035 	kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1036 			     uid, gid, KERNFS_DIR);
1037 	if (!kn)
1038 		return ERR_PTR(-ENOMEM);
1039 
1040 	kn->dir.root = parent->dir.root;
1041 	kn->ns = ns;
1042 	kn->priv = priv;
1043 
1044 	/* link in */
1045 	rc = kernfs_add_one(kn);
1046 	if (!rc)
1047 		return kn;
1048 
1049 	kernfs_put(kn);
1050 	return ERR_PTR(rc);
1051 }
1052 
1053 /**
1054  * kernfs_create_empty_dir - create an always empty directory
1055  * @parent: parent in which to create a new directory
1056  * @name: name of the new directory
1057  *
1058  * Returns the created node on success, ERR_PTR() value on failure.
1059  */
kernfs_create_empty_dir(struct kernfs_node * parent,const char * name)1060 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1061 					    const char *name)
1062 {
1063 	struct kernfs_node *kn;
1064 	int rc;
1065 
1066 	/* allocate */
1067 	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1068 			     GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1069 	if (!kn)
1070 		return ERR_PTR(-ENOMEM);
1071 
1072 	kn->flags |= KERNFS_EMPTY_DIR;
1073 	kn->dir.root = parent->dir.root;
1074 	kn->ns = NULL;
1075 	kn->priv = NULL;
1076 
1077 	/* link in */
1078 	rc = kernfs_add_one(kn);
1079 	if (!rc)
1080 		return kn;
1081 
1082 	kernfs_put(kn);
1083 	return ERR_PTR(rc);
1084 }
1085 
kernfs_dop_revalidate(struct dentry * dentry,unsigned int flags)1086 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
1087 {
1088 	struct kernfs_node *kn;
1089 	struct kernfs_root *root;
1090 
1091 	if (flags & LOOKUP_RCU)
1092 		return -ECHILD;
1093 
1094 	/* Negative hashed dentry? */
1095 	if (d_really_is_negative(dentry)) {
1096 		struct kernfs_node *parent;
1097 
1098 		/* If the kernfs parent node has changed discard and
1099 		 * proceed to ->lookup.
1100 		 */
1101 		spin_lock(&dentry->d_lock);
1102 		parent = kernfs_dentry_node(dentry->d_parent);
1103 		if (parent) {
1104 			spin_unlock(&dentry->d_lock);
1105 			root = kernfs_root(parent);
1106 			down_read(&root->kernfs_rwsem);
1107 			if (kernfs_dir_changed(parent, dentry)) {
1108 				up_read(&root->kernfs_rwsem);
1109 				return 0;
1110 			}
1111 			up_read(&root->kernfs_rwsem);
1112 		} else
1113 			spin_unlock(&dentry->d_lock);
1114 
1115 		/* The kernfs parent node hasn't changed, leave the
1116 		 * dentry negative and return success.
1117 		 */
1118 		return 1;
1119 	}
1120 
1121 	kn = kernfs_dentry_node(dentry);
1122 	root = kernfs_root(kn);
1123 	down_read(&root->kernfs_rwsem);
1124 
1125 	/* The kernfs node has been deactivated */
1126 	if (!kernfs_active(kn))
1127 		goto out_bad;
1128 
1129 	/* The kernfs node has been moved? */
1130 	if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
1131 		goto out_bad;
1132 
1133 	/* The kernfs node has been renamed */
1134 	if (strcmp(dentry->d_name.name, kn->name) != 0)
1135 		goto out_bad;
1136 
1137 	/* The kernfs node has been moved to a different namespace */
1138 	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
1139 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
1140 		goto out_bad;
1141 
1142 	up_read(&root->kernfs_rwsem);
1143 	return 1;
1144 out_bad:
1145 	up_read(&root->kernfs_rwsem);
1146 	return 0;
1147 }
1148 
1149 const struct dentry_operations kernfs_dops = {
1150 	.d_revalidate	= kernfs_dop_revalidate,
1151 };
1152 
kernfs_iop_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1153 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1154 					struct dentry *dentry,
1155 					unsigned int flags)
1156 {
1157 	struct kernfs_node *parent = dir->i_private;
1158 	struct kernfs_node *kn;
1159 	struct kernfs_root *root;
1160 	struct inode *inode = NULL;
1161 	const void *ns = NULL;
1162 
1163 	root = kernfs_root(parent);
1164 	down_read(&root->kernfs_rwsem);
1165 	if (kernfs_ns_enabled(parent))
1166 		ns = kernfs_info(dir->i_sb)->ns;
1167 
1168 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1169 	/* attach dentry and inode */
1170 	if (kn) {
1171 		/* Inactive nodes are invisible to the VFS so don't
1172 		 * create a negative.
1173 		 */
1174 		if (!kernfs_active(kn)) {
1175 			up_read(&root->kernfs_rwsem);
1176 			return NULL;
1177 		}
1178 		inode = kernfs_get_inode(dir->i_sb, kn);
1179 		if (!inode)
1180 			inode = ERR_PTR(-ENOMEM);
1181 	}
1182 	/*
1183 	 * Needed for negative dentry validation.
1184 	 * The negative dentry can be created in kernfs_iop_lookup()
1185 	 * or transforms from positive dentry in dentry_unlink_inode()
1186 	 * called from vfs_rmdir().
1187 	 */
1188 	if (!IS_ERR(inode))
1189 		kernfs_set_rev(parent, dentry);
1190 	up_read(&root->kernfs_rwsem);
1191 
1192 	/* instantiate and hash (possibly negative) dentry */
1193 	return d_splice_alias(inode, dentry);
1194 }
1195 
kernfs_iop_mkdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)1196 static int kernfs_iop_mkdir(struct user_namespace *mnt_userns,
1197 			    struct inode *dir, struct dentry *dentry,
1198 			    umode_t mode)
1199 {
1200 	struct kernfs_node *parent = dir->i_private;
1201 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1202 	int ret;
1203 
1204 	if (!scops || !scops->mkdir)
1205 		return -EPERM;
1206 
1207 	if (!kernfs_get_active(parent))
1208 		return -ENODEV;
1209 
1210 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1211 
1212 	kernfs_put_active(parent);
1213 	return ret;
1214 }
1215 
kernfs_iop_rmdir(struct inode * dir,struct dentry * dentry)1216 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1217 {
1218 	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1219 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1220 	int ret;
1221 
1222 	if (!scops || !scops->rmdir)
1223 		return -EPERM;
1224 
1225 	if (!kernfs_get_active(kn))
1226 		return -ENODEV;
1227 
1228 	ret = scops->rmdir(kn);
1229 
1230 	kernfs_put_active(kn);
1231 	return ret;
1232 }
1233 
kernfs_iop_rename(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1234 static int kernfs_iop_rename(struct user_namespace *mnt_userns,
1235 			     struct inode *old_dir, struct dentry *old_dentry,
1236 			     struct inode *new_dir, struct dentry *new_dentry,
1237 			     unsigned int flags)
1238 {
1239 	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1240 	struct kernfs_node *new_parent = new_dir->i_private;
1241 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1242 	int ret;
1243 
1244 	if (flags)
1245 		return -EINVAL;
1246 
1247 	if (!scops || !scops->rename)
1248 		return -EPERM;
1249 
1250 	if (!kernfs_get_active(kn))
1251 		return -ENODEV;
1252 
1253 	if (!kernfs_get_active(new_parent)) {
1254 		kernfs_put_active(kn);
1255 		return -ENODEV;
1256 	}
1257 
1258 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1259 
1260 	kernfs_put_active(new_parent);
1261 	kernfs_put_active(kn);
1262 	return ret;
1263 }
1264 
1265 const struct inode_operations kernfs_dir_iops = {
1266 	.lookup		= kernfs_iop_lookup,
1267 	.permission	= kernfs_iop_permission,
1268 	.setattr	= kernfs_iop_setattr,
1269 	.getattr	= kernfs_iop_getattr,
1270 	.listxattr	= kernfs_iop_listxattr,
1271 
1272 	.mkdir		= kernfs_iop_mkdir,
1273 	.rmdir		= kernfs_iop_rmdir,
1274 	.rename		= kernfs_iop_rename,
1275 };
1276 
kernfs_leftmost_descendant(struct kernfs_node * pos)1277 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1278 {
1279 	struct kernfs_node *last;
1280 
1281 	while (true) {
1282 		struct rb_node *rbn;
1283 
1284 		last = pos;
1285 
1286 		if (kernfs_type(pos) != KERNFS_DIR)
1287 			break;
1288 
1289 		rbn = rb_first(&pos->dir.children);
1290 		if (!rbn)
1291 			break;
1292 
1293 		pos = rb_to_kn(rbn);
1294 	}
1295 
1296 	return last;
1297 }
1298 
1299 /**
1300  * kernfs_next_descendant_post - find the next descendant for post-order walk
1301  * @pos: the current position (%NULL to initiate traversal)
1302  * @root: kernfs_node whose descendants to walk
1303  *
1304  * Find the next descendant to visit for post-order traversal of @root's
1305  * descendants.  @root is included in the iteration and the last node to be
1306  * visited.
1307  */
kernfs_next_descendant_post(struct kernfs_node * pos,struct kernfs_node * root)1308 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1309 						       struct kernfs_node *root)
1310 {
1311 	struct rb_node *rbn;
1312 
1313 	lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem);
1314 
1315 	/* if first iteration, visit leftmost descendant which may be root */
1316 	if (!pos)
1317 		return kernfs_leftmost_descendant(root);
1318 
1319 	/* if we visited @root, we're done */
1320 	if (pos == root)
1321 		return NULL;
1322 
1323 	/* if there's an unvisited sibling, visit its leftmost descendant */
1324 	rbn = rb_next(&pos->rb);
1325 	if (rbn)
1326 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1327 
1328 	/* no sibling left, visit parent */
1329 	return pos->parent;
1330 }
1331 
kernfs_activate_one(struct kernfs_node * kn)1332 static void kernfs_activate_one(struct kernfs_node *kn)
1333 {
1334 	lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1335 
1336 	kn->flags |= KERNFS_ACTIVATED;
1337 
1338 	if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING)))
1339 		return;
1340 
1341 	WARN_ON_ONCE(kn->parent && RB_EMPTY_NODE(&kn->rb));
1342 	WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1343 
1344 	atomic_sub(KN_DEACTIVATED_BIAS, &kn->active);
1345 }
1346 
1347 /**
1348  * kernfs_activate - activate a node which started deactivated
1349  * @kn: kernfs_node whose subtree is to be activated
1350  *
1351  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1352  * needs to be explicitly activated.  A node which hasn't been activated
1353  * isn't visible to userland and deactivation is skipped during its
1354  * removal.  This is useful to construct atomic init sequences where
1355  * creation of multiple nodes should either succeed or fail atomically.
1356  *
1357  * The caller is responsible for ensuring that this function is not called
1358  * after kernfs_remove*() is invoked on @kn.
1359  */
kernfs_activate(struct kernfs_node * kn)1360 void kernfs_activate(struct kernfs_node *kn)
1361 {
1362 	struct kernfs_node *pos;
1363 	struct kernfs_root *root = kernfs_root(kn);
1364 
1365 	down_write(&root->kernfs_rwsem);
1366 
1367 	pos = NULL;
1368 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1369 		kernfs_activate_one(pos);
1370 
1371 	up_write(&root->kernfs_rwsem);
1372 }
1373 
1374 /**
1375  * kernfs_show - show or hide a node
1376  * @kn: kernfs_node to show or hide
1377  * @show: whether to show or hide
1378  *
1379  * If @show is %false, @kn is marked hidden and deactivated. A hidden node is
1380  * ignored in future activaitons. If %true, the mark is removed and activation
1381  * state is restored. This function won't implicitly activate a new node in a
1382  * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet.
1383  *
1384  * To avoid recursion complexities, directories aren't supported for now.
1385  */
kernfs_show(struct kernfs_node * kn,bool show)1386 void kernfs_show(struct kernfs_node *kn, bool show)
1387 {
1388 	struct kernfs_root *root = kernfs_root(kn);
1389 
1390 	if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR))
1391 		return;
1392 
1393 	down_write(&root->kernfs_rwsem);
1394 
1395 	if (show) {
1396 		kn->flags &= ~KERNFS_HIDDEN;
1397 		if (kn->flags & KERNFS_ACTIVATED)
1398 			kernfs_activate_one(kn);
1399 	} else {
1400 		kn->flags |= KERNFS_HIDDEN;
1401 		if (kernfs_active(kn))
1402 			atomic_add(KN_DEACTIVATED_BIAS, &kn->active);
1403 		kernfs_drain(kn);
1404 	}
1405 
1406 	up_write(&root->kernfs_rwsem);
1407 }
1408 
__kernfs_remove(struct kernfs_node * kn)1409 static void __kernfs_remove(struct kernfs_node *kn)
1410 {
1411 	struct kernfs_node *pos;
1412 
1413 	/* Short-circuit if non-root @kn has already finished removal. */
1414 	if (!kn)
1415 		return;
1416 
1417 	lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1418 
1419 	/*
1420 	 * This is for kernfs_remove_self() which plays with active ref
1421 	 * after removal.
1422 	 */
1423 	if (kn->parent && RB_EMPTY_NODE(&kn->rb))
1424 		return;
1425 
1426 	pr_debug("kernfs %s: removing\n", kn->name);
1427 
1428 	/* prevent new usage by marking all nodes removing and deactivating */
1429 	pos = NULL;
1430 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1431 		pos->flags |= KERNFS_REMOVING;
1432 		if (kernfs_active(pos))
1433 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1434 	}
1435 
1436 	/* deactivate and unlink the subtree node-by-node */
1437 	do {
1438 		pos = kernfs_leftmost_descendant(kn);
1439 
1440 		/*
1441 		 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's
1442 		 * base ref could have been put by someone else by the time
1443 		 * the function returns.  Make sure it doesn't go away
1444 		 * underneath us.
1445 		 */
1446 		kernfs_get(pos);
1447 
1448 		kernfs_drain(pos);
1449 
1450 		/*
1451 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1452 		 * to decide who's responsible for cleanups.
1453 		 */
1454 		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1455 			struct kernfs_iattrs *ps_iattr =
1456 				pos->parent ? pos->parent->iattr : NULL;
1457 
1458 			/* update timestamps on the parent */
1459 			if (ps_iattr) {
1460 				ktime_get_real_ts64(&ps_iattr->ia_ctime);
1461 				ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1462 			}
1463 
1464 			kernfs_put(pos);
1465 		}
1466 
1467 		kernfs_put(pos);
1468 	} while (pos != kn);
1469 }
1470 
1471 /**
1472  * kernfs_remove - remove a kernfs_node recursively
1473  * @kn: the kernfs_node to remove
1474  *
1475  * Remove @kn along with all its subdirectories and files.
1476  */
kernfs_remove(struct kernfs_node * kn)1477 void kernfs_remove(struct kernfs_node *kn)
1478 {
1479 	struct kernfs_root *root;
1480 
1481 	if (!kn)
1482 		return;
1483 
1484 	root = kernfs_root(kn);
1485 
1486 	down_write(&root->kernfs_rwsem);
1487 	__kernfs_remove(kn);
1488 	up_write(&root->kernfs_rwsem);
1489 }
1490 
1491 /**
1492  * kernfs_break_active_protection - break out of active protection
1493  * @kn: the self kernfs_node
1494  *
1495  * The caller must be running off of a kernfs operation which is invoked
1496  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1497  * this function must also be matched with an invocation of
1498  * kernfs_unbreak_active_protection().
1499  *
1500  * This function releases the active reference of @kn the caller is
1501  * holding.  Once this function is called, @kn may be removed at any point
1502  * and the caller is solely responsible for ensuring that the objects it
1503  * dereferences are accessible.
1504  */
kernfs_break_active_protection(struct kernfs_node * kn)1505 void kernfs_break_active_protection(struct kernfs_node *kn)
1506 {
1507 	/*
1508 	 * Take out ourself out of the active ref dependency chain.  If
1509 	 * we're called without an active ref, lockdep will complain.
1510 	 */
1511 	kernfs_put_active(kn);
1512 }
1513 
1514 /**
1515  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1516  * @kn: the self kernfs_node
1517  *
1518  * If kernfs_break_active_protection() was called, this function must be
1519  * invoked before finishing the kernfs operation.  Note that while this
1520  * function restores the active reference, it doesn't and can't actually
1521  * restore the active protection - @kn may already or be in the process of
1522  * being removed.  Once kernfs_break_active_protection() is invoked, that
1523  * protection is irreversibly gone for the kernfs operation instance.
1524  *
1525  * While this function may be called at any point after
1526  * kernfs_break_active_protection() is invoked, its most useful location
1527  * would be right before the enclosing kernfs operation returns.
1528  */
kernfs_unbreak_active_protection(struct kernfs_node * kn)1529 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1530 {
1531 	/*
1532 	 * @kn->active could be in any state; however, the increment we do
1533 	 * here will be undone as soon as the enclosing kernfs operation
1534 	 * finishes and this temporary bump can't break anything.  If @kn
1535 	 * is alive, nothing changes.  If @kn is being deactivated, the
1536 	 * soon-to-follow put will either finish deactivation or restore
1537 	 * deactivated state.  If @kn is already removed, the temporary
1538 	 * bump is guaranteed to be gone before @kn is released.
1539 	 */
1540 	atomic_inc(&kn->active);
1541 	if (kernfs_lockdep(kn))
1542 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1543 }
1544 
1545 /**
1546  * kernfs_remove_self - remove a kernfs_node from its own method
1547  * @kn: the self kernfs_node to remove
1548  *
1549  * The caller must be running off of a kernfs operation which is invoked
1550  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1551  * implement a file operation which deletes itself.
1552  *
1553  * For example, the "delete" file for a sysfs device directory can be
1554  * implemented by invoking kernfs_remove_self() on the "delete" file
1555  * itself.  This function breaks the circular dependency of trying to
1556  * deactivate self while holding an active ref itself.  It isn't necessary
1557  * to modify the usual removal path to use kernfs_remove_self().  The
1558  * "delete" implementation can simply invoke kernfs_remove_self() on self
1559  * before proceeding with the usual removal path.  kernfs will ignore later
1560  * kernfs_remove() on self.
1561  *
1562  * kernfs_remove_self() can be called multiple times concurrently on the
1563  * same kernfs_node.  Only the first one actually performs removal and
1564  * returns %true.  All others will wait until the kernfs operation which
1565  * won self-removal finishes and return %false.  Note that the losers wait
1566  * for the completion of not only the winning kernfs_remove_self() but also
1567  * the whole kernfs_ops which won the arbitration.  This can be used to
1568  * guarantee, for example, all concurrent writes to a "delete" file to
1569  * finish only after the whole operation is complete.
1570  */
kernfs_remove_self(struct kernfs_node * kn)1571 bool kernfs_remove_self(struct kernfs_node *kn)
1572 {
1573 	bool ret;
1574 	struct kernfs_root *root = kernfs_root(kn);
1575 
1576 	down_write(&root->kernfs_rwsem);
1577 	kernfs_break_active_protection(kn);
1578 
1579 	/*
1580 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1581 	 * the first one will actually perform removal.  When the removal
1582 	 * is complete, SUICIDED is set and the active ref is restored
1583 	 * while kernfs_rwsem for held exclusive.  The ones which lost
1584 	 * arbitration waits for SUICIDED && drained which can happen only
1585 	 * after the enclosing kernfs operation which executed the winning
1586 	 * instance of kernfs_remove_self() finished.
1587 	 */
1588 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1589 		kn->flags |= KERNFS_SUICIDAL;
1590 		__kernfs_remove(kn);
1591 		kn->flags |= KERNFS_SUICIDED;
1592 		ret = true;
1593 	} else {
1594 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1595 		DEFINE_WAIT(wait);
1596 
1597 		while (true) {
1598 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1599 
1600 			if ((kn->flags & KERNFS_SUICIDED) &&
1601 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1602 				break;
1603 
1604 			up_write(&root->kernfs_rwsem);
1605 			schedule();
1606 			down_write(&root->kernfs_rwsem);
1607 		}
1608 		finish_wait(waitq, &wait);
1609 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1610 		ret = false;
1611 	}
1612 
1613 	/*
1614 	 * This must be done while kernfs_rwsem held exclusive; otherwise,
1615 	 * waiting for SUICIDED && deactivated could finish prematurely.
1616 	 */
1617 	kernfs_unbreak_active_protection(kn);
1618 
1619 	up_write(&root->kernfs_rwsem);
1620 	return ret;
1621 }
1622 
1623 /**
1624  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1625  * @parent: parent of the target
1626  * @name: name of the kernfs_node to remove
1627  * @ns: namespace tag of the kernfs_node to remove
1628  *
1629  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1630  * Returns 0 on success, -ENOENT if such entry doesn't exist.
1631  */
kernfs_remove_by_name_ns(struct kernfs_node * parent,const char * name,const void * ns)1632 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1633 			     const void *ns)
1634 {
1635 	struct kernfs_node *kn;
1636 	struct kernfs_root *root;
1637 
1638 	if (!parent) {
1639 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1640 			name);
1641 		return -ENOENT;
1642 	}
1643 
1644 	root = kernfs_root(parent);
1645 	down_write(&root->kernfs_rwsem);
1646 
1647 	kn = kernfs_find_ns(parent, name, ns);
1648 	if (kn) {
1649 		kernfs_get(kn);
1650 		__kernfs_remove(kn);
1651 		kernfs_put(kn);
1652 	}
1653 
1654 	up_write(&root->kernfs_rwsem);
1655 
1656 	if (kn)
1657 		return 0;
1658 	else
1659 		return -ENOENT;
1660 }
1661 
1662 /**
1663  * kernfs_rename_ns - move and rename a kernfs_node
1664  * @kn: target node
1665  * @new_parent: new parent to put @sd under
1666  * @new_name: new name
1667  * @new_ns: new namespace tag
1668  */
kernfs_rename_ns(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name,const void * new_ns)1669 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1670 		     const char *new_name, const void *new_ns)
1671 {
1672 	struct kernfs_node *old_parent;
1673 	struct kernfs_root *root;
1674 	const char *old_name = NULL;
1675 	int error;
1676 
1677 	/* can't move or rename root */
1678 	if (!kn->parent)
1679 		return -EINVAL;
1680 
1681 	root = kernfs_root(kn);
1682 	down_write(&root->kernfs_rwsem);
1683 
1684 	error = -ENOENT;
1685 	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1686 	    (new_parent->flags & KERNFS_EMPTY_DIR))
1687 		goto out;
1688 
1689 	error = 0;
1690 	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1691 	    (strcmp(kn->name, new_name) == 0))
1692 		goto out;	/* nothing to rename */
1693 
1694 	error = -EEXIST;
1695 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1696 		goto out;
1697 
1698 	/* rename kernfs_node */
1699 	if (strcmp(kn->name, new_name) != 0) {
1700 		error = -ENOMEM;
1701 		new_name = kstrdup_const(new_name, GFP_KERNEL);
1702 		if (!new_name)
1703 			goto out;
1704 	} else {
1705 		new_name = NULL;
1706 	}
1707 
1708 	/*
1709 	 * Move to the appropriate place in the appropriate directories rbtree.
1710 	 */
1711 	kernfs_unlink_sibling(kn);
1712 	kernfs_get(new_parent);
1713 
1714 	/* rename_lock protects ->parent and ->name accessors */
1715 	spin_lock_irq(&kernfs_rename_lock);
1716 
1717 	old_parent = kn->parent;
1718 	kn->parent = new_parent;
1719 
1720 	kn->ns = new_ns;
1721 	if (new_name) {
1722 		old_name = kn->name;
1723 		kn->name = new_name;
1724 	}
1725 
1726 	spin_unlock_irq(&kernfs_rename_lock);
1727 
1728 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1729 	kernfs_link_sibling(kn);
1730 
1731 	kernfs_put(old_parent);
1732 	kfree_const(old_name);
1733 
1734 	error = 0;
1735  out:
1736 	up_write(&root->kernfs_rwsem);
1737 	return error;
1738 }
1739 
1740 /* Relationship between mode and the DT_xxx types */
dt_type(struct kernfs_node * kn)1741 static inline unsigned char dt_type(struct kernfs_node *kn)
1742 {
1743 	return (kn->mode >> 12) & 15;
1744 }
1745 
kernfs_dir_fop_release(struct inode * inode,struct file * filp)1746 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1747 {
1748 	kernfs_put(filp->private_data);
1749 	return 0;
1750 }
1751 
kernfs_dir_pos(const void * ns,struct kernfs_node * parent,loff_t hash,struct kernfs_node * pos)1752 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1753 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1754 {
1755 	if (pos) {
1756 		int valid = kernfs_active(pos) &&
1757 			pos->parent == parent && hash == pos->hash;
1758 		kernfs_put(pos);
1759 		if (!valid)
1760 			pos = NULL;
1761 	}
1762 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1763 		struct rb_node *node = parent->dir.children.rb_node;
1764 		while (node) {
1765 			pos = rb_to_kn(node);
1766 
1767 			if (hash < pos->hash)
1768 				node = node->rb_left;
1769 			else if (hash > pos->hash)
1770 				node = node->rb_right;
1771 			else
1772 				break;
1773 		}
1774 	}
1775 	/* Skip over entries which are dying/dead or in the wrong namespace */
1776 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1777 		struct rb_node *node = rb_next(&pos->rb);
1778 		if (!node)
1779 			pos = NULL;
1780 		else
1781 			pos = rb_to_kn(node);
1782 	}
1783 	return pos;
1784 }
1785 
kernfs_dir_next_pos(const void * ns,struct kernfs_node * parent,ino_t ino,struct kernfs_node * pos)1786 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1787 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1788 {
1789 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1790 	if (pos) {
1791 		do {
1792 			struct rb_node *node = rb_next(&pos->rb);
1793 			if (!node)
1794 				pos = NULL;
1795 			else
1796 				pos = rb_to_kn(node);
1797 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1798 	}
1799 	return pos;
1800 }
1801 
kernfs_fop_readdir(struct file * file,struct dir_context * ctx)1802 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1803 {
1804 	struct dentry *dentry = file->f_path.dentry;
1805 	struct kernfs_node *parent = kernfs_dentry_node(dentry);
1806 	struct kernfs_node *pos = file->private_data;
1807 	struct kernfs_root *root;
1808 	const void *ns = NULL;
1809 
1810 	if (!dir_emit_dots(file, ctx))
1811 		return 0;
1812 
1813 	root = kernfs_root(parent);
1814 	down_read(&root->kernfs_rwsem);
1815 
1816 	if (kernfs_ns_enabled(parent))
1817 		ns = kernfs_info(dentry->d_sb)->ns;
1818 
1819 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1820 	     pos;
1821 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1822 		const char *name = pos->name;
1823 		unsigned int type = dt_type(pos);
1824 		int len = strlen(name);
1825 		ino_t ino = kernfs_ino(pos);
1826 
1827 		ctx->pos = pos->hash;
1828 		file->private_data = pos;
1829 		kernfs_get(pos);
1830 
1831 		up_read(&root->kernfs_rwsem);
1832 		if (!dir_emit(ctx, name, len, ino, type))
1833 			return 0;
1834 		down_read(&root->kernfs_rwsem);
1835 	}
1836 	up_read(&root->kernfs_rwsem);
1837 	file->private_data = NULL;
1838 	ctx->pos = INT_MAX;
1839 	return 0;
1840 }
1841 
1842 const struct file_operations kernfs_dir_fops = {
1843 	.read		= generic_read_dir,
1844 	.iterate_shared	= kernfs_fop_readdir,
1845 	.release	= kernfs_dir_fop_release,
1846 	.llseek		= generic_file_llseek,
1847 };
1848