1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/mm_types.h>
25 #include <linux/slab.h>
26 #include <linux/types.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/mm.h>
29 #include <linux/uaccess.h>
30 #include <linux/mman.h>
31 #include <linux/memory.h>
32 #include "kfd_priv.h"
33 #include "kfd_events.h"
34 #include "kfd_iommu.h"
35 #include <linux/device.h>
36
37 /*
38 * Wrapper around wait_queue_entry_t
39 */
40 struct kfd_event_waiter {
41 wait_queue_entry_t wait;
42 struct kfd_event *event; /* Event to wait for */
43 bool activated; /* Becomes true when event is signaled */
44 };
45
46 /*
47 * Each signal event needs a 64-bit signal slot where the signaler will write
48 * a 1 before sending an interrupt. (This is needed because some interrupts
49 * do not contain enough spare data bits to identify an event.)
50 * We get whole pages and map them to the process VA.
51 * Individual signal events use their event_id as slot index.
52 */
53 struct kfd_signal_page {
54 uint64_t *kernel_address;
55 uint64_t __user *user_address;
56 bool need_to_free_pages;
57 };
58
page_slots(struct kfd_signal_page * page)59 static uint64_t *page_slots(struct kfd_signal_page *page)
60 {
61 return page->kernel_address;
62 }
63
allocate_signal_page(struct kfd_process * p)64 static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p)
65 {
66 void *backing_store;
67 struct kfd_signal_page *page;
68
69 page = kzalloc(sizeof(*page), GFP_KERNEL);
70 if (!page)
71 return NULL;
72
73 backing_store = (void *) __get_free_pages(GFP_KERNEL,
74 get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
75 if (!backing_store)
76 goto fail_alloc_signal_store;
77
78 /* Initialize all events to unsignaled */
79 memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT,
80 KFD_SIGNAL_EVENT_LIMIT * 8);
81
82 page->kernel_address = backing_store;
83 page->need_to_free_pages = true;
84 pr_debug("Allocated new event signal page at %p, for process %p\n",
85 page, p);
86
87 return page;
88
89 fail_alloc_signal_store:
90 kfree(page);
91 return NULL;
92 }
93
allocate_event_notification_slot(struct kfd_process * p,struct kfd_event * ev,const int * restore_id)94 static int allocate_event_notification_slot(struct kfd_process *p,
95 struct kfd_event *ev,
96 const int *restore_id)
97 {
98 int id;
99
100 if (!p->signal_page) {
101 p->signal_page = allocate_signal_page(p);
102 if (!p->signal_page)
103 return -ENOMEM;
104 /* Oldest user mode expects 256 event slots */
105 p->signal_mapped_size = 256*8;
106 }
107
108 if (restore_id) {
109 id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1,
110 GFP_KERNEL);
111 } else {
112 /*
113 * Compatibility with old user mode: Only use signal slots
114 * user mode has mapped, may be less than
115 * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase
116 * of the event limit without breaking user mode.
117 */
118 id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8,
119 GFP_KERNEL);
120 }
121 if (id < 0)
122 return id;
123
124 ev->event_id = id;
125 page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT;
126
127 return 0;
128 }
129
130 /*
131 * Assumes that p->event_mutex or rcu_readlock is held and of course that p is
132 * not going away.
133 */
lookup_event_by_id(struct kfd_process * p,uint32_t id)134 static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id)
135 {
136 return idr_find(&p->event_idr, id);
137 }
138
139 /**
140 * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID
141 * @p: Pointer to struct kfd_process
142 * @id: ID to look up
143 * @bits: Number of valid bits in @id
144 *
145 * Finds the first signaled event with a matching partial ID. If no
146 * matching signaled event is found, returns NULL. In that case the
147 * caller should assume that the partial ID is invalid and do an
148 * exhaustive search of all siglaned events.
149 *
150 * If multiple events with the same partial ID signal at the same
151 * time, they will be found one interrupt at a time, not necessarily
152 * in the same order the interrupts occurred. As long as the number of
153 * interrupts is correct, all signaled events will be seen by the
154 * driver.
155 */
lookup_signaled_event_by_partial_id(struct kfd_process * p,uint32_t id,uint32_t bits)156 static struct kfd_event *lookup_signaled_event_by_partial_id(
157 struct kfd_process *p, uint32_t id, uint32_t bits)
158 {
159 struct kfd_event *ev;
160
161 if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT)
162 return NULL;
163
164 /* Fast path for the common case that @id is not a partial ID
165 * and we only need a single lookup.
166 */
167 if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) {
168 if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
169 return NULL;
170
171 return idr_find(&p->event_idr, id);
172 }
173
174 /* General case for partial IDs: Iterate over all matching IDs
175 * and find the first one that has signaled.
176 */
177 for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) {
178 if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
179 continue;
180
181 ev = idr_find(&p->event_idr, id);
182 }
183
184 return ev;
185 }
186
create_signal_event(struct file * devkfd,struct kfd_process * p,struct kfd_event * ev,const int * restore_id)187 static int create_signal_event(struct file *devkfd, struct kfd_process *p,
188 struct kfd_event *ev, const int *restore_id)
189 {
190 int ret;
191
192 if (p->signal_mapped_size &&
193 p->signal_event_count == p->signal_mapped_size / 8) {
194 if (!p->signal_event_limit_reached) {
195 pr_debug("Signal event wasn't created because limit was reached\n");
196 p->signal_event_limit_reached = true;
197 }
198 return -ENOSPC;
199 }
200
201 ret = allocate_event_notification_slot(p, ev, restore_id);
202 if (ret) {
203 pr_warn("Signal event wasn't created because out of kernel memory\n");
204 return ret;
205 }
206
207 p->signal_event_count++;
208
209 ev->user_signal_address = &p->signal_page->user_address[ev->event_id];
210 pr_debug("Signal event number %zu created with id %d, address %p\n",
211 p->signal_event_count, ev->event_id,
212 ev->user_signal_address);
213
214 return 0;
215 }
216
create_other_event(struct kfd_process * p,struct kfd_event * ev,const int * restore_id)217 static int create_other_event(struct kfd_process *p, struct kfd_event *ev, const int *restore_id)
218 {
219 int id;
220
221 if (restore_id)
222 id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1,
223 GFP_KERNEL);
224 else
225 /* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an
226 * intentional integer overflow to -1 without a compiler
227 * warning. idr_alloc treats a negative value as "maximum
228 * signed integer".
229 */
230 id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID,
231 (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1,
232 GFP_KERNEL);
233
234 if (id < 0)
235 return id;
236 ev->event_id = id;
237
238 return 0;
239 }
240
kfd_event_init_process(struct kfd_process * p)241 int kfd_event_init_process(struct kfd_process *p)
242 {
243 int id;
244
245 mutex_init(&p->event_mutex);
246 idr_init(&p->event_idr);
247 p->signal_page = NULL;
248 p->signal_event_count = 1;
249 /* Allocate event ID 0. It is used for a fast path to ignore bogus events
250 * that are sent by the CP without a context ID
251 */
252 id = idr_alloc(&p->event_idr, NULL, 0, 1, GFP_KERNEL);
253 if (id < 0) {
254 idr_destroy(&p->event_idr);
255 mutex_destroy(&p->event_mutex);
256 return id;
257 }
258 return 0;
259 }
260
destroy_event(struct kfd_process * p,struct kfd_event * ev)261 static void destroy_event(struct kfd_process *p, struct kfd_event *ev)
262 {
263 struct kfd_event_waiter *waiter;
264
265 /* Wake up pending waiters. They will return failure */
266 spin_lock(&ev->lock);
267 list_for_each_entry(waiter, &ev->wq.head, wait.entry)
268 WRITE_ONCE(waiter->event, NULL);
269 wake_up_all(&ev->wq);
270 spin_unlock(&ev->lock);
271
272 if (ev->type == KFD_EVENT_TYPE_SIGNAL ||
273 ev->type == KFD_EVENT_TYPE_DEBUG)
274 p->signal_event_count--;
275
276 idr_remove(&p->event_idr, ev->event_id);
277 kfree_rcu(ev, rcu);
278 }
279
destroy_events(struct kfd_process * p)280 static void destroy_events(struct kfd_process *p)
281 {
282 struct kfd_event *ev;
283 uint32_t id;
284
285 idr_for_each_entry(&p->event_idr, ev, id)
286 if (ev)
287 destroy_event(p, ev);
288 idr_destroy(&p->event_idr);
289 mutex_destroy(&p->event_mutex);
290 }
291
292 /*
293 * We assume that the process is being destroyed and there is no need to
294 * unmap the pages or keep bookkeeping data in order.
295 */
shutdown_signal_page(struct kfd_process * p)296 static void shutdown_signal_page(struct kfd_process *p)
297 {
298 struct kfd_signal_page *page = p->signal_page;
299
300 if (page) {
301 if (page->need_to_free_pages)
302 free_pages((unsigned long)page->kernel_address,
303 get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
304 kfree(page);
305 }
306 }
307
kfd_event_free_process(struct kfd_process * p)308 void kfd_event_free_process(struct kfd_process *p)
309 {
310 destroy_events(p);
311 shutdown_signal_page(p);
312 }
313
event_can_be_gpu_signaled(const struct kfd_event * ev)314 static bool event_can_be_gpu_signaled(const struct kfd_event *ev)
315 {
316 return ev->type == KFD_EVENT_TYPE_SIGNAL ||
317 ev->type == KFD_EVENT_TYPE_DEBUG;
318 }
319
event_can_be_cpu_signaled(const struct kfd_event * ev)320 static bool event_can_be_cpu_signaled(const struct kfd_event *ev)
321 {
322 return ev->type == KFD_EVENT_TYPE_SIGNAL;
323 }
324
kfd_event_page_set(struct kfd_process * p,void * kernel_address,uint64_t size,uint64_t user_handle)325 static int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
326 uint64_t size, uint64_t user_handle)
327 {
328 struct kfd_signal_page *page;
329
330 if (p->signal_page)
331 return -EBUSY;
332
333 page = kzalloc(sizeof(*page), GFP_KERNEL);
334 if (!page)
335 return -ENOMEM;
336
337 /* Initialize all events to unsignaled */
338 memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT,
339 KFD_SIGNAL_EVENT_LIMIT * 8);
340
341 page->kernel_address = kernel_address;
342
343 p->signal_page = page;
344 p->signal_mapped_size = size;
345 p->signal_handle = user_handle;
346 return 0;
347 }
348
kfd_kmap_event_page(struct kfd_process * p,uint64_t event_page_offset)349 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset)
350 {
351 struct kfd_dev *kfd;
352 struct kfd_process_device *pdd;
353 void *mem, *kern_addr;
354 uint64_t size;
355 int err = 0;
356
357 if (p->signal_page) {
358 pr_err("Event page is already set\n");
359 return -EINVAL;
360 }
361
362 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(event_page_offset));
363 if (!pdd) {
364 pr_err("Getting device by id failed in %s\n", __func__);
365 return -EINVAL;
366 }
367 kfd = pdd->dev;
368
369 pdd = kfd_bind_process_to_device(kfd, p);
370 if (IS_ERR(pdd))
371 return PTR_ERR(pdd);
372
373 mem = kfd_process_device_translate_handle(pdd,
374 GET_IDR_HANDLE(event_page_offset));
375 if (!mem) {
376 pr_err("Can't find BO, offset is 0x%llx\n", event_page_offset);
377 return -EINVAL;
378 }
379
380 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(mem, &kern_addr, &size);
381 if (err) {
382 pr_err("Failed to map event page to kernel\n");
383 return err;
384 }
385
386 err = kfd_event_page_set(p, kern_addr, size, event_page_offset);
387 if (err) {
388 pr_err("Failed to set event page\n");
389 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
390 return err;
391 }
392 return err;
393 }
394
kfd_event_create(struct file * devkfd,struct kfd_process * p,uint32_t event_type,bool auto_reset,uint32_t node_id,uint32_t * event_id,uint32_t * event_trigger_data,uint64_t * event_page_offset,uint32_t * event_slot_index)395 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
396 uint32_t event_type, bool auto_reset, uint32_t node_id,
397 uint32_t *event_id, uint32_t *event_trigger_data,
398 uint64_t *event_page_offset, uint32_t *event_slot_index)
399 {
400 int ret = 0;
401 struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL);
402
403 if (!ev)
404 return -ENOMEM;
405
406 ev->type = event_type;
407 ev->auto_reset = auto_reset;
408 ev->signaled = false;
409
410 spin_lock_init(&ev->lock);
411 init_waitqueue_head(&ev->wq);
412
413 *event_page_offset = 0;
414
415 mutex_lock(&p->event_mutex);
416
417 switch (event_type) {
418 case KFD_EVENT_TYPE_SIGNAL:
419 case KFD_EVENT_TYPE_DEBUG:
420 ret = create_signal_event(devkfd, p, ev, NULL);
421 if (!ret) {
422 *event_page_offset = KFD_MMAP_TYPE_EVENTS;
423 *event_slot_index = ev->event_id;
424 }
425 break;
426 default:
427 ret = create_other_event(p, ev, NULL);
428 break;
429 }
430
431 if (!ret) {
432 *event_id = ev->event_id;
433 *event_trigger_data = ev->event_id;
434 } else {
435 kfree(ev);
436 }
437
438 mutex_unlock(&p->event_mutex);
439
440 return ret;
441 }
442
kfd_criu_restore_event(struct file * devkfd,struct kfd_process * p,uint8_t __user * user_priv_ptr,uint64_t * priv_data_offset,uint64_t max_priv_data_size)443 int kfd_criu_restore_event(struct file *devkfd,
444 struct kfd_process *p,
445 uint8_t __user *user_priv_ptr,
446 uint64_t *priv_data_offset,
447 uint64_t max_priv_data_size)
448 {
449 struct kfd_criu_event_priv_data *ev_priv;
450 struct kfd_event *ev = NULL;
451 int ret = 0;
452
453 ev_priv = kmalloc(sizeof(*ev_priv), GFP_KERNEL);
454 if (!ev_priv)
455 return -ENOMEM;
456
457 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
458 if (!ev) {
459 ret = -ENOMEM;
460 goto exit;
461 }
462
463 if (*priv_data_offset + sizeof(*ev_priv) > max_priv_data_size) {
464 ret = -EINVAL;
465 goto exit;
466 }
467
468 ret = copy_from_user(ev_priv, user_priv_ptr + *priv_data_offset, sizeof(*ev_priv));
469 if (ret) {
470 ret = -EFAULT;
471 goto exit;
472 }
473 *priv_data_offset += sizeof(*ev_priv);
474
475 if (ev_priv->user_handle) {
476 ret = kfd_kmap_event_page(p, ev_priv->user_handle);
477 if (ret)
478 goto exit;
479 }
480
481 ev->type = ev_priv->type;
482 ev->auto_reset = ev_priv->auto_reset;
483 ev->signaled = ev_priv->signaled;
484
485 spin_lock_init(&ev->lock);
486 init_waitqueue_head(&ev->wq);
487
488 mutex_lock(&p->event_mutex);
489 switch (ev->type) {
490 case KFD_EVENT_TYPE_SIGNAL:
491 case KFD_EVENT_TYPE_DEBUG:
492 ret = create_signal_event(devkfd, p, ev, &ev_priv->event_id);
493 break;
494 case KFD_EVENT_TYPE_MEMORY:
495 memcpy(&ev->memory_exception_data,
496 &ev_priv->memory_exception_data,
497 sizeof(struct kfd_hsa_memory_exception_data));
498
499 ret = create_other_event(p, ev, &ev_priv->event_id);
500 break;
501 case KFD_EVENT_TYPE_HW_EXCEPTION:
502 memcpy(&ev->hw_exception_data,
503 &ev_priv->hw_exception_data,
504 sizeof(struct kfd_hsa_hw_exception_data));
505
506 ret = create_other_event(p, ev, &ev_priv->event_id);
507 break;
508 }
509 mutex_unlock(&p->event_mutex);
510
511 exit:
512 if (ret)
513 kfree(ev);
514
515 kfree(ev_priv);
516
517 return ret;
518 }
519
kfd_criu_checkpoint_events(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_data_offset)520 int kfd_criu_checkpoint_events(struct kfd_process *p,
521 uint8_t __user *user_priv_data,
522 uint64_t *priv_data_offset)
523 {
524 struct kfd_criu_event_priv_data *ev_privs;
525 int i = 0;
526 int ret = 0;
527 struct kfd_event *ev;
528 uint32_t ev_id;
529
530 uint32_t num_events = kfd_get_num_events(p);
531
532 if (!num_events)
533 return 0;
534
535 ev_privs = kvzalloc(num_events * sizeof(*ev_privs), GFP_KERNEL);
536 if (!ev_privs)
537 return -ENOMEM;
538
539
540 idr_for_each_entry(&p->event_idr, ev, ev_id) {
541 struct kfd_criu_event_priv_data *ev_priv;
542
543 /*
544 * Currently, all events have same size of private_data, but the current ioctl's
545 * and CRIU plugin supports private_data of variable sizes
546 */
547 ev_priv = &ev_privs[i];
548
549 ev_priv->object_type = KFD_CRIU_OBJECT_TYPE_EVENT;
550
551 /* We store the user_handle with the first event */
552 if (i == 0 && p->signal_page)
553 ev_priv->user_handle = p->signal_handle;
554
555 ev_priv->event_id = ev->event_id;
556 ev_priv->auto_reset = ev->auto_reset;
557 ev_priv->type = ev->type;
558 ev_priv->signaled = ev->signaled;
559
560 if (ev_priv->type == KFD_EVENT_TYPE_MEMORY)
561 memcpy(&ev_priv->memory_exception_data,
562 &ev->memory_exception_data,
563 sizeof(struct kfd_hsa_memory_exception_data));
564 else if (ev_priv->type == KFD_EVENT_TYPE_HW_EXCEPTION)
565 memcpy(&ev_priv->hw_exception_data,
566 &ev->hw_exception_data,
567 sizeof(struct kfd_hsa_hw_exception_data));
568
569 pr_debug("Checkpointed event[%d] id = 0x%08x auto_reset = %x type = %x signaled = %x\n",
570 i,
571 ev_priv->event_id,
572 ev_priv->auto_reset,
573 ev_priv->type,
574 ev_priv->signaled);
575 i++;
576 }
577
578 ret = copy_to_user(user_priv_data + *priv_data_offset,
579 ev_privs, num_events * sizeof(*ev_privs));
580 if (ret) {
581 pr_err("Failed to copy events priv to user\n");
582 ret = -EFAULT;
583 }
584
585 *priv_data_offset += num_events * sizeof(*ev_privs);
586
587 kvfree(ev_privs);
588 return ret;
589 }
590
kfd_get_num_events(struct kfd_process * p)591 int kfd_get_num_events(struct kfd_process *p)
592 {
593 struct kfd_event *ev;
594 uint32_t id;
595 u32 num_events = 0;
596
597 idr_for_each_entry(&p->event_idr, ev, id)
598 num_events++;
599
600 return num_events;
601 }
602
603 /* Assumes that p is current. */
kfd_event_destroy(struct kfd_process * p,uint32_t event_id)604 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id)
605 {
606 struct kfd_event *ev;
607 int ret = 0;
608
609 mutex_lock(&p->event_mutex);
610
611 ev = lookup_event_by_id(p, event_id);
612
613 if (ev)
614 destroy_event(p, ev);
615 else
616 ret = -EINVAL;
617
618 mutex_unlock(&p->event_mutex);
619 return ret;
620 }
621
set_event(struct kfd_event * ev)622 static void set_event(struct kfd_event *ev)
623 {
624 struct kfd_event_waiter *waiter;
625
626 /* Auto reset if the list is non-empty and we're waking
627 * someone. waitqueue_active is safe here because we're
628 * protected by the ev->lock, which is also held when
629 * updating the wait queues in kfd_wait_on_events.
630 */
631 ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq);
632
633 list_for_each_entry(waiter, &ev->wq.head, wait.entry)
634 WRITE_ONCE(waiter->activated, true);
635
636 wake_up_all(&ev->wq);
637 }
638
639 /* Assumes that p is current. */
kfd_set_event(struct kfd_process * p,uint32_t event_id)640 int kfd_set_event(struct kfd_process *p, uint32_t event_id)
641 {
642 int ret = 0;
643 struct kfd_event *ev;
644
645 rcu_read_lock();
646
647 ev = lookup_event_by_id(p, event_id);
648 if (!ev) {
649 ret = -EINVAL;
650 goto unlock_rcu;
651 }
652 spin_lock(&ev->lock);
653
654 if (event_can_be_cpu_signaled(ev))
655 set_event(ev);
656 else
657 ret = -EINVAL;
658
659 spin_unlock(&ev->lock);
660 unlock_rcu:
661 rcu_read_unlock();
662 return ret;
663 }
664
reset_event(struct kfd_event * ev)665 static void reset_event(struct kfd_event *ev)
666 {
667 ev->signaled = false;
668 }
669
670 /* Assumes that p is current. */
kfd_reset_event(struct kfd_process * p,uint32_t event_id)671 int kfd_reset_event(struct kfd_process *p, uint32_t event_id)
672 {
673 int ret = 0;
674 struct kfd_event *ev;
675
676 rcu_read_lock();
677
678 ev = lookup_event_by_id(p, event_id);
679 if (!ev) {
680 ret = -EINVAL;
681 goto unlock_rcu;
682 }
683 spin_lock(&ev->lock);
684
685 if (event_can_be_cpu_signaled(ev))
686 reset_event(ev);
687 else
688 ret = -EINVAL;
689
690 spin_unlock(&ev->lock);
691 unlock_rcu:
692 rcu_read_unlock();
693 return ret;
694
695 }
696
acknowledge_signal(struct kfd_process * p,struct kfd_event * ev)697 static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev)
698 {
699 WRITE_ONCE(page_slots(p->signal_page)[ev->event_id], UNSIGNALED_EVENT_SLOT);
700 }
701
set_event_from_interrupt(struct kfd_process * p,struct kfd_event * ev)702 static void set_event_from_interrupt(struct kfd_process *p,
703 struct kfd_event *ev)
704 {
705 if (ev && event_can_be_gpu_signaled(ev)) {
706 acknowledge_signal(p, ev);
707 spin_lock(&ev->lock);
708 set_event(ev);
709 spin_unlock(&ev->lock);
710 }
711 }
712
kfd_signal_event_interrupt(u32 pasid,uint32_t partial_id,uint32_t valid_id_bits)713 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
714 uint32_t valid_id_bits)
715 {
716 struct kfd_event *ev = NULL;
717
718 /*
719 * Because we are called from arbitrary context (workqueue) as opposed
720 * to process context, kfd_process could attempt to exit while we are
721 * running so the lookup function increments the process ref count.
722 */
723 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
724
725 if (!p)
726 return; /* Presumably process exited. */
727
728 rcu_read_lock();
729
730 if (valid_id_bits)
731 ev = lookup_signaled_event_by_partial_id(p, partial_id,
732 valid_id_bits);
733 if (ev) {
734 set_event_from_interrupt(p, ev);
735 } else if (p->signal_page) {
736 /*
737 * Partial ID lookup failed. Assume that the event ID
738 * in the interrupt payload was invalid and do an
739 * exhaustive search of signaled events.
740 */
741 uint64_t *slots = page_slots(p->signal_page);
742 uint32_t id;
743
744 if (valid_id_bits)
745 pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n",
746 partial_id, valid_id_bits);
747
748 if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) {
749 /* With relatively few events, it's faster to
750 * iterate over the event IDR
751 */
752 idr_for_each_entry(&p->event_idr, ev, id) {
753 if (id >= KFD_SIGNAL_EVENT_LIMIT)
754 break;
755
756 if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT)
757 set_event_from_interrupt(p, ev);
758 }
759 } else {
760 /* With relatively many events, it's faster to
761 * iterate over the signal slots and lookup
762 * only signaled events from the IDR.
763 */
764 for (id = 1; id < KFD_SIGNAL_EVENT_LIMIT; id++)
765 if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT) {
766 ev = lookup_event_by_id(p, id);
767 set_event_from_interrupt(p, ev);
768 }
769 }
770 }
771
772 rcu_read_unlock();
773 kfd_unref_process(p);
774 }
775
alloc_event_waiters(uint32_t num_events)776 static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events)
777 {
778 struct kfd_event_waiter *event_waiters;
779 uint32_t i;
780
781 event_waiters = kcalloc(num_events, sizeof(struct kfd_event_waiter),
782 GFP_KERNEL);
783 if (!event_waiters)
784 return NULL;
785
786 for (i = 0; i < num_events; i++)
787 init_wait(&event_waiters[i].wait);
788
789 return event_waiters;
790 }
791
init_event_waiter(struct kfd_process * p,struct kfd_event_waiter * waiter,uint32_t event_id)792 static int init_event_waiter(struct kfd_process *p,
793 struct kfd_event_waiter *waiter,
794 uint32_t event_id)
795 {
796 struct kfd_event *ev = lookup_event_by_id(p, event_id);
797
798 if (!ev)
799 return -EINVAL;
800
801 spin_lock(&ev->lock);
802 waiter->event = ev;
803 waiter->activated = ev->signaled;
804 ev->signaled = ev->signaled && !ev->auto_reset;
805 if (!waiter->activated)
806 add_wait_queue(&ev->wq, &waiter->wait);
807 spin_unlock(&ev->lock);
808
809 return 0;
810 }
811
812 /* test_event_condition - Test condition of events being waited for
813 * @all: Return completion only if all events have signaled
814 * @num_events: Number of events to wait for
815 * @event_waiters: Array of event waiters, one per event
816 *
817 * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have
818 * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all)
819 * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of
820 * the events have been destroyed.
821 */
test_event_condition(bool all,uint32_t num_events,struct kfd_event_waiter * event_waiters)822 static uint32_t test_event_condition(bool all, uint32_t num_events,
823 struct kfd_event_waiter *event_waiters)
824 {
825 uint32_t i;
826 uint32_t activated_count = 0;
827
828 for (i = 0; i < num_events; i++) {
829 if (!READ_ONCE(event_waiters[i].event))
830 return KFD_IOC_WAIT_RESULT_FAIL;
831
832 if (READ_ONCE(event_waiters[i].activated)) {
833 if (!all)
834 return KFD_IOC_WAIT_RESULT_COMPLETE;
835
836 activated_count++;
837 }
838 }
839
840 return activated_count == num_events ?
841 KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT;
842 }
843
844 /*
845 * Copy event specific data, if defined.
846 * Currently only memory exception events have additional data to copy to user
847 */
copy_signaled_event_data(uint32_t num_events,struct kfd_event_waiter * event_waiters,struct kfd_event_data __user * data)848 static int copy_signaled_event_data(uint32_t num_events,
849 struct kfd_event_waiter *event_waiters,
850 struct kfd_event_data __user *data)
851 {
852 struct kfd_hsa_memory_exception_data *src;
853 struct kfd_hsa_memory_exception_data __user *dst;
854 struct kfd_event_waiter *waiter;
855 struct kfd_event *event;
856 uint32_t i;
857
858 for (i = 0; i < num_events; i++) {
859 waiter = &event_waiters[i];
860 event = waiter->event;
861 if (!event)
862 return -EINVAL; /* event was destroyed */
863 if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) {
864 dst = &data[i].memory_exception_data;
865 src = &event->memory_exception_data;
866 if (copy_to_user(dst, src,
867 sizeof(struct kfd_hsa_memory_exception_data)))
868 return -EFAULT;
869 }
870 }
871
872 return 0;
873 }
874
user_timeout_to_jiffies(uint32_t user_timeout_ms)875 static long user_timeout_to_jiffies(uint32_t user_timeout_ms)
876 {
877 if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE)
878 return 0;
879
880 if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE)
881 return MAX_SCHEDULE_TIMEOUT;
882
883 /*
884 * msecs_to_jiffies interprets all values above 2^31-1 as infinite,
885 * but we consider them finite.
886 * This hack is wrong, but nobody is likely to notice.
887 */
888 user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF);
889
890 return msecs_to_jiffies(user_timeout_ms) + 1;
891 }
892
free_waiters(uint32_t num_events,struct kfd_event_waiter * waiters,bool undo_auto_reset)893 static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters,
894 bool undo_auto_reset)
895 {
896 uint32_t i;
897
898 for (i = 0; i < num_events; i++)
899 if (waiters[i].event) {
900 spin_lock(&waiters[i].event->lock);
901 remove_wait_queue(&waiters[i].event->wq,
902 &waiters[i].wait);
903 if (undo_auto_reset && waiters[i].activated &&
904 waiters[i].event && waiters[i].event->auto_reset)
905 set_event(waiters[i].event);
906 spin_unlock(&waiters[i].event->lock);
907 }
908
909 kfree(waiters);
910 }
911
kfd_wait_on_events(struct kfd_process * p,uint32_t num_events,void __user * data,bool all,uint32_t * user_timeout_ms,uint32_t * wait_result)912 int kfd_wait_on_events(struct kfd_process *p,
913 uint32_t num_events, void __user *data,
914 bool all, uint32_t *user_timeout_ms,
915 uint32_t *wait_result)
916 {
917 struct kfd_event_data __user *events =
918 (struct kfd_event_data __user *) data;
919 uint32_t i;
920 int ret = 0;
921
922 struct kfd_event_waiter *event_waiters = NULL;
923 long timeout = user_timeout_to_jiffies(*user_timeout_ms);
924
925 event_waiters = alloc_event_waiters(num_events);
926 if (!event_waiters) {
927 ret = -ENOMEM;
928 goto out;
929 }
930
931 /* Use p->event_mutex here to protect against concurrent creation and
932 * destruction of events while we initialize event_waiters.
933 */
934 mutex_lock(&p->event_mutex);
935
936 for (i = 0; i < num_events; i++) {
937 struct kfd_event_data event_data;
938
939 if (copy_from_user(&event_data, &events[i],
940 sizeof(struct kfd_event_data))) {
941 ret = -EFAULT;
942 goto out_unlock;
943 }
944
945 ret = init_event_waiter(p, &event_waiters[i],
946 event_data.event_id);
947 if (ret)
948 goto out_unlock;
949 }
950
951 /* Check condition once. */
952 *wait_result = test_event_condition(all, num_events, event_waiters);
953 if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) {
954 ret = copy_signaled_event_data(num_events,
955 event_waiters, events);
956 goto out_unlock;
957 } else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) {
958 /* This should not happen. Events shouldn't be
959 * destroyed while we're holding the event_mutex
960 */
961 goto out_unlock;
962 }
963
964 mutex_unlock(&p->event_mutex);
965
966 while (true) {
967 if (fatal_signal_pending(current)) {
968 ret = -EINTR;
969 break;
970 }
971
972 if (signal_pending(current)) {
973 ret = -ERESTARTSYS;
974 if (*user_timeout_ms != KFD_EVENT_TIMEOUT_IMMEDIATE &&
975 *user_timeout_ms != KFD_EVENT_TIMEOUT_INFINITE)
976 *user_timeout_ms = jiffies_to_msecs(
977 max(0l, timeout-1));
978 break;
979 }
980
981 /* Set task state to interruptible sleep before
982 * checking wake-up conditions. A concurrent wake-up
983 * will put the task back into runnable state. In that
984 * case schedule_timeout will not put the task to
985 * sleep and we'll get a chance to re-check the
986 * updated conditions almost immediately. Otherwise,
987 * this race condition would lead to a soft hang or a
988 * very long sleep.
989 */
990 set_current_state(TASK_INTERRUPTIBLE);
991
992 *wait_result = test_event_condition(all, num_events,
993 event_waiters);
994 if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT)
995 break;
996
997 if (timeout <= 0)
998 break;
999
1000 timeout = schedule_timeout(timeout);
1001 }
1002 __set_current_state(TASK_RUNNING);
1003
1004 mutex_lock(&p->event_mutex);
1005 /* copy_signaled_event_data may sleep. So this has to happen
1006 * after the task state is set back to RUNNING.
1007 *
1008 * The event may also have been destroyed after signaling. So
1009 * copy_signaled_event_data also must confirm that the event
1010 * still exists. Therefore this must be under the p->event_mutex
1011 * which is also held when events are destroyed.
1012 */
1013 if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE)
1014 ret = copy_signaled_event_data(num_events,
1015 event_waiters, events);
1016
1017 out_unlock:
1018 free_waiters(num_events, event_waiters, ret == -ERESTARTSYS);
1019 mutex_unlock(&p->event_mutex);
1020 out:
1021 if (ret)
1022 *wait_result = KFD_IOC_WAIT_RESULT_FAIL;
1023 else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL)
1024 ret = -EIO;
1025
1026 return ret;
1027 }
1028
kfd_event_mmap(struct kfd_process * p,struct vm_area_struct * vma)1029 int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma)
1030 {
1031 unsigned long pfn;
1032 struct kfd_signal_page *page;
1033 int ret;
1034
1035 /* check required size doesn't exceed the allocated size */
1036 if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) <
1037 get_order(vma->vm_end - vma->vm_start)) {
1038 pr_err("Event page mmap requested illegal size\n");
1039 return -EINVAL;
1040 }
1041
1042 page = p->signal_page;
1043 if (!page) {
1044 /* Probably KFD bug, but mmap is user-accessible. */
1045 pr_debug("Signal page could not be found\n");
1046 return -EINVAL;
1047 }
1048
1049 pfn = __pa(page->kernel_address);
1050 pfn >>= PAGE_SHIFT;
1051
1052 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE
1053 | VM_DONTDUMP | VM_PFNMAP);
1054
1055 pr_debug("Mapping signal page\n");
1056 pr_debug(" start user address == 0x%08lx\n", vma->vm_start);
1057 pr_debug(" end user address == 0x%08lx\n", vma->vm_end);
1058 pr_debug(" pfn == 0x%016lX\n", pfn);
1059 pr_debug(" vm_flags == 0x%08lX\n", vma->vm_flags);
1060 pr_debug(" size == 0x%08lX\n",
1061 vma->vm_end - vma->vm_start);
1062
1063 page->user_address = (uint64_t __user *)vma->vm_start;
1064
1065 /* mapping the page to user process */
1066 ret = remap_pfn_range(vma, vma->vm_start, pfn,
1067 vma->vm_end - vma->vm_start, vma->vm_page_prot);
1068 if (!ret)
1069 p->signal_mapped_size = vma->vm_end - vma->vm_start;
1070
1071 return ret;
1072 }
1073
1074 /*
1075 * Assumes that p is not going away.
1076 */
lookup_events_by_type_and_signal(struct kfd_process * p,int type,void * event_data)1077 static void lookup_events_by_type_and_signal(struct kfd_process *p,
1078 int type, void *event_data)
1079 {
1080 struct kfd_hsa_memory_exception_data *ev_data;
1081 struct kfd_event *ev;
1082 uint32_t id;
1083 bool send_signal = true;
1084
1085 ev_data = (struct kfd_hsa_memory_exception_data *) event_data;
1086
1087 rcu_read_lock();
1088
1089 id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1090 idr_for_each_entry_continue(&p->event_idr, ev, id)
1091 if (ev->type == type) {
1092 send_signal = false;
1093 dev_dbg(kfd_device,
1094 "Event found: id %X type %d",
1095 ev->event_id, ev->type);
1096 spin_lock(&ev->lock);
1097 set_event(ev);
1098 if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data)
1099 ev->memory_exception_data = *ev_data;
1100 spin_unlock(&ev->lock);
1101 }
1102
1103 if (type == KFD_EVENT_TYPE_MEMORY) {
1104 dev_warn(kfd_device,
1105 "Sending SIGSEGV to process %d (pasid 0x%x)",
1106 p->lead_thread->pid, p->pasid);
1107 send_sig(SIGSEGV, p->lead_thread, 0);
1108 }
1109
1110 /* Send SIGTERM no event of type "type" has been found*/
1111 if (send_signal) {
1112 if (send_sigterm) {
1113 dev_warn(kfd_device,
1114 "Sending SIGTERM to process %d (pasid 0x%x)",
1115 p->lead_thread->pid, p->pasid);
1116 send_sig(SIGTERM, p->lead_thread, 0);
1117 } else {
1118 dev_err(kfd_device,
1119 "Process %d (pasid 0x%x) got unhandled exception",
1120 p->lead_thread->pid, p->pasid);
1121 }
1122 }
1123
1124 rcu_read_unlock();
1125 }
1126
1127 #ifdef KFD_SUPPORT_IOMMU_V2
kfd_signal_iommu_event(struct kfd_dev * dev,u32 pasid,unsigned long address,bool is_write_requested,bool is_execute_requested)1128 void kfd_signal_iommu_event(struct kfd_dev *dev, u32 pasid,
1129 unsigned long address, bool is_write_requested,
1130 bool is_execute_requested)
1131 {
1132 struct kfd_hsa_memory_exception_data memory_exception_data;
1133 struct vm_area_struct *vma;
1134 int user_gpu_id;
1135
1136 /*
1137 * Because we are called from arbitrary context (workqueue) as opposed
1138 * to process context, kfd_process could attempt to exit while we are
1139 * running so the lookup function increments the process ref count.
1140 */
1141 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1142 struct mm_struct *mm;
1143
1144 if (!p)
1145 return; /* Presumably process exited. */
1146
1147 /* Take a safe reference to the mm_struct, which may otherwise
1148 * disappear even while the kfd_process is still referenced.
1149 */
1150 mm = get_task_mm(p->lead_thread);
1151 if (!mm) {
1152 kfd_unref_process(p);
1153 return; /* Process is exiting */
1154 }
1155
1156 user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1157 if (unlikely(user_gpu_id == -EINVAL)) {
1158 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1159 return;
1160 }
1161 memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1162
1163 mmap_read_lock(mm);
1164 vma = find_vma(mm, address);
1165
1166 memory_exception_data.gpu_id = user_gpu_id;
1167 memory_exception_data.va = address;
1168 /* Set failure reason */
1169 memory_exception_data.failure.NotPresent = 1;
1170 memory_exception_data.failure.NoExecute = 0;
1171 memory_exception_data.failure.ReadOnly = 0;
1172 if (vma && address >= vma->vm_start) {
1173 memory_exception_data.failure.NotPresent = 0;
1174
1175 if (is_write_requested && !(vma->vm_flags & VM_WRITE))
1176 memory_exception_data.failure.ReadOnly = 1;
1177 else
1178 memory_exception_data.failure.ReadOnly = 0;
1179
1180 if (is_execute_requested && !(vma->vm_flags & VM_EXEC))
1181 memory_exception_data.failure.NoExecute = 1;
1182 else
1183 memory_exception_data.failure.NoExecute = 0;
1184 }
1185
1186 mmap_read_unlock(mm);
1187 mmput(mm);
1188
1189 pr_debug("notpresent %d, noexecute %d, readonly %d\n",
1190 memory_exception_data.failure.NotPresent,
1191 memory_exception_data.failure.NoExecute,
1192 memory_exception_data.failure.ReadOnly);
1193
1194 /* Workaround on Raven to not kill the process when memory is freed
1195 * before IOMMU is able to finish processing all the excessive PPRs
1196 */
1197
1198 if (KFD_GC_VERSION(dev) != IP_VERSION(9, 1, 0) &&
1199 KFD_GC_VERSION(dev) != IP_VERSION(9, 2, 2) &&
1200 KFD_GC_VERSION(dev) != IP_VERSION(9, 3, 0))
1201 lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY,
1202 &memory_exception_data);
1203
1204 kfd_unref_process(p);
1205 }
1206 #endif /* KFD_SUPPORT_IOMMU_V2 */
1207
kfd_signal_hw_exception_event(u32 pasid)1208 void kfd_signal_hw_exception_event(u32 pasid)
1209 {
1210 /*
1211 * Because we are called from arbitrary context (workqueue) as opposed
1212 * to process context, kfd_process could attempt to exit while we are
1213 * running so the lookup function increments the process ref count.
1214 */
1215 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1216
1217 if (!p)
1218 return; /* Presumably process exited. */
1219
1220 lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL);
1221 kfd_unref_process(p);
1222 }
1223
kfd_signal_vm_fault_event(struct kfd_dev * dev,u32 pasid,struct kfd_vm_fault_info * info)1224 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid,
1225 struct kfd_vm_fault_info *info)
1226 {
1227 struct kfd_event *ev;
1228 uint32_t id;
1229 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1230 struct kfd_hsa_memory_exception_data memory_exception_data;
1231 int user_gpu_id;
1232
1233 if (!p)
1234 return; /* Presumably process exited. */
1235
1236 user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1237 if (unlikely(user_gpu_id == -EINVAL)) {
1238 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1239 return;
1240 }
1241
1242 memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1243 memory_exception_data.gpu_id = user_gpu_id;
1244 memory_exception_data.failure.imprecise = true;
1245 /* Set failure reason */
1246 if (info) {
1247 memory_exception_data.va = (info->page_addr) << PAGE_SHIFT;
1248 memory_exception_data.failure.NotPresent =
1249 info->prot_valid ? 1 : 0;
1250 memory_exception_data.failure.NoExecute =
1251 info->prot_exec ? 1 : 0;
1252 memory_exception_data.failure.ReadOnly =
1253 info->prot_write ? 1 : 0;
1254 memory_exception_data.failure.imprecise = 0;
1255 }
1256
1257 rcu_read_lock();
1258
1259 id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1260 idr_for_each_entry_continue(&p->event_idr, ev, id)
1261 if (ev->type == KFD_EVENT_TYPE_MEMORY) {
1262 spin_lock(&ev->lock);
1263 ev->memory_exception_data = memory_exception_data;
1264 set_event(ev);
1265 spin_unlock(&ev->lock);
1266 }
1267
1268 rcu_read_unlock();
1269 kfd_unref_process(p);
1270 }
1271
kfd_signal_reset_event(struct kfd_dev * dev)1272 void kfd_signal_reset_event(struct kfd_dev *dev)
1273 {
1274 struct kfd_hsa_hw_exception_data hw_exception_data;
1275 struct kfd_hsa_memory_exception_data memory_exception_data;
1276 struct kfd_process *p;
1277 struct kfd_event *ev;
1278 unsigned int temp;
1279 uint32_t id, idx;
1280 int reset_cause = atomic_read(&dev->sram_ecc_flag) ?
1281 KFD_HW_EXCEPTION_ECC :
1282 KFD_HW_EXCEPTION_GPU_HANG;
1283
1284 /* Whole gpu reset caused by GPU hang and memory is lost */
1285 memset(&hw_exception_data, 0, sizeof(hw_exception_data));
1286 hw_exception_data.memory_lost = 1;
1287 hw_exception_data.reset_cause = reset_cause;
1288
1289 memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1290 memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC;
1291 memory_exception_data.failure.imprecise = true;
1292
1293 idx = srcu_read_lock(&kfd_processes_srcu);
1294 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1295 int user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1296
1297 if (unlikely(user_gpu_id == -EINVAL)) {
1298 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1299 continue;
1300 }
1301
1302 rcu_read_lock();
1303
1304 id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1305 idr_for_each_entry_continue(&p->event_idr, ev, id) {
1306 if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
1307 spin_lock(&ev->lock);
1308 ev->hw_exception_data = hw_exception_data;
1309 ev->hw_exception_data.gpu_id = user_gpu_id;
1310 set_event(ev);
1311 spin_unlock(&ev->lock);
1312 }
1313 if (ev->type == KFD_EVENT_TYPE_MEMORY &&
1314 reset_cause == KFD_HW_EXCEPTION_ECC) {
1315 spin_lock(&ev->lock);
1316 ev->memory_exception_data = memory_exception_data;
1317 ev->memory_exception_data.gpu_id = user_gpu_id;
1318 set_event(ev);
1319 spin_unlock(&ev->lock);
1320 }
1321 }
1322
1323 rcu_read_unlock();
1324 }
1325 srcu_read_unlock(&kfd_processes_srcu, idx);
1326 }
1327
kfd_signal_poison_consumed_event(struct kfd_dev * dev,u32 pasid)1328 void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid)
1329 {
1330 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1331 struct kfd_hsa_memory_exception_data memory_exception_data;
1332 struct kfd_hsa_hw_exception_data hw_exception_data;
1333 struct kfd_event *ev;
1334 uint32_t id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1335 int user_gpu_id;
1336
1337 if (!p)
1338 return; /* Presumably process exited. */
1339
1340 user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1341 if (unlikely(user_gpu_id == -EINVAL)) {
1342 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1343 return;
1344 }
1345
1346 memset(&hw_exception_data, 0, sizeof(hw_exception_data));
1347 hw_exception_data.gpu_id = user_gpu_id;
1348 hw_exception_data.memory_lost = 1;
1349 hw_exception_data.reset_cause = KFD_HW_EXCEPTION_ECC;
1350
1351 memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1352 memory_exception_data.ErrorType = KFD_MEM_ERR_POISON_CONSUMED;
1353 memory_exception_data.gpu_id = user_gpu_id;
1354 memory_exception_data.failure.imprecise = true;
1355
1356 rcu_read_lock();
1357
1358 idr_for_each_entry_continue(&p->event_idr, ev, id) {
1359 if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
1360 spin_lock(&ev->lock);
1361 ev->hw_exception_data = hw_exception_data;
1362 set_event(ev);
1363 spin_unlock(&ev->lock);
1364 }
1365
1366 if (ev->type == KFD_EVENT_TYPE_MEMORY) {
1367 spin_lock(&ev->lock);
1368 ev->memory_exception_data = memory_exception_data;
1369 set_event(ev);
1370 spin_unlock(&ev->lock);
1371 }
1372 }
1373
1374 rcu_read_unlock();
1375
1376 /* user application will handle SIGBUS signal */
1377 send_sig(SIGBUS, p->lead_thread, 0);
1378
1379 kfd_unref_process(p);
1380 }
1381