1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/pci.h>
27 #include <linux/errno.h>
28 #include <linux/acpi.h>
29 #include <linux/hash.h>
30 #include <linux/cpufreq.h>
31 #include <linux/log2.h>
32 #include <linux/dmi.h>
33 #include <linux/atomic.h>
34
35 #include "kfd_priv.h"
36 #include "kfd_crat.h"
37 #include "kfd_topology.h"
38 #include "kfd_device_queue_manager.h"
39 #include "kfd_iommu.h"
40 #include "kfd_svm.h"
41 #include "amdgpu_amdkfd.h"
42 #include "amdgpu_ras.h"
43 #include "amdgpu.h"
44
45 /* topology_device_list - Master list of all topology devices */
46 static struct list_head topology_device_list;
47 static struct kfd_system_properties sys_props;
48
49 static DECLARE_RWSEM(topology_lock);
50 static uint32_t topology_crat_proximity_domain;
51
kfd_topology_device_by_proximity_domain_no_lock(uint32_t proximity_domain)52 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
53 uint32_t proximity_domain)
54 {
55 struct kfd_topology_device *top_dev;
56 struct kfd_topology_device *device = NULL;
57
58 list_for_each_entry(top_dev, &topology_device_list, list)
59 if (top_dev->proximity_domain == proximity_domain) {
60 device = top_dev;
61 break;
62 }
63
64 return device;
65 }
66
kfd_topology_device_by_proximity_domain(uint32_t proximity_domain)67 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
68 uint32_t proximity_domain)
69 {
70 struct kfd_topology_device *device = NULL;
71
72 down_read(&topology_lock);
73
74 device = kfd_topology_device_by_proximity_domain_no_lock(
75 proximity_domain);
76 up_read(&topology_lock);
77
78 return device;
79 }
80
kfd_topology_device_by_id(uint32_t gpu_id)81 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
82 {
83 struct kfd_topology_device *top_dev = NULL;
84 struct kfd_topology_device *ret = NULL;
85
86 down_read(&topology_lock);
87
88 list_for_each_entry(top_dev, &topology_device_list, list)
89 if (top_dev->gpu_id == gpu_id) {
90 ret = top_dev;
91 break;
92 }
93
94 up_read(&topology_lock);
95
96 return ret;
97 }
98
kfd_device_by_id(uint32_t gpu_id)99 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id)
100 {
101 struct kfd_topology_device *top_dev;
102
103 top_dev = kfd_topology_device_by_id(gpu_id);
104 if (!top_dev)
105 return NULL;
106
107 return top_dev->gpu;
108 }
109
kfd_device_by_pci_dev(const struct pci_dev * pdev)110 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev)
111 {
112 struct kfd_topology_device *top_dev;
113 struct kfd_dev *device = NULL;
114
115 down_read(&topology_lock);
116
117 list_for_each_entry(top_dev, &topology_device_list, list)
118 if (top_dev->gpu && top_dev->gpu->pdev == pdev) {
119 device = top_dev->gpu;
120 break;
121 }
122
123 up_read(&topology_lock);
124
125 return device;
126 }
127
kfd_device_by_adev(const struct amdgpu_device * adev)128 struct kfd_dev *kfd_device_by_adev(const struct amdgpu_device *adev)
129 {
130 struct kfd_topology_device *top_dev;
131 struct kfd_dev *device = NULL;
132
133 down_read(&topology_lock);
134
135 list_for_each_entry(top_dev, &topology_device_list, list)
136 if (top_dev->gpu && top_dev->gpu->adev == adev) {
137 device = top_dev->gpu;
138 break;
139 }
140
141 up_read(&topology_lock);
142
143 return device;
144 }
145
146 /* Called with write topology_lock acquired */
kfd_release_topology_device(struct kfd_topology_device * dev)147 static void kfd_release_topology_device(struct kfd_topology_device *dev)
148 {
149 struct kfd_mem_properties *mem;
150 struct kfd_cache_properties *cache;
151 struct kfd_iolink_properties *iolink;
152 struct kfd_iolink_properties *p2plink;
153 struct kfd_perf_properties *perf;
154
155 list_del(&dev->list);
156
157 while (dev->mem_props.next != &dev->mem_props) {
158 mem = container_of(dev->mem_props.next,
159 struct kfd_mem_properties, list);
160 list_del(&mem->list);
161 kfree(mem);
162 }
163
164 while (dev->cache_props.next != &dev->cache_props) {
165 cache = container_of(dev->cache_props.next,
166 struct kfd_cache_properties, list);
167 list_del(&cache->list);
168 kfree(cache);
169 }
170
171 while (dev->io_link_props.next != &dev->io_link_props) {
172 iolink = container_of(dev->io_link_props.next,
173 struct kfd_iolink_properties, list);
174 list_del(&iolink->list);
175 kfree(iolink);
176 }
177
178 while (dev->p2p_link_props.next != &dev->p2p_link_props) {
179 p2plink = container_of(dev->p2p_link_props.next,
180 struct kfd_iolink_properties, list);
181 list_del(&p2plink->list);
182 kfree(p2plink);
183 }
184
185 while (dev->perf_props.next != &dev->perf_props) {
186 perf = container_of(dev->perf_props.next,
187 struct kfd_perf_properties, list);
188 list_del(&perf->list);
189 kfree(perf);
190 }
191
192 kfree(dev);
193 }
194
kfd_release_topology_device_list(struct list_head * device_list)195 void kfd_release_topology_device_list(struct list_head *device_list)
196 {
197 struct kfd_topology_device *dev;
198
199 while (!list_empty(device_list)) {
200 dev = list_first_entry(device_list,
201 struct kfd_topology_device, list);
202 kfd_release_topology_device(dev);
203 }
204 }
205
kfd_release_live_view(void)206 static void kfd_release_live_view(void)
207 {
208 kfd_release_topology_device_list(&topology_device_list);
209 memset(&sys_props, 0, sizeof(sys_props));
210 }
211
kfd_create_topology_device(struct list_head * device_list)212 struct kfd_topology_device *kfd_create_topology_device(
213 struct list_head *device_list)
214 {
215 struct kfd_topology_device *dev;
216
217 dev = kfd_alloc_struct(dev);
218 if (!dev) {
219 pr_err("No memory to allocate a topology device");
220 return NULL;
221 }
222
223 INIT_LIST_HEAD(&dev->mem_props);
224 INIT_LIST_HEAD(&dev->cache_props);
225 INIT_LIST_HEAD(&dev->io_link_props);
226 INIT_LIST_HEAD(&dev->p2p_link_props);
227 INIT_LIST_HEAD(&dev->perf_props);
228
229 list_add_tail(&dev->list, device_list);
230
231 return dev;
232 }
233
234
235 #define sysfs_show_gen_prop(buffer, offs, fmt, ...) \
236 (offs += snprintf(buffer+offs, PAGE_SIZE-offs, \
237 fmt, __VA_ARGS__))
238 #define sysfs_show_32bit_prop(buffer, offs, name, value) \
239 sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value)
240 #define sysfs_show_64bit_prop(buffer, offs, name, value) \
241 sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value)
242 #define sysfs_show_32bit_val(buffer, offs, value) \
243 sysfs_show_gen_prop(buffer, offs, "%u\n", value)
244 #define sysfs_show_str_val(buffer, offs, value) \
245 sysfs_show_gen_prop(buffer, offs, "%s\n", value)
246
sysprops_show(struct kobject * kobj,struct attribute * attr,char * buffer)247 static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
248 char *buffer)
249 {
250 int offs = 0;
251
252 /* Making sure that the buffer is an empty string */
253 buffer[0] = 0;
254
255 if (attr == &sys_props.attr_genid) {
256 sysfs_show_32bit_val(buffer, offs,
257 sys_props.generation_count);
258 } else if (attr == &sys_props.attr_props) {
259 sysfs_show_64bit_prop(buffer, offs, "platform_oem",
260 sys_props.platform_oem);
261 sysfs_show_64bit_prop(buffer, offs, "platform_id",
262 sys_props.platform_id);
263 sysfs_show_64bit_prop(buffer, offs, "platform_rev",
264 sys_props.platform_rev);
265 } else {
266 offs = -EINVAL;
267 }
268
269 return offs;
270 }
271
kfd_topology_kobj_release(struct kobject * kobj)272 static void kfd_topology_kobj_release(struct kobject *kobj)
273 {
274 kfree(kobj);
275 }
276
277 static const struct sysfs_ops sysprops_ops = {
278 .show = sysprops_show,
279 };
280
281 static struct kobj_type sysprops_type = {
282 .release = kfd_topology_kobj_release,
283 .sysfs_ops = &sysprops_ops,
284 };
285
iolink_show(struct kobject * kobj,struct attribute * attr,char * buffer)286 static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
287 char *buffer)
288 {
289 int offs = 0;
290 struct kfd_iolink_properties *iolink;
291
292 /* Making sure that the buffer is an empty string */
293 buffer[0] = 0;
294
295 iolink = container_of(attr, struct kfd_iolink_properties, attr);
296 if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu))
297 return -EPERM;
298 sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type);
299 sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj);
300 sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min);
301 sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from);
302 sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to);
303 sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight);
304 sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency);
305 sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency);
306 sysfs_show_32bit_prop(buffer, offs, "min_bandwidth",
307 iolink->min_bandwidth);
308 sysfs_show_32bit_prop(buffer, offs, "max_bandwidth",
309 iolink->max_bandwidth);
310 sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size",
311 iolink->rec_transfer_size);
312 sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags);
313
314 return offs;
315 }
316
317 static const struct sysfs_ops iolink_ops = {
318 .show = iolink_show,
319 };
320
321 static struct kobj_type iolink_type = {
322 .release = kfd_topology_kobj_release,
323 .sysfs_ops = &iolink_ops,
324 };
325
mem_show(struct kobject * kobj,struct attribute * attr,char * buffer)326 static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
327 char *buffer)
328 {
329 int offs = 0;
330 struct kfd_mem_properties *mem;
331
332 /* Making sure that the buffer is an empty string */
333 buffer[0] = 0;
334
335 mem = container_of(attr, struct kfd_mem_properties, attr);
336 if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu))
337 return -EPERM;
338 sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type);
339 sysfs_show_64bit_prop(buffer, offs, "size_in_bytes",
340 mem->size_in_bytes);
341 sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags);
342 sysfs_show_32bit_prop(buffer, offs, "width", mem->width);
343 sysfs_show_32bit_prop(buffer, offs, "mem_clk_max",
344 mem->mem_clk_max);
345
346 return offs;
347 }
348
349 static const struct sysfs_ops mem_ops = {
350 .show = mem_show,
351 };
352
353 static struct kobj_type mem_type = {
354 .release = kfd_topology_kobj_release,
355 .sysfs_ops = &mem_ops,
356 };
357
kfd_cache_show(struct kobject * kobj,struct attribute * attr,char * buffer)358 static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
359 char *buffer)
360 {
361 int offs = 0;
362 uint32_t i, j;
363 struct kfd_cache_properties *cache;
364
365 /* Making sure that the buffer is an empty string */
366 buffer[0] = 0;
367 cache = container_of(attr, struct kfd_cache_properties, attr);
368 if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu))
369 return -EPERM;
370 sysfs_show_32bit_prop(buffer, offs, "processor_id_low",
371 cache->processor_id_low);
372 sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level);
373 sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size);
374 sysfs_show_32bit_prop(buffer, offs, "cache_line_size",
375 cache->cacheline_size);
376 sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag",
377 cache->cachelines_per_tag);
378 sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc);
379 sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency);
380 sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type);
381
382 offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map ");
383 for (i = 0; i < cache->sibling_map_size; i++)
384 for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++)
385 /* Check each bit */
386 offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,",
387 (cache->sibling_map[i] >> j) & 1);
388
389 /* Replace the last "," with end of line */
390 buffer[offs-1] = '\n';
391 return offs;
392 }
393
394 static const struct sysfs_ops cache_ops = {
395 .show = kfd_cache_show,
396 };
397
398 static struct kobj_type cache_type = {
399 .release = kfd_topology_kobj_release,
400 .sysfs_ops = &cache_ops,
401 };
402
403 /****** Sysfs of Performance Counters ******/
404
405 struct kfd_perf_attr {
406 struct kobj_attribute attr;
407 uint32_t data;
408 };
409
perf_show(struct kobject * kobj,struct kobj_attribute * attrs,char * buf)410 static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
411 char *buf)
412 {
413 int offs = 0;
414 struct kfd_perf_attr *attr;
415
416 buf[0] = 0;
417 attr = container_of(attrs, struct kfd_perf_attr, attr);
418 if (!attr->data) /* invalid data for PMC */
419 return 0;
420 else
421 return sysfs_show_32bit_val(buf, offs, attr->data);
422 }
423
424 #define KFD_PERF_DESC(_name, _data) \
425 { \
426 .attr = __ATTR(_name, 0444, perf_show, NULL), \
427 .data = _data, \
428 }
429
430 static struct kfd_perf_attr perf_attr_iommu[] = {
431 KFD_PERF_DESC(max_concurrent, 0),
432 KFD_PERF_DESC(num_counters, 0),
433 KFD_PERF_DESC(counter_ids, 0),
434 };
435 /****************************************/
436
node_show(struct kobject * kobj,struct attribute * attr,char * buffer)437 static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
438 char *buffer)
439 {
440 int offs = 0;
441 struct kfd_topology_device *dev;
442 uint32_t log_max_watch_addr;
443
444 /* Making sure that the buffer is an empty string */
445 buffer[0] = 0;
446
447 if (strcmp(attr->name, "gpu_id") == 0) {
448 dev = container_of(attr, struct kfd_topology_device,
449 attr_gpuid);
450 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
451 return -EPERM;
452 return sysfs_show_32bit_val(buffer, offs, dev->gpu_id);
453 }
454
455 if (strcmp(attr->name, "name") == 0) {
456 dev = container_of(attr, struct kfd_topology_device,
457 attr_name);
458
459 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
460 return -EPERM;
461 return sysfs_show_str_val(buffer, offs, dev->node_props.name);
462 }
463
464 dev = container_of(attr, struct kfd_topology_device,
465 attr_props);
466 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
467 return -EPERM;
468 sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count",
469 dev->node_props.cpu_cores_count);
470 sysfs_show_32bit_prop(buffer, offs, "simd_count",
471 dev->gpu ? dev->node_props.simd_count : 0);
472 sysfs_show_32bit_prop(buffer, offs, "mem_banks_count",
473 dev->node_props.mem_banks_count);
474 sysfs_show_32bit_prop(buffer, offs, "caches_count",
475 dev->node_props.caches_count);
476 sysfs_show_32bit_prop(buffer, offs, "io_links_count",
477 dev->node_props.io_links_count);
478 sysfs_show_32bit_prop(buffer, offs, "p2p_links_count",
479 dev->node_props.p2p_links_count);
480 sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base",
481 dev->node_props.cpu_core_id_base);
482 sysfs_show_32bit_prop(buffer, offs, "simd_id_base",
483 dev->node_props.simd_id_base);
484 sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd",
485 dev->node_props.max_waves_per_simd);
486 sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb",
487 dev->node_props.lds_size_in_kb);
488 sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb",
489 dev->node_props.gds_size_in_kb);
490 sysfs_show_32bit_prop(buffer, offs, "num_gws",
491 dev->node_props.num_gws);
492 sysfs_show_32bit_prop(buffer, offs, "wave_front_size",
493 dev->node_props.wave_front_size);
494 sysfs_show_32bit_prop(buffer, offs, "array_count",
495 dev->node_props.array_count);
496 sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine",
497 dev->node_props.simd_arrays_per_engine);
498 sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array",
499 dev->node_props.cu_per_simd_array);
500 sysfs_show_32bit_prop(buffer, offs, "simd_per_cu",
501 dev->node_props.simd_per_cu);
502 sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu",
503 dev->node_props.max_slots_scratch_cu);
504 sysfs_show_32bit_prop(buffer, offs, "gfx_target_version",
505 dev->node_props.gfx_target_version);
506 sysfs_show_32bit_prop(buffer, offs, "vendor_id",
507 dev->node_props.vendor_id);
508 sysfs_show_32bit_prop(buffer, offs, "device_id",
509 dev->node_props.device_id);
510 sysfs_show_32bit_prop(buffer, offs, "location_id",
511 dev->node_props.location_id);
512 sysfs_show_32bit_prop(buffer, offs, "domain",
513 dev->node_props.domain);
514 sysfs_show_32bit_prop(buffer, offs, "drm_render_minor",
515 dev->node_props.drm_render_minor);
516 sysfs_show_64bit_prop(buffer, offs, "hive_id",
517 dev->node_props.hive_id);
518 sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines",
519 dev->node_props.num_sdma_engines);
520 sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines",
521 dev->node_props.num_sdma_xgmi_engines);
522 sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine",
523 dev->node_props.num_sdma_queues_per_engine);
524 sysfs_show_32bit_prop(buffer, offs, "num_cp_queues",
525 dev->node_props.num_cp_queues);
526
527 if (dev->gpu) {
528 log_max_watch_addr =
529 __ilog2_u32(dev->gpu->device_info.num_of_watch_points);
530
531 if (log_max_watch_addr) {
532 dev->node_props.capability |=
533 HSA_CAP_WATCH_POINTS_SUPPORTED;
534
535 dev->node_props.capability |=
536 ((log_max_watch_addr <<
537 HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
538 HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
539 }
540
541 if (dev->gpu->adev->asic_type == CHIP_TONGA)
542 dev->node_props.capability |=
543 HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
544
545 sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute",
546 dev->node_props.max_engine_clk_fcompute);
547
548 sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL);
549
550 sysfs_show_32bit_prop(buffer, offs, "fw_version",
551 dev->gpu->mec_fw_version);
552 sysfs_show_32bit_prop(buffer, offs, "capability",
553 dev->node_props.capability);
554 sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version",
555 dev->gpu->sdma_fw_version);
556 sysfs_show_64bit_prop(buffer, offs, "unique_id",
557 dev->gpu->adev->unique_id);
558
559 }
560
561 return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute",
562 cpufreq_quick_get_max(0)/1000);
563 }
564
565 static const struct sysfs_ops node_ops = {
566 .show = node_show,
567 };
568
569 static struct kobj_type node_type = {
570 .release = kfd_topology_kobj_release,
571 .sysfs_ops = &node_ops,
572 };
573
kfd_remove_sysfs_file(struct kobject * kobj,struct attribute * attr)574 static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
575 {
576 sysfs_remove_file(kobj, attr);
577 kobject_del(kobj);
578 kobject_put(kobj);
579 }
580
kfd_remove_sysfs_node_entry(struct kfd_topology_device * dev)581 static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
582 {
583 struct kfd_iolink_properties *p2plink;
584 struct kfd_iolink_properties *iolink;
585 struct kfd_cache_properties *cache;
586 struct kfd_mem_properties *mem;
587 struct kfd_perf_properties *perf;
588
589 if (dev->kobj_iolink) {
590 list_for_each_entry(iolink, &dev->io_link_props, list)
591 if (iolink->kobj) {
592 kfd_remove_sysfs_file(iolink->kobj,
593 &iolink->attr);
594 iolink->kobj = NULL;
595 }
596 kobject_del(dev->kobj_iolink);
597 kobject_put(dev->kobj_iolink);
598 dev->kobj_iolink = NULL;
599 }
600
601 if (dev->kobj_p2plink) {
602 list_for_each_entry(p2plink, &dev->p2p_link_props, list)
603 if (p2plink->kobj) {
604 kfd_remove_sysfs_file(p2plink->kobj,
605 &p2plink->attr);
606 p2plink->kobj = NULL;
607 }
608 kobject_del(dev->kobj_p2plink);
609 kobject_put(dev->kobj_p2plink);
610 dev->kobj_p2plink = NULL;
611 }
612
613 if (dev->kobj_cache) {
614 list_for_each_entry(cache, &dev->cache_props, list)
615 if (cache->kobj) {
616 kfd_remove_sysfs_file(cache->kobj,
617 &cache->attr);
618 cache->kobj = NULL;
619 }
620 kobject_del(dev->kobj_cache);
621 kobject_put(dev->kobj_cache);
622 dev->kobj_cache = NULL;
623 }
624
625 if (dev->kobj_mem) {
626 list_for_each_entry(mem, &dev->mem_props, list)
627 if (mem->kobj) {
628 kfd_remove_sysfs_file(mem->kobj, &mem->attr);
629 mem->kobj = NULL;
630 }
631 kobject_del(dev->kobj_mem);
632 kobject_put(dev->kobj_mem);
633 dev->kobj_mem = NULL;
634 }
635
636 if (dev->kobj_perf) {
637 list_for_each_entry(perf, &dev->perf_props, list) {
638 kfree(perf->attr_group);
639 perf->attr_group = NULL;
640 }
641 kobject_del(dev->kobj_perf);
642 kobject_put(dev->kobj_perf);
643 dev->kobj_perf = NULL;
644 }
645
646 if (dev->kobj_node) {
647 sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
648 sysfs_remove_file(dev->kobj_node, &dev->attr_name);
649 sysfs_remove_file(dev->kobj_node, &dev->attr_props);
650 kobject_del(dev->kobj_node);
651 kobject_put(dev->kobj_node);
652 dev->kobj_node = NULL;
653 }
654 }
655
kfd_build_sysfs_node_entry(struct kfd_topology_device * dev,uint32_t id)656 static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
657 uint32_t id)
658 {
659 struct kfd_iolink_properties *p2plink;
660 struct kfd_iolink_properties *iolink;
661 struct kfd_cache_properties *cache;
662 struct kfd_mem_properties *mem;
663 struct kfd_perf_properties *perf;
664 int ret;
665 uint32_t i, num_attrs;
666 struct attribute **attrs;
667
668 if (WARN_ON(dev->kobj_node))
669 return -EEXIST;
670
671 /*
672 * Creating the sysfs folders
673 */
674 dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
675 if (!dev->kobj_node)
676 return -ENOMEM;
677
678 ret = kobject_init_and_add(dev->kobj_node, &node_type,
679 sys_props.kobj_nodes, "%d", id);
680 if (ret < 0) {
681 kobject_put(dev->kobj_node);
682 return ret;
683 }
684
685 dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
686 if (!dev->kobj_mem)
687 return -ENOMEM;
688
689 dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
690 if (!dev->kobj_cache)
691 return -ENOMEM;
692
693 dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
694 if (!dev->kobj_iolink)
695 return -ENOMEM;
696
697 dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node);
698 if (!dev->kobj_p2plink)
699 return -ENOMEM;
700
701 dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
702 if (!dev->kobj_perf)
703 return -ENOMEM;
704
705 /*
706 * Creating sysfs files for node properties
707 */
708 dev->attr_gpuid.name = "gpu_id";
709 dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
710 sysfs_attr_init(&dev->attr_gpuid);
711 dev->attr_name.name = "name";
712 dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
713 sysfs_attr_init(&dev->attr_name);
714 dev->attr_props.name = "properties";
715 dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
716 sysfs_attr_init(&dev->attr_props);
717 ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
718 if (ret < 0)
719 return ret;
720 ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
721 if (ret < 0)
722 return ret;
723 ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
724 if (ret < 0)
725 return ret;
726
727 i = 0;
728 list_for_each_entry(mem, &dev->mem_props, list) {
729 mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
730 if (!mem->kobj)
731 return -ENOMEM;
732 ret = kobject_init_and_add(mem->kobj, &mem_type,
733 dev->kobj_mem, "%d", i);
734 if (ret < 0) {
735 kobject_put(mem->kobj);
736 return ret;
737 }
738
739 mem->attr.name = "properties";
740 mem->attr.mode = KFD_SYSFS_FILE_MODE;
741 sysfs_attr_init(&mem->attr);
742 ret = sysfs_create_file(mem->kobj, &mem->attr);
743 if (ret < 0)
744 return ret;
745 i++;
746 }
747
748 i = 0;
749 list_for_each_entry(cache, &dev->cache_props, list) {
750 cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
751 if (!cache->kobj)
752 return -ENOMEM;
753 ret = kobject_init_and_add(cache->kobj, &cache_type,
754 dev->kobj_cache, "%d", i);
755 if (ret < 0) {
756 kobject_put(cache->kobj);
757 return ret;
758 }
759
760 cache->attr.name = "properties";
761 cache->attr.mode = KFD_SYSFS_FILE_MODE;
762 sysfs_attr_init(&cache->attr);
763 ret = sysfs_create_file(cache->kobj, &cache->attr);
764 if (ret < 0)
765 return ret;
766 i++;
767 }
768
769 i = 0;
770 list_for_each_entry(iolink, &dev->io_link_props, list) {
771 iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
772 if (!iolink->kobj)
773 return -ENOMEM;
774 ret = kobject_init_and_add(iolink->kobj, &iolink_type,
775 dev->kobj_iolink, "%d", i);
776 if (ret < 0) {
777 kobject_put(iolink->kobj);
778 return ret;
779 }
780
781 iolink->attr.name = "properties";
782 iolink->attr.mode = KFD_SYSFS_FILE_MODE;
783 sysfs_attr_init(&iolink->attr);
784 ret = sysfs_create_file(iolink->kobj, &iolink->attr);
785 if (ret < 0)
786 return ret;
787 i++;
788 }
789
790 i = 0;
791 list_for_each_entry(p2plink, &dev->p2p_link_props, list) {
792 p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
793 if (!p2plink->kobj)
794 return -ENOMEM;
795 ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
796 dev->kobj_p2plink, "%d", i);
797 if (ret < 0) {
798 kobject_put(p2plink->kobj);
799 return ret;
800 }
801
802 p2plink->attr.name = "properties";
803 p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
804 sysfs_attr_init(&p2plink->attr);
805 ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
806 if (ret < 0)
807 return ret;
808 i++;
809 }
810
811 /* All hardware blocks have the same number of attributes. */
812 num_attrs = ARRAY_SIZE(perf_attr_iommu);
813 list_for_each_entry(perf, &dev->perf_props, list) {
814 perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
815 * num_attrs + sizeof(struct attribute_group),
816 GFP_KERNEL);
817 if (!perf->attr_group)
818 return -ENOMEM;
819
820 attrs = (struct attribute **)(perf->attr_group + 1);
821 if (!strcmp(perf->block_name, "iommu")) {
822 /* Information of IOMMU's num_counters and counter_ids is shown
823 * under /sys/bus/event_source/devices/amd_iommu. We don't
824 * duplicate here.
825 */
826 perf_attr_iommu[0].data = perf->max_concurrent;
827 for (i = 0; i < num_attrs; i++)
828 attrs[i] = &perf_attr_iommu[i].attr.attr;
829 }
830 perf->attr_group->name = perf->block_name;
831 perf->attr_group->attrs = attrs;
832 ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
833 if (ret < 0)
834 return ret;
835 }
836
837 return 0;
838 }
839
840 /* Called with write topology lock acquired */
kfd_build_sysfs_node_tree(void)841 static int kfd_build_sysfs_node_tree(void)
842 {
843 struct kfd_topology_device *dev;
844 int ret;
845 uint32_t i = 0;
846
847 list_for_each_entry(dev, &topology_device_list, list) {
848 ret = kfd_build_sysfs_node_entry(dev, i);
849 if (ret < 0)
850 return ret;
851 i++;
852 }
853
854 return 0;
855 }
856
857 /* Called with write topology lock acquired */
kfd_remove_sysfs_node_tree(void)858 static void kfd_remove_sysfs_node_tree(void)
859 {
860 struct kfd_topology_device *dev;
861
862 list_for_each_entry(dev, &topology_device_list, list)
863 kfd_remove_sysfs_node_entry(dev);
864 }
865
kfd_topology_update_sysfs(void)866 static int kfd_topology_update_sysfs(void)
867 {
868 int ret;
869
870 if (!sys_props.kobj_topology) {
871 sys_props.kobj_topology =
872 kfd_alloc_struct(sys_props.kobj_topology);
873 if (!sys_props.kobj_topology)
874 return -ENOMEM;
875
876 ret = kobject_init_and_add(sys_props.kobj_topology,
877 &sysprops_type, &kfd_device->kobj,
878 "topology");
879 if (ret < 0) {
880 kobject_put(sys_props.kobj_topology);
881 return ret;
882 }
883
884 sys_props.kobj_nodes = kobject_create_and_add("nodes",
885 sys_props.kobj_topology);
886 if (!sys_props.kobj_nodes)
887 return -ENOMEM;
888
889 sys_props.attr_genid.name = "generation_id";
890 sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
891 sysfs_attr_init(&sys_props.attr_genid);
892 ret = sysfs_create_file(sys_props.kobj_topology,
893 &sys_props.attr_genid);
894 if (ret < 0)
895 return ret;
896
897 sys_props.attr_props.name = "system_properties";
898 sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
899 sysfs_attr_init(&sys_props.attr_props);
900 ret = sysfs_create_file(sys_props.kobj_topology,
901 &sys_props.attr_props);
902 if (ret < 0)
903 return ret;
904 }
905
906 kfd_remove_sysfs_node_tree();
907
908 return kfd_build_sysfs_node_tree();
909 }
910
kfd_topology_release_sysfs(void)911 static void kfd_topology_release_sysfs(void)
912 {
913 kfd_remove_sysfs_node_tree();
914 if (sys_props.kobj_topology) {
915 sysfs_remove_file(sys_props.kobj_topology,
916 &sys_props.attr_genid);
917 sysfs_remove_file(sys_props.kobj_topology,
918 &sys_props.attr_props);
919 if (sys_props.kobj_nodes) {
920 kobject_del(sys_props.kobj_nodes);
921 kobject_put(sys_props.kobj_nodes);
922 sys_props.kobj_nodes = NULL;
923 }
924 kobject_del(sys_props.kobj_topology);
925 kobject_put(sys_props.kobj_topology);
926 sys_props.kobj_topology = NULL;
927 }
928 }
929
930 /* Called with write topology_lock acquired */
kfd_topology_update_device_list(struct list_head * temp_list,struct list_head * master_list)931 static void kfd_topology_update_device_list(struct list_head *temp_list,
932 struct list_head *master_list)
933 {
934 while (!list_empty(temp_list)) {
935 list_move_tail(temp_list->next, master_list);
936 sys_props.num_devices++;
937 }
938 }
939
kfd_debug_print_topology(void)940 static void kfd_debug_print_topology(void)
941 {
942 struct kfd_topology_device *dev;
943
944 down_read(&topology_lock);
945
946 dev = list_last_entry(&topology_device_list,
947 struct kfd_topology_device, list);
948 if (dev) {
949 if (dev->node_props.cpu_cores_count &&
950 dev->node_props.simd_count) {
951 pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
952 dev->node_props.device_id,
953 dev->node_props.vendor_id);
954 } else if (dev->node_props.cpu_cores_count)
955 pr_info("Topology: Add CPU node\n");
956 else if (dev->node_props.simd_count)
957 pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
958 dev->node_props.device_id,
959 dev->node_props.vendor_id);
960 }
961 up_read(&topology_lock);
962 }
963
964 /* Helper function for intializing platform_xx members of
965 * kfd_system_properties. Uses OEM info from the last CPU/APU node.
966 */
kfd_update_system_properties(void)967 static void kfd_update_system_properties(void)
968 {
969 struct kfd_topology_device *dev;
970
971 down_read(&topology_lock);
972 dev = list_last_entry(&topology_device_list,
973 struct kfd_topology_device, list);
974 if (dev) {
975 sys_props.platform_id =
976 (*((uint64_t *)dev->oem_id)) & CRAT_OEMID_64BIT_MASK;
977 sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
978 sys_props.platform_rev = dev->oem_revision;
979 }
980 up_read(&topology_lock);
981 }
982
find_system_memory(const struct dmi_header * dm,void * private)983 static void find_system_memory(const struct dmi_header *dm,
984 void *private)
985 {
986 struct kfd_mem_properties *mem;
987 u16 mem_width, mem_clock;
988 struct kfd_topology_device *kdev =
989 (struct kfd_topology_device *)private;
990 const u8 *dmi_data = (const u8 *)(dm + 1);
991
992 if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) {
993 mem_width = (u16)(*(const u16 *)(dmi_data + 0x6));
994 mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11));
995 list_for_each_entry(mem, &kdev->mem_props, list) {
996 if (mem_width != 0xFFFF && mem_width != 0)
997 mem->width = mem_width;
998 if (mem_clock != 0)
999 mem->mem_clk_max = mem_clock;
1000 }
1001 }
1002 }
1003
1004 /*
1005 * Performance counters information is not part of CRAT but we would like to
1006 * put them in the sysfs under topology directory for Thunk to get the data.
1007 * This function is called before updating the sysfs.
1008 */
kfd_add_perf_to_topology(struct kfd_topology_device * kdev)1009 static int kfd_add_perf_to_topology(struct kfd_topology_device *kdev)
1010 {
1011 /* These are the only counters supported so far */
1012 return kfd_iommu_add_perf_counters(kdev);
1013 }
1014
1015 /* kfd_add_non_crat_information - Add information that is not currently
1016 * defined in CRAT but is necessary for KFD topology
1017 * @dev - topology device to which addition info is added
1018 */
kfd_add_non_crat_information(struct kfd_topology_device * kdev)1019 static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
1020 {
1021 /* Check if CPU only node. */
1022 if (!kdev->gpu) {
1023 /* Add system memory information */
1024 dmi_walk(find_system_memory, kdev);
1025 }
1026 /* TODO: For GPU node, rearrange code from kfd_topology_add_device */
1027 }
1028
1029 /* kfd_is_acpi_crat_invalid - CRAT from ACPI is valid only for AMD APU devices.
1030 * Ignore CRAT for all other devices. AMD APU is identified if both CPU
1031 * and GPU cores are present.
1032 * @device_list - topology device list created by parsing ACPI CRAT table.
1033 * @return - TRUE if invalid, FALSE is valid.
1034 */
kfd_is_acpi_crat_invalid(struct list_head * device_list)1035 static bool kfd_is_acpi_crat_invalid(struct list_head *device_list)
1036 {
1037 struct kfd_topology_device *dev;
1038
1039 list_for_each_entry(dev, device_list, list) {
1040 if (dev->node_props.cpu_cores_count &&
1041 dev->node_props.simd_count)
1042 return false;
1043 }
1044 pr_info("Ignoring ACPI CRAT on non-APU system\n");
1045 return true;
1046 }
1047
kfd_topology_init(void)1048 int kfd_topology_init(void)
1049 {
1050 void *crat_image = NULL;
1051 size_t image_size = 0;
1052 int ret;
1053 struct list_head temp_topology_device_list;
1054 int cpu_only_node = 0;
1055 struct kfd_topology_device *kdev;
1056 int proximity_domain;
1057
1058 /* topology_device_list - Master list of all topology devices
1059 * temp_topology_device_list - temporary list created while parsing CRAT
1060 * or VCRAT. Once parsing is complete the contents of list is moved to
1061 * topology_device_list
1062 */
1063
1064 /* Initialize the head for the both the lists */
1065 INIT_LIST_HEAD(&topology_device_list);
1066 INIT_LIST_HEAD(&temp_topology_device_list);
1067 init_rwsem(&topology_lock);
1068
1069 memset(&sys_props, 0, sizeof(sys_props));
1070
1071 /* Proximity domains in ACPI CRAT tables start counting at
1072 * 0. The same should be true for virtual CRAT tables created
1073 * at this stage. GPUs added later in kfd_topology_add_device
1074 * use a counter.
1075 */
1076 proximity_domain = 0;
1077
1078 /*
1079 * Get the CRAT image from the ACPI. If ACPI doesn't have one
1080 * or if ACPI CRAT is invalid create a virtual CRAT.
1081 * NOTE: The current implementation expects all AMD APUs to have
1082 * CRAT. If no CRAT is available, it is assumed to be a CPU
1083 */
1084 ret = kfd_create_crat_image_acpi(&crat_image, &image_size);
1085 if (!ret) {
1086 ret = kfd_parse_crat_table(crat_image,
1087 &temp_topology_device_list,
1088 proximity_domain);
1089 if (ret ||
1090 kfd_is_acpi_crat_invalid(&temp_topology_device_list)) {
1091 kfd_release_topology_device_list(
1092 &temp_topology_device_list);
1093 kfd_destroy_crat_image(crat_image);
1094 crat_image = NULL;
1095 }
1096 }
1097
1098 if (!crat_image) {
1099 ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
1100 COMPUTE_UNIT_CPU, NULL,
1101 proximity_domain);
1102 cpu_only_node = 1;
1103 if (ret) {
1104 pr_err("Error creating VCRAT table for CPU\n");
1105 return ret;
1106 }
1107
1108 ret = kfd_parse_crat_table(crat_image,
1109 &temp_topology_device_list,
1110 proximity_domain);
1111 if (ret) {
1112 pr_err("Error parsing VCRAT table for CPU\n");
1113 goto err;
1114 }
1115 }
1116
1117 kdev = list_first_entry(&temp_topology_device_list,
1118 struct kfd_topology_device, list);
1119 kfd_add_perf_to_topology(kdev);
1120
1121 down_write(&topology_lock);
1122 kfd_topology_update_device_list(&temp_topology_device_list,
1123 &topology_device_list);
1124 topology_crat_proximity_domain = sys_props.num_devices-1;
1125 ret = kfd_topology_update_sysfs();
1126 up_write(&topology_lock);
1127
1128 if (!ret) {
1129 sys_props.generation_count++;
1130 kfd_update_system_properties();
1131 kfd_debug_print_topology();
1132 } else
1133 pr_err("Failed to update topology in sysfs ret=%d\n", ret);
1134
1135 /* For nodes with GPU, this information gets added
1136 * when GPU is detected (kfd_topology_add_device).
1137 */
1138 if (cpu_only_node) {
1139 /* Add additional information to CPU only node created above */
1140 down_write(&topology_lock);
1141 kdev = list_first_entry(&topology_device_list,
1142 struct kfd_topology_device, list);
1143 up_write(&topology_lock);
1144 kfd_add_non_crat_information(kdev);
1145 }
1146
1147 err:
1148 kfd_destroy_crat_image(crat_image);
1149 return ret;
1150 }
1151
kfd_topology_shutdown(void)1152 void kfd_topology_shutdown(void)
1153 {
1154 down_write(&topology_lock);
1155 kfd_topology_release_sysfs();
1156 kfd_release_live_view();
1157 up_write(&topology_lock);
1158 }
1159
kfd_generate_gpu_id(struct kfd_dev * gpu)1160 static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu)
1161 {
1162 uint32_t hashout;
1163 uint32_t buf[7];
1164 uint64_t local_mem_size;
1165 int i;
1166
1167 if (!gpu)
1168 return 0;
1169
1170 local_mem_size = gpu->local_mem_info.local_mem_size_private +
1171 gpu->local_mem_info.local_mem_size_public;
1172
1173 buf[0] = gpu->pdev->devfn;
1174 buf[1] = gpu->pdev->subsystem_vendor |
1175 (gpu->pdev->subsystem_device << 16);
1176 buf[2] = pci_domain_nr(gpu->pdev->bus);
1177 buf[3] = gpu->pdev->device;
1178 buf[4] = gpu->pdev->bus->number;
1179 buf[5] = lower_32_bits(local_mem_size);
1180 buf[6] = upper_32_bits(local_mem_size);
1181
1182 for (i = 0, hashout = 0; i < 7; i++)
1183 hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
1184
1185 return hashout;
1186 }
1187 /* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
1188 * the GPU device is not already present in the topology device
1189 * list then return NULL. This means a new topology device has to
1190 * be created for this GPU.
1191 */
kfd_assign_gpu(struct kfd_dev * gpu)1192 static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu)
1193 {
1194 struct kfd_topology_device *dev;
1195 struct kfd_topology_device *out_dev = NULL;
1196 struct kfd_mem_properties *mem;
1197 struct kfd_cache_properties *cache;
1198 struct kfd_iolink_properties *iolink;
1199 struct kfd_iolink_properties *p2plink;
1200
1201 list_for_each_entry(dev, &topology_device_list, list) {
1202 /* Discrete GPUs need their own topology device list
1203 * entries. Don't assign them to CPU/APU nodes.
1204 */
1205 if (!gpu->use_iommu_v2 &&
1206 dev->node_props.cpu_cores_count)
1207 continue;
1208
1209 if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1210 dev->gpu = gpu;
1211 out_dev = dev;
1212
1213 list_for_each_entry(mem, &dev->mem_props, list)
1214 mem->gpu = dev->gpu;
1215 list_for_each_entry(cache, &dev->cache_props, list)
1216 cache->gpu = dev->gpu;
1217 list_for_each_entry(iolink, &dev->io_link_props, list)
1218 iolink->gpu = dev->gpu;
1219 list_for_each_entry(p2plink, &dev->p2p_link_props, list)
1220 p2plink->gpu = dev->gpu;
1221 break;
1222 }
1223 }
1224 return out_dev;
1225 }
1226
kfd_notify_gpu_change(uint32_t gpu_id,int arrival)1227 static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1228 {
1229 /*
1230 * TODO: Generate an event for thunk about the arrival/removal
1231 * of the GPU
1232 */
1233 }
1234
1235 /* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
1236 * patch this after CRAT parsing.
1237 */
kfd_fill_mem_clk_max_info(struct kfd_topology_device * dev)1238 static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
1239 {
1240 struct kfd_mem_properties *mem;
1241 struct kfd_local_mem_info local_mem_info;
1242
1243 if (!dev)
1244 return;
1245
1246 /* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
1247 * single bank of VRAM local memory.
1248 * for dGPUs - VCRAT reports only one bank of Local Memory
1249 * for APUs - If CRAT from ACPI reports more than one bank, then
1250 * all the banks will report the same mem_clk_max information
1251 */
1252 amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info);
1253
1254 list_for_each_entry(mem, &dev->mem_props, list)
1255 mem->mem_clk_max = local_mem_info.mem_clk_max;
1256 }
1257
kfd_set_iolink_no_atomics(struct kfd_topology_device * dev,struct kfd_topology_device * target_gpu_dev,struct kfd_iolink_properties * link)1258 static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev,
1259 struct kfd_topology_device *target_gpu_dev,
1260 struct kfd_iolink_properties *link)
1261 {
1262 /* xgmi always supports atomics between links. */
1263 if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI)
1264 return;
1265
1266 /* check pcie support to set cpu(dev) flags for target_gpu_dev link. */
1267 if (target_gpu_dev) {
1268 uint32_t cap;
1269
1270 pcie_capability_read_dword(target_gpu_dev->gpu->pdev,
1271 PCI_EXP_DEVCAP2, &cap);
1272
1273 if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
1274 PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
1275 link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1276 CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1277 /* set gpu (dev) flags. */
1278 } else {
1279 if (!dev->gpu->pci_atomic_requested ||
1280 dev->gpu->adev->asic_type == CHIP_HAWAII)
1281 link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1282 CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1283 }
1284 }
1285
kfd_set_iolink_non_coherent(struct kfd_topology_device * to_dev,struct kfd_iolink_properties * outbound_link,struct kfd_iolink_properties * inbound_link)1286 static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev,
1287 struct kfd_iolink_properties *outbound_link,
1288 struct kfd_iolink_properties *inbound_link)
1289 {
1290 /* CPU -> GPU with PCIe */
1291 if (!to_dev->gpu &&
1292 inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
1293 inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1294
1295 if (to_dev->gpu) {
1296 /* GPU <-> GPU with PCIe and
1297 * Vega20 with XGMI
1298 */
1299 if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS ||
1300 (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1301 KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) {
1302 outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1303 inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1304 }
1305 }
1306 }
1307
kfd_fill_iolink_non_crat_info(struct kfd_topology_device * dev)1308 static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
1309 {
1310 struct kfd_iolink_properties *link, *inbound_link;
1311 struct kfd_topology_device *peer_dev;
1312
1313 if (!dev || !dev->gpu)
1314 return;
1315
1316 /* GPU only creates direct links so apply flags setting to all */
1317 list_for_each_entry(link, &dev->io_link_props, list) {
1318 link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1319 kfd_set_iolink_no_atomics(dev, NULL, link);
1320 peer_dev = kfd_topology_device_by_proximity_domain(
1321 link->node_to);
1322
1323 if (!peer_dev)
1324 continue;
1325
1326 /* Include the CPU peer in GPU hive if connected over xGMI. */
1327 if (!peer_dev->gpu && !peer_dev->node_props.hive_id &&
1328 dev->node_props.hive_id &&
1329 dev->gpu->adev->gmc.xgmi.connected_to_cpu)
1330 peer_dev->node_props.hive_id = dev->node_props.hive_id;
1331
1332 list_for_each_entry(inbound_link, &peer_dev->io_link_props,
1333 list) {
1334 if (inbound_link->node_to != link->node_from)
1335 continue;
1336
1337 inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1338 kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1339 kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1340 }
1341 }
1342
1343 /* Create indirect links so apply flags setting to all */
1344 list_for_each_entry(link, &dev->p2p_link_props, list) {
1345 link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1346 kfd_set_iolink_no_atomics(dev, NULL, link);
1347 peer_dev = kfd_topology_device_by_proximity_domain(
1348 link->node_to);
1349
1350 if (!peer_dev)
1351 continue;
1352
1353 list_for_each_entry(inbound_link, &peer_dev->p2p_link_props,
1354 list) {
1355 if (inbound_link->node_to != link->node_from)
1356 continue;
1357
1358 inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1359 kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1360 kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1361 }
1362 }
1363 }
1364
kfd_build_p2p_node_entry(struct kfd_topology_device * dev,struct kfd_iolink_properties * p2plink)1365 static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev,
1366 struct kfd_iolink_properties *p2plink)
1367 {
1368 int ret;
1369
1370 p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
1371 if (!p2plink->kobj)
1372 return -ENOMEM;
1373
1374 ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
1375 dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1);
1376 if (ret < 0) {
1377 kobject_put(p2plink->kobj);
1378 return ret;
1379 }
1380
1381 p2plink->attr.name = "properties";
1382 p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
1383 sysfs_attr_init(&p2plink->attr);
1384 ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
1385 if (ret < 0)
1386 return ret;
1387
1388 return 0;
1389 }
1390
kfd_create_indirect_link_prop(struct kfd_topology_device * kdev,int gpu_node)1391 static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node)
1392 {
1393 struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link;
1394 struct kfd_iolink_properties *props = NULL, *props2 = NULL;
1395 struct kfd_topology_device *cpu_dev;
1396 int ret = 0;
1397 int i, num_cpu;
1398
1399 num_cpu = 0;
1400 list_for_each_entry(cpu_dev, &topology_device_list, list) {
1401 if (cpu_dev->gpu)
1402 break;
1403 num_cpu++;
1404 }
1405
1406 if (list_empty(&kdev->io_link_props))
1407 return -ENODATA;
1408
1409 gpu_link = list_first_entry(&kdev->io_link_props,
1410 struct kfd_iolink_properties, list);
1411
1412 for (i = 0; i < num_cpu; i++) {
1413 /* CPU <--> GPU */
1414 if (gpu_link->node_to == i)
1415 continue;
1416
1417 /* find CPU <--> CPU links */
1418 cpu_link = NULL;
1419 cpu_dev = kfd_topology_device_by_proximity_domain(i);
1420 if (cpu_dev) {
1421 list_for_each_entry(tmp_link,
1422 &cpu_dev->io_link_props, list) {
1423 if (tmp_link->node_to == gpu_link->node_to) {
1424 cpu_link = tmp_link;
1425 break;
1426 }
1427 }
1428 }
1429
1430 if (!cpu_link)
1431 return -ENOMEM;
1432
1433 /* CPU <--> CPU <--> GPU, GPU node*/
1434 props = kfd_alloc_struct(props);
1435 if (!props)
1436 return -ENOMEM;
1437
1438 memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties));
1439 props->weight = gpu_link->weight + cpu_link->weight;
1440 props->min_latency = gpu_link->min_latency + cpu_link->min_latency;
1441 props->max_latency = gpu_link->max_latency + cpu_link->max_latency;
1442 props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth);
1443 props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth);
1444
1445 props->node_from = gpu_node;
1446 props->node_to = i;
1447 kdev->node_props.p2p_links_count++;
1448 list_add_tail(&props->list, &kdev->p2p_link_props);
1449 ret = kfd_build_p2p_node_entry(kdev, props);
1450 if (ret < 0)
1451 return ret;
1452
1453 /* for small Bar, no CPU --> GPU in-direct links */
1454 if (kfd_dev_is_large_bar(kdev->gpu)) {
1455 /* CPU <--> CPU <--> GPU, CPU node*/
1456 props2 = kfd_alloc_struct(props2);
1457 if (!props2)
1458 return -ENOMEM;
1459
1460 memcpy(props2, props, sizeof(struct kfd_iolink_properties));
1461 props2->node_from = i;
1462 props2->node_to = gpu_node;
1463 props2->kobj = NULL;
1464 cpu_dev->node_props.p2p_links_count++;
1465 list_add_tail(&props2->list, &cpu_dev->p2p_link_props);
1466 ret = kfd_build_p2p_node_entry(cpu_dev, props2);
1467 if (ret < 0)
1468 return ret;
1469 }
1470 }
1471 return ret;
1472 }
1473
1474 #if defined(CONFIG_HSA_AMD_P2P)
kfd_add_peer_prop(struct kfd_topology_device * kdev,struct kfd_topology_device * peer,int from,int to)1475 static int kfd_add_peer_prop(struct kfd_topology_device *kdev,
1476 struct kfd_topology_device *peer, int from, int to)
1477 {
1478 struct kfd_iolink_properties *props = NULL;
1479 struct kfd_iolink_properties *iolink1, *iolink2, *iolink3;
1480 struct kfd_topology_device *cpu_dev;
1481 int ret = 0;
1482
1483 if (!amdgpu_device_is_peer_accessible(
1484 kdev->gpu->adev,
1485 peer->gpu->adev))
1486 return ret;
1487
1488 if (list_empty(&kdev->io_link_props))
1489 return -ENODATA;
1490
1491 iolink1 = list_first_entry(&kdev->io_link_props,
1492 struct kfd_iolink_properties, list);
1493
1494 if (list_empty(&peer->io_link_props))
1495 return -ENODATA;
1496
1497 iolink2 = list_first_entry(&peer->io_link_props,
1498 struct kfd_iolink_properties, list);
1499
1500 props = kfd_alloc_struct(props);
1501 if (!props)
1502 return -ENOMEM;
1503
1504 memcpy(props, iolink1, sizeof(struct kfd_iolink_properties));
1505
1506 props->weight = iolink1->weight + iolink2->weight;
1507 props->min_latency = iolink1->min_latency + iolink2->min_latency;
1508 props->max_latency = iolink1->max_latency + iolink2->max_latency;
1509 props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth);
1510 props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth);
1511
1512 if (iolink1->node_to != iolink2->node_to) {
1513 /* CPU->CPU link*/
1514 cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to);
1515 if (cpu_dev) {
1516 list_for_each_entry(iolink3, &cpu_dev->io_link_props, list) {
1517 if (iolink3->node_to != iolink2->node_to)
1518 continue;
1519
1520 props->weight += iolink3->weight;
1521 props->min_latency += iolink3->min_latency;
1522 props->max_latency += iolink3->max_latency;
1523 props->min_bandwidth = min(props->min_bandwidth,
1524 iolink3->min_bandwidth);
1525 props->max_bandwidth = min(props->max_bandwidth,
1526 iolink3->max_bandwidth);
1527 break;
1528 }
1529 } else {
1530 WARN(1, "CPU node not found");
1531 }
1532 }
1533
1534 props->node_from = from;
1535 props->node_to = to;
1536 peer->node_props.p2p_links_count++;
1537 list_add_tail(&props->list, &peer->p2p_link_props);
1538 ret = kfd_build_p2p_node_entry(peer, props);
1539
1540 return ret;
1541 }
1542 #endif
1543
kfd_dev_create_p2p_links(void)1544 static int kfd_dev_create_p2p_links(void)
1545 {
1546 struct kfd_topology_device *dev;
1547 struct kfd_topology_device *new_dev;
1548 #if defined(CONFIG_HSA_AMD_P2P)
1549 uint32_t i;
1550 #endif
1551 uint32_t k;
1552 int ret = 0;
1553
1554 k = 0;
1555 list_for_each_entry(dev, &topology_device_list, list)
1556 k++;
1557 if (k < 2)
1558 return 0;
1559
1560 new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list);
1561 if (WARN_ON(!new_dev->gpu))
1562 return 0;
1563
1564 k--;
1565
1566 /* create in-direct links */
1567 ret = kfd_create_indirect_link_prop(new_dev, k);
1568 if (ret < 0)
1569 goto out;
1570
1571 /* create p2p links */
1572 #if defined(CONFIG_HSA_AMD_P2P)
1573 i = 0;
1574 list_for_each_entry(dev, &topology_device_list, list) {
1575 if (dev == new_dev)
1576 break;
1577 if (!dev->gpu || !dev->gpu->adev ||
1578 (dev->gpu->hive_id &&
1579 dev->gpu->hive_id == new_dev->gpu->hive_id))
1580 goto next;
1581
1582 /* check if node(s) is/are peer accessible in one direction or bi-direction */
1583 ret = kfd_add_peer_prop(new_dev, dev, i, k);
1584 if (ret < 0)
1585 goto out;
1586
1587 ret = kfd_add_peer_prop(dev, new_dev, k, i);
1588 if (ret < 0)
1589 goto out;
1590 next:
1591 i++;
1592 }
1593 #endif
1594
1595 out:
1596 return ret;
1597 }
1598
1599
1600 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
fill_in_l1_pcache(struct kfd_cache_properties ** props_ext,struct kfd_gpu_cache_info * pcache_info,struct kfd_cu_info * cu_info,int cu_bitmask,int cache_type,unsigned int cu_processor_id,int cu_block)1601 static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext,
1602 struct kfd_gpu_cache_info *pcache_info,
1603 struct kfd_cu_info *cu_info,
1604 int cu_bitmask,
1605 int cache_type, unsigned int cu_processor_id,
1606 int cu_block)
1607 {
1608 unsigned int cu_sibling_map_mask;
1609 int first_active_cu;
1610 struct kfd_cache_properties *pcache = NULL;
1611
1612 cu_sibling_map_mask = cu_bitmask;
1613 cu_sibling_map_mask >>= cu_block;
1614 cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1615 first_active_cu = ffs(cu_sibling_map_mask);
1616
1617 /* CU could be inactive. In case of shared cache find the first active
1618 * CU. and incase of non-shared cache check if the CU is inactive. If
1619 * inactive active skip it
1620 */
1621 if (first_active_cu) {
1622 pcache = kfd_alloc_struct(pcache);
1623 if (!pcache)
1624 return -ENOMEM;
1625
1626 memset(pcache, 0, sizeof(struct kfd_cache_properties));
1627 pcache->processor_id_low = cu_processor_id + (first_active_cu - 1);
1628 pcache->cache_level = pcache_info[cache_type].cache_level;
1629 pcache->cache_size = pcache_info[cache_type].cache_size;
1630
1631 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1632 pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1633 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1634 pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1635 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1636 pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1637 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1638 pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1639
1640 /* Sibling map is w.r.t processor_id_low, so shift out
1641 * inactive CU
1642 */
1643 cu_sibling_map_mask =
1644 cu_sibling_map_mask >> (first_active_cu - 1);
1645
1646 pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1647 pcache->sibling_map[1] =
1648 (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1649 pcache->sibling_map[2] =
1650 (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1651 pcache->sibling_map[3] =
1652 (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1653
1654 pcache->sibling_map_size = 4;
1655 *props_ext = pcache;
1656
1657 return 0;
1658 }
1659 return 1;
1660 }
1661
1662 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
fill_in_l2_l3_pcache(struct kfd_cache_properties ** props_ext,struct kfd_gpu_cache_info * pcache_info,struct kfd_cu_info * cu_info,int cache_type,unsigned int cu_processor_id)1663 static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext,
1664 struct kfd_gpu_cache_info *pcache_info,
1665 struct kfd_cu_info *cu_info,
1666 int cache_type, unsigned int cu_processor_id)
1667 {
1668 unsigned int cu_sibling_map_mask;
1669 int first_active_cu;
1670 int i, j, k;
1671 struct kfd_cache_properties *pcache = NULL;
1672
1673 cu_sibling_map_mask = cu_info->cu_bitmap[0][0];
1674 cu_sibling_map_mask &=
1675 ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1676 first_active_cu = ffs(cu_sibling_map_mask);
1677
1678 /* CU could be inactive. In case of shared cache find the first active
1679 * CU. and incase of non-shared cache check if the CU is inactive. If
1680 * inactive active skip it
1681 */
1682 if (first_active_cu) {
1683 pcache = kfd_alloc_struct(pcache);
1684 if (!pcache)
1685 return -ENOMEM;
1686
1687 memset(pcache, 0, sizeof(struct kfd_cache_properties));
1688 pcache->processor_id_low = cu_processor_id
1689 + (first_active_cu - 1);
1690 pcache->cache_level = pcache_info[cache_type].cache_level;
1691 pcache->cache_size = pcache_info[cache_type].cache_size;
1692
1693 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1694 pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1695 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1696 pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1697 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1698 pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1699 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1700 pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1701
1702 /* Sibling map is w.r.t processor_id_low, so shift out
1703 * inactive CU
1704 */
1705 cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1);
1706 k = 0;
1707
1708 for (i = 0; i < cu_info->num_shader_engines; i++) {
1709 for (j = 0; j < cu_info->num_shader_arrays_per_engine; j++) {
1710 pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1711 pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1712 pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1713 pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1714 k += 4;
1715
1716 cu_sibling_map_mask = cu_info->cu_bitmap[i % 4][j + i / 4];
1717 cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1718 }
1719 }
1720 pcache->sibling_map_size = k;
1721 *props_ext = pcache;
1722 return 0;
1723 }
1724 return 1;
1725 }
1726
1727 #define KFD_MAX_CACHE_TYPES 6
1728
1729 /* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info
1730 * tables
1731 */
kfd_fill_cache_non_crat_info(struct kfd_topology_device * dev,struct kfd_dev * kdev)1732 void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_dev *kdev)
1733 {
1734 struct kfd_gpu_cache_info *pcache_info = NULL;
1735 int i, j, k;
1736 int ct = 0;
1737 unsigned int cu_processor_id;
1738 int ret;
1739 unsigned int num_cu_shared;
1740 struct kfd_cu_info cu_info;
1741 struct kfd_cu_info *pcu_info;
1742 int gpu_processor_id;
1743 struct kfd_cache_properties *props_ext;
1744 int num_of_entries = 0;
1745 int num_of_cache_types = 0;
1746 struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES];
1747
1748 amdgpu_amdkfd_get_cu_info(kdev->adev, &cu_info);
1749 pcu_info = &cu_info;
1750
1751 gpu_processor_id = dev->node_props.simd_id_base;
1752
1753 pcache_info = cache_info;
1754 num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info);
1755 if (!num_of_cache_types) {
1756 pr_warn("no cache info found\n");
1757 return;
1758 }
1759
1760 /* For each type of cache listed in the kfd_gpu_cache_info table,
1761 * go through all available Compute Units.
1762 * The [i,j,k] loop will
1763 * if kfd_gpu_cache_info.num_cu_shared = 1
1764 * will parse through all available CU
1765 * If (kfd_gpu_cache_info.num_cu_shared != 1)
1766 * then it will consider only one CU from
1767 * the shared unit
1768 */
1769 for (ct = 0; ct < num_of_cache_types; ct++) {
1770 cu_processor_id = gpu_processor_id;
1771 if (pcache_info[ct].cache_level == 1) {
1772 for (i = 0; i < pcu_info->num_shader_engines; i++) {
1773 for (j = 0; j < pcu_info->num_shader_arrays_per_engine; j++) {
1774 for (k = 0; k < pcu_info->num_cu_per_sh; k += pcache_info[ct].num_cu_shared) {
1775
1776 ret = fill_in_l1_pcache(&props_ext, pcache_info, pcu_info,
1777 pcu_info->cu_bitmap[i % 4][j + i / 4], ct,
1778 cu_processor_id, k);
1779
1780 if (ret < 0)
1781 break;
1782
1783 if (!ret) {
1784 num_of_entries++;
1785 list_add_tail(&props_ext->list, &dev->cache_props);
1786 }
1787
1788 /* Move to next CU block */
1789 num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <=
1790 pcu_info->num_cu_per_sh) ?
1791 pcache_info[ct].num_cu_shared :
1792 (pcu_info->num_cu_per_sh - k);
1793 cu_processor_id += num_cu_shared;
1794 }
1795 }
1796 }
1797 } else {
1798 ret = fill_in_l2_l3_pcache(&props_ext, pcache_info,
1799 pcu_info, ct, cu_processor_id);
1800
1801 if (ret < 0)
1802 break;
1803
1804 if (!ret) {
1805 num_of_entries++;
1806 list_add_tail(&props_ext->list, &dev->cache_props);
1807 }
1808 }
1809 }
1810 dev->node_props.caches_count += num_of_entries;
1811 pr_debug("Added [%d] GPU cache entries\n", num_of_entries);
1812 }
1813
kfd_topology_add_device(struct kfd_dev * gpu)1814 int kfd_topology_add_device(struct kfd_dev *gpu)
1815 {
1816 uint32_t gpu_id;
1817 struct kfd_topology_device *dev;
1818 struct kfd_cu_info cu_info;
1819 int res = 0;
1820 struct list_head temp_topology_device_list;
1821 void *crat_image = NULL;
1822 size_t image_size = 0;
1823 int proximity_domain;
1824 int i;
1825 const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type];
1826
1827 INIT_LIST_HEAD(&temp_topology_device_list);
1828
1829 gpu_id = kfd_generate_gpu_id(gpu);
1830 pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
1831
1832 /* Check to see if this gpu device exists in the topology_device_list.
1833 * If so, assign the gpu to that device,
1834 * else create a Virtual CRAT for this gpu device and then parse that
1835 * CRAT to create a new topology device. Once created assign the gpu to
1836 * that topology device
1837 */
1838 down_write(&topology_lock);
1839 dev = kfd_assign_gpu(gpu);
1840 if (!dev) {
1841 proximity_domain = ++topology_crat_proximity_domain;
1842
1843 res = kfd_create_crat_image_virtual(&crat_image, &image_size,
1844 COMPUTE_UNIT_GPU, gpu,
1845 proximity_domain);
1846 if (res) {
1847 pr_err("Error creating VCRAT for GPU (ID: 0x%x)\n",
1848 gpu_id);
1849 topology_crat_proximity_domain--;
1850 return res;
1851 }
1852
1853 res = kfd_parse_crat_table(crat_image,
1854 &temp_topology_device_list,
1855 proximity_domain);
1856 if (res) {
1857 pr_err("Error parsing VCRAT for GPU (ID: 0x%x)\n",
1858 gpu_id);
1859 topology_crat_proximity_domain--;
1860 goto err;
1861 }
1862
1863 kfd_topology_update_device_list(&temp_topology_device_list,
1864 &topology_device_list);
1865
1866 dev = kfd_assign_gpu(gpu);
1867 if (WARN_ON(!dev)) {
1868 res = -ENODEV;
1869 goto err;
1870 }
1871
1872 /* Fill the cache affinity information here for the GPUs
1873 * using VCRAT
1874 */
1875 kfd_fill_cache_non_crat_info(dev, gpu);
1876
1877 /* Update the SYSFS tree, since we added another topology
1878 * device
1879 */
1880 res = kfd_topology_update_sysfs();
1881 if (!res)
1882 sys_props.generation_count++;
1883 else
1884 pr_err("Failed to update GPU (ID: 0x%x) to sysfs topology. res=%d\n",
1885 gpu_id, res);
1886 }
1887 up_write(&topology_lock);
1888
1889 dev->gpu_id = gpu_id;
1890 gpu->id = gpu_id;
1891
1892 kfd_dev_create_p2p_links();
1893
1894 /* TODO: Move the following lines to function
1895 * kfd_add_non_crat_information
1896 */
1897
1898 /* Fill-in additional information that is not available in CRAT but
1899 * needed for the topology
1900 */
1901
1902 amdgpu_amdkfd_get_cu_info(dev->gpu->adev, &cu_info);
1903
1904 for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) {
1905 dev->node_props.name[i] = __tolower(asic_name[i]);
1906 if (asic_name[i] == '\0')
1907 break;
1908 }
1909 dev->node_props.name[i] = '\0';
1910
1911 dev->node_props.simd_arrays_per_engine =
1912 cu_info.num_shader_arrays_per_engine;
1913
1914 dev->node_props.gfx_target_version = gpu->device_info.gfx_target_version;
1915 dev->node_props.vendor_id = gpu->pdev->vendor;
1916 dev->node_props.device_id = gpu->pdev->device;
1917 dev->node_props.capability |=
1918 ((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) &
1919 HSA_CAP_ASIC_REVISION_MASK);
1920 dev->node_props.location_id = pci_dev_id(gpu->pdev);
1921 dev->node_props.domain = pci_domain_nr(gpu->pdev->bus);
1922 dev->node_props.max_engine_clk_fcompute =
1923 amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev);
1924 dev->node_props.max_engine_clk_ccompute =
1925 cpufreq_quick_get_max(0) / 1000;
1926 dev->node_props.drm_render_minor =
1927 gpu->shared_resources.drm_render_minor;
1928
1929 dev->node_props.hive_id = gpu->hive_id;
1930 dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu);
1931 dev->node_props.num_sdma_xgmi_engines =
1932 kfd_get_num_xgmi_sdma_engines(gpu);
1933 dev->node_props.num_sdma_queues_per_engine =
1934 gpu->device_info.num_sdma_queues_per_engine -
1935 gpu->device_info.num_reserved_sdma_queues_per_engine;
1936 dev->node_props.num_gws = (dev->gpu->gws &&
1937 dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
1938 dev->gpu->adev->gds.gws_size : 0;
1939 dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm);
1940
1941 kfd_fill_mem_clk_max_info(dev);
1942 kfd_fill_iolink_non_crat_info(dev);
1943
1944 switch (dev->gpu->adev->asic_type) {
1945 case CHIP_KAVERI:
1946 case CHIP_HAWAII:
1947 case CHIP_TONGA:
1948 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
1949 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1950 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1951 break;
1952 case CHIP_CARRIZO:
1953 case CHIP_FIJI:
1954 case CHIP_POLARIS10:
1955 case CHIP_POLARIS11:
1956 case CHIP_POLARIS12:
1957 case CHIP_VEGAM:
1958 pr_debug("Adding doorbell packet type capability\n");
1959 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
1960 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1961 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1962 break;
1963 default:
1964 if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 0, 1))
1965 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
1966 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1967 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1968 else
1969 WARN(1, "Unexpected ASIC family %u",
1970 dev->gpu->adev->asic_type);
1971 }
1972
1973 /*
1974 * Overwrite ATS capability according to needs_iommu_device to fix
1975 * potential missing corresponding bit in CRAT of BIOS.
1976 */
1977 if (dev->gpu->use_iommu_v2)
1978 dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
1979 else
1980 dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;
1981
1982 /* Fix errors in CZ CRAT.
1983 * simd_count: Carrizo CRAT reports wrong simd_count, probably
1984 * because it doesn't consider masked out CUs
1985 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
1986 */
1987 if (dev->gpu->adev->asic_type == CHIP_CARRIZO) {
1988 dev->node_props.simd_count =
1989 cu_info.simd_per_cu * cu_info.cu_active_number;
1990 dev->node_props.max_waves_per_simd = 10;
1991 }
1992
1993 /* kfd only concerns sram ecc on GFX and HBM ecc on UMC */
1994 dev->node_props.capability |=
1995 ((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ?
1996 HSA_CAP_SRAM_EDCSUPPORTED : 0;
1997 dev->node_props.capability |=
1998 ((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
1999 HSA_CAP_MEM_EDCSUPPORTED : 0;
2000
2001 if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1))
2002 dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ?
2003 HSA_CAP_RASEVENTNOTIFY : 0;
2004
2005 if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev->kfd.dev))
2006 dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED;
2007
2008 kfd_debug_print_topology();
2009
2010 if (!res)
2011 kfd_notify_gpu_change(gpu_id, 1);
2012 err:
2013 kfd_destroy_crat_image(crat_image);
2014 return res;
2015 }
2016
2017 /**
2018 * kfd_topology_update_io_links() - Update IO links after device removal.
2019 * @proximity_domain: Proximity domain value of the dev being removed.
2020 *
2021 * The topology list currently is arranged in increasing order of
2022 * proximity domain.
2023 *
2024 * Two things need to be done when a device is removed:
2025 * 1. All the IO links to this device need to be removed.
2026 * 2. All nodes after the current device node need to move
2027 * up once this device node is removed from the topology
2028 * list. As a result, the proximity domain values for
2029 * all nodes after the node being deleted reduce by 1.
2030 * This would also cause the proximity domain values for
2031 * io links to be updated based on new proximity domain
2032 * values.
2033 *
2034 * Context: The caller must hold write topology_lock.
2035 */
kfd_topology_update_io_links(int proximity_domain)2036 static void kfd_topology_update_io_links(int proximity_domain)
2037 {
2038 struct kfd_topology_device *dev;
2039 struct kfd_iolink_properties *iolink, *p2plink, *tmp;
2040
2041 list_for_each_entry(dev, &topology_device_list, list) {
2042 if (dev->proximity_domain > proximity_domain)
2043 dev->proximity_domain--;
2044
2045 list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) {
2046 /*
2047 * If there is an io link to the dev being deleted
2048 * then remove that IO link also.
2049 */
2050 if (iolink->node_to == proximity_domain) {
2051 list_del(&iolink->list);
2052 dev->node_props.io_links_count--;
2053 } else {
2054 if (iolink->node_from > proximity_domain)
2055 iolink->node_from--;
2056 if (iolink->node_to > proximity_domain)
2057 iolink->node_to--;
2058 }
2059 }
2060
2061 list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) {
2062 /*
2063 * If there is a p2p link to the dev being deleted
2064 * then remove that p2p link also.
2065 */
2066 if (p2plink->node_to == proximity_domain) {
2067 list_del(&p2plink->list);
2068 dev->node_props.p2p_links_count--;
2069 } else {
2070 if (p2plink->node_from > proximity_domain)
2071 p2plink->node_from--;
2072 if (p2plink->node_to > proximity_domain)
2073 p2plink->node_to--;
2074 }
2075 }
2076 }
2077 }
2078
kfd_topology_remove_device(struct kfd_dev * gpu)2079 int kfd_topology_remove_device(struct kfd_dev *gpu)
2080 {
2081 struct kfd_topology_device *dev, *tmp;
2082 uint32_t gpu_id;
2083 int res = -ENODEV;
2084 int i = 0;
2085
2086 down_write(&topology_lock);
2087
2088 list_for_each_entry_safe(dev, tmp, &topology_device_list, list) {
2089 if (dev->gpu == gpu) {
2090 gpu_id = dev->gpu_id;
2091 kfd_remove_sysfs_node_entry(dev);
2092 kfd_release_topology_device(dev);
2093 sys_props.num_devices--;
2094 kfd_topology_update_io_links(i);
2095 topology_crat_proximity_domain = sys_props.num_devices-1;
2096 sys_props.generation_count++;
2097 res = 0;
2098 if (kfd_topology_update_sysfs() < 0)
2099 kfd_topology_release_sysfs();
2100 break;
2101 }
2102 i++;
2103 }
2104
2105 up_write(&topology_lock);
2106
2107 if (!res)
2108 kfd_notify_gpu_change(gpu_id, 0);
2109
2110 return res;
2111 }
2112
2113 /* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
2114 * topology. If GPU device is found @idx, then valid kfd_dev pointer is
2115 * returned through @kdev
2116 * Return - 0: On success (@kdev will be NULL for non GPU nodes)
2117 * -1: If end of list
2118 */
kfd_topology_enum_kfd_devices(uint8_t idx,struct kfd_dev ** kdev)2119 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev)
2120 {
2121
2122 struct kfd_topology_device *top_dev;
2123 uint8_t device_idx = 0;
2124
2125 *kdev = NULL;
2126 down_read(&topology_lock);
2127
2128 list_for_each_entry(top_dev, &topology_device_list, list) {
2129 if (device_idx == idx) {
2130 *kdev = top_dev->gpu;
2131 up_read(&topology_lock);
2132 return 0;
2133 }
2134
2135 device_idx++;
2136 }
2137
2138 up_read(&topology_lock);
2139
2140 return -1;
2141
2142 }
2143
kfd_cpumask_to_apic_id(const struct cpumask * cpumask)2144 static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
2145 {
2146 int first_cpu_of_numa_node;
2147
2148 if (!cpumask || cpumask == cpu_none_mask)
2149 return -1;
2150 first_cpu_of_numa_node = cpumask_first(cpumask);
2151 if (first_cpu_of_numa_node >= nr_cpu_ids)
2152 return -1;
2153 #ifdef CONFIG_X86_64
2154 return cpu_data(first_cpu_of_numa_node).apicid;
2155 #else
2156 return first_cpu_of_numa_node;
2157 #endif
2158 }
2159
2160 /* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
2161 * of the given NUMA node (numa_node_id)
2162 * Return -1 on failure
2163 */
kfd_numa_node_to_apic_id(int numa_node_id)2164 int kfd_numa_node_to_apic_id(int numa_node_id)
2165 {
2166 if (numa_node_id == -1) {
2167 pr_warn("Invalid NUMA Node. Use online CPU mask\n");
2168 return kfd_cpumask_to_apic_id(cpu_online_mask);
2169 }
2170 return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
2171 }
2172
kfd_double_confirm_iommu_support(struct kfd_dev * gpu)2173 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu)
2174 {
2175 struct kfd_topology_device *dev;
2176
2177 gpu->use_iommu_v2 = false;
2178
2179 if (!gpu->device_info.needs_iommu_device)
2180 return;
2181
2182 down_read(&topology_lock);
2183
2184 /* Only use IOMMUv2 if there is an APU topology node with no GPU
2185 * assigned yet. This GPU will be assigned to it.
2186 */
2187 list_for_each_entry(dev, &topology_device_list, list)
2188 if (dev->node_props.cpu_cores_count &&
2189 dev->node_props.simd_count &&
2190 !dev->gpu)
2191 gpu->use_iommu_v2 = true;
2192
2193 up_read(&topology_lock);
2194 }
2195
2196 #if defined(CONFIG_DEBUG_FS)
2197
kfd_debugfs_hqds_by_device(struct seq_file * m,void * data)2198 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
2199 {
2200 struct kfd_topology_device *dev;
2201 unsigned int i = 0;
2202 int r = 0;
2203
2204 down_read(&topology_lock);
2205
2206 list_for_each_entry(dev, &topology_device_list, list) {
2207 if (!dev->gpu) {
2208 i++;
2209 continue;
2210 }
2211
2212 seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2213 r = dqm_debugfs_hqds(m, dev->gpu->dqm);
2214 if (r)
2215 break;
2216 }
2217
2218 up_read(&topology_lock);
2219
2220 return r;
2221 }
2222
kfd_debugfs_rls_by_device(struct seq_file * m,void * data)2223 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
2224 {
2225 struct kfd_topology_device *dev;
2226 unsigned int i = 0;
2227 int r = 0;
2228
2229 down_read(&topology_lock);
2230
2231 list_for_each_entry(dev, &topology_device_list, list) {
2232 if (!dev->gpu) {
2233 i++;
2234 continue;
2235 }
2236
2237 seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2238 r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr);
2239 if (r)
2240 break;
2241 }
2242
2243 up_read(&topology_lock);
2244
2245 return r;
2246 }
2247
2248 #endif
2249