1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/super.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * super.c contains code to handle: - mount structures
8 * - super-block tables
9 * - filesystem drivers list
10 * - mount system call
11 * - umount system call
12 * - ustat system call
13 *
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 *
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22 */
23
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fscrypt.h>
36 #include <linux/fsnotify.h>
37 #include <linux/lockdep.h>
38 #include <linux/user_namespace.h>
39 #include <linux/fs_context.h>
40 #include <uapi/linux/mount.h>
41 #include "internal.h"
42
43 static int thaw_super_locked(struct super_block *sb);
44
45 static LIST_HEAD(super_blocks);
46 static DEFINE_SPINLOCK(sb_lock);
47
48 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
49 "sb_writers",
50 "sb_pagefaults",
51 "sb_internal",
52 };
53
54 /*
55 * One thing we have to be careful of with a per-sb shrinker is that we don't
56 * drop the last active reference to the superblock from within the shrinker.
57 * If that happens we could trigger unregistering the shrinker from within the
58 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
59 * take a passive reference to the superblock to avoid this from occurring.
60 */
super_cache_scan(struct shrinker * shrink,struct shrink_control * sc)61 static unsigned long super_cache_scan(struct shrinker *shrink,
62 struct shrink_control *sc)
63 {
64 struct super_block *sb;
65 long fs_objects = 0;
66 long total_objects;
67 long freed = 0;
68 long dentries;
69 long inodes;
70
71 sb = container_of(shrink, struct super_block, s_shrink);
72
73 /*
74 * Deadlock avoidance. We may hold various FS locks, and we don't want
75 * to recurse into the FS that called us in clear_inode() and friends..
76 */
77 if (!(sc->gfp_mask & __GFP_FS))
78 return SHRINK_STOP;
79
80 if (!trylock_super(sb))
81 return SHRINK_STOP;
82
83 if (sb->s_op->nr_cached_objects)
84 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
85
86 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
87 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
88 total_objects = dentries + inodes + fs_objects + 1;
89 if (!total_objects)
90 total_objects = 1;
91
92 /* proportion the scan between the caches */
93 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
94 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
95 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
96
97 /*
98 * prune the dcache first as the icache is pinned by it, then
99 * prune the icache, followed by the filesystem specific caches
100 *
101 * Ensure that we always scan at least one object - memcg kmem
102 * accounting uses this to fully empty the caches.
103 */
104 sc->nr_to_scan = dentries + 1;
105 freed = prune_dcache_sb(sb, sc);
106 sc->nr_to_scan = inodes + 1;
107 freed += prune_icache_sb(sb, sc);
108
109 if (fs_objects) {
110 sc->nr_to_scan = fs_objects + 1;
111 freed += sb->s_op->free_cached_objects(sb, sc);
112 }
113
114 up_read(&sb->s_umount);
115 return freed;
116 }
117
super_cache_count(struct shrinker * shrink,struct shrink_control * sc)118 static unsigned long super_cache_count(struct shrinker *shrink,
119 struct shrink_control *sc)
120 {
121 struct super_block *sb;
122 long total_objects = 0;
123
124 sb = container_of(shrink, struct super_block, s_shrink);
125
126 /*
127 * We don't call trylock_super() here as it is a scalability bottleneck,
128 * so we're exposed to partial setup state. The shrinker rwsem does not
129 * protect filesystem operations backing list_lru_shrink_count() or
130 * s_op->nr_cached_objects(). Counts can change between
131 * super_cache_count and super_cache_scan, so we really don't need locks
132 * here.
133 *
134 * However, if we are currently mounting the superblock, the underlying
135 * filesystem might be in a state of partial construction and hence it
136 * is dangerous to access it. trylock_super() uses a SB_BORN check to
137 * avoid this situation, so do the same here. The memory barrier is
138 * matched with the one in mount_fs() as we don't hold locks here.
139 */
140 if (!(sb->s_flags & SB_BORN))
141 return 0;
142 smp_rmb();
143
144 if (sb->s_op && sb->s_op->nr_cached_objects)
145 total_objects = sb->s_op->nr_cached_objects(sb, sc);
146
147 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
148 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
149
150 if (!total_objects)
151 return SHRINK_EMPTY;
152
153 total_objects = vfs_pressure_ratio(total_objects);
154 return total_objects;
155 }
156
destroy_super_work(struct work_struct * work)157 static void destroy_super_work(struct work_struct *work)
158 {
159 struct super_block *s = container_of(work, struct super_block,
160 destroy_work);
161 int i;
162
163 for (i = 0; i < SB_FREEZE_LEVELS; i++)
164 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
165 kfree(s);
166 }
167
destroy_super_rcu(struct rcu_head * head)168 static void destroy_super_rcu(struct rcu_head *head)
169 {
170 struct super_block *s = container_of(head, struct super_block, rcu);
171 INIT_WORK(&s->destroy_work, destroy_super_work);
172 schedule_work(&s->destroy_work);
173 }
174
175 /* Free a superblock that has never been seen by anyone */
destroy_unused_super(struct super_block * s)176 static void destroy_unused_super(struct super_block *s)
177 {
178 if (!s)
179 return;
180 up_write(&s->s_umount);
181 list_lru_destroy(&s->s_dentry_lru);
182 list_lru_destroy(&s->s_inode_lru);
183 security_sb_free(s);
184 put_user_ns(s->s_user_ns);
185 kfree(s->s_subtype);
186 free_prealloced_shrinker(&s->s_shrink);
187 /* no delays needed */
188 destroy_super_work(&s->destroy_work);
189 }
190
191 /**
192 * alloc_super - create new superblock
193 * @type: filesystem type superblock should belong to
194 * @flags: the mount flags
195 * @user_ns: User namespace for the super_block
196 *
197 * Allocates and initializes a new &struct super_block. alloc_super()
198 * returns a pointer new superblock or %NULL if allocation had failed.
199 */
alloc_super(struct file_system_type * type,int flags,struct user_namespace * user_ns)200 static struct super_block *alloc_super(struct file_system_type *type, int flags,
201 struct user_namespace *user_ns)
202 {
203 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
204 static const struct super_operations default_op;
205 int i;
206
207 if (!s)
208 return NULL;
209
210 INIT_LIST_HEAD(&s->s_mounts);
211 s->s_user_ns = get_user_ns(user_ns);
212 init_rwsem(&s->s_umount);
213 lockdep_set_class(&s->s_umount, &type->s_umount_key);
214 /*
215 * sget() can have s_umount recursion.
216 *
217 * When it cannot find a suitable sb, it allocates a new
218 * one (this one), and tries again to find a suitable old
219 * one.
220 *
221 * In case that succeeds, it will acquire the s_umount
222 * lock of the old one. Since these are clearly distrinct
223 * locks, and this object isn't exposed yet, there's no
224 * risk of deadlocks.
225 *
226 * Annotate this by putting this lock in a different
227 * subclass.
228 */
229 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
230
231 if (security_sb_alloc(s))
232 goto fail;
233
234 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
235 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
236 sb_writers_name[i],
237 &type->s_writers_key[i]))
238 goto fail;
239 }
240 init_waitqueue_head(&s->s_writers.wait_unfrozen);
241 s->s_bdi = &noop_backing_dev_info;
242 s->s_flags = flags;
243 if (s->s_user_ns != &init_user_ns)
244 s->s_iflags |= SB_I_NODEV;
245 INIT_HLIST_NODE(&s->s_instances);
246 INIT_HLIST_BL_HEAD(&s->s_roots);
247 mutex_init(&s->s_sync_lock);
248 INIT_LIST_HEAD(&s->s_inodes);
249 spin_lock_init(&s->s_inode_list_lock);
250 INIT_LIST_HEAD(&s->s_inodes_wb);
251 spin_lock_init(&s->s_inode_wblist_lock);
252
253 s->s_count = 1;
254 atomic_set(&s->s_active, 1);
255 mutex_init(&s->s_vfs_rename_mutex);
256 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
257 init_rwsem(&s->s_dquot.dqio_sem);
258 s->s_maxbytes = MAX_NON_LFS;
259 s->s_op = &default_op;
260 s->s_time_gran = 1000000000;
261 s->s_time_min = TIME64_MIN;
262 s->s_time_max = TIME64_MAX;
263 s->cleancache_poolid = CLEANCACHE_NO_POOL;
264
265 s->s_shrink.seeks = DEFAULT_SEEKS;
266 s->s_shrink.scan_objects = super_cache_scan;
267 s->s_shrink.count_objects = super_cache_count;
268 s->s_shrink.batch = 1024;
269 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
270 if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name))
271 goto fail;
272 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
273 goto fail;
274 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
275 goto fail;
276 return s;
277
278 fail:
279 destroy_unused_super(s);
280 return NULL;
281 }
282
283 /* Superblock refcounting */
284
285 /*
286 * Drop a superblock's refcount. The caller must hold sb_lock.
287 */
__put_super(struct super_block * s)288 static void __put_super(struct super_block *s)
289 {
290 if (!--s->s_count) {
291 list_del_init(&s->s_list);
292 WARN_ON(s->s_dentry_lru.node);
293 WARN_ON(s->s_inode_lru.node);
294 WARN_ON(!list_empty(&s->s_mounts));
295 security_sb_free(s);
296 put_user_ns(s->s_user_ns);
297 kfree(s->s_subtype);
298 call_rcu(&s->rcu, destroy_super_rcu);
299 }
300 }
301
302 /**
303 * put_super - drop a temporary reference to superblock
304 * @sb: superblock in question
305 *
306 * Drops a temporary reference, frees superblock if there's no
307 * references left.
308 */
put_super(struct super_block * sb)309 void put_super(struct super_block *sb)
310 {
311 spin_lock(&sb_lock);
312 __put_super(sb);
313 spin_unlock(&sb_lock);
314 }
315
316
317 /**
318 * deactivate_locked_super - drop an active reference to superblock
319 * @s: superblock to deactivate
320 *
321 * Drops an active reference to superblock, converting it into a temporary
322 * one if there is no other active references left. In that case we
323 * tell fs driver to shut it down and drop the temporary reference we
324 * had just acquired.
325 *
326 * Caller holds exclusive lock on superblock; that lock is released.
327 */
deactivate_locked_super(struct super_block * s)328 void deactivate_locked_super(struct super_block *s)
329 {
330 struct file_system_type *fs = s->s_type;
331 if (atomic_dec_and_test(&s->s_active)) {
332 cleancache_invalidate_fs(s);
333 unregister_shrinker(&s->s_shrink);
334 fs->kill_sb(s);
335
336 /*
337 * Since list_lru_destroy() may sleep, we cannot call it from
338 * put_super(), where we hold the sb_lock. Therefore we destroy
339 * the lru lists right now.
340 */
341 list_lru_destroy(&s->s_dentry_lru);
342 list_lru_destroy(&s->s_inode_lru);
343
344 put_filesystem(fs);
345 put_super(s);
346 } else {
347 up_write(&s->s_umount);
348 }
349 }
350
351 EXPORT_SYMBOL(deactivate_locked_super);
352
353 /**
354 * deactivate_super - drop an active reference to superblock
355 * @s: superblock to deactivate
356 *
357 * Variant of deactivate_locked_super(), except that superblock is *not*
358 * locked by caller. If we are going to drop the final active reference,
359 * lock will be acquired prior to that.
360 */
deactivate_super(struct super_block * s)361 void deactivate_super(struct super_block *s)
362 {
363 if (!atomic_add_unless(&s->s_active, -1, 1)) {
364 down_write(&s->s_umount);
365 deactivate_locked_super(s);
366 }
367 }
368
369 EXPORT_SYMBOL(deactivate_super);
370
371 /**
372 * grab_super - acquire an active reference
373 * @s: reference we are trying to make active
374 *
375 * Tries to acquire an active reference. grab_super() is used when we
376 * had just found a superblock in super_blocks or fs_type->fs_supers
377 * and want to turn it into a full-blown active reference. grab_super()
378 * is called with sb_lock held and drops it. Returns 1 in case of
379 * success, 0 if we had failed (superblock contents was already dead or
380 * dying when grab_super() had been called). Note that this is only
381 * called for superblocks not in rundown mode (== ones still on ->fs_supers
382 * of their type), so increment of ->s_count is OK here.
383 */
grab_super(struct super_block * s)384 static int grab_super(struct super_block *s) __releases(sb_lock)
385 {
386 s->s_count++;
387 spin_unlock(&sb_lock);
388 down_write(&s->s_umount);
389 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
390 put_super(s);
391 return 1;
392 }
393 up_write(&s->s_umount);
394 put_super(s);
395 return 0;
396 }
397
398 /*
399 * trylock_super - try to grab ->s_umount shared
400 * @sb: reference we are trying to grab
401 *
402 * Try to prevent fs shutdown. This is used in places where we
403 * cannot take an active reference but we need to ensure that the
404 * filesystem is not shut down while we are working on it. It returns
405 * false if we cannot acquire s_umount or if we lose the race and
406 * filesystem already got into shutdown, and returns true with the s_umount
407 * lock held in read mode in case of success. On successful return,
408 * the caller must drop the s_umount lock when done.
409 *
410 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
411 * The reason why it's safe is that we are OK with doing trylock instead
412 * of down_read(). There's a couple of places that are OK with that, but
413 * it's very much not a general-purpose interface.
414 */
trylock_super(struct super_block * sb)415 bool trylock_super(struct super_block *sb)
416 {
417 if (down_read_trylock(&sb->s_umount)) {
418 if (!hlist_unhashed(&sb->s_instances) &&
419 sb->s_root && (sb->s_flags & SB_BORN))
420 return true;
421 up_read(&sb->s_umount);
422 }
423
424 return false;
425 }
426
427 /**
428 * retire_super - prevents superblock from being reused
429 * @sb: superblock to retire
430 *
431 * The function marks superblock to be ignored in superblock test, which
432 * prevents it from being reused for any new mounts. If the superblock has
433 * a private bdi, it also unregisters it, but doesn't reduce the refcount
434 * of the superblock to prevent potential races. The refcount is reduced
435 * by generic_shutdown_super(). The function can not be called
436 * concurrently with generic_shutdown_super(). It is safe to call the
437 * function multiple times, subsequent calls have no effect.
438 *
439 * The marker will affect the re-use only for block-device-based
440 * superblocks. Other superblocks will still get marked if this function
441 * is used, but that will not affect their reusability.
442 */
retire_super(struct super_block * sb)443 void retire_super(struct super_block *sb)
444 {
445 WARN_ON(!sb->s_bdev);
446 down_write(&sb->s_umount);
447 if (sb->s_iflags & SB_I_PERSB_BDI) {
448 bdi_unregister(sb->s_bdi);
449 sb->s_iflags &= ~SB_I_PERSB_BDI;
450 }
451 sb->s_iflags |= SB_I_RETIRED;
452 up_write(&sb->s_umount);
453 }
454 EXPORT_SYMBOL(retire_super);
455
456 /**
457 * generic_shutdown_super - common helper for ->kill_sb()
458 * @sb: superblock to kill
459 *
460 * generic_shutdown_super() does all fs-independent work on superblock
461 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
462 * that need destruction out of superblock, call generic_shutdown_super()
463 * and release aforementioned objects. Note: dentries and inodes _are_
464 * taken care of and do not need specific handling.
465 *
466 * Upon calling this function, the filesystem may no longer alter or
467 * rearrange the set of dentries belonging to this super_block, nor may it
468 * change the attachments of dentries to inodes.
469 */
generic_shutdown_super(struct super_block * sb)470 void generic_shutdown_super(struct super_block *sb)
471 {
472 const struct super_operations *sop = sb->s_op;
473
474 if (sb->s_root) {
475 shrink_dcache_for_umount(sb);
476 sync_filesystem(sb);
477 sb->s_flags &= ~SB_ACTIVE;
478
479 cgroup_writeback_umount();
480
481 /* Evict all inodes with zero refcount. */
482 evict_inodes(sb);
483
484 /*
485 * Clean up and evict any inodes that still have references due
486 * to fsnotify or the security policy.
487 */
488 fsnotify_sb_delete(sb);
489 security_sb_delete(sb);
490
491 /*
492 * Now that all potentially-encrypted inodes have been evicted,
493 * the fscrypt keyring can be destroyed.
494 */
495 fscrypt_destroy_keyring(sb);
496
497 if (sb->s_dio_done_wq) {
498 destroy_workqueue(sb->s_dio_done_wq);
499 sb->s_dio_done_wq = NULL;
500 }
501
502 if (sop->put_super)
503 sop->put_super(sb);
504
505 if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes),
506 "VFS: Busy inodes after unmount of %s (%s)",
507 sb->s_id, sb->s_type->name)) {
508 /*
509 * Adding a proper bailout path here would be hard, but
510 * we can at least make it more likely that a later
511 * iput_final() or such crashes cleanly.
512 */
513 struct inode *inode;
514
515 spin_lock(&sb->s_inode_list_lock);
516 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
517 inode->i_op = VFS_PTR_POISON;
518 inode->i_sb = VFS_PTR_POISON;
519 inode->i_mapping = VFS_PTR_POISON;
520 }
521 spin_unlock(&sb->s_inode_list_lock);
522 }
523 }
524 spin_lock(&sb_lock);
525 /* should be initialized for __put_super_and_need_restart() */
526 hlist_del_init(&sb->s_instances);
527 spin_unlock(&sb_lock);
528 up_write(&sb->s_umount);
529 if (sb->s_bdi != &noop_backing_dev_info) {
530 if (sb->s_iflags & SB_I_PERSB_BDI)
531 bdi_unregister(sb->s_bdi);
532 bdi_put(sb->s_bdi);
533 sb->s_bdi = &noop_backing_dev_info;
534 }
535 }
536
537 EXPORT_SYMBOL(generic_shutdown_super);
538
mount_capable(struct fs_context * fc)539 bool mount_capable(struct fs_context *fc)
540 {
541 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
542 return capable(CAP_SYS_ADMIN);
543 else
544 return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
545 }
546
547 /**
548 * sget_fc - Find or create a superblock
549 * @fc: Filesystem context.
550 * @test: Comparison callback
551 * @set: Setup callback
552 *
553 * Find or create a superblock using the parameters stored in the filesystem
554 * context and the two callback functions.
555 *
556 * If an extant superblock is matched, then that will be returned with an
557 * elevated reference count that the caller must transfer or discard.
558 *
559 * If no match is made, a new superblock will be allocated and basic
560 * initialisation will be performed (s_type, s_fs_info and s_id will be set and
561 * the set() callback will be invoked), the superblock will be published and it
562 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
563 * as yet unset.
564 */
sget_fc(struct fs_context * fc,int (* test)(struct super_block *,struct fs_context *),int (* set)(struct super_block *,struct fs_context *))565 struct super_block *sget_fc(struct fs_context *fc,
566 int (*test)(struct super_block *, struct fs_context *),
567 int (*set)(struct super_block *, struct fs_context *))
568 {
569 struct super_block *s = NULL;
570 struct super_block *old;
571 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
572 int err;
573
574 retry:
575 spin_lock(&sb_lock);
576 if (test) {
577 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
578 if (test(old, fc))
579 goto share_extant_sb;
580 }
581 }
582 if (!s) {
583 spin_unlock(&sb_lock);
584 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
585 if (!s)
586 return ERR_PTR(-ENOMEM);
587 goto retry;
588 }
589
590 s->s_fs_info = fc->s_fs_info;
591 err = set(s, fc);
592 if (err) {
593 s->s_fs_info = NULL;
594 spin_unlock(&sb_lock);
595 destroy_unused_super(s);
596 return ERR_PTR(err);
597 }
598 fc->s_fs_info = NULL;
599 s->s_type = fc->fs_type;
600 s->s_iflags |= fc->s_iflags;
601 strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
602 list_add_tail(&s->s_list, &super_blocks);
603 hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
604 spin_unlock(&sb_lock);
605 get_filesystem(s->s_type);
606 register_shrinker_prepared(&s->s_shrink);
607 return s;
608
609 share_extant_sb:
610 if (user_ns != old->s_user_ns) {
611 spin_unlock(&sb_lock);
612 destroy_unused_super(s);
613 return ERR_PTR(-EBUSY);
614 }
615 if (!grab_super(old))
616 goto retry;
617 destroy_unused_super(s);
618 return old;
619 }
620 EXPORT_SYMBOL(sget_fc);
621
622 /**
623 * sget - find or create a superblock
624 * @type: filesystem type superblock should belong to
625 * @test: comparison callback
626 * @set: setup callback
627 * @flags: mount flags
628 * @data: argument to each of them
629 */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,void * data)630 struct super_block *sget(struct file_system_type *type,
631 int (*test)(struct super_block *,void *),
632 int (*set)(struct super_block *,void *),
633 int flags,
634 void *data)
635 {
636 struct user_namespace *user_ns = current_user_ns();
637 struct super_block *s = NULL;
638 struct super_block *old;
639 int err;
640
641 /* We don't yet pass the user namespace of the parent
642 * mount through to here so always use &init_user_ns
643 * until that changes.
644 */
645 if (flags & SB_SUBMOUNT)
646 user_ns = &init_user_ns;
647
648 retry:
649 spin_lock(&sb_lock);
650 if (test) {
651 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
652 if (!test(old, data))
653 continue;
654 if (user_ns != old->s_user_ns) {
655 spin_unlock(&sb_lock);
656 destroy_unused_super(s);
657 return ERR_PTR(-EBUSY);
658 }
659 if (!grab_super(old))
660 goto retry;
661 destroy_unused_super(s);
662 return old;
663 }
664 }
665 if (!s) {
666 spin_unlock(&sb_lock);
667 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
668 if (!s)
669 return ERR_PTR(-ENOMEM);
670 goto retry;
671 }
672
673 err = set(s, data);
674 if (err) {
675 spin_unlock(&sb_lock);
676 destroy_unused_super(s);
677 return ERR_PTR(err);
678 }
679 s->s_type = type;
680 strlcpy(s->s_id, type->name, sizeof(s->s_id));
681 list_add_tail(&s->s_list, &super_blocks);
682 hlist_add_head(&s->s_instances, &type->fs_supers);
683 spin_unlock(&sb_lock);
684 get_filesystem(type);
685 register_shrinker_prepared(&s->s_shrink);
686 return s;
687 }
688 EXPORT_SYMBOL(sget);
689
drop_super(struct super_block * sb)690 void drop_super(struct super_block *sb)
691 {
692 up_read(&sb->s_umount);
693 put_super(sb);
694 }
695
696 EXPORT_SYMBOL(drop_super);
697
drop_super_exclusive(struct super_block * sb)698 void drop_super_exclusive(struct super_block *sb)
699 {
700 up_write(&sb->s_umount);
701 put_super(sb);
702 }
703 EXPORT_SYMBOL(drop_super_exclusive);
704
__iterate_supers(void (* f)(struct super_block *))705 static void __iterate_supers(void (*f)(struct super_block *))
706 {
707 struct super_block *sb, *p = NULL;
708
709 spin_lock(&sb_lock);
710 list_for_each_entry(sb, &super_blocks, s_list) {
711 if (hlist_unhashed(&sb->s_instances))
712 continue;
713 sb->s_count++;
714 spin_unlock(&sb_lock);
715
716 f(sb);
717
718 spin_lock(&sb_lock);
719 if (p)
720 __put_super(p);
721 p = sb;
722 }
723 if (p)
724 __put_super(p);
725 spin_unlock(&sb_lock);
726 }
727 /**
728 * iterate_supers - call function for all active superblocks
729 * @f: function to call
730 * @arg: argument to pass to it
731 *
732 * Scans the superblock list and calls given function, passing it
733 * locked superblock and given argument.
734 */
iterate_supers(void (* f)(struct super_block *,void *),void * arg)735 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
736 {
737 struct super_block *sb, *p = NULL;
738
739 spin_lock(&sb_lock);
740 list_for_each_entry(sb, &super_blocks, s_list) {
741 if (hlist_unhashed(&sb->s_instances))
742 continue;
743 sb->s_count++;
744 spin_unlock(&sb_lock);
745
746 down_read(&sb->s_umount);
747 if (sb->s_root && (sb->s_flags & SB_BORN))
748 f(sb, arg);
749 up_read(&sb->s_umount);
750
751 spin_lock(&sb_lock);
752 if (p)
753 __put_super(p);
754 p = sb;
755 }
756 if (p)
757 __put_super(p);
758 spin_unlock(&sb_lock);
759 }
760
761 /**
762 * iterate_supers_type - call function for superblocks of given type
763 * @type: fs type
764 * @f: function to call
765 * @arg: argument to pass to it
766 *
767 * Scans the superblock list and calls given function, passing it
768 * locked superblock and given argument.
769 */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)770 void iterate_supers_type(struct file_system_type *type,
771 void (*f)(struct super_block *, void *), void *arg)
772 {
773 struct super_block *sb, *p = NULL;
774
775 spin_lock(&sb_lock);
776 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
777 sb->s_count++;
778 spin_unlock(&sb_lock);
779
780 down_read(&sb->s_umount);
781 if (sb->s_root && (sb->s_flags & SB_BORN))
782 f(sb, arg);
783 up_read(&sb->s_umount);
784
785 spin_lock(&sb_lock);
786 if (p)
787 __put_super(p);
788 p = sb;
789 }
790 if (p)
791 __put_super(p);
792 spin_unlock(&sb_lock);
793 }
794
795 EXPORT_SYMBOL(iterate_supers_type);
796
797 /**
798 * get_super - get the superblock of a device
799 * @bdev: device to get the superblock for
800 *
801 * Scans the superblock list and finds the superblock of the file system
802 * mounted on the device given. %NULL is returned if no match is found.
803 */
get_super(struct block_device * bdev)804 struct super_block *get_super(struct block_device *bdev)
805 {
806 struct super_block *sb;
807
808 if (!bdev)
809 return NULL;
810
811 spin_lock(&sb_lock);
812 rescan:
813 list_for_each_entry(sb, &super_blocks, s_list) {
814 if (hlist_unhashed(&sb->s_instances))
815 continue;
816 if (sb->s_bdev == bdev) {
817 sb->s_count++;
818 spin_unlock(&sb_lock);
819 down_read(&sb->s_umount);
820 /* still alive? */
821 if (sb->s_root && (sb->s_flags & SB_BORN))
822 return sb;
823 up_read(&sb->s_umount);
824 /* nope, got unmounted */
825 spin_lock(&sb_lock);
826 __put_super(sb);
827 goto rescan;
828 }
829 }
830 spin_unlock(&sb_lock);
831 return NULL;
832 }
833
834 /**
835 * get_active_super - get an active reference to the superblock of a device
836 * @bdev: device to get the superblock for
837 *
838 * Scans the superblock list and finds the superblock of the file system
839 * mounted on the device given. Returns the superblock with an active
840 * reference or %NULL if none was found.
841 */
get_active_super(struct block_device * bdev)842 struct super_block *get_active_super(struct block_device *bdev)
843 {
844 struct super_block *sb;
845
846 if (!bdev)
847 return NULL;
848
849 restart:
850 spin_lock(&sb_lock);
851 list_for_each_entry(sb, &super_blocks, s_list) {
852 if (hlist_unhashed(&sb->s_instances))
853 continue;
854 if (sb->s_bdev == bdev) {
855 if (!grab_super(sb))
856 goto restart;
857 up_write(&sb->s_umount);
858 return sb;
859 }
860 }
861 spin_unlock(&sb_lock);
862 return NULL;
863 }
864
user_get_super(dev_t dev,bool excl)865 struct super_block *user_get_super(dev_t dev, bool excl)
866 {
867 struct super_block *sb;
868
869 spin_lock(&sb_lock);
870 rescan:
871 list_for_each_entry(sb, &super_blocks, s_list) {
872 if (hlist_unhashed(&sb->s_instances))
873 continue;
874 if (sb->s_dev == dev) {
875 sb->s_count++;
876 spin_unlock(&sb_lock);
877 if (excl)
878 down_write(&sb->s_umount);
879 else
880 down_read(&sb->s_umount);
881 /* still alive? */
882 if (sb->s_root && (sb->s_flags & SB_BORN))
883 return sb;
884 if (excl)
885 up_write(&sb->s_umount);
886 else
887 up_read(&sb->s_umount);
888 /* nope, got unmounted */
889 spin_lock(&sb_lock);
890 __put_super(sb);
891 goto rescan;
892 }
893 }
894 spin_unlock(&sb_lock);
895 return NULL;
896 }
897
898 /**
899 * reconfigure_super - asks filesystem to change superblock parameters
900 * @fc: The superblock and configuration
901 *
902 * Alters the configuration parameters of a live superblock.
903 */
reconfigure_super(struct fs_context * fc)904 int reconfigure_super(struct fs_context *fc)
905 {
906 struct super_block *sb = fc->root->d_sb;
907 int retval;
908 bool remount_ro = false;
909 bool remount_rw = false;
910 bool force = fc->sb_flags & SB_FORCE;
911
912 if (fc->sb_flags_mask & ~MS_RMT_MASK)
913 return -EINVAL;
914 if (sb->s_writers.frozen != SB_UNFROZEN)
915 return -EBUSY;
916
917 retval = security_sb_remount(sb, fc->security);
918 if (retval)
919 return retval;
920
921 if (fc->sb_flags_mask & SB_RDONLY) {
922 #ifdef CONFIG_BLOCK
923 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
924 bdev_read_only(sb->s_bdev))
925 return -EACCES;
926 #endif
927 remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
928 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
929 }
930
931 if (remount_ro) {
932 if (!hlist_empty(&sb->s_pins)) {
933 up_write(&sb->s_umount);
934 group_pin_kill(&sb->s_pins);
935 down_write(&sb->s_umount);
936 if (!sb->s_root)
937 return 0;
938 if (sb->s_writers.frozen != SB_UNFROZEN)
939 return -EBUSY;
940 remount_ro = !sb_rdonly(sb);
941 }
942 }
943 shrink_dcache_sb(sb);
944
945 /* If we are reconfiguring to RDONLY and current sb is read/write,
946 * make sure there are no files open for writing.
947 */
948 if (remount_ro) {
949 if (force) {
950 sb->s_readonly_remount = 1;
951 smp_wmb();
952 } else {
953 retval = sb_prepare_remount_readonly(sb);
954 if (retval)
955 return retval;
956 }
957 } else if (remount_rw) {
958 /*
959 * We set s_readonly_remount here to protect filesystem's
960 * reconfigure code from writes from userspace until
961 * reconfigure finishes.
962 */
963 sb->s_readonly_remount = 1;
964 smp_wmb();
965 }
966
967 if (fc->ops->reconfigure) {
968 retval = fc->ops->reconfigure(fc);
969 if (retval) {
970 if (!force)
971 goto cancel_readonly;
972 /* If forced remount, go ahead despite any errors */
973 WARN(1, "forced remount of a %s fs returned %i\n",
974 sb->s_type->name, retval);
975 }
976 }
977
978 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
979 (fc->sb_flags & fc->sb_flags_mask)));
980 /* Needs to be ordered wrt mnt_is_readonly() */
981 smp_wmb();
982 sb->s_readonly_remount = 0;
983
984 /*
985 * Some filesystems modify their metadata via some other path than the
986 * bdev buffer cache (eg. use a private mapping, or directories in
987 * pagecache, etc). Also file data modifications go via their own
988 * mappings. So If we try to mount readonly then copy the filesystem
989 * from bdev, we could get stale data, so invalidate it to give a best
990 * effort at coherency.
991 */
992 if (remount_ro && sb->s_bdev)
993 invalidate_bdev(sb->s_bdev);
994 return 0;
995
996 cancel_readonly:
997 sb->s_readonly_remount = 0;
998 return retval;
999 }
1000
do_emergency_remount_callback(struct super_block * sb)1001 static void do_emergency_remount_callback(struct super_block *sb)
1002 {
1003 down_write(&sb->s_umount);
1004 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
1005 !sb_rdonly(sb)) {
1006 struct fs_context *fc;
1007
1008 fc = fs_context_for_reconfigure(sb->s_root,
1009 SB_RDONLY | SB_FORCE, SB_RDONLY);
1010 if (!IS_ERR(fc)) {
1011 if (parse_monolithic_mount_data(fc, NULL) == 0)
1012 (void)reconfigure_super(fc);
1013 put_fs_context(fc);
1014 }
1015 }
1016 up_write(&sb->s_umount);
1017 }
1018
do_emergency_remount(struct work_struct * work)1019 static void do_emergency_remount(struct work_struct *work)
1020 {
1021 __iterate_supers(do_emergency_remount_callback);
1022 kfree(work);
1023 printk("Emergency Remount complete\n");
1024 }
1025
emergency_remount(void)1026 void emergency_remount(void)
1027 {
1028 struct work_struct *work;
1029
1030 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1031 if (work) {
1032 INIT_WORK(work, do_emergency_remount);
1033 schedule_work(work);
1034 }
1035 }
1036
do_thaw_all_callback(struct super_block * sb)1037 static void do_thaw_all_callback(struct super_block *sb)
1038 {
1039 down_write(&sb->s_umount);
1040 if (sb->s_root && sb->s_flags & SB_BORN) {
1041 emergency_thaw_bdev(sb);
1042 thaw_super_locked(sb);
1043 } else {
1044 up_write(&sb->s_umount);
1045 }
1046 }
1047
do_thaw_all(struct work_struct * work)1048 static void do_thaw_all(struct work_struct *work)
1049 {
1050 __iterate_supers(do_thaw_all_callback);
1051 kfree(work);
1052 printk(KERN_WARNING "Emergency Thaw complete\n");
1053 }
1054
1055 /**
1056 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1057 *
1058 * Used for emergency unfreeze of all filesystems via SysRq
1059 */
emergency_thaw_all(void)1060 void emergency_thaw_all(void)
1061 {
1062 struct work_struct *work;
1063
1064 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1065 if (work) {
1066 INIT_WORK(work, do_thaw_all);
1067 schedule_work(work);
1068 }
1069 }
1070
1071 static DEFINE_IDA(unnamed_dev_ida);
1072
1073 /**
1074 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1075 * @p: Pointer to a dev_t.
1076 *
1077 * Filesystems which don't use real block devices can call this function
1078 * to allocate a virtual block device.
1079 *
1080 * Context: Any context. Frequently called while holding sb_lock.
1081 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1082 * or -ENOMEM if memory allocation failed.
1083 */
get_anon_bdev(dev_t * p)1084 int get_anon_bdev(dev_t *p)
1085 {
1086 int dev;
1087
1088 /*
1089 * Many userspace utilities consider an FSID of 0 invalid.
1090 * Always return at least 1 from get_anon_bdev.
1091 */
1092 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1093 GFP_ATOMIC);
1094 if (dev == -ENOSPC)
1095 dev = -EMFILE;
1096 if (dev < 0)
1097 return dev;
1098
1099 *p = MKDEV(0, dev);
1100 return 0;
1101 }
1102 EXPORT_SYMBOL(get_anon_bdev);
1103
free_anon_bdev(dev_t dev)1104 void free_anon_bdev(dev_t dev)
1105 {
1106 ida_free(&unnamed_dev_ida, MINOR(dev));
1107 }
1108 EXPORT_SYMBOL(free_anon_bdev);
1109
set_anon_super(struct super_block * s,void * data)1110 int set_anon_super(struct super_block *s, void *data)
1111 {
1112 return get_anon_bdev(&s->s_dev);
1113 }
1114 EXPORT_SYMBOL(set_anon_super);
1115
kill_anon_super(struct super_block * sb)1116 void kill_anon_super(struct super_block *sb)
1117 {
1118 dev_t dev = sb->s_dev;
1119 generic_shutdown_super(sb);
1120 free_anon_bdev(dev);
1121 }
1122 EXPORT_SYMBOL(kill_anon_super);
1123
kill_litter_super(struct super_block * sb)1124 void kill_litter_super(struct super_block *sb)
1125 {
1126 if (sb->s_root)
1127 d_genocide(sb->s_root);
1128 kill_anon_super(sb);
1129 }
1130 EXPORT_SYMBOL(kill_litter_super);
1131
set_anon_super_fc(struct super_block * sb,struct fs_context * fc)1132 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1133 {
1134 return set_anon_super(sb, NULL);
1135 }
1136 EXPORT_SYMBOL(set_anon_super_fc);
1137
test_keyed_super(struct super_block * sb,struct fs_context * fc)1138 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1139 {
1140 return sb->s_fs_info == fc->s_fs_info;
1141 }
1142
test_single_super(struct super_block * s,struct fs_context * fc)1143 static int test_single_super(struct super_block *s, struct fs_context *fc)
1144 {
1145 return 1;
1146 }
1147
1148 /**
1149 * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1150 * @fc: The filesystem context holding the parameters
1151 * @keying: How to distinguish superblocks
1152 * @fill_super: Helper to initialise a new superblock
1153 *
1154 * Search for a superblock and create a new one if not found. The search
1155 * criterion is controlled by @keying. If the search fails, a new superblock
1156 * is created and @fill_super() is called to initialise it.
1157 *
1158 * @keying can take one of a number of values:
1159 *
1160 * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1161 * system. This is typically used for special system filesystems.
1162 *
1163 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1164 * distinct keys (where the key is in s_fs_info). Searching for the same
1165 * key again will turn up the superblock for that key.
1166 *
1167 * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1168 * unkeyed. Each call will get a new superblock.
1169 *
1170 * A permissions check is made by sget_fc() unless we're getting a superblock
1171 * for a kernel-internal mount or a submount.
1172 */
vfs_get_super(struct fs_context * fc,enum vfs_get_super_keying keying,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1173 int vfs_get_super(struct fs_context *fc,
1174 enum vfs_get_super_keying keying,
1175 int (*fill_super)(struct super_block *sb,
1176 struct fs_context *fc))
1177 {
1178 int (*test)(struct super_block *, struct fs_context *);
1179 struct super_block *sb;
1180 int err;
1181
1182 switch (keying) {
1183 case vfs_get_single_super:
1184 case vfs_get_single_reconf_super:
1185 test = test_single_super;
1186 break;
1187 case vfs_get_keyed_super:
1188 test = test_keyed_super;
1189 break;
1190 case vfs_get_independent_super:
1191 test = NULL;
1192 break;
1193 default:
1194 BUG();
1195 }
1196
1197 sb = sget_fc(fc, test, set_anon_super_fc);
1198 if (IS_ERR(sb))
1199 return PTR_ERR(sb);
1200
1201 if (!sb->s_root) {
1202 err = fill_super(sb, fc);
1203 if (err)
1204 goto error;
1205
1206 sb->s_flags |= SB_ACTIVE;
1207 fc->root = dget(sb->s_root);
1208 } else {
1209 fc->root = dget(sb->s_root);
1210 if (keying == vfs_get_single_reconf_super) {
1211 err = reconfigure_super(fc);
1212 if (err < 0) {
1213 dput(fc->root);
1214 fc->root = NULL;
1215 goto error;
1216 }
1217 }
1218 }
1219
1220 return 0;
1221
1222 error:
1223 deactivate_locked_super(sb);
1224 return err;
1225 }
1226 EXPORT_SYMBOL(vfs_get_super);
1227
get_tree_nodev(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1228 int get_tree_nodev(struct fs_context *fc,
1229 int (*fill_super)(struct super_block *sb,
1230 struct fs_context *fc))
1231 {
1232 return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1233 }
1234 EXPORT_SYMBOL(get_tree_nodev);
1235
get_tree_single(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1236 int get_tree_single(struct fs_context *fc,
1237 int (*fill_super)(struct super_block *sb,
1238 struct fs_context *fc))
1239 {
1240 return vfs_get_super(fc, vfs_get_single_super, fill_super);
1241 }
1242 EXPORT_SYMBOL(get_tree_single);
1243
get_tree_single_reconf(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1244 int get_tree_single_reconf(struct fs_context *fc,
1245 int (*fill_super)(struct super_block *sb,
1246 struct fs_context *fc))
1247 {
1248 return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
1249 }
1250 EXPORT_SYMBOL(get_tree_single_reconf);
1251
get_tree_keyed(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc),void * key)1252 int get_tree_keyed(struct fs_context *fc,
1253 int (*fill_super)(struct super_block *sb,
1254 struct fs_context *fc),
1255 void *key)
1256 {
1257 fc->s_fs_info = key;
1258 return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
1259 }
1260 EXPORT_SYMBOL(get_tree_keyed);
1261
1262 #ifdef CONFIG_BLOCK
1263
set_bdev_super(struct super_block * s,void * data)1264 static int set_bdev_super(struct super_block *s, void *data)
1265 {
1266 s->s_bdev = data;
1267 s->s_dev = s->s_bdev->bd_dev;
1268 s->s_bdi = bdi_get(s->s_bdev->bd_disk->bdi);
1269
1270 if (bdev_stable_writes(s->s_bdev))
1271 s->s_iflags |= SB_I_STABLE_WRITES;
1272 return 0;
1273 }
1274
set_bdev_super_fc(struct super_block * s,struct fs_context * fc)1275 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1276 {
1277 return set_bdev_super(s, fc->sget_key);
1278 }
1279
test_bdev_super_fc(struct super_block * s,struct fs_context * fc)1280 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1281 {
1282 return !(s->s_iflags & SB_I_RETIRED) && s->s_bdev == fc->sget_key;
1283 }
1284
1285 /**
1286 * get_tree_bdev - Get a superblock based on a single block device
1287 * @fc: The filesystem context holding the parameters
1288 * @fill_super: Helper to initialise a new superblock
1289 */
get_tree_bdev(struct fs_context * fc,int (* fill_super)(struct super_block *,struct fs_context *))1290 int get_tree_bdev(struct fs_context *fc,
1291 int (*fill_super)(struct super_block *,
1292 struct fs_context *))
1293 {
1294 struct block_device *bdev;
1295 struct super_block *s;
1296 fmode_t mode = FMODE_READ | FMODE_EXCL;
1297 int error = 0;
1298
1299 if (!(fc->sb_flags & SB_RDONLY))
1300 mode |= FMODE_WRITE;
1301
1302 if (!fc->source)
1303 return invalf(fc, "No source specified");
1304
1305 bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1306 if (IS_ERR(bdev)) {
1307 errorf(fc, "%s: Can't open blockdev", fc->source);
1308 return PTR_ERR(bdev);
1309 }
1310
1311 /* Once the superblock is inserted into the list by sget_fc(), s_umount
1312 * will protect the lockfs code from trying to start a snapshot while
1313 * we are mounting
1314 */
1315 mutex_lock(&bdev->bd_fsfreeze_mutex);
1316 if (bdev->bd_fsfreeze_count > 0) {
1317 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1318 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1319 blkdev_put(bdev, mode);
1320 return -EBUSY;
1321 }
1322
1323 fc->sb_flags |= SB_NOSEC;
1324 fc->sget_key = bdev;
1325 s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1326 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1327 if (IS_ERR(s)) {
1328 blkdev_put(bdev, mode);
1329 return PTR_ERR(s);
1330 }
1331
1332 if (s->s_root) {
1333 /* Don't summarily change the RO/RW state. */
1334 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1335 warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1336 deactivate_locked_super(s);
1337 blkdev_put(bdev, mode);
1338 return -EBUSY;
1339 }
1340
1341 /*
1342 * s_umount nests inside open_mutex during
1343 * __invalidate_device(). blkdev_put() acquires
1344 * open_mutex and can't be called under s_umount. Drop
1345 * s_umount temporarily. This is safe as we're
1346 * holding an active reference.
1347 */
1348 up_write(&s->s_umount);
1349 blkdev_put(bdev, mode);
1350 down_write(&s->s_umount);
1351 } else {
1352 s->s_mode = mode;
1353 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1354 shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s",
1355 fc->fs_type->name, s->s_id);
1356 sb_set_blocksize(s, block_size(bdev));
1357 error = fill_super(s, fc);
1358 if (error) {
1359 deactivate_locked_super(s);
1360 return error;
1361 }
1362
1363 s->s_flags |= SB_ACTIVE;
1364 bdev->bd_super = s;
1365 }
1366
1367 BUG_ON(fc->root);
1368 fc->root = dget(s->s_root);
1369 return 0;
1370 }
1371 EXPORT_SYMBOL(get_tree_bdev);
1372
test_bdev_super(struct super_block * s,void * data)1373 static int test_bdev_super(struct super_block *s, void *data)
1374 {
1375 return !(s->s_iflags & SB_I_RETIRED) && (void *)s->s_bdev == data;
1376 }
1377
mount_bdev(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,int (* fill_super)(struct super_block *,void *,int))1378 struct dentry *mount_bdev(struct file_system_type *fs_type,
1379 int flags, const char *dev_name, void *data,
1380 int (*fill_super)(struct super_block *, void *, int))
1381 {
1382 struct block_device *bdev;
1383 struct super_block *s;
1384 fmode_t mode = FMODE_READ | FMODE_EXCL;
1385 int error = 0;
1386
1387 if (!(flags & SB_RDONLY))
1388 mode |= FMODE_WRITE;
1389
1390 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1391 if (IS_ERR(bdev))
1392 return ERR_CAST(bdev);
1393
1394 /*
1395 * once the super is inserted into the list by sget, s_umount
1396 * will protect the lockfs code from trying to start a snapshot
1397 * while we are mounting
1398 */
1399 mutex_lock(&bdev->bd_fsfreeze_mutex);
1400 if (bdev->bd_fsfreeze_count > 0) {
1401 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1402 error = -EBUSY;
1403 goto error_bdev;
1404 }
1405 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1406 bdev);
1407 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1408 if (IS_ERR(s))
1409 goto error_s;
1410
1411 if (s->s_root) {
1412 if ((flags ^ s->s_flags) & SB_RDONLY) {
1413 deactivate_locked_super(s);
1414 error = -EBUSY;
1415 goto error_bdev;
1416 }
1417
1418 /*
1419 * s_umount nests inside open_mutex during
1420 * __invalidate_device(). blkdev_put() acquires
1421 * open_mutex and can't be called under s_umount. Drop
1422 * s_umount temporarily. This is safe as we're
1423 * holding an active reference.
1424 */
1425 up_write(&s->s_umount);
1426 blkdev_put(bdev, mode);
1427 down_write(&s->s_umount);
1428 } else {
1429 s->s_mode = mode;
1430 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1431 shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s",
1432 fs_type->name, s->s_id);
1433 sb_set_blocksize(s, block_size(bdev));
1434 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1435 if (error) {
1436 deactivate_locked_super(s);
1437 goto error;
1438 }
1439
1440 s->s_flags |= SB_ACTIVE;
1441 bdev->bd_super = s;
1442 }
1443
1444 return dget(s->s_root);
1445
1446 error_s:
1447 error = PTR_ERR(s);
1448 error_bdev:
1449 blkdev_put(bdev, mode);
1450 error:
1451 return ERR_PTR(error);
1452 }
1453 EXPORT_SYMBOL(mount_bdev);
1454
kill_block_super(struct super_block * sb)1455 void kill_block_super(struct super_block *sb)
1456 {
1457 struct block_device *bdev = sb->s_bdev;
1458 fmode_t mode = sb->s_mode;
1459
1460 bdev->bd_super = NULL;
1461 generic_shutdown_super(sb);
1462 sync_blockdev(bdev);
1463 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1464 blkdev_put(bdev, mode | FMODE_EXCL);
1465 }
1466
1467 EXPORT_SYMBOL(kill_block_super);
1468 #endif
1469
mount_nodev(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1470 struct dentry *mount_nodev(struct file_system_type *fs_type,
1471 int flags, void *data,
1472 int (*fill_super)(struct super_block *, void *, int))
1473 {
1474 int error;
1475 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1476
1477 if (IS_ERR(s))
1478 return ERR_CAST(s);
1479
1480 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1481 if (error) {
1482 deactivate_locked_super(s);
1483 return ERR_PTR(error);
1484 }
1485 s->s_flags |= SB_ACTIVE;
1486 return dget(s->s_root);
1487 }
1488 EXPORT_SYMBOL(mount_nodev);
1489
reconfigure_single(struct super_block * s,int flags,void * data)1490 int reconfigure_single(struct super_block *s,
1491 int flags, void *data)
1492 {
1493 struct fs_context *fc;
1494 int ret;
1495
1496 /* The caller really need to be passing fc down into mount_single(),
1497 * then a chunk of this can be removed. [Bollocks -- AV]
1498 * Better yet, reconfiguration shouldn't happen, but rather the second
1499 * mount should be rejected if the parameters are not compatible.
1500 */
1501 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1502 if (IS_ERR(fc))
1503 return PTR_ERR(fc);
1504
1505 ret = parse_monolithic_mount_data(fc, data);
1506 if (ret < 0)
1507 goto out;
1508
1509 ret = reconfigure_super(fc);
1510 out:
1511 put_fs_context(fc);
1512 return ret;
1513 }
1514
compare_single(struct super_block * s,void * p)1515 static int compare_single(struct super_block *s, void *p)
1516 {
1517 return 1;
1518 }
1519
mount_single(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1520 struct dentry *mount_single(struct file_system_type *fs_type,
1521 int flags, void *data,
1522 int (*fill_super)(struct super_block *, void *, int))
1523 {
1524 struct super_block *s;
1525 int error;
1526
1527 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1528 if (IS_ERR(s))
1529 return ERR_CAST(s);
1530 if (!s->s_root) {
1531 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1532 if (!error)
1533 s->s_flags |= SB_ACTIVE;
1534 } else {
1535 error = reconfigure_single(s, flags, data);
1536 }
1537 if (unlikely(error)) {
1538 deactivate_locked_super(s);
1539 return ERR_PTR(error);
1540 }
1541 return dget(s->s_root);
1542 }
1543 EXPORT_SYMBOL(mount_single);
1544
1545 /**
1546 * vfs_get_tree - Get the mountable root
1547 * @fc: The superblock configuration context.
1548 *
1549 * The filesystem is invoked to get or create a superblock which can then later
1550 * be used for mounting. The filesystem places a pointer to the root to be
1551 * used for mounting in @fc->root.
1552 */
vfs_get_tree(struct fs_context * fc)1553 int vfs_get_tree(struct fs_context *fc)
1554 {
1555 struct super_block *sb;
1556 int error;
1557
1558 if (fc->root)
1559 return -EBUSY;
1560
1561 /* Get the mountable root in fc->root, with a ref on the root and a ref
1562 * on the superblock.
1563 */
1564 error = fc->ops->get_tree(fc);
1565 if (error < 0)
1566 return error;
1567
1568 if (!fc->root) {
1569 pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1570 fc->fs_type->name);
1571 /* We don't know what the locking state of the superblock is -
1572 * if there is a superblock.
1573 */
1574 BUG();
1575 }
1576
1577 sb = fc->root->d_sb;
1578 WARN_ON(!sb->s_bdi);
1579
1580 /*
1581 * Write barrier is for super_cache_count(). We place it before setting
1582 * SB_BORN as the data dependency between the two functions is the
1583 * superblock structure contents that we just set up, not the SB_BORN
1584 * flag.
1585 */
1586 smp_wmb();
1587 sb->s_flags |= SB_BORN;
1588
1589 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1590 if (unlikely(error)) {
1591 fc_drop_locked(fc);
1592 return error;
1593 }
1594
1595 /*
1596 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1597 * but s_maxbytes was an unsigned long long for many releases. Throw
1598 * this warning for a little while to try and catch filesystems that
1599 * violate this rule.
1600 */
1601 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1602 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1603
1604 return 0;
1605 }
1606 EXPORT_SYMBOL(vfs_get_tree);
1607
1608 /*
1609 * Setup private BDI for given superblock. It gets automatically cleaned up
1610 * in generic_shutdown_super().
1611 */
super_setup_bdi_name(struct super_block * sb,char * fmt,...)1612 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1613 {
1614 struct backing_dev_info *bdi;
1615 int err;
1616 va_list args;
1617
1618 bdi = bdi_alloc(NUMA_NO_NODE);
1619 if (!bdi)
1620 return -ENOMEM;
1621
1622 va_start(args, fmt);
1623 err = bdi_register_va(bdi, fmt, args);
1624 va_end(args);
1625 if (err) {
1626 bdi_put(bdi);
1627 return err;
1628 }
1629 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1630 sb->s_bdi = bdi;
1631 sb->s_iflags |= SB_I_PERSB_BDI;
1632
1633 return 0;
1634 }
1635 EXPORT_SYMBOL(super_setup_bdi_name);
1636
1637 /*
1638 * Setup private BDI for given superblock. I gets automatically cleaned up
1639 * in generic_shutdown_super().
1640 */
super_setup_bdi(struct super_block * sb)1641 int super_setup_bdi(struct super_block *sb)
1642 {
1643 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1644
1645 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1646 atomic_long_inc_return(&bdi_seq));
1647 }
1648 EXPORT_SYMBOL(super_setup_bdi);
1649
1650 /**
1651 * sb_wait_write - wait until all writers to given file system finish
1652 * @sb: the super for which we wait
1653 * @level: type of writers we wait for (normal vs page fault)
1654 *
1655 * This function waits until there are no writers of given type to given file
1656 * system.
1657 */
sb_wait_write(struct super_block * sb,int level)1658 static void sb_wait_write(struct super_block *sb, int level)
1659 {
1660 percpu_down_write(sb->s_writers.rw_sem + level-1);
1661 }
1662
1663 /*
1664 * We are going to return to userspace and forget about these locks, the
1665 * ownership goes to the caller of thaw_super() which does unlock().
1666 */
lockdep_sb_freeze_release(struct super_block * sb)1667 static void lockdep_sb_freeze_release(struct super_block *sb)
1668 {
1669 int level;
1670
1671 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1672 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1673 }
1674
1675 /*
1676 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1677 */
lockdep_sb_freeze_acquire(struct super_block * sb)1678 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1679 {
1680 int level;
1681
1682 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1683 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1684 }
1685
sb_freeze_unlock(struct super_block * sb,int level)1686 static void sb_freeze_unlock(struct super_block *sb, int level)
1687 {
1688 for (level--; level >= 0; level--)
1689 percpu_up_write(sb->s_writers.rw_sem + level);
1690 }
1691
1692 /**
1693 * freeze_super - lock the filesystem and force it into a consistent state
1694 * @sb: the super to lock
1695 *
1696 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1697 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1698 * -EBUSY.
1699 *
1700 * During this function, sb->s_writers.frozen goes through these values:
1701 *
1702 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1703 *
1704 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1705 * writes should be blocked, though page faults are still allowed. We wait for
1706 * all writes to complete and then proceed to the next stage.
1707 *
1708 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1709 * but internal fs threads can still modify the filesystem (although they
1710 * should not dirty new pages or inodes), writeback can run etc. After waiting
1711 * for all running page faults we sync the filesystem which will clean all
1712 * dirty pages and inodes (no new dirty pages or inodes can be created when
1713 * sync is running).
1714 *
1715 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1716 * modification are blocked (e.g. XFS preallocation truncation on inode
1717 * reclaim). This is usually implemented by blocking new transactions for
1718 * filesystems that have them and need this additional guard. After all
1719 * internal writers are finished we call ->freeze_fs() to finish filesystem
1720 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1721 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1722 *
1723 * sb->s_writers.frozen is protected by sb->s_umount.
1724 */
freeze_super(struct super_block * sb)1725 int freeze_super(struct super_block *sb)
1726 {
1727 int ret;
1728
1729 atomic_inc(&sb->s_active);
1730 down_write(&sb->s_umount);
1731 if (sb->s_writers.frozen != SB_UNFROZEN) {
1732 deactivate_locked_super(sb);
1733 return -EBUSY;
1734 }
1735
1736 if (!(sb->s_flags & SB_BORN)) {
1737 up_write(&sb->s_umount);
1738 return 0; /* sic - it's "nothing to do" */
1739 }
1740
1741 if (sb_rdonly(sb)) {
1742 /* Nothing to do really... */
1743 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1744 up_write(&sb->s_umount);
1745 return 0;
1746 }
1747
1748 sb->s_writers.frozen = SB_FREEZE_WRITE;
1749 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1750 up_write(&sb->s_umount);
1751 sb_wait_write(sb, SB_FREEZE_WRITE);
1752 down_write(&sb->s_umount);
1753
1754 /* Now we go and block page faults... */
1755 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1756 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1757
1758 /* All writers are done so after syncing there won't be dirty data */
1759 ret = sync_filesystem(sb);
1760 if (ret) {
1761 sb->s_writers.frozen = SB_UNFROZEN;
1762 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
1763 wake_up(&sb->s_writers.wait_unfrozen);
1764 deactivate_locked_super(sb);
1765 return ret;
1766 }
1767
1768 /* Now wait for internal filesystem counter */
1769 sb->s_writers.frozen = SB_FREEZE_FS;
1770 sb_wait_write(sb, SB_FREEZE_FS);
1771
1772 if (sb->s_op->freeze_fs) {
1773 ret = sb->s_op->freeze_fs(sb);
1774 if (ret) {
1775 printk(KERN_ERR
1776 "VFS:Filesystem freeze failed\n");
1777 sb->s_writers.frozen = SB_UNFROZEN;
1778 sb_freeze_unlock(sb, SB_FREEZE_FS);
1779 wake_up(&sb->s_writers.wait_unfrozen);
1780 deactivate_locked_super(sb);
1781 return ret;
1782 }
1783 }
1784 /*
1785 * For debugging purposes so that fs can warn if it sees write activity
1786 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1787 */
1788 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1789 lockdep_sb_freeze_release(sb);
1790 up_write(&sb->s_umount);
1791 return 0;
1792 }
1793 EXPORT_SYMBOL(freeze_super);
1794
thaw_super_locked(struct super_block * sb)1795 static int thaw_super_locked(struct super_block *sb)
1796 {
1797 int error;
1798
1799 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1800 up_write(&sb->s_umount);
1801 return -EINVAL;
1802 }
1803
1804 if (sb_rdonly(sb)) {
1805 sb->s_writers.frozen = SB_UNFROZEN;
1806 goto out;
1807 }
1808
1809 lockdep_sb_freeze_acquire(sb);
1810
1811 if (sb->s_op->unfreeze_fs) {
1812 error = sb->s_op->unfreeze_fs(sb);
1813 if (error) {
1814 printk(KERN_ERR
1815 "VFS:Filesystem thaw failed\n");
1816 lockdep_sb_freeze_release(sb);
1817 up_write(&sb->s_umount);
1818 return error;
1819 }
1820 }
1821
1822 sb->s_writers.frozen = SB_UNFROZEN;
1823 sb_freeze_unlock(sb, SB_FREEZE_FS);
1824 out:
1825 wake_up(&sb->s_writers.wait_unfrozen);
1826 deactivate_locked_super(sb);
1827 return 0;
1828 }
1829
1830 /**
1831 * thaw_super -- unlock filesystem
1832 * @sb: the super to thaw
1833 *
1834 * Unlocks the filesystem and marks it writeable again after freeze_super().
1835 */
thaw_super(struct super_block * sb)1836 int thaw_super(struct super_block *sb)
1837 {
1838 down_write(&sb->s_umount);
1839 return thaw_super_locked(sb);
1840 }
1841 EXPORT_SYMBOL(thaw_super);
1842