• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fscrypt.h>
36 #include <linux/fsnotify.h>
37 #include <linux/lockdep.h>
38 #include <linux/user_namespace.h>
39 #include <linux/fs_context.h>
40 #include <uapi/linux/mount.h>
41 #include "internal.h"
42 
43 static int thaw_super_locked(struct super_block *sb);
44 
45 static LIST_HEAD(super_blocks);
46 static DEFINE_SPINLOCK(sb_lock);
47 
48 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
49 	"sb_writers",
50 	"sb_pagefaults",
51 	"sb_internal",
52 };
53 
54 /*
55  * One thing we have to be careful of with a per-sb shrinker is that we don't
56  * drop the last active reference to the superblock from within the shrinker.
57  * If that happens we could trigger unregistering the shrinker from within the
58  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
59  * take a passive reference to the superblock to avoid this from occurring.
60  */
super_cache_scan(struct shrinker * shrink,struct shrink_control * sc)61 static unsigned long super_cache_scan(struct shrinker *shrink,
62 				      struct shrink_control *sc)
63 {
64 	struct super_block *sb;
65 	long	fs_objects = 0;
66 	long	total_objects;
67 	long	freed = 0;
68 	long	dentries;
69 	long	inodes;
70 
71 	sb = container_of(shrink, struct super_block, s_shrink);
72 
73 	/*
74 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
75 	 * to recurse into the FS that called us in clear_inode() and friends..
76 	 */
77 	if (!(sc->gfp_mask & __GFP_FS))
78 		return SHRINK_STOP;
79 
80 	if (!trylock_super(sb))
81 		return SHRINK_STOP;
82 
83 	if (sb->s_op->nr_cached_objects)
84 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
85 
86 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
87 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
88 	total_objects = dentries + inodes + fs_objects + 1;
89 	if (!total_objects)
90 		total_objects = 1;
91 
92 	/* proportion the scan between the caches */
93 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
94 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
95 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
96 
97 	/*
98 	 * prune the dcache first as the icache is pinned by it, then
99 	 * prune the icache, followed by the filesystem specific caches
100 	 *
101 	 * Ensure that we always scan at least one object - memcg kmem
102 	 * accounting uses this to fully empty the caches.
103 	 */
104 	sc->nr_to_scan = dentries + 1;
105 	freed = prune_dcache_sb(sb, sc);
106 	sc->nr_to_scan = inodes + 1;
107 	freed += prune_icache_sb(sb, sc);
108 
109 	if (fs_objects) {
110 		sc->nr_to_scan = fs_objects + 1;
111 		freed += sb->s_op->free_cached_objects(sb, sc);
112 	}
113 
114 	up_read(&sb->s_umount);
115 	return freed;
116 }
117 
super_cache_count(struct shrinker * shrink,struct shrink_control * sc)118 static unsigned long super_cache_count(struct shrinker *shrink,
119 				       struct shrink_control *sc)
120 {
121 	struct super_block *sb;
122 	long	total_objects = 0;
123 
124 	sb = container_of(shrink, struct super_block, s_shrink);
125 
126 	/*
127 	 * We don't call trylock_super() here as it is a scalability bottleneck,
128 	 * so we're exposed to partial setup state. The shrinker rwsem does not
129 	 * protect filesystem operations backing list_lru_shrink_count() or
130 	 * s_op->nr_cached_objects(). Counts can change between
131 	 * super_cache_count and super_cache_scan, so we really don't need locks
132 	 * here.
133 	 *
134 	 * However, if we are currently mounting the superblock, the underlying
135 	 * filesystem might be in a state of partial construction and hence it
136 	 * is dangerous to access it.  trylock_super() uses a SB_BORN check to
137 	 * avoid this situation, so do the same here. The memory barrier is
138 	 * matched with the one in mount_fs() as we don't hold locks here.
139 	 */
140 	if (!(sb->s_flags & SB_BORN))
141 		return 0;
142 	smp_rmb();
143 
144 	if (sb->s_op && sb->s_op->nr_cached_objects)
145 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
146 
147 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
148 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
149 
150 	if (!total_objects)
151 		return SHRINK_EMPTY;
152 
153 	total_objects = vfs_pressure_ratio(total_objects);
154 	return total_objects;
155 }
156 
destroy_super_work(struct work_struct * work)157 static void destroy_super_work(struct work_struct *work)
158 {
159 	struct super_block *s = container_of(work, struct super_block,
160 							destroy_work);
161 	int i;
162 
163 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
164 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
165 	kfree(s);
166 }
167 
destroy_super_rcu(struct rcu_head * head)168 static void destroy_super_rcu(struct rcu_head *head)
169 {
170 	struct super_block *s = container_of(head, struct super_block, rcu);
171 	INIT_WORK(&s->destroy_work, destroy_super_work);
172 	schedule_work(&s->destroy_work);
173 }
174 
175 /* Free a superblock that has never been seen by anyone */
destroy_unused_super(struct super_block * s)176 static void destroy_unused_super(struct super_block *s)
177 {
178 	if (!s)
179 		return;
180 	up_write(&s->s_umount);
181 	list_lru_destroy(&s->s_dentry_lru);
182 	list_lru_destroy(&s->s_inode_lru);
183 	security_sb_free(s);
184 	put_user_ns(s->s_user_ns);
185 	kfree(s->s_subtype);
186 	free_prealloced_shrinker(&s->s_shrink);
187 	/* no delays needed */
188 	destroy_super_work(&s->destroy_work);
189 }
190 
191 /**
192  *	alloc_super	-	create new superblock
193  *	@type:	filesystem type superblock should belong to
194  *	@flags: the mount flags
195  *	@user_ns: User namespace for the super_block
196  *
197  *	Allocates and initializes a new &struct super_block.  alloc_super()
198  *	returns a pointer new superblock or %NULL if allocation had failed.
199  */
alloc_super(struct file_system_type * type,int flags,struct user_namespace * user_ns)200 static struct super_block *alloc_super(struct file_system_type *type, int flags,
201 				       struct user_namespace *user_ns)
202 {
203 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
204 	static const struct super_operations default_op;
205 	int i;
206 
207 	if (!s)
208 		return NULL;
209 
210 	INIT_LIST_HEAD(&s->s_mounts);
211 	s->s_user_ns = get_user_ns(user_ns);
212 	init_rwsem(&s->s_umount);
213 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
214 	/*
215 	 * sget() can have s_umount recursion.
216 	 *
217 	 * When it cannot find a suitable sb, it allocates a new
218 	 * one (this one), and tries again to find a suitable old
219 	 * one.
220 	 *
221 	 * In case that succeeds, it will acquire the s_umount
222 	 * lock of the old one. Since these are clearly distrinct
223 	 * locks, and this object isn't exposed yet, there's no
224 	 * risk of deadlocks.
225 	 *
226 	 * Annotate this by putting this lock in a different
227 	 * subclass.
228 	 */
229 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
230 
231 	if (security_sb_alloc(s))
232 		goto fail;
233 
234 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
235 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
236 					sb_writers_name[i],
237 					&type->s_writers_key[i]))
238 			goto fail;
239 	}
240 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
241 	s->s_bdi = &noop_backing_dev_info;
242 	s->s_flags = flags;
243 	if (s->s_user_ns != &init_user_ns)
244 		s->s_iflags |= SB_I_NODEV;
245 	INIT_HLIST_NODE(&s->s_instances);
246 	INIT_HLIST_BL_HEAD(&s->s_roots);
247 	mutex_init(&s->s_sync_lock);
248 	INIT_LIST_HEAD(&s->s_inodes);
249 	spin_lock_init(&s->s_inode_list_lock);
250 	INIT_LIST_HEAD(&s->s_inodes_wb);
251 	spin_lock_init(&s->s_inode_wblist_lock);
252 
253 	s->s_count = 1;
254 	atomic_set(&s->s_active, 1);
255 	mutex_init(&s->s_vfs_rename_mutex);
256 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
257 	init_rwsem(&s->s_dquot.dqio_sem);
258 	s->s_maxbytes = MAX_NON_LFS;
259 	s->s_op = &default_op;
260 	s->s_time_gran = 1000000000;
261 	s->s_time_min = TIME64_MIN;
262 	s->s_time_max = TIME64_MAX;
263 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
264 
265 	s->s_shrink.seeks = DEFAULT_SEEKS;
266 	s->s_shrink.scan_objects = super_cache_scan;
267 	s->s_shrink.count_objects = super_cache_count;
268 	s->s_shrink.batch = 1024;
269 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
270 	if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name))
271 		goto fail;
272 	if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
273 		goto fail;
274 	if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
275 		goto fail;
276 	return s;
277 
278 fail:
279 	destroy_unused_super(s);
280 	return NULL;
281 }
282 
283 /* Superblock refcounting  */
284 
285 /*
286  * Drop a superblock's refcount.  The caller must hold sb_lock.
287  */
__put_super(struct super_block * s)288 static void __put_super(struct super_block *s)
289 {
290 	if (!--s->s_count) {
291 		list_del_init(&s->s_list);
292 		WARN_ON(s->s_dentry_lru.node);
293 		WARN_ON(s->s_inode_lru.node);
294 		WARN_ON(!list_empty(&s->s_mounts));
295 		security_sb_free(s);
296 		put_user_ns(s->s_user_ns);
297 		kfree(s->s_subtype);
298 		call_rcu(&s->rcu, destroy_super_rcu);
299 	}
300 }
301 
302 /**
303  *	put_super	-	drop a temporary reference to superblock
304  *	@sb: superblock in question
305  *
306  *	Drops a temporary reference, frees superblock if there's no
307  *	references left.
308  */
put_super(struct super_block * sb)309 void put_super(struct super_block *sb)
310 {
311 	spin_lock(&sb_lock);
312 	__put_super(sb);
313 	spin_unlock(&sb_lock);
314 }
315 
316 
317 /**
318  *	deactivate_locked_super	-	drop an active reference to superblock
319  *	@s: superblock to deactivate
320  *
321  *	Drops an active reference to superblock, converting it into a temporary
322  *	one if there is no other active references left.  In that case we
323  *	tell fs driver to shut it down and drop the temporary reference we
324  *	had just acquired.
325  *
326  *	Caller holds exclusive lock on superblock; that lock is released.
327  */
deactivate_locked_super(struct super_block * s)328 void deactivate_locked_super(struct super_block *s)
329 {
330 	struct file_system_type *fs = s->s_type;
331 	if (atomic_dec_and_test(&s->s_active)) {
332 		cleancache_invalidate_fs(s);
333 		unregister_shrinker(&s->s_shrink);
334 		fs->kill_sb(s);
335 
336 		/*
337 		 * Since list_lru_destroy() may sleep, we cannot call it from
338 		 * put_super(), where we hold the sb_lock. Therefore we destroy
339 		 * the lru lists right now.
340 		 */
341 		list_lru_destroy(&s->s_dentry_lru);
342 		list_lru_destroy(&s->s_inode_lru);
343 
344 		put_filesystem(fs);
345 		put_super(s);
346 	} else {
347 		up_write(&s->s_umount);
348 	}
349 }
350 
351 EXPORT_SYMBOL(deactivate_locked_super);
352 
353 /**
354  *	deactivate_super	-	drop an active reference to superblock
355  *	@s: superblock to deactivate
356  *
357  *	Variant of deactivate_locked_super(), except that superblock is *not*
358  *	locked by caller.  If we are going to drop the final active reference,
359  *	lock will be acquired prior to that.
360  */
deactivate_super(struct super_block * s)361 void deactivate_super(struct super_block *s)
362 {
363 	if (!atomic_add_unless(&s->s_active, -1, 1)) {
364 		down_write(&s->s_umount);
365 		deactivate_locked_super(s);
366 	}
367 }
368 
369 EXPORT_SYMBOL(deactivate_super);
370 
371 /**
372  *	grab_super - acquire an active reference
373  *	@s: reference we are trying to make active
374  *
375  *	Tries to acquire an active reference.  grab_super() is used when we
376  * 	had just found a superblock in super_blocks or fs_type->fs_supers
377  *	and want to turn it into a full-blown active reference.  grab_super()
378  *	is called with sb_lock held and drops it.  Returns 1 in case of
379  *	success, 0 if we had failed (superblock contents was already dead or
380  *	dying when grab_super() had been called).  Note that this is only
381  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
382  *	of their type), so increment of ->s_count is OK here.
383  */
grab_super(struct super_block * s)384 static int grab_super(struct super_block *s) __releases(sb_lock)
385 {
386 	s->s_count++;
387 	spin_unlock(&sb_lock);
388 	down_write(&s->s_umount);
389 	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
390 		put_super(s);
391 		return 1;
392 	}
393 	up_write(&s->s_umount);
394 	put_super(s);
395 	return 0;
396 }
397 
398 /*
399  *	trylock_super - try to grab ->s_umount shared
400  *	@sb: reference we are trying to grab
401  *
402  *	Try to prevent fs shutdown.  This is used in places where we
403  *	cannot take an active reference but we need to ensure that the
404  *	filesystem is not shut down while we are working on it. It returns
405  *	false if we cannot acquire s_umount or if we lose the race and
406  *	filesystem already got into shutdown, and returns true with the s_umount
407  *	lock held in read mode in case of success. On successful return,
408  *	the caller must drop the s_umount lock when done.
409  *
410  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
411  *	The reason why it's safe is that we are OK with doing trylock instead
412  *	of down_read().  There's a couple of places that are OK with that, but
413  *	it's very much not a general-purpose interface.
414  */
trylock_super(struct super_block * sb)415 bool trylock_super(struct super_block *sb)
416 {
417 	if (down_read_trylock(&sb->s_umount)) {
418 		if (!hlist_unhashed(&sb->s_instances) &&
419 		    sb->s_root && (sb->s_flags & SB_BORN))
420 			return true;
421 		up_read(&sb->s_umount);
422 	}
423 
424 	return false;
425 }
426 
427 /**
428  *	retire_super	-	prevents superblock from being reused
429  *	@sb: superblock to retire
430  *
431  *	The function marks superblock to be ignored in superblock test, which
432  *	prevents it from being reused for any new mounts.  If the superblock has
433  *	a private bdi, it also unregisters it, but doesn't reduce the refcount
434  *	of the superblock to prevent potential races.  The refcount is reduced
435  *	by generic_shutdown_super().  The function can not be called
436  *	concurrently with generic_shutdown_super().  It is safe to call the
437  *	function multiple times, subsequent calls have no effect.
438  *
439  *	The marker will affect the re-use only for block-device-based
440  *	superblocks.  Other superblocks will still get marked if this function
441  *	is used, but that will not affect their reusability.
442  */
retire_super(struct super_block * sb)443 void retire_super(struct super_block *sb)
444 {
445 	WARN_ON(!sb->s_bdev);
446 	down_write(&sb->s_umount);
447 	if (sb->s_iflags & SB_I_PERSB_BDI) {
448 		bdi_unregister(sb->s_bdi);
449 		sb->s_iflags &= ~SB_I_PERSB_BDI;
450 	}
451 	sb->s_iflags |= SB_I_RETIRED;
452 	up_write(&sb->s_umount);
453 }
454 EXPORT_SYMBOL(retire_super);
455 
456 /**
457  *	generic_shutdown_super	-	common helper for ->kill_sb()
458  *	@sb: superblock to kill
459  *
460  *	generic_shutdown_super() does all fs-independent work on superblock
461  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
462  *	that need destruction out of superblock, call generic_shutdown_super()
463  *	and release aforementioned objects.  Note: dentries and inodes _are_
464  *	taken care of and do not need specific handling.
465  *
466  *	Upon calling this function, the filesystem may no longer alter or
467  *	rearrange the set of dentries belonging to this super_block, nor may it
468  *	change the attachments of dentries to inodes.
469  */
generic_shutdown_super(struct super_block * sb)470 void generic_shutdown_super(struct super_block *sb)
471 {
472 	const struct super_operations *sop = sb->s_op;
473 
474 	if (sb->s_root) {
475 		shrink_dcache_for_umount(sb);
476 		sync_filesystem(sb);
477 		sb->s_flags &= ~SB_ACTIVE;
478 
479 		cgroup_writeback_umount();
480 
481 		/* Evict all inodes with zero refcount. */
482 		evict_inodes(sb);
483 
484 		/*
485 		 * Clean up and evict any inodes that still have references due
486 		 * to fsnotify or the security policy.
487 		 */
488 		fsnotify_sb_delete(sb);
489 		security_sb_delete(sb);
490 
491 		/*
492 		 * Now that all potentially-encrypted inodes have been evicted,
493 		 * the fscrypt keyring can be destroyed.
494 		 */
495 		fscrypt_destroy_keyring(sb);
496 
497 		if (sb->s_dio_done_wq) {
498 			destroy_workqueue(sb->s_dio_done_wq);
499 			sb->s_dio_done_wq = NULL;
500 		}
501 
502 		if (sop->put_super)
503 			sop->put_super(sb);
504 
505 		if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes),
506 				"VFS: Busy inodes after unmount of %s (%s)",
507 				sb->s_id, sb->s_type->name)) {
508 			/*
509 			 * Adding a proper bailout path here would be hard, but
510 			 * we can at least make it more likely that a later
511 			 * iput_final() or such crashes cleanly.
512 			 */
513 			struct inode *inode;
514 
515 			spin_lock(&sb->s_inode_list_lock);
516 			list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
517 				inode->i_op = VFS_PTR_POISON;
518 				inode->i_sb = VFS_PTR_POISON;
519 				inode->i_mapping = VFS_PTR_POISON;
520 			}
521 			spin_unlock(&sb->s_inode_list_lock);
522 		}
523 	}
524 	spin_lock(&sb_lock);
525 	/* should be initialized for __put_super_and_need_restart() */
526 	hlist_del_init(&sb->s_instances);
527 	spin_unlock(&sb_lock);
528 	up_write(&sb->s_umount);
529 	if (sb->s_bdi != &noop_backing_dev_info) {
530 		if (sb->s_iflags & SB_I_PERSB_BDI)
531 			bdi_unregister(sb->s_bdi);
532 		bdi_put(sb->s_bdi);
533 		sb->s_bdi = &noop_backing_dev_info;
534 	}
535 }
536 
537 EXPORT_SYMBOL(generic_shutdown_super);
538 
mount_capable(struct fs_context * fc)539 bool mount_capable(struct fs_context *fc)
540 {
541 	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
542 		return capable(CAP_SYS_ADMIN);
543 	else
544 		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
545 }
546 
547 /**
548  * sget_fc - Find or create a superblock
549  * @fc:	Filesystem context.
550  * @test: Comparison callback
551  * @set: Setup callback
552  *
553  * Find or create a superblock using the parameters stored in the filesystem
554  * context and the two callback functions.
555  *
556  * If an extant superblock is matched, then that will be returned with an
557  * elevated reference count that the caller must transfer or discard.
558  *
559  * If no match is made, a new superblock will be allocated and basic
560  * initialisation will be performed (s_type, s_fs_info and s_id will be set and
561  * the set() callback will be invoked), the superblock will be published and it
562  * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
563  * as yet unset.
564  */
sget_fc(struct fs_context * fc,int (* test)(struct super_block *,struct fs_context *),int (* set)(struct super_block *,struct fs_context *))565 struct super_block *sget_fc(struct fs_context *fc,
566 			    int (*test)(struct super_block *, struct fs_context *),
567 			    int (*set)(struct super_block *, struct fs_context *))
568 {
569 	struct super_block *s = NULL;
570 	struct super_block *old;
571 	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
572 	int err;
573 
574 retry:
575 	spin_lock(&sb_lock);
576 	if (test) {
577 		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
578 			if (test(old, fc))
579 				goto share_extant_sb;
580 		}
581 	}
582 	if (!s) {
583 		spin_unlock(&sb_lock);
584 		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
585 		if (!s)
586 			return ERR_PTR(-ENOMEM);
587 		goto retry;
588 	}
589 
590 	s->s_fs_info = fc->s_fs_info;
591 	err = set(s, fc);
592 	if (err) {
593 		s->s_fs_info = NULL;
594 		spin_unlock(&sb_lock);
595 		destroy_unused_super(s);
596 		return ERR_PTR(err);
597 	}
598 	fc->s_fs_info = NULL;
599 	s->s_type = fc->fs_type;
600 	s->s_iflags |= fc->s_iflags;
601 	strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
602 	list_add_tail(&s->s_list, &super_blocks);
603 	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
604 	spin_unlock(&sb_lock);
605 	get_filesystem(s->s_type);
606 	register_shrinker_prepared(&s->s_shrink);
607 	return s;
608 
609 share_extant_sb:
610 	if (user_ns != old->s_user_ns) {
611 		spin_unlock(&sb_lock);
612 		destroy_unused_super(s);
613 		return ERR_PTR(-EBUSY);
614 	}
615 	if (!grab_super(old))
616 		goto retry;
617 	destroy_unused_super(s);
618 	return old;
619 }
620 EXPORT_SYMBOL(sget_fc);
621 
622 /**
623  *	sget	-	find or create a superblock
624  *	@type:	  filesystem type superblock should belong to
625  *	@test:	  comparison callback
626  *	@set:	  setup callback
627  *	@flags:	  mount flags
628  *	@data:	  argument to each of them
629  */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,void * data)630 struct super_block *sget(struct file_system_type *type,
631 			int (*test)(struct super_block *,void *),
632 			int (*set)(struct super_block *,void *),
633 			int flags,
634 			void *data)
635 {
636 	struct user_namespace *user_ns = current_user_ns();
637 	struct super_block *s = NULL;
638 	struct super_block *old;
639 	int err;
640 
641 	/* We don't yet pass the user namespace of the parent
642 	 * mount through to here so always use &init_user_ns
643 	 * until that changes.
644 	 */
645 	if (flags & SB_SUBMOUNT)
646 		user_ns = &init_user_ns;
647 
648 retry:
649 	spin_lock(&sb_lock);
650 	if (test) {
651 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
652 			if (!test(old, data))
653 				continue;
654 			if (user_ns != old->s_user_ns) {
655 				spin_unlock(&sb_lock);
656 				destroy_unused_super(s);
657 				return ERR_PTR(-EBUSY);
658 			}
659 			if (!grab_super(old))
660 				goto retry;
661 			destroy_unused_super(s);
662 			return old;
663 		}
664 	}
665 	if (!s) {
666 		spin_unlock(&sb_lock);
667 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
668 		if (!s)
669 			return ERR_PTR(-ENOMEM);
670 		goto retry;
671 	}
672 
673 	err = set(s, data);
674 	if (err) {
675 		spin_unlock(&sb_lock);
676 		destroy_unused_super(s);
677 		return ERR_PTR(err);
678 	}
679 	s->s_type = type;
680 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
681 	list_add_tail(&s->s_list, &super_blocks);
682 	hlist_add_head(&s->s_instances, &type->fs_supers);
683 	spin_unlock(&sb_lock);
684 	get_filesystem(type);
685 	register_shrinker_prepared(&s->s_shrink);
686 	return s;
687 }
688 EXPORT_SYMBOL(sget);
689 
drop_super(struct super_block * sb)690 void drop_super(struct super_block *sb)
691 {
692 	up_read(&sb->s_umount);
693 	put_super(sb);
694 }
695 
696 EXPORT_SYMBOL(drop_super);
697 
drop_super_exclusive(struct super_block * sb)698 void drop_super_exclusive(struct super_block *sb)
699 {
700 	up_write(&sb->s_umount);
701 	put_super(sb);
702 }
703 EXPORT_SYMBOL(drop_super_exclusive);
704 
__iterate_supers(void (* f)(struct super_block *))705 static void __iterate_supers(void (*f)(struct super_block *))
706 {
707 	struct super_block *sb, *p = NULL;
708 
709 	spin_lock(&sb_lock);
710 	list_for_each_entry(sb, &super_blocks, s_list) {
711 		if (hlist_unhashed(&sb->s_instances))
712 			continue;
713 		sb->s_count++;
714 		spin_unlock(&sb_lock);
715 
716 		f(sb);
717 
718 		spin_lock(&sb_lock);
719 		if (p)
720 			__put_super(p);
721 		p = sb;
722 	}
723 	if (p)
724 		__put_super(p);
725 	spin_unlock(&sb_lock);
726 }
727 /**
728  *	iterate_supers - call function for all active superblocks
729  *	@f: function to call
730  *	@arg: argument to pass to it
731  *
732  *	Scans the superblock list and calls given function, passing it
733  *	locked superblock and given argument.
734  */
iterate_supers(void (* f)(struct super_block *,void *),void * arg)735 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
736 {
737 	struct super_block *sb, *p = NULL;
738 
739 	spin_lock(&sb_lock);
740 	list_for_each_entry(sb, &super_blocks, s_list) {
741 		if (hlist_unhashed(&sb->s_instances))
742 			continue;
743 		sb->s_count++;
744 		spin_unlock(&sb_lock);
745 
746 		down_read(&sb->s_umount);
747 		if (sb->s_root && (sb->s_flags & SB_BORN))
748 			f(sb, arg);
749 		up_read(&sb->s_umount);
750 
751 		spin_lock(&sb_lock);
752 		if (p)
753 			__put_super(p);
754 		p = sb;
755 	}
756 	if (p)
757 		__put_super(p);
758 	spin_unlock(&sb_lock);
759 }
760 
761 /**
762  *	iterate_supers_type - call function for superblocks of given type
763  *	@type: fs type
764  *	@f: function to call
765  *	@arg: argument to pass to it
766  *
767  *	Scans the superblock list and calls given function, passing it
768  *	locked superblock and given argument.
769  */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)770 void iterate_supers_type(struct file_system_type *type,
771 	void (*f)(struct super_block *, void *), void *arg)
772 {
773 	struct super_block *sb, *p = NULL;
774 
775 	spin_lock(&sb_lock);
776 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
777 		sb->s_count++;
778 		spin_unlock(&sb_lock);
779 
780 		down_read(&sb->s_umount);
781 		if (sb->s_root && (sb->s_flags & SB_BORN))
782 			f(sb, arg);
783 		up_read(&sb->s_umount);
784 
785 		spin_lock(&sb_lock);
786 		if (p)
787 			__put_super(p);
788 		p = sb;
789 	}
790 	if (p)
791 		__put_super(p);
792 	spin_unlock(&sb_lock);
793 }
794 
795 EXPORT_SYMBOL(iterate_supers_type);
796 
797 /**
798  * get_super - get the superblock of a device
799  * @bdev: device to get the superblock for
800  *
801  * Scans the superblock list and finds the superblock of the file system
802  * mounted on the device given. %NULL is returned if no match is found.
803  */
get_super(struct block_device * bdev)804 struct super_block *get_super(struct block_device *bdev)
805 {
806 	struct super_block *sb;
807 
808 	if (!bdev)
809 		return NULL;
810 
811 	spin_lock(&sb_lock);
812 rescan:
813 	list_for_each_entry(sb, &super_blocks, s_list) {
814 		if (hlist_unhashed(&sb->s_instances))
815 			continue;
816 		if (sb->s_bdev == bdev) {
817 			sb->s_count++;
818 			spin_unlock(&sb_lock);
819 			down_read(&sb->s_umount);
820 			/* still alive? */
821 			if (sb->s_root && (sb->s_flags & SB_BORN))
822 				return sb;
823 			up_read(&sb->s_umount);
824 			/* nope, got unmounted */
825 			spin_lock(&sb_lock);
826 			__put_super(sb);
827 			goto rescan;
828 		}
829 	}
830 	spin_unlock(&sb_lock);
831 	return NULL;
832 }
833 
834 /**
835  * get_active_super - get an active reference to the superblock of a device
836  * @bdev: device to get the superblock for
837  *
838  * Scans the superblock list and finds the superblock of the file system
839  * mounted on the device given.  Returns the superblock with an active
840  * reference or %NULL if none was found.
841  */
get_active_super(struct block_device * bdev)842 struct super_block *get_active_super(struct block_device *bdev)
843 {
844 	struct super_block *sb;
845 
846 	if (!bdev)
847 		return NULL;
848 
849 restart:
850 	spin_lock(&sb_lock);
851 	list_for_each_entry(sb, &super_blocks, s_list) {
852 		if (hlist_unhashed(&sb->s_instances))
853 			continue;
854 		if (sb->s_bdev == bdev) {
855 			if (!grab_super(sb))
856 				goto restart;
857 			up_write(&sb->s_umount);
858 			return sb;
859 		}
860 	}
861 	spin_unlock(&sb_lock);
862 	return NULL;
863 }
864 
user_get_super(dev_t dev,bool excl)865 struct super_block *user_get_super(dev_t dev, bool excl)
866 {
867 	struct super_block *sb;
868 
869 	spin_lock(&sb_lock);
870 rescan:
871 	list_for_each_entry(sb, &super_blocks, s_list) {
872 		if (hlist_unhashed(&sb->s_instances))
873 			continue;
874 		if (sb->s_dev ==  dev) {
875 			sb->s_count++;
876 			spin_unlock(&sb_lock);
877 			if (excl)
878 				down_write(&sb->s_umount);
879 			else
880 				down_read(&sb->s_umount);
881 			/* still alive? */
882 			if (sb->s_root && (sb->s_flags & SB_BORN))
883 				return sb;
884 			if (excl)
885 				up_write(&sb->s_umount);
886 			else
887 				up_read(&sb->s_umount);
888 			/* nope, got unmounted */
889 			spin_lock(&sb_lock);
890 			__put_super(sb);
891 			goto rescan;
892 		}
893 	}
894 	spin_unlock(&sb_lock);
895 	return NULL;
896 }
897 
898 /**
899  * reconfigure_super - asks filesystem to change superblock parameters
900  * @fc: The superblock and configuration
901  *
902  * Alters the configuration parameters of a live superblock.
903  */
reconfigure_super(struct fs_context * fc)904 int reconfigure_super(struct fs_context *fc)
905 {
906 	struct super_block *sb = fc->root->d_sb;
907 	int retval;
908 	bool remount_ro = false;
909 	bool remount_rw = false;
910 	bool force = fc->sb_flags & SB_FORCE;
911 
912 	if (fc->sb_flags_mask & ~MS_RMT_MASK)
913 		return -EINVAL;
914 	if (sb->s_writers.frozen != SB_UNFROZEN)
915 		return -EBUSY;
916 
917 	retval = security_sb_remount(sb, fc->security);
918 	if (retval)
919 		return retval;
920 
921 	if (fc->sb_flags_mask & SB_RDONLY) {
922 #ifdef CONFIG_BLOCK
923 		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
924 		    bdev_read_only(sb->s_bdev))
925 			return -EACCES;
926 #endif
927 		remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
928 		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
929 	}
930 
931 	if (remount_ro) {
932 		if (!hlist_empty(&sb->s_pins)) {
933 			up_write(&sb->s_umount);
934 			group_pin_kill(&sb->s_pins);
935 			down_write(&sb->s_umount);
936 			if (!sb->s_root)
937 				return 0;
938 			if (sb->s_writers.frozen != SB_UNFROZEN)
939 				return -EBUSY;
940 			remount_ro = !sb_rdonly(sb);
941 		}
942 	}
943 	shrink_dcache_sb(sb);
944 
945 	/* If we are reconfiguring to RDONLY and current sb is read/write,
946 	 * make sure there are no files open for writing.
947 	 */
948 	if (remount_ro) {
949 		if (force) {
950 			sb->s_readonly_remount = 1;
951 			smp_wmb();
952 		} else {
953 			retval = sb_prepare_remount_readonly(sb);
954 			if (retval)
955 				return retval;
956 		}
957 	} else if (remount_rw) {
958 		/*
959 		 * We set s_readonly_remount here to protect filesystem's
960 		 * reconfigure code from writes from userspace until
961 		 * reconfigure finishes.
962 		 */
963 		sb->s_readonly_remount = 1;
964 		smp_wmb();
965 	}
966 
967 	if (fc->ops->reconfigure) {
968 		retval = fc->ops->reconfigure(fc);
969 		if (retval) {
970 			if (!force)
971 				goto cancel_readonly;
972 			/* If forced remount, go ahead despite any errors */
973 			WARN(1, "forced remount of a %s fs returned %i\n",
974 			     sb->s_type->name, retval);
975 		}
976 	}
977 
978 	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
979 				 (fc->sb_flags & fc->sb_flags_mask)));
980 	/* Needs to be ordered wrt mnt_is_readonly() */
981 	smp_wmb();
982 	sb->s_readonly_remount = 0;
983 
984 	/*
985 	 * Some filesystems modify their metadata via some other path than the
986 	 * bdev buffer cache (eg. use a private mapping, or directories in
987 	 * pagecache, etc). Also file data modifications go via their own
988 	 * mappings. So If we try to mount readonly then copy the filesystem
989 	 * from bdev, we could get stale data, so invalidate it to give a best
990 	 * effort at coherency.
991 	 */
992 	if (remount_ro && sb->s_bdev)
993 		invalidate_bdev(sb->s_bdev);
994 	return 0;
995 
996 cancel_readonly:
997 	sb->s_readonly_remount = 0;
998 	return retval;
999 }
1000 
do_emergency_remount_callback(struct super_block * sb)1001 static void do_emergency_remount_callback(struct super_block *sb)
1002 {
1003 	down_write(&sb->s_umount);
1004 	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
1005 	    !sb_rdonly(sb)) {
1006 		struct fs_context *fc;
1007 
1008 		fc = fs_context_for_reconfigure(sb->s_root,
1009 					SB_RDONLY | SB_FORCE, SB_RDONLY);
1010 		if (!IS_ERR(fc)) {
1011 			if (parse_monolithic_mount_data(fc, NULL) == 0)
1012 				(void)reconfigure_super(fc);
1013 			put_fs_context(fc);
1014 		}
1015 	}
1016 	up_write(&sb->s_umount);
1017 }
1018 
do_emergency_remount(struct work_struct * work)1019 static void do_emergency_remount(struct work_struct *work)
1020 {
1021 	__iterate_supers(do_emergency_remount_callback);
1022 	kfree(work);
1023 	printk("Emergency Remount complete\n");
1024 }
1025 
emergency_remount(void)1026 void emergency_remount(void)
1027 {
1028 	struct work_struct *work;
1029 
1030 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1031 	if (work) {
1032 		INIT_WORK(work, do_emergency_remount);
1033 		schedule_work(work);
1034 	}
1035 }
1036 
do_thaw_all_callback(struct super_block * sb)1037 static void do_thaw_all_callback(struct super_block *sb)
1038 {
1039 	down_write(&sb->s_umount);
1040 	if (sb->s_root && sb->s_flags & SB_BORN) {
1041 		emergency_thaw_bdev(sb);
1042 		thaw_super_locked(sb);
1043 	} else {
1044 		up_write(&sb->s_umount);
1045 	}
1046 }
1047 
do_thaw_all(struct work_struct * work)1048 static void do_thaw_all(struct work_struct *work)
1049 {
1050 	__iterate_supers(do_thaw_all_callback);
1051 	kfree(work);
1052 	printk(KERN_WARNING "Emergency Thaw complete\n");
1053 }
1054 
1055 /**
1056  * emergency_thaw_all -- forcibly thaw every frozen filesystem
1057  *
1058  * Used for emergency unfreeze of all filesystems via SysRq
1059  */
emergency_thaw_all(void)1060 void emergency_thaw_all(void)
1061 {
1062 	struct work_struct *work;
1063 
1064 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1065 	if (work) {
1066 		INIT_WORK(work, do_thaw_all);
1067 		schedule_work(work);
1068 	}
1069 }
1070 
1071 static DEFINE_IDA(unnamed_dev_ida);
1072 
1073 /**
1074  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1075  * @p: Pointer to a dev_t.
1076  *
1077  * Filesystems which don't use real block devices can call this function
1078  * to allocate a virtual block device.
1079  *
1080  * Context: Any context.  Frequently called while holding sb_lock.
1081  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1082  * or -ENOMEM if memory allocation failed.
1083  */
get_anon_bdev(dev_t * p)1084 int get_anon_bdev(dev_t *p)
1085 {
1086 	int dev;
1087 
1088 	/*
1089 	 * Many userspace utilities consider an FSID of 0 invalid.
1090 	 * Always return at least 1 from get_anon_bdev.
1091 	 */
1092 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1093 			GFP_ATOMIC);
1094 	if (dev == -ENOSPC)
1095 		dev = -EMFILE;
1096 	if (dev < 0)
1097 		return dev;
1098 
1099 	*p = MKDEV(0, dev);
1100 	return 0;
1101 }
1102 EXPORT_SYMBOL(get_anon_bdev);
1103 
free_anon_bdev(dev_t dev)1104 void free_anon_bdev(dev_t dev)
1105 {
1106 	ida_free(&unnamed_dev_ida, MINOR(dev));
1107 }
1108 EXPORT_SYMBOL(free_anon_bdev);
1109 
set_anon_super(struct super_block * s,void * data)1110 int set_anon_super(struct super_block *s, void *data)
1111 {
1112 	return get_anon_bdev(&s->s_dev);
1113 }
1114 EXPORT_SYMBOL(set_anon_super);
1115 
kill_anon_super(struct super_block * sb)1116 void kill_anon_super(struct super_block *sb)
1117 {
1118 	dev_t dev = sb->s_dev;
1119 	generic_shutdown_super(sb);
1120 	free_anon_bdev(dev);
1121 }
1122 EXPORT_SYMBOL(kill_anon_super);
1123 
kill_litter_super(struct super_block * sb)1124 void kill_litter_super(struct super_block *sb)
1125 {
1126 	if (sb->s_root)
1127 		d_genocide(sb->s_root);
1128 	kill_anon_super(sb);
1129 }
1130 EXPORT_SYMBOL(kill_litter_super);
1131 
set_anon_super_fc(struct super_block * sb,struct fs_context * fc)1132 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1133 {
1134 	return set_anon_super(sb, NULL);
1135 }
1136 EXPORT_SYMBOL(set_anon_super_fc);
1137 
test_keyed_super(struct super_block * sb,struct fs_context * fc)1138 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1139 {
1140 	return sb->s_fs_info == fc->s_fs_info;
1141 }
1142 
test_single_super(struct super_block * s,struct fs_context * fc)1143 static int test_single_super(struct super_block *s, struct fs_context *fc)
1144 {
1145 	return 1;
1146 }
1147 
1148 /**
1149  * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1150  * @fc: The filesystem context holding the parameters
1151  * @keying: How to distinguish superblocks
1152  * @fill_super: Helper to initialise a new superblock
1153  *
1154  * Search for a superblock and create a new one if not found.  The search
1155  * criterion is controlled by @keying.  If the search fails, a new superblock
1156  * is created and @fill_super() is called to initialise it.
1157  *
1158  * @keying can take one of a number of values:
1159  *
1160  * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1161  *     system.  This is typically used for special system filesystems.
1162  *
1163  * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1164  *     distinct keys (where the key is in s_fs_info).  Searching for the same
1165  *     key again will turn up the superblock for that key.
1166  *
1167  * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1168  *     unkeyed.  Each call will get a new superblock.
1169  *
1170  * A permissions check is made by sget_fc() unless we're getting a superblock
1171  * for a kernel-internal mount or a submount.
1172  */
vfs_get_super(struct fs_context * fc,enum vfs_get_super_keying keying,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1173 int vfs_get_super(struct fs_context *fc,
1174 		  enum vfs_get_super_keying keying,
1175 		  int (*fill_super)(struct super_block *sb,
1176 				    struct fs_context *fc))
1177 {
1178 	int (*test)(struct super_block *, struct fs_context *);
1179 	struct super_block *sb;
1180 	int err;
1181 
1182 	switch (keying) {
1183 	case vfs_get_single_super:
1184 	case vfs_get_single_reconf_super:
1185 		test = test_single_super;
1186 		break;
1187 	case vfs_get_keyed_super:
1188 		test = test_keyed_super;
1189 		break;
1190 	case vfs_get_independent_super:
1191 		test = NULL;
1192 		break;
1193 	default:
1194 		BUG();
1195 	}
1196 
1197 	sb = sget_fc(fc, test, set_anon_super_fc);
1198 	if (IS_ERR(sb))
1199 		return PTR_ERR(sb);
1200 
1201 	if (!sb->s_root) {
1202 		err = fill_super(sb, fc);
1203 		if (err)
1204 			goto error;
1205 
1206 		sb->s_flags |= SB_ACTIVE;
1207 		fc->root = dget(sb->s_root);
1208 	} else {
1209 		fc->root = dget(sb->s_root);
1210 		if (keying == vfs_get_single_reconf_super) {
1211 			err = reconfigure_super(fc);
1212 			if (err < 0) {
1213 				dput(fc->root);
1214 				fc->root = NULL;
1215 				goto error;
1216 			}
1217 		}
1218 	}
1219 
1220 	return 0;
1221 
1222 error:
1223 	deactivate_locked_super(sb);
1224 	return err;
1225 }
1226 EXPORT_SYMBOL(vfs_get_super);
1227 
get_tree_nodev(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1228 int get_tree_nodev(struct fs_context *fc,
1229 		  int (*fill_super)(struct super_block *sb,
1230 				    struct fs_context *fc))
1231 {
1232 	return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1233 }
1234 EXPORT_SYMBOL(get_tree_nodev);
1235 
get_tree_single(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1236 int get_tree_single(struct fs_context *fc,
1237 		  int (*fill_super)(struct super_block *sb,
1238 				    struct fs_context *fc))
1239 {
1240 	return vfs_get_super(fc, vfs_get_single_super, fill_super);
1241 }
1242 EXPORT_SYMBOL(get_tree_single);
1243 
get_tree_single_reconf(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1244 int get_tree_single_reconf(struct fs_context *fc,
1245 		  int (*fill_super)(struct super_block *sb,
1246 				    struct fs_context *fc))
1247 {
1248 	return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
1249 }
1250 EXPORT_SYMBOL(get_tree_single_reconf);
1251 
get_tree_keyed(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc),void * key)1252 int get_tree_keyed(struct fs_context *fc,
1253 		  int (*fill_super)(struct super_block *sb,
1254 				    struct fs_context *fc),
1255 		void *key)
1256 {
1257 	fc->s_fs_info = key;
1258 	return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
1259 }
1260 EXPORT_SYMBOL(get_tree_keyed);
1261 
1262 #ifdef CONFIG_BLOCK
1263 
set_bdev_super(struct super_block * s,void * data)1264 static int set_bdev_super(struct super_block *s, void *data)
1265 {
1266 	s->s_bdev = data;
1267 	s->s_dev = s->s_bdev->bd_dev;
1268 	s->s_bdi = bdi_get(s->s_bdev->bd_disk->bdi);
1269 
1270 	if (bdev_stable_writes(s->s_bdev))
1271 		s->s_iflags |= SB_I_STABLE_WRITES;
1272 	return 0;
1273 }
1274 
set_bdev_super_fc(struct super_block * s,struct fs_context * fc)1275 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1276 {
1277 	return set_bdev_super(s, fc->sget_key);
1278 }
1279 
test_bdev_super_fc(struct super_block * s,struct fs_context * fc)1280 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1281 {
1282 	return !(s->s_iflags & SB_I_RETIRED) && s->s_bdev == fc->sget_key;
1283 }
1284 
1285 /**
1286  * get_tree_bdev - Get a superblock based on a single block device
1287  * @fc: The filesystem context holding the parameters
1288  * @fill_super: Helper to initialise a new superblock
1289  */
get_tree_bdev(struct fs_context * fc,int (* fill_super)(struct super_block *,struct fs_context *))1290 int get_tree_bdev(struct fs_context *fc,
1291 		int (*fill_super)(struct super_block *,
1292 				  struct fs_context *))
1293 {
1294 	struct block_device *bdev;
1295 	struct super_block *s;
1296 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1297 	int error = 0;
1298 
1299 	if (!(fc->sb_flags & SB_RDONLY))
1300 		mode |= FMODE_WRITE;
1301 
1302 	if (!fc->source)
1303 		return invalf(fc, "No source specified");
1304 
1305 	bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1306 	if (IS_ERR(bdev)) {
1307 		errorf(fc, "%s: Can't open blockdev", fc->source);
1308 		return PTR_ERR(bdev);
1309 	}
1310 
1311 	/* Once the superblock is inserted into the list by sget_fc(), s_umount
1312 	 * will protect the lockfs code from trying to start a snapshot while
1313 	 * we are mounting
1314 	 */
1315 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1316 	if (bdev->bd_fsfreeze_count > 0) {
1317 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1318 		warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1319 		blkdev_put(bdev, mode);
1320 		return -EBUSY;
1321 	}
1322 
1323 	fc->sb_flags |= SB_NOSEC;
1324 	fc->sget_key = bdev;
1325 	s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1326 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1327 	if (IS_ERR(s)) {
1328 		blkdev_put(bdev, mode);
1329 		return PTR_ERR(s);
1330 	}
1331 
1332 	if (s->s_root) {
1333 		/* Don't summarily change the RO/RW state. */
1334 		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1335 			warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1336 			deactivate_locked_super(s);
1337 			blkdev_put(bdev, mode);
1338 			return -EBUSY;
1339 		}
1340 
1341 		/*
1342 		 * s_umount nests inside open_mutex during
1343 		 * __invalidate_device().  blkdev_put() acquires
1344 		 * open_mutex and can't be called under s_umount.  Drop
1345 		 * s_umount temporarily.  This is safe as we're
1346 		 * holding an active reference.
1347 		 */
1348 		up_write(&s->s_umount);
1349 		blkdev_put(bdev, mode);
1350 		down_write(&s->s_umount);
1351 	} else {
1352 		s->s_mode = mode;
1353 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1354 		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s",
1355 					fc->fs_type->name, s->s_id);
1356 		sb_set_blocksize(s, block_size(bdev));
1357 		error = fill_super(s, fc);
1358 		if (error) {
1359 			deactivate_locked_super(s);
1360 			return error;
1361 		}
1362 
1363 		s->s_flags |= SB_ACTIVE;
1364 		bdev->bd_super = s;
1365 	}
1366 
1367 	BUG_ON(fc->root);
1368 	fc->root = dget(s->s_root);
1369 	return 0;
1370 }
1371 EXPORT_SYMBOL(get_tree_bdev);
1372 
test_bdev_super(struct super_block * s,void * data)1373 static int test_bdev_super(struct super_block *s, void *data)
1374 {
1375 	return !(s->s_iflags & SB_I_RETIRED) && (void *)s->s_bdev == data;
1376 }
1377 
mount_bdev(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,int (* fill_super)(struct super_block *,void *,int))1378 struct dentry *mount_bdev(struct file_system_type *fs_type,
1379 	int flags, const char *dev_name, void *data,
1380 	int (*fill_super)(struct super_block *, void *, int))
1381 {
1382 	struct block_device *bdev;
1383 	struct super_block *s;
1384 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1385 	int error = 0;
1386 
1387 	if (!(flags & SB_RDONLY))
1388 		mode |= FMODE_WRITE;
1389 
1390 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1391 	if (IS_ERR(bdev))
1392 		return ERR_CAST(bdev);
1393 
1394 	/*
1395 	 * once the super is inserted into the list by sget, s_umount
1396 	 * will protect the lockfs code from trying to start a snapshot
1397 	 * while we are mounting
1398 	 */
1399 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1400 	if (bdev->bd_fsfreeze_count > 0) {
1401 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1402 		error = -EBUSY;
1403 		goto error_bdev;
1404 	}
1405 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1406 		 bdev);
1407 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1408 	if (IS_ERR(s))
1409 		goto error_s;
1410 
1411 	if (s->s_root) {
1412 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1413 			deactivate_locked_super(s);
1414 			error = -EBUSY;
1415 			goto error_bdev;
1416 		}
1417 
1418 		/*
1419 		 * s_umount nests inside open_mutex during
1420 		 * __invalidate_device().  blkdev_put() acquires
1421 		 * open_mutex and can't be called under s_umount.  Drop
1422 		 * s_umount temporarily.  This is safe as we're
1423 		 * holding an active reference.
1424 		 */
1425 		up_write(&s->s_umount);
1426 		blkdev_put(bdev, mode);
1427 		down_write(&s->s_umount);
1428 	} else {
1429 		s->s_mode = mode;
1430 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1431 		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s",
1432 					fs_type->name, s->s_id);
1433 		sb_set_blocksize(s, block_size(bdev));
1434 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1435 		if (error) {
1436 			deactivate_locked_super(s);
1437 			goto error;
1438 		}
1439 
1440 		s->s_flags |= SB_ACTIVE;
1441 		bdev->bd_super = s;
1442 	}
1443 
1444 	return dget(s->s_root);
1445 
1446 error_s:
1447 	error = PTR_ERR(s);
1448 error_bdev:
1449 	blkdev_put(bdev, mode);
1450 error:
1451 	return ERR_PTR(error);
1452 }
1453 EXPORT_SYMBOL(mount_bdev);
1454 
kill_block_super(struct super_block * sb)1455 void kill_block_super(struct super_block *sb)
1456 {
1457 	struct block_device *bdev = sb->s_bdev;
1458 	fmode_t mode = sb->s_mode;
1459 
1460 	bdev->bd_super = NULL;
1461 	generic_shutdown_super(sb);
1462 	sync_blockdev(bdev);
1463 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1464 	blkdev_put(bdev, mode | FMODE_EXCL);
1465 }
1466 
1467 EXPORT_SYMBOL(kill_block_super);
1468 #endif
1469 
mount_nodev(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1470 struct dentry *mount_nodev(struct file_system_type *fs_type,
1471 	int flags, void *data,
1472 	int (*fill_super)(struct super_block *, void *, int))
1473 {
1474 	int error;
1475 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1476 
1477 	if (IS_ERR(s))
1478 		return ERR_CAST(s);
1479 
1480 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1481 	if (error) {
1482 		deactivate_locked_super(s);
1483 		return ERR_PTR(error);
1484 	}
1485 	s->s_flags |= SB_ACTIVE;
1486 	return dget(s->s_root);
1487 }
1488 EXPORT_SYMBOL(mount_nodev);
1489 
reconfigure_single(struct super_block * s,int flags,void * data)1490 int reconfigure_single(struct super_block *s,
1491 		       int flags, void *data)
1492 {
1493 	struct fs_context *fc;
1494 	int ret;
1495 
1496 	/* The caller really need to be passing fc down into mount_single(),
1497 	 * then a chunk of this can be removed.  [Bollocks -- AV]
1498 	 * Better yet, reconfiguration shouldn't happen, but rather the second
1499 	 * mount should be rejected if the parameters are not compatible.
1500 	 */
1501 	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1502 	if (IS_ERR(fc))
1503 		return PTR_ERR(fc);
1504 
1505 	ret = parse_monolithic_mount_data(fc, data);
1506 	if (ret < 0)
1507 		goto out;
1508 
1509 	ret = reconfigure_super(fc);
1510 out:
1511 	put_fs_context(fc);
1512 	return ret;
1513 }
1514 
compare_single(struct super_block * s,void * p)1515 static int compare_single(struct super_block *s, void *p)
1516 {
1517 	return 1;
1518 }
1519 
mount_single(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1520 struct dentry *mount_single(struct file_system_type *fs_type,
1521 	int flags, void *data,
1522 	int (*fill_super)(struct super_block *, void *, int))
1523 {
1524 	struct super_block *s;
1525 	int error;
1526 
1527 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1528 	if (IS_ERR(s))
1529 		return ERR_CAST(s);
1530 	if (!s->s_root) {
1531 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1532 		if (!error)
1533 			s->s_flags |= SB_ACTIVE;
1534 	} else {
1535 		error = reconfigure_single(s, flags, data);
1536 	}
1537 	if (unlikely(error)) {
1538 		deactivate_locked_super(s);
1539 		return ERR_PTR(error);
1540 	}
1541 	return dget(s->s_root);
1542 }
1543 EXPORT_SYMBOL(mount_single);
1544 
1545 /**
1546  * vfs_get_tree - Get the mountable root
1547  * @fc: The superblock configuration context.
1548  *
1549  * The filesystem is invoked to get or create a superblock which can then later
1550  * be used for mounting.  The filesystem places a pointer to the root to be
1551  * used for mounting in @fc->root.
1552  */
vfs_get_tree(struct fs_context * fc)1553 int vfs_get_tree(struct fs_context *fc)
1554 {
1555 	struct super_block *sb;
1556 	int error;
1557 
1558 	if (fc->root)
1559 		return -EBUSY;
1560 
1561 	/* Get the mountable root in fc->root, with a ref on the root and a ref
1562 	 * on the superblock.
1563 	 */
1564 	error = fc->ops->get_tree(fc);
1565 	if (error < 0)
1566 		return error;
1567 
1568 	if (!fc->root) {
1569 		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1570 		       fc->fs_type->name);
1571 		/* We don't know what the locking state of the superblock is -
1572 		 * if there is a superblock.
1573 		 */
1574 		BUG();
1575 	}
1576 
1577 	sb = fc->root->d_sb;
1578 	WARN_ON(!sb->s_bdi);
1579 
1580 	/*
1581 	 * Write barrier is for super_cache_count(). We place it before setting
1582 	 * SB_BORN as the data dependency between the two functions is the
1583 	 * superblock structure contents that we just set up, not the SB_BORN
1584 	 * flag.
1585 	 */
1586 	smp_wmb();
1587 	sb->s_flags |= SB_BORN;
1588 
1589 	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1590 	if (unlikely(error)) {
1591 		fc_drop_locked(fc);
1592 		return error;
1593 	}
1594 
1595 	/*
1596 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1597 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1598 	 * this warning for a little while to try and catch filesystems that
1599 	 * violate this rule.
1600 	 */
1601 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1602 		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1603 
1604 	return 0;
1605 }
1606 EXPORT_SYMBOL(vfs_get_tree);
1607 
1608 /*
1609  * Setup private BDI for given superblock. It gets automatically cleaned up
1610  * in generic_shutdown_super().
1611  */
super_setup_bdi_name(struct super_block * sb,char * fmt,...)1612 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1613 {
1614 	struct backing_dev_info *bdi;
1615 	int err;
1616 	va_list args;
1617 
1618 	bdi = bdi_alloc(NUMA_NO_NODE);
1619 	if (!bdi)
1620 		return -ENOMEM;
1621 
1622 	va_start(args, fmt);
1623 	err = bdi_register_va(bdi, fmt, args);
1624 	va_end(args);
1625 	if (err) {
1626 		bdi_put(bdi);
1627 		return err;
1628 	}
1629 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1630 	sb->s_bdi = bdi;
1631 	sb->s_iflags |= SB_I_PERSB_BDI;
1632 
1633 	return 0;
1634 }
1635 EXPORT_SYMBOL(super_setup_bdi_name);
1636 
1637 /*
1638  * Setup private BDI for given superblock. I gets automatically cleaned up
1639  * in generic_shutdown_super().
1640  */
super_setup_bdi(struct super_block * sb)1641 int super_setup_bdi(struct super_block *sb)
1642 {
1643 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1644 
1645 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1646 				    atomic_long_inc_return(&bdi_seq));
1647 }
1648 EXPORT_SYMBOL(super_setup_bdi);
1649 
1650 /**
1651  * sb_wait_write - wait until all writers to given file system finish
1652  * @sb: the super for which we wait
1653  * @level: type of writers we wait for (normal vs page fault)
1654  *
1655  * This function waits until there are no writers of given type to given file
1656  * system.
1657  */
sb_wait_write(struct super_block * sb,int level)1658 static void sb_wait_write(struct super_block *sb, int level)
1659 {
1660 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1661 }
1662 
1663 /*
1664  * We are going to return to userspace and forget about these locks, the
1665  * ownership goes to the caller of thaw_super() which does unlock().
1666  */
lockdep_sb_freeze_release(struct super_block * sb)1667 static void lockdep_sb_freeze_release(struct super_block *sb)
1668 {
1669 	int level;
1670 
1671 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1672 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1673 }
1674 
1675 /*
1676  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1677  */
lockdep_sb_freeze_acquire(struct super_block * sb)1678 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1679 {
1680 	int level;
1681 
1682 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1683 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1684 }
1685 
sb_freeze_unlock(struct super_block * sb,int level)1686 static void sb_freeze_unlock(struct super_block *sb, int level)
1687 {
1688 	for (level--; level >= 0; level--)
1689 		percpu_up_write(sb->s_writers.rw_sem + level);
1690 }
1691 
1692 /**
1693  * freeze_super - lock the filesystem and force it into a consistent state
1694  * @sb: the super to lock
1695  *
1696  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1697  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1698  * -EBUSY.
1699  *
1700  * During this function, sb->s_writers.frozen goes through these values:
1701  *
1702  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1703  *
1704  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1705  * writes should be blocked, though page faults are still allowed. We wait for
1706  * all writes to complete and then proceed to the next stage.
1707  *
1708  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1709  * but internal fs threads can still modify the filesystem (although they
1710  * should not dirty new pages or inodes), writeback can run etc. After waiting
1711  * for all running page faults we sync the filesystem which will clean all
1712  * dirty pages and inodes (no new dirty pages or inodes can be created when
1713  * sync is running).
1714  *
1715  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1716  * modification are blocked (e.g. XFS preallocation truncation on inode
1717  * reclaim). This is usually implemented by blocking new transactions for
1718  * filesystems that have them and need this additional guard. After all
1719  * internal writers are finished we call ->freeze_fs() to finish filesystem
1720  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1721  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1722  *
1723  * sb->s_writers.frozen is protected by sb->s_umount.
1724  */
freeze_super(struct super_block * sb)1725 int freeze_super(struct super_block *sb)
1726 {
1727 	int ret;
1728 
1729 	atomic_inc(&sb->s_active);
1730 	down_write(&sb->s_umount);
1731 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1732 		deactivate_locked_super(sb);
1733 		return -EBUSY;
1734 	}
1735 
1736 	if (!(sb->s_flags & SB_BORN)) {
1737 		up_write(&sb->s_umount);
1738 		return 0;	/* sic - it's "nothing to do" */
1739 	}
1740 
1741 	if (sb_rdonly(sb)) {
1742 		/* Nothing to do really... */
1743 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1744 		up_write(&sb->s_umount);
1745 		return 0;
1746 	}
1747 
1748 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1749 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1750 	up_write(&sb->s_umount);
1751 	sb_wait_write(sb, SB_FREEZE_WRITE);
1752 	down_write(&sb->s_umount);
1753 
1754 	/* Now we go and block page faults... */
1755 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1756 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1757 
1758 	/* All writers are done so after syncing there won't be dirty data */
1759 	ret = sync_filesystem(sb);
1760 	if (ret) {
1761 		sb->s_writers.frozen = SB_UNFROZEN;
1762 		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
1763 		wake_up(&sb->s_writers.wait_unfrozen);
1764 		deactivate_locked_super(sb);
1765 		return ret;
1766 	}
1767 
1768 	/* Now wait for internal filesystem counter */
1769 	sb->s_writers.frozen = SB_FREEZE_FS;
1770 	sb_wait_write(sb, SB_FREEZE_FS);
1771 
1772 	if (sb->s_op->freeze_fs) {
1773 		ret = sb->s_op->freeze_fs(sb);
1774 		if (ret) {
1775 			printk(KERN_ERR
1776 				"VFS:Filesystem freeze failed\n");
1777 			sb->s_writers.frozen = SB_UNFROZEN;
1778 			sb_freeze_unlock(sb, SB_FREEZE_FS);
1779 			wake_up(&sb->s_writers.wait_unfrozen);
1780 			deactivate_locked_super(sb);
1781 			return ret;
1782 		}
1783 	}
1784 	/*
1785 	 * For debugging purposes so that fs can warn if it sees write activity
1786 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1787 	 */
1788 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1789 	lockdep_sb_freeze_release(sb);
1790 	up_write(&sb->s_umount);
1791 	return 0;
1792 }
1793 EXPORT_SYMBOL(freeze_super);
1794 
thaw_super_locked(struct super_block * sb)1795 static int thaw_super_locked(struct super_block *sb)
1796 {
1797 	int error;
1798 
1799 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1800 		up_write(&sb->s_umount);
1801 		return -EINVAL;
1802 	}
1803 
1804 	if (sb_rdonly(sb)) {
1805 		sb->s_writers.frozen = SB_UNFROZEN;
1806 		goto out;
1807 	}
1808 
1809 	lockdep_sb_freeze_acquire(sb);
1810 
1811 	if (sb->s_op->unfreeze_fs) {
1812 		error = sb->s_op->unfreeze_fs(sb);
1813 		if (error) {
1814 			printk(KERN_ERR
1815 				"VFS:Filesystem thaw failed\n");
1816 			lockdep_sb_freeze_release(sb);
1817 			up_write(&sb->s_umount);
1818 			return error;
1819 		}
1820 	}
1821 
1822 	sb->s_writers.frozen = SB_UNFROZEN;
1823 	sb_freeze_unlock(sb, SB_FREEZE_FS);
1824 out:
1825 	wake_up(&sb->s_writers.wait_unfrozen);
1826 	deactivate_locked_super(sb);
1827 	return 0;
1828 }
1829 
1830 /**
1831  * thaw_super -- unlock filesystem
1832  * @sb: the super to thaw
1833  *
1834  * Unlocks the filesystem and marks it writeable again after freeze_super().
1835  */
thaw_super(struct super_block * sb)1836 int thaw_super(struct super_block *sb)
1837 {
1838 	down_write(&sb->s_umount);
1839 	return thaw_super_locked(sb);
1840 }
1841 EXPORT_SYMBOL(thaw_super);
1842