• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ8795 switch driver
4  *
5  * Copyright (C) 2017 Microchip Technology Inc.
6  *	Tristram Ha <Tristram.Ha@microchip.com>
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/export.h>
12 #include <linux/gpio.h>
13 #include <linux/if_vlan.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/platform_data/microchip-ksz.h>
17 #include <linux/phy.h>
18 #include <linux/etherdevice.h>
19 #include <linux/if_bridge.h>
20 #include <linux/micrel_phy.h>
21 #include <net/dsa.h>
22 #include <net/switchdev.h>
23 #include <linux/phylink.h>
24 
25 #include "ksz_common.h"
26 #include "ksz8795_reg.h"
27 #include "ksz8.h"
28 
ksz_cfg(struct ksz_device * dev,u32 addr,u8 bits,bool set)29 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
30 {
31 	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
32 }
33 
ksz_port_cfg(struct ksz_device * dev,int port,int offset,u8 bits,bool set)34 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
35 			 bool set)
36 {
37 	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
38 			   bits, set ? bits : 0);
39 }
40 
ksz8_ind_write8(struct ksz_device * dev,u8 table,u16 addr,u8 data)41 static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
42 {
43 	const u16 *regs;
44 	u16 ctrl_addr;
45 	int ret = 0;
46 
47 	regs = dev->info->regs;
48 
49 	mutex_lock(&dev->alu_mutex);
50 
51 	ctrl_addr = IND_ACC_TABLE(table) | addr;
52 	ret = ksz_write8(dev, regs[REG_IND_BYTE], data);
53 	if (!ret)
54 		ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
55 
56 	mutex_unlock(&dev->alu_mutex);
57 
58 	return ret;
59 }
60 
ksz8_reset_switch(struct ksz_device * dev)61 int ksz8_reset_switch(struct ksz_device *dev)
62 {
63 	if (ksz_is_ksz88x3(dev)) {
64 		/* reset switch */
65 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
66 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
67 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
68 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
69 	} else {
70 		/* reset switch */
71 		ksz_write8(dev, REG_POWER_MANAGEMENT_1,
72 			   SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
73 		ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
74 	}
75 
76 	return 0;
77 }
78 
ksz8795_set_prio_queue(struct ksz_device * dev,int port,int queue)79 static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue)
80 {
81 	u8 hi, lo;
82 
83 	/* Number of queues can only be 1, 2, or 4. */
84 	switch (queue) {
85 	case 4:
86 	case 3:
87 		queue = PORT_QUEUE_SPLIT_4;
88 		break;
89 	case 2:
90 		queue = PORT_QUEUE_SPLIT_2;
91 		break;
92 	default:
93 		queue = PORT_QUEUE_SPLIT_1;
94 	}
95 	ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo);
96 	ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi);
97 	lo &= ~PORT_QUEUE_SPLIT_L;
98 	if (queue & PORT_QUEUE_SPLIT_2)
99 		lo |= PORT_QUEUE_SPLIT_L;
100 	hi &= ~PORT_QUEUE_SPLIT_H;
101 	if (queue & PORT_QUEUE_SPLIT_4)
102 		hi |= PORT_QUEUE_SPLIT_H;
103 	ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo);
104 	ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi);
105 
106 	/* Default is port based for egress rate limit. */
107 	if (queue != PORT_QUEUE_SPLIT_1)
108 		ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED,
109 			true);
110 }
111 
ksz8_r_mib_cnt(struct ksz_device * dev,int port,u16 addr,u64 * cnt)112 void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
113 {
114 	const u32 *masks;
115 	const u16 *regs;
116 	u16 ctrl_addr;
117 	u32 data;
118 	u8 check;
119 	int loop;
120 
121 	masks = dev->info->masks;
122 	regs = dev->info->regs;
123 
124 	ctrl_addr = addr + dev->info->reg_mib_cnt * port;
125 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
126 
127 	mutex_lock(&dev->alu_mutex);
128 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
129 
130 	/* It is almost guaranteed to always read the valid bit because of
131 	 * slow SPI speed.
132 	 */
133 	for (loop = 2; loop > 0; loop--) {
134 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
135 
136 		if (check & masks[MIB_COUNTER_VALID]) {
137 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
138 			if (check & masks[MIB_COUNTER_OVERFLOW])
139 				*cnt += MIB_COUNTER_VALUE + 1;
140 			*cnt += data & MIB_COUNTER_VALUE;
141 			break;
142 		}
143 	}
144 	mutex_unlock(&dev->alu_mutex);
145 }
146 
ksz8795_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)147 static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
148 			      u64 *dropped, u64 *cnt)
149 {
150 	const u32 *masks;
151 	const u16 *regs;
152 	u16 ctrl_addr;
153 	u32 data;
154 	u8 check;
155 	int loop;
156 
157 	masks = dev->info->masks;
158 	regs = dev->info->regs;
159 
160 	addr -= dev->info->reg_mib_cnt;
161 	ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
162 	ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
163 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
164 
165 	mutex_lock(&dev->alu_mutex);
166 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
167 
168 	/* It is almost guaranteed to always read the valid bit because of
169 	 * slow SPI speed.
170 	 */
171 	for (loop = 2; loop > 0; loop--) {
172 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
173 
174 		if (check & masks[MIB_COUNTER_VALID]) {
175 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
176 			if (addr < 2) {
177 				u64 total;
178 
179 				total = check & MIB_TOTAL_BYTES_H;
180 				total <<= 32;
181 				*cnt += total;
182 				*cnt += data;
183 				if (check & masks[MIB_COUNTER_OVERFLOW]) {
184 					total = MIB_TOTAL_BYTES_H + 1;
185 					total <<= 32;
186 					*cnt += total;
187 				}
188 			} else {
189 				if (check & masks[MIB_COUNTER_OVERFLOW])
190 					*cnt += MIB_PACKET_DROPPED + 1;
191 				*cnt += data & MIB_PACKET_DROPPED;
192 			}
193 			break;
194 		}
195 	}
196 	mutex_unlock(&dev->alu_mutex);
197 }
198 
ksz8863_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)199 static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
200 			      u64 *dropped, u64 *cnt)
201 {
202 	u32 *last = (u32 *)dropped;
203 	const u16 *regs;
204 	u16 ctrl_addr;
205 	u32 data;
206 	u32 cur;
207 
208 	regs = dev->info->regs;
209 
210 	addr -= dev->info->reg_mib_cnt;
211 	ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
212 			   KSZ8863_MIB_PACKET_DROPPED_RX_0;
213 	ctrl_addr += port;
214 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
215 
216 	mutex_lock(&dev->alu_mutex);
217 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
218 	ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
219 	mutex_unlock(&dev->alu_mutex);
220 
221 	data &= MIB_PACKET_DROPPED;
222 	cur = last[addr];
223 	if (data != cur) {
224 		last[addr] = data;
225 		if (data < cur)
226 			data += MIB_PACKET_DROPPED + 1;
227 		data -= cur;
228 		*cnt += data;
229 	}
230 }
231 
ksz8_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)232 void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
233 		    u64 *dropped, u64 *cnt)
234 {
235 	if (ksz_is_ksz88x3(dev))
236 		ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
237 	else
238 		ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
239 }
240 
ksz8_freeze_mib(struct ksz_device * dev,int port,bool freeze)241 void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
242 {
243 	if (ksz_is_ksz88x3(dev))
244 		return;
245 
246 	/* enable the port for flush/freeze function */
247 	if (freeze)
248 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
249 	ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
250 
251 	/* disable the port after freeze is done */
252 	if (!freeze)
253 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
254 }
255 
ksz8_port_init_cnt(struct ksz_device * dev,int port)256 void ksz8_port_init_cnt(struct ksz_device *dev, int port)
257 {
258 	struct ksz_port_mib *mib = &dev->ports[port].mib;
259 	u64 *dropped;
260 
261 	if (!ksz_is_ksz88x3(dev)) {
262 		/* flush all enabled port MIB counters */
263 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
264 		ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
265 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
266 	}
267 
268 	mib->cnt_ptr = 0;
269 
270 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
271 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
272 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
273 					&mib->counters[mib->cnt_ptr]);
274 		++mib->cnt_ptr;
275 	}
276 
277 	/* last one in storage */
278 	dropped = &mib->counters[dev->info->mib_cnt];
279 
280 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
281 	while (mib->cnt_ptr < dev->info->mib_cnt) {
282 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
283 					dropped, &mib->counters[mib->cnt_ptr]);
284 		++mib->cnt_ptr;
285 	}
286 }
287 
ksz8_r_table(struct ksz_device * dev,int table,u16 addr,u64 * data)288 static void ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
289 {
290 	const u16 *regs;
291 	u16 ctrl_addr;
292 
293 	regs = dev->info->regs;
294 
295 	ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
296 
297 	mutex_lock(&dev->alu_mutex);
298 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
299 	ksz_read64(dev, regs[REG_IND_DATA_HI], data);
300 	mutex_unlock(&dev->alu_mutex);
301 }
302 
ksz8_w_table(struct ksz_device * dev,int table,u16 addr,u64 data)303 static void ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
304 {
305 	const u16 *regs;
306 	u16 ctrl_addr;
307 
308 	regs = dev->info->regs;
309 
310 	ctrl_addr = IND_ACC_TABLE(table) | addr;
311 
312 	mutex_lock(&dev->alu_mutex);
313 	ksz_write64(dev, regs[REG_IND_DATA_HI], data);
314 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
315 	mutex_unlock(&dev->alu_mutex);
316 }
317 
ksz8_valid_dyn_entry(struct ksz_device * dev,u8 * data)318 static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
319 {
320 	int timeout = 100;
321 	const u32 *masks;
322 	const u16 *regs;
323 
324 	masks = dev->info->masks;
325 	regs = dev->info->regs;
326 
327 	do {
328 		ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
329 		timeout--;
330 	} while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
331 
332 	/* Entry is not ready for accessing. */
333 	if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) {
334 		return -EAGAIN;
335 	/* Entry is ready for accessing. */
336 	} else {
337 		ksz_read8(dev, regs[REG_IND_DATA_8], data);
338 
339 		/* There is no valid entry in the table. */
340 		if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY])
341 			return -ENXIO;
342 	}
343 	return 0;
344 }
345 
ksz8_r_dyn_mac_table(struct ksz_device * dev,u16 addr,u8 * mac_addr,u8 * fid,u8 * src_port,u8 * timestamp,u16 * entries)346 int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr,
347 			 u8 *fid, u8 *src_port, u8 *timestamp, u16 *entries)
348 {
349 	u32 data_hi, data_lo;
350 	const u8 *shifts;
351 	const u32 *masks;
352 	const u16 *regs;
353 	u16 ctrl_addr;
354 	u8 data;
355 	int rc;
356 
357 	shifts = dev->info->shifts;
358 	masks = dev->info->masks;
359 	regs = dev->info->regs;
360 
361 	ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
362 
363 	mutex_lock(&dev->alu_mutex);
364 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
365 
366 	rc = ksz8_valid_dyn_entry(dev, &data);
367 	if (rc == -EAGAIN) {
368 		if (addr == 0)
369 			*entries = 0;
370 	} else if (rc == -ENXIO) {
371 		*entries = 0;
372 	/* At least one valid entry in the table. */
373 	} else {
374 		u64 buf = 0;
375 		int cnt;
376 
377 		ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
378 		data_hi = (u32)(buf >> 32);
379 		data_lo = (u32)buf;
380 
381 		/* Check out how many valid entry in the table. */
382 		cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
383 		cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
384 		cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
385 			shifts[DYNAMIC_MAC_ENTRIES];
386 		*entries = cnt + 1;
387 
388 		*fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
389 			shifts[DYNAMIC_MAC_FID];
390 		*src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
391 			shifts[DYNAMIC_MAC_SRC_PORT];
392 		*timestamp = (data_hi & masks[DYNAMIC_MAC_TABLE_TIMESTAMP]) >>
393 			shifts[DYNAMIC_MAC_TIMESTAMP];
394 
395 		mac_addr[5] = (u8)data_lo;
396 		mac_addr[4] = (u8)(data_lo >> 8);
397 		mac_addr[3] = (u8)(data_lo >> 16);
398 		mac_addr[2] = (u8)(data_lo >> 24);
399 
400 		mac_addr[1] = (u8)data_hi;
401 		mac_addr[0] = (u8)(data_hi >> 8);
402 		rc = 0;
403 	}
404 	mutex_unlock(&dev->alu_mutex);
405 
406 	return rc;
407 }
408 
ksz8_r_sta_mac_table(struct ksz_device * dev,u16 addr,struct alu_struct * alu,bool * valid)409 static int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
410 				struct alu_struct *alu, bool *valid)
411 {
412 	u32 data_hi, data_lo;
413 	const u8 *shifts;
414 	const u32 *masks;
415 	u64 data;
416 
417 	shifts = dev->info->shifts;
418 	masks = dev->info->masks;
419 
420 	ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
421 	data_hi = data >> 32;
422 	data_lo = (u32)data;
423 
424 	if (!(data_hi & (masks[STATIC_MAC_TABLE_VALID] |
425 			 masks[STATIC_MAC_TABLE_OVERRIDE]))) {
426 		*valid = false;
427 		return 0;
428 	}
429 
430 	alu->mac[5] = (u8)data_lo;
431 	alu->mac[4] = (u8)(data_lo >> 8);
432 	alu->mac[3] = (u8)(data_lo >> 16);
433 	alu->mac[2] = (u8)(data_lo >> 24);
434 	alu->mac[1] = (u8)data_hi;
435 	alu->mac[0] = (u8)(data_hi >> 8);
436 	alu->port_forward =
437 		(data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
438 			shifts[STATIC_MAC_FWD_PORTS];
439 	alu->is_override = (data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
440 
441 	/* KSZ8795 family switches have STATIC_MAC_TABLE_USE_FID and
442 	 * STATIC_MAC_TABLE_FID definitions off by 1 when doing read on the
443 	 * static MAC table compared to doing write.
444 	 */
445 	if (ksz_is_ksz87xx(dev))
446 		data_hi >>= 1;
447 	alu->is_static = true;
448 	alu->is_use_fid = (data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
449 	alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
450 		shifts[STATIC_MAC_FID];
451 
452 	*valid = true;
453 
454 	return 0;
455 }
456 
ksz8_w_sta_mac_table(struct ksz_device * dev,u16 addr,struct alu_struct * alu)457 void ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
458 			  struct alu_struct *alu)
459 {
460 	u32 data_hi, data_lo;
461 	const u8 *shifts;
462 	const u32 *masks;
463 	u64 data;
464 
465 	shifts = dev->info->shifts;
466 	masks = dev->info->masks;
467 
468 	data_lo = ((u32)alu->mac[2] << 24) |
469 		((u32)alu->mac[3] << 16) |
470 		((u32)alu->mac[4] << 8) | alu->mac[5];
471 	data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
472 	data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
473 
474 	if (alu->is_override)
475 		data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
476 	if (alu->is_use_fid) {
477 		data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
478 		data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
479 	}
480 	if (alu->is_static)
481 		data_hi |= masks[STATIC_MAC_TABLE_VALID];
482 	else
483 		data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
484 
485 	data = (u64)data_hi << 32 | data_lo;
486 	ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
487 }
488 
ksz8_from_vlan(struct ksz_device * dev,u32 vlan,u8 * fid,u8 * member,u8 * valid)489 static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
490 			   u8 *member, u8 *valid)
491 {
492 	const u8 *shifts;
493 	const u32 *masks;
494 
495 	shifts = dev->info->shifts;
496 	masks = dev->info->masks;
497 
498 	*fid = vlan & masks[VLAN_TABLE_FID];
499 	*member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
500 			shifts[VLAN_TABLE_MEMBERSHIP_S];
501 	*valid = !!(vlan & masks[VLAN_TABLE_VALID]);
502 }
503 
ksz8_to_vlan(struct ksz_device * dev,u8 fid,u8 member,u8 valid,u16 * vlan)504 static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
505 			 u16 *vlan)
506 {
507 	const u8 *shifts;
508 	const u32 *masks;
509 
510 	shifts = dev->info->shifts;
511 	masks = dev->info->masks;
512 
513 	*vlan = fid;
514 	*vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
515 	if (valid)
516 		*vlan |= masks[VLAN_TABLE_VALID];
517 }
518 
ksz8_r_vlan_entries(struct ksz_device * dev,u16 addr)519 static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
520 {
521 	const u8 *shifts;
522 	u64 data;
523 	int i;
524 
525 	shifts = dev->info->shifts;
526 
527 	ksz8_r_table(dev, TABLE_VLAN, addr, &data);
528 	addr *= 4;
529 	for (i = 0; i < 4; i++) {
530 		dev->vlan_cache[addr + i].table[0] = (u16)data;
531 		data >>= shifts[VLAN_TABLE];
532 	}
533 }
534 
ksz8_r_vlan_table(struct ksz_device * dev,u16 vid,u16 * vlan)535 static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
536 {
537 	int index;
538 	u16 *data;
539 	u16 addr;
540 	u64 buf;
541 
542 	data = (u16 *)&buf;
543 	addr = vid / 4;
544 	index = vid & 3;
545 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
546 	*vlan = data[index];
547 }
548 
ksz8_w_vlan_table(struct ksz_device * dev,u16 vid,u16 vlan)549 static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
550 {
551 	int index;
552 	u16 *data;
553 	u16 addr;
554 	u64 buf;
555 
556 	data = (u16 *)&buf;
557 	addr = vid / 4;
558 	index = vid & 3;
559 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
560 	data[index] = vlan;
561 	dev->vlan_cache[vid].table[0] = vlan;
562 	ksz8_w_table(dev, TABLE_VLAN, addr, buf);
563 }
564 
ksz8_r_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 * val)565 int ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
566 {
567 	u8 restart, speed, ctrl, link;
568 	int processed = true;
569 	const u16 *regs;
570 	u8 val1, val2;
571 	u16 data = 0;
572 	u8 p = phy;
573 	int ret;
574 
575 	regs = dev->info->regs;
576 
577 	switch (reg) {
578 	case MII_BMCR:
579 		ret = ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
580 		if (ret)
581 			return ret;
582 
583 		ret = ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
584 		if (ret)
585 			return ret;
586 
587 		ret = ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
588 		if (ret)
589 			return ret;
590 
591 		if (restart & PORT_PHY_LOOPBACK)
592 			data |= BMCR_LOOPBACK;
593 		if (ctrl & PORT_FORCE_100_MBIT)
594 			data |= BMCR_SPEED100;
595 		if (ksz_is_ksz88x3(dev)) {
596 			if ((ctrl & PORT_AUTO_NEG_ENABLE))
597 				data |= BMCR_ANENABLE;
598 		} else {
599 			if (!(ctrl & PORT_AUTO_NEG_DISABLE))
600 				data |= BMCR_ANENABLE;
601 		}
602 		if (restart & PORT_POWER_DOWN)
603 			data |= BMCR_PDOWN;
604 		if (restart & PORT_AUTO_NEG_RESTART)
605 			data |= BMCR_ANRESTART;
606 		if (ctrl & PORT_FORCE_FULL_DUPLEX)
607 			data |= BMCR_FULLDPLX;
608 		if (speed & PORT_HP_MDIX)
609 			data |= KSZ886X_BMCR_HP_MDIX;
610 		if (restart & PORT_FORCE_MDIX)
611 			data |= KSZ886X_BMCR_FORCE_MDI;
612 		if (restart & PORT_AUTO_MDIX_DISABLE)
613 			data |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
614 		if (restart & PORT_TX_DISABLE)
615 			data |= KSZ886X_BMCR_DISABLE_TRANSMIT;
616 		if (restart & PORT_LED_OFF)
617 			data |= KSZ886X_BMCR_DISABLE_LED;
618 		break;
619 	case MII_BMSR:
620 		ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
621 		if (ret)
622 			return ret;
623 
624 		data = BMSR_100FULL |
625 		       BMSR_100HALF |
626 		       BMSR_10FULL |
627 		       BMSR_10HALF |
628 		       BMSR_ANEGCAPABLE;
629 		if (link & PORT_AUTO_NEG_COMPLETE)
630 			data |= BMSR_ANEGCOMPLETE;
631 		if (link & PORT_STAT_LINK_GOOD)
632 			data |= BMSR_LSTATUS;
633 		break;
634 	case MII_PHYSID1:
635 		data = KSZ8795_ID_HI;
636 		break;
637 	case MII_PHYSID2:
638 		if (ksz_is_ksz88x3(dev))
639 			data = KSZ8863_ID_LO;
640 		else
641 			data = KSZ8795_ID_LO;
642 		break;
643 	case MII_ADVERTISE:
644 		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
645 		if (ret)
646 			return ret;
647 
648 		data = ADVERTISE_CSMA;
649 		if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
650 			data |= ADVERTISE_PAUSE_CAP;
651 		if (ctrl & PORT_AUTO_NEG_100BTX_FD)
652 			data |= ADVERTISE_100FULL;
653 		if (ctrl & PORT_AUTO_NEG_100BTX)
654 			data |= ADVERTISE_100HALF;
655 		if (ctrl & PORT_AUTO_NEG_10BT_FD)
656 			data |= ADVERTISE_10FULL;
657 		if (ctrl & PORT_AUTO_NEG_10BT)
658 			data |= ADVERTISE_10HALF;
659 		break;
660 	case MII_LPA:
661 		ret = ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
662 		if (ret)
663 			return ret;
664 
665 		data = LPA_SLCT;
666 		if (link & PORT_REMOTE_SYM_PAUSE)
667 			data |= LPA_PAUSE_CAP;
668 		if (link & PORT_REMOTE_100BTX_FD)
669 			data |= LPA_100FULL;
670 		if (link & PORT_REMOTE_100BTX)
671 			data |= LPA_100HALF;
672 		if (link & PORT_REMOTE_10BT_FD)
673 			data |= LPA_10FULL;
674 		if (link & PORT_REMOTE_10BT)
675 			data |= LPA_10HALF;
676 		if (data & ~LPA_SLCT)
677 			data |= LPA_LPACK;
678 		break;
679 	case PHY_REG_LINK_MD:
680 		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
681 		if (ret)
682 			return ret;
683 
684 		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
685 		if (ret)
686 			return ret;
687 
688 		if (val1 & PORT_START_CABLE_DIAG)
689 			data |= PHY_START_CABLE_DIAG;
690 
691 		if (val1 & PORT_CABLE_10M_SHORT)
692 			data |= PHY_CABLE_10M_SHORT;
693 
694 		data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
695 				FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
696 
697 		data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
698 				(FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
699 				FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
700 		break;
701 	case PHY_REG_PHY_CTRL:
702 		ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
703 		if (ret)
704 			return ret;
705 
706 		if (link & PORT_MDIX_STATUS)
707 			data |= KSZ886X_CTRL_MDIX_STAT;
708 		break;
709 	default:
710 		processed = false;
711 		break;
712 	}
713 	if (processed)
714 		*val = data;
715 
716 	return 0;
717 }
718 
ksz8_w_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 val)719 int ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
720 {
721 	u8 restart, speed, ctrl, data;
722 	const u16 *regs;
723 	u8 p = phy;
724 	int ret;
725 
726 	regs = dev->info->regs;
727 
728 	switch (reg) {
729 	case MII_BMCR:
730 
731 		/* Do not support PHY reset function. */
732 		if (val & BMCR_RESET)
733 			break;
734 		ret = ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
735 		if (ret)
736 			return ret;
737 
738 		data = speed;
739 		if (val & KSZ886X_BMCR_HP_MDIX)
740 			data |= PORT_HP_MDIX;
741 		else
742 			data &= ~PORT_HP_MDIX;
743 
744 		if (data != speed) {
745 			ret = ksz_pwrite8(dev, p, regs[P_SPEED_STATUS], data);
746 			if (ret)
747 				return ret;
748 		}
749 
750 		ret = ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
751 		if (ret)
752 			return ret;
753 
754 		data = ctrl;
755 		if (ksz_is_ksz88x3(dev)) {
756 			if ((val & BMCR_ANENABLE))
757 				data |= PORT_AUTO_NEG_ENABLE;
758 			else
759 				data &= ~PORT_AUTO_NEG_ENABLE;
760 		} else {
761 			if (!(val & BMCR_ANENABLE))
762 				data |= PORT_AUTO_NEG_DISABLE;
763 			else
764 				data &= ~PORT_AUTO_NEG_DISABLE;
765 
766 			/* Fiber port does not support auto-negotiation. */
767 			if (dev->ports[p].fiber)
768 				data |= PORT_AUTO_NEG_DISABLE;
769 		}
770 
771 		if (val & BMCR_SPEED100)
772 			data |= PORT_FORCE_100_MBIT;
773 		else
774 			data &= ~PORT_FORCE_100_MBIT;
775 		if (val & BMCR_FULLDPLX)
776 			data |= PORT_FORCE_FULL_DUPLEX;
777 		else
778 			data &= ~PORT_FORCE_FULL_DUPLEX;
779 
780 		if (data != ctrl) {
781 			ret = ksz_pwrite8(dev, p, regs[P_FORCE_CTRL], data);
782 			if (ret)
783 				return ret;
784 		}
785 
786 		ret = ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
787 		if (ret)
788 			return ret;
789 
790 		data = restart;
791 		if (val & KSZ886X_BMCR_DISABLE_LED)
792 			data |= PORT_LED_OFF;
793 		else
794 			data &= ~PORT_LED_OFF;
795 		if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
796 			data |= PORT_TX_DISABLE;
797 		else
798 			data &= ~PORT_TX_DISABLE;
799 		if (val & BMCR_ANRESTART)
800 			data |= PORT_AUTO_NEG_RESTART;
801 		else
802 			data &= ~(PORT_AUTO_NEG_RESTART);
803 		if (val & BMCR_PDOWN)
804 			data |= PORT_POWER_DOWN;
805 		else
806 			data &= ~PORT_POWER_DOWN;
807 		if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
808 			data |= PORT_AUTO_MDIX_DISABLE;
809 		else
810 			data &= ~PORT_AUTO_MDIX_DISABLE;
811 		if (val & KSZ886X_BMCR_FORCE_MDI)
812 			data |= PORT_FORCE_MDIX;
813 		else
814 			data &= ~PORT_FORCE_MDIX;
815 		if (val & BMCR_LOOPBACK)
816 			data |= PORT_PHY_LOOPBACK;
817 		else
818 			data &= ~PORT_PHY_LOOPBACK;
819 
820 		if (data != restart) {
821 			ret = ksz_pwrite8(dev, p, regs[P_NEG_RESTART_CTRL],
822 					  data);
823 			if (ret)
824 				return ret;
825 		}
826 		break;
827 	case MII_ADVERTISE:
828 		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
829 		if (ret)
830 			return ret;
831 
832 		data = ctrl;
833 		data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
834 			  PORT_AUTO_NEG_100BTX_FD |
835 			  PORT_AUTO_NEG_100BTX |
836 			  PORT_AUTO_NEG_10BT_FD |
837 			  PORT_AUTO_NEG_10BT);
838 		if (val & ADVERTISE_PAUSE_CAP)
839 			data |= PORT_AUTO_NEG_SYM_PAUSE;
840 		if (val & ADVERTISE_100FULL)
841 			data |= PORT_AUTO_NEG_100BTX_FD;
842 		if (val & ADVERTISE_100HALF)
843 			data |= PORT_AUTO_NEG_100BTX;
844 		if (val & ADVERTISE_10FULL)
845 			data |= PORT_AUTO_NEG_10BT_FD;
846 		if (val & ADVERTISE_10HALF)
847 			data |= PORT_AUTO_NEG_10BT;
848 
849 		if (data != ctrl) {
850 			ret = ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
851 			if (ret)
852 				return ret;
853 		}
854 		break;
855 	case PHY_REG_LINK_MD:
856 		if (val & PHY_START_CABLE_DIAG)
857 			ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
858 		break;
859 	default:
860 		break;
861 	}
862 
863 	return 0;
864 }
865 
ksz8_cfg_port_member(struct ksz_device * dev,int port,u8 member)866 void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
867 {
868 	u8 data;
869 
870 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
871 	data &= ~PORT_VLAN_MEMBERSHIP;
872 	data |= (member & dev->port_mask);
873 	ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
874 }
875 
ksz8_flush_dyn_mac_table(struct ksz_device * dev,int port)876 void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
877 {
878 	u8 learn[DSA_MAX_PORTS];
879 	int first, index, cnt;
880 	struct ksz_port *p;
881 	const u16 *regs;
882 
883 	regs = dev->info->regs;
884 
885 	if ((uint)port < dev->info->port_cnt) {
886 		first = port;
887 		cnt = port + 1;
888 	} else {
889 		/* Flush all ports. */
890 		first = 0;
891 		cnt = dev->info->port_cnt;
892 	}
893 	for (index = first; index < cnt; index++) {
894 		p = &dev->ports[index];
895 		if (!p->on)
896 			continue;
897 		ksz_pread8(dev, index, regs[P_STP_CTRL], &learn[index]);
898 		if (!(learn[index] & PORT_LEARN_DISABLE))
899 			ksz_pwrite8(dev, index, regs[P_STP_CTRL],
900 				    learn[index] | PORT_LEARN_DISABLE);
901 	}
902 	ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
903 	for (index = first; index < cnt; index++) {
904 		p = &dev->ports[index];
905 		if (!p->on)
906 			continue;
907 		if (!(learn[index] & PORT_LEARN_DISABLE))
908 			ksz_pwrite8(dev, index, regs[P_STP_CTRL], learn[index]);
909 	}
910 }
911 
ksz8_fdb_dump(struct ksz_device * dev,int port,dsa_fdb_dump_cb_t * cb,void * data)912 int ksz8_fdb_dump(struct ksz_device *dev, int port,
913 		  dsa_fdb_dump_cb_t *cb, void *data)
914 {
915 	int ret = 0;
916 	u16 i = 0;
917 	u16 entries = 0;
918 	u8 timestamp = 0;
919 	u8 fid;
920 	u8 src_port;
921 	u8 mac[ETH_ALEN];
922 
923 	do {
924 		ret = ksz8_r_dyn_mac_table(dev, i, mac, &fid, &src_port,
925 					   &timestamp, &entries);
926 		if (!ret && port == src_port) {
927 			ret = cb(mac, fid, false, data);
928 			if (ret)
929 				break;
930 		}
931 		i++;
932 	} while (i < entries);
933 	if (i >= entries)
934 		ret = 0;
935 
936 	return ret;
937 }
938 
ksz8_add_sta_mac(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid)939 static int ksz8_add_sta_mac(struct ksz_device *dev, int port,
940 			    const unsigned char *addr, u16 vid)
941 {
942 	struct alu_struct alu;
943 	int index, ret;
944 	int empty = 0;
945 
946 	alu.port_forward = 0;
947 	for (index = 0; index < dev->info->num_statics; index++) {
948 		bool valid;
949 
950 		ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
951 		if (ret)
952 			return ret;
953 		if (!valid) {
954 			/* Remember the first empty entry. */
955 			if (!empty)
956 				empty = index + 1;
957 			continue;
958 		}
959 
960 		if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
961 			break;
962 	}
963 
964 	/* no available entry */
965 	if (index == dev->info->num_statics && !empty)
966 		return -ENOSPC;
967 
968 	/* add entry */
969 	if (index == dev->info->num_statics) {
970 		index = empty - 1;
971 		memset(&alu, 0, sizeof(alu));
972 		memcpy(alu.mac, addr, ETH_ALEN);
973 		alu.is_static = true;
974 	}
975 	alu.port_forward |= BIT(port);
976 	if (vid) {
977 		alu.is_use_fid = true;
978 
979 		/* Need a way to map VID to FID. */
980 		alu.fid = vid;
981 	}
982 	ksz8_w_sta_mac_table(dev, index, &alu);
983 
984 	return 0;
985 }
986 
ksz8_del_sta_mac(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid)987 static int ksz8_del_sta_mac(struct ksz_device *dev, int port,
988 			    const unsigned char *addr, u16 vid)
989 {
990 	struct alu_struct alu;
991 	int index, ret;
992 
993 	for (index = 0; index < dev->info->num_statics; index++) {
994 		bool valid;
995 
996 		ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
997 		if (ret)
998 			return ret;
999 		if (!valid)
1000 			continue;
1001 
1002 		if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
1003 			break;
1004 	}
1005 
1006 	/* no available entry */
1007 	if (index == dev->info->num_statics)
1008 		goto exit;
1009 
1010 	/* clear port */
1011 	alu.port_forward &= ~BIT(port);
1012 	if (!alu.port_forward)
1013 		alu.is_static = false;
1014 	ksz8_w_sta_mac_table(dev, index, &alu);
1015 
1016 exit:
1017 	return 0;
1018 }
1019 
ksz8_mdb_add(struct ksz_device * dev,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1020 int ksz8_mdb_add(struct ksz_device *dev, int port,
1021 		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1022 {
1023 	return ksz8_add_sta_mac(dev, port, mdb->addr, mdb->vid);
1024 }
1025 
ksz8_mdb_del(struct ksz_device * dev,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1026 int ksz8_mdb_del(struct ksz_device *dev, int port,
1027 		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1028 {
1029 	return ksz8_del_sta_mac(dev, port, mdb->addr, mdb->vid);
1030 }
1031 
ksz8_port_vlan_filtering(struct ksz_device * dev,int port,bool flag,struct netlink_ext_ack * extack)1032 int ksz8_port_vlan_filtering(struct ksz_device *dev, int port, bool flag,
1033 			     struct netlink_ext_ack *extack)
1034 {
1035 	if (ksz_is_ksz88x3(dev))
1036 		return -ENOTSUPP;
1037 
1038 	/* Discard packets with VID not enabled on the switch */
1039 	ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
1040 
1041 	/* Discard packets with VID not enabled on the ingress port */
1042 	for (port = 0; port < dev->phy_port_cnt; ++port)
1043 		ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
1044 			     flag);
1045 
1046 	return 0;
1047 }
1048 
ksz8_port_enable_pvid(struct ksz_device * dev,int port,bool state)1049 static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
1050 {
1051 	if (ksz_is_ksz88x3(dev)) {
1052 		ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
1053 			0x03 << (4 - 2 * port), state);
1054 	} else {
1055 		ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
1056 	}
1057 }
1058 
ksz8_port_vlan_add(struct ksz_device * dev,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)1059 int ksz8_port_vlan_add(struct ksz_device *dev, int port,
1060 		       const struct switchdev_obj_port_vlan *vlan,
1061 		       struct netlink_ext_ack *extack)
1062 {
1063 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1064 	struct ksz_port *p = &dev->ports[port];
1065 	u16 data, new_pvid = 0;
1066 	u8 fid, member, valid;
1067 
1068 	if (ksz_is_ksz88x3(dev))
1069 		return -ENOTSUPP;
1070 
1071 	/* If a VLAN is added with untagged flag different from the
1072 	 * port's Remove Tag flag, we need to change the latter.
1073 	 * Ignore VID 0, which is always untagged.
1074 	 * Ignore CPU port, which will always be tagged.
1075 	 */
1076 	if (untagged != p->remove_tag && vlan->vid != 0 &&
1077 	    port != dev->cpu_port) {
1078 		unsigned int vid;
1079 
1080 		/* Reject attempts to add a VLAN that requires the
1081 		 * Remove Tag flag to be changed, unless there are no
1082 		 * other VLANs currently configured.
1083 		 */
1084 		for (vid = 1; vid < dev->info->num_vlans; ++vid) {
1085 			/* Skip the VID we are going to add or reconfigure */
1086 			if (vid == vlan->vid)
1087 				continue;
1088 
1089 			ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
1090 				       &fid, &member, &valid);
1091 			if (valid && (member & BIT(port)))
1092 				return -EINVAL;
1093 		}
1094 
1095 		ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1096 		p->remove_tag = untagged;
1097 	}
1098 
1099 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1100 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1101 
1102 	/* First time to setup the VLAN entry. */
1103 	if (!valid) {
1104 		/* Need to find a way to map VID to FID. */
1105 		fid = 1;
1106 		valid = 1;
1107 	}
1108 	member |= BIT(port);
1109 
1110 	ksz8_to_vlan(dev, fid, member, valid, &data);
1111 	ksz8_w_vlan_table(dev, vlan->vid, data);
1112 
1113 	/* change PVID */
1114 	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1115 		new_pvid = vlan->vid;
1116 
1117 	if (new_pvid) {
1118 		u16 vid;
1119 
1120 		ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1121 		vid &= ~VLAN_VID_MASK;
1122 		vid |= new_pvid;
1123 		ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1124 
1125 		ksz8_port_enable_pvid(dev, port, true);
1126 	}
1127 
1128 	return 0;
1129 }
1130 
ksz8_port_vlan_del(struct ksz_device * dev,int port,const struct switchdev_obj_port_vlan * vlan)1131 int ksz8_port_vlan_del(struct ksz_device *dev, int port,
1132 		       const struct switchdev_obj_port_vlan *vlan)
1133 {
1134 	u16 data, pvid;
1135 	u8 fid, member, valid;
1136 
1137 	if (ksz_is_ksz88x3(dev))
1138 		return -ENOTSUPP;
1139 
1140 	ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
1141 	pvid = pvid & 0xFFF;
1142 
1143 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1144 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1145 
1146 	member &= ~BIT(port);
1147 
1148 	/* Invalidate the entry if no more member. */
1149 	if (!member) {
1150 		fid = 0;
1151 		valid = 0;
1152 	}
1153 
1154 	ksz8_to_vlan(dev, fid, member, valid, &data);
1155 	ksz8_w_vlan_table(dev, vlan->vid, data);
1156 
1157 	if (pvid == vlan->vid)
1158 		ksz8_port_enable_pvid(dev, port, false);
1159 
1160 	return 0;
1161 }
1162 
ksz8_port_mirror_add(struct ksz_device * dev,int port,struct dsa_mall_mirror_tc_entry * mirror,bool ingress,struct netlink_ext_ack * extack)1163 int ksz8_port_mirror_add(struct ksz_device *dev, int port,
1164 			 struct dsa_mall_mirror_tc_entry *mirror,
1165 			 bool ingress, struct netlink_ext_ack *extack)
1166 {
1167 	if (ingress) {
1168 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1169 		dev->mirror_rx |= BIT(port);
1170 	} else {
1171 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1172 		dev->mirror_tx |= BIT(port);
1173 	}
1174 
1175 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1176 
1177 	/* configure mirror port */
1178 	if (dev->mirror_rx || dev->mirror_tx)
1179 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1180 			     PORT_MIRROR_SNIFFER, true);
1181 
1182 	return 0;
1183 }
1184 
ksz8_port_mirror_del(struct ksz_device * dev,int port,struct dsa_mall_mirror_tc_entry * mirror)1185 void ksz8_port_mirror_del(struct ksz_device *dev, int port,
1186 			  struct dsa_mall_mirror_tc_entry *mirror)
1187 {
1188 	u8 data;
1189 
1190 	if (mirror->ingress) {
1191 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1192 		dev->mirror_rx &= ~BIT(port);
1193 	} else {
1194 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1195 		dev->mirror_tx &= ~BIT(port);
1196 	}
1197 
1198 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1199 
1200 	if (!dev->mirror_rx && !dev->mirror_tx)
1201 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1202 			     PORT_MIRROR_SNIFFER, false);
1203 }
1204 
ksz8795_cpu_interface_select(struct ksz_device * dev,int port)1205 static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1206 {
1207 	struct ksz_port *p = &dev->ports[port];
1208 
1209 	if (!p->interface && dev->compat_interface) {
1210 		dev_warn(dev->dev,
1211 			 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1212 			 "Please update your device tree.\n",
1213 			 port);
1214 		p->interface = dev->compat_interface;
1215 	}
1216 }
1217 
ksz8_port_setup(struct ksz_device * dev,int port,bool cpu_port)1218 void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1219 {
1220 	struct dsa_switch *ds = dev->ds;
1221 	const u32 *masks;
1222 	u8 member;
1223 
1224 	masks = dev->info->masks;
1225 
1226 	/* enable broadcast storm limit */
1227 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1228 
1229 	if (!ksz_is_ksz88x3(dev))
1230 		ksz8795_set_prio_queue(dev, port, 4);
1231 
1232 	/* disable DiffServ priority */
1233 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false);
1234 
1235 	/* replace priority */
1236 	ksz_port_cfg(dev, port, P_802_1P_CTRL,
1237 		     masks[PORT_802_1P_REMAPPING], false);
1238 
1239 	/* enable 802.1p priority */
1240 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true);
1241 
1242 	if (cpu_port) {
1243 		if (!ksz_is_ksz88x3(dev))
1244 			ksz8795_cpu_interface_select(dev, port);
1245 
1246 		member = dsa_user_ports(ds);
1247 	} else {
1248 		member = BIT(dsa_upstream_port(ds, port));
1249 	}
1250 
1251 	ksz8_cfg_port_member(dev, port, member);
1252 }
1253 
ksz8_config_cpu_port(struct dsa_switch * ds)1254 void ksz8_config_cpu_port(struct dsa_switch *ds)
1255 {
1256 	struct ksz_device *dev = ds->priv;
1257 	struct ksz_port *p;
1258 	const u32 *masks;
1259 	const u16 *regs;
1260 	u8 remote;
1261 	int i;
1262 
1263 	masks = dev->info->masks;
1264 	regs = dev->info->regs;
1265 
1266 	/* Switch marks the maximum frame with extra byte as oversize. */
1267 	ksz_cfg(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, true);
1268 	ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1269 
1270 	p = &dev->ports[dev->cpu_port];
1271 	p->on = 1;
1272 
1273 	ksz8_port_setup(dev, dev->cpu_port, true);
1274 
1275 	for (i = 0; i < dev->phy_port_cnt; i++) {
1276 		p = &dev->ports[i];
1277 
1278 		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1279 
1280 		/* Last port may be disabled. */
1281 		if (i == dev->phy_port_cnt)
1282 			break;
1283 		p->on = 1;
1284 	}
1285 	for (i = 0; i < dev->phy_port_cnt; i++) {
1286 		p = &dev->ports[i];
1287 		if (!p->on)
1288 			continue;
1289 		if (!ksz_is_ksz88x3(dev)) {
1290 			ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1291 			if (remote & KSZ8_PORT_FIBER_MODE)
1292 				p->fiber = 1;
1293 		}
1294 		if (p->fiber)
1295 			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1296 				     PORT_FORCE_FLOW_CTRL, true);
1297 		else
1298 			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1299 				     PORT_FORCE_FLOW_CTRL, false);
1300 	}
1301 }
1302 
ksz8_handle_global_errata(struct dsa_switch * ds)1303 static int ksz8_handle_global_errata(struct dsa_switch *ds)
1304 {
1305 	struct ksz_device *dev = ds->priv;
1306 	int ret = 0;
1307 
1308 	/* KSZ87xx Errata DS80000687C.
1309 	 * Module 2: Link drops with some EEE link partners.
1310 	 *   An issue with the EEE next page exchange between the
1311 	 *   KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
1312 	 *   the link dropping.
1313 	 */
1314 	if (dev->info->ksz87xx_eee_link_erratum)
1315 		ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0);
1316 
1317 	return ret;
1318 }
1319 
ksz8_enable_stp_addr(struct ksz_device * dev)1320 int ksz8_enable_stp_addr(struct ksz_device *dev)
1321 {
1322 	struct alu_struct alu;
1323 
1324 	/* Setup STP address for STP operation. */
1325 	memset(&alu, 0, sizeof(alu));
1326 	ether_addr_copy(alu.mac, eth_stp_addr);
1327 	alu.is_static = true;
1328 	alu.is_override = true;
1329 	alu.port_forward = dev->info->cpu_ports;
1330 
1331 	ksz8_w_sta_mac_table(dev, 0, &alu);
1332 
1333 	return 0;
1334 }
1335 
ksz8_setup(struct dsa_switch * ds)1336 int ksz8_setup(struct dsa_switch *ds)
1337 {
1338 	struct ksz_device *dev = ds->priv;
1339 	int i;
1340 
1341 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_FLOW_CTRL, true);
1342 
1343 	/* Enable automatic fast aging when link changed detected. */
1344 	ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
1345 
1346 	/* Enable aggressive back off algorithm in half duplex mode. */
1347 	regmap_update_bits(dev->regmap[0], REG_SW_CTRL_1,
1348 			   SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1349 
1350 	/*
1351 	 * Make sure unicast VLAN boundary is set as default and
1352 	 * enable no excessive collision drop.
1353 	 */
1354 	regmap_update_bits(dev->regmap[0], REG_SW_CTRL_2,
1355 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1356 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1357 
1358 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
1359 
1360 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1361 
1362 	if (!ksz_is_ksz88x3(dev))
1363 		ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
1364 
1365 	for (i = 0; i < (dev->info->num_vlans / 4); i++)
1366 		ksz8_r_vlan_entries(dev, i);
1367 
1368 	return ksz8_handle_global_errata(ds);
1369 }
1370 
ksz8_get_caps(struct ksz_device * dev,int port,struct phylink_config * config)1371 void ksz8_get_caps(struct ksz_device *dev, int port,
1372 		   struct phylink_config *config)
1373 {
1374 	config->mac_capabilities = MAC_10 | MAC_100;
1375 
1376 	/* Silicon Errata Sheet (DS80000830A):
1377 	 * "Port 1 does not respond to received flow control PAUSE frames"
1378 	 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
1379 	 * switches.
1380 	 */
1381 	if (!ksz_is_ksz88x3(dev) || port)
1382 		config->mac_capabilities |= MAC_SYM_PAUSE;
1383 
1384 	/* Asym pause is not supported on KSZ8863 and KSZ8873 */
1385 	if (!ksz_is_ksz88x3(dev))
1386 		config->mac_capabilities |= MAC_ASYM_PAUSE;
1387 }
1388 
ksz8_get_port_addr(int port,int offset)1389 u32 ksz8_get_port_addr(int port, int offset)
1390 {
1391 	return PORT_CTRL_ADDR(port, offset);
1392 }
1393 
ksz8_switch_init(struct ksz_device * dev)1394 int ksz8_switch_init(struct ksz_device *dev)
1395 {
1396 	dev->cpu_port = fls(dev->info->cpu_ports) - 1;
1397 	dev->phy_port_cnt = dev->info->port_cnt - 1;
1398 	dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports;
1399 
1400 	/* We rely on software untagging on the CPU port, so that we
1401 	 * can support both tagged and untagged VLANs
1402 	 */
1403 	dev->ds->untag_bridge_pvid = true;
1404 
1405 	/* VLAN filtering is partly controlled by the global VLAN
1406 	 * Enable flag
1407 	 */
1408 	dev->ds->vlan_filtering_is_global = true;
1409 
1410 	return 0;
1411 }
1412 
ksz8_switch_exit(struct ksz_device * dev)1413 void ksz8_switch_exit(struct ksz_device *dev)
1414 {
1415 	ksz8_reset_switch(dev);
1416 }
1417 
1418 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
1419 MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
1420 MODULE_LICENSE("GPL");
1421