1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/lockdep.c
4 *
5 * Runtime locking correctness validator
6 *
7 * Started by Ingo Molnar:
8 *
9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11 *
12 * this code maps all the lock dependencies as they occur in a live kernel
13 * and will warn about the following classes of locking bugs:
14 *
15 * - lock inversion scenarios
16 * - circular lock dependencies
17 * - hardirq/softirq safe/unsafe locking bugs
18 *
19 * Bugs are reported even if the current locking scenario does not cause
20 * any deadlock at this point.
21 *
22 * I.e. if anytime in the past two locks were taken in a different order,
23 * even if it happened for another task, even if those were different
24 * locks (but of the same class as this lock), this code will detect it.
25 *
26 * Thanks to Arjan van de Ven for coming up with the initial idea of
27 * mapping lock dependencies runtime.
28 */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58 #include <linux/context_tracking.h>
59
60 #include <asm/sections.h>
61
62 #include "lockdep_internals.h"
63
64 #include <trace/events/lock.h>
65
66 #ifdef CONFIG_PROVE_LOCKING
67 static int prove_locking = 1;
68 module_param(prove_locking, int, 0644);
69 #else
70 #define prove_locking 0
71 #endif
72
73 #ifdef CONFIG_LOCK_STAT
74 static int lock_stat = 1;
75 module_param(lock_stat, int, 0644);
76 #else
77 #define lock_stat 0
78 #endif
79
80 #ifdef CONFIG_SYSCTL
81 static struct ctl_table kern_lockdep_table[] = {
82 #ifdef CONFIG_PROVE_LOCKING
83 {
84 .procname = "prove_locking",
85 .data = &prove_locking,
86 .maxlen = sizeof(int),
87 .mode = 0644,
88 .proc_handler = proc_dointvec,
89 },
90 #endif /* CONFIG_PROVE_LOCKING */
91 #ifdef CONFIG_LOCK_STAT
92 {
93 .procname = "lock_stat",
94 .data = &lock_stat,
95 .maxlen = sizeof(int),
96 .mode = 0644,
97 .proc_handler = proc_dointvec,
98 },
99 #endif /* CONFIG_LOCK_STAT */
100 { }
101 };
102
kernel_lockdep_sysctls_init(void)103 static __init int kernel_lockdep_sysctls_init(void)
104 {
105 register_sysctl_init("kernel", kern_lockdep_table);
106 return 0;
107 }
108 late_initcall(kernel_lockdep_sysctls_init);
109 #endif /* CONFIG_SYSCTL */
110
111 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
112 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
113
lockdep_enabled(void)114 static __always_inline bool lockdep_enabled(void)
115 {
116 if (!debug_locks)
117 return false;
118
119 if (this_cpu_read(lockdep_recursion))
120 return false;
121
122 if (current->lockdep_recursion)
123 return false;
124
125 return true;
126 }
127
128 /*
129 * lockdep_lock: protects the lockdep graph, the hashes and the
130 * class/list/hash allocators.
131 *
132 * This is one of the rare exceptions where it's justified
133 * to use a raw spinlock - we really dont want the spinlock
134 * code to recurse back into the lockdep code...
135 */
136 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
137 static struct task_struct *__owner;
138
lockdep_lock(void)139 static inline void lockdep_lock(void)
140 {
141 DEBUG_LOCKS_WARN_ON(!irqs_disabled());
142
143 __this_cpu_inc(lockdep_recursion);
144 arch_spin_lock(&__lock);
145 __owner = current;
146 }
147
lockdep_unlock(void)148 static inline void lockdep_unlock(void)
149 {
150 DEBUG_LOCKS_WARN_ON(!irqs_disabled());
151
152 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
153 return;
154
155 __owner = NULL;
156 arch_spin_unlock(&__lock);
157 __this_cpu_dec(lockdep_recursion);
158 }
159
lockdep_assert_locked(void)160 static inline bool lockdep_assert_locked(void)
161 {
162 return DEBUG_LOCKS_WARN_ON(__owner != current);
163 }
164
165 static struct task_struct *lockdep_selftest_task_struct;
166
167
graph_lock(void)168 static int graph_lock(void)
169 {
170 lockdep_lock();
171 /*
172 * Make sure that if another CPU detected a bug while
173 * walking the graph we dont change it (while the other
174 * CPU is busy printing out stuff with the graph lock
175 * dropped already)
176 */
177 if (!debug_locks) {
178 lockdep_unlock();
179 return 0;
180 }
181 return 1;
182 }
183
graph_unlock(void)184 static inline void graph_unlock(void)
185 {
186 lockdep_unlock();
187 }
188
189 /*
190 * Turn lock debugging off and return with 0 if it was off already,
191 * and also release the graph lock:
192 */
debug_locks_off_graph_unlock(void)193 static inline int debug_locks_off_graph_unlock(void)
194 {
195 int ret = debug_locks_off();
196
197 lockdep_unlock();
198
199 return ret;
200 }
201
202 unsigned long nr_list_entries;
203 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
204 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
205
206 /*
207 * All data structures here are protected by the global debug_lock.
208 *
209 * nr_lock_classes is the number of elements of lock_classes[] that is
210 * in use.
211 */
212 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1)
213 #define KEYHASH_SIZE (1UL << KEYHASH_BITS)
214 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
215 unsigned long nr_lock_classes;
216 unsigned long nr_zapped_classes;
217 unsigned long max_lock_class_idx;
218 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
219 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
220
hlock_class(struct held_lock * hlock)221 static inline struct lock_class *hlock_class(struct held_lock *hlock)
222 {
223 unsigned int class_idx = hlock->class_idx;
224
225 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
226 barrier();
227
228 if (!test_bit(class_idx, lock_classes_in_use)) {
229 /*
230 * Someone passed in garbage, we give up.
231 */
232 DEBUG_LOCKS_WARN_ON(1);
233 return NULL;
234 }
235
236 /*
237 * At this point, if the passed hlock->class_idx is still garbage,
238 * we just have to live with it
239 */
240 return lock_classes + class_idx;
241 }
242
243 #ifdef CONFIG_LOCK_STAT
244 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
245
lockstat_clock(void)246 static inline u64 lockstat_clock(void)
247 {
248 return local_clock();
249 }
250
lock_point(unsigned long points[],unsigned long ip)251 static int lock_point(unsigned long points[], unsigned long ip)
252 {
253 int i;
254
255 for (i = 0; i < LOCKSTAT_POINTS; i++) {
256 if (points[i] == 0) {
257 points[i] = ip;
258 break;
259 }
260 if (points[i] == ip)
261 break;
262 }
263
264 return i;
265 }
266
lock_time_inc(struct lock_time * lt,u64 time)267 static void lock_time_inc(struct lock_time *lt, u64 time)
268 {
269 if (time > lt->max)
270 lt->max = time;
271
272 if (time < lt->min || !lt->nr)
273 lt->min = time;
274
275 lt->total += time;
276 lt->nr++;
277 }
278
lock_time_add(struct lock_time * src,struct lock_time * dst)279 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
280 {
281 if (!src->nr)
282 return;
283
284 if (src->max > dst->max)
285 dst->max = src->max;
286
287 if (src->min < dst->min || !dst->nr)
288 dst->min = src->min;
289
290 dst->total += src->total;
291 dst->nr += src->nr;
292 }
293
lock_stats(struct lock_class * class)294 struct lock_class_stats lock_stats(struct lock_class *class)
295 {
296 struct lock_class_stats stats;
297 int cpu, i;
298
299 memset(&stats, 0, sizeof(struct lock_class_stats));
300 for_each_possible_cpu(cpu) {
301 struct lock_class_stats *pcs =
302 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
303
304 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
305 stats.contention_point[i] += pcs->contention_point[i];
306
307 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
308 stats.contending_point[i] += pcs->contending_point[i];
309
310 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
311 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
312
313 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
314 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
315
316 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
317 stats.bounces[i] += pcs->bounces[i];
318 }
319
320 return stats;
321 }
322
clear_lock_stats(struct lock_class * class)323 void clear_lock_stats(struct lock_class *class)
324 {
325 int cpu;
326
327 for_each_possible_cpu(cpu) {
328 struct lock_class_stats *cpu_stats =
329 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
330
331 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
332 }
333 memset(class->contention_point, 0, sizeof(class->contention_point));
334 memset(class->contending_point, 0, sizeof(class->contending_point));
335 }
336
get_lock_stats(struct lock_class * class)337 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
338 {
339 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
340 }
341
lock_release_holdtime(struct held_lock * hlock)342 static void lock_release_holdtime(struct held_lock *hlock)
343 {
344 struct lock_class_stats *stats;
345 u64 holdtime;
346
347 if (!lock_stat)
348 return;
349
350 holdtime = lockstat_clock() - hlock->holdtime_stamp;
351
352 stats = get_lock_stats(hlock_class(hlock));
353 if (hlock->read)
354 lock_time_inc(&stats->read_holdtime, holdtime);
355 else
356 lock_time_inc(&stats->write_holdtime, holdtime);
357 }
358 #else
lock_release_holdtime(struct held_lock * hlock)359 static inline void lock_release_holdtime(struct held_lock *hlock)
360 {
361 }
362 #endif
363
364 /*
365 * We keep a global list of all lock classes. The list is only accessed with
366 * the lockdep spinlock lock held. free_lock_classes is a list with free
367 * elements. These elements are linked together by the lock_entry member in
368 * struct lock_class.
369 */
370 static LIST_HEAD(all_lock_classes);
371 static LIST_HEAD(free_lock_classes);
372
373 /**
374 * struct pending_free - information about data structures about to be freed
375 * @zapped: Head of a list with struct lock_class elements.
376 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
377 * are about to be freed.
378 */
379 struct pending_free {
380 struct list_head zapped;
381 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
382 };
383
384 /**
385 * struct delayed_free - data structures used for delayed freeing
386 *
387 * A data structure for delayed freeing of data structures that may be
388 * accessed by RCU readers at the time these were freed.
389 *
390 * @rcu_head: Used to schedule an RCU callback for freeing data structures.
391 * @index: Index of @pf to which freed data structures are added.
392 * @scheduled: Whether or not an RCU callback has been scheduled.
393 * @pf: Array with information about data structures about to be freed.
394 */
395 static struct delayed_free {
396 struct rcu_head rcu_head;
397 int index;
398 int scheduled;
399 struct pending_free pf[2];
400 } delayed_free;
401
402 /*
403 * The lockdep classes are in a hash-table as well, for fast lookup:
404 */
405 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1)
406 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS)
407 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS)
408 #define classhashentry(key) (classhash_table + __classhashfn((key)))
409
410 static struct hlist_head classhash_table[CLASSHASH_SIZE];
411
412 /*
413 * We put the lock dependency chains into a hash-table as well, to cache
414 * their existence:
415 */
416 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1)
417 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS)
418 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS)
419 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain)))
420
421 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
422
423 /*
424 * the id of held_lock
425 */
hlock_id(struct held_lock * hlock)426 static inline u16 hlock_id(struct held_lock *hlock)
427 {
428 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
429
430 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
431 }
432
chain_hlock_class_idx(u16 hlock_id)433 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
434 {
435 return hlock_id & (MAX_LOCKDEP_KEYS - 1);
436 }
437
438 /*
439 * The hash key of the lock dependency chains is a hash itself too:
440 * it's a hash of all locks taken up to that lock, including that lock.
441 * It's a 64-bit hash, because it's important for the keys to be
442 * unique.
443 */
iterate_chain_key(u64 key,u32 idx)444 static inline u64 iterate_chain_key(u64 key, u32 idx)
445 {
446 u32 k0 = key, k1 = key >> 32;
447
448 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
449
450 return k0 | (u64)k1 << 32;
451 }
452
lockdep_init_task(struct task_struct * task)453 void lockdep_init_task(struct task_struct *task)
454 {
455 task->lockdep_depth = 0; /* no locks held yet */
456 task->curr_chain_key = INITIAL_CHAIN_KEY;
457 task->lockdep_recursion = 0;
458 }
459
lockdep_recursion_inc(void)460 static __always_inline void lockdep_recursion_inc(void)
461 {
462 __this_cpu_inc(lockdep_recursion);
463 }
464
lockdep_recursion_finish(void)465 static __always_inline void lockdep_recursion_finish(void)
466 {
467 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
468 __this_cpu_write(lockdep_recursion, 0);
469 }
470
lockdep_set_selftest_task(struct task_struct * task)471 void lockdep_set_selftest_task(struct task_struct *task)
472 {
473 lockdep_selftest_task_struct = task;
474 }
475
476 /*
477 * Debugging switches:
478 */
479
480 #define VERBOSE 0
481 #define VERY_VERBOSE 0
482
483 #if VERBOSE
484 # define HARDIRQ_VERBOSE 1
485 # define SOFTIRQ_VERBOSE 1
486 #else
487 # define HARDIRQ_VERBOSE 0
488 # define SOFTIRQ_VERBOSE 0
489 #endif
490
491 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
492 /*
493 * Quick filtering for interesting events:
494 */
class_filter(struct lock_class * class)495 static int class_filter(struct lock_class *class)
496 {
497 #if 0
498 /* Example */
499 if (class->name_version == 1 &&
500 !strcmp(class->name, "lockname"))
501 return 1;
502 if (class->name_version == 1 &&
503 !strcmp(class->name, "&struct->lockfield"))
504 return 1;
505 #endif
506 /* Filter everything else. 1 would be to allow everything else */
507 return 0;
508 }
509 #endif
510
verbose(struct lock_class * class)511 static int verbose(struct lock_class *class)
512 {
513 #if VERBOSE
514 return class_filter(class);
515 #endif
516 return 0;
517 }
518
print_lockdep_off(const char * bug_msg)519 static void print_lockdep_off(const char *bug_msg)
520 {
521 printk(KERN_DEBUG "%s\n", bug_msg);
522 printk(KERN_DEBUG "turning off the locking correctness validator.\n");
523 #ifdef CONFIG_LOCK_STAT
524 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
525 #endif
526 }
527
528 unsigned long nr_stack_trace_entries;
529
530 #ifdef CONFIG_PROVE_LOCKING
531 /**
532 * struct lock_trace - single stack backtrace
533 * @hash_entry: Entry in a stack_trace_hash[] list.
534 * @hash: jhash() of @entries.
535 * @nr_entries: Number of entries in @entries.
536 * @entries: Actual stack backtrace.
537 */
538 struct lock_trace {
539 struct hlist_node hash_entry;
540 u32 hash;
541 u32 nr_entries;
542 unsigned long entries[] __aligned(sizeof(unsigned long));
543 };
544 #define LOCK_TRACE_SIZE_IN_LONGS \
545 (sizeof(struct lock_trace) / sizeof(unsigned long))
546 /*
547 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
548 */
549 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
550 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
551
traces_identical(struct lock_trace * t1,struct lock_trace * t2)552 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
553 {
554 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
555 memcmp(t1->entries, t2->entries,
556 t1->nr_entries * sizeof(t1->entries[0])) == 0;
557 }
558
save_trace(void)559 static struct lock_trace *save_trace(void)
560 {
561 struct lock_trace *trace, *t2;
562 struct hlist_head *hash_head;
563 u32 hash;
564 int max_entries;
565
566 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
567 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
568
569 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
570 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
571 LOCK_TRACE_SIZE_IN_LONGS;
572
573 if (max_entries <= 0) {
574 if (!debug_locks_off_graph_unlock())
575 return NULL;
576
577 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
578 dump_stack();
579
580 return NULL;
581 }
582 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
583
584 hash = jhash(trace->entries, trace->nr_entries *
585 sizeof(trace->entries[0]), 0);
586 trace->hash = hash;
587 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
588 hlist_for_each_entry(t2, hash_head, hash_entry) {
589 if (traces_identical(trace, t2))
590 return t2;
591 }
592 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
593 hlist_add_head(&trace->hash_entry, hash_head);
594
595 return trace;
596 }
597
598 /* Return the number of stack traces in the stack_trace[] array. */
lockdep_stack_trace_count(void)599 u64 lockdep_stack_trace_count(void)
600 {
601 struct lock_trace *trace;
602 u64 c = 0;
603 int i;
604
605 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
606 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
607 c++;
608 }
609 }
610
611 return c;
612 }
613
614 /* Return the number of stack hash chains that have at least one stack trace. */
lockdep_stack_hash_count(void)615 u64 lockdep_stack_hash_count(void)
616 {
617 u64 c = 0;
618 int i;
619
620 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
621 if (!hlist_empty(&stack_trace_hash[i]))
622 c++;
623
624 return c;
625 }
626 #endif
627
628 unsigned int nr_hardirq_chains;
629 unsigned int nr_softirq_chains;
630 unsigned int nr_process_chains;
631 unsigned int max_lockdep_depth;
632
633 #ifdef CONFIG_DEBUG_LOCKDEP
634 /*
635 * Various lockdep statistics:
636 */
637 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
638 #endif
639
640 #ifdef CONFIG_PROVE_LOCKING
641 /*
642 * Locking printouts:
643 */
644
645 #define __USAGE(__STATE) \
646 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \
647 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \
648 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
649 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
650
651 static const char *usage_str[] =
652 {
653 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
654 #include "lockdep_states.h"
655 #undef LOCKDEP_STATE
656 [LOCK_USED] = "INITIAL USE",
657 [LOCK_USED_READ] = "INITIAL READ USE",
658 /* abused as string storage for verify_lock_unused() */
659 [LOCK_USAGE_STATES] = "IN-NMI",
660 };
661 #endif
662
__get_key_name(const struct lockdep_subclass_key * key,char * str)663 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
664 {
665 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
666 }
667
lock_flag(enum lock_usage_bit bit)668 static inline unsigned long lock_flag(enum lock_usage_bit bit)
669 {
670 return 1UL << bit;
671 }
672
get_usage_char(struct lock_class * class,enum lock_usage_bit bit)673 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
674 {
675 /*
676 * The usage character defaults to '.' (i.e., irqs disabled and not in
677 * irq context), which is the safest usage category.
678 */
679 char c = '.';
680
681 /*
682 * The order of the following usage checks matters, which will
683 * result in the outcome character as follows:
684 *
685 * - '+': irq is enabled and not in irq context
686 * - '-': in irq context and irq is disabled
687 * - '?': in irq context and irq is enabled
688 */
689 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
690 c = '+';
691 if (class->usage_mask & lock_flag(bit))
692 c = '?';
693 } else if (class->usage_mask & lock_flag(bit))
694 c = '-';
695
696 return c;
697 }
698
get_usage_chars(struct lock_class * class,char usage[LOCK_USAGE_CHARS])699 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
700 {
701 int i = 0;
702
703 #define LOCKDEP_STATE(__STATE) \
704 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \
705 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
706 #include "lockdep_states.h"
707 #undef LOCKDEP_STATE
708
709 usage[i] = '\0';
710 }
711
__print_lock_name(struct lock_class * class)712 static void __print_lock_name(struct lock_class *class)
713 {
714 char str[KSYM_NAME_LEN];
715 const char *name;
716
717 name = class->name;
718 if (!name) {
719 name = __get_key_name(class->key, str);
720 printk(KERN_CONT "%s", name);
721 } else {
722 printk(KERN_CONT "%s", name);
723 if (class->name_version > 1)
724 printk(KERN_CONT "#%d", class->name_version);
725 if (class->subclass)
726 printk(KERN_CONT "/%d", class->subclass);
727 }
728 }
729
print_lock_name(struct lock_class * class)730 static void print_lock_name(struct lock_class *class)
731 {
732 char usage[LOCK_USAGE_CHARS];
733
734 get_usage_chars(class, usage);
735
736 printk(KERN_CONT " (");
737 __print_lock_name(class);
738 printk(KERN_CONT "){%s}-{%d:%d}", usage,
739 class->wait_type_outer ?: class->wait_type_inner,
740 class->wait_type_inner);
741 }
742
print_lockdep_cache(struct lockdep_map * lock)743 static void print_lockdep_cache(struct lockdep_map *lock)
744 {
745 const char *name;
746 char str[KSYM_NAME_LEN];
747
748 name = lock->name;
749 if (!name)
750 name = __get_key_name(lock->key->subkeys, str);
751
752 printk(KERN_CONT "%s", name);
753 }
754
print_lock(struct held_lock * hlock)755 static void print_lock(struct held_lock *hlock)
756 {
757 /*
758 * We can be called locklessly through debug_show_all_locks() so be
759 * extra careful, the hlock might have been released and cleared.
760 *
761 * If this indeed happens, lets pretend it does not hurt to continue
762 * to print the lock unless the hlock class_idx does not point to a
763 * registered class. The rationale here is: since we don't attempt
764 * to distinguish whether we are in this situation, if it just
765 * happened we can't count on class_idx to tell either.
766 */
767 struct lock_class *lock = hlock_class(hlock);
768
769 if (!lock) {
770 printk(KERN_CONT "<RELEASED>\n");
771 return;
772 }
773
774 printk(KERN_CONT "%px", hlock->instance);
775 print_lock_name(lock);
776 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
777 }
778
lockdep_print_held_locks(struct task_struct * p)779 static void lockdep_print_held_locks(struct task_struct *p)
780 {
781 int i, depth = READ_ONCE(p->lockdep_depth);
782
783 if (!depth)
784 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
785 else
786 printk("%d lock%s held by %s/%d:\n", depth,
787 depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
788 /*
789 * It's not reliable to print a task's held locks if it's not sleeping
790 * and it's not the current task.
791 */
792 if (p != current && task_is_running(p))
793 return;
794 for (i = 0; i < depth; i++) {
795 printk(" #%d: ", i);
796 print_lock(p->held_locks + i);
797 }
798 }
799
print_kernel_ident(void)800 static void print_kernel_ident(void)
801 {
802 printk("%s %.*s %s\n", init_utsname()->release,
803 (int)strcspn(init_utsname()->version, " "),
804 init_utsname()->version,
805 print_tainted());
806 }
807
very_verbose(struct lock_class * class)808 static int very_verbose(struct lock_class *class)
809 {
810 #if VERY_VERBOSE
811 return class_filter(class);
812 #endif
813 return 0;
814 }
815
816 /*
817 * Is this the address of a static object:
818 */
819 #ifdef __KERNEL__
static_obj(const void * obj)820 static int static_obj(const void *obj)
821 {
822 unsigned long addr = (unsigned long) obj;
823
824 if (is_kernel_core_data(addr))
825 return 1;
826
827 /*
828 * keys are allowed in the __ro_after_init section.
829 */
830 if (is_kernel_rodata(addr))
831 return 1;
832
833 /*
834 * in initdata section and used during bootup only?
835 * NOTE: On some platforms the initdata section is
836 * outside of the _stext ... _end range.
837 */
838 if (system_state < SYSTEM_FREEING_INITMEM &&
839 init_section_contains((void *)addr, 1))
840 return 1;
841
842 /*
843 * in-kernel percpu var?
844 */
845 if (is_kernel_percpu_address(addr))
846 return 1;
847
848 /*
849 * module static or percpu var?
850 */
851 return is_module_address(addr) || is_module_percpu_address(addr);
852 }
853 #endif
854
855 /*
856 * To make lock name printouts unique, we calculate a unique
857 * class->name_version generation counter. The caller must hold the graph
858 * lock.
859 */
count_matching_names(struct lock_class * new_class)860 static int count_matching_names(struct lock_class *new_class)
861 {
862 struct lock_class *class;
863 int count = 0;
864
865 if (!new_class->name)
866 return 0;
867
868 list_for_each_entry(class, &all_lock_classes, lock_entry) {
869 if (new_class->key - new_class->subclass == class->key)
870 return class->name_version;
871 if (class->name && !strcmp(class->name, new_class->name))
872 count = max(count, class->name_version);
873 }
874
875 return count + 1;
876 }
877
878 /* used from NMI context -- must be lockless */
879 static noinstr struct lock_class *
look_up_lock_class(const struct lockdep_map * lock,unsigned int subclass)880 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
881 {
882 struct lockdep_subclass_key *key;
883 struct hlist_head *hash_head;
884 struct lock_class *class;
885
886 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
887 instrumentation_begin();
888 debug_locks_off();
889 printk(KERN_ERR
890 "BUG: looking up invalid subclass: %u\n", subclass);
891 printk(KERN_ERR
892 "turning off the locking correctness validator.\n");
893 dump_stack();
894 instrumentation_end();
895 return NULL;
896 }
897
898 /*
899 * If it is not initialised then it has never been locked,
900 * so it won't be present in the hash table.
901 */
902 if (unlikely(!lock->key))
903 return NULL;
904
905 /*
906 * NOTE: the class-key must be unique. For dynamic locks, a static
907 * lock_class_key variable is passed in through the mutex_init()
908 * (or spin_lock_init()) call - which acts as the key. For static
909 * locks we use the lock object itself as the key.
910 */
911 BUILD_BUG_ON(sizeof(struct lock_class_key) >
912 sizeof(struct lockdep_map));
913
914 key = lock->key->subkeys + subclass;
915
916 hash_head = classhashentry(key);
917
918 /*
919 * We do an RCU walk of the hash, see lockdep_free_key_range().
920 */
921 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
922 return NULL;
923
924 hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
925 if (class->key == key) {
926 /*
927 * Huh! same key, different name? Did someone trample
928 * on some memory? We're most confused.
929 */
930 WARN_ONCE(class->name != lock->name &&
931 lock->key != &__lockdep_no_validate__,
932 "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n",
933 lock->name, lock->key, class->name);
934 return class;
935 }
936 }
937
938 return NULL;
939 }
940
941 /*
942 * Static locks do not have their class-keys yet - for them the key is
943 * the lock object itself. If the lock is in the per cpu area, the
944 * canonical address of the lock (per cpu offset removed) is used.
945 */
assign_lock_key(struct lockdep_map * lock)946 static bool assign_lock_key(struct lockdep_map *lock)
947 {
948 unsigned long can_addr, addr = (unsigned long)lock;
949
950 #ifdef __KERNEL__
951 /*
952 * lockdep_free_key_range() assumes that struct lock_class_key
953 * objects do not overlap. Since we use the address of lock
954 * objects as class key for static objects, check whether the
955 * size of lock_class_key objects does not exceed the size of
956 * the smallest lock object.
957 */
958 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
959 #endif
960
961 if (__is_kernel_percpu_address(addr, &can_addr))
962 lock->key = (void *)can_addr;
963 else if (__is_module_percpu_address(addr, &can_addr))
964 lock->key = (void *)can_addr;
965 else if (static_obj(lock))
966 lock->key = (void *)lock;
967 else {
968 /* Debug-check: all keys must be persistent! */
969 debug_locks_off();
970 pr_err("INFO: trying to register non-static key.\n");
971 pr_err("The code is fine but needs lockdep annotation, or maybe\n");
972 pr_err("you didn't initialize this object before use?\n");
973 pr_err("turning off the locking correctness validator.\n");
974 dump_stack();
975 return false;
976 }
977
978 return true;
979 }
980
981 #ifdef CONFIG_DEBUG_LOCKDEP
982
983 /* Check whether element @e occurs in list @h */
in_list(struct list_head * e,struct list_head * h)984 static bool in_list(struct list_head *e, struct list_head *h)
985 {
986 struct list_head *f;
987
988 list_for_each(f, h) {
989 if (e == f)
990 return true;
991 }
992
993 return false;
994 }
995
996 /*
997 * Check whether entry @e occurs in any of the locks_after or locks_before
998 * lists.
999 */
in_any_class_list(struct list_head * e)1000 static bool in_any_class_list(struct list_head *e)
1001 {
1002 struct lock_class *class;
1003 int i;
1004
1005 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1006 class = &lock_classes[i];
1007 if (in_list(e, &class->locks_after) ||
1008 in_list(e, &class->locks_before))
1009 return true;
1010 }
1011 return false;
1012 }
1013
class_lock_list_valid(struct lock_class * c,struct list_head * h)1014 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
1015 {
1016 struct lock_list *e;
1017
1018 list_for_each_entry(e, h, entry) {
1019 if (e->links_to != c) {
1020 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
1021 c->name ? : "(?)",
1022 (unsigned long)(e - list_entries),
1023 e->links_to && e->links_to->name ?
1024 e->links_to->name : "(?)",
1025 e->class && e->class->name ? e->class->name :
1026 "(?)");
1027 return false;
1028 }
1029 }
1030 return true;
1031 }
1032
1033 #ifdef CONFIG_PROVE_LOCKING
1034 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1035 #endif
1036
check_lock_chain_key(struct lock_chain * chain)1037 static bool check_lock_chain_key(struct lock_chain *chain)
1038 {
1039 #ifdef CONFIG_PROVE_LOCKING
1040 u64 chain_key = INITIAL_CHAIN_KEY;
1041 int i;
1042
1043 for (i = chain->base; i < chain->base + chain->depth; i++)
1044 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1045 /*
1046 * The 'unsigned long long' casts avoid that a compiler warning
1047 * is reported when building tools/lib/lockdep.
1048 */
1049 if (chain->chain_key != chain_key) {
1050 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1051 (unsigned long long)(chain - lock_chains),
1052 (unsigned long long)chain->chain_key,
1053 (unsigned long long)chain_key);
1054 return false;
1055 }
1056 #endif
1057 return true;
1058 }
1059
in_any_zapped_class_list(struct lock_class * class)1060 static bool in_any_zapped_class_list(struct lock_class *class)
1061 {
1062 struct pending_free *pf;
1063 int i;
1064
1065 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1066 if (in_list(&class->lock_entry, &pf->zapped))
1067 return true;
1068 }
1069
1070 return false;
1071 }
1072
__check_data_structures(void)1073 static bool __check_data_structures(void)
1074 {
1075 struct lock_class *class;
1076 struct lock_chain *chain;
1077 struct hlist_head *head;
1078 struct lock_list *e;
1079 int i;
1080
1081 /* Check whether all classes occur in a lock list. */
1082 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1083 class = &lock_classes[i];
1084 if (!in_list(&class->lock_entry, &all_lock_classes) &&
1085 !in_list(&class->lock_entry, &free_lock_classes) &&
1086 !in_any_zapped_class_list(class)) {
1087 printk(KERN_INFO "class %px/%s is not in any class list\n",
1088 class, class->name ? : "(?)");
1089 return false;
1090 }
1091 }
1092
1093 /* Check whether all classes have valid lock lists. */
1094 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1095 class = &lock_classes[i];
1096 if (!class_lock_list_valid(class, &class->locks_before))
1097 return false;
1098 if (!class_lock_list_valid(class, &class->locks_after))
1099 return false;
1100 }
1101
1102 /* Check the chain_key of all lock chains. */
1103 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1104 head = chainhash_table + i;
1105 hlist_for_each_entry_rcu(chain, head, entry) {
1106 if (!check_lock_chain_key(chain))
1107 return false;
1108 }
1109 }
1110
1111 /*
1112 * Check whether all list entries that are in use occur in a class
1113 * lock list.
1114 */
1115 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1116 e = list_entries + i;
1117 if (!in_any_class_list(&e->entry)) {
1118 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1119 (unsigned int)(e - list_entries),
1120 e->class->name ? : "(?)",
1121 e->links_to->name ? : "(?)");
1122 return false;
1123 }
1124 }
1125
1126 /*
1127 * Check whether all list entries that are not in use do not occur in
1128 * a class lock list.
1129 */
1130 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1131 e = list_entries + i;
1132 if (in_any_class_list(&e->entry)) {
1133 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1134 (unsigned int)(e - list_entries),
1135 e->class && e->class->name ? e->class->name :
1136 "(?)",
1137 e->links_to && e->links_to->name ?
1138 e->links_to->name : "(?)");
1139 return false;
1140 }
1141 }
1142
1143 return true;
1144 }
1145
1146 int check_consistency = 0;
1147 module_param(check_consistency, int, 0644);
1148
check_data_structures(void)1149 static void check_data_structures(void)
1150 {
1151 static bool once = false;
1152
1153 if (check_consistency && !once) {
1154 if (!__check_data_structures()) {
1155 once = true;
1156 WARN_ON(once);
1157 }
1158 }
1159 }
1160
1161 #else /* CONFIG_DEBUG_LOCKDEP */
1162
check_data_structures(void)1163 static inline void check_data_structures(void) { }
1164
1165 #endif /* CONFIG_DEBUG_LOCKDEP */
1166
1167 static void init_chain_block_buckets(void);
1168
1169 /*
1170 * Initialize the lock_classes[] array elements, the free_lock_classes list
1171 * and also the delayed_free structure.
1172 */
init_data_structures_once(void)1173 static void init_data_structures_once(void)
1174 {
1175 static bool __read_mostly ds_initialized, rcu_head_initialized;
1176 int i;
1177
1178 if (likely(rcu_head_initialized))
1179 return;
1180
1181 if (system_state >= SYSTEM_SCHEDULING) {
1182 init_rcu_head(&delayed_free.rcu_head);
1183 rcu_head_initialized = true;
1184 }
1185
1186 if (ds_initialized)
1187 return;
1188
1189 ds_initialized = true;
1190
1191 INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1192 INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1193
1194 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1195 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1196 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1197 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1198 }
1199 init_chain_block_buckets();
1200 }
1201
keyhashentry(const struct lock_class_key * key)1202 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1203 {
1204 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1205
1206 return lock_keys_hash + hash;
1207 }
1208
1209 /* Register a dynamically allocated key. */
lockdep_register_key(struct lock_class_key * key)1210 void lockdep_register_key(struct lock_class_key *key)
1211 {
1212 struct hlist_head *hash_head;
1213 struct lock_class_key *k;
1214 unsigned long flags;
1215
1216 if (WARN_ON_ONCE(static_obj(key)))
1217 return;
1218 hash_head = keyhashentry(key);
1219
1220 raw_local_irq_save(flags);
1221 if (!graph_lock())
1222 goto restore_irqs;
1223 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1224 if (WARN_ON_ONCE(k == key))
1225 goto out_unlock;
1226 }
1227 hlist_add_head_rcu(&key->hash_entry, hash_head);
1228 out_unlock:
1229 graph_unlock();
1230 restore_irqs:
1231 raw_local_irq_restore(flags);
1232 }
1233 EXPORT_SYMBOL_GPL(lockdep_register_key);
1234
1235 /* Check whether a key has been registered as a dynamic key. */
is_dynamic_key(const struct lock_class_key * key)1236 static bool is_dynamic_key(const struct lock_class_key *key)
1237 {
1238 struct hlist_head *hash_head;
1239 struct lock_class_key *k;
1240 bool found = false;
1241
1242 if (WARN_ON_ONCE(static_obj(key)))
1243 return false;
1244
1245 /*
1246 * If lock debugging is disabled lock_keys_hash[] may contain
1247 * pointers to memory that has already been freed. Avoid triggering
1248 * a use-after-free in that case by returning early.
1249 */
1250 if (!debug_locks)
1251 return true;
1252
1253 hash_head = keyhashentry(key);
1254
1255 rcu_read_lock();
1256 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1257 if (k == key) {
1258 found = true;
1259 break;
1260 }
1261 }
1262 rcu_read_unlock();
1263
1264 return found;
1265 }
1266
1267 /*
1268 * Register a lock's class in the hash-table, if the class is not present
1269 * yet. Otherwise we look it up. We cache the result in the lock object
1270 * itself, so actual lookup of the hash should be once per lock object.
1271 */
1272 static struct lock_class *
register_lock_class(struct lockdep_map * lock,unsigned int subclass,int force)1273 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1274 {
1275 struct lockdep_subclass_key *key;
1276 struct hlist_head *hash_head;
1277 struct lock_class *class;
1278 int idx;
1279
1280 DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1281
1282 class = look_up_lock_class(lock, subclass);
1283 if (likely(class))
1284 goto out_set_class_cache;
1285
1286 if (!lock->key) {
1287 if (!assign_lock_key(lock))
1288 return NULL;
1289 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1290 return NULL;
1291 }
1292
1293 key = lock->key->subkeys + subclass;
1294 hash_head = classhashentry(key);
1295
1296 if (!graph_lock()) {
1297 return NULL;
1298 }
1299 /*
1300 * We have to do the hash-walk again, to avoid races
1301 * with another CPU:
1302 */
1303 hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1304 if (class->key == key)
1305 goto out_unlock_set;
1306 }
1307
1308 init_data_structures_once();
1309
1310 /* Allocate a new lock class and add it to the hash. */
1311 class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1312 lock_entry);
1313 if (!class) {
1314 if (!debug_locks_off_graph_unlock()) {
1315 return NULL;
1316 }
1317
1318 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1319 dump_stack();
1320 return NULL;
1321 }
1322 nr_lock_classes++;
1323 __set_bit(class - lock_classes, lock_classes_in_use);
1324 debug_atomic_inc(nr_unused_locks);
1325 class->key = key;
1326 class->name = lock->name;
1327 class->subclass = subclass;
1328 WARN_ON_ONCE(!list_empty(&class->locks_before));
1329 WARN_ON_ONCE(!list_empty(&class->locks_after));
1330 class->name_version = count_matching_names(class);
1331 class->wait_type_inner = lock->wait_type_inner;
1332 class->wait_type_outer = lock->wait_type_outer;
1333 class->lock_type = lock->lock_type;
1334 /*
1335 * We use RCU's safe list-add method to make
1336 * parallel walking of the hash-list safe:
1337 */
1338 hlist_add_head_rcu(&class->hash_entry, hash_head);
1339 /*
1340 * Remove the class from the free list and add it to the global list
1341 * of classes.
1342 */
1343 list_move_tail(&class->lock_entry, &all_lock_classes);
1344 idx = class - lock_classes;
1345 if (idx > max_lock_class_idx)
1346 max_lock_class_idx = idx;
1347
1348 if (verbose(class)) {
1349 graph_unlock();
1350
1351 printk("\nnew class %px: %s", class->key, class->name);
1352 if (class->name_version > 1)
1353 printk(KERN_CONT "#%d", class->name_version);
1354 printk(KERN_CONT "\n");
1355 dump_stack();
1356
1357 if (!graph_lock()) {
1358 return NULL;
1359 }
1360 }
1361 out_unlock_set:
1362 graph_unlock();
1363
1364 out_set_class_cache:
1365 if (!subclass || force)
1366 lock->class_cache[0] = class;
1367 else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1368 lock->class_cache[subclass] = class;
1369
1370 /*
1371 * Hash collision, did we smoke some? We found a class with a matching
1372 * hash but the subclass -- which is hashed in -- didn't match.
1373 */
1374 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1375 return NULL;
1376
1377 return class;
1378 }
1379
1380 #ifdef CONFIG_PROVE_LOCKING
1381 /*
1382 * Allocate a lockdep entry. (assumes the graph_lock held, returns
1383 * with NULL on failure)
1384 */
alloc_list_entry(void)1385 static struct lock_list *alloc_list_entry(void)
1386 {
1387 int idx = find_first_zero_bit(list_entries_in_use,
1388 ARRAY_SIZE(list_entries));
1389
1390 if (idx >= ARRAY_SIZE(list_entries)) {
1391 if (!debug_locks_off_graph_unlock())
1392 return NULL;
1393
1394 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1395 dump_stack();
1396 return NULL;
1397 }
1398 nr_list_entries++;
1399 __set_bit(idx, list_entries_in_use);
1400 return list_entries + idx;
1401 }
1402
1403 /*
1404 * Add a new dependency to the head of the list:
1405 */
add_lock_to_list(struct lock_class * this,struct lock_class * links_to,struct list_head * head,u16 distance,u8 dep,const struct lock_trace * trace)1406 static int add_lock_to_list(struct lock_class *this,
1407 struct lock_class *links_to, struct list_head *head,
1408 u16 distance, u8 dep,
1409 const struct lock_trace *trace)
1410 {
1411 struct lock_list *entry;
1412 /*
1413 * Lock not present yet - get a new dependency struct and
1414 * add it to the list:
1415 */
1416 entry = alloc_list_entry();
1417 if (!entry)
1418 return 0;
1419
1420 entry->class = this;
1421 entry->links_to = links_to;
1422 entry->dep = dep;
1423 entry->distance = distance;
1424 entry->trace = trace;
1425 /*
1426 * Both allocation and removal are done under the graph lock; but
1427 * iteration is under RCU-sched; see look_up_lock_class() and
1428 * lockdep_free_key_range().
1429 */
1430 list_add_tail_rcu(&entry->entry, head);
1431
1432 return 1;
1433 }
1434
1435 /*
1436 * For good efficiency of modular, we use power of 2
1437 */
1438 #define MAX_CIRCULAR_QUEUE_SIZE (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1439 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1)
1440
1441 /*
1442 * The circular_queue and helpers are used to implement graph
1443 * breadth-first search (BFS) algorithm, by which we can determine
1444 * whether there is a path from a lock to another. In deadlock checks,
1445 * a path from the next lock to be acquired to a previous held lock
1446 * indicates that adding the <prev> -> <next> lock dependency will
1447 * produce a circle in the graph. Breadth-first search instead of
1448 * depth-first search is used in order to find the shortest (circular)
1449 * path.
1450 */
1451 struct circular_queue {
1452 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1453 unsigned int front, rear;
1454 };
1455
1456 static struct circular_queue lock_cq;
1457
1458 unsigned int max_bfs_queue_depth;
1459
1460 static unsigned int lockdep_dependency_gen_id;
1461
__cq_init(struct circular_queue * cq)1462 static inline void __cq_init(struct circular_queue *cq)
1463 {
1464 cq->front = cq->rear = 0;
1465 lockdep_dependency_gen_id++;
1466 }
1467
__cq_empty(struct circular_queue * cq)1468 static inline int __cq_empty(struct circular_queue *cq)
1469 {
1470 return (cq->front == cq->rear);
1471 }
1472
__cq_full(struct circular_queue * cq)1473 static inline int __cq_full(struct circular_queue *cq)
1474 {
1475 return ((cq->rear + 1) & CQ_MASK) == cq->front;
1476 }
1477
__cq_enqueue(struct circular_queue * cq,struct lock_list * elem)1478 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1479 {
1480 if (__cq_full(cq))
1481 return -1;
1482
1483 cq->element[cq->rear] = elem;
1484 cq->rear = (cq->rear + 1) & CQ_MASK;
1485 return 0;
1486 }
1487
1488 /*
1489 * Dequeue an element from the circular_queue, return a lock_list if
1490 * the queue is not empty, or NULL if otherwise.
1491 */
__cq_dequeue(struct circular_queue * cq)1492 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1493 {
1494 struct lock_list * lock;
1495
1496 if (__cq_empty(cq))
1497 return NULL;
1498
1499 lock = cq->element[cq->front];
1500 cq->front = (cq->front + 1) & CQ_MASK;
1501
1502 return lock;
1503 }
1504
__cq_get_elem_count(struct circular_queue * cq)1505 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq)
1506 {
1507 return (cq->rear - cq->front) & CQ_MASK;
1508 }
1509
mark_lock_accessed(struct lock_list * lock)1510 static inline void mark_lock_accessed(struct lock_list *lock)
1511 {
1512 lock->class->dep_gen_id = lockdep_dependency_gen_id;
1513 }
1514
visit_lock_entry(struct lock_list * lock,struct lock_list * parent)1515 static inline void visit_lock_entry(struct lock_list *lock,
1516 struct lock_list *parent)
1517 {
1518 lock->parent = parent;
1519 }
1520
lock_accessed(struct lock_list * lock)1521 static inline unsigned long lock_accessed(struct lock_list *lock)
1522 {
1523 return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1524 }
1525
get_lock_parent(struct lock_list * child)1526 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1527 {
1528 return child->parent;
1529 }
1530
get_lock_depth(struct lock_list * child)1531 static inline int get_lock_depth(struct lock_list *child)
1532 {
1533 int depth = 0;
1534 struct lock_list *parent;
1535
1536 while ((parent = get_lock_parent(child))) {
1537 child = parent;
1538 depth++;
1539 }
1540 return depth;
1541 }
1542
1543 /*
1544 * Return the forward or backward dependency list.
1545 *
1546 * @lock: the lock_list to get its class's dependency list
1547 * @offset: the offset to struct lock_class to determine whether it is
1548 * locks_after or locks_before
1549 */
get_dep_list(struct lock_list * lock,int offset)1550 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1551 {
1552 void *lock_class = lock->class;
1553
1554 return lock_class + offset;
1555 }
1556 /*
1557 * Return values of a bfs search:
1558 *
1559 * BFS_E* indicates an error
1560 * BFS_R* indicates a result (match or not)
1561 *
1562 * BFS_EINVALIDNODE: Find a invalid node in the graph.
1563 *
1564 * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1565 *
1566 * BFS_RMATCH: Find the matched node in the graph, and put that node into
1567 * *@target_entry.
1568 *
1569 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1570 * _unchanged_.
1571 */
1572 enum bfs_result {
1573 BFS_EINVALIDNODE = -2,
1574 BFS_EQUEUEFULL = -1,
1575 BFS_RMATCH = 0,
1576 BFS_RNOMATCH = 1,
1577 };
1578
1579 /*
1580 * bfs_result < 0 means error
1581 */
bfs_error(enum bfs_result res)1582 static inline bool bfs_error(enum bfs_result res)
1583 {
1584 return res < 0;
1585 }
1586
1587 /*
1588 * DEP_*_BIT in lock_list::dep
1589 *
1590 * For dependency @prev -> @next:
1591 *
1592 * SR: @prev is shared reader (->read != 0) and @next is recursive reader
1593 * (->read == 2)
1594 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1595 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1596 * EN: @prev is exclusive locker and @next is non-recursive locker
1597 *
1598 * Note that we define the value of DEP_*_BITs so that:
1599 * bit0 is prev->read == 0
1600 * bit1 is next->read != 2
1601 */
1602 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1603 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1604 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1605 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1606
1607 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1608 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1609 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1610 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1611
1612 static inline unsigned int
__calc_dep_bit(struct held_lock * prev,struct held_lock * next)1613 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1614 {
1615 return (prev->read == 0) + ((next->read != 2) << 1);
1616 }
1617
calc_dep(struct held_lock * prev,struct held_lock * next)1618 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1619 {
1620 return 1U << __calc_dep_bit(prev, next);
1621 }
1622
1623 /*
1624 * calculate the dep_bit for backwards edges. We care about whether @prev is
1625 * shared and whether @next is recursive.
1626 */
1627 static inline unsigned int
__calc_dep_bitb(struct held_lock * prev,struct held_lock * next)1628 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1629 {
1630 return (next->read != 2) + ((prev->read == 0) << 1);
1631 }
1632
calc_depb(struct held_lock * prev,struct held_lock * next)1633 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1634 {
1635 return 1U << __calc_dep_bitb(prev, next);
1636 }
1637
1638 /*
1639 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1640 * search.
1641 */
__bfs_init_root(struct lock_list * lock,struct lock_class * class)1642 static inline void __bfs_init_root(struct lock_list *lock,
1643 struct lock_class *class)
1644 {
1645 lock->class = class;
1646 lock->parent = NULL;
1647 lock->only_xr = 0;
1648 }
1649
1650 /*
1651 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1652 * root for a BFS search.
1653 *
1654 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1655 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1656 * and -(S*)->.
1657 */
bfs_init_root(struct lock_list * lock,struct held_lock * hlock)1658 static inline void bfs_init_root(struct lock_list *lock,
1659 struct held_lock *hlock)
1660 {
1661 __bfs_init_root(lock, hlock_class(hlock));
1662 lock->only_xr = (hlock->read == 2);
1663 }
1664
1665 /*
1666 * Similar to bfs_init_root() but initialize the root for backwards BFS.
1667 *
1668 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1669 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1670 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1671 */
bfs_init_rootb(struct lock_list * lock,struct held_lock * hlock)1672 static inline void bfs_init_rootb(struct lock_list *lock,
1673 struct held_lock *hlock)
1674 {
1675 __bfs_init_root(lock, hlock_class(hlock));
1676 lock->only_xr = (hlock->read != 0);
1677 }
1678
__bfs_next(struct lock_list * lock,int offset)1679 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1680 {
1681 if (!lock || !lock->parent)
1682 return NULL;
1683
1684 return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1685 &lock->entry, struct lock_list, entry);
1686 }
1687
1688 /*
1689 * Breadth-First Search to find a strong path in the dependency graph.
1690 *
1691 * @source_entry: the source of the path we are searching for.
1692 * @data: data used for the second parameter of @match function
1693 * @match: match function for the search
1694 * @target_entry: pointer to the target of a matched path
1695 * @offset: the offset to struct lock_class to determine whether it is
1696 * locks_after or locks_before
1697 *
1698 * We may have multiple edges (considering different kinds of dependencies,
1699 * e.g. ER and SN) between two nodes in the dependency graph. But
1700 * only the strong dependency path in the graph is relevant to deadlocks. A
1701 * strong dependency path is a dependency path that doesn't have two adjacent
1702 * dependencies as -(*R)-> -(S*)->, please see:
1703 *
1704 * Documentation/locking/lockdep-design.rst
1705 *
1706 * for more explanation of the definition of strong dependency paths
1707 *
1708 * In __bfs(), we only traverse in the strong dependency path:
1709 *
1710 * In lock_list::only_xr, we record whether the previous dependency only
1711 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1712 * filter out any -(S*)-> in the current dependency and after that, the
1713 * ->only_xr is set according to whether we only have -(*R)-> left.
1714 */
__bfs(struct lock_list * source_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry,int offset)1715 static enum bfs_result __bfs(struct lock_list *source_entry,
1716 void *data,
1717 bool (*match)(struct lock_list *entry, void *data),
1718 bool (*skip)(struct lock_list *entry, void *data),
1719 struct lock_list **target_entry,
1720 int offset)
1721 {
1722 struct circular_queue *cq = &lock_cq;
1723 struct lock_list *lock = NULL;
1724 struct lock_list *entry;
1725 struct list_head *head;
1726 unsigned int cq_depth;
1727 bool first;
1728
1729 lockdep_assert_locked();
1730
1731 __cq_init(cq);
1732 __cq_enqueue(cq, source_entry);
1733
1734 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1735 if (!lock->class)
1736 return BFS_EINVALIDNODE;
1737
1738 /*
1739 * Step 1: check whether we already finish on this one.
1740 *
1741 * If we have visited all the dependencies from this @lock to
1742 * others (iow, if we have visited all lock_list entries in
1743 * @lock->class->locks_{after,before}) we skip, otherwise go
1744 * and visit all the dependencies in the list and mark this
1745 * list accessed.
1746 */
1747 if (lock_accessed(lock))
1748 continue;
1749 else
1750 mark_lock_accessed(lock);
1751
1752 /*
1753 * Step 2: check whether prev dependency and this form a strong
1754 * dependency path.
1755 */
1756 if (lock->parent) { /* Parent exists, check prev dependency */
1757 u8 dep = lock->dep;
1758 bool prev_only_xr = lock->parent->only_xr;
1759
1760 /*
1761 * Mask out all -(S*)-> if we only have *R in previous
1762 * step, because -(*R)-> -(S*)-> don't make up a strong
1763 * dependency.
1764 */
1765 if (prev_only_xr)
1766 dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1767
1768 /* If nothing left, we skip */
1769 if (!dep)
1770 continue;
1771
1772 /* If there are only -(*R)-> left, set that for the next step */
1773 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1774 }
1775
1776 /*
1777 * Step 3: we haven't visited this and there is a strong
1778 * dependency path to this, so check with @match.
1779 * If @skip is provide and returns true, we skip this
1780 * lock (and any path this lock is in).
1781 */
1782 if (skip && skip(lock, data))
1783 continue;
1784
1785 if (match(lock, data)) {
1786 *target_entry = lock;
1787 return BFS_RMATCH;
1788 }
1789
1790 /*
1791 * Step 4: if not match, expand the path by adding the
1792 * forward or backwards dependencies in the search
1793 *
1794 */
1795 first = true;
1796 head = get_dep_list(lock, offset);
1797 list_for_each_entry_rcu(entry, head, entry) {
1798 visit_lock_entry(entry, lock);
1799
1800 /*
1801 * Note we only enqueue the first of the list into the
1802 * queue, because we can always find a sibling
1803 * dependency from one (see __bfs_next()), as a result
1804 * the space of queue is saved.
1805 */
1806 if (!first)
1807 continue;
1808
1809 first = false;
1810
1811 if (__cq_enqueue(cq, entry))
1812 return BFS_EQUEUEFULL;
1813
1814 cq_depth = __cq_get_elem_count(cq);
1815 if (max_bfs_queue_depth < cq_depth)
1816 max_bfs_queue_depth = cq_depth;
1817 }
1818 }
1819
1820 return BFS_RNOMATCH;
1821 }
1822
1823 static inline enum bfs_result
__bfs_forwards(struct lock_list * src_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1824 __bfs_forwards(struct lock_list *src_entry,
1825 void *data,
1826 bool (*match)(struct lock_list *entry, void *data),
1827 bool (*skip)(struct lock_list *entry, void *data),
1828 struct lock_list **target_entry)
1829 {
1830 return __bfs(src_entry, data, match, skip, target_entry,
1831 offsetof(struct lock_class, locks_after));
1832
1833 }
1834
1835 static inline enum bfs_result
__bfs_backwards(struct lock_list * src_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1836 __bfs_backwards(struct lock_list *src_entry,
1837 void *data,
1838 bool (*match)(struct lock_list *entry, void *data),
1839 bool (*skip)(struct lock_list *entry, void *data),
1840 struct lock_list **target_entry)
1841 {
1842 return __bfs(src_entry, data, match, skip, target_entry,
1843 offsetof(struct lock_class, locks_before));
1844
1845 }
1846
print_lock_trace(const struct lock_trace * trace,unsigned int spaces)1847 static void print_lock_trace(const struct lock_trace *trace,
1848 unsigned int spaces)
1849 {
1850 stack_trace_print(trace->entries, trace->nr_entries, spaces);
1851 }
1852
1853 /*
1854 * Print a dependency chain entry (this is only done when a deadlock
1855 * has been detected):
1856 */
1857 static noinline void
print_circular_bug_entry(struct lock_list * target,int depth)1858 print_circular_bug_entry(struct lock_list *target, int depth)
1859 {
1860 if (debug_locks_silent)
1861 return;
1862 printk("\n-> #%u", depth);
1863 print_lock_name(target->class);
1864 printk(KERN_CONT ":\n");
1865 print_lock_trace(target->trace, 6);
1866 }
1867
1868 static void
print_circular_lock_scenario(struct held_lock * src,struct held_lock * tgt,struct lock_list * prt)1869 print_circular_lock_scenario(struct held_lock *src,
1870 struct held_lock *tgt,
1871 struct lock_list *prt)
1872 {
1873 struct lock_class *source = hlock_class(src);
1874 struct lock_class *target = hlock_class(tgt);
1875 struct lock_class *parent = prt->class;
1876
1877 /*
1878 * A direct locking problem where unsafe_class lock is taken
1879 * directly by safe_class lock, then all we need to show
1880 * is the deadlock scenario, as it is obvious that the
1881 * unsafe lock is taken under the safe lock.
1882 *
1883 * But if there is a chain instead, where the safe lock takes
1884 * an intermediate lock (middle_class) where this lock is
1885 * not the same as the safe lock, then the lock chain is
1886 * used to describe the problem. Otherwise we would need
1887 * to show a different CPU case for each link in the chain
1888 * from the safe_class lock to the unsafe_class lock.
1889 */
1890 if (parent != source) {
1891 printk("Chain exists of:\n ");
1892 __print_lock_name(source);
1893 printk(KERN_CONT " --> ");
1894 __print_lock_name(parent);
1895 printk(KERN_CONT " --> ");
1896 __print_lock_name(target);
1897 printk(KERN_CONT "\n\n");
1898 }
1899
1900 printk(" Possible unsafe locking scenario:\n\n");
1901 printk(" CPU0 CPU1\n");
1902 printk(" ---- ----\n");
1903 printk(" lock(");
1904 __print_lock_name(target);
1905 printk(KERN_CONT ");\n");
1906 printk(" lock(");
1907 __print_lock_name(parent);
1908 printk(KERN_CONT ");\n");
1909 printk(" lock(");
1910 __print_lock_name(target);
1911 printk(KERN_CONT ");\n");
1912 printk(" lock(");
1913 __print_lock_name(source);
1914 printk(KERN_CONT ");\n");
1915 printk("\n *** DEADLOCK ***\n\n");
1916 }
1917
1918 /*
1919 * When a circular dependency is detected, print the
1920 * header first:
1921 */
1922 static noinline void
print_circular_bug_header(struct lock_list * entry,unsigned int depth,struct held_lock * check_src,struct held_lock * check_tgt)1923 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1924 struct held_lock *check_src,
1925 struct held_lock *check_tgt)
1926 {
1927 struct task_struct *curr = current;
1928
1929 if (debug_locks_silent)
1930 return;
1931
1932 pr_warn("\n");
1933 pr_warn("======================================================\n");
1934 pr_warn("WARNING: possible circular locking dependency detected\n");
1935 print_kernel_ident();
1936 pr_warn("------------------------------------------------------\n");
1937 pr_warn("%s/%d is trying to acquire lock:\n",
1938 curr->comm, task_pid_nr(curr));
1939 print_lock(check_src);
1940
1941 pr_warn("\nbut task is already holding lock:\n");
1942
1943 print_lock(check_tgt);
1944 pr_warn("\nwhich lock already depends on the new lock.\n\n");
1945 pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1946
1947 print_circular_bug_entry(entry, depth);
1948 }
1949
1950 /*
1951 * We are about to add A -> B into the dependency graph, and in __bfs() a
1952 * strong dependency path A -> .. -> B is found: hlock_class equals
1953 * entry->class.
1954 *
1955 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1956 * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1957 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1958 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1959 * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1960 * having dependency A -> B, we could already get a equivalent path ..-> A ->
1961 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1962 *
1963 * We need to make sure both the start and the end of A -> .. -> B is not
1964 * weaker than A -> B. For the start part, please see the comment in
1965 * check_redundant(). For the end part, we need:
1966 *
1967 * Either
1968 *
1969 * a) A -> B is -(*R)-> (everything is not weaker than that)
1970 *
1971 * or
1972 *
1973 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1974 *
1975 */
hlock_equal(struct lock_list * entry,void * data)1976 static inline bool hlock_equal(struct lock_list *entry, void *data)
1977 {
1978 struct held_lock *hlock = (struct held_lock *)data;
1979
1980 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1981 (hlock->read == 2 || /* A -> B is -(*R)-> */
1982 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1983 }
1984
1985 /*
1986 * We are about to add B -> A into the dependency graph, and in __bfs() a
1987 * strong dependency path A -> .. -> B is found: hlock_class equals
1988 * entry->class.
1989 *
1990 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1991 * dependency cycle, that means:
1992 *
1993 * Either
1994 *
1995 * a) B -> A is -(E*)->
1996 *
1997 * or
1998 *
1999 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
2000 *
2001 * as then we don't have -(*R)-> -(S*)-> in the cycle.
2002 */
hlock_conflict(struct lock_list * entry,void * data)2003 static inline bool hlock_conflict(struct lock_list *entry, void *data)
2004 {
2005 struct held_lock *hlock = (struct held_lock *)data;
2006
2007 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2008 (hlock->read == 0 || /* B -> A is -(E*)-> */
2009 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
2010 }
2011
print_circular_bug(struct lock_list * this,struct lock_list * target,struct held_lock * check_src,struct held_lock * check_tgt)2012 static noinline void print_circular_bug(struct lock_list *this,
2013 struct lock_list *target,
2014 struct held_lock *check_src,
2015 struct held_lock *check_tgt)
2016 {
2017 struct task_struct *curr = current;
2018 struct lock_list *parent;
2019 struct lock_list *first_parent;
2020 int depth;
2021
2022 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2023 return;
2024
2025 this->trace = save_trace();
2026 if (!this->trace)
2027 return;
2028
2029 depth = get_lock_depth(target);
2030
2031 print_circular_bug_header(target, depth, check_src, check_tgt);
2032
2033 parent = get_lock_parent(target);
2034 first_parent = parent;
2035
2036 while (parent) {
2037 print_circular_bug_entry(parent, --depth);
2038 parent = get_lock_parent(parent);
2039 }
2040
2041 printk("\nother info that might help us debug this:\n\n");
2042 print_circular_lock_scenario(check_src, check_tgt,
2043 first_parent);
2044
2045 lockdep_print_held_locks(curr);
2046
2047 printk("\nstack backtrace:\n");
2048 dump_stack();
2049 }
2050
print_bfs_bug(int ret)2051 static noinline void print_bfs_bug(int ret)
2052 {
2053 if (!debug_locks_off_graph_unlock())
2054 return;
2055
2056 /*
2057 * Breadth-first-search failed, graph got corrupted?
2058 */
2059 WARN(1, "lockdep bfs error:%d\n", ret);
2060 }
2061
noop_count(struct lock_list * entry,void * data)2062 static bool noop_count(struct lock_list *entry, void *data)
2063 {
2064 (*(unsigned long *)data)++;
2065 return false;
2066 }
2067
__lockdep_count_forward_deps(struct lock_list * this)2068 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2069 {
2070 unsigned long count = 0;
2071 struct lock_list *target_entry;
2072
2073 __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2074
2075 return count;
2076 }
lockdep_count_forward_deps(struct lock_class * class)2077 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2078 {
2079 unsigned long ret, flags;
2080 struct lock_list this;
2081
2082 __bfs_init_root(&this, class);
2083
2084 raw_local_irq_save(flags);
2085 lockdep_lock();
2086 ret = __lockdep_count_forward_deps(&this);
2087 lockdep_unlock();
2088 raw_local_irq_restore(flags);
2089
2090 return ret;
2091 }
2092
__lockdep_count_backward_deps(struct lock_list * this)2093 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2094 {
2095 unsigned long count = 0;
2096 struct lock_list *target_entry;
2097
2098 __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2099
2100 return count;
2101 }
2102
lockdep_count_backward_deps(struct lock_class * class)2103 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2104 {
2105 unsigned long ret, flags;
2106 struct lock_list this;
2107
2108 __bfs_init_root(&this, class);
2109
2110 raw_local_irq_save(flags);
2111 lockdep_lock();
2112 ret = __lockdep_count_backward_deps(&this);
2113 lockdep_unlock();
2114 raw_local_irq_restore(flags);
2115
2116 return ret;
2117 }
2118
2119 /*
2120 * Check that the dependency graph starting at <src> can lead to
2121 * <target> or not.
2122 */
2123 static noinline enum bfs_result
check_path(struct held_lock * target,struct lock_list * src_entry,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)2124 check_path(struct held_lock *target, struct lock_list *src_entry,
2125 bool (*match)(struct lock_list *entry, void *data),
2126 bool (*skip)(struct lock_list *entry, void *data),
2127 struct lock_list **target_entry)
2128 {
2129 enum bfs_result ret;
2130
2131 ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2132
2133 if (unlikely(bfs_error(ret)))
2134 print_bfs_bug(ret);
2135
2136 return ret;
2137 }
2138
2139 /*
2140 * Prove that the dependency graph starting at <src> can not
2141 * lead to <target>. If it can, there is a circle when adding
2142 * <target> -> <src> dependency.
2143 *
2144 * Print an error and return BFS_RMATCH if it does.
2145 */
2146 static noinline enum bfs_result
check_noncircular(struct held_lock * src,struct held_lock * target,struct lock_trace ** const trace)2147 check_noncircular(struct held_lock *src, struct held_lock *target,
2148 struct lock_trace **const trace)
2149 {
2150 enum bfs_result ret;
2151 struct lock_list *target_entry;
2152 struct lock_list src_entry;
2153
2154 bfs_init_root(&src_entry, src);
2155
2156 debug_atomic_inc(nr_cyclic_checks);
2157
2158 ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2159
2160 if (unlikely(ret == BFS_RMATCH)) {
2161 if (!*trace) {
2162 /*
2163 * If save_trace fails here, the printing might
2164 * trigger a WARN but because of the !nr_entries it
2165 * should not do bad things.
2166 */
2167 *trace = save_trace();
2168 }
2169
2170 print_circular_bug(&src_entry, target_entry, src, target);
2171 }
2172
2173 return ret;
2174 }
2175
2176 #ifdef CONFIG_TRACE_IRQFLAGS
2177
2178 /*
2179 * Forwards and backwards subgraph searching, for the purposes of
2180 * proving that two subgraphs can be connected by a new dependency
2181 * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2182 *
2183 * A irq safe->unsafe deadlock happens with the following conditions:
2184 *
2185 * 1) We have a strong dependency path A -> ... -> B
2186 *
2187 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2188 * irq can create a new dependency B -> A (consider the case that a holder
2189 * of B gets interrupted by an irq whose handler will try to acquire A).
2190 *
2191 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2192 * strong circle:
2193 *
2194 * For the usage bits of B:
2195 * a) if A -> B is -(*N)->, then B -> A could be any type, so any
2196 * ENABLED_IRQ usage suffices.
2197 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2198 * ENABLED_IRQ_*_READ usage suffices.
2199 *
2200 * For the usage bits of A:
2201 * c) if A -> B is -(E*)->, then B -> A could be any type, so any
2202 * USED_IN_IRQ usage suffices.
2203 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2204 * USED_IN_IRQ_*_READ usage suffices.
2205 */
2206
2207 /*
2208 * There is a strong dependency path in the dependency graph: A -> B, and now
2209 * we need to decide which usage bit of A should be accumulated to detect
2210 * safe->unsafe bugs.
2211 *
2212 * Note that usage_accumulate() is used in backwards search, so ->only_xr
2213 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2214 *
2215 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2216 * path, any usage of A should be considered. Otherwise, we should only
2217 * consider _READ usage.
2218 */
usage_accumulate(struct lock_list * entry,void * mask)2219 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2220 {
2221 if (!entry->only_xr)
2222 *(unsigned long *)mask |= entry->class->usage_mask;
2223 else /* Mask out _READ usage bits */
2224 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2225
2226 return false;
2227 }
2228
2229 /*
2230 * There is a strong dependency path in the dependency graph: A -> B, and now
2231 * we need to decide which usage bit of B conflicts with the usage bits of A,
2232 * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2233 *
2234 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2235 * path, any usage of B should be considered. Otherwise, we should only
2236 * consider _READ usage.
2237 */
usage_match(struct lock_list * entry,void * mask)2238 static inline bool usage_match(struct lock_list *entry, void *mask)
2239 {
2240 if (!entry->only_xr)
2241 return !!(entry->class->usage_mask & *(unsigned long *)mask);
2242 else /* Mask out _READ usage bits */
2243 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2244 }
2245
usage_skip(struct lock_list * entry,void * mask)2246 static inline bool usage_skip(struct lock_list *entry, void *mask)
2247 {
2248 /*
2249 * Skip local_lock() for irq inversion detection.
2250 *
2251 * For !RT, local_lock() is not a real lock, so it won't carry any
2252 * dependency.
2253 *
2254 * For RT, an irq inversion happens when we have lock A and B, and on
2255 * some CPU we can have:
2256 *
2257 * lock(A);
2258 * <interrupted>
2259 * lock(B);
2260 *
2261 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2262 *
2263 * Now we prove local_lock() cannot exist in that dependency. First we
2264 * have the observation for any lock chain L1 -> ... -> Ln, for any
2265 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2266 * wait context check will complain. And since B is not a sleep lock,
2267 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2268 * local_lock() is 3, which is greater than 2, therefore there is no
2269 * way the local_lock() exists in the dependency B -> ... -> A.
2270 *
2271 * As a result, we will skip local_lock(), when we search for irq
2272 * inversion bugs.
2273 */
2274 if (entry->class->lock_type == LD_LOCK_PERCPU) {
2275 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2276 return false;
2277
2278 return true;
2279 }
2280
2281 return false;
2282 }
2283
2284 /*
2285 * Find a node in the forwards-direction dependency sub-graph starting
2286 * at @root->class that matches @bit.
2287 *
2288 * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2289 * into *@target_entry.
2290 */
2291 static enum bfs_result
find_usage_forwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)2292 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2293 struct lock_list **target_entry)
2294 {
2295 enum bfs_result result;
2296
2297 debug_atomic_inc(nr_find_usage_forwards_checks);
2298
2299 result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2300
2301 return result;
2302 }
2303
2304 /*
2305 * Find a node in the backwards-direction dependency sub-graph starting
2306 * at @root->class that matches @bit.
2307 */
2308 static enum bfs_result
find_usage_backwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)2309 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2310 struct lock_list **target_entry)
2311 {
2312 enum bfs_result result;
2313
2314 debug_atomic_inc(nr_find_usage_backwards_checks);
2315
2316 result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2317
2318 return result;
2319 }
2320
print_lock_class_header(struct lock_class * class,int depth)2321 static void print_lock_class_header(struct lock_class *class, int depth)
2322 {
2323 int bit;
2324
2325 printk("%*s->", depth, "");
2326 print_lock_name(class);
2327 #ifdef CONFIG_DEBUG_LOCKDEP
2328 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2329 #endif
2330 printk(KERN_CONT " {\n");
2331
2332 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2333 if (class->usage_mask & (1 << bit)) {
2334 int len = depth;
2335
2336 len += printk("%*s %s", depth, "", usage_str[bit]);
2337 len += printk(KERN_CONT " at:\n");
2338 print_lock_trace(class->usage_traces[bit], len);
2339 }
2340 }
2341 printk("%*s }\n", depth, "");
2342
2343 printk("%*s ... key at: [<%px>] %pS\n",
2344 depth, "", class->key, class->key);
2345 }
2346
2347 /*
2348 * Dependency path printing:
2349 *
2350 * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2351 * printing out each lock in the dependency path will help on understanding how
2352 * the deadlock could happen. Here are some details about dependency path
2353 * printing:
2354 *
2355 * 1) A lock_list can be either forwards or backwards for a lock dependency,
2356 * for a lock dependency A -> B, there are two lock_lists:
2357 *
2358 * a) lock_list in the ->locks_after list of A, whose ->class is B and
2359 * ->links_to is A. In this case, we can say the lock_list is
2360 * "A -> B" (forwards case).
2361 *
2362 * b) lock_list in the ->locks_before list of B, whose ->class is A
2363 * and ->links_to is B. In this case, we can say the lock_list is
2364 * "B <- A" (bacwards case).
2365 *
2366 * The ->trace of both a) and b) point to the call trace where B was
2367 * acquired with A held.
2368 *
2369 * 2) A "helper" lock_list is introduced during BFS, this lock_list doesn't
2370 * represent a certain lock dependency, it only provides an initial entry
2371 * for BFS. For example, BFS may introduce a "helper" lock_list whose
2372 * ->class is A, as a result BFS will search all dependencies starting with
2373 * A, e.g. A -> B or A -> C.
2374 *
2375 * The notation of a forwards helper lock_list is like "-> A", which means
2376 * we should search the forwards dependencies starting with "A", e.g A -> B
2377 * or A -> C.
2378 *
2379 * The notation of a bacwards helper lock_list is like "<- B", which means
2380 * we should search the backwards dependencies ending with "B", e.g.
2381 * B <- A or B <- C.
2382 */
2383
2384 /*
2385 * printk the shortest lock dependencies from @root to @leaf in reverse order.
2386 *
2387 * We have a lock dependency path as follow:
2388 *
2389 * @root @leaf
2390 * | |
2391 * V V
2392 * ->parent ->parent
2393 * | lock_list | <--------- | lock_list | ... | lock_list | <--------- | lock_list |
2394 * | -> L1 | | L1 -> L2 | ... |Ln-2 -> Ln-1| | Ln-1 -> Ln|
2395 *
2396 * , so it's natural that we start from @leaf and print every ->class and
2397 * ->trace until we reach the @root.
2398 */
2399 static void __used
print_shortest_lock_dependencies(struct lock_list * leaf,struct lock_list * root)2400 print_shortest_lock_dependencies(struct lock_list *leaf,
2401 struct lock_list *root)
2402 {
2403 struct lock_list *entry = leaf;
2404 int depth;
2405
2406 /*compute depth from generated tree by BFS*/
2407 depth = get_lock_depth(leaf);
2408
2409 do {
2410 print_lock_class_header(entry->class, depth);
2411 printk("%*s ... acquired at:\n", depth, "");
2412 print_lock_trace(entry->trace, 2);
2413 printk("\n");
2414
2415 if (depth == 0 && (entry != root)) {
2416 printk("lockdep:%s bad path found in chain graph\n", __func__);
2417 break;
2418 }
2419
2420 entry = get_lock_parent(entry);
2421 depth--;
2422 } while (entry && (depth >= 0));
2423 }
2424
2425 /*
2426 * printk the shortest lock dependencies from @leaf to @root.
2427 *
2428 * We have a lock dependency path (from a backwards search) as follow:
2429 *
2430 * @leaf @root
2431 * | |
2432 * V V
2433 * ->parent ->parent
2434 * | lock_list | ---------> | lock_list | ... | lock_list | ---------> | lock_list |
2435 * | L2 <- L1 | | L3 <- L2 | ... | Ln <- Ln-1 | | <- Ln |
2436 *
2437 * , so when we iterate from @leaf to @root, we actually print the lock
2438 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2439 *
2440 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2441 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2442 * trace of L1 in the dependency path, which is alright, because most of the
2443 * time we can figure out where L1 is held from the call trace of L2.
2444 */
2445 static void __used
print_shortest_lock_dependencies_backwards(struct lock_list * leaf,struct lock_list * root)2446 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2447 struct lock_list *root)
2448 {
2449 struct lock_list *entry = leaf;
2450 const struct lock_trace *trace = NULL;
2451 int depth;
2452
2453 /*compute depth from generated tree by BFS*/
2454 depth = get_lock_depth(leaf);
2455
2456 do {
2457 print_lock_class_header(entry->class, depth);
2458 if (trace) {
2459 printk("%*s ... acquired at:\n", depth, "");
2460 print_lock_trace(trace, 2);
2461 printk("\n");
2462 }
2463
2464 /*
2465 * Record the pointer to the trace for the next lock_list
2466 * entry, see the comments for the function.
2467 */
2468 trace = entry->trace;
2469
2470 if (depth == 0 && (entry != root)) {
2471 printk("lockdep:%s bad path found in chain graph\n", __func__);
2472 break;
2473 }
2474
2475 entry = get_lock_parent(entry);
2476 depth--;
2477 } while (entry && (depth >= 0));
2478 }
2479
2480 static void
print_irq_lock_scenario(struct lock_list * safe_entry,struct lock_list * unsafe_entry,struct lock_class * prev_class,struct lock_class * next_class)2481 print_irq_lock_scenario(struct lock_list *safe_entry,
2482 struct lock_list *unsafe_entry,
2483 struct lock_class *prev_class,
2484 struct lock_class *next_class)
2485 {
2486 struct lock_class *safe_class = safe_entry->class;
2487 struct lock_class *unsafe_class = unsafe_entry->class;
2488 struct lock_class *middle_class = prev_class;
2489
2490 if (middle_class == safe_class)
2491 middle_class = next_class;
2492
2493 /*
2494 * A direct locking problem where unsafe_class lock is taken
2495 * directly by safe_class lock, then all we need to show
2496 * is the deadlock scenario, as it is obvious that the
2497 * unsafe lock is taken under the safe lock.
2498 *
2499 * But if there is a chain instead, where the safe lock takes
2500 * an intermediate lock (middle_class) where this lock is
2501 * not the same as the safe lock, then the lock chain is
2502 * used to describe the problem. Otherwise we would need
2503 * to show a different CPU case for each link in the chain
2504 * from the safe_class lock to the unsafe_class lock.
2505 */
2506 if (middle_class != unsafe_class) {
2507 printk("Chain exists of:\n ");
2508 __print_lock_name(safe_class);
2509 printk(KERN_CONT " --> ");
2510 __print_lock_name(middle_class);
2511 printk(KERN_CONT " --> ");
2512 __print_lock_name(unsafe_class);
2513 printk(KERN_CONT "\n\n");
2514 }
2515
2516 printk(" Possible interrupt unsafe locking scenario:\n\n");
2517 printk(" CPU0 CPU1\n");
2518 printk(" ---- ----\n");
2519 printk(" lock(");
2520 __print_lock_name(unsafe_class);
2521 printk(KERN_CONT ");\n");
2522 printk(" local_irq_disable();\n");
2523 printk(" lock(");
2524 __print_lock_name(safe_class);
2525 printk(KERN_CONT ");\n");
2526 printk(" lock(");
2527 __print_lock_name(middle_class);
2528 printk(KERN_CONT ");\n");
2529 printk(" <Interrupt>\n");
2530 printk(" lock(");
2531 __print_lock_name(safe_class);
2532 printk(KERN_CONT ");\n");
2533 printk("\n *** DEADLOCK ***\n\n");
2534 }
2535
2536 static void
print_bad_irq_dependency(struct task_struct * curr,struct lock_list * prev_root,struct lock_list * next_root,struct lock_list * backwards_entry,struct lock_list * forwards_entry,struct held_lock * prev,struct held_lock * next,enum lock_usage_bit bit1,enum lock_usage_bit bit2,const char * irqclass)2537 print_bad_irq_dependency(struct task_struct *curr,
2538 struct lock_list *prev_root,
2539 struct lock_list *next_root,
2540 struct lock_list *backwards_entry,
2541 struct lock_list *forwards_entry,
2542 struct held_lock *prev,
2543 struct held_lock *next,
2544 enum lock_usage_bit bit1,
2545 enum lock_usage_bit bit2,
2546 const char *irqclass)
2547 {
2548 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2549 return;
2550
2551 pr_warn("\n");
2552 pr_warn("=====================================================\n");
2553 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2554 irqclass, irqclass);
2555 print_kernel_ident();
2556 pr_warn("-----------------------------------------------------\n");
2557 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2558 curr->comm, task_pid_nr(curr),
2559 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2560 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2561 lockdep_hardirqs_enabled(),
2562 curr->softirqs_enabled);
2563 print_lock(next);
2564
2565 pr_warn("\nand this task is already holding:\n");
2566 print_lock(prev);
2567 pr_warn("which would create a new lock dependency:\n");
2568 print_lock_name(hlock_class(prev));
2569 pr_cont(" ->");
2570 print_lock_name(hlock_class(next));
2571 pr_cont("\n");
2572
2573 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2574 irqclass);
2575 print_lock_name(backwards_entry->class);
2576 pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2577
2578 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2579
2580 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2581 print_lock_name(forwards_entry->class);
2582 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2583 pr_warn("...");
2584
2585 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2586
2587 pr_warn("\nother info that might help us debug this:\n\n");
2588 print_irq_lock_scenario(backwards_entry, forwards_entry,
2589 hlock_class(prev), hlock_class(next));
2590
2591 lockdep_print_held_locks(curr);
2592
2593 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2594 print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2595
2596 pr_warn("\nthe dependencies between the lock to be acquired");
2597 pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2598 next_root->trace = save_trace();
2599 if (!next_root->trace)
2600 return;
2601 print_shortest_lock_dependencies(forwards_entry, next_root);
2602
2603 pr_warn("\nstack backtrace:\n");
2604 dump_stack();
2605 }
2606
2607 static const char *state_names[] = {
2608 #define LOCKDEP_STATE(__STATE) \
2609 __stringify(__STATE),
2610 #include "lockdep_states.h"
2611 #undef LOCKDEP_STATE
2612 };
2613
2614 static const char *state_rnames[] = {
2615 #define LOCKDEP_STATE(__STATE) \
2616 __stringify(__STATE)"-READ",
2617 #include "lockdep_states.h"
2618 #undef LOCKDEP_STATE
2619 };
2620
state_name(enum lock_usage_bit bit)2621 static inline const char *state_name(enum lock_usage_bit bit)
2622 {
2623 if (bit & LOCK_USAGE_READ_MASK)
2624 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2625 else
2626 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2627 }
2628
2629 /*
2630 * The bit number is encoded like:
2631 *
2632 * bit0: 0 exclusive, 1 read lock
2633 * bit1: 0 used in irq, 1 irq enabled
2634 * bit2-n: state
2635 */
exclusive_bit(int new_bit)2636 static int exclusive_bit(int new_bit)
2637 {
2638 int state = new_bit & LOCK_USAGE_STATE_MASK;
2639 int dir = new_bit & LOCK_USAGE_DIR_MASK;
2640
2641 /*
2642 * keep state, bit flip the direction and strip read.
2643 */
2644 return state | (dir ^ LOCK_USAGE_DIR_MASK);
2645 }
2646
2647 /*
2648 * Observe that when given a bitmask where each bitnr is encoded as above, a
2649 * right shift of the mask transforms the individual bitnrs as -1 and
2650 * conversely, a left shift transforms into +1 for the individual bitnrs.
2651 *
2652 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2653 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2654 * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2655 *
2656 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2657 *
2658 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2659 * all bits set) and recompose with bitnr1 flipped.
2660 */
invert_dir_mask(unsigned long mask)2661 static unsigned long invert_dir_mask(unsigned long mask)
2662 {
2663 unsigned long excl = 0;
2664
2665 /* Invert dir */
2666 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2667 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2668
2669 return excl;
2670 }
2671
2672 /*
2673 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2674 * usage may cause deadlock too, for example:
2675 *
2676 * P1 P2
2677 * <irq disabled>
2678 * write_lock(l1); <irq enabled>
2679 * read_lock(l2);
2680 * write_lock(l2);
2681 * <in irq>
2682 * read_lock(l1);
2683 *
2684 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2685 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2686 * deadlock.
2687 *
2688 * In fact, all of the following cases may cause deadlocks:
2689 *
2690 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2691 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2692 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2693 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2694 *
2695 * As a result, to calculate the "exclusive mask", first we invert the
2696 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2697 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2698 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2699 */
exclusive_mask(unsigned long mask)2700 static unsigned long exclusive_mask(unsigned long mask)
2701 {
2702 unsigned long excl = invert_dir_mask(mask);
2703
2704 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2705 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2706
2707 return excl;
2708 }
2709
2710 /*
2711 * Retrieve the _possible_ original mask to which @mask is
2712 * exclusive. Ie: this is the opposite of exclusive_mask().
2713 * Note that 2 possible original bits can match an exclusive
2714 * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2715 * cleared. So both are returned for each exclusive bit.
2716 */
original_mask(unsigned long mask)2717 static unsigned long original_mask(unsigned long mask)
2718 {
2719 unsigned long excl = invert_dir_mask(mask);
2720
2721 /* Include read in existing usages */
2722 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2723 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2724
2725 return excl;
2726 }
2727
2728 /*
2729 * Find the first pair of bit match between an original
2730 * usage mask and an exclusive usage mask.
2731 */
find_exclusive_match(unsigned long mask,unsigned long excl_mask,enum lock_usage_bit * bitp,enum lock_usage_bit * excl_bitp)2732 static int find_exclusive_match(unsigned long mask,
2733 unsigned long excl_mask,
2734 enum lock_usage_bit *bitp,
2735 enum lock_usage_bit *excl_bitp)
2736 {
2737 int bit, excl, excl_read;
2738
2739 for_each_set_bit(bit, &mask, LOCK_USED) {
2740 /*
2741 * exclusive_bit() strips the read bit, however,
2742 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2743 * to search excl | LOCK_USAGE_READ_MASK as well.
2744 */
2745 excl = exclusive_bit(bit);
2746 excl_read = excl | LOCK_USAGE_READ_MASK;
2747 if (excl_mask & lock_flag(excl)) {
2748 *bitp = bit;
2749 *excl_bitp = excl;
2750 return 0;
2751 } else if (excl_mask & lock_flag(excl_read)) {
2752 *bitp = bit;
2753 *excl_bitp = excl_read;
2754 return 0;
2755 }
2756 }
2757 return -1;
2758 }
2759
2760 /*
2761 * Prove that the new dependency does not connect a hardirq-safe(-read)
2762 * lock with a hardirq-unsafe lock - to achieve this we search
2763 * the backwards-subgraph starting at <prev>, and the
2764 * forwards-subgraph starting at <next>:
2765 */
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2766 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2767 struct held_lock *next)
2768 {
2769 unsigned long usage_mask = 0, forward_mask, backward_mask;
2770 enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2771 struct lock_list *target_entry1;
2772 struct lock_list *target_entry;
2773 struct lock_list this, that;
2774 enum bfs_result ret;
2775
2776 /*
2777 * Step 1: gather all hard/soft IRQs usages backward in an
2778 * accumulated usage mask.
2779 */
2780 bfs_init_rootb(&this, prev);
2781
2782 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2783 if (bfs_error(ret)) {
2784 print_bfs_bug(ret);
2785 return 0;
2786 }
2787
2788 usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2789 if (!usage_mask)
2790 return 1;
2791
2792 /*
2793 * Step 2: find exclusive uses forward that match the previous
2794 * backward accumulated mask.
2795 */
2796 forward_mask = exclusive_mask(usage_mask);
2797
2798 bfs_init_root(&that, next);
2799
2800 ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2801 if (bfs_error(ret)) {
2802 print_bfs_bug(ret);
2803 return 0;
2804 }
2805 if (ret == BFS_RNOMATCH)
2806 return 1;
2807
2808 /*
2809 * Step 3: we found a bad match! Now retrieve a lock from the backward
2810 * list whose usage mask matches the exclusive usage mask from the
2811 * lock found on the forward list.
2812 *
2813 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2814 * the follow case:
2815 *
2816 * When trying to add A -> B to the graph, we find that there is a
2817 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2818 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2819 * invert bits of M's usage_mask, we will find another lock N that is
2820 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2821 * cause a inversion deadlock.
2822 */
2823 backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2824
2825 ret = find_usage_backwards(&this, backward_mask, &target_entry);
2826 if (bfs_error(ret)) {
2827 print_bfs_bug(ret);
2828 return 0;
2829 }
2830 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2831 return 1;
2832
2833 /*
2834 * Step 4: narrow down to a pair of incompatible usage bits
2835 * and report it.
2836 */
2837 ret = find_exclusive_match(target_entry->class->usage_mask,
2838 target_entry1->class->usage_mask,
2839 &backward_bit, &forward_bit);
2840 if (DEBUG_LOCKS_WARN_ON(ret == -1))
2841 return 1;
2842
2843 print_bad_irq_dependency(curr, &this, &that,
2844 target_entry, target_entry1,
2845 prev, next,
2846 backward_bit, forward_bit,
2847 state_name(backward_bit));
2848
2849 return 0;
2850 }
2851
2852 #else
2853
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2854 static inline int check_irq_usage(struct task_struct *curr,
2855 struct held_lock *prev, struct held_lock *next)
2856 {
2857 return 1;
2858 }
2859
usage_skip(struct lock_list * entry,void * mask)2860 static inline bool usage_skip(struct lock_list *entry, void *mask)
2861 {
2862 return false;
2863 }
2864
2865 #endif /* CONFIG_TRACE_IRQFLAGS */
2866
2867 #ifdef CONFIG_LOCKDEP_SMALL
2868 /*
2869 * Check that the dependency graph starting at <src> can lead to
2870 * <target> or not. If it can, <src> -> <target> dependency is already
2871 * in the graph.
2872 *
2873 * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2874 * any error appears in the bfs search.
2875 */
2876 static noinline enum bfs_result
check_redundant(struct held_lock * src,struct held_lock * target)2877 check_redundant(struct held_lock *src, struct held_lock *target)
2878 {
2879 enum bfs_result ret;
2880 struct lock_list *target_entry;
2881 struct lock_list src_entry;
2882
2883 bfs_init_root(&src_entry, src);
2884 /*
2885 * Special setup for check_redundant().
2886 *
2887 * To report redundant, we need to find a strong dependency path that
2888 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2889 * we need to let __bfs() only search for a path starting at a -(E*)->,
2890 * we achieve this by setting the initial node's ->only_xr to true in
2891 * that case. And if <prev> is S, we set initial ->only_xr to false
2892 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2893 */
2894 src_entry.only_xr = src->read == 0;
2895
2896 debug_atomic_inc(nr_redundant_checks);
2897
2898 /*
2899 * Note: we skip local_lock() for redundant check, because as the
2900 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2901 * the same.
2902 */
2903 ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2904
2905 if (ret == BFS_RMATCH)
2906 debug_atomic_inc(nr_redundant);
2907
2908 return ret;
2909 }
2910
2911 #else
2912
2913 static inline enum bfs_result
check_redundant(struct held_lock * src,struct held_lock * target)2914 check_redundant(struct held_lock *src, struct held_lock *target)
2915 {
2916 return BFS_RNOMATCH;
2917 }
2918
2919 #endif
2920
inc_chains(int irq_context)2921 static void inc_chains(int irq_context)
2922 {
2923 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2924 nr_hardirq_chains++;
2925 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2926 nr_softirq_chains++;
2927 else
2928 nr_process_chains++;
2929 }
2930
dec_chains(int irq_context)2931 static void dec_chains(int irq_context)
2932 {
2933 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2934 nr_hardirq_chains--;
2935 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2936 nr_softirq_chains--;
2937 else
2938 nr_process_chains--;
2939 }
2940
2941 static void
print_deadlock_scenario(struct held_lock * nxt,struct held_lock * prv)2942 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2943 {
2944 struct lock_class *next = hlock_class(nxt);
2945 struct lock_class *prev = hlock_class(prv);
2946
2947 printk(" Possible unsafe locking scenario:\n\n");
2948 printk(" CPU0\n");
2949 printk(" ----\n");
2950 printk(" lock(");
2951 __print_lock_name(prev);
2952 printk(KERN_CONT ");\n");
2953 printk(" lock(");
2954 __print_lock_name(next);
2955 printk(KERN_CONT ");\n");
2956 printk("\n *** DEADLOCK ***\n\n");
2957 printk(" May be due to missing lock nesting notation\n\n");
2958 }
2959
2960 static void
print_deadlock_bug(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2961 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2962 struct held_lock *next)
2963 {
2964 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2965 return;
2966
2967 pr_warn("\n");
2968 pr_warn("============================================\n");
2969 pr_warn("WARNING: possible recursive locking detected\n");
2970 print_kernel_ident();
2971 pr_warn("--------------------------------------------\n");
2972 pr_warn("%s/%d is trying to acquire lock:\n",
2973 curr->comm, task_pid_nr(curr));
2974 print_lock(next);
2975 pr_warn("\nbut task is already holding lock:\n");
2976 print_lock(prev);
2977
2978 pr_warn("\nother info that might help us debug this:\n");
2979 print_deadlock_scenario(next, prev);
2980 lockdep_print_held_locks(curr);
2981
2982 pr_warn("\nstack backtrace:\n");
2983 dump_stack();
2984 }
2985
2986 /*
2987 * Check whether we are holding such a class already.
2988 *
2989 * (Note that this has to be done separately, because the graph cannot
2990 * detect such classes of deadlocks.)
2991 *
2992 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2993 * lock class is held but nest_lock is also held, i.e. we rely on the
2994 * nest_lock to avoid the deadlock.
2995 */
2996 static int
check_deadlock(struct task_struct * curr,struct held_lock * next)2997 check_deadlock(struct task_struct *curr, struct held_lock *next)
2998 {
2999 struct held_lock *prev;
3000 struct held_lock *nest = NULL;
3001 int i;
3002
3003 for (i = 0; i < curr->lockdep_depth; i++) {
3004 prev = curr->held_locks + i;
3005
3006 if (prev->instance == next->nest_lock)
3007 nest = prev;
3008
3009 if (hlock_class(prev) != hlock_class(next))
3010 continue;
3011
3012 /*
3013 * Allow read-after-read recursion of the same
3014 * lock class (i.e. read_lock(lock)+read_lock(lock)):
3015 */
3016 if ((next->read == 2) && prev->read)
3017 continue;
3018
3019 /*
3020 * We're holding the nest_lock, which serializes this lock's
3021 * nesting behaviour.
3022 */
3023 if (nest)
3024 return 2;
3025
3026 print_deadlock_bug(curr, prev, next);
3027 return 0;
3028 }
3029 return 1;
3030 }
3031
3032 /*
3033 * There was a chain-cache miss, and we are about to add a new dependency
3034 * to a previous lock. We validate the following rules:
3035 *
3036 * - would the adding of the <prev> -> <next> dependency create a
3037 * circular dependency in the graph? [== circular deadlock]
3038 *
3039 * - does the new prev->next dependency connect any hardirq-safe lock
3040 * (in the full backwards-subgraph starting at <prev>) with any
3041 * hardirq-unsafe lock (in the full forwards-subgraph starting at
3042 * <next>)? [== illegal lock inversion with hardirq contexts]
3043 *
3044 * - does the new prev->next dependency connect any softirq-safe lock
3045 * (in the full backwards-subgraph starting at <prev>) with any
3046 * softirq-unsafe lock (in the full forwards-subgraph starting at
3047 * <next>)? [== illegal lock inversion with softirq contexts]
3048 *
3049 * any of these scenarios could lead to a deadlock.
3050 *
3051 * Then if all the validations pass, we add the forwards and backwards
3052 * dependency.
3053 */
3054 static int
check_prev_add(struct task_struct * curr,struct held_lock * prev,struct held_lock * next,u16 distance,struct lock_trace ** const trace)3055 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3056 struct held_lock *next, u16 distance,
3057 struct lock_trace **const trace)
3058 {
3059 struct lock_list *entry;
3060 enum bfs_result ret;
3061
3062 if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3063 /*
3064 * The warning statements below may trigger a use-after-free
3065 * of the class name. It is better to trigger a use-after free
3066 * and to have the class name most of the time instead of not
3067 * having the class name available.
3068 */
3069 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3070 "Detected use-after-free of lock class %px/%s\n",
3071 hlock_class(prev),
3072 hlock_class(prev)->name);
3073 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3074 "Detected use-after-free of lock class %px/%s\n",
3075 hlock_class(next),
3076 hlock_class(next)->name);
3077 return 2;
3078 }
3079
3080 /*
3081 * Prove that the new <prev> -> <next> dependency would not
3082 * create a circular dependency in the graph. (We do this by
3083 * a breadth-first search into the graph starting at <next>,
3084 * and check whether we can reach <prev>.)
3085 *
3086 * The search is limited by the size of the circular queue (i.e.,
3087 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3088 * in the graph whose neighbours are to be checked.
3089 */
3090 ret = check_noncircular(next, prev, trace);
3091 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3092 return 0;
3093
3094 if (!check_irq_usage(curr, prev, next))
3095 return 0;
3096
3097 /*
3098 * Is the <prev> -> <next> dependency already present?
3099 *
3100 * (this may occur even though this is a new chain: consider
3101 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3102 * chains - the second one will be new, but L1 already has
3103 * L2 added to its dependency list, due to the first chain.)
3104 */
3105 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3106 if (entry->class == hlock_class(next)) {
3107 if (distance == 1)
3108 entry->distance = 1;
3109 entry->dep |= calc_dep(prev, next);
3110
3111 /*
3112 * Also, update the reverse dependency in @next's
3113 * ->locks_before list.
3114 *
3115 * Here we reuse @entry as the cursor, which is fine
3116 * because we won't go to the next iteration of the
3117 * outer loop:
3118 *
3119 * For normal cases, we return in the inner loop.
3120 *
3121 * If we fail to return, we have inconsistency, i.e.
3122 * <prev>::locks_after contains <next> while
3123 * <next>::locks_before doesn't contain <prev>. In
3124 * that case, we return after the inner and indicate
3125 * something is wrong.
3126 */
3127 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3128 if (entry->class == hlock_class(prev)) {
3129 if (distance == 1)
3130 entry->distance = 1;
3131 entry->dep |= calc_depb(prev, next);
3132 return 1;
3133 }
3134 }
3135
3136 /* <prev> is not found in <next>::locks_before */
3137 return 0;
3138 }
3139 }
3140
3141 /*
3142 * Is the <prev> -> <next> link redundant?
3143 */
3144 ret = check_redundant(prev, next);
3145 if (bfs_error(ret))
3146 return 0;
3147 else if (ret == BFS_RMATCH)
3148 return 2;
3149
3150 if (!*trace) {
3151 *trace = save_trace();
3152 if (!*trace)
3153 return 0;
3154 }
3155
3156 /*
3157 * Ok, all validations passed, add the new lock
3158 * to the previous lock's dependency list:
3159 */
3160 ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3161 &hlock_class(prev)->locks_after, distance,
3162 calc_dep(prev, next), *trace);
3163
3164 if (!ret)
3165 return 0;
3166
3167 ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3168 &hlock_class(next)->locks_before, distance,
3169 calc_depb(prev, next), *trace);
3170 if (!ret)
3171 return 0;
3172
3173 return 2;
3174 }
3175
3176 /*
3177 * Add the dependency to all directly-previous locks that are 'relevant'.
3178 * The ones that are relevant are (in increasing distance from curr):
3179 * all consecutive trylock entries and the final non-trylock entry - or
3180 * the end of this context's lock-chain - whichever comes first.
3181 */
3182 static int
check_prevs_add(struct task_struct * curr,struct held_lock * next)3183 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3184 {
3185 struct lock_trace *trace = NULL;
3186 int depth = curr->lockdep_depth;
3187 struct held_lock *hlock;
3188
3189 /*
3190 * Debugging checks.
3191 *
3192 * Depth must not be zero for a non-head lock:
3193 */
3194 if (!depth)
3195 goto out_bug;
3196 /*
3197 * At least two relevant locks must exist for this
3198 * to be a head:
3199 */
3200 if (curr->held_locks[depth].irq_context !=
3201 curr->held_locks[depth-1].irq_context)
3202 goto out_bug;
3203
3204 for (;;) {
3205 u16 distance = curr->lockdep_depth - depth + 1;
3206 hlock = curr->held_locks + depth - 1;
3207
3208 if (hlock->check) {
3209 int ret = check_prev_add(curr, hlock, next, distance, &trace);
3210 if (!ret)
3211 return 0;
3212
3213 /*
3214 * Stop after the first non-trylock entry,
3215 * as non-trylock entries have added their
3216 * own direct dependencies already, so this
3217 * lock is connected to them indirectly:
3218 */
3219 if (!hlock->trylock)
3220 break;
3221 }
3222
3223 depth--;
3224 /*
3225 * End of lock-stack?
3226 */
3227 if (!depth)
3228 break;
3229 /*
3230 * Stop the search if we cross into another context:
3231 */
3232 if (curr->held_locks[depth].irq_context !=
3233 curr->held_locks[depth-1].irq_context)
3234 break;
3235 }
3236 return 1;
3237 out_bug:
3238 if (!debug_locks_off_graph_unlock())
3239 return 0;
3240
3241 /*
3242 * Clearly we all shouldn't be here, but since we made it we
3243 * can reliable say we messed up our state. See the above two
3244 * gotos for reasons why we could possibly end up here.
3245 */
3246 WARN_ON(1);
3247
3248 return 0;
3249 }
3250
3251 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3252 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3253 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3254 unsigned long nr_zapped_lock_chains;
3255 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */
3256 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */
3257 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */
3258
3259 /*
3260 * The first 2 chain_hlocks entries in the chain block in the bucket
3261 * list contains the following meta data:
3262 *
3263 * entry[0]:
3264 * Bit 15 - always set to 1 (it is not a class index)
3265 * Bits 0-14 - upper 15 bits of the next block index
3266 * entry[1] - lower 16 bits of next block index
3267 *
3268 * A next block index of all 1 bits means it is the end of the list.
3269 *
3270 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3271 * the chain block size:
3272 *
3273 * entry[2] - upper 16 bits of the chain block size
3274 * entry[3] - lower 16 bits of the chain block size
3275 */
3276 #define MAX_CHAIN_BUCKETS 16
3277 #define CHAIN_BLK_FLAG (1U << 15)
3278 #define CHAIN_BLK_LIST_END 0xFFFFU
3279
3280 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3281
size_to_bucket(int size)3282 static inline int size_to_bucket(int size)
3283 {
3284 if (size > MAX_CHAIN_BUCKETS)
3285 return 0;
3286
3287 return size - 1;
3288 }
3289
3290 /*
3291 * Iterate all the chain blocks in a bucket.
3292 */
3293 #define for_each_chain_block(bucket, prev, curr) \
3294 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \
3295 (curr) >= 0; \
3296 (prev) = (curr), (curr) = chain_block_next(curr))
3297
3298 /*
3299 * next block or -1
3300 */
chain_block_next(int offset)3301 static inline int chain_block_next(int offset)
3302 {
3303 int next = chain_hlocks[offset];
3304
3305 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3306
3307 if (next == CHAIN_BLK_LIST_END)
3308 return -1;
3309
3310 next &= ~CHAIN_BLK_FLAG;
3311 next <<= 16;
3312 next |= chain_hlocks[offset + 1];
3313
3314 return next;
3315 }
3316
3317 /*
3318 * bucket-0 only
3319 */
chain_block_size(int offset)3320 static inline int chain_block_size(int offset)
3321 {
3322 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3323 }
3324
init_chain_block(int offset,int next,int bucket,int size)3325 static inline void init_chain_block(int offset, int next, int bucket, int size)
3326 {
3327 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3328 chain_hlocks[offset + 1] = (u16)next;
3329
3330 if (size && !bucket) {
3331 chain_hlocks[offset + 2] = size >> 16;
3332 chain_hlocks[offset + 3] = (u16)size;
3333 }
3334 }
3335
add_chain_block(int offset,int size)3336 static inline void add_chain_block(int offset, int size)
3337 {
3338 int bucket = size_to_bucket(size);
3339 int next = chain_block_buckets[bucket];
3340 int prev, curr;
3341
3342 if (unlikely(size < 2)) {
3343 /*
3344 * We can't store single entries on the freelist. Leak them.
3345 *
3346 * One possible way out would be to uniquely mark them, other
3347 * than with CHAIN_BLK_FLAG, such that we can recover them when
3348 * the block before it is re-added.
3349 */
3350 if (size)
3351 nr_lost_chain_hlocks++;
3352 return;
3353 }
3354
3355 nr_free_chain_hlocks += size;
3356 if (!bucket) {
3357 nr_large_chain_blocks++;
3358
3359 /*
3360 * Variable sized, sort large to small.
3361 */
3362 for_each_chain_block(0, prev, curr) {
3363 if (size >= chain_block_size(curr))
3364 break;
3365 }
3366 init_chain_block(offset, curr, 0, size);
3367 if (prev < 0)
3368 chain_block_buckets[0] = offset;
3369 else
3370 init_chain_block(prev, offset, 0, 0);
3371 return;
3372 }
3373 /*
3374 * Fixed size, add to head.
3375 */
3376 init_chain_block(offset, next, bucket, size);
3377 chain_block_buckets[bucket] = offset;
3378 }
3379
3380 /*
3381 * Only the first block in the list can be deleted.
3382 *
3383 * For the variable size bucket[0], the first block (the largest one) is
3384 * returned, broken up and put back into the pool. So if a chain block of
3385 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3386 * queued up after the primordial chain block and never be used until the
3387 * hlock entries in the primordial chain block is almost used up. That
3388 * causes fragmentation and reduce allocation efficiency. That can be
3389 * monitored by looking at the "large chain blocks" number in lockdep_stats.
3390 */
del_chain_block(int bucket,int size,int next)3391 static inline void del_chain_block(int bucket, int size, int next)
3392 {
3393 nr_free_chain_hlocks -= size;
3394 chain_block_buckets[bucket] = next;
3395
3396 if (!bucket)
3397 nr_large_chain_blocks--;
3398 }
3399
init_chain_block_buckets(void)3400 static void init_chain_block_buckets(void)
3401 {
3402 int i;
3403
3404 for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3405 chain_block_buckets[i] = -1;
3406
3407 add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3408 }
3409
3410 /*
3411 * Return offset of a chain block of the right size or -1 if not found.
3412 *
3413 * Fairly simple worst-fit allocator with the addition of a number of size
3414 * specific free lists.
3415 */
alloc_chain_hlocks(int req)3416 static int alloc_chain_hlocks(int req)
3417 {
3418 int bucket, curr, size;
3419
3420 /*
3421 * We rely on the MSB to act as an escape bit to denote freelist
3422 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3423 */
3424 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3425
3426 init_data_structures_once();
3427
3428 if (nr_free_chain_hlocks < req)
3429 return -1;
3430
3431 /*
3432 * We require a minimum of 2 (u16) entries to encode a freelist
3433 * 'pointer'.
3434 */
3435 req = max(req, 2);
3436 bucket = size_to_bucket(req);
3437 curr = chain_block_buckets[bucket];
3438
3439 if (bucket) {
3440 if (curr >= 0) {
3441 del_chain_block(bucket, req, chain_block_next(curr));
3442 return curr;
3443 }
3444 /* Try bucket 0 */
3445 curr = chain_block_buckets[0];
3446 }
3447
3448 /*
3449 * The variable sized freelist is sorted by size; the first entry is
3450 * the largest. Use it if it fits.
3451 */
3452 if (curr >= 0) {
3453 size = chain_block_size(curr);
3454 if (likely(size >= req)) {
3455 del_chain_block(0, size, chain_block_next(curr));
3456 if (size > req)
3457 add_chain_block(curr + req, size - req);
3458 return curr;
3459 }
3460 }
3461
3462 /*
3463 * Last resort, split a block in a larger sized bucket.
3464 */
3465 for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3466 bucket = size_to_bucket(size);
3467 curr = chain_block_buckets[bucket];
3468 if (curr < 0)
3469 continue;
3470
3471 del_chain_block(bucket, size, chain_block_next(curr));
3472 add_chain_block(curr + req, size - req);
3473 return curr;
3474 }
3475
3476 return -1;
3477 }
3478
free_chain_hlocks(int base,int size)3479 static inline void free_chain_hlocks(int base, int size)
3480 {
3481 add_chain_block(base, max(size, 2));
3482 }
3483
lock_chain_get_class(struct lock_chain * chain,int i)3484 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3485 {
3486 u16 chain_hlock = chain_hlocks[chain->base + i];
3487 unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3488
3489 return lock_classes + class_idx;
3490 }
3491
3492 /*
3493 * Returns the index of the first held_lock of the current chain
3494 */
get_first_held_lock(struct task_struct * curr,struct held_lock * hlock)3495 static inline int get_first_held_lock(struct task_struct *curr,
3496 struct held_lock *hlock)
3497 {
3498 int i;
3499 struct held_lock *hlock_curr;
3500
3501 for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3502 hlock_curr = curr->held_locks + i;
3503 if (hlock_curr->irq_context != hlock->irq_context)
3504 break;
3505
3506 }
3507
3508 return ++i;
3509 }
3510
3511 #ifdef CONFIG_DEBUG_LOCKDEP
3512 /*
3513 * Returns the next chain_key iteration
3514 */
print_chain_key_iteration(u16 hlock_id,u64 chain_key)3515 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3516 {
3517 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3518
3519 printk(" hlock_id:%d -> chain_key:%016Lx",
3520 (unsigned int)hlock_id,
3521 (unsigned long long)new_chain_key);
3522 return new_chain_key;
3523 }
3524
3525 static void
print_chain_keys_held_locks(struct task_struct * curr,struct held_lock * hlock_next)3526 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3527 {
3528 struct held_lock *hlock;
3529 u64 chain_key = INITIAL_CHAIN_KEY;
3530 int depth = curr->lockdep_depth;
3531 int i = get_first_held_lock(curr, hlock_next);
3532
3533 printk("depth: %u (irq_context %u)\n", depth - i + 1,
3534 hlock_next->irq_context);
3535 for (; i < depth; i++) {
3536 hlock = curr->held_locks + i;
3537 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3538
3539 print_lock(hlock);
3540 }
3541
3542 print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3543 print_lock(hlock_next);
3544 }
3545
print_chain_keys_chain(struct lock_chain * chain)3546 static void print_chain_keys_chain(struct lock_chain *chain)
3547 {
3548 int i;
3549 u64 chain_key = INITIAL_CHAIN_KEY;
3550 u16 hlock_id;
3551
3552 printk("depth: %u\n", chain->depth);
3553 for (i = 0; i < chain->depth; i++) {
3554 hlock_id = chain_hlocks[chain->base + i];
3555 chain_key = print_chain_key_iteration(hlock_id, chain_key);
3556
3557 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id));
3558 printk("\n");
3559 }
3560 }
3561
print_collision(struct task_struct * curr,struct held_lock * hlock_next,struct lock_chain * chain)3562 static void print_collision(struct task_struct *curr,
3563 struct held_lock *hlock_next,
3564 struct lock_chain *chain)
3565 {
3566 pr_warn("\n");
3567 pr_warn("============================\n");
3568 pr_warn("WARNING: chain_key collision\n");
3569 print_kernel_ident();
3570 pr_warn("----------------------------\n");
3571 pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3572 pr_warn("Hash chain already cached but the contents don't match!\n");
3573
3574 pr_warn("Held locks:");
3575 print_chain_keys_held_locks(curr, hlock_next);
3576
3577 pr_warn("Locks in cached chain:");
3578 print_chain_keys_chain(chain);
3579
3580 pr_warn("\nstack backtrace:\n");
3581 dump_stack();
3582 }
3583 #endif
3584
3585 /*
3586 * Checks whether the chain and the current held locks are consistent
3587 * in depth and also in content. If they are not it most likely means
3588 * that there was a collision during the calculation of the chain_key.
3589 * Returns: 0 not passed, 1 passed
3590 */
check_no_collision(struct task_struct * curr,struct held_lock * hlock,struct lock_chain * chain)3591 static int check_no_collision(struct task_struct *curr,
3592 struct held_lock *hlock,
3593 struct lock_chain *chain)
3594 {
3595 #ifdef CONFIG_DEBUG_LOCKDEP
3596 int i, j, id;
3597
3598 i = get_first_held_lock(curr, hlock);
3599
3600 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3601 print_collision(curr, hlock, chain);
3602 return 0;
3603 }
3604
3605 for (j = 0; j < chain->depth - 1; j++, i++) {
3606 id = hlock_id(&curr->held_locks[i]);
3607
3608 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3609 print_collision(curr, hlock, chain);
3610 return 0;
3611 }
3612 }
3613 #endif
3614 return 1;
3615 }
3616
3617 /*
3618 * Given an index that is >= -1, return the index of the next lock chain.
3619 * Return -2 if there is no next lock chain.
3620 */
lockdep_next_lockchain(long i)3621 long lockdep_next_lockchain(long i)
3622 {
3623 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3624 return i < ARRAY_SIZE(lock_chains) ? i : -2;
3625 }
3626
lock_chain_count(void)3627 unsigned long lock_chain_count(void)
3628 {
3629 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3630 }
3631
3632 /* Must be called with the graph lock held. */
alloc_lock_chain(void)3633 static struct lock_chain *alloc_lock_chain(void)
3634 {
3635 int idx = find_first_zero_bit(lock_chains_in_use,
3636 ARRAY_SIZE(lock_chains));
3637
3638 if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3639 return NULL;
3640 __set_bit(idx, lock_chains_in_use);
3641 return lock_chains + idx;
3642 }
3643
3644 /*
3645 * Adds a dependency chain into chain hashtable. And must be called with
3646 * graph_lock held.
3647 *
3648 * Return 0 if fail, and graph_lock is released.
3649 * Return 1 if succeed, with graph_lock held.
3650 */
add_chain_cache(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)3651 static inline int add_chain_cache(struct task_struct *curr,
3652 struct held_lock *hlock,
3653 u64 chain_key)
3654 {
3655 struct hlist_head *hash_head = chainhashentry(chain_key);
3656 struct lock_chain *chain;
3657 int i, j;
3658
3659 /*
3660 * The caller must hold the graph lock, ensure we've got IRQs
3661 * disabled to make this an IRQ-safe lock.. for recursion reasons
3662 * lockdep won't complain about its own locking errors.
3663 */
3664 if (lockdep_assert_locked())
3665 return 0;
3666
3667 chain = alloc_lock_chain();
3668 if (!chain) {
3669 if (!debug_locks_off_graph_unlock())
3670 return 0;
3671
3672 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3673 dump_stack();
3674 return 0;
3675 }
3676 chain->chain_key = chain_key;
3677 chain->irq_context = hlock->irq_context;
3678 i = get_first_held_lock(curr, hlock);
3679 chain->depth = curr->lockdep_depth + 1 - i;
3680
3681 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3682 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks));
3683 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3684
3685 j = alloc_chain_hlocks(chain->depth);
3686 if (j < 0) {
3687 if (!debug_locks_off_graph_unlock())
3688 return 0;
3689
3690 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3691 dump_stack();
3692 return 0;
3693 }
3694
3695 chain->base = j;
3696 for (j = 0; j < chain->depth - 1; j++, i++) {
3697 int lock_id = hlock_id(curr->held_locks + i);
3698
3699 chain_hlocks[chain->base + j] = lock_id;
3700 }
3701 chain_hlocks[chain->base + j] = hlock_id(hlock);
3702 hlist_add_head_rcu(&chain->entry, hash_head);
3703 debug_atomic_inc(chain_lookup_misses);
3704 inc_chains(chain->irq_context);
3705
3706 return 1;
3707 }
3708
3709 /*
3710 * Look up a dependency chain. Must be called with either the graph lock or
3711 * the RCU read lock held.
3712 */
lookup_chain_cache(u64 chain_key)3713 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3714 {
3715 struct hlist_head *hash_head = chainhashentry(chain_key);
3716 struct lock_chain *chain;
3717
3718 hlist_for_each_entry_rcu(chain, hash_head, entry) {
3719 if (READ_ONCE(chain->chain_key) == chain_key) {
3720 debug_atomic_inc(chain_lookup_hits);
3721 return chain;
3722 }
3723 }
3724 return NULL;
3725 }
3726
3727 /*
3728 * If the key is not present yet in dependency chain cache then
3729 * add it and return 1 - in this case the new dependency chain is
3730 * validated. If the key is already hashed, return 0.
3731 * (On return with 1 graph_lock is held.)
3732 */
lookup_chain_cache_add(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)3733 static inline int lookup_chain_cache_add(struct task_struct *curr,
3734 struct held_lock *hlock,
3735 u64 chain_key)
3736 {
3737 struct lock_class *class = hlock_class(hlock);
3738 struct lock_chain *chain = lookup_chain_cache(chain_key);
3739
3740 if (chain) {
3741 cache_hit:
3742 if (!check_no_collision(curr, hlock, chain))
3743 return 0;
3744
3745 if (very_verbose(class)) {
3746 printk("\nhash chain already cached, key: "
3747 "%016Lx tail class: [%px] %s\n",
3748 (unsigned long long)chain_key,
3749 class->key, class->name);
3750 }
3751
3752 return 0;
3753 }
3754
3755 if (very_verbose(class)) {
3756 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3757 (unsigned long long)chain_key, class->key, class->name);
3758 }
3759
3760 if (!graph_lock())
3761 return 0;
3762
3763 /*
3764 * We have to walk the chain again locked - to avoid duplicates:
3765 */
3766 chain = lookup_chain_cache(chain_key);
3767 if (chain) {
3768 graph_unlock();
3769 goto cache_hit;
3770 }
3771
3772 if (!add_chain_cache(curr, hlock, chain_key))
3773 return 0;
3774
3775 return 1;
3776 }
3777
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3778 static int validate_chain(struct task_struct *curr,
3779 struct held_lock *hlock,
3780 int chain_head, u64 chain_key)
3781 {
3782 /*
3783 * Trylock needs to maintain the stack of held locks, but it
3784 * does not add new dependencies, because trylock can be done
3785 * in any order.
3786 *
3787 * We look up the chain_key and do the O(N^2) check and update of
3788 * the dependencies only if this is a new dependency chain.
3789 * (If lookup_chain_cache_add() return with 1 it acquires
3790 * graph_lock for us)
3791 */
3792 if (!hlock->trylock && hlock->check &&
3793 lookup_chain_cache_add(curr, hlock, chain_key)) {
3794 /*
3795 * Check whether last held lock:
3796 *
3797 * - is irq-safe, if this lock is irq-unsafe
3798 * - is softirq-safe, if this lock is hardirq-unsafe
3799 *
3800 * And check whether the new lock's dependency graph
3801 * could lead back to the previous lock:
3802 *
3803 * - within the current held-lock stack
3804 * - across our accumulated lock dependency records
3805 *
3806 * any of these scenarios could lead to a deadlock.
3807 */
3808 /*
3809 * The simple case: does the current hold the same lock
3810 * already?
3811 */
3812 int ret = check_deadlock(curr, hlock);
3813
3814 if (!ret)
3815 return 0;
3816 /*
3817 * Add dependency only if this lock is not the head
3818 * of the chain, and if the new lock introduces no more
3819 * lock dependency (because we already hold a lock with the
3820 * same lock class) nor deadlock (because the nest_lock
3821 * serializes nesting locks), see the comments for
3822 * check_deadlock().
3823 */
3824 if (!chain_head && ret != 2) {
3825 if (!check_prevs_add(curr, hlock))
3826 return 0;
3827 }
3828
3829 graph_unlock();
3830 } else {
3831 /* after lookup_chain_cache_add(): */
3832 if (unlikely(!debug_locks))
3833 return 0;
3834 }
3835
3836 return 1;
3837 }
3838 #else
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3839 static inline int validate_chain(struct task_struct *curr,
3840 struct held_lock *hlock,
3841 int chain_head, u64 chain_key)
3842 {
3843 return 1;
3844 }
3845
init_chain_block_buckets(void)3846 static void init_chain_block_buckets(void) { }
3847 #endif /* CONFIG_PROVE_LOCKING */
3848
3849 /*
3850 * We are building curr_chain_key incrementally, so double-check
3851 * it from scratch, to make sure that it's done correctly:
3852 */
check_chain_key(struct task_struct * curr)3853 static void check_chain_key(struct task_struct *curr)
3854 {
3855 #ifdef CONFIG_DEBUG_LOCKDEP
3856 struct held_lock *hlock, *prev_hlock = NULL;
3857 unsigned int i;
3858 u64 chain_key = INITIAL_CHAIN_KEY;
3859
3860 for (i = 0; i < curr->lockdep_depth; i++) {
3861 hlock = curr->held_locks + i;
3862 if (chain_key != hlock->prev_chain_key) {
3863 debug_locks_off();
3864 /*
3865 * We got mighty confused, our chain keys don't match
3866 * with what we expect, someone trample on our task state?
3867 */
3868 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3869 curr->lockdep_depth, i,
3870 (unsigned long long)chain_key,
3871 (unsigned long long)hlock->prev_chain_key);
3872 return;
3873 }
3874
3875 /*
3876 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3877 * it registered lock class index?
3878 */
3879 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3880 return;
3881
3882 if (prev_hlock && (prev_hlock->irq_context !=
3883 hlock->irq_context))
3884 chain_key = INITIAL_CHAIN_KEY;
3885 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3886 prev_hlock = hlock;
3887 }
3888 if (chain_key != curr->curr_chain_key) {
3889 debug_locks_off();
3890 /*
3891 * More smoking hash instead of calculating it, damn see these
3892 * numbers float.. I bet that a pink elephant stepped on my memory.
3893 */
3894 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3895 curr->lockdep_depth, i,
3896 (unsigned long long)chain_key,
3897 (unsigned long long)curr->curr_chain_key);
3898 }
3899 #endif
3900 }
3901
3902 #ifdef CONFIG_PROVE_LOCKING
3903 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3904 enum lock_usage_bit new_bit);
3905
print_usage_bug_scenario(struct held_lock * lock)3906 static void print_usage_bug_scenario(struct held_lock *lock)
3907 {
3908 struct lock_class *class = hlock_class(lock);
3909
3910 printk(" Possible unsafe locking scenario:\n\n");
3911 printk(" CPU0\n");
3912 printk(" ----\n");
3913 printk(" lock(");
3914 __print_lock_name(class);
3915 printk(KERN_CONT ");\n");
3916 printk(" <Interrupt>\n");
3917 printk(" lock(");
3918 __print_lock_name(class);
3919 printk(KERN_CONT ");\n");
3920 printk("\n *** DEADLOCK ***\n\n");
3921 }
3922
3923 static void
print_usage_bug(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit prev_bit,enum lock_usage_bit new_bit)3924 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3925 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3926 {
3927 if (!debug_locks_off() || debug_locks_silent)
3928 return;
3929
3930 pr_warn("\n");
3931 pr_warn("================================\n");
3932 pr_warn("WARNING: inconsistent lock state\n");
3933 print_kernel_ident();
3934 pr_warn("--------------------------------\n");
3935
3936 pr_warn("inconsistent {%s} -> {%s} usage.\n",
3937 usage_str[prev_bit], usage_str[new_bit]);
3938
3939 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3940 curr->comm, task_pid_nr(curr),
3941 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3942 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3943 lockdep_hardirqs_enabled(),
3944 lockdep_softirqs_enabled(curr));
3945 print_lock(this);
3946
3947 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3948 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3949
3950 print_irqtrace_events(curr);
3951 pr_warn("\nother info that might help us debug this:\n");
3952 print_usage_bug_scenario(this);
3953
3954 lockdep_print_held_locks(curr);
3955
3956 pr_warn("\nstack backtrace:\n");
3957 dump_stack();
3958 }
3959
3960 /*
3961 * Print out an error if an invalid bit is set:
3962 */
3963 static inline int
valid_state(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit,enum lock_usage_bit bad_bit)3964 valid_state(struct task_struct *curr, struct held_lock *this,
3965 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3966 {
3967 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3968 graph_unlock();
3969 print_usage_bug(curr, this, bad_bit, new_bit);
3970 return 0;
3971 }
3972 return 1;
3973 }
3974
3975
3976 /*
3977 * print irq inversion bug:
3978 */
3979 static void
print_irq_inversion_bug(struct task_struct * curr,struct lock_list * root,struct lock_list * other,struct held_lock * this,int forwards,const char * irqclass)3980 print_irq_inversion_bug(struct task_struct *curr,
3981 struct lock_list *root, struct lock_list *other,
3982 struct held_lock *this, int forwards,
3983 const char *irqclass)
3984 {
3985 struct lock_list *entry = other;
3986 struct lock_list *middle = NULL;
3987 int depth;
3988
3989 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3990 return;
3991
3992 pr_warn("\n");
3993 pr_warn("========================================================\n");
3994 pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3995 print_kernel_ident();
3996 pr_warn("--------------------------------------------------------\n");
3997 pr_warn("%s/%d just changed the state of lock:\n",
3998 curr->comm, task_pid_nr(curr));
3999 print_lock(this);
4000 if (forwards)
4001 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
4002 else
4003 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
4004 print_lock_name(other->class);
4005 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
4006
4007 pr_warn("\nother info that might help us debug this:\n");
4008
4009 /* Find a middle lock (if one exists) */
4010 depth = get_lock_depth(other);
4011 do {
4012 if (depth == 0 && (entry != root)) {
4013 pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
4014 break;
4015 }
4016 middle = entry;
4017 entry = get_lock_parent(entry);
4018 depth--;
4019 } while (entry && entry != root && (depth >= 0));
4020 if (forwards)
4021 print_irq_lock_scenario(root, other,
4022 middle ? middle->class : root->class, other->class);
4023 else
4024 print_irq_lock_scenario(other, root,
4025 middle ? middle->class : other->class, root->class);
4026
4027 lockdep_print_held_locks(curr);
4028
4029 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4030 root->trace = save_trace();
4031 if (!root->trace)
4032 return;
4033 print_shortest_lock_dependencies(other, root);
4034
4035 pr_warn("\nstack backtrace:\n");
4036 dump_stack();
4037 }
4038
4039 /*
4040 * Prove that in the forwards-direction subgraph starting at <this>
4041 * there is no lock matching <mask>:
4042 */
4043 static int
check_usage_forwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit)4044 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4045 enum lock_usage_bit bit)
4046 {
4047 enum bfs_result ret;
4048 struct lock_list root;
4049 struct lock_list *target_entry;
4050 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4051 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4052
4053 bfs_init_root(&root, this);
4054 ret = find_usage_forwards(&root, usage_mask, &target_entry);
4055 if (bfs_error(ret)) {
4056 print_bfs_bug(ret);
4057 return 0;
4058 }
4059 if (ret == BFS_RNOMATCH)
4060 return 1;
4061
4062 /* Check whether write or read usage is the match */
4063 if (target_entry->class->usage_mask & lock_flag(bit)) {
4064 print_irq_inversion_bug(curr, &root, target_entry,
4065 this, 1, state_name(bit));
4066 } else {
4067 print_irq_inversion_bug(curr, &root, target_entry,
4068 this, 1, state_name(read_bit));
4069 }
4070
4071 return 0;
4072 }
4073
4074 /*
4075 * Prove that in the backwards-direction subgraph starting at <this>
4076 * there is no lock matching <mask>:
4077 */
4078 static int
check_usage_backwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit)4079 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4080 enum lock_usage_bit bit)
4081 {
4082 enum bfs_result ret;
4083 struct lock_list root;
4084 struct lock_list *target_entry;
4085 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4086 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4087
4088 bfs_init_rootb(&root, this);
4089 ret = find_usage_backwards(&root, usage_mask, &target_entry);
4090 if (bfs_error(ret)) {
4091 print_bfs_bug(ret);
4092 return 0;
4093 }
4094 if (ret == BFS_RNOMATCH)
4095 return 1;
4096
4097 /* Check whether write or read usage is the match */
4098 if (target_entry->class->usage_mask & lock_flag(bit)) {
4099 print_irq_inversion_bug(curr, &root, target_entry,
4100 this, 0, state_name(bit));
4101 } else {
4102 print_irq_inversion_bug(curr, &root, target_entry,
4103 this, 0, state_name(read_bit));
4104 }
4105
4106 return 0;
4107 }
4108
print_irqtrace_events(struct task_struct * curr)4109 void print_irqtrace_events(struct task_struct *curr)
4110 {
4111 const struct irqtrace_events *trace = &curr->irqtrace;
4112
4113 printk("irq event stamp: %u\n", trace->irq_events);
4114 printk("hardirqs last enabled at (%u): [<%px>] %pS\n",
4115 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4116 (void *)trace->hardirq_enable_ip);
4117 printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4118 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4119 (void *)trace->hardirq_disable_ip);
4120 printk("softirqs last enabled at (%u): [<%px>] %pS\n",
4121 trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4122 (void *)trace->softirq_enable_ip);
4123 printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4124 trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4125 (void *)trace->softirq_disable_ip);
4126 }
4127
HARDIRQ_verbose(struct lock_class * class)4128 static int HARDIRQ_verbose(struct lock_class *class)
4129 {
4130 #if HARDIRQ_VERBOSE
4131 return class_filter(class);
4132 #endif
4133 return 0;
4134 }
4135
SOFTIRQ_verbose(struct lock_class * class)4136 static int SOFTIRQ_verbose(struct lock_class *class)
4137 {
4138 #if SOFTIRQ_VERBOSE
4139 return class_filter(class);
4140 #endif
4141 return 0;
4142 }
4143
4144 static int (*state_verbose_f[])(struct lock_class *class) = {
4145 #define LOCKDEP_STATE(__STATE) \
4146 __STATE##_verbose,
4147 #include "lockdep_states.h"
4148 #undef LOCKDEP_STATE
4149 };
4150
state_verbose(enum lock_usage_bit bit,struct lock_class * class)4151 static inline int state_verbose(enum lock_usage_bit bit,
4152 struct lock_class *class)
4153 {
4154 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4155 }
4156
4157 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4158 enum lock_usage_bit bit, const char *name);
4159
4160 static int
mark_lock_irq(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)4161 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4162 enum lock_usage_bit new_bit)
4163 {
4164 int excl_bit = exclusive_bit(new_bit);
4165 int read = new_bit & LOCK_USAGE_READ_MASK;
4166 int dir = new_bit & LOCK_USAGE_DIR_MASK;
4167
4168 /*
4169 * Validate that this particular lock does not have conflicting
4170 * usage states.
4171 */
4172 if (!valid_state(curr, this, new_bit, excl_bit))
4173 return 0;
4174
4175 /*
4176 * Check for read in write conflicts
4177 */
4178 if (!read && !valid_state(curr, this, new_bit,
4179 excl_bit + LOCK_USAGE_READ_MASK))
4180 return 0;
4181
4182
4183 /*
4184 * Validate that the lock dependencies don't have conflicting usage
4185 * states.
4186 */
4187 if (dir) {
4188 /*
4189 * mark ENABLED has to look backwards -- to ensure no dependee
4190 * has USED_IN state, which, again, would allow recursion deadlocks.
4191 */
4192 if (!check_usage_backwards(curr, this, excl_bit))
4193 return 0;
4194 } else {
4195 /*
4196 * mark USED_IN has to look forwards -- to ensure no dependency
4197 * has ENABLED state, which would allow recursion deadlocks.
4198 */
4199 if (!check_usage_forwards(curr, this, excl_bit))
4200 return 0;
4201 }
4202
4203 if (state_verbose(new_bit, hlock_class(this)))
4204 return 2;
4205
4206 return 1;
4207 }
4208
4209 /*
4210 * Mark all held locks with a usage bit:
4211 */
4212 static int
mark_held_locks(struct task_struct * curr,enum lock_usage_bit base_bit)4213 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4214 {
4215 struct held_lock *hlock;
4216 int i;
4217
4218 for (i = 0; i < curr->lockdep_depth; i++) {
4219 enum lock_usage_bit hlock_bit = base_bit;
4220 hlock = curr->held_locks + i;
4221
4222 if (hlock->read)
4223 hlock_bit += LOCK_USAGE_READ_MASK;
4224
4225 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4226
4227 if (!hlock->check)
4228 continue;
4229
4230 if (!mark_lock(curr, hlock, hlock_bit))
4231 return 0;
4232 }
4233
4234 return 1;
4235 }
4236
4237 /*
4238 * Hardirqs will be enabled:
4239 */
__trace_hardirqs_on_caller(void)4240 static void __trace_hardirqs_on_caller(void)
4241 {
4242 struct task_struct *curr = current;
4243
4244 /*
4245 * We are going to turn hardirqs on, so set the
4246 * usage bit for all held locks:
4247 */
4248 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4249 return;
4250 /*
4251 * If we have softirqs enabled, then set the usage
4252 * bit for all held locks. (disabled hardirqs prevented
4253 * this bit from being set before)
4254 */
4255 if (curr->softirqs_enabled)
4256 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4257 }
4258
4259 /**
4260 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4261 *
4262 * Invoked before a possible transition to RCU idle from exit to user or
4263 * guest mode. This ensures that all RCU operations are done before RCU
4264 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4265 * invoked to set the final state.
4266 */
lockdep_hardirqs_on_prepare(void)4267 void lockdep_hardirqs_on_prepare(void)
4268 {
4269 if (unlikely(!debug_locks))
4270 return;
4271
4272 /*
4273 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4274 */
4275 if (unlikely(in_nmi()))
4276 return;
4277
4278 if (unlikely(this_cpu_read(lockdep_recursion)))
4279 return;
4280
4281 if (unlikely(lockdep_hardirqs_enabled())) {
4282 /*
4283 * Neither irq nor preemption are disabled here
4284 * so this is racy by nature but losing one hit
4285 * in a stat is not a big deal.
4286 */
4287 __debug_atomic_inc(redundant_hardirqs_on);
4288 return;
4289 }
4290
4291 /*
4292 * We're enabling irqs and according to our state above irqs weren't
4293 * already enabled, yet we find the hardware thinks they are in fact
4294 * enabled.. someone messed up their IRQ state tracing.
4295 */
4296 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4297 return;
4298
4299 /*
4300 * See the fine text that goes along with this variable definition.
4301 */
4302 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4303 return;
4304
4305 /*
4306 * Can't allow enabling interrupts while in an interrupt handler,
4307 * that's general bad form and such. Recursion, limited stack etc..
4308 */
4309 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4310 return;
4311
4312 current->hardirq_chain_key = current->curr_chain_key;
4313
4314 lockdep_recursion_inc();
4315 __trace_hardirqs_on_caller();
4316 lockdep_recursion_finish();
4317 }
4318 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4319
lockdep_hardirqs_on(unsigned long ip)4320 void noinstr lockdep_hardirqs_on(unsigned long ip)
4321 {
4322 struct irqtrace_events *trace = ¤t->irqtrace;
4323
4324 if (unlikely(!debug_locks))
4325 return;
4326
4327 /*
4328 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4329 * tracking state and hardware state are out of sync.
4330 *
4331 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4332 * and not rely on hardware state like normal interrupts.
4333 */
4334 if (unlikely(in_nmi())) {
4335 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4336 return;
4337
4338 /*
4339 * Skip:
4340 * - recursion check, because NMI can hit lockdep;
4341 * - hardware state check, because above;
4342 * - chain_key check, see lockdep_hardirqs_on_prepare().
4343 */
4344 goto skip_checks;
4345 }
4346
4347 if (unlikely(this_cpu_read(lockdep_recursion)))
4348 return;
4349
4350 if (lockdep_hardirqs_enabled()) {
4351 /*
4352 * Neither irq nor preemption are disabled here
4353 * so this is racy by nature but losing one hit
4354 * in a stat is not a big deal.
4355 */
4356 __debug_atomic_inc(redundant_hardirqs_on);
4357 return;
4358 }
4359
4360 /*
4361 * We're enabling irqs and according to our state above irqs weren't
4362 * already enabled, yet we find the hardware thinks they are in fact
4363 * enabled.. someone messed up their IRQ state tracing.
4364 */
4365 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4366 return;
4367
4368 /*
4369 * Ensure the lock stack remained unchanged between
4370 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4371 */
4372 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4373 current->curr_chain_key);
4374
4375 skip_checks:
4376 /* we'll do an OFF -> ON transition: */
4377 __this_cpu_write(hardirqs_enabled, 1);
4378 trace->hardirq_enable_ip = ip;
4379 trace->hardirq_enable_event = ++trace->irq_events;
4380 debug_atomic_inc(hardirqs_on_events);
4381 }
4382 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4383
4384 /*
4385 * Hardirqs were disabled:
4386 */
lockdep_hardirqs_off(unsigned long ip)4387 void noinstr lockdep_hardirqs_off(unsigned long ip)
4388 {
4389 if (unlikely(!debug_locks))
4390 return;
4391
4392 /*
4393 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4394 * they will restore the software state. This ensures the software
4395 * state is consistent inside NMIs as well.
4396 */
4397 if (in_nmi()) {
4398 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4399 return;
4400 } else if (__this_cpu_read(lockdep_recursion))
4401 return;
4402
4403 /*
4404 * So we're supposed to get called after you mask local IRQs, but for
4405 * some reason the hardware doesn't quite think you did a proper job.
4406 */
4407 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4408 return;
4409
4410 if (lockdep_hardirqs_enabled()) {
4411 struct irqtrace_events *trace = ¤t->irqtrace;
4412
4413 /*
4414 * We have done an ON -> OFF transition:
4415 */
4416 __this_cpu_write(hardirqs_enabled, 0);
4417 trace->hardirq_disable_ip = ip;
4418 trace->hardirq_disable_event = ++trace->irq_events;
4419 debug_atomic_inc(hardirqs_off_events);
4420 } else {
4421 debug_atomic_inc(redundant_hardirqs_off);
4422 }
4423 }
4424 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4425
4426 /*
4427 * Softirqs will be enabled:
4428 */
lockdep_softirqs_on(unsigned long ip)4429 void lockdep_softirqs_on(unsigned long ip)
4430 {
4431 struct irqtrace_events *trace = ¤t->irqtrace;
4432
4433 if (unlikely(!lockdep_enabled()))
4434 return;
4435
4436 /*
4437 * We fancy IRQs being disabled here, see softirq.c, avoids
4438 * funny state and nesting things.
4439 */
4440 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4441 return;
4442
4443 if (current->softirqs_enabled) {
4444 debug_atomic_inc(redundant_softirqs_on);
4445 return;
4446 }
4447
4448 lockdep_recursion_inc();
4449 /*
4450 * We'll do an OFF -> ON transition:
4451 */
4452 current->softirqs_enabled = 1;
4453 trace->softirq_enable_ip = ip;
4454 trace->softirq_enable_event = ++trace->irq_events;
4455 debug_atomic_inc(softirqs_on_events);
4456 /*
4457 * We are going to turn softirqs on, so set the
4458 * usage bit for all held locks, if hardirqs are
4459 * enabled too:
4460 */
4461 if (lockdep_hardirqs_enabled())
4462 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4463 lockdep_recursion_finish();
4464 }
4465
4466 /*
4467 * Softirqs were disabled:
4468 */
lockdep_softirqs_off(unsigned long ip)4469 void lockdep_softirqs_off(unsigned long ip)
4470 {
4471 if (unlikely(!lockdep_enabled()))
4472 return;
4473
4474 /*
4475 * We fancy IRQs being disabled here, see softirq.c
4476 */
4477 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4478 return;
4479
4480 if (current->softirqs_enabled) {
4481 struct irqtrace_events *trace = ¤t->irqtrace;
4482
4483 /*
4484 * We have done an ON -> OFF transition:
4485 */
4486 current->softirqs_enabled = 0;
4487 trace->softirq_disable_ip = ip;
4488 trace->softirq_disable_event = ++trace->irq_events;
4489 debug_atomic_inc(softirqs_off_events);
4490 /*
4491 * Whoops, we wanted softirqs off, so why aren't they?
4492 */
4493 DEBUG_LOCKS_WARN_ON(!softirq_count());
4494 } else
4495 debug_atomic_inc(redundant_softirqs_off);
4496 }
4497
4498 static int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)4499 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4500 {
4501 if (!check)
4502 goto lock_used;
4503
4504 /*
4505 * If non-trylock use in a hardirq or softirq context, then
4506 * mark the lock as used in these contexts:
4507 */
4508 if (!hlock->trylock) {
4509 if (hlock->read) {
4510 if (lockdep_hardirq_context())
4511 if (!mark_lock(curr, hlock,
4512 LOCK_USED_IN_HARDIRQ_READ))
4513 return 0;
4514 if (curr->softirq_context)
4515 if (!mark_lock(curr, hlock,
4516 LOCK_USED_IN_SOFTIRQ_READ))
4517 return 0;
4518 } else {
4519 if (lockdep_hardirq_context())
4520 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4521 return 0;
4522 if (curr->softirq_context)
4523 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4524 return 0;
4525 }
4526 }
4527 if (!hlock->hardirqs_off) {
4528 if (hlock->read) {
4529 if (!mark_lock(curr, hlock,
4530 LOCK_ENABLED_HARDIRQ_READ))
4531 return 0;
4532 if (curr->softirqs_enabled)
4533 if (!mark_lock(curr, hlock,
4534 LOCK_ENABLED_SOFTIRQ_READ))
4535 return 0;
4536 } else {
4537 if (!mark_lock(curr, hlock,
4538 LOCK_ENABLED_HARDIRQ))
4539 return 0;
4540 if (curr->softirqs_enabled)
4541 if (!mark_lock(curr, hlock,
4542 LOCK_ENABLED_SOFTIRQ))
4543 return 0;
4544 }
4545 }
4546
4547 lock_used:
4548 /* mark it as used: */
4549 if (!mark_lock(curr, hlock, LOCK_USED))
4550 return 0;
4551
4552 return 1;
4553 }
4554
task_irq_context(struct task_struct * task)4555 static inline unsigned int task_irq_context(struct task_struct *task)
4556 {
4557 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4558 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4559 }
4560
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)4561 static int separate_irq_context(struct task_struct *curr,
4562 struct held_lock *hlock)
4563 {
4564 unsigned int depth = curr->lockdep_depth;
4565
4566 /*
4567 * Keep track of points where we cross into an interrupt context:
4568 */
4569 if (depth) {
4570 struct held_lock *prev_hlock;
4571
4572 prev_hlock = curr->held_locks + depth-1;
4573 /*
4574 * If we cross into another context, reset the
4575 * hash key (this also prevents the checking and the
4576 * adding of the dependency to 'prev'):
4577 */
4578 if (prev_hlock->irq_context != hlock->irq_context)
4579 return 1;
4580 }
4581 return 0;
4582 }
4583
4584 /*
4585 * Mark a lock with a usage bit, and validate the state transition:
4586 */
mark_lock(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)4587 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4588 enum lock_usage_bit new_bit)
4589 {
4590 unsigned int new_mask, ret = 1;
4591
4592 if (new_bit >= LOCK_USAGE_STATES) {
4593 DEBUG_LOCKS_WARN_ON(1);
4594 return 0;
4595 }
4596
4597 if (new_bit == LOCK_USED && this->read)
4598 new_bit = LOCK_USED_READ;
4599
4600 new_mask = 1 << new_bit;
4601
4602 /*
4603 * If already set then do not dirty the cacheline,
4604 * nor do any checks:
4605 */
4606 if (likely(hlock_class(this)->usage_mask & new_mask))
4607 return 1;
4608
4609 if (!graph_lock())
4610 return 0;
4611 /*
4612 * Make sure we didn't race:
4613 */
4614 if (unlikely(hlock_class(this)->usage_mask & new_mask))
4615 goto unlock;
4616
4617 if (!hlock_class(this)->usage_mask)
4618 debug_atomic_dec(nr_unused_locks);
4619
4620 hlock_class(this)->usage_mask |= new_mask;
4621
4622 if (new_bit < LOCK_TRACE_STATES) {
4623 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4624 return 0;
4625 }
4626
4627 if (new_bit < LOCK_USED) {
4628 ret = mark_lock_irq(curr, this, new_bit);
4629 if (!ret)
4630 return 0;
4631 }
4632
4633 unlock:
4634 graph_unlock();
4635
4636 /*
4637 * We must printk outside of the graph_lock:
4638 */
4639 if (ret == 2) {
4640 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4641 print_lock(this);
4642 print_irqtrace_events(curr);
4643 dump_stack();
4644 }
4645
4646 return ret;
4647 }
4648
task_wait_context(struct task_struct * curr)4649 static inline short task_wait_context(struct task_struct *curr)
4650 {
4651 /*
4652 * Set appropriate wait type for the context; for IRQs we have to take
4653 * into account force_irqthread as that is implied by PREEMPT_RT.
4654 */
4655 if (lockdep_hardirq_context()) {
4656 /*
4657 * Check if force_irqthreads will run us threaded.
4658 */
4659 if (curr->hardirq_threaded || curr->irq_config)
4660 return LD_WAIT_CONFIG;
4661
4662 return LD_WAIT_SPIN;
4663 } else if (curr->softirq_context) {
4664 /*
4665 * Softirqs are always threaded.
4666 */
4667 return LD_WAIT_CONFIG;
4668 }
4669
4670 return LD_WAIT_MAX;
4671 }
4672
4673 static int
print_lock_invalid_wait_context(struct task_struct * curr,struct held_lock * hlock)4674 print_lock_invalid_wait_context(struct task_struct *curr,
4675 struct held_lock *hlock)
4676 {
4677 short curr_inner;
4678
4679 if (!debug_locks_off())
4680 return 0;
4681 if (debug_locks_silent)
4682 return 0;
4683
4684 pr_warn("\n");
4685 pr_warn("=============================\n");
4686 pr_warn("[ BUG: Invalid wait context ]\n");
4687 print_kernel_ident();
4688 pr_warn("-----------------------------\n");
4689
4690 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4691 print_lock(hlock);
4692
4693 pr_warn("other info that might help us debug this:\n");
4694
4695 curr_inner = task_wait_context(curr);
4696 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4697
4698 lockdep_print_held_locks(curr);
4699
4700 pr_warn("stack backtrace:\n");
4701 dump_stack();
4702
4703 return 0;
4704 }
4705
4706 /*
4707 * Verify the wait_type context.
4708 *
4709 * This check validates we take locks in the right wait-type order; that is it
4710 * ensures that we do not take mutexes inside spinlocks and do not attempt to
4711 * acquire spinlocks inside raw_spinlocks and the sort.
4712 *
4713 * The entire thing is slightly more complex because of RCU, RCU is a lock that
4714 * can be taken from (pretty much) any context but also has constraints.
4715 * However when taken in a stricter environment the RCU lock does not loosen
4716 * the constraints.
4717 *
4718 * Therefore we must look for the strictest environment in the lock stack and
4719 * compare that to the lock we're trying to acquire.
4720 */
check_wait_context(struct task_struct * curr,struct held_lock * next)4721 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4722 {
4723 u8 next_inner = hlock_class(next)->wait_type_inner;
4724 u8 next_outer = hlock_class(next)->wait_type_outer;
4725 u8 curr_inner;
4726 int depth;
4727
4728 if (!next_inner || next->trylock)
4729 return 0;
4730
4731 if (!next_outer)
4732 next_outer = next_inner;
4733
4734 /*
4735 * Find start of current irq_context..
4736 */
4737 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4738 struct held_lock *prev = curr->held_locks + depth;
4739 if (prev->irq_context != next->irq_context)
4740 break;
4741 }
4742 depth++;
4743
4744 curr_inner = task_wait_context(curr);
4745
4746 for (; depth < curr->lockdep_depth; depth++) {
4747 struct held_lock *prev = curr->held_locks + depth;
4748 u8 prev_inner = hlock_class(prev)->wait_type_inner;
4749
4750 if (prev_inner) {
4751 /*
4752 * We can have a bigger inner than a previous one
4753 * when outer is smaller than inner, as with RCU.
4754 *
4755 * Also due to trylocks.
4756 */
4757 curr_inner = min(curr_inner, prev_inner);
4758 }
4759 }
4760
4761 if (next_outer > curr_inner)
4762 return print_lock_invalid_wait_context(curr, next);
4763
4764 return 0;
4765 }
4766
4767 #else /* CONFIG_PROVE_LOCKING */
4768
4769 static inline int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)4770 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4771 {
4772 return 1;
4773 }
4774
task_irq_context(struct task_struct * task)4775 static inline unsigned int task_irq_context(struct task_struct *task)
4776 {
4777 return 0;
4778 }
4779
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)4780 static inline int separate_irq_context(struct task_struct *curr,
4781 struct held_lock *hlock)
4782 {
4783 return 0;
4784 }
4785
check_wait_context(struct task_struct * curr,struct held_lock * next)4786 static inline int check_wait_context(struct task_struct *curr,
4787 struct held_lock *next)
4788 {
4789 return 0;
4790 }
4791
4792 #endif /* CONFIG_PROVE_LOCKING */
4793
4794 /*
4795 * Initialize a lock instance's lock-class mapping info:
4796 */
lockdep_init_map_type(struct lockdep_map * lock,const char * name,struct lock_class_key * key,int subclass,u8 inner,u8 outer,u8 lock_type)4797 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4798 struct lock_class_key *key, int subclass,
4799 u8 inner, u8 outer, u8 lock_type)
4800 {
4801 int i;
4802
4803 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4804 lock->class_cache[i] = NULL;
4805
4806 #ifdef CONFIG_LOCK_STAT
4807 lock->cpu = raw_smp_processor_id();
4808 #endif
4809
4810 /*
4811 * Can't be having no nameless bastards around this place!
4812 */
4813 if (DEBUG_LOCKS_WARN_ON(!name)) {
4814 lock->name = "NULL";
4815 return;
4816 }
4817
4818 lock->name = name;
4819
4820 lock->wait_type_outer = outer;
4821 lock->wait_type_inner = inner;
4822 lock->lock_type = lock_type;
4823
4824 /*
4825 * No key, no joy, we need to hash something.
4826 */
4827 if (DEBUG_LOCKS_WARN_ON(!key))
4828 return;
4829 /*
4830 * Sanity check, the lock-class key must either have been allocated
4831 * statically or must have been registered as a dynamic key.
4832 */
4833 if (!static_obj(key) && !is_dynamic_key(key)) {
4834 if (debug_locks)
4835 printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4836 DEBUG_LOCKS_WARN_ON(1);
4837 return;
4838 }
4839 lock->key = key;
4840
4841 if (unlikely(!debug_locks))
4842 return;
4843
4844 if (subclass) {
4845 unsigned long flags;
4846
4847 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4848 return;
4849
4850 raw_local_irq_save(flags);
4851 lockdep_recursion_inc();
4852 register_lock_class(lock, subclass, 1);
4853 lockdep_recursion_finish();
4854 raw_local_irq_restore(flags);
4855 }
4856 }
4857 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4858
4859 struct lock_class_key __lockdep_no_validate__;
4860 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4861
4862 static void
print_lock_nested_lock_not_held(struct task_struct * curr,struct held_lock * hlock)4863 print_lock_nested_lock_not_held(struct task_struct *curr,
4864 struct held_lock *hlock)
4865 {
4866 if (!debug_locks_off())
4867 return;
4868 if (debug_locks_silent)
4869 return;
4870
4871 pr_warn("\n");
4872 pr_warn("==================================\n");
4873 pr_warn("WARNING: Nested lock was not taken\n");
4874 print_kernel_ident();
4875 pr_warn("----------------------------------\n");
4876
4877 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4878 print_lock(hlock);
4879
4880 pr_warn("\nbut this task is not holding:\n");
4881 pr_warn("%s\n", hlock->nest_lock->name);
4882
4883 pr_warn("\nstack backtrace:\n");
4884 dump_stack();
4885
4886 pr_warn("\nother info that might help us debug this:\n");
4887 lockdep_print_held_locks(curr);
4888
4889 pr_warn("\nstack backtrace:\n");
4890 dump_stack();
4891 }
4892
4893 static int __lock_is_held(const struct lockdep_map *lock, int read);
4894
4895 /*
4896 * This gets called for every mutex_lock*()/spin_lock*() operation.
4897 * We maintain the dependency maps and validate the locking attempt:
4898 *
4899 * The callers must make sure that IRQs are disabled before calling it,
4900 * otherwise we could get an interrupt which would want to take locks,
4901 * which would end up in lockdep again.
4902 */
__lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,int hardirqs_off,struct lockdep_map * nest_lock,unsigned long ip,int references,int pin_count)4903 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4904 int trylock, int read, int check, int hardirqs_off,
4905 struct lockdep_map *nest_lock, unsigned long ip,
4906 int references, int pin_count)
4907 {
4908 struct task_struct *curr = current;
4909 struct lock_class *class = NULL;
4910 struct held_lock *hlock;
4911 unsigned int depth;
4912 int chain_head = 0;
4913 int class_idx;
4914 u64 chain_key;
4915
4916 if (unlikely(!debug_locks))
4917 return 0;
4918
4919 if (!prove_locking || lock->key == &__lockdep_no_validate__)
4920 check = 0;
4921
4922 if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4923 class = lock->class_cache[subclass];
4924 /*
4925 * Not cached?
4926 */
4927 if (unlikely(!class)) {
4928 class = register_lock_class(lock, subclass, 0);
4929 if (!class)
4930 return 0;
4931 }
4932
4933 debug_class_ops_inc(class);
4934
4935 if (very_verbose(class)) {
4936 printk("\nacquire class [%px] %s", class->key, class->name);
4937 if (class->name_version > 1)
4938 printk(KERN_CONT "#%d", class->name_version);
4939 printk(KERN_CONT "\n");
4940 dump_stack();
4941 }
4942
4943 /*
4944 * Add the lock to the list of currently held locks.
4945 * (we dont increase the depth just yet, up until the
4946 * dependency checks are done)
4947 */
4948 depth = curr->lockdep_depth;
4949 /*
4950 * Ran out of static storage for our per-task lock stack again have we?
4951 */
4952 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4953 return 0;
4954
4955 class_idx = class - lock_classes;
4956
4957 if (depth) { /* we're holding locks */
4958 hlock = curr->held_locks + depth - 1;
4959 if (hlock->class_idx == class_idx && nest_lock) {
4960 if (!references)
4961 references++;
4962
4963 if (!hlock->references)
4964 hlock->references++;
4965
4966 hlock->references += references;
4967
4968 /* Overflow */
4969 if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4970 return 0;
4971
4972 return 2;
4973 }
4974 }
4975
4976 hlock = curr->held_locks + depth;
4977 /*
4978 * Plain impossible, we just registered it and checked it weren't no
4979 * NULL like.. I bet this mushroom I ate was good!
4980 */
4981 if (DEBUG_LOCKS_WARN_ON(!class))
4982 return 0;
4983 hlock->class_idx = class_idx;
4984 hlock->acquire_ip = ip;
4985 hlock->instance = lock;
4986 hlock->nest_lock = nest_lock;
4987 hlock->irq_context = task_irq_context(curr);
4988 hlock->trylock = trylock;
4989 hlock->read = read;
4990 hlock->check = check;
4991 hlock->hardirqs_off = !!hardirqs_off;
4992 hlock->references = references;
4993 #ifdef CONFIG_LOCK_STAT
4994 hlock->waittime_stamp = 0;
4995 hlock->holdtime_stamp = lockstat_clock();
4996 #endif
4997 hlock->pin_count = pin_count;
4998
4999 if (check_wait_context(curr, hlock))
5000 return 0;
5001
5002 /* Initialize the lock usage bit */
5003 if (!mark_usage(curr, hlock, check))
5004 return 0;
5005
5006 /*
5007 * Calculate the chain hash: it's the combined hash of all the
5008 * lock keys along the dependency chain. We save the hash value
5009 * at every step so that we can get the current hash easily
5010 * after unlock. The chain hash is then used to cache dependency
5011 * results.
5012 *
5013 * The 'key ID' is what is the most compact key value to drive
5014 * the hash, not class->key.
5015 */
5016 /*
5017 * Whoops, we did it again.. class_idx is invalid.
5018 */
5019 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5020 return 0;
5021
5022 chain_key = curr->curr_chain_key;
5023 if (!depth) {
5024 /*
5025 * How can we have a chain hash when we ain't got no keys?!
5026 */
5027 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5028 return 0;
5029 chain_head = 1;
5030 }
5031
5032 hlock->prev_chain_key = chain_key;
5033 if (separate_irq_context(curr, hlock)) {
5034 chain_key = INITIAL_CHAIN_KEY;
5035 chain_head = 1;
5036 }
5037 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5038
5039 if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5040 print_lock_nested_lock_not_held(curr, hlock);
5041 return 0;
5042 }
5043
5044 if (!debug_locks_silent) {
5045 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5046 WARN_ON_ONCE(!hlock_class(hlock)->key);
5047 }
5048
5049 if (!validate_chain(curr, hlock, chain_head, chain_key))
5050 return 0;
5051
5052 curr->curr_chain_key = chain_key;
5053 curr->lockdep_depth++;
5054 check_chain_key(curr);
5055 #ifdef CONFIG_DEBUG_LOCKDEP
5056 if (unlikely(!debug_locks))
5057 return 0;
5058 #endif
5059 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5060 debug_locks_off();
5061 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5062 printk(KERN_DEBUG "depth: %i max: %lu!\n",
5063 curr->lockdep_depth, MAX_LOCK_DEPTH);
5064
5065 lockdep_print_held_locks(current);
5066 debug_show_all_locks();
5067 dump_stack();
5068
5069 return 0;
5070 }
5071
5072 if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5073 max_lockdep_depth = curr->lockdep_depth;
5074
5075 return 1;
5076 }
5077
print_unlock_imbalance_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)5078 static void print_unlock_imbalance_bug(struct task_struct *curr,
5079 struct lockdep_map *lock,
5080 unsigned long ip)
5081 {
5082 if (!debug_locks_off())
5083 return;
5084 if (debug_locks_silent)
5085 return;
5086
5087 pr_warn("\n");
5088 pr_warn("=====================================\n");
5089 pr_warn("WARNING: bad unlock balance detected!\n");
5090 print_kernel_ident();
5091 pr_warn("-------------------------------------\n");
5092 pr_warn("%s/%d is trying to release lock (",
5093 curr->comm, task_pid_nr(curr));
5094 print_lockdep_cache(lock);
5095 pr_cont(") at:\n");
5096 print_ip_sym(KERN_WARNING, ip);
5097 pr_warn("but there are no more locks to release!\n");
5098 pr_warn("\nother info that might help us debug this:\n");
5099 lockdep_print_held_locks(curr);
5100
5101 pr_warn("\nstack backtrace:\n");
5102 dump_stack();
5103 }
5104
match_held_lock(const struct held_lock * hlock,const struct lockdep_map * lock)5105 static noinstr int match_held_lock(const struct held_lock *hlock,
5106 const struct lockdep_map *lock)
5107 {
5108 if (hlock->instance == lock)
5109 return 1;
5110
5111 if (hlock->references) {
5112 const struct lock_class *class = lock->class_cache[0];
5113
5114 if (!class)
5115 class = look_up_lock_class(lock, 0);
5116
5117 /*
5118 * If look_up_lock_class() failed to find a class, we're trying
5119 * to test if we hold a lock that has never yet been acquired.
5120 * Clearly if the lock hasn't been acquired _ever_, we're not
5121 * holding it either, so report failure.
5122 */
5123 if (!class)
5124 return 0;
5125
5126 /*
5127 * References, but not a lock we're actually ref-counting?
5128 * State got messed up, follow the sites that change ->references
5129 * and try to make sense of it.
5130 */
5131 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5132 return 0;
5133
5134 if (hlock->class_idx == class - lock_classes)
5135 return 1;
5136 }
5137
5138 return 0;
5139 }
5140
5141 /* @depth must not be zero */
find_held_lock(struct task_struct * curr,struct lockdep_map * lock,unsigned int depth,int * idx)5142 static struct held_lock *find_held_lock(struct task_struct *curr,
5143 struct lockdep_map *lock,
5144 unsigned int depth, int *idx)
5145 {
5146 struct held_lock *ret, *hlock, *prev_hlock;
5147 int i;
5148
5149 i = depth - 1;
5150 hlock = curr->held_locks + i;
5151 ret = hlock;
5152 if (match_held_lock(hlock, lock))
5153 goto out;
5154
5155 ret = NULL;
5156 for (i--, prev_hlock = hlock--;
5157 i >= 0;
5158 i--, prev_hlock = hlock--) {
5159 /*
5160 * We must not cross into another context:
5161 */
5162 if (prev_hlock->irq_context != hlock->irq_context) {
5163 ret = NULL;
5164 break;
5165 }
5166 if (match_held_lock(hlock, lock)) {
5167 ret = hlock;
5168 break;
5169 }
5170 }
5171
5172 out:
5173 *idx = i;
5174 return ret;
5175 }
5176
reacquire_held_locks(struct task_struct * curr,unsigned int depth,int idx,unsigned int * merged)5177 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5178 int idx, unsigned int *merged)
5179 {
5180 struct held_lock *hlock;
5181 int first_idx = idx;
5182
5183 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5184 return 0;
5185
5186 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5187 switch (__lock_acquire(hlock->instance,
5188 hlock_class(hlock)->subclass,
5189 hlock->trylock,
5190 hlock->read, hlock->check,
5191 hlock->hardirqs_off,
5192 hlock->nest_lock, hlock->acquire_ip,
5193 hlock->references, hlock->pin_count)) {
5194 case 0:
5195 return 1;
5196 case 1:
5197 break;
5198 case 2:
5199 *merged += (idx == first_idx);
5200 break;
5201 default:
5202 WARN_ON(1);
5203 return 0;
5204 }
5205 }
5206 return 0;
5207 }
5208
5209 static int
__lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)5210 __lock_set_class(struct lockdep_map *lock, const char *name,
5211 struct lock_class_key *key, unsigned int subclass,
5212 unsigned long ip)
5213 {
5214 struct task_struct *curr = current;
5215 unsigned int depth, merged = 0;
5216 struct held_lock *hlock;
5217 struct lock_class *class;
5218 int i;
5219
5220 if (unlikely(!debug_locks))
5221 return 0;
5222
5223 depth = curr->lockdep_depth;
5224 /*
5225 * This function is about (re)setting the class of a held lock,
5226 * yet we're not actually holding any locks. Naughty user!
5227 */
5228 if (DEBUG_LOCKS_WARN_ON(!depth))
5229 return 0;
5230
5231 hlock = find_held_lock(curr, lock, depth, &i);
5232 if (!hlock) {
5233 print_unlock_imbalance_bug(curr, lock, ip);
5234 return 0;
5235 }
5236
5237 lockdep_init_map_type(lock, name, key, 0,
5238 lock->wait_type_inner,
5239 lock->wait_type_outer,
5240 lock->lock_type);
5241 class = register_lock_class(lock, subclass, 0);
5242 hlock->class_idx = class - lock_classes;
5243
5244 curr->lockdep_depth = i;
5245 curr->curr_chain_key = hlock->prev_chain_key;
5246
5247 if (reacquire_held_locks(curr, depth, i, &merged))
5248 return 0;
5249
5250 /*
5251 * I took it apart and put it back together again, except now I have
5252 * these 'spare' parts.. where shall I put them.
5253 */
5254 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5255 return 0;
5256 return 1;
5257 }
5258
__lock_downgrade(struct lockdep_map * lock,unsigned long ip)5259 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5260 {
5261 struct task_struct *curr = current;
5262 unsigned int depth, merged = 0;
5263 struct held_lock *hlock;
5264 int i;
5265
5266 if (unlikely(!debug_locks))
5267 return 0;
5268
5269 depth = curr->lockdep_depth;
5270 /*
5271 * This function is about (re)setting the class of a held lock,
5272 * yet we're not actually holding any locks. Naughty user!
5273 */
5274 if (DEBUG_LOCKS_WARN_ON(!depth))
5275 return 0;
5276
5277 hlock = find_held_lock(curr, lock, depth, &i);
5278 if (!hlock) {
5279 print_unlock_imbalance_bug(curr, lock, ip);
5280 return 0;
5281 }
5282
5283 curr->lockdep_depth = i;
5284 curr->curr_chain_key = hlock->prev_chain_key;
5285
5286 WARN(hlock->read, "downgrading a read lock");
5287 hlock->read = 1;
5288 hlock->acquire_ip = ip;
5289
5290 if (reacquire_held_locks(curr, depth, i, &merged))
5291 return 0;
5292
5293 /* Merging can't happen with unchanged classes.. */
5294 if (DEBUG_LOCKS_WARN_ON(merged))
5295 return 0;
5296
5297 /*
5298 * I took it apart and put it back together again, except now I have
5299 * these 'spare' parts.. where shall I put them.
5300 */
5301 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5302 return 0;
5303
5304 return 1;
5305 }
5306
5307 /*
5308 * Remove the lock from the list of currently held locks - this gets
5309 * called on mutex_unlock()/spin_unlock*() (or on a failed
5310 * mutex_lock_interruptible()).
5311 */
5312 static int
__lock_release(struct lockdep_map * lock,unsigned long ip)5313 __lock_release(struct lockdep_map *lock, unsigned long ip)
5314 {
5315 struct task_struct *curr = current;
5316 unsigned int depth, merged = 1;
5317 struct held_lock *hlock;
5318 int i;
5319
5320 if (unlikely(!debug_locks))
5321 return 0;
5322
5323 depth = curr->lockdep_depth;
5324 /*
5325 * So we're all set to release this lock.. wait what lock? We don't
5326 * own any locks, you've been drinking again?
5327 */
5328 if (depth <= 0) {
5329 print_unlock_imbalance_bug(curr, lock, ip);
5330 return 0;
5331 }
5332
5333 /*
5334 * Check whether the lock exists in the current stack
5335 * of held locks:
5336 */
5337 hlock = find_held_lock(curr, lock, depth, &i);
5338 if (!hlock) {
5339 print_unlock_imbalance_bug(curr, lock, ip);
5340 return 0;
5341 }
5342
5343 if (hlock->instance == lock)
5344 lock_release_holdtime(hlock);
5345
5346 WARN(hlock->pin_count, "releasing a pinned lock\n");
5347
5348 if (hlock->references) {
5349 hlock->references--;
5350 if (hlock->references) {
5351 /*
5352 * We had, and after removing one, still have
5353 * references, the current lock stack is still
5354 * valid. We're done!
5355 */
5356 return 1;
5357 }
5358 }
5359
5360 /*
5361 * We have the right lock to unlock, 'hlock' points to it.
5362 * Now we remove it from the stack, and add back the other
5363 * entries (if any), recalculating the hash along the way:
5364 */
5365
5366 curr->lockdep_depth = i;
5367 curr->curr_chain_key = hlock->prev_chain_key;
5368
5369 /*
5370 * The most likely case is when the unlock is on the innermost
5371 * lock. In this case, we are done!
5372 */
5373 if (i == depth-1)
5374 return 1;
5375
5376 if (reacquire_held_locks(curr, depth, i + 1, &merged))
5377 return 0;
5378
5379 /*
5380 * We had N bottles of beer on the wall, we drank one, but now
5381 * there's not N-1 bottles of beer left on the wall...
5382 * Pouring two of the bottles together is acceptable.
5383 */
5384 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5385
5386 /*
5387 * Since reacquire_held_locks() would have called check_chain_key()
5388 * indirectly via __lock_acquire(), we don't need to do it again
5389 * on return.
5390 */
5391 return 0;
5392 }
5393
5394 static __always_inline
__lock_is_held(const struct lockdep_map * lock,int read)5395 int __lock_is_held(const struct lockdep_map *lock, int read)
5396 {
5397 struct task_struct *curr = current;
5398 int i;
5399
5400 for (i = 0; i < curr->lockdep_depth; i++) {
5401 struct held_lock *hlock = curr->held_locks + i;
5402
5403 if (match_held_lock(hlock, lock)) {
5404 if (read == -1 || !!hlock->read == read)
5405 return LOCK_STATE_HELD;
5406
5407 return LOCK_STATE_NOT_HELD;
5408 }
5409 }
5410
5411 return LOCK_STATE_NOT_HELD;
5412 }
5413
__lock_pin_lock(struct lockdep_map * lock)5414 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5415 {
5416 struct pin_cookie cookie = NIL_COOKIE;
5417 struct task_struct *curr = current;
5418 int i;
5419
5420 if (unlikely(!debug_locks))
5421 return cookie;
5422
5423 for (i = 0; i < curr->lockdep_depth; i++) {
5424 struct held_lock *hlock = curr->held_locks + i;
5425
5426 if (match_held_lock(hlock, lock)) {
5427 /*
5428 * Grab 16bits of randomness; this is sufficient to not
5429 * be guessable and still allows some pin nesting in
5430 * our u32 pin_count.
5431 */
5432 cookie.val = 1 + (sched_clock() & 0xffff);
5433 hlock->pin_count += cookie.val;
5434 return cookie;
5435 }
5436 }
5437
5438 WARN(1, "pinning an unheld lock\n");
5439 return cookie;
5440 }
5441
__lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5442 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5443 {
5444 struct task_struct *curr = current;
5445 int i;
5446
5447 if (unlikely(!debug_locks))
5448 return;
5449
5450 for (i = 0; i < curr->lockdep_depth; i++) {
5451 struct held_lock *hlock = curr->held_locks + i;
5452
5453 if (match_held_lock(hlock, lock)) {
5454 hlock->pin_count += cookie.val;
5455 return;
5456 }
5457 }
5458
5459 WARN(1, "pinning an unheld lock\n");
5460 }
5461
__lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5462 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5463 {
5464 struct task_struct *curr = current;
5465 int i;
5466
5467 if (unlikely(!debug_locks))
5468 return;
5469
5470 for (i = 0; i < curr->lockdep_depth; i++) {
5471 struct held_lock *hlock = curr->held_locks + i;
5472
5473 if (match_held_lock(hlock, lock)) {
5474 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5475 return;
5476
5477 hlock->pin_count -= cookie.val;
5478
5479 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5480 hlock->pin_count = 0;
5481
5482 return;
5483 }
5484 }
5485
5486 WARN(1, "unpinning an unheld lock\n");
5487 }
5488
5489 /*
5490 * Check whether we follow the irq-flags state precisely:
5491 */
check_flags(unsigned long flags)5492 static noinstr void check_flags(unsigned long flags)
5493 {
5494 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5495 if (!debug_locks)
5496 return;
5497
5498 /* Get the warning out.. */
5499 instrumentation_begin();
5500
5501 if (irqs_disabled_flags(flags)) {
5502 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5503 printk("possible reason: unannotated irqs-off.\n");
5504 }
5505 } else {
5506 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5507 printk("possible reason: unannotated irqs-on.\n");
5508 }
5509 }
5510
5511 #ifndef CONFIG_PREEMPT_RT
5512 /*
5513 * We dont accurately track softirq state in e.g.
5514 * hardirq contexts (such as on 4KSTACKS), so only
5515 * check if not in hardirq contexts:
5516 */
5517 if (!hardirq_count()) {
5518 if (softirq_count()) {
5519 /* like the above, but with softirqs */
5520 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5521 } else {
5522 /* lick the above, does it taste good? */
5523 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5524 }
5525 }
5526 #endif
5527
5528 if (!debug_locks)
5529 print_irqtrace_events(current);
5530
5531 instrumentation_end();
5532 #endif
5533 }
5534
lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)5535 void lock_set_class(struct lockdep_map *lock, const char *name,
5536 struct lock_class_key *key, unsigned int subclass,
5537 unsigned long ip)
5538 {
5539 unsigned long flags;
5540
5541 if (unlikely(!lockdep_enabled()))
5542 return;
5543
5544 raw_local_irq_save(flags);
5545 lockdep_recursion_inc();
5546 check_flags(flags);
5547 if (__lock_set_class(lock, name, key, subclass, ip))
5548 check_chain_key(current);
5549 lockdep_recursion_finish();
5550 raw_local_irq_restore(flags);
5551 }
5552 EXPORT_SYMBOL_GPL(lock_set_class);
5553
lock_downgrade(struct lockdep_map * lock,unsigned long ip)5554 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5555 {
5556 unsigned long flags;
5557
5558 if (unlikely(!lockdep_enabled()))
5559 return;
5560
5561 raw_local_irq_save(flags);
5562 lockdep_recursion_inc();
5563 check_flags(flags);
5564 if (__lock_downgrade(lock, ip))
5565 check_chain_key(current);
5566 lockdep_recursion_finish();
5567 raw_local_irq_restore(flags);
5568 }
5569 EXPORT_SYMBOL_GPL(lock_downgrade);
5570
5571 /* NMI context !!! */
verify_lock_unused(struct lockdep_map * lock,struct held_lock * hlock,int subclass)5572 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5573 {
5574 #ifdef CONFIG_PROVE_LOCKING
5575 struct lock_class *class = look_up_lock_class(lock, subclass);
5576 unsigned long mask = LOCKF_USED;
5577
5578 /* if it doesn't have a class (yet), it certainly hasn't been used yet */
5579 if (!class)
5580 return;
5581
5582 /*
5583 * READ locks only conflict with USED, such that if we only ever use
5584 * READ locks, there is no deadlock possible -- RCU.
5585 */
5586 if (!hlock->read)
5587 mask |= LOCKF_USED_READ;
5588
5589 if (!(class->usage_mask & mask))
5590 return;
5591
5592 hlock->class_idx = class - lock_classes;
5593
5594 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5595 #endif
5596 }
5597
lockdep_nmi(void)5598 static bool lockdep_nmi(void)
5599 {
5600 if (raw_cpu_read(lockdep_recursion))
5601 return false;
5602
5603 if (!in_nmi())
5604 return false;
5605
5606 return true;
5607 }
5608
5609 /*
5610 * read_lock() is recursive if:
5611 * 1. We force lockdep think this way in selftests or
5612 * 2. The implementation is not queued read/write lock or
5613 * 3. The locker is at an in_interrupt() context.
5614 */
read_lock_is_recursive(void)5615 bool read_lock_is_recursive(void)
5616 {
5617 return force_read_lock_recursive ||
5618 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5619 in_interrupt();
5620 }
5621 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5622
5623 /*
5624 * We are not always called with irqs disabled - do that here,
5625 * and also avoid lockdep recursion:
5626 */
lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,struct lockdep_map * nest_lock,unsigned long ip)5627 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5628 int trylock, int read, int check,
5629 struct lockdep_map *nest_lock, unsigned long ip)
5630 {
5631 unsigned long flags;
5632
5633 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5634
5635 if (!debug_locks)
5636 return;
5637
5638 if (unlikely(!lockdep_enabled())) {
5639 /* XXX allow trylock from NMI ?!? */
5640 if (lockdep_nmi() && !trylock) {
5641 struct held_lock hlock;
5642
5643 hlock.acquire_ip = ip;
5644 hlock.instance = lock;
5645 hlock.nest_lock = nest_lock;
5646 hlock.irq_context = 2; // XXX
5647 hlock.trylock = trylock;
5648 hlock.read = read;
5649 hlock.check = check;
5650 hlock.hardirqs_off = true;
5651 hlock.references = 0;
5652
5653 verify_lock_unused(lock, &hlock, subclass);
5654 }
5655 return;
5656 }
5657
5658 raw_local_irq_save(flags);
5659 check_flags(flags);
5660
5661 lockdep_recursion_inc();
5662 __lock_acquire(lock, subclass, trylock, read, check,
5663 irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5664 lockdep_recursion_finish();
5665 raw_local_irq_restore(flags);
5666 }
5667 EXPORT_SYMBOL_GPL(lock_acquire);
5668
lock_release(struct lockdep_map * lock,unsigned long ip)5669 void lock_release(struct lockdep_map *lock, unsigned long ip)
5670 {
5671 unsigned long flags;
5672
5673 trace_lock_release(lock, ip);
5674
5675 if (unlikely(!lockdep_enabled()))
5676 return;
5677
5678 raw_local_irq_save(flags);
5679 check_flags(flags);
5680
5681 lockdep_recursion_inc();
5682 if (__lock_release(lock, ip))
5683 check_chain_key(current);
5684 lockdep_recursion_finish();
5685 raw_local_irq_restore(flags);
5686 }
5687 EXPORT_SYMBOL_GPL(lock_release);
5688
lock_is_held_type(const struct lockdep_map * lock,int read)5689 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5690 {
5691 unsigned long flags;
5692 int ret = LOCK_STATE_NOT_HELD;
5693
5694 /*
5695 * Avoid false negative lockdep_assert_held() and
5696 * lockdep_assert_not_held().
5697 */
5698 if (unlikely(!lockdep_enabled()))
5699 return LOCK_STATE_UNKNOWN;
5700
5701 raw_local_irq_save(flags);
5702 check_flags(flags);
5703
5704 lockdep_recursion_inc();
5705 ret = __lock_is_held(lock, read);
5706 lockdep_recursion_finish();
5707 raw_local_irq_restore(flags);
5708
5709 return ret;
5710 }
5711 EXPORT_SYMBOL_GPL(lock_is_held_type);
5712 NOKPROBE_SYMBOL(lock_is_held_type);
5713
lock_pin_lock(struct lockdep_map * lock)5714 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5715 {
5716 struct pin_cookie cookie = NIL_COOKIE;
5717 unsigned long flags;
5718
5719 if (unlikely(!lockdep_enabled()))
5720 return cookie;
5721
5722 raw_local_irq_save(flags);
5723 check_flags(flags);
5724
5725 lockdep_recursion_inc();
5726 cookie = __lock_pin_lock(lock);
5727 lockdep_recursion_finish();
5728 raw_local_irq_restore(flags);
5729
5730 return cookie;
5731 }
5732 EXPORT_SYMBOL_GPL(lock_pin_lock);
5733
lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5734 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5735 {
5736 unsigned long flags;
5737
5738 if (unlikely(!lockdep_enabled()))
5739 return;
5740
5741 raw_local_irq_save(flags);
5742 check_flags(flags);
5743
5744 lockdep_recursion_inc();
5745 __lock_repin_lock(lock, cookie);
5746 lockdep_recursion_finish();
5747 raw_local_irq_restore(flags);
5748 }
5749 EXPORT_SYMBOL_GPL(lock_repin_lock);
5750
lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5751 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5752 {
5753 unsigned long flags;
5754
5755 if (unlikely(!lockdep_enabled()))
5756 return;
5757
5758 raw_local_irq_save(flags);
5759 check_flags(flags);
5760
5761 lockdep_recursion_inc();
5762 __lock_unpin_lock(lock, cookie);
5763 lockdep_recursion_finish();
5764 raw_local_irq_restore(flags);
5765 }
5766 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5767
5768 #ifdef CONFIG_LOCK_STAT
print_lock_contention_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)5769 static void print_lock_contention_bug(struct task_struct *curr,
5770 struct lockdep_map *lock,
5771 unsigned long ip)
5772 {
5773 if (!debug_locks_off())
5774 return;
5775 if (debug_locks_silent)
5776 return;
5777
5778 pr_warn("\n");
5779 pr_warn("=================================\n");
5780 pr_warn("WARNING: bad contention detected!\n");
5781 print_kernel_ident();
5782 pr_warn("---------------------------------\n");
5783 pr_warn("%s/%d is trying to contend lock (",
5784 curr->comm, task_pid_nr(curr));
5785 print_lockdep_cache(lock);
5786 pr_cont(") at:\n");
5787 print_ip_sym(KERN_WARNING, ip);
5788 pr_warn("but there are no locks held!\n");
5789 pr_warn("\nother info that might help us debug this:\n");
5790 lockdep_print_held_locks(curr);
5791
5792 pr_warn("\nstack backtrace:\n");
5793 dump_stack();
5794 }
5795
5796 static void
__lock_contended(struct lockdep_map * lock,unsigned long ip)5797 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5798 {
5799 struct task_struct *curr = current;
5800 struct held_lock *hlock;
5801 struct lock_class_stats *stats;
5802 unsigned int depth;
5803 int i, contention_point, contending_point;
5804
5805 depth = curr->lockdep_depth;
5806 /*
5807 * Whee, we contended on this lock, except it seems we're not
5808 * actually trying to acquire anything much at all..
5809 */
5810 if (DEBUG_LOCKS_WARN_ON(!depth))
5811 return;
5812
5813 hlock = find_held_lock(curr, lock, depth, &i);
5814 if (!hlock) {
5815 print_lock_contention_bug(curr, lock, ip);
5816 return;
5817 }
5818
5819 if (hlock->instance != lock)
5820 return;
5821
5822 hlock->waittime_stamp = lockstat_clock();
5823
5824 contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5825 contending_point = lock_point(hlock_class(hlock)->contending_point,
5826 lock->ip);
5827
5828 stats = get_lock_stats(hlock_class(hlock));
5829 if (contention_point < LOCKSTAT_POINTS)
5830 stats->contention_point[contention_point]++;
5831 if (contending_point < LOCKSTAT_POINTS)
5832 stats->contending_point[contending_point]++;
5833 if (lock->cpu != smp_processor_id())
5834 stats->bounces[bounce_contended + !!hlock->read]++;
5835 }
5836
5837 static void
__lock_acquired(struct lockdep_map * lock,unsigned long ip)5838 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5839 {
5840 struct task_struct *curr = current;
5841 struct held_lock *hlock;
5842 struct lock_class_stats *stats;
5843 unsigned int depth;
5844 u64 now, waittime = 0;
5845 int i, cpu;
5846
5847 depth = curr->lockdep_depth;
5848 /*
5849 * Yay, we acquired ownership of this lock we didn't try to
5850 * acquire, how the heck did that happen?
5851 */
5852 if (DEBUG_LOCKS_WARN_ON(!depth))
5853 return;
5854
5855 hlock = find_held_lock(curr, lock, depth, &i);
5856 if (!hlock) {
5857 print_lock_contention_bug(curr, lock, _RET_IP_);
5858 return;
5859 }
5860
5861 if (hlock->instance != lock)
5862 return;
5863
5864 cpu = smp_processor_id();
5865 if (hlock->waittime_stamp) {
5866 now = lockstat_clock();
5867 waittime = now - hlock->waittime_stamp;
5868 hlock->holdtime_stamp = now;
5869 }
5870
5871 stats = get_lock_stats(hlock_class(hlock));
5872 if (waittime) {
5873 if (hlock->read)
5874 lock_time_inc(&stats->read_waittime, waittime);
5875 else
5876 lock_time_inc(&stats->write_waittime, waittime);
5877 }
5878 if (lock->cpu != cpu)
5879 stats->bounces[bounce_acquired + !!hlock->read]++;
5880
5881 lock->cpu = cpu;
5882 lock->ip = ip;
5883 }
5884
lock_contended(struct lockdep_map * lock,unsigned long ip)5885 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5886 {
5887 unsigned long flags;
5888
5889 trace_lock_contended(lock, ip);
5890
5891 if (unlikely(!lock_stat || !lockdep_enabled()))
5892 return;
5893
5894 raw_local_irq_save(flags);
5895 check_flags(flags);
5896 lockdep_recursion_inc();
5897 __lock_contended(lock, ip);
5898 lockdep_recursion_finish();
5899 raw_local_irq_restore(flags);
5900 }
5901 EXPORT_SYMBOL_GPL(lock_contended);
5902
lock_acquired(struct lockdep_map * lock,unsigned long ip)5903 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5904 {
5905 unsigned long flags;
5906
5907 trace_lock_acquired(lock, ip);
5908
5909 if (unlikely(!lock_stat || !lockdep_enabled()))
5910 return;
5911
5912 raw_local_irq_save(flags);
5913 check_flags(flags);
5914 lockdep_recursion_inc();
5915 __lock_acquired(lock, ip);
5916 lockdep_recursion_finish();
5917 raw_local_irq_restore(flags);
5918 }
5919 EXPORT_SYMBOL_GPL(lock_acquired);
5920 #endif
5921
5922 /*
5923 * Used by the testsuite, sanitize the validator state
5924 * after a simulated failure:
5925 */
5926
lockdep_reset(void)5927 void lockdep_reset(void)
5928 {
5929 unsigned long flags;
5930 int i;
5931
5932 raw_local_irq_save(flags);
5933 lockdep_init_task(current);
5934 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5935 nr_hardirq_chains = 0;
5936 nr_softirq_chains = 0;
5937 nr_process_chains = 0;
5938 debug_locks = 1;
5939 for (i = 0; i < CHAINHASH_SIZE; i++)
5940 INIT_HLIST_HEAD(chainhash_table + i);
5941 raw_local_irq_restore(flags);
5942 }
5943
5944 /* Remove a class from a lock chain. Must be called with the graph lock held. */
remove_class_from_lock_chain(struct pending_free * pf,struct lock_chain * chain,struct lock_class * class)5945 static void remove_class_from_lock_chain(struct pending_free *pf,
5946 struct lock_chain *chain,
5947 struct lock_class *class)
5948 {
5949 #ifdef CONFIG_PROVE_LOCKING
5950 int i;
5951
5952 for (i = chain->base; i < chain->base + chain->depth; i++) {
5953 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5954 continue;
5955 /*
5956 * Each lock class occurs at most once in a lock chain so once
5957 * we found a match we can break out of this loop.
5958 */
5959 goto free_lock_chain;
5960 }
5961 /* Since the chain has not been modified, return. */
5962 return;
5963
5964 free_lock_chain:
5965 free_chain_hlocks(chain->base, chain->depth);
5966 /* Overwrite the chain key for concurrent RCU readers. */
5967 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5968 dec_chains(chain->irq_context);
5969
5970 /*
5971 * Note: calling hlist_del_rcu() from inside a
5972 * hlist_for_each_entry_rcu() loop is safe.
5973 */
5974 hlist_del_rcu(&chain->entry);
5975 __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5976 nr_zapped_lock_chains++;
5977 #endif
5978 }
5979
5980 /* Must be called with the graph lock held. */
remove_class_from_lock_chains(struct pending_free * pf,struct lock_class * class)5981 static void remove_class_from_lock_chains(struct pending_free *pf,
5982 struct lock_class *class)
5983 {
5984 struct lock_chain *chain;
5985 struct hlist_head *head;
5986 int i;
5987
5988 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5989 head = chainhash_table + i;
5990 hlist_for_each_entry_rcu(chain, head, entry) {
5991 remove_class_from_lock_chain(pf, chain, class);
5992 }
5993 }
5994 }
5995
5996 /*
5997 * Remove all references to a lock class. The caller must hold the graph lock.
5998 */
zap_class(struct pending_free * pf,struct lock_class * class)5999 static void zap_class(struct pending_free *pf, struct lock_class *class)
6000 {
6001 struct lock_list *entry;
6002 int i;
6003
6004 WARN_ON_ONCE(!class->key);
6005
6006 /*
6007 * Remove all dependencies this lock is
6008 * involved in:
6009 */
6010 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
6011 entry = list_entries + i;
6012 if (entry->class != class && entry->links_to != class)
6013 continue;
6014 __clear_bit(i, list_entries_in_use);
6015 nr_list_entries--;
6016 list_del_rcu(&entry->entry);
6017 }
6018 if (list_empty(&class->locks_after) &&
6019 list_empty(&class->locks_before)) {
6020 list_move_tail(&class->lock_entry, &pf->zapped);
6021 hlist_del_rcu(&class->hash_entry);
6022 WRITE_ONCE(class->key, NULL);
6023 WRITE_ONCE(class->name, NULL);
6024 nr_lock_classes--;
6025 __clear_bit(class - lock_classes, lock_classes_in_use);
6026 if (class - lock_classes == max_lock_class_idx)
6027 max_lock_class_idx--;
6028 } else {
6029 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6030 class->name);
6031 }
6032
6033 remove_class_from_lock_chains(pf, class);
6034 nr_zapped_classes++;
6035 }
6036
reinit_class(struct lock_class * class)6037 static void reinit_class(struct lock_class *class)
6038 {
6039 WARN_ON_ONCE(!class->lock_entry.next);
6040 WARN_ON_ONCE(!list_empty(&class->locks_after));
6041 WARN_ON_ONCE(!list_empty(&class->locks_before));
6042 memset_startat(class, 0, key);
6043 WARN_ON_ONCE(!class->lock_entry.next);
6044 WARN_ON_ONCE(!list_empty(&class->locks_after));
6045 WARN_ON_ONCE(!list_empty(&class->locks_before));
6046 }
6047
within(const void * addr,void * start,unsigned long size)6048 static inline int within(const void *addr, void *start, unsigned long size)
6049 {
6050 return addr >= start && addr < start + size;
6051 }
6052
inside_selftest(void)6053 static bool inside_selftest(void)
6054 {
6055 return current == lockdep_selftest_task_struct;
6056 }
6057
6058 /* The caller must hold the graph lock. */
get_pending_free(void)6059 static struct pending_free *get_pending_free(void)
6060 {
6061 return delayed_free.pf + delayed_free.index;
6062 }
6063
6064 static void free_zapped_rcu(struct rcu_head *cb);
6065
6066 /*
6067 * Schedule an RCU callback if no RCU callback is pending. Must be called with
6068 * the graph lock held.
6069 */
call_rcu_zapped(struct pending_free * pf)6070 static void call_rcu_zapped(struct pending_free *pf)
6071 {
6072 WARN_ON_ONCE(inside_selftest());
6073
6074 if (list_empty(&pf->zapped))
6075 return;
6076
6077 if (delayed_free.scheduled)
6078 return;
6079
6080 delayed_free.scheduled = true;
6081
6082 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6083 delayed_free.index ^= 1;
6084
6085 call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6086 }
6087
6088 /* The caller must hold the graph lock. May be called from RCU context. */
__free_zapped_classes(struct pending_free * pf)6089 static void __free_zapped_classes(struct pending_free *pf)
6090 {
6091 struct lock_class *class;
6092
6093 check_data_structures();
6094
6095 list_for_each_entry(class, &pf->zapped, lock_entry)
6096 reinit_class(class);
6097
6098 list_splice_init(&pf->zapped, &free_lock_classes);
6099
6100 #ifdef CONFIG_PROVE_LOCKING
6101 bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6102 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6103 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6104 #endif
6105 }
6106
free_zapped_rcu(struct rcu_head * ch)6107 static void free_zapped_rcu(struct rcu_head *ch)
6108 {
6109 struct pending_free *pf;
6110 unsigned long flags;
6111
6112 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6113 return;
6114
6115 raw_local_irq_save(flags);
6116 lockdep_lock();
6117
6118 /* closed head */
6119 pf = delayed_free.pf + (delayed_free.index ^ 1);
6120 __free_zapped_classes(pf);
6121 delayed_free.scheduled = false;
6122
6123 /*
6124 * If there's anything on the open list, close and start a new callback.
6125 */
6126 call_rcu_zapped(delayed_free.pf + delayed_free.index);
6127
6128 lockdep_unlock();
6129 raw_local_irq_restore(flags);
6130 }
6131
6132 /*
6133 * Remove all lock classes from the class hash table and from the
6134 * all_lock_classes list whose key or name is in the address range [start,
6135 * start + size). Move these lock classes to the zapped_classes list. Must
6136 * be called with the graph lock held.
6137 */
__lockdep_free_key_range(struct pending_free * pf,void * start,unsigned long size)6138 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6139 unsigned long size)
6140 {
6141 struct lock_class *class;
6142 struct hlist_head *head;
6143 int i;
6144
6145 /* Unhash all classes that were created by a module. */
6146 for (i = 0; i < CLASSHASH_SIZE; i++) {
6147 head = classhash_table + i;
6148 hlist_for_each_entry_rcu(class, head, hash_entry) {
6149 if (!within(class->key, start, size) &&
6150 !within(class->name, start, size))
6151 continue;
6152 zap_class(pf, class);
6153 }
6154 }
6155 }
6156
6157 /*
6158 * Used in module.c to remove lock classes from memory that is going to be
6159 * freed; and possibly re-used by other modules.
6160 *
6161 * We will have had one synchronize_rcu() before getting here, so we're
6162 * guaranteed nobody will look up these exact classes -- they're properly dead
6163 * but still allocated.
6164 */
lockdep_free_key_range_reg(void * start,unsigned long size)6165 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6166 {
6167 struct pending_free *pf;
6168 unsigned long flags;
6169
6170 init_data_structures_once();
6171
6172 raw_local_irq_save(flags);
6173 lockdep_lock();
6174 pf = get_pending_free();
6175 __lockdep_free_key_range(pf, start, size);
6176 call_rcu_zapped(pf);
6177 lockdep_unlock();
6178 raw_local_irq_restore(flags);
6179
6180 /*
6181 * Wait for any possible iterators from look_up_lock_class() to pass
6182 * before continuing to free the memory they refer to.
6183 */
6184 synchronize_rcu();
6185 }
6186
6187 /*
6188 * Free all lockdep keys in the range [start, start+size). Does not sleep.
6189 * Ignores debug_locks. Must only be used by the lockdep selftests.
6190 */
lockdep_free_key_range_imm(void * start,unsigned long size)6191 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6192 {
6193 struct pending_free *pf = delayed_free.pf;
6194 unsigned long flags;
6195
6196 init_data_structures_once();
6197
6198 raw_local_irq_save(flags);
6199 lockdep_lock();
6200 __lockdep_free_key_range(pf, start, size);
6201 __free_zapped_classes(pf);
6202 lockdep_unlock();
6203 raw_local_irq_restore(flags);
6204 }
6205
lockdep_free_key_range(void * start,unsigned long size)6206 void lockdep_free_key_range(void *start, unsigned long size)
6207 {
6208 init_data_structures_once();
6209
6210 if (inside_selftest())
6211 lockdep_free_key_range_imm(start, size);
6212 else
6213 lockdep_free_key_range_reg(start, size);
6214 }
6215
6216 /*
6217 * Check whether any element of the @lock->class_cache[] array refers to a
6218 * registered lock class. The caller must hold either the graph lock or the
6219 * RCU read lock.
6220 */
lock_class_cache_is_registered(struct lockdep_map * lock)6221 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6222 {
6223 struct lock_class *class;
6224 struct hlist_head *head;
6225 int i, j;
6226
6227 for (i = 0; i < CLASSHASH_SIZE; i++) {
6228 head = classhash_table + i;
6229 hlist_for_each_entry_rcu(class, head, hash_entry) {
6230 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6231 if (lock->class_cache[j] == class)
6232 return true;
6233 }
6234 }
6235 return false;
6236 }
6237
6238 /* The caller must hold the graph lock. Does not sleep. */
__lockdep_reset_lock(struct pending_free * pf,struct lockdep_map * lock)6239 static void __lockdep_reset_lock(struct pending_free *pf,
6240 struct lockdep_map *lock)
6241 {
6242 struct lock_class *class;
6243 int j;
6244
6245 /*
6246 * Remove all classes this lock might have:
6247 */
6248 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6249 /*
6250 * If the class exists we look it up and zap it:
6251 */
6252 class = look_up_lock_class(lock, j);
6253 if (class)
6254 zap_class(pf, class);
6255 }
6256 /*
6257 * Debug check: in the end all mapped classes should
6258 * be gone.
6259 */
6260 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6261 debug_locks_off();
6262 }
6263
6264 /*
6265 * Remove all information lockdep has about a lock if debug_locks == 1. Free
6266 * released data structures from RCU context.
6267 */
lockdep_reset_lock_reg(struct lockdep_map * lock)6268 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6269 {
6270 struct pending_free *pf;
6271 unsigned long flags;
6272 int locked;
6273
6274 raw_local_irq_save(flags);
6275 locked = graph_lock();
6276 if (!locked)
6277 goto out_irq;
6278
6279 pf = get_pending_free();
6280 __lockdep_reset_lock(pf, lock);
6281 call_rcu_zapped(pf);
6282
6283 graph_unlock();
6284 out_irq:
6285 raw_local_irq_restore(flags);
6286 }
6287
6288 /*
6289 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6290 * lockdep selftests.
6291 */
lockdep_reset_lock_imm(struct lockdep_map * lock)6292 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6293 {
6294 struct pending_free *pf = delayed_free.pf;
6295 unsigned long flags;
6296
6297 raw_local_irq_save(flags);
6298 lockdep_lock();
6299 __lockdep_reset_lock(pf, lock);
6300 __free_zapped_classes(pf);
6301 lockdep_unlock();
6302 raw_local_irq_restore(flags);
6303 }
6304
lockdep_reset_lock(struct lockdep_map * lock)6305 void lockdep_reset_lock(struct lockdep_map *lock)
6306 {
6307 init_data_structures_once();
6308
6309 if (inside_selftest())
6310 lockdep_reset_lock_imm(lock);
6311 else
6312 lockdep_reset_lock_reg(lock);
6313 }
6314
6315 /*
6316 * Unregister a dynamically allocated key.
6317 *
6318 * Unlike lockdep_register_key(), a search is always done to find a matching
6319 * key irrespective of debug_locks to avoid potential invalid access to freed
6320 * memory in lock_class entry.
6321 */
lockdep_unregister_key(struct lock_class_key * key)6322 void lockdep_unregister_key(struct lock_class_key *key)
6323 {
6324 struct hlist_head *hash_head = keyhashentry(key);
6325 struct lock_class_key *k;
6326 struct pending_free *pf;
6327 unsigned long flags;
6328 bool found = false;
6329
6330 might_sleep();
6331
6332 if (WARN_ON_ONCE(static_obj(key)))
6333 return;
6334
6335 raw_local_irq_save(flags);
6336 lockdep_lock();
6337
6338 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6339 if (k == key) {
6340 hlist_del_rcu(&k->hash_entry);
6341 found = true;
6342 break;
6343 }
6344 }
6345 WARN_ON_ONCE(!found && debug_locks);
6346 if (found) {
6347 pf = get_pending_free();
6348 __lockdep_free_key_range(pf, key, 1);
6349 call_rcu_zapped(pf);
6350 }
6351 lockdep_unlock();
6352 raw_local_irq_restore(flags);
6353
6354 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6355 synchronize_rcu();
6356 }
6357 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6358
lockdep_init(void)6359 void __init lockdep_init(void)
6360 {
6361 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6362
6363 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES);
6364 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH);
6365 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS);
6366 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE);
6367 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES);
6368 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS);
6369 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE);
6370
6371 printk(" memory used by lock dependency info: %zu kB\n",
6372 (sizeof(lock_classes) +
6373 sizeof(lock_classes_in_use) +
6374 sizeof(classhash_table) +
6375 sizeof(list_entries) +
6376 sizeof(list_entries_in_use) +
6377 sizeof(chainhash_table) +
6378 sizeof(delayed_free)
6379 #ifdef CONFIG_PROVE_LOCKING
6380 + sizeof(lock_cq)
6381 + sizeof(lock_chains)
6382 + sizeof(lock_chains_in_use)
6383 + sizeof(chain_hlocks)
6384 #endif
6385 ) / 1024
6386 );
6387
6388 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6389 printk(" memory used for stack traces: %zu kB\n",
6390 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6391 );
6392 #endif
6393
6394 printk(" per task-struct memory footprint: %zu bytes\n",
6395 sizeof(((struct task_struct *)NULL)->held_locks));
6396 }
6397
6398 static void
print_freed_lock_bug(struct task_struct * curr,const void * mem_from,const void * mem_to,struct held_lock * hlock)6399 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6400 const void *mem_to, struct held_lock *hlock)
6401 {
6402 if (!debug_locks_off())
6403 return;
6404 if (debug_locks_silent)
6405 return;
6406
6407 pr_warn("\n");
6408 pr_warn("=========================\n");
6409 pr_warn("WARNING: held lock freed!\n");
6410 print_kernel_ident();
6411 pr_warn("-------------------------\n");
6412 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6413 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6414 print_lock(hlock);
6415 lockdep_print_held_locks(curr);
6416
6417 pr_warn("\nstack backtrace:\n");
6418 dump_stack();
6419 }
6420
not_in_range(const void * mem_from,unsigned long mem_len,const void * lock_from,unsigned long lock_len)6421 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6422 const void* lock_from, unsigned long lock_len)
6423 {
6424 return lock_from + lock_len <= mem_from ||
6425 mem_from + mem_len <= lock_from;
6426 }
6427
6428 /*
6429 * Called when kernel memory is freed (or unmapped), or if a lock
6430 * is destroyed or reinitialized - this code checks whether there is
6431 * any held lock in the memory range of <from> to <to>:
6432 */
debug_check_no_locks_freed(const void * mem_from,unsigned long mem_len)6433 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6434 {
6435 struct task_struct *curr = current;
6436 struct held_lock *hlock;
6437 unsigned long flags;
6438 int i;
6439
6440 if (unlikely(!debug_locks))
6441 return;
6442
6443 raw_local_irq_save(flags);
6444 for (i = 0; i < curr->lockdep_depth; i++) {
6445 hlock = curr->held_locks + i;
6446
6447 if (not_in_range(mem_from, mem_len, hlock->instance,
6448 sizeof(*hlock->instance)))
6449 continue;
6450
6451 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6452 break;
6453 }
6454 raw_local_irq_restore(flags);
6455 }
6456 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6457
print_held_locks_bug(void)6458 static void print_held_locks_bug(void)
6459 {
6460 if (!debug_locks_off())
6461 return;
6462 if (debug_locks_silent)
6463 return;
6464
6465 pr_warn("\n");
6466 pr_warn("====================================\n");
6467 pr_warn("WARNING: %s/%d still has locks held!\n",
6468 current->comm, task_pid_nr(current));
6469 print_kernel_ident();
6470 pr_warn("------------------------------------\n");
6471 lockdep_print_held_locks(current);
6472 pr_warn("\nstack backtrace:\n");
6473 dump_stack();
6474 }
6475
debug_check_no_locks_held(void)6476 void debug_check_no_locks_held(void)
6477 {
6478 if (unlikely(current->lockdep_depth > 0))
6479 print_held_locks_bug();
6480 }
6481 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6482
6483 #ifdef __KERNEL__
debug_show_all_locks(void)6484 void debug_show_all_locks(void)
6485 {
6486 struct task_struct *g, *p;
6487
6488 if (unlikely(!debug_locks)) {
6489 pr_warn("INFO: lockdep is turned off.\n");
6490 return;
6491 }
6492 pr_warn("\nShowing all locks held in the system:\n");
6493
6494 rcu_read_lock();
6495 for_each_process_thread(g, p) {
6496 if (!p->lockdep_depth)
6497 continue;
6498 lockdep_print_held_locks(p);
6499 touch_nmi_watchdog();
6500 touch_all_softlockup_watchdogs();
6501 }
6502 rcu_read_unlock();
6503
6504 pr_warn("\n");
6505 pr_warn("=============================================\n\n");
6506 }
6507 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6508 #endif
6509
6510 /*
6511 * Careful: only use this function if you are sure that
6512 * the task cannot run in parallel!
6513 */
debug_show_held_locks(struct task_struct * task)6514 void debug_show_held_locks(struct task_struct *task)
6515 {
6516 if (unlikely(!debug_locks)) {
6517 printk("INFO: lockdep is turned off.\n");
6518 return;
6519 }
6520 lockdep_print_held_locks(task);
6521 }
6522 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6523
lockdep_sys_exit(void)6524 asmlinkage __visible void lockdep_sys_exit(void)
6525 {
6526 struct task_struct *curr = current;
6527
6528 if (unlikely(curr->lockdep_depth)) {
6529 if (!debug_locks_off())
6530 return;
6531 pr_warn("\n");
6532 pr_warn("================================================\n");
6533 pr_warn("WARNING: lock held when returning to user space!\n");
6534 print_kernel_ident();
6535 pr_warn("------------------------------------------------\n");
6536 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6537 curr->comm, curr->pid);
6538 lockdep_print_held_locks(curr);
6539 }
6540
6541 /*
6542 * The lock history for each syscall should be independent. So wipe the
6543 * slate clean on return to userspace.
6544 */
6545 lockdep_invariant_state(false);
6546 }
6547
lockdep_rcu_suspicious(const char * file,const int line,const char * s)6548 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6549 {
6550 struct task_struct *curr = current;
6551 int dl = READ_ONCE(debug_locks);
6552 bool rcu = warn_rcu_enter();
6553
6554 /* Note: the following can be executed concurrently, so be careful. */
6555 pr_warn("\n");
6556 pr_warn("=============================\n");
6557 pr_warn("WARNING: suspicious RCU usage\n");
6558 print_kernel_ident();
6559 pr_warn("-----------------------------\n");
6560 pr_warn("%s:%d %s!\n", file, line, s);
6561 pr_warn("\nother info that might help us debug this:\n\n");
6562 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6563 !rcu_lockdep_current_cpu_online()
6564 ? "RCU used illegally from offline CPU!\n"
6565 : "",
6566 rcu_scheduler_active, dl,
6567 dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6568
6569 /*
6570 * If a CPU is in the RCU-free window in idle (ie: in the section
6571 * between ct_idle_enter() and ct_idle_exit(), then RCU
6572 * considers that CPU to be in an "extended quiescent state",
6573 * which means that RCU will be completely ignoring that CPU.
6574 * Therefore, rcu_read_lock() and friends have absolutely no
6575 * effect on a CPU running in that state. In other words, even if
6576 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6577 * delete data structures out from under it. RCU really has no
6578 * choice here: we need to keep an RCU-free window in idle where
6579 * the CPU may possibly enter into low power mode. This way we can
6580 * notice an extended quiescent state to other CPUs that started a grace
6581 * period. Otherwise we would delay any grace period as long as we run
6582 * in the idle task.
6583 *
6584 * So complain bitterly if someone does call rcu_read_lock(),
6585 * rcu_read_lock_bh() and so on from extended quiescent states.
6586 */
6587 if (!rcu_is_watching())
6588 pr_warn("RCU used illegally from extended quiescent state!\n");
6589
6590 lockdep_print_held_locks(curr);
6591 pr_warn("\nstack backtrace:\n");
6592 dump_stack();
6593 warn_rcu_exit(rcu);
6594 }
6595 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6596