• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Red Hat.  All rights reserved.
4  */
5 
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include "misc.h"
15 #include "ctree.h"
16 #include "free-space-cache.h"
17 #include "transaction.h"
18 #include "disk-io.h"
19 #include "extent_io.h"
20 #include "volumes.h"
21 #include "space-info.h"
22 #include "delalloc-space.h"
23 #include "block-group.h"
24 #include "discard.h"
25 #include "subpage.h"
26 #include "inode-item.h"
27 
28 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
29 #define MAX_CACHE_BYTES_PER_GIG	SZ_64K
30 #define FORCE_EXTENT_THRESHOLD	SZ_1M
31 
32 struct btrfs_trim_range {
33 	u64 start;
34 	u64 bytes;
35 	struct list_head list;
36 };
37 
38 static int link_free_space(struct btrfs_free_space_ctl *ctl,
39 			   struct btrfs_free_space *info);
40 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
41 			      struct btrfs_free_space *info, bool update_stat);
42 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
43 			 struct btrfs_free_space *bitmap_info, u64 *offset,
44 			 u64 *bytes, bool for_alloc);
45 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
46 			struct btrfs_free_space *bitmap_info);
47 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
48 			      struct btrfs_free_space *info, u64 offset,
49 			      u64 bytes, bool update_stats);
50 
__btrfs_remove_free_space_cache(struct btrfs_free_space_ctl * ctl)51 static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
52 {
53 	struct btrfs_free_space *info;
54 	struct rb_node *node;
55 
56 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
57 		info = rb_entry(node, struct btrfs_free_space, offset_index);
58 		if (!info->bitmap) {
59 			unlink_free_space(ctl, info, true);
60 			kmem_cache_free(btrfs_free_space_cachep, info);
61 		} else {
62 			free_bitmap(ctl, info);
63 		}
64 
65 		cond_resched_lock(&ctl->tree_lock);
66 	}
67 }
68 
__lookup_free_space_inode(struct btrfs_root * root,struct btrfs_path * path,u64 offset)69 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
70 					       struct btrfs_path *path,
71 					       u64 offset)
72 {
73 	struct btrfs_fs_info *fs_info = root->fs_info;
74 	struct btrfs_key key;
75 	struct btrfs_key location;
76 	struct btrfs_disk_key disk_key;
77 	struct btrfs_free_space_header *header;
78 	struct extent_buffer *leaf;
79 	struct inode *inode = NULL;
80 	unsigned nofs_flag;
81 	int ret;
82 
83 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
84 	key.offset = offset;
85 	key.type = 0;
86 
87 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
88 	if (ret < 0)
89 		return ERR_PTR(ret);
90 	if (ret > 0) {
91 		btrfs_release_path(path);
92 		return ERR_PTR(-ENOENT);
93 	}
94 
95 	leaf = path->nodes[0];
96 	header = btrfs_item_ptr(leaf, path->slots[0],
97 				struct btrfs_free_space_header);
98 	btrfs_free_space_key(leaf, header, &disk_key);
99 	btrfs_disk_key_to_cpu(&location, &disk_key);
100 	btrfs_release_path(path);
101 
102 	/*
103 	 * We are often under a trans handle at this point, so we need to make
104 	 * sure NOFS is set to keep us from deadlocking.
105 	 */
106 	nofs_flag = memalloc_nofs_save();
107 	inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
108 	btrfs_release_path(path);
109 	memalloc_nofs_restore(nofs_flag);
110 	if (IS_ERR(inode))
111 		return inode;
112 
113 	mapping_set_gfp_mask(inode->i_mapping,
114 			mapping_gfp_constraint(inode->i_mapping,
115 			~(__GFP_FS | __GFP_HIGHMEM)));
116 
117 	return inode;
118 }
119 
lookup_free_space_inode(struct btrfs_block_group * block_group,struct btrfs_path * path)120 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
121 		struct btrfs_path *path)
122 {
123 	struct btrfs_fs_info *fs_info = block_group->fs_info;
124 	struct inode *inode = NULL;
125 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
126 
127 	spin_lock(&block_group->lock);
128 	if (block_group->inode)
129 		inode = igrab(block_group->inode);
130 	spin_unlock(&block_group->lock);
131 	if (inode)
132 		return inode;
133 
134 	inode = __lookup_free_space_inode(fs_info->tree_root, path,
135 					  block_group->start);
136 	if (IS_ERR(inode))
137 		return inode;
138 
139 	spin_lock(&block_group->lock);
140 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
141 		btrfs_info(fs_info, "Old style space inode found, converting.");
142 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
143 			BTRFS_INODE_NODATACOW;
144 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
145 	}
146 
147 	if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags))
148 		block_group->inode = igrab(inode);
149 	spin_unlock(&block_group->lock);
150 
151 	return inode;
152 }
153 
__create_free_space_inode(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 ino,u64 offset)154 static int __create_free_space_inode(struct btrfs_root *root,
155 				     struct btrfs_trans_handle *trans,
156 				     struct btrfs_path *path,
157 				     u64 ino, u64 offset)
158 {
159 	struct btrfs_key key;
160 	struct btrfs_disk_key disk_key;
161 	struct btrfs_free_space_header *header;
162 	struct btrfs_inode_item *inode_item;
163 	struct extent_buffer *leaf;
164 	/* We inline CRCs for the free disk space cache */
165 	const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
166 			  BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
167 	int ret;
168 
169 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
170 	if (ret)
171 		return ret;
172 
173 	leaf = path->nodes[0];
174 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
175 				    struct btrfs_inode_item);
176 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
177 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
178 			     sizeof(*inode_item));
179 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
180 	btrfs_set_inode_size(leaf, inode_item, 0);
181 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
182 	btrfs_set_inode_uid(leaf, inode_item, 0);
183 	btrfs_set_inode_gid(leaf, inode_item, 0);
184 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
185 	btrfs_set_inode_flags(leaf, inode_item, flags);
186 	btrfs_set_inode_nlink(leaf, inode_item, 1);
187 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
188 	btrfs_set_inode_block_group(leaf, inode_item, offset);
189 	btrfs_mark_buffer_dirty(leaf);
190 	btrfs_release_path(path);
191 
192 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
193 	key.offset = offset;
194 	key.type = 0;
195 	ret = btrfs_insert_empty_item(trans, root, path, &key,
196 				      sizeof(struct btrfs_free_space_header));
197 	if (ret < 0) {
198 		btrfs_release_path(path);
199 		return ret;
200 	}
201 
202 	leaf = path->nodes[0];
203 	header = btrfs_item_ptr(leaf, path->slots[0],
204 				struct btrfs_free_space_header);
205 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
206 	btrfs_set_free_space_key(leaf, header, &disk_key);
207 	btrfs_mark_buffer_dirty(leaf);
208 	btrfs_release_path(path);
209 
210 	return 0;
211 }
212 
create_free_space_inode(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_path * path)213 int create_free_space_inode(struct btrfs_trans_handle *trans,
214 			    struct btrfs_block_group *block_group,
215 			    struct btrfs_path *path)
216 {
217 	int ret;
218 	u64 ino;
219 
220 	ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
221 	if (ret < 0)
222 		return ret;
223 
224 	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
225 					 ino, block_group->start);
226 }
227 
228 /*
229  * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
230  * handles lookup, otherwise it takes ownership and iputs the inode.
231  * Don't reuse an inode pointer after passing it into this function.
232  */
btrfs_remove_free_space_inode(struct btrfs_trans_handle * trans,struct inode * inode,struct btrfs_block_group * block_group)233 int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
234 				  struct inode *inode,
235 				  struct btrfs_block_group *block_group)
236 {
237 	struct btrfs_path *path;
238 	struct btrfs_key key;
239 	int ret = 0;
240 
241 	path = btrfs_alloc_path();
242 	if (!path)
243 		return -ENOMEM;
244 
245 	if (!inode)
246 		inode = lookup_free_space_inode(block_group, path);
247 	if (IS_ERR(inode)) {
248 		if (PTR_ERR(inode) != -ENOENT)
249 			ret = PTR_ERR(inode);
250 		goto out;
251 	}
252 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
253 	if (ret) {
254 		btrfs_add_delayed_iput(inode);
255 		goto out;
256 	}
257 	clear_nlink(inode);
258 	/* One for the block groups ref */
259 	spin_lock(&block_group->lock);
260 	if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) {
261 		block_group->inode = NULL;
262 		spin_unlock(&block_group->lock);
263 		iput(inode);
264 	} else {
265 		spin_unlock(&block_group->lock);
266 	}
267 	/* One for the lookup ref */
268 	btrfs_add_delayed_iput(inode);
269 
270 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
271 	key.type = 0;
272 	key.offset = block_group->start;
273 	ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
274 				-1, 1);
275 	if (ret) {
276 		if (ret > 0)
277 			ret = 0;
278 		goto out;
279 	}
280 	ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
281 out:
282 	btrfs_free_path(path);
283 	return ret;
284 }
285 
btrfs_check_trunc_cache_free_space(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv)286 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
287 				       struct btrfs_block_rsv *rsv)
288 {
289 	u64 needed_bytes;
290 	int ret;
291 
292 	/* 1 for slack space, 1 for updating the inode */
293 	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
294 		btrfs_calc_metadata_size(fs_info, 1);
295 
296 	spin_lock(&rsv->lock);
297 	if (rsv->reserved < needed_bytes)
298 		ret = -ENOSPC;
299 	else
300 		ret = 0;
301 	spin_unlock(&rsv->lock);
302 	return ret;
303 }
304 
btrfs_truncate_free_space_cache(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct inode * vfs_inode)305 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
306 				    struct btrfs_block_group *block_group,
307 				    struct inode *vfs_inode)
308 {
309 	struct btrfs_truncate_control control = {
310 		.inode = BTRFS_I(vfs_inode),
311 		.new_size = 0,
312 		.ino = btrfs_ino(BTRFS_I(vfs_inode)),
313 		.min_type = BTRFS_EXTENT_DATA_KEY,
314 		.clear_extent_range = true,
315 	};
316 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
317 	struct btrfs_root *root = inode->root;
318 	struct extent_state *cached_state = NULL;
319 	int ret = 0;
320 	bool locked = false;
321 
322 	if (block_group) {
323 		struct btrfs_path *path = btrfs_alloc_path();
324 
325 		if (!path) {
326 			ret = -ENOMEM;
327 			goto fail;
328 		}
329 		locked = true;
330 		mutex_lock(&trans->transaction->cache_write_mutex);
331 		if (!list_empty(&block_group->io_list)) {
332 			list_del_init(&block_group->io_list);
333 
334 			btrfs_wait_cache_io(trans, block_group, path);
335 			btrfs_put_block_group(block_group);
336 		}
337 
338 		/*
339 		 * now that we've truncated the cache away, its no longer
340 		 * setup or written
341 		 */
342 		spin_lock(&block_group->lock);
343 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
344 		spin_unlock(&block_group->lock);
345 		btrfs_free_path(path);
346 	}
347 
348 	btrfs_i_size_write(inode, 0);
349 	truncate_pagecache(vfs_inode, 0);
350 
351 	lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
352 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
353 
354 	/*
355 	 * We skip the throttling logic for free space cache inodes, so we don't
356 	 * need to check for -EAGAIN.
357 	 */
358 	ret = btrfs_truncate_inode_items(trans, root, &control);
359 
360 	inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
361 	btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
362 
363 	unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
364 	if (ret)
365 		goto fail;
366 
367 	ret = btrfs_update_inode(trans, root, inode);
368 
369 fail:
370 	if (locked)
371 		mutex_unlock(&trans->transaction->cache_write_mutex);
372 	if (ret)
373 		btrfs_abort_transaction(trans, ret);
374 
375 	return ret;
376 }
377 
readahead_cache(struct inode * inode)378 static void readahead_cache(struct inode *inode)
379 {
380 	struct file_ra_state ra;
381 	unsigned long last_index;
382 
383 	file_ra_state_init(&ra, inode->i_mapping);
384 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
385 
386 	page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
387 }
388 
io_ctl_init(struct btrfs_io_ctl * io_ctl,struct inode * inode,int write)389 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
390 		       int write)
391 {
392 	int num_pages;
393 
394 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
395 
396 	/* Make sure we can fit our crcs and generation into the first page */
397 	if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
398 		return -ENOSPC;
399 
400 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
401 
402 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
403 	if (!io_ctl->pages)
404 		return -ENOMEM;
405 
406 	io_ctl->num_pages = num_pages;
407 	io_ctl->fs_info = btrfs_sb(inode->i_sb);
408 	io_ctl->inode = inode;
409 
410 	return 0;
411 }
412 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
413 
io_ctl_free(struct btrfs_io_ctl * io_ctl)414 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
415 {
416 	kfree(io_ctl->pages);
417 	io_ctl->pages = NULL;
418 }
419 
io_ctl_unmap_page(struct btrfs_io_ctl * io_ctl)420 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
421 {
422 	if (io_ctl->cur) {
423 		io_ctl->cur = NULL;
424 		io_ctl->orig = NULL;
425 	}
426 }
427 
io_ctl_map_page(struct btrfs_io_ctl * io_ctl,int clear)428 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
429 {
430 	ASSERT(io_ctl->index < io_ctl->num_pages);
431 	io_ctl->page = io_ctl->pages[io_ctl->index++];
432 	io_ctl->cur = page_address(io_ctl->page);
433 	io_ctl->orig = io_ctl->cur;
434 	io_ctl->size = PAGE_SIZE;
435 	if (clear)
436 		clear_page(io_ctl->cur);
437 }
438 
io_ctl_drop_pages(struct btrfs_io_ctl * io_ctl)439 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
440 {
441 	int i;
442 
443 	io_ctl_unmap_page(io_ctl);
444 
445 	for (i = 0; i < io_ctl->num_pages; i++) {
446 		if (io_ctl->pages[i]) {
447 			btrfs_page_clear_checked(io_ctl->fs_info,
448 					io_ctl->pages[i],
449 					page_offset(io_ctl->pages[i]),
450 					PAGE_SIZE);
451 			unlock_page(io_ctl->pages[i]);
452 			put_page(io_ctl->pages[i]);
453 		}
454 	}
455 }
456 
io_ctl_prepare_pages(struct btrfs_io_ctl * io_ctl,bool uptodate)457 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
458 {
459 	struct page *page;
460 	struct inode *inode = io_ctl->inode;
461 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
462 	int i;
463 
464 	for (i = 0; i < io_ctl->num_pages; i++) {
465 		int ret;
466 
467 		page = find_or_create_page(inode->i_mapping, i, mask);
468 		if (!page) {
469 			io_ctl_drop_pages(io_ctl);
470 			return -ENOMEM;
471 		}
472 
473 		ret = set_page_extent_mapped(page);
474 		if (ret < 0) {
475 			unlock_page(page);
476 			put_page(page);
477 			io_ctl_drop_pages(io_ctl);
478 			return ret;
479 		}
480 
481 		io_ctl->pages[i] = page;
482 		if (uptodate && !PageUptodate(page)) {
483 			btrfs_read_folio(NULL, page_folio(page));
484 			lock_page(page);
485 			if (page->mapping != inode->i_mapping) {
486 				btrfs_err(BTRFS_I(inode)->root->fs_info,
487 					  "free space cache page truncated");
488 				io_ctl_drop_pages(io_ctl);
489 				return -EIO;
490 			}
491 			if (!PageUptodate(page)) {
492 				btrfs_err(BTRFS_I(inode)->root->fs_info,
493 					   "error reading free space cache");
494 				io_ctl_drop_pages(io_ctl);
495 				return -EIO;
496 			}
497 		}
498 	}
499 
500 	for (i = 0; i < io_ctl->num_pages; i++)
501 		clear_page_dirty_for_io(io_ctl->pages[i]);
502 
503 	return 0;
504 }
505 
io_ctl_set_generation(struct btrfs_io_ctl * io_ctl,u64 generation)506 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
507 {
508 	io_ctl_map_page(io_ctl, 1);
509 
510 	/*
511 	 * Skip the csum areas.  If we don't check crcs then we just have a
512 	 * 64bit chunk at the front of the first page.
513 	 */
514 	io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
515 	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
516 
517 	put_unaligned_le64(generation, io_ctl->cur);
518 	io_ctl->cur += sizeof(u64);
519 }
520 
io_ctl_check_generation(struct btrfs_io_ctl * io_ctl,u64 generation)521 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
522 {
523 	u64 cache_gen;
524 
525 	/*
526 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
527 	 * chunk at the front of the first page.
528 	 */
529 	io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
530 	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
531 
532 	cache_gen = get_unaligned_le64(io_ctl->cur);
533 	if (cache_gen != generation) {
534 		btrfs_err_rl(io_ctl->fs_info,
535 			"space cache generation (%llu) does not match inode (%llu)",
536 				cache_gen, generation);
537 		io_ctl_unmap_page(io_ctl);
538 		return -EIO;
539 	}
540 	io_ctl->cur += sizeof(u64);
541 	return 0;
542 }
543 
io_ctl_set_crc(struct btrfs_io_ctl * io_ctl,int index)544 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
545 {
546 	u32 *tmp;
547 	u32 crc = ~(u32)0;
548 	unsigned offset = 0;
549 
550 	if (index == 0)
551 		offset = sizeof(u32) * io_ctl->num_pages;
552 
553 	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
554 	btrfs_crc32c_final(crc, (u8 *)&crc);
555 	io_ctl_unmap_page(io_ctl);
556 	tmp = page_address(io_ctl->pages[0]);
557 	tmp += index;
558 	*tmp = crc;
559 }
560 
io_ctl_check_crc(struct btrfs_io_ctl * io_ctl,int index)561 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
562 {
563 	u32 *tmp, val;
564 	u32 crc = ~(u32)0;
565 	unsigned offset = 0;
566 
567 	if (index == 0)
568 		offset = sizeof(u32) * io_ctl->num_pages;
569 
570 	tmp = page_address(io_ctl->pages[0]);
571 	tmp += index;
572 	val = *tmp;
573 
574 	io_ctl_map_page(io_ctl, 0);
575 	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
576 	btrfs_crc32c_final(crc, (u8 *)&crc);
577 	if (val != crc) {
578 		btrfs_err_rl(io_ctl->fs_info,
579 			"csum mismatch on free space cache");
580 		io_ctl_unmap_page(io_ctl);
581 		return -EIO;
582 	}
583 
584 	return 0;
585 }
586 
io_ctl_add_entry(struct btrfs_io_ctl * io_ctl,u64 offset,u64 bytes,void * bitmap)587 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
588 			    void *bitmap)
589 {
590 	struct btrfs_free_space_entry *entry;
591 
592 	if (!io_ctl->cur)
593 		return -ENOSPC;
594 
595 	entry = io_ctl->cur;
596 	put_unaligned_le64(offset, &entry->offset);
597 	put_unaligned_le64(bytes, &entry->bytes);
598 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
599 		BTRFS_FREE_SPACE_EXTENT;
600 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
601 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
602 
603 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
604 		return 0;
605 
606 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
607 
608 	/* No more pages to map */
609 	if (io_ctl->index >= io_ctl->num_pages)
610 		return 0;
611 
612 	/* map the next page */
613 	io_ctl_map_page(io_ctl, 1);
614 	return 0;
615 }
616 
io_ctl_add_bitmap(struct btrfs_io_ctl * io_ctl,void * bitmap)617 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
618 {
619 	if (!io_ctl->cur)
620 		return -ENOSPC;
621 
622 	/*
623 	 * If we aren't at the start of the current page, unmap this one and
624 	 * map the next one if there is any left.
625 	 */
626 	if (io_ctl->cur != io_ctl->orig) {
627 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
628 		if (io_ctl->index >= io_ctl->num_pages)
629 			return -ENOSPC;
630 		io_ctl_map_page(io_ctl, 0);
631 	}
632 
633 	copy_page(io_ctl->cur, bitmap);
634 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
635 	if (io_ctl->index < io_ctl->num_pages)
636 		io_ctl_map_page(io_ctl, 0);
637 	return 0;
638 }
639 
io_ctl_zero_remaining_pages(struct btrfs_io_ctl * io_ctl)640 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
641 {
642 	/*
643 	 * If we're not on the boundary we know we've modified the page and we
644 	 * need to crc the page.
645 	 */
646 	if (io_ctl->cur != io_ctl->orig)
647 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
648 	else
649 		io_ctl_unmap_page(io_ctl);
650 
651 	while (io_ctl->index < io_ctl->num_pages) {
652 		io_ctl_map_page(io_ctl, 1);
653 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
654 	}
655 }
656 
io_ctl_read_entry(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space * entry,u8 * type)657 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
658 			    struct btrfs_free_space *entry, u8 *type)
659 {
660 	struct btrfs_free_space_entry *e;
661 	int ret;
662 
663 	if (!io_ctl->cur) {
664 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
665 		if (ret)
666 			return ret;
667 	}
668 
669 	e = io_ctl->cur;
670 	entry->offset = get_unaligned_le64(&e->offset);
671 	entry->bytes = get_unaligned_le64(&e->bytes);
672 	*type = e->type;
673 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
674 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
675 
676 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
677 		return 0;
678 
679 	io_ctl_unmap_page(io_ctl);
680 
681 	return 0;
682 }
683 
io_ctl_read_bitmap(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space * entry)684 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
685 			      struct btrfs_free_space *entry)
686 {
687 	int ret;
688 
689 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
690 	if (ret)
691 		return ret;
692 
693 	copy_page(entry->bitmap, io_ctl->cur);
694 	io_ctl_unmap_page(io_ctl);
695 
696 	return 0;
697 }
698 
recalculate_thresholds(struct btrfs_free_space_ctl * ctl)699 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
700 {
701 	struct btrfs_block_group *block_group = ctl->block_group;
702 	u64 max_bytes;
703 	u64 bitmap_bytes;
704 	u64 extent_bytes;
705 	u64 size = block_group->length;
706 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
707 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
708 
709 	max_bitmaps = max_t(u64, max_bitmaps, 1);
710 
711 	if (ctl->total_bitmaps > max_bitmaps)
712 		btrfs_err(block_group->fs_info,
713 "invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
714 			  block_group->start, block_group->length,
715 			  ctl->total_bitmaps, ctl->unit, max_bitmaps,
716 			  bytes_per_bg);
717 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
718 
719 	/*
720 	 * We are trying to keep the total amount of memory used per 1GiB of
721 	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
722 	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
723 	 * bitmaps, we may end up using more memory than this.
724 	 */
725 	if (size < SZ_1G)
726 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
727 	else
728 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
729 
730 	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
731 
732 	/*
733 	 * we want the extent entry threshold to always be at most 1/2 the max
734 	 * bytes we can have, or whatever is less than that.
735 	 */
736 	extent_bytes = max_bytes - bitmap_bytes;
737 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
738 
739 	ctl->extents_thresh =
740 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
741 }
742 
__load_free_space_cache(struct btrfs_root * root,struct inode * inode,struct btrfs_free_space_ctl * ctl,struct btrfs_path * path,u64 offset)743 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
744 				   struct btrfs_free_space_ctl *ctl,
745 				   struct btrfs_path *path, u64 offset)
746 {
747 	struct btrfs_fs_info *fs_info = root->fs_info;
748 	struct btrfs_free_space_header *header;
749 	struct extent_buffer *leaf;
750 	struct btrfs_io_ctl io_ctl;
751 	struct btrfs_key key;
752 	struct btrfs_free_space *e, *n;
753 	LIST_HEAD(bitmaps);
754 	u64 num_entries;
755 	u64 num_bitmaps;
756 	u64 generation;
757 	u8 type;
758 	int ret = 0;
759 
760 	/* Nothing in the space cache, goodbye */
761 	if (!i_size_read(inode))
762 		return 0;
763 
764 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
765 	key.offset = offset;
766 	key.type = 0;
767 
768 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
769 	if (ret < 0)
770 		return 0;
771 	else if (ret > 0) {
772 		btrfs_release_path(path);
773 		return 0;
774 	}
775 
776 	ret = -1;
777 
778 	leaf = path->nodes[0];
779 	header = btrfs_item_ptr(leaf, path->slots[0],
780 				struct btrfs_free_space_header);
781 	num_entries = btrfs_free_space_entries(leaf, header);
782 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
783 	generation = btrfs_free_space_generation(leaf, header);
784 	btrfs_release_path(path);
785 
786 	if (!BTRFS_I(inode)->generation) {
787 		btrfs_info(fs_info,
788 			   "the free space cache file (%llu) is invalid, skip it",
789 			   offset);
790 		return 0;
791 	}
792 
793 	if (BTRFS_I(inode)->generation != generation) {
794 		btrfs_err(fs_info,
795 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
796 			  BTRFS_I(inode)->generation, generation);
797 		return 0;
798 	}
799 
800 	if (!num_entries)
801 		return 0;
802 
803 	ret = io_ctl_init(&io_ctl, inode, 0);
804 	if (ret)
805 		return ret;
806 
807 	readahead_cache(inode);
808 
809 	ret = io_ctl_prepare_pages(&io_ctl, true);
810 	if (ret)
811 		goto out;
812 
813 	ret = io_ctl_check_crc(&io_ctl, 0);
814 	if (ret)
815 		goto free_cache;
816 
817 	ret = io_ctl_check_generation(&io_ctl, generation);
818 	if (ret)
819 		goto free_cache;
820 
821 	while (num_entries) {
822 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
823 				      GFP_NOFS);
824 		if (!e) {
825 			ret = -ENOMEM;
826 			goto free_cache;
827 		}
828 
829 		ret = io_ctl_read_entry(&io_ctl, e, &type);
830 		if (ret) {
831 			kmem_cache_free(btrfs_free_space_cachep, e);
832 			goto free_cache;
833 		}
834 
835 		if (!e->bytes) {
836 			ret = -1;
837 			kmem_cache_free(btrfs_free_space_cachep, e);
838 			goto free_cache;
839 		}
840 
841 		if (type == BTRFS_FREE_SPACE_EXTENT) {
842 			spin_lock(&ctl->tree_lock);
843 			ret = link_free_space(ctl, e);
844 			spin_unlock(&ctl->tree_lock);
845 			if (ret) {
846 				btrfs_err(fs_info,
847 					"Duplicate entries in free space cache, dumping");
848 				kmem_cache_free(btrfs_free_space_cachep, e);
849 				goto free_cache;
850 			}
851 		} else {
852 			ASSERT(num_bitmaps);
853 			num_bitmaps--;
854 			e->bitmap = kmem_cache_zalloc(
855 					btrfs_free_space_bitmap_cachep, GFP_NOFS);
856 			if (!e->bitmap) {
857 				ret = -ENOMEM;
858 				kmem_cache_free(
859 					btrfs_free_space_cachep, e);
860 				goto free_cache;
861 			}
862 			spin_lock(&ctl->tree_lock);
863 			ret = link_free_space(ctl, e);
864 			if (ret) {
865 				spin_unlock(&ctl->tree_lock);
866 				btrfs_err(fs_info,
867 					"Duplicate entries in free space cache, dumping");
868 				kmem_cache_free(btrfs_free_space_cachep, e);
869 				goto free_cache;
870 			}
871 			ctl->total_bitmaps++;
872 			recalculate_thresholds(ctl);
873 			spin_unlock(&ctl->tree_lock);
874 			list_add_tail(&e->list, &bitmaps);
875 		}
876 
877 		num_entries--;
878 	}
879 
880 	io_ctl_unmap_page(&io_ctl);
881 
882 	/*
883 	 * We add the bitmaps at the end of the entries in order that
884 	 * the bitmap entries are added to the cache.
885 	 */
886 	list_for_each_entry_safe(e, n, &bitmaps, list) {
887 		list_del_init(&e->list);
888 		ret = io_ctl_read_bitmap(&io_ctl, e);
889 		if (ret)
890 			goto free_cache;
891 	}
892 
893 	io_ctl_drop_pages(&io_ctl);
894 	ret = 1;
895 out:
896 	io_ctl_free(&io_ctl);
897 	return ret;
898 free_cache:
899 	io_ctl_drop_pages(&io_ctl);
900 
901 	spin_lock(&ctl->tree_lock);
902 	__btrfs_remove_free_space_cache(ctl);
903 	spin_unlock(&ctl->tree_lock);
904 	goto out;
905 }
906 
copy_free_space_cache(struct btrfs_block_group * block_group,struct btrfs_free_space_ctl * ctl)907 static int copy_free_space_cache(struct btrfs_block_group *block_group,
908 				 struct btrfs_free_space_ctl *ctl)
909 {
910 	struct btrfs_free_space *info;
911 	struct rb_node *n;
912 	int ret = 0;
913 
914 	while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
915 		info = rb_entry(n, struct btrfs_free_space, offset_index);
916 		if (!info->bitmap) {
917 			unlink_free_space(ctl, info, true);
918 			ret = btrfs_add_free_space(block_group, info->offset,
919 						   info->bytes);
920 			kmem_cache_free(btrfs_free_space_cachep, info);
921 		} else {
922 			u64 offset = info->offset;
923 			u64 bytes = ctl->unit;
924 
925 			while (search_bitmap(ctl, info, &offset, &bytes,
926 					     false) == 0) {
927 				ret = btrfs_add_free_space(block_group, offset,
928 							   bytes);
929 				if (ret)
930 					break;
931 				bitmap_clear_bits(ctl, info, offset, bytes, true);
932 				offset = info->offset;
933 				bytes = ctl->unit;
934 			}
935 			free_bitmap(ctl, info);
936 		}
937 		cond_resched();
938 	}
939 	return ret;
940 }
941 
942 static struct lock_class_key btrfs_free_space_inode_key;
943 
load_free_space_cache(struct btrfs_block_group * block_group)944 int load_free_space_cache(struct btrfs_block_group *block_group)
945 {
946 	struct btrfs_fs_info *fs_info = block_group->fs_info;
947 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
948 	struct btrfs_free_space_ctl tmp_ctl = {};
949 	struct inode *inode;
950 	struct btrfs_path *path;
951 	int ret = 0;
952 	bool matched;
953 	u64 used = block_group->used;
954 
955 	/*
956 	 * Because we could potentially discard our loaded free space, we want
957 	 * to load everything into a temporary structure first, and then if it's
958 	 * valid copy it all into the actual free space ctl.
959 	 */
960 	btrfs_init_free_space_ctl(block_group, &tmp_ctl);
961 
962 	/*
963 	 * If this block group has been marked to be cleared for one reason or
964 	 * another then we can't trust the on disk cache, so just return.
965 	 */
966 	spin_lock(&block_group->lock);
967 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
968 		spin_unlock(&block_group->lock);
969 		return 0;
970 	}
971 	spin_unlock(&block_group->lock);
972 
973 	path = btrfs_alloc_path();
974 	if (!path)
975 		return 0;
976 	path->search_commit_root = 1;
977 	path->skip_locking = 1;
978 
979 	/*
980 	 * We must pass a path with search_commit_root set to btrfs_iget in
981 	 * order to avoid a deadlock when allocating extents for the tree root.
982 	 *
983 	 * When we are COWing an extent buffer from the tree root, when looking
984 	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
985 	 * block group without its free space cache loaded. When we find one
986 	 * we must load its space cache which requires reading its free space
987 	 * cache's inode item from the root tree. If this inode item is located
988 	 * in the same leaf that we started COWing before, then we end up in
989 	 * deadlock on the extent buffer (trying to read lock it when we
990 	 * previously write locked it).
991 	 *
992 	 * It's safe to read the inode item using the commit root because
993 	 * block groups, once loaded, stay in memory forever (until they are
994 	 * removed) as well as their space caches once loaded. New block groups
995 	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
996 	 * we will never try to read their inode item while the fs is mounted.
997 	 */
998 	inode = lookup_free_space_inode(block_group, path);
999 	if (IS_ERR(inode)) {
1000 		btrfs_free_path(path);
1001 		return 0;
1002 	}
1003 
1004 	/* We may have converted the inode and made the cache invalid. */
1005 	spin_lock(&block_group->lock);
1006 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
1007 		spin_unlock(&block_group->lock);
1008 		btrfs_free_path(path);
1009 		goto out;
1010 	}
1011 	spin_unlock(&block_group->lock);
1012 
1013 	/*
1014 	 * Reinitialize the class of struct inode's mapping->invalidate_lock for
1015 	 * free space inodes to prevent false positives related to locks for normal
1016 	 * inodes.
1017 	 */
1018 	lockdep_set_class(&(&inode->i_data)->invalidate_lock,
1019 			  &btrfs_free_space_inode_key);
1020 
1021 	ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
1022 				      path, block_group->start);
1023 	btrfs_free_path(path);
1024 	if (ret <= 0)
1025 		goto out;
1026 
1027 	matched = (tmp_ctl.free_space == (block_group->length - used -
1028 					  block_group->bytes_super));
1029 
1030 	if (matched) {
1031 		ret = copy_free_space_cache(block_group, &tmp_ctl);
1032 		/*
1033 		 * ret == 1 means we successfully loaded the free space cache,
1034 		 * so we need to re-set it here.
1035 		 */
1036 		if (ret == 0)
1037 			ret = 1;
1038 	} else {
1039 		/*
1040 		 * We need to call the _locked variant so we don't try to update
1041 		 * the discard counters.
1042 		 */
1043 		spin_lock(&tmp_ctl.tree_lock);
1044 		__btrfs_remove_free_space_cache(&tmp_ctl);
1045 		spin_unlock(&tmp_ctl.tree_lock);
1046 		btrfs_warn(fs_info,
1047 			   "block group %llu has wrong amount of free space",
1048 			   block_group->start);
1049 		ret = -1;
1050 	}
1051 out:
1052 	if (ret < 0) {
1053 		/* This cache is bogus, make sure it gets cleared */
1054 		spin_lock(&block_group->lock);
1055 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
1056 		spin_unlock(&block_group->lock);
1057 		ret = 0;
1058 
1059 		btrfs_warn(fs_info,
1060 			   "failed to load free space cache for block group %llu, rebuilding it now",
1061 			   block_group->start);
1062 	}
1063 
1064 	spin_lock(&ctl->tree_lock);
1065 	btrfs_discard_update_discardable(block_group);
1066 	spin_unlock(&ctl->tree_lock);
1067 	iput(inode);
1068 	return ret;
1069 }
1070 
1071 static noinline_for_stack
write_cache_extent_entries(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space_ctl * ctl,struct btrfs_block_group * block_group,int * entries,int * bitmaps,struct list_head * bitmap_list)1072 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1073 			      struct btrfs_free_space_ctl *ctl,
1074 			      struct btrfs_block_group *block_group,
1075 			      int *entries, int *bitmaps,
1076 			      struct list_head *bitmap_list)
1077 {
1078 	int ret;
1079 	struct btrfs_free_cluster *cluster = NULL;
1080 	struct btrfs_free_cluster *cluster_locked = NULL;
1081 	struct rb_node *node = rb_first(&ctl->free_space_offset);
1082 	struct btrfs_trim_range *trim_entry;
1083 
1084 	/* Get the cluster for this block_group if it exists */
1085 	if (block_group && !list_empty(&block_group->cluster_list)) {
1086 		cluster = list_entry(block_group->cluster_list.next,
1087 				     struct btrfs_free_cluster,
1088 				     block_group_list);
1089 	}
1090 
1091 	if (!node && cluster) {
1092 		cluster_locked = cluster;
1093 		spin_lock(&cluster_locked->lock);
1094 		node = rb_first(&cluster->root);
1095 		cluster = NULL;
1096 	}
1097 
1098 	/* Write out the extent entries */
1099 	while (node) {
1100 		struct btrfs_free_space *e;
1101 
1102 		e = rb_entry(node, struct btrfs_free_space, offset_index);
1103 		*entries += 1;
1104 
1105 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1106 				       e->bitmap);
1107 		if (ret)
1108 			goto fail;
1109 
1110 		if (e->bitmap) {
1111 			list_add_tail(&e->list, bitmap_list);
1112 			*bitmaps += 1;
1113 		}
1114 		node = rb_next(node);
1115 		if (!node && cluster) {
1116 			node = rb_first(&cluster->root);
1117 			cluster_locked = cluster;
1118 			spin_lock(&cluster_locked->lock);
1119 			cluster = NULL;
1120 		}
1121 	}
1122 	if (cluster_locked) {
1123 		spin_unlock(&cluster_locked->lock);
1124 		cluster_locked = NULL;
1125 	}
1126 
1127 	/*
1128 	 * Make sure we don't miss any range that was removed from our rbtree
1129 	 * because trimming is running. Otherwise after a umount+mount (or crash
1130 	 * after committing the transaction) we would leak free space and get
1131 	 * an inconsistent free space cache report from fsck.
1132 	 */
1133 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1134 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1135 				       trim_entry->bytes, NULL);
1136 		if (ret)
1137 			goto fail;
1138 		*entries += 1;
1139 	}
1140 
1141 	return 0;
1142 fail:
1143 	if (cluster_locked)
1144 		spin_unlock(&cluster_locked->lock);
1145 	return -ENOSPC;
1146 }
1147 
1148 static noinline_for_stack int
update_cache_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,u64 offset,int entries,int bitmaps)1149 update_cache_item(struct btrfs_trans_handle *trans,
1150 		  struct btrfs_root *root,
1151 		  struct inode *inode,
1152 		  struct btrfs_path *path, u64 offset,
1153 		  int entries, int bitmaps)
1154 {
1155 	struct btrfs_key key;
1156 	struct btrfs_free_space_header *header;
1157 	struct extent_buffer *leaf;
1158 	int ret;
1159 
1160 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1161 	key.offset = offset;
1162 	key.type = 0;
1163 
1164 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1165 	if (ret < 0) {
1166 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1167 				 EXTENT_DELALLOC, NULL);
1168 		goto fail;
1169 	}
1170 	leaf = path->nodes[0];
1171 	if (ret > 0) {
1172 		struct btrfs_key found_key;
1173 		ASSERT(path->slots[0]);
1174 		path->slots[0]--;
1175 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1176 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1177 		    found_key.offset != offset) {
1178 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1179 					 inode->i_size - 1, EXTENT_DELALLOC,
1180 					 NULL);
1181 			btrfs_release_path(path);
1182 			goto fail;
1183 		}
1184 	}
1185 
1186 	BTRFS_I(inode)->generation = trans->transid;
1187 	header = btrfs_item_ptr(leaf, path->slots[0],
1188 				struct btrfs_free_space_header);
1189 	btrfs_set_free_space_entries(leaf, header, entries);
1190 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1191 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1192 	btrfs_mark_buffer_dirty(leaf);
1193 	btrfs_release_path(path);
1194 
1195 	return 0;
1196 
1197 fail:
1198 	return -1;
1199 }
1200 
write_pinned_extent_entries(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_io_ctl * io_ctl,int * entries)1201 static noinline_for_stack int write_pinned_extent_entries(
1202 			    struct btrfs_trans_handle *trans,
1203 			    struct btrfs_block_group *block_group,
1204 			    struct btrfs_io_ctl *io_ctl,
1205 			    int *entries)
1206 {
1207 	u64 start, extent_start, extent_end, len;
1208 	struct extent_io_tree *unpin = NULL;
1209 	int ret;
1210 
1211 	if (!block_group)
1212 		return 0;
1213 
1214 	/*
1215 	 * We want to add any pinned extents to our free space cache
1216 	 * so we don't leak the space
1217 	 *
1218 	 * We shouldn't have switched the pinned extents yet so this is the
1219 	 * right one
1220 	 */
1221 	unpin = &trans->transaction->pinned_extents;
1222 
1223 	start = block_group->start;
1224 
1225 	while (start < block_group->start + block_group->length) {
1226 		ret = find_first_extent_bit(unpin, start,
1227 					    &extent_start, &extent_end,
1228 					    EXTENT_DIRTY, NULL);
1229 		if (ret)
1230 			return 0;
1231 
1232 		/* This pinned extent is out of our range */
1233 		if (extent_start >= block_group->start + block_group->length)
1234 			return 0;
1235 
1236 		extent_start = max(extent_start, start);
1237 		extent_end = min(block_group->start + block_group->length,
1238 				 extent_end + 1);
1239 		len = extent_end - extent_start;
1240 
1241 		*entries += 1;
1242 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1243 		if (ret)
1244 			return -ENOSPC;
1245 
1246 		start = extent_end;
1247 	}
1248 
1249 	return 0;
1250 }
1251 
1252 static noinline_for_stack int
write_bitmap_entries(struct btrfs_io_ctl * io_ctl,struct list_head * bitmap_list)1253 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1254 {
1255 	struct btrfs_free_space *entry, *next;
1256 	int ret;
1257 
1258 	/* Write out the bitmaps */
1259 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1260 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1261 		if (ret)
1262 			return -ENOSPC;
1263 		list_del_init(&entry->list);
1264 	}
1265 
1266 	return 0;
1267 }
1268 
flush_dirty_cache(struct inode * inode)1269 static int flush_dirty_cache(struct inode *inode)
1270 {
1271 	int ret;
1272 
1273 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1274 	if (ret)
1275 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1276 				 EXTENT_DELALLOC, NULL);
1277 
1278 	return ret;
1279 }
1280 
1281 static void noinline_for_stack
cleanup_bitmap_list(struct list_head * bitmap_list)1282 cleanup_bitmap_list(struct list_head *bitmap_list)
1283 {
1284 	struct btrfs_free_space *entry, *next;
1285 
1286 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1287 		list_del_init(&entry->list);
1288 }
1289 
1290 static void noinline_for_stack
cleanup_write_cache_enospc(struct inode * inode,struct btrfs_io_ctl * io_ctl,struct extent_state ** cached_state)1291 cleanup_write_cache_enospc(struct inode *inode,
1292 			   struct btrfs_io_ctl *io_ctl,
1293 			   struct extent_state **cached_state)
1294 {
1295 	io_ctl_drop_pages(io_ctl);
1296 	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1297 		      cached_state);
1298 }
1299 
__btrfs_wait_cache_io(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_io_ctl * io_ctl,struct btrfs_path * path,u64 offset)1300 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1301 				 struct btrfs_trans_handle *trans,
1302 				 struct btrfs_block_group *block_group,
1303 				 struct btrfs_io_ctl *io_ctl,
1304 				 struct btrfs_path *path, u64 offset)
1305 {
1306 	int ret;
1307 	struct inode *inode = io_ctl->inode;
1308 
1309 	if (!inode)
1310 		return 0;
1311 
1312 	/* Flush the dirty pages in the cache file. */
1313 	ret = flush_dirty_cache(inode);
1314 	if (ret)
1315 		goto out;
1316 
1317 	/* Update the cache item to tell everyone this cache file is valid. */
1318 	ret = update_cache_item(trans, root, inode, path, offset,
1319 				io_ctl->entries, io_ctl->bitmaps);
1320 out:
1321 	if (ret) {
1322 		invalidate_inode_pages2(inode->i_mapping);
1323 		BTRFS_I(inode)->generation = 0;
1324 		if (block_group)
1325 			btrfs_debug(root->fs_info,
1326 	  "failed to write free space cache for block group %llu error %d",
1327 				  block_group->start, ret);
1328 	}
1329 	btrfs_update_inode(trans, root, BTRFS_I(inode));
1330 
1331 	if (block_group) {
1332 		/* the dirty list is protected by the dirty_bgs_lock */
1333 		spin_lock(&trans->transaction->dirty_bgs_lock);
1334 
1335 		/* the disk_cache_state is protected by the block group lock */
1336 		spin_lock(&block_group->lock);
1337 
1338 		/*
1339 		 * only mark this as written if we didn't get put back on
1340 		 * the dirty list while waiting for IO.   Otherwise our
1341 		 * cache state won't be right, and we won't get written again
1342 		 */
1343 		if (!ret && list_empty(&block_group->dirty_list))
1344 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1345 		else if (ret)
1346 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1347 
1348 		spin_unlock(&block_group->lock);
1349 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1350 		io_ctl->inode = NULL;
1351 		iput(inode);
1352 	}
1353 
1354 	return ret;
1355 
1356 }
1357 
btrfs_wait_cache_io(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_path * path)1358 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1359 			struct btrfs_block_group *block_group,
1360 			struct btrfs_path *path)
1361 {
1362 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1363 				     block_group, &block_group->io_ctl,
1364 				     path, block_group->start);
1365 }
1366 
1367 /**
1368  * Write out cached info to an inode
1369  *
1370  * @root:        root the inode belongs to
1371  * @inode:       freespace inode we are writing out
1372  * @ctl:         free space cache we are going to write out
1373  * @block_group: block_group for this cache if it belongs to a block_group
1374  * @io_ctl:      holds context for the io
1375  * @trans:       the trans handle
1376  *
1377  * This function writes out a free space cache struct to disk for quick recovery
1378  * on mount.  This will return 0 if it was successful in writing the cache out,
1379  * or an errno if it was not.
1380  */
__btrfs_write_out_cache(struct btrfs_root * root,struct inode * inode,struct btrfs_free_space_ctl * ctl,struct btrfs_block_group * block_group,struct btrfs_io_ctl * io_ctl,struct btrfs_trans_handle * trans)1381 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1382 				   struct btrfs_free_space_ctl *ctl,
1383 				   struct btrfs_block_group *block_group,
1384 				   struct btrfs_io_ctl *io_ctl,
1385 				   struct btrfs_trans_handle *trans)
1386 {
1387 	struct extent_state *cached_state = NULL;
1388 	LIST_HEAD(bitmap_list);
1389 	int entries = 0;
1390 	int bitmaps = 0;
1391 	int ret;
1392 	int must_iput = 0;
1393 
1394 	if (!i_size_read(inode))
1395 		return -EIO;
1396 
1397 	WARN_ON(io_ctl->pages);
1398 	ret = io_ctl_init(io_ctl, inode, 1);
1399 	if (ret)
1400 		return ret;
1401 
1402 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1403 		down_write(&block_group->data_rwsem);
1404 		spin_lock(&block_group->lock);
1405 		if (block_group->delalloc_bytes) {
1406 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1407 			spin_unlock(&block_group->lock);
1408 			up_write(&block_group->data_rwsem);
1409 			BTRFS_I(inode)->generation = 0;
1410 			ret = 0;
1411 			must_iput = 1;
1412 			goto out;
1413 		}
1414 		spin_unlock(&block_group->lock);
1415 	}
1416 
1417 	/* Lock all pages first so we can lock the extent safely. */
1418 	ret = io_ctl_prepare_pages(io_ctl, false);
1419 	if (ret)
1420 		goto out_unlock;
1421 
1422 	lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1423 		    &cached_state);
1424 
1425 	io_ctl_set_generation(io_ctl, trans->transid);
1426 
1427 	mutex_lock(&ctl->cache_writeout_mutex);
1428 	/* Write out the extent entries in the free space cache */
1429 	spin_lock(&ctl->tree_lock);
1430 	ret = write_cache_extent_entries(io_ctl, ctl,
1431 					 block_group, &entries, &bitmaps,
1432 					 &bitmap_list);
1433 	if (ret)
1434 		goto out_nospc_locked;
1435 
1436 	/*
1437 	 * Some spaces that are freed in the current transaction are pinned,
1438 	 * they will be added into free space cache after the transaction is
1439 	 * committed, we shouldn't lose them.
1440 	 *
1441 	 * If this changes while we are working we'll get added back to
1442 	 * the dirty list and redo it.  No locking needed
1443 	 */
1444 	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1445 	if (ret)
1446 		goto out_nospc_locked;
1447 
1448 	/*
1449 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1450 	 * locked while doing it because a concurrent trim can be manipulating
1451 	 * or freeing the bitmap.
1452 	 */
1453 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1454 	spin_unlock(&ctl->tree_lock);
1455 	mutex_unlock(&ctl->cache_writeout_mutex);
1456 	if (ret)
1457 		goto out_nospc;
1458 
1459 	/* Zero out the rest of the pages just to make sure */
1460 	io_ctl_zero_remaining_pages(io_ctl);
1461 
1462 	/* Everything is written out, now we dirty the pages in the file. */
1463 	ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1464 				io_ctl->num_pages, 0, i_size_read(inode),
1465 				&cached_state, false);
1466 	if (ret)
1467 		goto out_nospc;
1468 
1469 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1470 		up_write(&block_group->data_rwsem);
1471 	/*
1472 	 * Release the pages and unlock the extent, we will flush
1473 	 * them out later
1474 	 */
1475 	io_ctl_drop_pages(io_ctl);
1476 	io_ctl_free(io_ctl);
1477 
1478 	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1479 		      &cached_state);
1480 
1481 	/*
1482 	 * at this point the pages are under IO and we're happy,
1483 	 * The caller is responsible for waiting on them and updating
1484 	 * the cache and the inode
1485 	 */
1486 	io_ctl->entries = entries;
1487 	io_ctl->bitmaps = bitmaps;
1488 
1489 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1490 	if (ret)
1491 		goto out;
1492 
1493 	return 0;
1494 
1495 out_nospc_locked:
1496 	cleanup_bitmap_list(&bitmap_list);
1497 	spin_unlock(&ctl->tree_lock);
1498 	mutex_unlock(&ctl->cache_writeout_mutex);
1499 
1500 out_nospc:
1501 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1502 
1503 out_unlock:
1504 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1505 		up_write(&block_group->data_rwsem);
1506 
1507 out:
1508 	io_ctl->inode = NULL;
1509 	io_ctl_free(io_ctl);
1510 	if (ret) {
1511 		invalidate_inode_pages2(inode->i_mapping);
1512 		BTRFS_I(inode)->generation = 0;
1513 	}
1514 	btrfs_update_inode(trans, root, BTRFS_I(inode));
1515 	if (must_iput)
1516 		iput(inode);
1517 	return ret;
1518 }
1519 
btrfs_write_out_cache(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_path * path)1520 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1521 			  struct btrfs_block_group *block_group,
1522 			  struct btrfs_path *path)
1523 {
1524 	struct btrfs_fs_info *fs_info = trans->fs_info;
1525 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1526 	struct inode *inode;
1527 	int ret = 0;
1528 
1529 	spin_lock(&block_group->lock);
1530 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1531 		spin_unlock(&block_group->lock);
1532 		return 0;
1533 	}
1534 	spin_unlock(&block_group->lock);
1535 
1536 	inode = lookup_free_space_inode(block_group, path);
1537 	if (IS_ERR(inode))
1538 		return 0;
1539 
1540 	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1541 				block_group, &block_group->io_ctl, trans);
1542 	if (ret) {
1543 		btrfs_debug(fs_info,
1544 	  "failed to write free space cache for block group %llu error %d",
1545 			  block_group->start, ret);
1546 		spin_lock(&block_group->lock);
1547 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1548 		spin_unlock(&block_group->lock);
1549 
1550 		block_group->io_ctl.inode = NULL;
1551 		iput(inode);
1552 	}
1553 
1554 	/*
1555 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1556 	 * to wait for IO and put the inode
1557 	 */
1558 
1559 	return ret;
1560 }
1561 
offset_to_bit(u64 bitmap_start,u32 unit,u64 offset)1562 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1563 					  u64 offset)
1564 {
1565 	ASSERT(offset >= bitmap_start);
1566 	offset -= bitmap_start;
1567 	return (unsigned long)(div_u64(offset, unit));
1568 }
1569 
bytes_to_bits(u64 bytes,u32 unit)1570 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1571 {
1572 	return (unsigned long)(div_u64(bytes, unit));
1573 }
1574 
offset_to_bitmap(struct btrfs_free_space_ctl * ctl,u64 offset)1575 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1576 				   u64 offset)
1577 {
1578 	u64 bitmap_start;
1579 	u64 bytes_per_bitmap;
1580 
1581 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1582 	bitmap_start = offset - ctl->start;
1583 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1584 	bitmap_start *= bytes_per_bitmap;
1585 	bitmap_start += ctl->start;
1586 
1587 	return bitmap_start;
1588 }
1589 
tree_insert_offset(struct rb_root * root,u64 offset,struct rb_node * node,int bitmap)1590 static int tree_insert_offset(struct rb_root *root, u64 offset,
1591 			      struct rb_node *node, int bitmap)
1592 {
1593 	struct rb_node **p = &root->rb_node;
1594 	struct rb_node *parent = NULL;
1595 	struct btrfs_free_space *info;
1596 
1597 	while (*p) {
1598 		parent = *p;
1599 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1600 
1601 		if (offset < info->offset) {
1602 			p = &(*p)->rb_left;
1603 		} else if (offset > info->offset) {
1604 			p = &(*p)->rb_right;
1605 		} else {
1606 			/*
1607 			 * we could have a bitmap entry and an extent entry
1608 			 * share the same offset.  If this is the case, we want
1609 			 * the extent entry to always be found first if we do a
1610 			 * linear search through the tree, since we want to have
1611 			 * the quickest allocation time, and allocating from an
1612 			 * extent is faster than allocating from a bitmap.  So
1613 			 * if we're inserting a bitmap and we find an entry at
1614 			 * this offset, we want to go right, or after this entry
1615 			 * logically.  If we are inserting an extent and we've
1616 			 * found a bitmap, we want to go left, or before
1617 			 * logically.
1618 			 */
1619 			if (bitmap) {
1620 				if (info->bitmap) {
1621 					WARN_ON_ONCE(1);
1622 					return -EEXIST;
1623 				}
1624 				p = &(*p)->rb_right;
1625 			} else {
1626 				if (!info->bitmap) {
1627 					WARN_ON_ONCE(1);
1628 					return -EEXIST;
1629 				}
1630 				p = &(*p)->rb_left;
1631 			}
1632 		}
1633 	}
1634 
1635 	rb_link_node(node, parent, p);
1636 	rb_insert_color(node, root);
1637 
1638 	return 0;
1639 }
1640 
1641 /*
1642  * This is a little subtle.  We *only* have ->max_extent_size set if we actually
1643  * searched through the bitmap and figured out the largest ->max_extent_size,
1644  * otherwise it's 0.  In the case that it's 0 we don't want to tell the
1645  * allocator the wrong thing, we want to use the actual real max_extent_size
1646  * we've found already if it's larger, or we want to use ->bytes.
1647  *
1648  * This matters because find_free_space() will skip entries who's ->bytes is
1649  * less than the required bytes.  So if we didn't search down this bitmap, we
1650  * may pick some previous entry that has a smaller ->max_extent_size than we
1651  * have.  For example, assume we have two entries, one that has
1652  * ->max_extent_size set to 4K and ->bytes set to 1M.  A second entry hasn't set
1653  * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous.  We will
1654  *  call into find_free_space(), and return with max_extent_size == 4K, because
1655  *  that first bitmap entry had ->max_extent_size set, but the second one did
1656  *  not.  If instead we returned 8K we'd come in searching for 8K, and find the
1657  *  8K contiguous range.
1658  *
1659  *  Consider the other case, we have 2 8K chunks in that second entry and still
1660  *  don't have ->max_extent_size set.  We'll return 16K, and the next time the
1661  *  allocator comes in it'll fully search our second bitmap, and this time it'll
1662  *  get an uptodate value of 8K as the maximum chunk size.  Then we'll get the
1663  *  right allocation the next loop through.
1664  */
get_max_extent_size(const struct btrfs_free_space * entry)1665 static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
1666 {
1667 	if (entry->bitmap && entry->max_extent_size)
1668 		return entry->max_extent_size;
1669 	return entry->bytes;
1670 }
1671 
1672 /*
1673  * We want the largest entry to be leftmost, so this is inverted from what you'd
1674  * normally expect.
1675  */
entry_less(struct rb_node * node,const struct rb_node * parent)1676 static bool entry_less(struct rb_node *node, const struct rb_node *parent)
1677 {
1678 	const struct btrfs_free_space *entry, *exist;
1679 
1680 	entry = rb_entry(node, struct btrfs_free_space, bytes_index);
1681 	exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
1682 	return get_max_extent_size(exist) < get_max_extent_size(entry);
1683 }
1684 
1685 /*
1686  * searches the tree for the given offset.
1687  *
1688  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1689  * want a section that has at least bytes size and comes at or after the given
1690  * offset.
1691  */
1692 static struct btrfs_free_space *
tree_search_offset(struct btrfs_free_space_ctl * ctl,u64 offset,int bitmap_only,int fuzzy)1693 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1694 		   u64 offset, int bitmap_only, int fuzzy)
1695 {
1696 	struct rb_node *n = ctl->free_space_offset.rb_node;
1697 	struct btrfs_free_space *entry = NULL, *prev = NULL;
1698 
1699 	/* find entry that is closest to the 'offset' */
1700 	while (n) {
1701 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1702 		prev = entry;
1703 
1704 		if (offset < entry->offset)
1705 			n = n->rb_left;
1706 		else if (offset > entry->offset)
1707 			n = n->rb_right;
1708 		else
1709 			break;
1710 
1711 		entry = NULL;
1712 	}
1713 
1714 	if (bitmap_only) {
1715 		if (!entry)
1716 			return NULL;
1717 		if (entry->bitmap)
1718 			return entry;
1719 
1720 		/*
1721 		 * bitmap entry and extent entry may share same offset,
1722 		 * in that case, bitmap entry comes after extent entry.
1723 		 */
1724 		n = rb_next(n);
1725 		if (!n)
1726 			return NULL;
1727 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1728 		if (entry->offset != offset)
1729 			return NULL;
1730 
1731 		WARN_ON(!entry->bitmap);
1732 		return entry;
1733 	} else if (entry) {
1734 		if (entry->bitmap) {
1735 			/*
1736 			 * if previous extent entry covers the offset,
1737 			 * we should return it instead of the bitmap entry
1738 			 */
1739 			n = rb_prev(&entry->offset_index);
1740 			if (n) {
1741 				prev = rb_entry(n, struct btrfs_free_space,
1742 						offset_index);
1743 				if (!prev->bitmap &&
1744 				    prev->offset + prev->bytes > offset)
1745 					entry = prev;
1746 			}
1747 		}
1748 		return entry;
1749 	}
1750 
1751 	if (!prev)
1752 		return NULL;
1753 
1754 	/* find last entry before the 'offset' */
1755 	entry = prev;
1756 	if (entry->offset > offset) {
1757 		n = rb_prev(&entry->offset_index);
1758 		if (n) {
1759 			entry = rb_entry(n, struct btrfs_free_space,
1760 					offset_index);
1761 			ASSERT(entry->offset <= offset);
1762 		} else {
1763 			if (fuzzy)
1764 				return entry;
1765 			else
1766 				return NULL;
1767 		}
1768 	}
1769 
1770 	if (entry->bitmap) {
1771 		n = rb_prev(&entry->offset_index);
1772 		if (n) {
1773 			prev = rb_entry(n, struct btrfs_free_space,
1774 					offset_index);
1775 			if (!prev->bitmap &&
1776 			    prev->offset + prev->bytes > offset)
1777 				return prev;
1778 		}
1779 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1780 			return entry;
1781 	} else if (entry->offset + entry->bytes > offset)
1782 		return entry;
1783 
1784 	if (!fuzzy)
1785 		return NULL;
1786 
1787 	while (1) {
1788 		n = rb_next(&entry->offset_index);
1789 		if (!n)
1790 			return NULL;
1791 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1792 		if (entry->bitmap) {
1793 			if (entry->offset + BITS_PER_BITMAP *
1794 			    ctl->unit > offset)
1795 				break;
1796 		} else {
1797 			if (entry->offset + entry->bytes > offset)
1798 				break;
1799 		}
1800 	}
1801 	return entry;
1802 }
1803 
unlink_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)1804 static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1805 				     struct btrfs_free_space *info,
1806 				     bool update_stat)
1807 {
1808 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1809 	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1810 	ctl->free_extents--;
1811 
1812 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1813 		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1814 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1815 	}
1816 
1817 	if (update_stat)
1818 		ctl->free_space -= info->bytes;
1819 }
1820 
link_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1821 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1822 			   struct btrfs_free_space *info)
1823 {
1824 	int ret = 0;
1825 
1826 	ASSERT(info->bytes || info->bitmap);
1827 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1828 				 &info->offset_index, (info->bitmap != NULL));
1829 	if (ret)
1830 		return ret;
1831 
1832 	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1833 
1834 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1835 		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1836 		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1837 	}
1838 
1839 	ctl->free_space += info->bytes;
1840 	ctl->free_extents++;
1841 	return ret;
1842 }
1843 
relink_bitmap_entry(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1844 static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
1845 				struct btrfs_free_space *info)
1846 {
1847 	ASSERT(info->bitmap);
1848 
1849 	/*
1850 	 * If our entry is empty it's because we're on a cluster and we don't
1851 	 * want to re-link it into our ctl bytes index.
1852 	 */
1853 	if (RB_EMPTY_NODE(&info->bytes_index))
1854 		return;
1855 
1856 	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1857 	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1858 }
1859 
bitmap_clear_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes,bool update_stat)1860 static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1861 				     struct btrfs_free_space *info,
1862 				     u64 offset, u64 bytes, bool update_stat)
1863 {
1864 	unsigned long start, count, end;
1865 	int extent_delta = -1;
1866 
1867 	start = offset_to_bit(info->offset, ctl->unit, offset);
1868 	count = bytes_to_bits(bytes, ctl->unit);
1869 	end = start + count;
1870 	ASSERT(end <= BITS_PER_BITMAP);
1871 
1872 	bitmap_clear(info->bitmap, start, count);
1873 
1874 	info->bytes -= bytes;
1875 	if (info->max_extent_size > ctl->unit)
1876 		info->max_extent_size = 0;
1877 
1878 	relink_bitmap_entry(ctl, info);
1879 
1880 	if (start && test_bit(start - 1, info->bitmap))
1881 		extent_delta++;
1882 
1883 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1884 		extent_delta++;
1885 
1886 	info->bitmap_extents += extent_delta;
1887 	if (!btrfs_free_space_trimmed(info)) {
1888 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1889 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1890 	}
1891 
1892 	if (update_stat)
1893 		ctl->free_space -= bytes;
1894 }
1895 
bitmap_set_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1896 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1897 			    struct btrfs_free_space *info, u64 offset,
1898 			    u64 bytes)
1899 {
1900 	unsigned long start, count, end;
1901 	int extent_delta = 1;
1902 
1903 	start = offset_to_bit(info->offset, ctl->unit, offset);
1904 	count = bytes_to_bits(bytes, ctl->unit);
1905 	end = start + count;
1906 	ASSERT(end <= BITS_PER_BITMAP);
1907 
1908 	bitmap_set(info->bitmap, start, count);
1909 
1910 	/*
1911 	 * We set some bytes, we have no idea what the max extent size is
1912 	 * anymore.
1913 	 */
1914 	info->max_extent_size = 0;
1915 	info->bytes += bytes;
1916 	ctl->free_space += bytes;
1917 
1918 	relink_bitmap_entry(ctl, info);
1919 
1920 	if (start && test_bit(start - 1, info->bitmap))
1921 		extent_delta--;
1922 
1923 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1924 		extent_delta--;
1925 
1926 	info->bitmap_extents += extent_delta;
1927 	if (!btrfs_free_space_trimmed(info)) {
1928 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1929 		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1930 	}
1931 }
1932 
1933 /*
1934  * If we can not find suitable extent, we will use bytes to record
1935  * the size of the max extent.
1936  */
search_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes,bool for_alloc)1937 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1938 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1939 			 u64 *bytes, bool for_alloc)
1940 {
1941 	unsigned long found_bits = 0;
1942 	unsigned long max_bits = 0;
1943 	unsigned long bits, i;
1944 	unsigned long next_zero;
1945 	unsigned long extent_bits;
1946 
1947 	/*
1948 	 * Skip searching the bitmap if we don't have a contiguous section that
1949 	 * is large enough for this allocation.
1950 	 */
1951 	if (for_alloc &&
1952 	    bitmap_info->max_extent_size &&
1953 	    bitmap_info->max_extent_size < *bytes) {
1954 		*bytes = bitmap_info->max_extent_size;
1955 		return -1;
1956 	}
1957 
1958 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1959 			  max_t(u64, *offset, bitmap_info->offset));
1960 	bits = bytes_to_bits(*bytes, ctl->unit);
1961 
1962 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1963 		if (for_alloc && bits == 1) {
1964 			found_bits = 1;
1965 			break;
1966 		}
1967 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1968 					       BITS_PER_BITMAP, i);
1969 		extent_bits = next_zero - i;
1970 		if (extent_bits >= bits) {
1971 			found_bits = extent_bits;
1972 			break;
1973 		} else if (extent_bits > max_bits) {
1974 			max_bits = extent_bits;
1975 		}
1976 		i = next_zero;
1977 	}
1978 
1979 	if (found_bits) {
1980 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1981 		*bytes = (u64)(found_bits) * ctl->unit;
1982 		return 0;
1983 	}
1984 
1985 	*bytes = (u64)(max_bits) * ctl->unit;
1986 	bitmap_info->max_extent_size = *bytes;
1987 	relink_bitmap_entry(ctl, bitmap_info);
1988 	return -1;
1989 }
1990 
1991 /* Cache the size of the max extent in bytes */
1992 static struct btrfs_free_space *
find_free_space(struct btrfs_free_space_ctl * ctl,u64 * offset,u64 * bytes,unsigned long align,u64 * max_extent_size,bool use_bytes_index)1993 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1994 		unsigned long align, u64 *max_extent_size, bool use_bytes_index)
1995 {
1996 	struct btrfs_free_space *entry;
1997 	struct rb_node *node;
1998 	u64 tmp;
1999 	u64 align_off;
2000 	int ret;
2001 
2002 	if (!ctl->free_space_offset.rb_node)
2003 		goto out;
2004 again:
2005 	if (use_bytes_index) {
2006 		node = rb_first_cached(&ctl->free_space_bytes);
2007 	} else {
2008 		entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset),
2009 					   0, 1);
2010 		if (!entry)
2011 			goto out;
2012 		node = &entry->offset_index;
2013 	}
2014 
2015 	for (; node; node = rb_next(node)) {
2016 		if (use_bytes_index)
2017 			entry = rb_entry(node, struct btrfs_free_space,
2018 					 bytes_index);
2019 		else
2020 			entry = rb_entry(node, struct btrfs_free_space,
2021 					 offset_index);
2022 
2023 		/*
2024 		 * If we are using the bytes index then all subsequent entries
2025 		 * in this tree are going to be < bytes, so simply set the max
2026 		 * extent size and exit the loop.
2027 		 *
2028 		 * If we're using the offset index then we need to keep going
2029 		 * through the rest of the tree.
2030 		 */
2031 		if (entry->bytes < *bytes) {
2032 			*max_extent_size = max(get_max_extent_size(entry),
2033 					       *max_extent_size);
2034 			if (use_bytes_index)
2035 				break;
2036 			continue;
2037 		}
2038 
2039 		/* make sure the space returned is big enough
2040 		 * to match our requested alignment
2041 		 */
2042 		if (*bytes >= align) {
2043 			tmp = entry->offset - ctl->start + align - 1;
2044 			tmp = div64_u64(tmp, align);
2045 			tmp = tmp * align + ctl->start;
2046 			align_off = tmp - entry->offset;
2047 		} else {
2048 			align_off = 0;
2049 			tmp = entry->offset;
2050 		}
2051 
2052 		/*
2053 		 * We don't break here if we're using the bytes index because we
2054 		 * may have another entry that has the correct alignment that is
2055 		 * the right size, so we don't want to miss that possibility.
2056 		 * At worst this adds another loop through the logic, but if we
2057 		 * broke here we could prematurely ENOSPC.
2058 		 */
2059 		if (entry->bytes < *bytes + align_off) {
2060 			*max_extent_size = max(get_max_extent_size(entry),
2061 					       *max_extent_size);
2062 			continue;
2063 		}
2064 
2065 		if (entry->bitmap) {
2066 			struct rb_node *old_next = rb_next(node);
2067 			u64 size = *bytes;
2068 
2069 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
2070 			if (!ret) {
2071 				*offset = tmp;
2072 				*bytes = size;
2073 				return entry;
2074 			} else {
2075 				*max_extent_size =
2076 					max(get_max_extent_size(entry),
2077 					    *max_extent_size);
2078 			}
2079 
2080 			/*
2081 			 * The bitmap may have gotten re-arranged in the space
2082 			 * index here because the max_extent_size may have been
2083 			 * updated.  Start from the beginning again if this
2084 			 * happened.
2085 			 */
2086 			if (use_bytes_index && old_next != rb_next(node))
2087 				goto again;
2088 			continue;
2089 		}
2090 
2091 		*offset = tmp;
2092 		*bytes = entry->bytes - align_off;
2093 		return entry;
2094 	}
2095 out:
2096 	return NULL;
2097 }
2098 
add_new_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset)2099 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
2100 			   struct btrfs_free_space *info, u64 offset)
2101 {
2102 	info->offset = offset_to_bitmap(ctl, offset);
2103 	info->bytes = 0;
2104 	info->bitmap_extents = 0;
2105 	INIT_LIST_HEAD(&info->list);
2106 	link_free_space(ctl, info);
2107 	ctl->total_bitmaps++;
2108 	recalculate_thresholds(ctl);
2109 }
2110 
free_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info)2111 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
2112 			struct btrfs_free_space *bitmap_info)
2113 {
2114 	/*
2115 	 * Normally when this is called, the bitmap is completely empty. However,
2116 	 * if we are blowing up the free space cache for one reason or another
2117 	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
2118 	 * we may leave stats on the table.
2119 	 */
2120 	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
2121 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
2122 			bitmap_info->bitmap_extents;
2123 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
2124 
2125 	}
2126 	unlink_free_space(ctl, bitmap_info, true);
2127 	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
2128 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
2129 	ctl->total_bitmaps--;
2130 	recalculate_thresholds(ctl);
2131 }
2132 
remove_from_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes)2133 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
2134 			      struct btrfs_free_space *bitmap_info,
2135 			      u64 *offset, u64 *bytes)
2136 {
2137 	u64 end;
2138 	u64 search_start, search_bytes;
2139 	int ret;
2140 
2141 again:
2142 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
2143 
2144 	/*
2145 	 * We need to search for bits in this bitmap.  We could only cover some
2146 	 * of the extent in this bitmap thanks to how we add space, so we need
2147 	 * to search for as much as it as we can and clear that amount, and then
2148 	 * go searching for the next bit.
2149 	 */
2150 	search_start = *offset;
2151 	search_bytes = ctl->unit;
2152 	search_bytes = min(search_bytes, end - search_start + 1);
2153 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2154 			    false);
2155 	if (ret < 0 || search_start != *offset)
2156 		return -EINVAL;
2157 
2158 	/* We may have found more bits than what we need */
2159 	search_bytes = min(search_bytes, *bytes);
2160 
2161 	/* Cannot clear past the end of the bitmap */
2162 	search_bytes = min(search_bytes, end - search_start + 1);
2163 
2164 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true);
2165 	*offset += search_bytes;
2166 	*bytes -= search_bytes;
2167 
2168 	if (*bytes) {
2169 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2170 		if (!bitmap_info->bytes)
2171 			free_bitmap(ctl, bitmap_info);
2172 
2173 		/*
2174 		 * no entry after this bitmap, but we still have bytes to
2175 		 * remove, so something has gone wrong.
2176 		 */
2177 		if (!next)
2178 			return -EINVAL;
2179 
2180 		bitmap_info = rb_entry(next, struct btrfs_free_space,
2181 				       offset_index);
2182 
2183 		/*
2184 		 * if the next entry isn't a bitmap we need to return to let the
2185 		 * extent stuff do its work.
2186 		 */
2187 		if (!bitmap_info->bitmap)
2188 			return -EAGAIN;
2189 
2190 		/*
2191 		 * Ok the next item is a bitmap, but it may not actually hold
2192 		 * the information for the rest of this free space stuff, so
2193 		 * look for it, and if we don't find it return so we can try
2194 		 * everything over again.
2195 		 */
2196 		search_start = *offset;
2197 		search_bytes = ctl->unit;
2198 		ret = search_bitmap(ctl, bitmap_info, &search_start,
2199 				    &search_bytes, false);
2200 		if (ret < 0 || search_start != *offset)
2201 			return -EAGAIN;
2202 
2203 		goto again;
2204 	} else if (!bitmap_info->bytes)
2205 		free_bitmap(ctl, bitmap_info);
2206 
2207 	return 0;
2208 }
2209 
add_bytes_to_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes,enum btrfs_trim_state trim_state)2210 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2211 			       struct btrfs_free_space *info, u64 offset,
2212 			       u64 bytes, enum btrfs_trim_state trim_state)
2213 {
2214 	u64 bytes_to_set = 0;
2215 	u64 end;
2216 
2217 	/*
2218 	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
2219 	 * whole bitmap untrimmed if at any point we add untrimmed regions.
2220 	 */
2221 	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2222 		if (btrfs_free_space_trimmed(info)) {
2223 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
2224 				info->bitmap_extents;
2225 			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2226 		}
2227 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2228 	}
2229 
2230 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2231 
2232 	bytes_to_set = min(end - offset, bytes);
2233 
2234 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
2235 
2236 	return bytes_to_set;
2237 
2238 }
2239 
use_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)2240 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2241 		      struct btrfs_free_space *info)
2242 {
2243 	struct btrfs_block_group *block_group = ctl->block_group;
2244 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2245 	bool forced = false;
2246 
2247 #ifdef CONFIG_BTRFS_DEBUG
2248 	if (btrfs_should_fragment_free_space(block_group))
2249 		forced = true;
2250 #endif
2251 
2252 	/* This is a way to reclaim large regions from the bitmaps. */
2253 	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2254 		return false;
2255 
2256 	/*
2257 	 * If we are below the extents threshold then we can add this as an
2258 	 * extent, and don't have to deal with the bitmap
2259 	 */
2260 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2261 		/*
2262 		 * If this block group has some small extents we don't want to
2263 		 * use up all of our free slots in the cache with them, we want
2264 		 * to reserve them to larger extents, however if we have plenty
2265 		 * of cache left then go ahead an dadd them, no sense in adding
2266 		 * the overhead of a bitmap if we don't have to.
2267 		 */
2268 		if (info->bytes <= fs_info->sectorsize * 8) {
2269 			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2270 				return false;
2271 		} else {
2272 			return false;
2273 		}
2274 	}
2275 
2276 	/*
2277 	 * The original block groups from mkfs can be really small, like 8
2278 	 * megabytes, so don't bother with a bitmap for those entries.  However
2279 	 * some block groups can be smaller than what a bitmap would cover but
2280 	 * are still large enough that they could overflow the 32k memory limit,
2281 	 * so allow those block groups to still be allowed to have a bitmap
2282 	 * entry.
2283 	 */
2284 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2285 		return false;
2286 
2287 	return true;
2288 }
2289 
2290 static const struct btrfs_free_space_op free_space_op = {
2291 	.use_bitmap		= use_bitmap,
2292 };
2293 
insert_into_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)2294 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2295 			      struct btrfs_free_space *info)
2296 {
2297 	struct btrfs_free_space *bitmap_info;
2298 	struct btrfs_block_group *block_group = NULL;
2299 	int added = 0;
2300 	u64 bytes, offset, bytes_added;
2301 	enum btrfs_trim_state trim_state;
2302 	int ret;
2303 
2304 	bytes = info->bytes;
2305 	offset = info->offset;
2306 	trim_state = info->trim_state;
2307 
2308 	if (!ctl->op->use_bitmap(ctl, info))
2309 		return 0;
2310 
2311 	if (ctl->op == &free_space_op)
2312 		block_group = ctl->block_group;
2313 again:
2314 	/*
2315 	 * Since we link bitmaps right into the cluster we need to see if we
2316 	 * have a cluster here, and if so and it has our bitmap we need to add
2317 	 * the free space to that bitmap.
2318 	 */
2319 	if (block_group && !list_empty(&block_group->cluster_list)) {
2320 		struct btrfs_free_cluster *cluster;
2321 		struct rb_node *node;
2322 		struct btrfs_free_space *entry;
2323 
2324 		cluster = list_entry(block_group->cluster_list.next,
2325 				     struct btrfs_free_cluster,
2326 				     block_group_list);
2327 		spin_lock(&cluster->lock);
2328 		node = rb_first(&cluster->root);
2329 		if (!node) {
2330 			spin_unlock(&cluster->lock);
2331 			goto no_cluster_bitmap;
2332 		}
2333 
2334 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2335 		if (!entry->bitmap) {
2336 			spin_unlock(&cluster->lock);
2337 			goto no_cluster_bitmap;
2338 		}
2339 
2340 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2341 			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2342 							  bytes, trim_state);
2343 			bytes -= bytes_added;
2344 			offset += bytes_added;
2345 		}
2346 		spin_unlock(&cluster->lock);
2347 		if (!bytes) {
2348 			ret = 1;
2349 			goto out;
2350 		}
2351 	}
2352 
2353 no_cluster_bitmap:
2354 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2355 					 1, 0);
2356 	if (!bitmap_info) {
2357 		ASSERT(added == 0);
2358 		goto new_bitmap;
2359 	}
2360 
2361 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2362 					  trim_state);
2363 	bytes -= bytes_added;
2364 	offset += bytes_added;
2365 	added = 0;
2366 
2367 	if (!bytes) {
2368 		ret = 1;
2369 		goto out;
2370 	} else
2371 		goto again;
2372 
2373 new_bitmap:
2374 	if (info && info->bitmap) {
2375 		add_new_bitmap(ctl, info, offset);
2376 		added = 1;
2377 		info = NULL;
2378 		goto again;
2379 	} else {
2380 		spin_unlock(&ctl->tree_lock);
2381 
2382 		/* no pre-allocated info, allocate a new one */
2383 		if (!info) {
2384 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2385 						 GFP_NOFS);
2386 			if (!info) {
2387 				spin_lock(&ctl->tree_lock);
2388 				ret = -ENOMEM;
2389 				goto out;
2390 			}
2391 		}
2392 
2393 		/* allocate the bitmap */
2394 		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2395 						 GFP_NOFS);
2396 		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2397 		spin_lock(&ctl->tree_lock);
2398 		if (!info->bitmap) {
2399 			ret = -ENOMEM;
2400 			goto out;
2401 		}
2402 		goto again;
2403 	}
2404 
2405 out:
2406 	if (info) {
2407 		if (info->bitmap)
2408 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2409 					info->bitmap);
2410 		kmem_cache_free(btrfs_free_space_cachep, info);
2411 	}
2412 
2413 	return ret;
2414 }
2415 
2416 /*
2417  * Free space merging rules:
2418  *  1) Merge trimmed areas together
2419  *  2) Let untrimmed areas coalesce with trimmed areas
2420  *  3) Always pull neighboring regions from bitmaps
2421  *
2422  * The above rules are for when we merge free space based on btrfs_trim_state.
2423  * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2424  * same reason: to promote larger extent regions which makes life easier for
2425  * find_free_extent().  Rule 2 enables coalescing based on the common path
2426  * being returning free space from btrfs_finish_extent_commit().  So when free
2427  * space is trimmed, it will prevent aggregating trimmed new region and
2428  * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2429  * and provide find_free_extent() with the largest extents possible hoping for
2430  * the reuse path.
2431  */
try_merge_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2432 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2433 			  struct btrfs_free_space *info, bool update_stat)
2434 {
2435 	struct btrfs_free_space *left_info = NULL;
2436 	struct btrfs_free_space *right_info;
2437 	bool merged = false;
2438 	u64 offset = info->offset;
2439 	u64 bytes = info->bytes;
2440 	const bool is_trimmed = btrfs_free_space_trimmed(info);
2441 
2442 	/*
2443 	 * first we want to see if there is free space adjacent to the range we
2444 	 * are adding, if there is remove that struct and add a new one to
2445 	 * cover the entire range
2446 	 */
2447 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2448 	if (right_info && rb_prev(&right_info->offset_index))
2449 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2450 				     struct btrfs_free_space, offset_index);
2451 	else if (!right_info)
2452 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2453 
2454 	/* See try_merge_free_space() comment. */
2455 	if (right_info && !right_info->bitmap &&
2456 	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2457 		unlink_free_space(ctl, right_info, update_stat);
2458 		info->bytes += right_info->bytes;
2459 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2460 		merged = true;
2461 	}
2462 
2463 	/* See try_merge_free_space() comment. */
2464 	if (left_info && !left_info->bitmap &&
2465 	    left_info->offset + left_info->bytes == offset &&
2466 	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2467 		unlink_free_space(ctl, left_info, update_stat);
2468 		info->offset = left_info->offset;
2469 		info->bytes += left_info->bytes;
2470 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2471 		merged = true;
2472 	}
2473 
2474 	return merged;
2475 }
2476 
steal_from_bitmap_to_end(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2477 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2478 				     struct btrfs_free_space *info,
2479 				     bool update_stat)
2480 {
2481 	struct btrfs_free_space *bitmap;
2482 	unsigned long i;
2483 	unsigned long j;
2484 	const u64 end = info->offset + info->bytes;
2485 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2486 	u64 bytes;
2487 
2488 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2489 	if (!bitmap)
2490 		return false;
2491 
2492 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2493 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2494 	if (j == i)
2495 		return false;
2496 	bytes = (j - i) * ctl->unit;
2497 	info->bytes += bytes;
2498 
2499 	/* See try_merge_free_space() comment. */
2500 	if (!btrfs_free_space_trimmed(bitmap))
2501 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2502 
2503 	bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat);
2504 
2505 	if (!bitmap->bytes)
2506 		free_bitmap(ctl, bitmap);
2507 
2508 	return true;
2509 }
2510 
steal_from_bitmap_to_front(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2511 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2512 				       struct btrfs_free_space *info,
2513 				       bool update_stat)
2514 {
2515 	struct btrfs_free_space *bitmap;
2516 	u64 bitmap_offset;
2517 	unsigned long i;
2518 	unsigned long j;
2519 	unsigned long prev_j;
2520 	u64 bytes;
2521 
2522 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2523 	/* If we're on a boundary, try the previous logical bitmap. */
2524 	if (bitmap_offset == info->offset) {
2525 		if (info->offset == 0)
2526 			return false;
2527 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2528 	}
2529 
2530 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2531 	if (!bitmap)
2532 		return false;
2533 
2534 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2535 	j = 0;
2536 	prev_j = (unsigned long)-1;
2537 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2538 		if (j > i)
2539 			break;
2540 		prev_j = j;
2541 	}
2542 	if (prev_j == i)
2543 		return false;
2544 
2545 	if (prev_j == (unsigned long)-1)
2546 		bytes = (i + 1) * ctl->unit;
2547 	else
2548 		bytes = (i - prev_j) * ctl->unit;
2549 
2550 	info->offset -= bytes;
2551 	info->bytes += bytes;
2552 
2553 	/* See try_merge_free_space() comment. */
2554 	if (!btrfs_free_space_trimmed(bitmap))
2555 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2556 
2557 	bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat);
2558 
2559 	if (!bitmap->bytes)
2560 		free_bitmap(ctl, bitmap);
2561 
2562 	return true;
2563 }
2564 
2565 /*
2566  * We prefer always to allocate from extent entries, both for clustered and
2567  * non-clustered allocation requests. So when attempting to add a new extent
2568  * entry, try to see if there's adjacent free space in bitmap entries, and if
2569  * there is, migrate that space from the bitmaps to the extent.
2570  * Like this we get better chances of satisfying space allocation requests
2571  * because we attempt to satisfy them based on a single cache entry, and never
2572  * on 2 or more entries - even if the entries represent a contiguous free space
2573  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2574  * ends).
2575  */
steal_from_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2576 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2577 			      struct btrfs_free_space *info,
2578 			      bool update_stat)
2579 {
2580 	/*
2581 	 * Only work with disconnected entries, as we can change their offset,
2582 	 * and must be extent entries.
2583 	 */
2584 	ASSERT(!info->bitmap);
2585 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2586 
2587 	if (ctl->total_bitmaps > 0) {
2588 		bool stole_end;
2589 		bool stole_front = false;
2590 
2591 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2592 		if (ctl->total_bitmaps > 0)
2593 			stole_front = steal_from_bitmap_to_front(ctl, info,
2594 								 update_stat);
2595 
2596 		if (stole_end || stole_front)
2597 			try_merge_free_space(ctl, info, update_stat);
2598 	}
2599 }
2600 
__btrfs_add_free_space(struct btrfs_block_group * block_group,u64 offset,u64 bytes,enum btrfs_trim_state trim_state)2601 int __btrfs_add_free_space(struct btrfs_block_group *block_group,
2602 			   u64 offset, u64 bytes,
2603 			   enum btrfs_trim_state trim_state)
2604 {
2605 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2606 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2607 	struct btrfs_free_space *info;
2608 	int ret = 0;
2609 	u64 filter_bytes = bytes;
2610 
2611 	ASSERT(!btrfs_is_zoned(fs_info));
2612 
2613 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2614 	if (!info)
2615 		return -ENOMEM;
2616 
2617 	info->offset = offset;
2618 	info->bytes = bytes;
2619 	info->trim_state = trim_state;
2620 	RB_CLEAR_NODE(&info->offset_index);
2621 	RB_CLEAR_NODE(&info->bytes_index);
2622 
2623 	spin_lock(&ctl->tree_lock);
2624 
2625 	if (try_merge_free_space(ctl, info, true))
2626 		goto link;
2627 
2628 	/*
2629 	 * There was no extent directly to the left or right of this new
2630 	 * extent then we know we're going to have to allocate a new extent, so
2631 	 * before we do that see if we need to drop this into a bitmap
2632 	 */
2633 	ret = insert_into_bitmap(ctl, info);
2634 	if (ret < 0) {
2635 		goto out;
2636 	} else if (ret) {
2637 		ret = 0;
2638 		goto out;
2639 	}
2640 link:
2641 	/*
2642 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2643 	 * going to add the new free space to existing bitmap entries - because
2644 	 * that would mean unnecessary work that would be reverted. Therefore
2645 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2646 	 */
2647 	steal_from_bitmap(ctl, info, true);
2648 
2649 	filter_bytes = max(filter_bytes, info->bytes);
2650 
2651 	ret = link_free_space(ctl, info);
2652 	if (ret)
2653 		kmem_cache_free(btrfs_free_space_cachep, info);
2654 out:
2655 	btrfs_discard_update_discardable(block_group);
2656 	spin_unlock(&ctl->tree_lock);
2657 
2658 	if (ret) {
2659 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2660 		ASSERT(ret != -EEXIST);
2661 	}
2662 
2663 	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2664 		btrfs_discard_check_filter(block_group, filter_bytes);
2665 		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2666 	}
2667 
2668 	return ret;
2669 }
2670 
__btrfs_add_free_space_zoned(struct btrfs_block_group * block_group,u64 bytenr,u64 size,bool used)2671 static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2672 					u64 bytenr, u64 size, bool used)
2673 {
2674 	struct btrfs_space_info *sinfo = block_group->space_info;
2675 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2676 	u64 offset = bytenr - block_group->start;
2677 	u64 to_free, to_unusable;
2678 	int bg_reclaim_threshold = 0;
2679 	bool initial = (size == block_group->length);
2680 	u64 reclaimable_unusable;
2681 
2682 	WARN_ON(!initial && offset + size > block_group->zone_capacity);
2683 
2684 	if (!initial)
2685 		bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
2686 
2687 	spin_lock(&ctl->tree_lock);
2688 	if (!used)
2689 		to_free = size;
2690 	else if (initial)
2691 		to_free = block_group->zone_capacity;
2692 	else if (offset >= block_group->alloc_offset)
2693 		to_free = size;
2694 	else if (offset + size <= block_group->alloc_offset)
2695 		to_free = 0;
2696 	else
2697 		to_free = offset + size - block_group->alloc_offset;
2698 	to_unusable = size - to_free;
2699 
2700 	ctl->free_space += to_free;
2701 	/*
2702 	 * If the block group is read-only, we should account freed space into
2703 	 * bytes_readonly.
2704 	 */
2705 	if (!block_group->ro)
2706 		block_group->zone_unusable += to_unusable;
2707 	spin_unlock(&ctl->tree_lock);
2708 	if (!used) {
2709 		spin_lock(&block_group->lock);
2710 		block_group->alloc_offset -= size;
2711 		spin_unlock(&block_group->lock);
2712 	}
2713 
2714 	reclaimable_unusable = block_group->zone_unusable -
2715 			       (block_group->length - block_group->zone_capacity);
2716 	/* All the region is now unusable. Mark it as unused and reclaim */
2717 	if (block_group->zone_unusable == block_group->length) {
2718 		btrfs_mark_bg_unused(block_group);
2719 	} else if (bg_reclaim_threshold &&
2720 		   reclaimable_unusable >=
2721 		   div_factor_fine(block_group->zone_capacity,
2722 				   bg_reclaim_threshold)) {
2723 		btrfs_mark_bg_to_reclaim(block_group);
2724 	}
2725 
2726 	return 0;
2727 }
2728 
btrfs_add_free_space(struct btrfs_block_group * block_group,u64 bytenr,u64 size)2729 int btrfs_add_free_space(struct btrfs_block_group *block_group,
2730 			 u64 bytenr, u64 size)
2731 {
2732 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2733 
2734 	if (btrfs_is_zoned(block_group->fs_info))
2735 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2736 						    true);
2737 
2738 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2739 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2740 
2741 	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2742 }
2743 
btrfs_add_free_space_unused(struct btrfs_block_group * block_group,u64 bytenr,u64 size)2744 int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2745 				u64 bytenr, u64 size)
2746 {
2747 	if (btrfs_is_zoned(block_group->fs_info))
2748 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2749 						    false);
2750 
2751 	return btrfs_add_free_space(block_group, bytenr, size);
2752 }
2753 
2754 /*
2755  * This is a subtle distinction because when adding free space back in general,
2756  * we want it to be added as untrimmed for async. But in the case where we add
2757  * it on loading of a block group, we want to consider it trimmed.
2758  */
btrfs_add_free_space_async_trimmed(struct btrfs_block_group * block_group,u64 bytenr,u64 size)2759 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2760 				       u64 bytenr, u64 size)
2761 {
2762 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2763 
2764 	if (btrfs_is_zoned(block_group->fs_info))
2765 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2766 						    true);
2767 
2768 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2769 	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2770 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2771 
2772 	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2773 }
2774 
btrfs_remove_free_space(struct btrfs_block_group * block_group,u64 offset,u64 bytes)2775 int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2776 			    u64 offset, u64 bytes)
2777 {
2778 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2779 	struct btrfs_free_space *info;
2780 	int ret;
2781 	bool re_search = false;
2782 
2783 	if (btrfs_is_zoned(block_group->fs_info)) {
2784 		/*
2785 		 * This can happen with conventional zones when replaying log.
2786 		 * Since the allocation info of tree-log nodes are not recorded
2787 		 * to the extent-tree, calculate_alloc_pointer() failed to
2788 		 * advance the allocation pointer after last allocated tree log
2789 		 * node blocks.
2790 		 *
2791 		 * This function is called from
2792 		 * btrfs_pin_extent_for_log_replay() when replaying the log.
2793 		 * Advance the pointer not to overwrite the tree-log nodes.
2794 		 */
2795 		if (block_group->start + block_group->alloc_offset <
2796 		    offset + bytes) {
2797 			block_group->alloc_offset =
2798 				offset + bytes - block_group->start;
2799 		}
2800 		return 0;
2801 	}
2802 
2803 	spin_lock(&ctl->tree_lock);
2804 
2805 again:
2806 	ret = 0;
2807 	if (!bytes)
2808 		goto out_lock;
2809 
2810 	info = tree_search_offset(ctl, offset, 0, 0);
2811 	if (!info) {
2812 		/*
2813 		 * oops didn't find an extent that matched the space we wanted
2814 		 * to remove, look for a bitmap instead
2815 		 */
2816 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2817 					  1, 0);
2818 		if (!info) {
2819 			/*
2820 			 * If we found a partial bit of our free space in a
2821 			 * bitmap but then couldn't find the other part this may
2822 			 * be a problem, so WARN about it.
2823 			 */
2824 			WARN_ON(re_search);
2825 			goto out_lock;
2826 		}
2827 	}
2828 
2829 	re_search = false;
2830 	if (!info->bitmap) {
2831 		unlink_free_space(ctl, info, true);
2832 		if (offset == info->offset) {
2833 			u64 to_free = min(bytes, info->bytes);
2834 
2835 			info->bytes -= to_free;
2836 			info->offset += to_free;
2837 			if (info->bytes) {
2838 				ret = link_free_space(ctl, info);
2839 				WARN_ON(ret);
2840 			} else {
2841 				kmem_cache_free(btrfs_free_space_cachep, info);
2842 			}
2843 
2844 			offset += to_free;
2845 			bytes -= to_free;
2846 			goto again;
2847 		} else {
2848 			u64 old_end = info->bytes + info->offset;
2849 
2850 			info->bytes = offset - info->offset;
2851 			ret = link_free_space(ctl, info);
2852 			WARN_ON(ret);
2853 			if (ret)
2854 				goto out_lock;
2855 
2856 			/* Not enough bytes in this entry to satisfy us */
2857 			if (old_end < offset + bytes) {
2858 				bytes -= old_end - offset;
2859 				offset = old_end;
2860 				goto again;
2861 			} else if (old_end == offset + bytes) {
2862 				/* all done */
2863 				goto out_lock;
2864 			}
2865 			spin_unlock(&ctl->tree_lock);
2866 
2867 			ret = __btrfs_add_free_space(block_group,
2868 						     offset + bytes,
2869 						     old_end - (offset + bytes),
2870 						     info->trim_state);
2871 			WARN_ON(ret);
2872 			goto out;
2873 		}
2874 	}
2875 
2876 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2877 	if (ret == -EAGAIN) {
2878 		re_search = true;
2879 		goto again;
2880 	}
2881 out_lock:
2882 	btrfs_discard_update_discardable(block_group);
2883 	spin_unlock(&ctl->tree_lock);
2884 out:
2885 	return ret;
2886 }
2887 
btrfs_dump_free_space(struct btrfs_block_group * block_group,u64 bytes)2888 void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2889 			   u64 bytes)
2890 {
2891 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2892 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2893 	struct btrfs_free_space *info;
2894 	struct rb_node *n;
2895 	int count = 0;
2896 
2897 	/*
2898 	 * Zoned btrfs does not use free space tree and cluster. Just print
2899 	 * out the free space after the allocation offset.
2900 	 */
2901 	if (btrfs_is_zoned(fs_info)) {
2902 		btrfs_info(fs_info, "free space %llu active %d",
2903 			   block_group->zone_capacity - block_group->alloc_offset,
2904 			   test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2905 				    &block_group->runtime_flags));
2906 		return;
2907 	}
2908 
2909 	spin_lock(&ctl->tree_lock);
2910 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2911 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2912 		if (info->bytes >= bytes && !block_group->ro)
2913 			count++;
2914 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2915 			   info->offset, info->bytes,
2916 		       (info->bitmap) ? "yes" : "no");
2917 	}
2918 	spin_unlock(&ctl->tree_lock);
2919 	btrfs_info(fs_info, "block group has cluster?: %s",
2920 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2921 	btrfs_info(fs_info,
2922 		   "%d blocks of free space at or bigger than bytes is", count);
2923 }
2924 
btrfs_init_free_space_ctl(struct btrfs_block_group * block_group,struct btrfs_free_space_ctl * ctl)2925 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2926 			       struct btrfs_free_space_ctl *ctl)
2927 {
2928 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2929 
2930 	spin_lock_init(&ctl->tree_lock);
2931 	ctl->unit = fs_info->sectorsize;
2932 	ctl->start = block_group->start;
2933 	ctl->block_group = block_group;
2934 	ctl->op = &free_space_op;
2935 	ctl->free_space_bytes = RB_ROOT_CACHED;
2936 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2937 	mutex_init(&ctl->cache_writeout_mutex);
2938 
2939 	/*
2940 	 * we only want to have 32k of ram per block group for keeping
2941 	 * track of free space, and if we pass 1/2 of that we want to
2942 	 * start converting things over to using bitmaps
2943 	 */
2944 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2945 }
2946 
2947 /*
2948  * for a given cluster, put all of its extents back into the free
2949  * space cache.  If the block group passed doesn't match the block group
2950  * pointed to by the cluster, someone else raced in and freed the
2951  * cluster already.  In that case, we just return without changing anything
2952  */
__btrfs_return_cluster_to_free_space(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster)2953 static void __btrfs_return_cluster_to_free_space(
2954 			     struct btrfs_block_group *block_group,
2955 			     struct btrfs_free_cluster *cluster)
2956 {
2957 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2958 	struct btrfs_free_space *entry;
2959 	struct rb_node *node;
2960 
2961 	spin_lock(&cluster->lock);
2962 	if (cluster->block_group != block_group) {
2963 		spin_unlock(&cluster->lock);
2964 		return;
2965 	}
2966 
2967 	cluster->block_group = NULL;
2968 	cluster->window_start = 0;
2969 	list_del_init(&cluster->block_group_list);
2970 
2971 	node = rb_first(&cluster->root);
2972 	while (node) {
2973 		bool bitmap;
2974 
2975 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2976 		node = rb_next(&entry->offset_index);
2977 		rb_erase(&entry->offset_index, &cluster->root);
2978 		RB_CLEAR_NODE(&entry->offset_index);
2979 
2980 		bitmap = (entry->bitmap != NULL);
2981 		if (!bitmap) {
2982 			/* Merging treats extents as if they were new */
2983 			if (!btrfs_free_space_trimmed(entry)) {
2984 				ctl->discardable_extents[BTRFS_STAT_CURR]--;
2985 				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
2986 					entry->bytes;
2987 			}
2988 
2989 			try_merge_free_space(ctl, entry, false);
2990 			steal_from_bitmap(ctl, entry, false);
2991 
2992 			/* As we insert directly, update these statistics */
2993 			if (!btrfs_free_space_trimmed(entry)) {
2994 				ctl->discardable_extents[BTRFS_STAT_CURR]++;
2995 				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
2996 					entry->bytes;
2997 			}
2998 		}
2999 		tree_insert_offset(&ctl->free_space_offset,
3000 				   entry->offset, &entry->offset_index, bitmap);
3001 		rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes,
3002 			      entry_less);
3003 	}
3004 	cluster->root = RB_ROOT;
3005 	spin_unlock(&cluster->lock);
3006 	btrfs_put_block_group(block_group);
3007 }
3008 
btrfs_remove_free_space_cache(struct btrfs_block_group * block_group)3009 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
3010 {
3011 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3012 	struct btrfs_free_cluster *cluster;
3013 	struct list_head *head;
3014 
3015 	spin_lock(&ctl->tree_lock);
3016 	while ((head = block_group->cluster_list.next) !=
3017 	       &block_group->cluster_list) {
3018 		cluster = list_entry(head, struct btrfs_free_cluster,
3019 				     block_group_list);
3020 
3021 		WARN_ON(cluster->block_group != block_group);
3022 		__btrfs_return_cluster_to_free_space(block_group, cluster);
3023 
3024 		cond_resched_lock(&ctl->tree_lock);
3025 	}
3026 	__btrfs_remove_free_space_cache(ctl);
3027 	btrfs_discard_update_discardable(block_group);
3028 	spin_unlock(&ctl->tree_lock);
3029 
3030 }
3031 
3032 /**
3033  * btrfs_is_free_space_trimmed - see if everything is trimmed
3034  * @block_group: block_group of interest
3035  *
3036  * Walk @block_group's free space rb_tree to determine if everything is trimmed.
3037  */
btrfs_is_free_space_trimmed(struct btrfs_block_group * block_group)3038 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
3039 {
3040 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3041 	struct btrfs_free_space *info;
3042 	struct rb_node *node;
3043 	bool ret = true;
3044 
3045 	spin_lock(&ctl->tree_lock);
3046 	node = rb_first(&ctl->free_space_offset);
3047 
3048 	while (node) {
3049 		info = rb_entry(node, struct btrfs_free_space, offset_index);
3050 
3051 		if (!btrfs_free_space_trimmed(info)) {
3052 			ret = false;
3053 			break;
3054 		}
3055 
3056 		node = rb_next(node);
3057 	}
3058 
3059 	spin_unlock(&ctl->tree_lock);
3060 	return ret;
3061 }
3062 
btrfs_find_space_for_alloc(struct btrfs_block_group * block_group,u64 offset,u64 bytes,u64 empty_size,u64 * max_extent_size)3063 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
3064 			       u64 offset, u64 bytes, u64 empty_size,
3065 			       u64 *max_extent_size)
3066 {
3067 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3068 	struct btrfs_discard_ctl *discard_ctl =
3069 					&block_group->fs_info->discard_ctl;
3070 	struct btrfs_free_space *entry = NULL;
3071 	u64 bytes_search = bytes + empty_size;
3072 	u64 ret = 0;
3073 	u64 align_gap = 0;
3074 	u64 align_gap_len = 0;
3075 	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3076 	bool use_bytes_index = (offset == block_group->start);
3077 
3078 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3079 
3080 	spin_lock(&ctl->tree_lock);
3081 	entry = find_free_space(ctl, &offset, &bytes_search,
3082 				block_group->full_stripe_len, max_extent_size,
3083 				use_bytes_index);
3084 	if (!entry)
3085 		goto out;
3086 
3087 	ret = offset;
3088 	if (entry->bitmap) {
3089 		bitmap_clear_bits(ctl, entry, offset, bytes, true);
3090 
3091 		if (!btrfs_free_space_trimmed(entry))
3092 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3093 
3094 		if (!entry->bytes)
3095 			free_bitmap(ctl, entry);
3096 	} else {
3097 		unlink_free_space(ctl, entry, true);
3098 		align_gap_len = offset - entry->offset;
3099 		align_gap = entry->offset;
3100 		align_gap_trim_state = entry->trim_state;
3101 
3102 		if (!btrfs_free_space_trimmed(entry))
3103 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3104 
3105 		entry->offset = offset + bytes;
3106 		WARN_ON(entry->bytes < bytes + align_gap_len);
3107 
3108 		entry->bytes -= bytes + align_gap_len;
3109 		if (!entry->bytes)
3110 			kmem_cache_free(btrfs_free_space_cachep, entry);
3111 		else
3112 			link_free_space(ctl, entry);
3113 	}
3114 out:
3115 	btrfs_discard_update_discardable(block_group);
3116 	spin_unlock(&ctl->tree_lock);
3117 
3118 	if (align_gap_len)
3119 		__btrfs_add_free_space(block_group, align_gap, align_gap_len,
3120 				       align_gap_trim_state);
3121 	return ret;
3122 }
3123 
3124 /*
3125  * given a cluster, put all of its extents back into the free space
3126  * cache.  If a block group is passed, this function will only free
3127  * a cluster that belongs to the passed block group.
3128  *
3129  * Otherwise, it'll get a reference on the block group pointed to by the
3130  * cluster and remove the cluster from it.
3131  */
btrfs_return_cluster_to_free_space(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster)3132 void btrfs_return_cluster_to_free_space(
3133 			       struct btrfs_block_group *block_group,
3134 			       struct btrfs_free_cluster *cluster)
3135 {
3136 	struct btrfs_free_space_ctl *ctl;
3137 
3138 	/* first, get a safe pointer to the block group */
3139 	spin_lock(&cluster->lock);
3140 	if (!block_group) {
3141 		block_group = cluster->block_group;
3142 		if (!block_group) {
3143 			spin_unlock(&cluster->lock);
3144 			return;
3145 		}
3146 	} else if (cluster->block_group != block_group) {
3147 		/* someone else has already freed it don't redo their work */
3148 		spin_unlock(&cluster->lock);
3149 		return;
3150 	}
3151 	btrfs_get_block_group(block_group);
3152 	spin_unlock(&cluster->lock);
3153 
3154 	ctl = block_group->free_space_ctl;
3155 
3156 	/* now return any extents the cluster had on it */
3157 	spin_lock(&ctl->tree_lock);
3158 	__btrfs_return_cluster_to_free_space(block_group, cluster);
3159 	spin_unlock(&ctl->tree_lock);
3160 
3161 	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3162 
3163 	/* finally drop our ref */
3164 	btrfs_put_block_group(block_group);
3165 }
3166 
btrfs_alloc_from_bitmap(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,struct btrfs_free_space * entry,u64 bytes,u64 min_start,u64 * max_extent_size)3167 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3168 				   struct btrfs_free_cluster *cluster,
3169 				   struct btrfs_free_space *entry,
3170 				   u64 bytes, u64 min_start,
3171 				   u64 *max_extent_size)
3172 {
3173 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3174 	int err;
3175 	u64 search_start = cluster->window_start;
3176 	u64 search_bytes = bytes;
3177 	u64 ret = 0;
3178 
3179 	search_start = min_start;
3180 	search_bytes = bytes;
3181 
3182 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3183 	if (err) {
3184 		*max_extent_size = max(get_max_extent_size(entry),
3185 				       *max_extent_size);
3186 		return 0;
3187 	}
3188 
3189 	ret = search_start;
3190 	bitmap_clear_bits(ctl, entry, ret, bytes, false);
3191 
3192 	return ret;
3193 }
3194 
3195 /*
3196  * given a cluster, try to allocate 'bytes' from it, returns 0
3197  * if it couldn't find anything suitably large, or a logical disk offset
3198  * if things worked out
3199  */
btrfs_alloc_from_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,u64 bytes,u64 min_start,u64 * max_extent_size)3200 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3201 			     struct btrfs_free_cluster *cluster, u64 bytes,
3202 			     u64 min_start, u64 *max_extent_size)
3203 {
3204 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3205 	struct btrfs_discard_ctl *discard_ctl =
3206 					&block_group->fs_info->discard_ctl;
3207 	struct btrfs_free_space *entry = NULL;
3208 	struct rb_node *node;
3209 	u64 ret = 0;
3210 
3211 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3212 
3213 	spin_lock(&cluster->lock);
3214 	if (bytes > cluster->max_size)
3215 		goto out;
3216 
3217 	if (cluster->block_group != block_group)
3218 		goto out;
3219 
3220 	node = rb_first(&cluster->root);
3221 	if (!node)
3222 		goto out;
3223 
3224 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3225 	while (1) {
3226 		if (entry->bytes < bytes)
3227 			*max_extent_size = max(get_max_extent_size(entry),
3228 					       *max_extent_size);
3229 
3230 		if (entry->bytes < bytes ||
3231 		    (!entry->bitmap && entry->offset < min_start)) {
3232 			node = rb_next(&entry->offset_index);
3233 			if (!node)
3234 				break;
3235 			entry = rb_entry(node, struct btrfs_free_space,
3236 					 offset_index);
3237 			continue;
3238 		}
3239 
3240 		if (entry->bitmap) {
3241 			ret = btrfs_alloc_from_bitmap(block_group,
3242 						      cluster, entry, bytes,
3243 						      cluster->window_start,
3244 						      max_extent_size);
3245 			if (ret == 0) {
3246 				node = rb_next(&entry->offset_index);
3247 				if (!node)
3248 					break;
3249 				entry = rb_entry(node, struct btrfs_free_space,
3250 						 offset_index);
3251 				continue;
3252 			}
3253 			cluster->window_start += bytes;
3254 		} else {
3255 			ret = entry->offset;
3256 
3257 			entry->offset += bytes;
3258 			entry->bytes -= bytes;
3259 		}
3260 
3261 		break;
3262 	}
3263 out:
3264 	spin_unlock(&cluster->lock);
3265 
3266 	if (!ret)
3267 		return 0;
3268 
3269 	spin_lock(&ctl->tree_lock);
3270 
3271 	if (!btrfs_free_space_trimmed(entry))
3272 		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3273 
3274 	ctl->free_space -= bytes;
3275 	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3276 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3277 
3278 	spin_lock(&cluster->lock);
3279 	if (entry->bytes == 0) {
3280 		rb_erase(&entry->offset_index, &cluster->root);
3281 		ctl->free_extents--;
3282 		if (entry->bitmap) {
3283 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
3284 					entry->bitmap);
3285 			ctl->total_bitmaps--;
3286 			recalculate_thresholds(ctl);
3287 		} else if (!btrfs_free_space_trimmed(entry)) {
3288 			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3289 		}
3290 		kmem_cache_free(btrfs_free_space_cachep, entry);
3291 	}
3292 
3293 	spin_unlock(&cluster->lock);
3294 	spin_unlock(&ctl->tree_lock);
3295 
3296 	return ret;
3297 }
3298 
btrfs_bitmap_cluster(struct btrfs_block_group * block_group,struct btrfs_free_space * entry,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)3299 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3300 				struct btrfs_free_space *entry,
3301 				struct btrfs_free_cluster *cluster,
3302 				u64 offset, u64 bytes,
3303 				u64 cont1_bytes, u64 min_bytes)
3304 {
3305 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3306 	unsigned long next_zero;
3307 	unsigned long i;
3308 	unsigned long want_bits;
3309 	unsigned long min_bits;
3310 	unsigned long found_bits;
3311 	unsigned long max_bits = 0;
3312 	unsigned long start = 0;
3313 	unsigned long total_found = 0;
3314 	int ret;
3315 
3316 	i = offset_to_bit(entry->offset, ctl->unit,
3317 			  max_t(u64, offset, entry->offset));
3318 	want_bits = bytes_to_bits(bytes, ctl->unit);
3319 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3320 
3321 	/*
3322 	 * Don't bother looking for a cluster in this bitmap if it's heavily
3323 	 * fragmented.
3324 	 */
3325 	if (entry->max_extent_size &&
3326 	    entry->max_extent_size < cont1_bytes)
3327 		return -ENOSPC;
3328 again:
3329 	found_bits = 0;
3330 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3331 		next_zero = find_next_zero_bit(entry->bitmap,
3332 					       BITS_PER_BITMAP, i);
3333 		if (next_zero - i >= min_bits) {
3334 			found_bits = next_zero - i;
3335 			if (found_bits > max_bits)
3336 				max_bits = found_bits;
3337 			break;
3338 		}
3339 		if (next_zero - i > max_bits)
3340 			max_bits = next_zero - i;
3341 		i = next_zero;
3342 	}
3343 
3344 	if (!found_bits) {
3345 		entry->max_extent_size = (u64)max_bits * ctl->unit;
3346 		return -ENOSPC;
3347 	}
3348 
3349 	if (!total_found) {
3350 		start = i;
3351 		cluster->max_size = 0;
3352 	}
3353 
3354 	total_found += found_bits;
3355 
3356 	if (cluster->max_size < found_bits * ctl->unit)
3357 		cluster->max_size = found_bits * ctl->unit;
3358 
3359 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3360 		i = next_zero + 1;
3361 		goto again;
3362 	}
3363 
3364 	cluster->window_start = start * ctl->unit + entry->offset;
3365 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3366 	rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3367 
3368 	/*
3369 	 * We need to know if we're currently on the normal space index when we
3370 	 * manipulate the bitmap so that we know we need to remove and re-insert
3371 	 * it into the space_index tree.  Clear the bytes_index node here so the
3372 	 * bitmap manipulation helpers know not to mess with the space_index
3373 	 * until this bitmap entry is added back into the normal cache.
3374 	 */
3375 	RB_CLEAR_NODE(&entry->bytes_index);
3376 
3377 	ret = tree_insert_offset(&cluster->root, entry->offset,
3378 				 &entry->offset_index, 1);
3379 	ASSERT(!ret); /* -EEXIST; Logic error */
3380 
3381 	trace_btrfs_setup_cluster(block_group, cluster,
3382 				  total_found * ctl->unit, 1);
3383 	return 0;
3384 }
3385 
3386 /*
3387  * This searches the block group for just extents to fill the cluster with.
3388  * Try to find a cluster with at least bytes total bytes, at least one
3389  * extent of cont1_bytes, and other clusters of at least min_bytes.
3390  */
3391 static noinline int
setup_cluster_no_bitmap(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,struct list_head * bitmaps,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)3392 setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3393 			struct btrfs_free_cluster *cluster,
3394 			struct list_head *bitmaps, u64 offset, u64 bytes,
3395 			u64 cont1_bytes, u64 min_bytes)
3396 {
3397 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3398 	struct btrfs_free_space *first = NULL;
3399 	struct btrfs_free_space *entry = NULL;
3400 	struct btrfs_free_space *last;
3401 	struct rb_node *node;
3402 	u64 window_free;
3403 	u64 max_extent;
3404 	u64 total_size = 0;
3405 
3406 	entry = tree_search_offset(ctl, offset, 0, 1);
3407 	if (!entry)
3408 		return -ENOSPC;
3409 
3410 	/*
3411 	 * We don't want bitmaps, so just move along until we find a normal
3412 	 * extent entry.
3413 	 */
3414 	while (entry->bitmap || entry->bytes < min_bytes) {
3415 		if (entry->bitmap && list_empty(&entry->list))
3416 			list_add_tail(&entry->list, bitmaps);
3417 		node = rb_next(&entry->offset_index);
3418 		if (!node)
3419 			return -ENOSPC;
3420 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3421 	}
3422 
3423 	window_free = entry->bytes;
3424 	max_extent = entry->bytes;
3425 	first = entry;
3426 	last = entry;
3427 
3428 	for (node = rb_next(&entry->offset_index); node;
3429 	     node = rb_next(&entry->offset_index)) {
3430 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3431 
3432 		if (entry->bitmap) {
3433 			if (list_empty(&entry->list))
3434 				list_add_tail(&entry->list, bitmaps);
3435 			continue;
3436 		}
3437 
3438 		if (entry->bytes < min_bytes)
3439 			continue;
3440 
3441 		last = entry;
3442 		window_free += entry->bytes;
3443 		if (entry->bytes > max_extent)
3444 			max_extent = entry->bytes;
3445 	}
3446 
3447 	if (window_free < bytes || max_extent < cont1_bytes)
3448 		return -ENOSPC;
3449 
3450 	cluster->window_start = first->offset;
3451 
3452 	node = &first->offset_index;
3453 
3454 	/*
3455 	 * now we've found our entries, pull them out of the free space
3456 	 * cache and put them into the cluster rbtree
3457 	 */
3458 	do {
3459 		int ret;
3460 
3461 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3462 		node = rb_next(&entry->offset_index);
3463 		if (entry->bitmap || entry->bytes < min_bytes)
3464 			continue;
3465 
3466 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3467 		rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3468 		ret = tree_insert_offset(&cluster->root, entry->offset,
3469 					 &entry->offset_index, 0);
3470 		total_size += entry->bytes;
3471 		ASSERT(!ret); /* -EEXIST; Logic error */
3472 	} while (node && entry != last);
3473 
3474 	cluster->max_size = max_extent;
3475 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3476 	return 0;
3477 }
3478 
3479 /*
3480  * This specifically looks for bitmaps that may work in the cluster, we assume
3481  * that we have already failed to find extents that will work.
3482  */
3483 static noinline int
setup_cluster_bitmap(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,struct list_head * bitmaps,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)3484 setup_cluster_bitmap(struct btrfs_block_group *block_group,
3485 		     struct btrfs_free_cluster *cluster,
3486 		     struct list_head *bitmaps, u64 offset, u64 bytes,
3487 		     u64 cont1_bytes, u64 min_bytes)
3488 {
3489 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3490 	struct btrfs_free_space *entry = NULL;
3491 	int ret = -ENOSPC;
3492 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3493 
3494 	if (ctl->total_bitmaps == 0)
3495 		return -ENOSPC;
3496 
3497 	/*
3498 	 * The bitmap that covers offset won't be in the list unless offset
3499 	 * is just its start offset.
3500 	 */
3501 	if (!list_empty(bitmaps))
3502 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3503 
3504 	if (!entry || entry->offset != bitmap_offset) {
3505 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3506 		if (entry && list_empty(&entry->list))
3507 			list_add(&entry->list, bitmaps);
3508 	}
3509 
3510 	list_for_each_entry(entry, bitmaps, list) {
3511 		if (entry->bytes < bytes)
3512 			continue;
3513 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3514 					   bytes, cont1_bytes, min_bytes);
3515 		if (!ret)
3516 			return 0;
3517 	}
3518 
3519 	/*
3520 	 * The bitmaps list has all the bitmaps that record free space
3521 	 * starting after offset, so no more search is required.
3522 	 */
3523 	return -ENOSPC;
3524 }
3525 
3526 /*
3527  * here we try to find a cluster of blocks in a block group.  The goal
3528  * is to find at least bytes+empty_size.
3529  * We might not find them all in one contiguous area.
3530  *
3531  * returns zero and sets up cluster if things worked out, otherwise
3532  * it returns -enospc
3533  */
btrfs_find_space_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 empty_size)3534 int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3535 			     struct btrfs_free_cluster *cluster,
3536 			     u64 offset, u64 bytes, u64 empty_size)
3537 {
3538 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3539 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3540 	struct btrfs_free_space *entry, *tmp;
3541 	LIST_HEAD(bitmaps);
3542 	u64 min_bytes;
3543 	u64 cont1_bytes;
3544 	int ret;
3545 
3546 	/*
3547 	 * Choose the minimum extent size we'll require for this
3548 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3549 	 * For metadata, allow allocates with smaller extents.  For
3550 	 * data, keep it dense.
3551 	 */
3552 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3553 		cont1_bytes = bytes + empty_size;
3554 		min_bytes = cont1_bytes;
3555 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3556 		cont1_bytes = bytes;
3557 		min_bytes = fs_info->sectorsize;
3558 	} else {
3559 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3560 		min_bytes = fs_info->sectorsize;
3561 	}
3562 
3563 	spin_lock(&ctl->tree_lock);
3564 
3565 	/*
3566 	 * If we know we don't have enough space to make a cluster don't even
3567 	 * bother doing all the work to try and find one.
3568 	 */
3569 	if (ctl->free_space < bytes) {
3570 		spin_unlock(&ctl->tree_lock);
3571 		return -ENOSPC;
3572 	}
3573 
3574 	spin_lock(&cluster->lock);
3575 
3576 	/* someone already found a cluster, hooray */
3577 	if (cluster->block_group) {
3578 		ret = 0;
3579 		goto out;
3580 	}
3581 
3582 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3583 				 min_bytes);
3584 
3585 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3586 				      bytes + empty_size,
3587 				      cont1_bytes, min_bytes);
3588 	if (ret)
3589 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3590 					   offset, bytes + empty_size,
3591 					   cont1_bytes, min_bytes);
3592 
3593 	/* Clear our temporary list */
3594 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3595 		list_del_init(&entry->list);
3596 
3597 	if (!ret) {
3598 		btrfs_get_block_group(block_group);
3599 		list_add_tail(&cluster->block_group_list,
3600 			      &block_group->cluster_list);
3601 		cluster->block_group = block_group;
3602 	} else {
3603 		trace_btrfs_failed_cluster_setup(block_group);
3604 	}
3605 out:
3606 	spin_unlock(&cluster->lock);
3607 	spin_unlock(&ctl->tree_lock);
3608 
3609 	return ret;
3610 }
3611 
3612 /*
3613  * simple code to zero out a cluster
3614  */
btrfs_init_free_cluster(struct btrfs_free_cluster * cluster)3615 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3616 {
3617 	spin_lock_init(&cluster->lock);
3618 	spin_lock_init(&cluster->refill_lock);
3619 	cluster->root = RB_ROOT;
3620 	cluster->max_size = 0;
3621 	cluster->fragmented = false;
3622 	INIT_LIST_HEAD(&cluster->block_group_list);
3623 	cluster->block_group = NULL;
3624 }
3625 
do_trimming(struct btrfs_block_group * block_group,u64 * total_trimmed,u64 start,u64 bytes,u64 reserved_start,u64 reserved_bytes,enum btrfs_trim_state reserved_trim_state,struct btrfs_trim_range * trim_entry)3626 static int do_trimming(struct btrfs_block_group *block_group,
3627 		       u64 *total_trimmed, u64 start, u64 bytes,
3628 		       u64 reserved_start, u64 reserved_bytes,
3629 		       enum btrfs_trim_state reserved_trim_state,
3630 		       struct btrfs_trim_range *trim_entry)
3631 {
3632 	struct btrfs_space_info *space_info = block_group->space_info;
3633 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3634 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3635 	int ret;
3636 	int update = 0;
3637 	const u64 end = start + bytes;
3638 	const u64 reserved_end = reserved_start + reserved_bytes;
3639 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3640 	u64 trimmed = 0;
3641 
3642 	spin_lock(&space_info->lock);
3643 	spin_lock(&block_group->lock);
3644 	if (!block_group->ro) {
3645 		block_group->reserved += reserved_bytes;
3646 		space_info->bytes_reserved += reserved_bytes;
3647 		update = 1;
3648 	}
3649 	spin_unlock(&block_group->lock);
3650 	spin_unlock(&space_info->lock);
3651 
3652 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3653 	if (!ret) {
3654 		*total_trimmed += trimmed;
3655 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
3656 	}
3657 
3658 	mutex_lock(&ctl->cache_writeout_mutex);
3659 	if (reserved_start < start)
3660 		__btrfs_add_free_space(block_group, reserved_start,
3661 				       start - reserved_start,
3662 				       reserved_trim_state);
3663 	if (start + bytes < reserved_start + reserved_bytes)
3664 		__btrfs_add_free_space(block_group, end, reserved_end - end,
3665 				       reserved_trim_state);
3666 	__btrfs_add_free_space(block_group, start, bytes, trim_state);
3667 	list_del(&trim_entry->list);
3668 	mutex_unlock(&ctl->cache_writeout_mutex);
3669 
3670 	if (update) {
3671 		spin_lock(&space_info->lock);
3672 		spin_lock(&block_group->lock);
3673 		if (block_group->ro)
3674 			space_info->bytes_readonly += reserved_bytes;
3675 		block_group->reserved -= reserved_bytes;
3676 		space_info->bytes_reserved -= reserved_bytes;
3677 		spin_unlock(&block_group->lock);
3678 		spin_unlock(&space_info->lock);
3679 	}
3680 
3681 	return ret;
3682 }
3683 
3684 /*
3685  * If @async is set, then we will trim 1 region and return.
3686  */
trim_no_bitmap(struct btrfs_block_group * block_group,u64 * total_trimmed,u64 start,u64 end,u64 minlen,bool async)3687 static int trim_no_bitmap(struct btrfs_block_group *block_group,
3688 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3689 			  bool async)
3690 {
3691 	struct btrfs_discard_ctl *discard_ctl =
3692 					&block_group->fs_info->discard_ctl;
3693 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3694 	struct btrfs_free_space *entry;
3695 	struct rb_node *node;
3696 	int ret = 0;
3697 	u64 extent_start;
3698 	u64 extent_bytes;
3699 	enum btrfs_trim_state extent_trim_state;
3700 	u64 bytes;
3701 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3702 
3703 	while (start < end) {
3704 		struct btrfs_trim_range trim_entry;
3705 
3706 		mutex_lock(&ctl->cache_writeout_mutex);
3707 		spin_lock(&ctl->tree_lock);
3708 
3709 		if (ctl->free_space < minlen)
3710 			goto out_unlock;
3711 
3712 		entry = tree_search_offset(ctl, start, 0, 1);
3713 		if (!entry)
3714 			goto out_unlock;
3715 
3716 		/* Skip bitmaps and if async, already trimmed entries */
3717 		while (entry->bitmap ||
3718 		       (async && btrfs_free_space_trimmed(entry))) {
3719 			node = rb_next(&entry->offset_index);
3720 			if (!node)
3721 				goto out_unlock;
3722 			entry = rb_entry(node, struct btrfs_free_space,
3723 					 offset_index);
3724 		}
3725 
3726 		if (entry->offset >= end)
3727 			goto out_unlock;
3728 
3729 		extent_start = entry->offset;
3730 		extent_bytes = entry->bytes;
3731 		extent_trim_state = entry->trim_state;
3732 		if (async) {
3733 			start = entry->offset;
3734 			bytes = entry->bytes;
3735 			if (bytes < minlen) {
3736 				spin_unlock(&ctl->tree_lock);
3737 				mutex_unlock(&ctl->cache_writeout_mutex);
3738 				goto next;
3739 			}
3740 			unlink_free_space(ctl, entry, true);
3741 			/*
3742 			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3743 			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3744 			 * X when we come back around.  So trim it now.
3745 			 */
3746 			if (max_discard_size &&
3747 			    bytes >= (max_discard_size +
3748 				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3749 				bytes = max_discard_size;
3750 				extent_bytes = max_discard_size;
3751 				entry->offset += max_discard_size;
3752 				entry->bytes -= max_discard_size;
3753 				link_free_space(ctl, entry);
3754 			} else {
3755 				kmem_cache_free(btrfs_free_space_cachep, entry);
3756 			}
3757 		} else {
3758 			start = max(start, extent_start);
3759 			bytes = min(extent_start + extent_bytes, end) - start;
3760 			if (bytes < minlen) {
3761 				spin_unlock(&ctl->tree_lock);
3762 				mutex_unlock(&ctl->cache_writeout_mutex);
3763 				goto next;
3764 			}
3765 
3766 			unlink_free_space(ctl, entry, true);
3767 			kmem_cache_free(btrfs_free_space_cachep, entry);
3768 		}
3769 
3770 		spin_unlock(&ctl->tree_lock);
3771 		trim_entry.start = extent_start;
3772 		trim_entry.bytes = extent_bytes;
3773 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3774 		mutex_unlock(&ctl->cache_writeout_mutex);
3775 
3776 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3777 				  extent_start, extent_bytes, extent_trim_state,
3778 				  &trim_entry);
3779 		if (ret) {
3780 			block_group->discard_cursor = start + bytes;
3781 			break;
3782 		}
3783 next:
3784 		start += bytes;
3785 		block_group->discard_cursor = start;
3786 		if (async && *total_trimmed)
3787 			break;
3788 
3789 		if (fatal_signal_pending(current)) {
3790 			ret = -ERESTARTSYS;
3791 			break;
3792 		}
3793 
3794 		cond_resched();
3795 	}
3796 
3797 	return ret;
3798 
3799 out_unlock:
3800 	block_group->discard_cursor = btrfs_block_group_end(block_group);
3801 	spin_unlock(&ctl->tree_lock);
3802 	mutex_unlock(&ctl->cache_writeout_mutex);
3803 
3804 	return ret;
3805 }
3806 
3807 /*
3808  * If we break out of trimming a bitmap prematurely, we should reset the
3809  * trimming bit.  In a rather contrieved case, it's possible to race here so
3810  * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3811  *
3812  * start = start of bitmap
3813  * end = near end of bitmap
3814  *
3815  * Thread 1:			Thread 2:
3816  * trim_bitmaps(start)
3817  *				trim_bitmaps(end)
3818  *				end_trimming_bitmap()
3819  * reset_trimming_bitmap()
3820  */
reset_trimming_bitmap(struct btrfs_free_space_ctl * ctl,u64 offset)3821 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3822 {
3823 	struct btrfs_free_space *entry;
3824 
3825 	spin_lock(&ctl->tree_lock);
3826 	entry = tree_search_offset(ctl, offset, 1, 0);
3827 	if (entry) {
3828 		if (btrfs_free_space_trimmed(entry)) {
3829 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
3830 				entry->bitmap_extents;
3831 			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3832 		}
3833 		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3834 	}
3835 
3836 	spin_unlock(&ctl->tree_lock);
3837 }
3838 
end_trimming_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * entry)3839 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3840 				struct btrfs_free_space *entry)
3841 {
3842 	if (btrfs_free_space_trimming_bitmap(entry)) {
3843 		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3844 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
3845 			entry->bitmap_extents;
3846 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3847 	}
3848 }
3849 
3850 /*
3851  * If @async is set, then we will trim 1 region and return.
3852  */
trim_bitmaps(struct btrfs_block_group * block_group,u64 * total_trimmed,u64 start,u64 end,u64 minlen,u64 maxlen,bool async)3853 static int trim_bitmaps(struct btrfs_block_group *block_group,
3854 			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3855 			u64 maxlen, bool async)
3856 {
3857 	struct btrfs_discard_ctl *discard_ctl =
3858 					&block_group->fs_info->discard_ctl;
3859 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3860 	struct btrfs_free_space *entry;
3861 	int ret = 0;
3862 	int ret2;
3863 	u64 bytes;
3864 	u64 offset = offset_to_bitmap(ctl, start);
3865 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3866 
3867 	while (offset < end) {
3868 		bool next_bitmap = false;
3869 		struct btrfs_trim_range trim_entry;
3870 
3871 		mutex_lock(&ctl->cache_writeout_mutex);
3872 		spin_lock(&ctl->tree_lock);
3873 
3874 		if (ctl->free_space < minlen) {
3875 			block_group->discard_cursor =
3876 				btrfs_block_group_end(block_group);
3877 			spin_unlock(&ctl->tree_lock);
3878 			mutex_unlock(&ctl->cache_writeout_mutex);
3879 			break;
3880 		}
3881 
3882 		entry = tree_search_offset(ctl, offset, 1, 0);
3883 		/*
3884 		 * Bitmaps are marked trimmed lossily now to prevent constant
3885 		 * discarding of the same bitmap (the reason why we are bound
3886 		 * by the filters).  So, retrim the block group bitmaps when we
3887 		 * are preparing to punt to the unused_bgs list.  This uses
3888 		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3889 		 * which is the only discard index which sets minlen to 0.
3890 		 */
3891 		if (!entry || (async && minlen && start == offset &&
3892 			       btrfs_free_space_trimmed(entry))) {
3893 			spin_unlock(&ctl->tree_lock);
3894 			mutex_unlock(&ctl->cache_writeout_mutex);
3895 			next_bitmap = true;
3896 			goto next;
3897 		}
3898 
3899 		/*
3900 		 * Async discard bitmap trimming begins at by setting the start
3901 		 * to be key.objectid and the offset_to_bitmap() aligns to the
3902 		 * start of the bitmap.  This lets us know we are fully
3903 		 * scanning the bitmap rather than only some portion of it.
3904 		 */
3905 		if (start == offset)
3906 			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3907 
3908 		bytes = minlen;
3909 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3910 		if (ret2 || start >= end) {
3911 			/*
3912 			 * We lossily consider a bitmap trimmed if we only skip
3913 			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3914 			 */
3915 			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3916 				end_trimming_bitmap(ctl, entry);
3917 			else
3918 				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3919 			spin_unlock(&ctl->tree_lock);
3920 			mutex_unlock(&ctl->cache_writeout_mutex);
3921 			next_bitmap = true;
3922 			goto next;
3923 		}
3924 
3925 		/*
3926 		 * We already trimmed a region, but are using the locking above
3927 		 * to reset the trim_state.
3928 		 */
3929 		if (async && *total_trimmed) {
3930 			spin_unlock(&ctl->tree_lock);
3931 			mutex_unlock(&ctl->cache_writeout_mutex);
3932 			goto out;
3933 		}
3934 
3935 		bytes = min(bytes, end - start);
3936 		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3937 			spin_unlock(&ctl->tree_lock);
3938 			mutex_unlock(&ctl->cache_writeout_mutex);
3939 			goto next;
3940 		}
3941 
3942 		/*
3943 		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3944 		 * If X < @minlen, we won't trim X when we come back around.
3945 		 * So trim it now.  We differ here from trimming extents as we
3946 		 * don't keep individual state per bit.
3947 		 */
3948 		if (async &&
3949 		    max_discard_size &&
3950 		    bytes > (max_discard_size + minlen))
3951 			bytes = max_discard_size;
3952 
3953 		bitmap_clear_bits(ctl, entry, start, bytes, true);
3954 		if (entry->bytes == 0)
3955 			free_bitmap(ctl, entry);
3956 
3957 		spin_unlock(&ctl->tree_lock);
3958 		trim_entry.start = start;
3959 		trim_entry.bytes = bytes;
3960 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3961 		mutex_unlock(&ctl->cache_writeout_mutex);
3962 
3963 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3964 				  start, bytes, 0, &trim_entry);
3965 		if (ret) {
3966 			reset_trimming_bitmap(ctl, offset);
3967 			block_group->discard_cursor =
3968 				btrfs_block_group_end(block_group);
3969 			break;
3970 		}
3971 next:
3972 		if (next_bitmap) {
3973 			offset += BITS_PER_BITMAP * ctl->unit;
3974 			start = offset;
3975 		} else {
3976 			start += bytes;
3977 		}
3978 		block_group->discard_cursor = start;
3979 
3980 		if (fatal_signal_pending(current)) {
3981 			if (start != offset)
3982 				reset_trimming_bitmap(ctl, offset);
3983 			ret = -ERESTARTSYS;
3984 			break;
3985 		}
3986 
3987 		cond_resched();
3988 	}
3989 
3990 	if (offset >= end)
3991 		block_group->discard_cursor = end;
3992 
3993 out:
3994 	return ret;
3995 }
3996 
btrfs_trim_block_group(struct btrfs_block_group * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen)3997 int btrfs_trim_block_group(struct btrfs_block_group *block_group,
3998 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3999 {
4000 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4001 	int ret;
4002 	u64 rem = 0;
4003 
4004 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
4005 
4006 	*trimmed = 0;
4007 
4008 	spin_lock(&block_group->lock);
4009 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4010 		spin_unlock(&block_group->lock);
4011 		return 0;
4012 	}
4013 	btrfs_freeze_block_group(block_group);
4014 	spin_unlock(&block_group->lock);
4015 
4016 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
4017 	if (ret)
4018 		goto out;
4019 
4020 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
4021 	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
4022 	/* If we ended in the middle of a bitmap, reset the trimming flag */
4023 	if (rem)
4024 		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
4025 out:
4026 	btrfs_unfreeze_block_group(block_group);
4027 	return ret;
4028 }
4029 
btrfs_trim_block_group_extents(struct btrfs_block_group * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen,bool async)4030 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
4031 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
4032 				   bool async)
4033 {
4034 	int ret;
4035 
4036 	*trimmed = 0;
4037 
4038 	spin_lock(&block_group->lock);
4039 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4040 		spin_unlock(&block_group->lock);
4041 		return 0;
4042 	}
4043 	btrfs_freeze_block_group(block_group);
4044 	spin_unlock(&block_group->lock);
4045 
4046 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
4047 	btrfs_unfreeze_block_group(block_group);
4048 
4049 	return ret;
4050 }
4051 
btrfs_trim_block_group_bitmaps(struct btrfs_block_group * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen,u64 maxlen,bool async)4052 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
4053 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
4054 				   u64 maxlen, bool async)
4055 {
4056 	int ret;
4057 
4058 	*trimmed = 0;
4059 
4060 	spin_lock(&block_group->lock);
4061 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4062 		spin_unlock(&block_group->lock);
4063 		return 0;
4064 	}
4065 	btrfs_freeze_block_group(block_group);
4066 	spin_unlock(&block_group->lock);
4067 
4068 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
4069 			   async);
4070 
4071 	btrfs_unfreeze_block_group(block_group);
4072 
4073 	return ret;
4074 }
4075 
btrfs_free_space_cache_v1_active(struct btrfs_fs_info * fs_info)4076 bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
4077 {
4078 	return btrfs_super_cache_generation(fs_info->super_copy);
4079 }
4080 
cleanup_free_space_cache_v1(struct btrfs_fs_info * fs_info,struct btrfs_trans_handle * trans)4081 static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
4082 				       struct btrfs_trans_handle *trans)
4083 {
4084 	struct btrfs_block_group *block_group;
4085 	struct rb_node *node;
4086 	int ret = 0;
4087 
4088 	btrfs_info(fs_info, "cleaning free space cache v1");
4089 
4090 	node = rb_first_cached(&fs_info->block_group_cache_tree);
4091 	while (node) {
4092 		block_group = rb_entry(node, struct btrfs_block_group, cache_node);
4093 		ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
4094 		if (ret)
4095 			goto out;
4096 		node = rb_next(node);
4097 	}
4098 out:
4099 	return ret;
4100 }
4101 
btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info * fs_info,bool active)4102 int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
4103 {
4104 	struct btrfs_trans_handle *trans;
4105 	int ret;
4106 
4107 	/*
4108 	 * update_super_roots will appropriately set or unset
4109 	 * super_copy->cache_generation based on SPACE_CACHE and
4110 	 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
4111 	 * transaction commit whether we are enabling space cache v1 and don't
4112 	 * have any other work to do, or are disabling it and removing free
4113 	 * space inodes.
4114 	 */
4115 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4116 	if (IS_ERR(trans))
4117 		return PTR_ERR(trans);
4118 
4119 	if (!active) {
4120 		set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4121 		ret = cleanup_free_space_cache_v1(fs_info, trans);
4122 		if (ret) {
4123 			btrfs_abort_transaction(trans, ret);
4124 			btrfs_end_transaction(trans);
4125 			goto out;
4126 		}
4127 	}
4128 
4129 	ret = btrfs_commit_transaction(trans);
4130 out:
4131 	clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4132 
4133 	return ret;
4134 }
4135 
4136 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4137 /*
4138  * Use this if you need to make a bitmap or extent entry specifically, it
4139  * doesn't do any of the merging that add_free_space does, this acts a lot like
4140  * how the free space cache loading stuff works, so you can get really weird
4141  * configurations.
4142  */
test_add_free_space_entry(struct btrfs_block_group * cache,u64 offset,u64 bytes,bool bitmap)4143 int test_add_free_space_entry(struct btrfs_block_group *cache,
4144 			      u64 offset, u64 bytes, bool bitmap)
4145 {
4146 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4147 	struct btrfs_free_space *info = NULL, *bitmap_info;
4148 	void *map = NULL;
4149 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4150 	u64 bytes_added;
4151 	int ret;
4152 
4153 again:
4154 	if (!info) {
4155 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4156 		if (!info)
4157 			return -ENOMEM;
4158 	}
4159 
4160 	if (!bitmap) {
4161 		spin_lock(&ctl->tree_lock);
4162 		info->offset = offset;
4163 		info->bytes = bytes;
4164 		info->max_extent_size = 0;
4165 		ret = link_free_space(ctl, info);
4166 		spin_unlock(&ctl->tree_lock);
4167 		if (ret)
4168 			kmem_cache_free(btrfs_free_space_cachep, info);
4169 		return ret;
4170 	}
4171 
4172 	if (!map) {
4173 		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4174 		if (!map) {
4175 			kmem_cache_free(btrfs_free_space_cachep, info);
4176 			return -ENOMEM;
4177 		}
4178 	}
4179 
4180 	spin_lock(&ctl->tree_lock);
4181 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4182 					 1, 0);
4183 	if (!bitmap_info) {
4184 		info->bitmap = map;
4185 		map = NULL;
4186 		add_new_bitmap(ctl, info, offset);
4187 		bitmap_info = info;
4188 		info = NULL;
4189 	}
4190 
4191 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4192 					  trim_state);
4193 
4194 	bytes -= bytes_added;
4195 	offset += bytes_added;
4196 	spin_unlock(&ctl->tree_lock);
4197 
4198 	if (bytes)
4199 		goto again;
4200 
4201 	if (info)
4202 		kmem_cache_free(btrfs_free_space_cachep, info);
4203 	if (map)
4204 		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4205 	return 0;
4206 }
4207 
4208 /*
4209  * Checks to see if the given range is in the free space cache.  This is really
4210  * just used to check the absence of space, so if there is free space in the
4211  * range at all we will return 1.
4212  */
test_check_exists(struct btrfs_block_group * cache,u64 offset,u64 bytes)4213 int test_check_exists(struct btrfs_block_group *cache,
4214 		      u64 offset, u64 bytes)
4215 {
4216 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4217 	struct btrfs_free_space *info;
4218 	int ret = 0;
4219 
4220 	spin_lock(&ctl->tree_lock);
4221 	info = tree_search_offset(ctl, offset, 0, 0);
4222 	if (!info) {
4223 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4224 					  1, 0);
4225 		if (!info)
4226 			goto out;
4227 	}
4228 
4229 have_info:
4230 	if (info->bitmap) {
4231 		u64 bit_off, bit_bytes;
4232 		struct rb_node *n;
4233 		struct btrfs_free_space *tmp;
4234 
4235 		bit_off = offset;
4236 		bit_bytes = ctl->unit;
4237 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4238 		if (!ret) {
4239 			if (bit_off == offset) {
4240 				ret = 1;
4241 				goto out;
4242 			} else if (bit_off > offset &&
4243 				   offset + bytes > bit_off) {
4244 				ret = 1;
4245 				goto out;
4246 			}
4247 		}
4248 
4249 		n = rb_prev(&info->offset_index);
4250 		while (n) {
4251 			tmp = rb_entry(n, struct btrfs_free_space,
4252 				       offset_index);
4253 			if (tmp->offset + tmp->bytes < offset)
4254 				break;
4255 			if (offset + bytes < tmp->offset) {
4256 				n = rb_prev(&tmp->offset_index);
4257 				continue;
4258 			}
4259 			info = tmp;
4260 			goto have_info;
4261 		}
4262 
4263 		n = rb_next(&info->offset_index);
4264 		while (n) {
4265 			tmp = rb_entry(n, struct btrfs_free_space,
4266 				       offset_index);
4267 			if (offset + bytes < tmp->offset)
4268 				break;
4269 			if (tmp->offset + tmp->bytes < offset) {
4270 				n = rb_next(&tmp->offset_index);
4271 				continue;
4272 			}
4273 			info = tmp;
4274 			goto have_info;
4275 		}
4276 
4277 		ret = 0;
4278 		goto out;
4279 	}
4280 
4281 	if (info->offset == offset) {
4282 		ret = 1;
4283 		goto out;
4284 	}
4285 
4286 	if (offset > info->offset && offset < info->offset + info->bytes)
4287 		ret = 1;
4288 out:
4289 	spin_unlock(&ctl->tree_lock);
4290 	return ret;
4291 }
4292 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
4293