• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    https://www.ecma.ch/
15  *    https://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 #include <linux/iversion.h>
61 
62 #include "udf_sb.h"
63 #include "udf_i.h"
64 
65 #include <linux/init.h>
66 #include <linux/uaccess.h>
67 
68 enum {
69 	VDS_POS_PRIMARY_VOL_DESC,
70 	VDS_POS_UNALLOC_SPACE_DESC,
71 	VDS_POS_LOGICAL_VOL_DESC,
72 	VDS_POS_IMP_USE_VOL_DESC,
73 	VDS_POS_LENGTH
74 };
75 
76 #define VSD_FIRST_SECTOR_OFFSET		32768
77 #define VSD_MAX_SECTOR_OFFSET		0x800000
78 
79 /*
80  * Maximum number of Terminating Descriptor / Logical Volume Integrity
81  * Descriptor redirections. The chosen numbers are arbitrary - just that we
82  * hopefully don't limit any real use of rewritten inode on write-once media
83  * but avoid looping for too long on corrupted media.
84  */
85 #define UDF_MAX_TD_NESTING 64
86 #define UDF_MAX_LVID_NESTING 1000
87 
88 enum { UDF_MAX_LINKS = 0xffff };
89 
90 /* These are the "meat" - everything else is stuffing */
91 static int udf_fill_super(struct super_block *, void *, int);
92 static void udf_put_super(struct super_block *);
93 static int udf_sync_fs(struct super_block *, int);
94 static int udf_remount_fs(struct super_block *, int *, char *);
95 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
96 static void udf_open_lvid(struct super_block *);
97 static void udf_close_lvid(struct super_block *);
98 static unsigned int udf_count_free(struct super_block *);
99 static int udf_statfs(struct dentry *, struct kstatfs *);
100 static int udf_show_options(struct seq_file *, struct dentry *);
101 
udf_sb_lvidiu(struct super_block * sb)102 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
103 {
104 	struct logicalVolIntegrityDesc *lvid;
105 	unsigned int partnum;
106 	unsigned int offset;
107 
108 	if (!UDF_SB(sb)->s_lvid_bh)
109 		return NULL;
110 	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
111 	partnum = le32_to_cpu(lvid->numOfPartitions);
112 	/* The offset is to skip freeSpaceTable and sizeTable arrays */
113 	offset = partnum * 2 * sizeof(uint32_t);
114 	return (struct logicalVolIntegrityDescImpUse *)
115 					(((uint8_t *)(lvid + 1)) + offset);
116 }
117 
118 /* UDF filesystem type */
udf_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)119 static struct dentry *udf_mount(struct file_system_type *fs_type,
120 		      int flags, const char *dev_name, void *data)
121 {
122 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
123 }
124 
125 static struct file_system_type udf_fstype = {
126 	.owner		= THIS_MODULE,
127 	.name		= "udf",
128 	.mount		= udf_mount,
129 	.kill_sb	= kill_block_super,
130 	.fs_flags	= FS_REQUIRES_DEV,
131 };
132 MODULE_ALIAS_FS("udf");
133 
134 static struct kmem_cache *udf_inode_cachep;
135 
udf_alloc_inode(struct super_block * sb)136 static struct inode *udf_alloc_inode(struct super_block *sb)
137 {
138 	struct udf_inode_info *ei;
139 	ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL);
140 	if (!ei)
141 		return NULL;
142 
143 	ei->i_unique = 0;
144 	ei->i_lenExtents = 0;
145 	ei->i_lenStreams = 0;
146 	ei->i_next_alloc_block = 0;
147 	ei->i_next_alloc_goal = 0;
148 	ei->i_strat4096 = 0;
149 	ei->i_streamdir = 0;
150 	ei->i_hidden = 0;
151 	init_rwsem(&ei->i_data_sem);
152 	ei->cached_extent.lstart = -1;
153 	spin_lock_init(&ei->i_extent_cache_lock);
154 	inode_set_iversion(&ei->vfs_inode, 1);
155 
156 	return &ei->vfs_inode;
157 }
158 
udf_free_in_core_inode(struct inode * inode)159 static void udf_free_in_core_inode(struct inode *inode)
160 {
161 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
162 }
163 
init_once(void * foo)164 static void init_once(void *foo)
165 {
166 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
167 
168 	ei->i_data = NULL;
169 	inode_init_once(&ei->vfs_inode);
170 }
171 
init_inodecache(void)172 static int __init init_inodecache(void)
173 {
174 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
175 					     sizeof(struct udf_inode_info),
176 					     0, (SLAB_RECLAIM_ACCOUNT |
177 						 SLAB_MEM_SPREAD |
178 						 SLAB_ACCOUNT),
179 					     init_once);
180 	if (!udf_inode_cachep)
181 		return -ENOMEM;
182 	return 0;
183 }
184 
destroy_inodecache(void)185 static void destroy_inodecache(void)
186 {
187 	/*
188 	 * Make sure all delayed rcu free inodes are flushed before we
189 	 * destroy cache.
190 	 */
191 	rcu_barrier();
192 	kmem_cache_destroy(udf_inode_cachep);
193 }
194 
195 /* Superblock operations */
196 static const struct super_operations udf_sb_ops = {
197 	.alloc_inode	= udf_alloc_inode,
198 	.free_inode	= udf_free_in_core_inode,
199 	.write_inode	= udf_write_inode,
200 	.evict_inode	= udf_evict_inode,
201 	.put_super	= udf_put_super,
202 	.sync_fs	= udf_sync_fs,
203 	.statfs		= udf_statfs,
204 	.remount_fs	= udf_remount_fs,
205 	.show_options	= udf_show_options,
206 };
207 
208 struct udf_options {
209 	unsigned char novrs;
210 	unsigned int blocksize;
211 	unsigned int session;
212 	unsigned int lastblock;
213 	unsigned int anchor;
214 	unsigned int flags;
215 	umode_t umask;
216 	kgid_t gid;
217 	kuid_t uid;
218 	umode_t fmode;
219 	umode_t dmode;
220 	struct nls_table *nls_map;
221 };
222 
init_udf_fs(void)223 static int __init init_udf_fs(void)
224 {
225 	int err;
226 
227 	err = init_inodecache();
228 	if (err)
229 		goto out1;
230 	err = register_filesystem(&udf_fstype);
231 	if (err)
232 		goto out;
233 
234 	return 0;
235 
236 out:
237 	destroy_inodecache();
238 
239 out1:
240 	return err;
241 }
242 
exit_udf_fs(void)243 static void __exit exit_udf_fs(void)
244 {
245 	unregister_filesystem(&udf_fstype);
246 	destroy_inodecache();
247 }
248 
udf_sb_alloc_partition_maps(struct super_block * sb,u32 count)249 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
250 {
251 	struct udf_sb_info *sbi = UDF_SB(sb);
252 
253 	sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
254 	if (!sbi->s_partmaps) {
255 		sbi->s_partitions = 0;
256 		return -ENOMEM;
257 	}
258 
259 	sbi->s_partitions = count;
260 	return 0;
261 }
262 
udf_sb_free_bitmap(struct udf_bitmap * bitmap)263 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
264 {
265 	int i;
266 	int nr_groups = bitmap->s_nr_groups;
267 
268 	for (i = 0; i < nr_groups; i++)
269 		brelse(bitmap->s_block_bitmap[i]);
270 
271 	kvfree(bitmap);
272 }
273 
udf_free_partition(struct udf_part_map * map)274 static void udf_free_partition(struct udf_part_map *map)
275 {
276 	int i;
277 	struct udf_meta_data *mdata;
278 
279 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
280 		iput(map->s_uspace.s_table);
281 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
282 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
283 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
284 		for (i = 0; i < 4; i++)
285 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
286 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
287 		mdata = &map->s_type_specific.s_metadata;
288 		iput(mdata->s_metadata_fe);
289 		mdata->s_metadata_fe = NULL;
290 
291 		iput(mdata->s_mirror_fe);
292 		mdata->s_mirror_fe = NULL;
293 
294 		iput(mdata->s_bitmap_fe);
295 		mdata->s_bitmap_fe = NULL;
296 	}
297 }
298 
udf_sb_free_partitions(struct super_block * sb)299 static void udf_sb_free_partitions(struct super_block *sb)
300 {
301 	struct udf_sb_info *sbi = UDF_SB(sb);
302 	int i;
303 
304 	if (!sbi->s_partmaps)
305 		return;
306 	for (i = 0; i < sbi->s_partitions; i++)
307 		udf_free_partition(&sbi->s_partmaps[i]);
308 	kfree(sbi->s_partmaps);
309 	sbi->s_partmaps = NULL;
310 }
311 
udf_show_options(struct seq_file * seq,struct dentry * root)312 static int udf_show_options(struct seq_file *seq, struct dentry *root)
313 {
314 	struct super_block *sb = root->d_sb;
315 	struct udf_sb_info *sbi = UDF_SB(sb);
316 
317 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
318 		seq_puts(seq, ",nostrict");
319 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
320 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
321 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
322 		seq_puts(seq, ",unhide");
323 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
324 		seq_puts(seq, ",undelete");
325 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
326 		seq_puts(seq, ",noadinicb");
327 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
328 		seq_puts(seq, ",shortad");
329 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
330 		seq_puts(seq, ",uid=forget");
331 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
332 		seq_puts(seq, ",gid=forget");
333 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
334 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
335 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
336 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
337 	if (sbi->s_umask != 0)
338 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
339 	if (sbi->s_fmode != UDF_INVALID_MODE)
340 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
341 	if (sbi->s_dmode != UDF_INVALID_MODE)
342 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
343 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
344 		seq_printf(seq, ",session=%d", sbi->s_session);
345 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
346 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
347 	if (sbi->s_anchor != 0)
348 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
349 	if (sbi->s_nls_map)
350 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
351 	else
352 		seq_puts(seq, ",iocharset=utf8");
353 
354 	return 0;
355 }
356 
357 /*
358  * udf_parse_options
359  *
360  * PURPOSE
361  *	Parse mount options.
362  *
363  * DESCRIPTION
364  *	The following mount options are supported:
365  *
366  *	gid=		Set the default group.
367  *	umask=		Set the default umask.
368  *	mode=		Set the default file permissions.
369  *	dmode=		Set the default directory permissions.
370  *	uid=		Set the default user.
371  *	bs=		Set the block size.
372  *	unhide		Show otherwise hidden files.
373  *	undelete	Show deleted files in lists.
374  *	adinicb		Embed data in the inode (default)
375  *	noadinicb	Don't embed data in the inode
376  *	shortad		Use short ad's
377  *	longad		Use long ad's (default)
378  *	nostrict	Unset strict conformance
379  *	iocharset=	Set the NLS character set
380  *
381  *	The remaining are for debugging and disaster recovery:
382  *
383  *	novrs		Skip volume sequence recognition
384  *
385  *	The following expect a offset from 0.
386  *
387  *	session=	Set the CDROM session (default= last session)
388  *	anchor=		Override standard anchor location. (default= 256)
389  *	volume=		Override the VolumeDesc location. (unused)
390  *	partition=	Override the PartitionDesc location. (unused)
391  *	lastblock=	Set the last block of the filesystem/
392  *
393  *	The following expect a offset from the partition root.
394  *
395  *	fileset=	Override the fileset block location. (unused)
396  *	rootdir=	Override the root directory location. (unused)
397  *		WARNING: overriding the rootdir to a non-directory may
398  *		yield highly unpredictable results.
399  *
400  * PRE-CONDITIONS
401  *	options		Pointer to mount options string.
402  *	uopts		Pointer to mount options variable.
403  *
404  * POST-CONDITIONS
405  *	<return>	1	Mount options parsed okay.
406  *	<return>	0	Error parsing mount options.
407  *
408  * HISTORY
409  *	July 1, 1997 - Andrew E. Mileski
410  *	Written, tested, and released.
411  */
412 
413 enum {
414 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
415 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
416 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
417 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
418 	Opt_rootdir, Opt_utf8, Opt_iocharset,
419 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
420 	Opt_fmode, Opt_dmode
421 };
422 
423 static const match_table_t tokens = {
424 	{Opt_novrs,	"novrs"},
425 	{Opt_nostrict,	"nostrict"},
426 	{Opt_bs,	"bs=%u"},
427 	{Opt_unhide,	"unhide"},
428 	{Opt_undelete,	"undelete"},
429 	{Opt_noadinicb,	"noadinicb"},
430 	{Opt_adinicb,	"adinicb"},
431 	{Opt_shortad,	"shortad"},
432 	{Opt_longad,	"longad"},
433 	{Opt_uforget,	"uid=forget"},
434 	{Opt_uignore,	"uid=ignore"},
435 	{Opt_gforget,	"gid=forget"},
436 	{Opt_gignore,	"gid=ignore"},
437 	{Opt_gid,	"gid=%u"},
438 	{Opt_uid,	"uid=%u"},
439 	{Opt_umask,	"umask=%o"},
440 	{Opt_session,	"session=%u"},
441 	{Opt_lastblock,	"lastblock=%u"},
442 	{Opt_anchor,	"anchor=%u"},
443 	{Opt_volume,	"volume=%u"},
444 	{Opt_partition,	"partition=%u"},
445 	{Opt_fileset,	"fileset=%u"},
446 	{Opt_rootdir,	"rootdir=%u"},
447 	{Opt_utf8,	"utf8"},
448 	{Opt_iocharset,	"iocharset=%s"},
449 	{Opt_fmode,     "mode=%o"},
450 	{Opt_dmode,     "dmode=%o"},
451 	{Opt_err,	NULL}
452 };
453 
udf_parse_options(char * options,struct udf_options * uopt,bool remount)454 static int udf_parse_options(char *options, struct udf_options *uopt,
455 			     bool remount)
456 {
457 	char *p;
458 	int option;
459 	unsigned int uv;
460 
461 	uopt->novrs = 0;
462 	uopt->session = 0xFFFFFFFF;
463 	uopt->lastblock = 0;
464 	uopt->anchor = 0;
465 
466 	if (!options)
467 		return 1;
468 
469 	while ((p = strsep(&options, ",")) != NULL) {
470 		substring_t args[MAX_OPT_ARGS];
471 		int token;
472 		unsigned n;
473 		if (!*p)
474 			continue;
475 
476 		token = match_token(p, tokens, args);
477 		switch (token) {
478 		case Opt_novrs:
479 			uopt->novrs = 1;
480 			break;
481 		case Opt_bs:
482 			if (match_int(&args[0], &option))
483 				return 0;
484 			n = option;
485 			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
486 				return 0;
487 			uopt->blocksize = n;
488 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
489 			break;
490 		case Opt_unhide:
491 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
492 			break;
493 		case Opt_undelete:
494 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
495 			break;
496 		case Opt_noadinicb:
497 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
498 			break;
499 		case Opt_adinicb:
500 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
501 			break;
502 		case Opt_shortad:
503 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
504 			break;
505 		case Opt_longad:
506 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
507 			break;
508 		case Opt_gid:
509 			if (match_uint(args, &uv))
510 				return 0;
511 			uopt->gid = make_kgid(current_user_ns(), uv);
512 			if (!gid_valid(uopt->gid))
513 				return 0;
514 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
515 			break;
516 		case Opt_uid:
517 			if (match_uint(args, &uv))
518 				return 0;
519 			uopt->uid = make_kuid(current_user_ns(), uv);
520 			if (!uid_valid(uopt->uid))
521 				return 0;
522 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
523 			break;
524 		case Opt_umask:
525 			if (match_octal(args, &option))
526 				return 0;
527 			uopt->umask = option;
528 			break;
529 		case Opt_nostrict:
530 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
531 			break;
532 		case Opt_session:
533 			if (match_int(args, &option))
534 				return 0;
535 			uopt->session = option;
536 			if (!remount)
537 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
538 			break;
539 		case Opt_lastblock:
540 			if (match_int(args, &option))
541 				return 0;
542 			uopt->lastblock = option;
543 			if (!remount)
544 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
545 			break;
546 		case Opt_anchor:
547 			if (match_int(args, &option))
548 				return 0;
549 			uopt->anchor = option;
550 			break;
551 		case Opt_volume:
552 		case Opt_partition:
553 		case Opt_fileset:
554 		case Opt_rootdir:
555 			/* Ignored (never implemented properly) */
556 			break;
557 		case Opt_utf8:
558 			if (!remount) {
559 				unload_nls(uopt->nls_map);
560 				uopt->nls_map = NULL;
561 			}
562 			break;
563 		case Opt_iocharset:
564 			if (!remount) {
565 				unload_nls(uopt->nls_map);
566 				uopt->nls_map = NULL;
567 			}
568 			/* When nls_map is not loaded then UTF-8 is used */
569 			if (!remount && strcmp(args[0].from, "utf8") != 0) {
570 				uopt->nls_map = load_nls(args[0].from);
571 				if (!uopt->nls_map) {
572 					pr_err("iocharset %s not found\n",
573 						args[0].from);
574 					return 0;
575 				}
576 			}
577 			break;
578 		case Opt_uforget:
579 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
580 			break;
581 		case Opt_uignore:
582 		case Opt_gignore:
583 			/* These options are superseeded by uid=<number> */
584 			break;
585 		case Opt_gforget:
586 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
587 			break;
588 		case Opt_fmode:
589 			if (match_octal(args, &option))
590 				return 0;
591 			uopt->fmode = option & 0777;
592 			break;
593 		case Opt_dmode:
594 			if (match_octal(args, &option))
595 				return 0;
596 			uopt->dmode = option & 0777;
597 			break;
598 		default:
599 			pr_err("bad mount option \"%s\" or missing value\n", p);
600 			return 0;
601 		}
602 	}
603 	return 1;
604 }
605 
udf_remount_fs(struct super_block * sb,int * flags,char * options)606 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
607 {
608 	struct udf_options uopt;
609 	struct udf_sb_info *sbi = UDF_SB(sb);
610 	int error = 0;
611 
612 	if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
613 		return -EACCES;
614 
615 	sync_filesystem(sb);
616 
617 	uopt.flags = sbi->s_flags;
618 	uopt.uid   = sbi->s_uid;
619 	uopt.gid   = sbi->s_gid;
620 	uopt.umask = sbi->s_umask;
621 	uopt.fmode = sbi->s_fmode;
622 	uopt.dmode = sbi->s_dmode;
623 	uopt.nls_map = NULL;
624 
625 	if (!udf_parse_options(options, &uopt, true))
626 		return -EINVAL;
627 
628 	write_lock(&sbi->s_cred_lock);
629 	sbi->s_flags = uopt.flags;
630 	sbi->s_uid   = uopt.uid;
631 	sbi->s_gid   = uopt.gid;
632 	sbi->s_umask = uopt.umask;
633 	sbi->s_fmode = uopt.fmode;
634 	sbi->s_dmode = uopt.dmode;
635 	write_unlock(&sbi->s_cred_lock);
636 
637 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
638 		goto out_unlock;
639 
640 	if (*flags & SB_RDONLY)
641 		udf_close_lvid(sb);
642 	else
643 		udf_open_lvid(sb);
644 
645 out_unlock:
646 	return error;
647 }
648 
649 /*
650  * Check VSD descriptor. Returns -1 in case we are at the end of volume
651  * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
652  * we found one of NSR descriptors we are looking for.
653  */
identify_vsd(const struct volStructDesc * vsd)654 static int identify_vsd(const struct volStructDesc *vsd)
655 {
656 	int ret = 0;
657 
658 	if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
659 		switch (vsd->structType) {
660 		case 0:
661 			udf_debug("ISO9660 Boot Record found\n");
662 			break;
663 		case 1:
664 			udf_debug("ISO9660 Primary Volume Descriptor found\n");
665 			break;
666 		case 2:
667 			udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
668 			break;
669 		case 3:
670 			udf_debug("ISO9660 Volume Partition Descriptor found\n");
671 			break;
672 		case 255:
673 			udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
674 			break;
675 		default:
676 			udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
677 			break;
678 		}
679 	} else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
680 		; /* ret = 0 */
681 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
682 		ret = 1;
683 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
684 		ret = 1;
685 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
686 		; /* ret = 0 */
687 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
688 		; /* ret = 0 */
689 	else {
690 		/* TEA01 or invalid id : end of volume recognition area */
691 		ret = -1;
692 	}
693 
694 	return ret;
695 }
696 
697 /*
698  * Check Volume Structure Descriptors (ECMA 167 2/9.1)
699  * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
700  * @return   1 if NSR02 or NSR03 found,
701  *	    -1 if first sector read error, 0 otherwise
702  */
udf_check_vsd(struct super_block * sb)703 static int udf_check_vsd(struct super_block *sb)
704 {
705 	struct volStructDesc *vsd = NULL;
706 	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
707 	int sectorsize;
708 	struct buffer_head *bh = NULL;
709 	int nsr = 0;
710 	struct udf_sb_info *sbi;
711 	loff_t session_offset;
712 
713 	sbi = UDF_SB(sb);
714 	if (sb->s_blocksize < sizeof(struct volStructDesc))
715 		sectorsize = sizeof(struct volStructDesc);
716 	else
717 		sectorsize = sb->s_blocksize;
718 
719 	session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
720 	sector += session_offset;
721 
722 	udf_debug("Starting at sector %u (%lu byte sectors)\n",
723 		  (unsigned int)(sector >> sb->s_blocksize_bits),
724 		  sb->s_blocksize);
725 	/* Process the sequence (if applicable). The hard limit on the sector
726 	 * offset is arbitrary, hopefully large enough so that all valid UDF
727 	 * filesystems will be recognised. There is no mention of an upper
728 	 * bound to the size of the volume recognition area in the standard.
729 	 *  The limit will prevent the code to read all the sectors of a
730 	 * specially crafted image (like a bluray disc full of CD001 sectors),
731 	 * potentially causing minutes or even hours of uninterruptible I/O
732 	 * activity. This actually happened with uninitialised SSD partitions
733 	 * (all 0xFF) before the check for the limit and all valid IDs were
734 	 * added */
735 	for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
736 		/* Read a block */
737 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
738 		if (!bh)
739 			break;
740 
741 		vsd = (struct volStructDesc *)(bh->b_data +
742 					      (sector & (sb->s_blocksize - 1)));
743 		nsr = identify_vsd(vsd);
744 		/* Found NSR or end? */
745 		if (nsr) {
746 			brelse(bh);
747 			break;
748 		}
749 		/*
750 		 * Special handling for improperly formatted VRS (e.g., Win10)
751 		 * where components are separated by 2048 bytes even though
752 		 * sectors are 4K
753 		 */
754 		if (sb->s_blocksize == 4096) {
755 			nsr = identify_vsd(vsd + 1);
756 			/* Ignore unknown IDs... */
757 			if (nsr < 0)
758 				nsr = 0;
759 		}
760 		brelse(bh);
761 	}
762 
763 	if (nsr > 0)
764 		return 1;
765 	else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
766 		return -1;
767 	else
768 		return 0;
769 }
770 
udf_verify_domain_identifier(struct super_block * sb,struct regid * ident,char * dname)771 static int udf_verify_domain_identifier(struct super_block *sb,
772 					struct regid *ident, char *dname)
773 {
774 	struct domainIdentSuffix *suffix;
775 
776 	if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
777 		udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
778 		goto force_ro;
779 	}
780 	if (ident->flags & ENTITYID_FLAGS_DIRTY) {
781 		udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
782 			 dname);
783 		goto force_ro;
784 	}
785 	suffix = (struct domainIdentSuffix *)ident->identSuffix;
786 	if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
787 	    (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
788 		if (!sb_rdonly(sb)) {
789 			udf_warn(sb, "Descriptor for %s marked write protected."
790 				 " Forcing read only mount.\n", dname);
791 		}
792 		goto force_ro;
793 	}
794 	return 0;
795 
796 force_ro:
797 	if (!sb_rdonly(sb))
798 		return -EACCES;
799 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
800 	return 0;
801 }
802 
udf_load_fileset(struct super_block * sb,struct fileSetDesc * fset,struct kernel_lb_addr * root)803 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
804 			    struct kernel_lb_addr *root)
805 {
806 	int ret;
807 
808 	ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
809 	if (ret < 0)
810 		return ret;
811 
812 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
813 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
814 
815 	udf_debug("Rootdir at block=%u, partition=%u\n",
816 		  root->logicalBlockNum, root->partitionReferenceNum);
817 	return 0;
818 }
819 
udf_find_fileset(struct super_block * sb,struct kernel_lb_addr * fileset,struct kernel_lb_addr * root)820 static int udf_find_fileset(struct super_block *sb,
821 			    struct kernel_lb_addr *fileset,
822 			    struct kernel_lb_addr *root)
823 {
824 	struct buffer_head *bh = NULL;
825 	uint16_t ident;
826 	int ret;
827 
828 	if (fileset->logicalBlockNum == 0xFFFFFFFF &&
829 	    fileset->partitionReferenceNum == 0xFFFF)
830 		return -EINVAL;
831 
832 	bh = udf_read_ptagged(sb, fileset, 0, &ident);
833 	if (!bh)
834 		return -EIO;
835 	if (ident != TAG_IDENT_FSD) {
836 		brelse(bh);
837 		return -EINVAL;
838 	}
839 
840 	udf_debug("Fileset at block=%u, partition=%u\n",
841 		  fileset->logicalBlockNum, fileset->partitionReferenceNum);
842 
843 	UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
844 	ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
845 	brelse(bh);
846 	return ret;
847 }
848 
849 /*
850  * Load primary Volume Descriptor Sequence
851  *
852  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
853  * should be tried.
854  */
udf_load_pvoldesc(struct super_block * sb,sector_t block)855 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
856 {
857 	struct primaryVolDesc *pvoldesc;
858 	uint8_t *outstr;
859 	struct buffer_head *bh;
860 	uint16_t ident;
861 	int ret;
862 	struct timestamp *ts;
863 
864 	outstr = kmalloc(128, GFP_NOFS);
865 	if (!outstr)
866 		return -ENOMEM;
867 
868 	bh = udf_read_tagged(sb, block, block, &ident);
869 	if (!bh) {
870 		ret = -EAGAIN;
871 		goto out2;
872 	}
873 
874 	if (ident != TAG_IDENT_PVD) {
875 		ret = -EIO;
876 		goto out_bh;
877 	}
878 
879 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
880 
881 	udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
882 			      pvoldesc->recordingDateAndTime);
883 	ts = &pvoldesc->recordingDateAndTime;
884 	udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
885 		  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
886 		  ts->minute, le16_to_cpu(ts->typeAndTimezone));
887 
888 	ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
889 	if (ret < 0) {
890 		strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
891 		pr_warn("incorrect volume identification, setting to "
892 			"'InvalidName'\n");
893 	} else {
894 		strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
895 	}
896 	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
897 
898 	ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
899 	if (ret < 0) {
900 		ret = 0;
901 		goto out_bh;
902 	}
903 	outstr[ret] = 0;
904 	udf_debug("volSetIdent[] = '%s'\n", outstr);
905 
906 	ret = 0;
907 out_bh:
908 	brelse(bh);
909 out2:
910 	kfree(outstr);
911 	return ret;
912 }
913 
udf_find_metadata_inode_efe(struct super_block * sb,u32 meta_file_loc,u32 partition_ref)914 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
915 					u32 meta_file_loc, u32 partition_ref)
916 {
917 	struct kernel_lb_addr addr;
918 	struct inode *metadata_fe;
919 
920 	addr.logicalBlockNum = meta_file_loc;
921 	addr.partitionReferenceNum = partition_ref;
922 
923 	metadata_fe = udf_iget_special(sb, &addr);
924 
925 	if (IS_ERR(metadata_fe)) {
926 		udf_warn(sb, "metadata inode efe not found\n");
927 		return metadata_fe;
928 	}
929 	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
930 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
931 		iput(metadata_fe);
932 		return ERR_PTR(-EIO);
933 	}
934 
935 	return metadata_fe;
936 }
937 
udf_load_metadata_files(struct super_block * sb,int partition,int type1_index)938 static int udf_load_metadata_files(struct super_block *sb, int partition,
939 				   int type1_index)
940 {
941 	struct udf_sb_info *sbi = UDF_SB(sb);
942 	struct udf_part_map *map;
943 	struct udf_meta_data *mdata;
944 	struct kernel_lb_addr addr;
945 	struct inode *fe;
946 
947 	map = &sbi->s_partmaps[partition];
948 	mdata = &map->s_type_specific.s_metadata;
949 	mdata->s_phys_partition_ref = type1_index;
950 
951 	/* metadata address */
952 	udf_debug("Metadata file location: block = %u part = %u\n",
953 		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
954 
955 	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
956 					 mdata->s_phys_partition_ref);
957 	if (IS_ERR(fe)) {
958 		/* mirror file entry */
959 		udf_debug("Mirror metadata file location: block = %u part = %u\n",
960 			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
961 
962 		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
963 						 mdata->s_phys_partition_ref);
964 
965 		if (IS_ERR(fe)) {
966 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
967 			return PTR_ERR(fe);
968 		}
969 		mdata->s_mirror_fe = fe;
970 	} else
971 		mdata->s_metadata_fe = fe;
972 
973 
974 	/*
975 	 * bitmap file entry
976 	 * Note:
977 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
978 	*/
979 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
980 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
981 		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
982 
983 		udf_debug("Bitmap file location: block = %u part = %u\n",
984 			  addr.logicalBlockNum, addr.partitionReferenceNum);
985 
986 		fe = udf_iget_special(sb, &addr);
987 		if (IS_ERR(fe)) {
988 			if (sb_rdonly(sb))
989 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
990 			else {
991 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
992 				return PTR_ERR(fe);
993 			}
994 		} else
995 			mdata->s_bitmap_fe = fe;
996 	}
997 
998 	udf_debug("udf_load_metadata_files Ok\n");
999 	return 0;
1000 }
1001 
udf_compute_nr_groups(struct super_block * sb,u32 partition)1002 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1003 {
1004 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1005 	return DIV_ROUND_UP(map->s_partition_len +
1006 			    (sizeof(struct spaceBitmapDesc) << 3),
1007 			    sb->s_blocksize * 8);
1008 }
1009 
udf_sb_alloc_bitmap(struct super_block * sb,u32 index)1010 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1011 {
1012 	struct udf_bitmap *bitmap;
1013 	int nr_groups = udf_compute_nr_groups(sb, index);
1014 
1015 	bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1016 			  GFP_KERNEL);
1017 	if (!bitmap)
1018 		return NULL;
1019 
1020 	bitmap->s_nr_groups = nr_groups;
1021 	return bitmap;
1022 }
1023 
check_partition_desc(struct super_block * sb,struct partitionDesc * p,struct udf_part_map * map)1024 static int check_partition_desc(struct super_block *sb,
1025 				struct partitionDesc *p,
1026 				struct udf_part_map *map)
1027 {
1028 	bool umap, utable, fmap, ftable;
1029 	struct partitionHeaderDesc *phd;
1030 
1031 	switch (le32_to_cpu(p->accessType)) {
1032 	case PD_ACCESS_TYPE_READ_ONLY:
1033 	case PD_ACCESS_TYPE_WRITE_ONCE:
1034 	case PD_ACCESS_TYPE_NONE:
1035 		goto force_ro;
1036 	}
1037 
1038 	/* No Partition Header Descriptor? */
1039 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1040 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1041 		goto force_ro;
1042 
1043 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1044 	utable = phd->unallocSpaceTable.extLength;
1045 	umap = phd->unallocSpaceBitmap.extLength;
1046 	ftable = phd->freedSpaceTable.extLength;
1047 	fmap = phd->freedSpaceBitmap.extLength;
1048 
1049 	/* No allocation info? */
1050 	if (!utable && !umap && !ftable && !fmap)
1051 		goto force_ro;
1052 
1053 	/* We don't support blocks that require erasing before overwrite */
1054 	if (ftable || fmap)
1055 		goto force_ro;
1056 	/* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1057 	if (utable && umap)
1058 		goto force_ro;
1059 
1060 	if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1061 	    map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1062 	    map->s_partition_type == UDF_METADATA_MAP25)
1063 		goto force_ro;
1064 
1065 	return 0;
1066 force_ro:
1067 	if (!sb_rdonly(sb))
1068 		return -EACCES;
1069 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1070 	return 0;
1071 }
1072 
udf_fill_partdesc_info(struct super_block * sb,struct partitionDesc * p,int p_index)1073 static int udf_fill_partdesc_info(struct super_block *sb,
1074 		struct partitionDesc *p, int p_index)
1075 {
1076 	struct udf_part_map *map;
1077 	struct udf_sb_info *sbi = UDF_SB(sb);
1078 	struct partitionHeaderDesc *phd;
1079 	int err;
1080 
1081 	map = &sbi->s_partmaps[p_index];
1082 
1083 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1084 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1085 
1086 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1087 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1088 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1089 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1090 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1091 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1092 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1093 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1094 
1095 	udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1096 		  p_index, map->s_partition_type,
1097 		  map->s_partition_root, map->s_partition_len);
1098 
1099 	err = check_partition_desc(sb, p, map);
1100 	if (err)
1101 		return err;
1102 
1103 	/*
1104 	 * Skip loading allocation info it we cannot ever write to the fs.
1105 	 * This is a correctness thing as we may have decided to force ro mount
1106 	 * to avoid allocation info we don't support.
1107 	 */
1108 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1109 		return 0;
1110 
1111 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1112 	if (phd->unallocSpaceTable.extLength) {
1113 		struct kernel_lb_addr loc = {
1114 			.logicalBlockNum = le32_to_cpu(
1115 				phd->unallocSpaceTable.extPosition),
1116 			.partitionReferenceNum = p_index,
1117 		};
1118 		struct inode *inode;
1119 
1120 		inode = udf_iget_special(sb, &loc);
1121 		if (IS_ERR(inode)) {
1122 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1123 				  p_index);
1124 			return PTR_ERR(inode);
1125 		}
1126 		map->s_uspace.s_table = inode;
1127 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1128 		udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1129 			  p_index, map->s_uspace.s_table->i_ino);
1130 	}
1131 
1132 	if (phd->unallocSpaceBitmap.extLength) {
1133 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1134 		if (!bitmap)
1135 			return -ENOMEM;
1136 		map->s_uspace.s_bitmap = bitmap;
1137 		bitmap->s_extPosition = le32_to_cpu(
1138 				phd->unallocSpaceBitmap.extPosition);
1139 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1140 		udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1141 			  p_index, bitmap->s_extPosition);
1142 	}
1143 
1144 	return 0;
1145 }
1146 
udf_find_vat_block(struct super_block * sb,int p_index,int type1_index,sector_t start_block)1147 static void udf_find_vat_block(struct super_block *sb, int p_index,
1148 			       int type1_index, sector_t start_block)
1149 {
1150 	struct udf_sb_info *sbi = UDF_SB(sb);
1151 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1152 	sector_t vat_block;
1153 	struct kernel_lb_addr ino;
1154 	struct inode *inode;
1155 
1156 	/*
1157 	 * VAT file entry is in the last recorded block. Some broken disks have
1158 	 * it a few blocks before so try a bit harder...
1159 	 */
1160 	ino.partitionReferenceNum = type1_index;
1161 	for (vat_block = start_block;
1162 	     vat_block >= map->s_partition_root &&
1163 	     vat_block >= start_block - 3; vat_block--) {
1164 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1165 		inode = udf_iget_special(sb, &ino);
1166 		if (!IS_ERR(inode)) {
1167 			sbi->s_vat_inode = inode;
1168 			break;
1169 		}
1170 	}
1171 }
1172 
udf_load_vat(struct super_block * sb,int p_index,int type1_index)1173 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1174 {
1175 	struct udf_sb_info *sbi = UDF_SB(sb);
1176 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1177 	struct buffer_head *bh = NULL;
1178 	struct udf_inode_info *vati;
1179 	uint32_t pos;
1180 	struct virtualAllocationTable20 *vat20;
1181 	sector_t blocks = sb_bdev_nr_blocks(sb);
1182 
1183 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1184 	if (!sbi->s_vat_inode &&
1185 	    sbi->s_last_block != blocks - 1) {
1186 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1187 			  (unsigned long)sbi->s_last_block,
1188 			  (unsigned long)blocks - 1);
1189 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1190 	}
1191 	if (!sbi->s_vat_inode)
1192 		return -EIO;
1193 
1194 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1195 		map->s_type_specific.s_virtual.s_start_offset = 0;
1196 		map->s_type_specific.s_virtual.s_num_entries =
1197 			(sbi->s_vat_inode->i_size - 36) >> 2;
1198 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1199 		vati = UDF_I(sbi->s_vat_inode);
1200 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1201 			pos = udf_block_map(sbi->s_vat_inode, 0);
1202 			bh = sb_bread(sb, pos);
1203 			if (!bh)
1204 				return -EIO;
1205 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1206 		} else {
1207 			vat20 = (struct virtualAllocationTable20 *)
1208 							vati->i_data;
1209 		}
1210 
1211 		map->s_type_specific.s_virtual.s_start_offset =
1212 			le16_to_cpu(vat20->lengthHeader);
1213 		map->s_type_specific.s_virtual.s_num_entries =
1214 			(sbi->s_vat_inode->i_size -
1215 				map->s_type_specific.s_virtual.
1216 					s_start_offset) >> 2;
1217 		brelse(bh);
1218 	}
1219 	return 0;
1220 }
1221 
1222 /*
1223  * Load partition descriptor block
1224  *
1225  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1226  * sequence.
1227  */
udf_load_partdesc(struct super_block * sb,sector_t block)1228 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1229 {
1230 	struct buffer_head *bh;
1231 	struct partitionDesc *p;
1232 	struct udf_part_map *map;
1233 	struct udf_sb_info *sbi = UDF_SB(sb);
1234 	int i, type1_idx;
1235 	uint16_t partitionNumber;
1236 	uint16_t ident;
1237 	int ret;
1238 
1239 	bh = udf_read_tagged(sb, block, block, &ident);
1240 	if (!bh)
1241 		return -EAGAIN;
1242 	if (ident != TAG_IDENT_PD) {
1243 		ret = 0;
1244 		goto out_bh;
1245 	}
1246 
1247 	p = (struct partitionDesc *)bh->b_data;
1248 	partitionNumber = le16_to_cpu(p->partitionNumber);
1249 
1250 	/* First scan for TYPE1 and SPARABLE partitions */
1251 	for (i = 0; i < sbi->s_partitions; i++) {
1252 		map = &sbi->s_partmaps[i];
1253 		udf_debug("Searching map: (%u == %u)\n",
1254 			  map->s_partition_num, partitionNumber);
1255 		if (map->s_partition_num == partitionNumber &&
1256 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1257 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1258 			break;
1259 	}
1260 
1261 	if (i >= sbi->s_partitions) {
1262 		udf_debug("Partition (%u) not found in partition map\n",
1263 			  partitionNumber);
1264 		ret = 0;
1265 		goto out_bh;
1266 	}
1267 
1268 	ret = udf_fill_partdesc_info(sb, p, i);
1269 	if (ret < 0)
1270 		goto out_bh;
1271 
1272 	/*
1273 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1274 	 * PHYSICAL partitions are already set up
1275 	 */
1276 	type1_idx = i;
1277 	map = NULL; /* supress 'maybe used uninitialized' warning */
1278 	for (i = 0; i < sbi->s_partitions; i++) {
1279 		map = &sbi->s_partmaps[i];
1280 
1281 		if (map->s_partition_num == partitionNumber &&
1282 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1283 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1284 		     map->s_partition_type == UDF_METADATA_MAP25))
1285 			break;
1286 	}
1287 
1288 	if (i >= sbi->s_partitions) {
1289 		ret = 0;
1290 		goto out_bh;
1291 	}
1292 
1293 	ret = udf_fill_partdesc_info(sb, p, i);
1294 	if (ret < 0)
1295 		goto out_bh;
1296 
1297 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1298 		ret = udf_load_metadata_files(sb, i, type1_idx);
1299 		if (ret < 0) {
1300 			udf_err(sb, "error loading MetaData partition map %d\n",
1301 				i);
1302 			goto out_bh;
1303 		}
1304 	} else {
1305 		/*
1306 		 * If we have a partition with virtual map, we don't handle
1307 		 * writing to it (we overwrite blocks instead of relocating
1308 		 * them).
1309 		 */
1310 		if (!sb_rdonly(sb)) {
1311 			ret = -EACCES;
1312 			goto out_bh;
1313 		}
1314 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1315 		ret = udf_load_vat(sb, i, type1_idx);
1316 		if (ret < 0)
1317 			goto out_bh;
1318 	}
1319 	ret = 0;
1320 out_bh:
1321 	/* In case loading failed, we handle cleanup in udf_fill_super */
1322 	brelse(bh);
1323 	return ret;
1324 }
1325 
udf_load_sparable_map(struct super_block * sb,struct udf_part_map * map,struct sparablePartitionMap * spm)1326 static int udf_load_sparable_map(struct super_block *sb,
1327 				 struct udf_part_map *map,
1328 				 struct sparablePartitionMap *spm)
1329 {
1330 	uint32_t loc;
1331 	uint16_t ident;
1332 	struct sparingTable *st;
1333 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1334 	int i;
1335 	struct buffer_head *bh;
1336 
1337 	map->s_partition_type = UDF_SPARABLE_MAP15;
1338 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1339 	if (!is_power_of_2(sdata->s_packet_len)) {
1340 		udf_err(sb, "error loading logical volume descriptor: "
1341 			"Invalid packet length %u\n",
1342 			(unsigned)sdata->s_packet_len);
1343 		return -EIO;
1344 	}
1345 	if (spm->numSparingTables > 4) {
1346 		udf_err(sb, "error loading logical volume descriptor: "
1347 			"Too many sparing tables (%d)\n",
1348 			(int)spm->numSparingTables);
1349 		return -EIO;
1350 	}
1351 	if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1352 		udf_err(sb, "error loading logical volume descriptor: "
1353 			"Too big sparing table size (%u)\n",
1354 			le32_to_cpu(spm->sizeSparingTable));
1355 		return -EIO;
1356 	}
1357 
1358 	for (i = 0; i < spm->numSparingTables; i++) {
1359 		loc = le32_to_cpu(spm->locSparingTable[i]);
1360 		bh = udf_read_tagged(sb, loc, loc, &ident);
1361 		if (!bh)
1362 			continue;
1363 
1364 		st = (struct sparingTable *)bh->b_data;
1365 		if (ident != 0 ||
1366 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1367 			    strlen(UDF_ID_SPARING)) ||
1368 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1369 							sb->s_blocksize) {
1370 			brelse(bh);
1371 			continue;
1372 		}
1373 
1374 		sdata->s_spar_map[i] = bh;
1375 	}
1376 	map->s_partition_func = udf_get_pblock_spar15;
1377 	return 0;
1378 }
1379 
udf_load_logicalvol(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1380 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1381 			       struct kernel_lb_addr *fileset)
1382 {
1383 	struct logicalVolDesc *lvd;
1384 	int i, offset;
1385 	uint8_t type;
1386 	struct udf_sb_info *sbi = UDF_SB(sb);
1387 	struct genericPartitionMap *gpm;
1388 	uint16_t ident;
1389 	struct buffer_head *bh;
1390 	unsigned int table_len;
1391 	int ret;
1392 
1393 	bh = udf_read_tagged(sb, block, block, &ident);
1394 	if (!bh)
1395 		return -EAGAIN;
1396 	BUG_ON(ident != TAG_IDENT_LVD);
1397 	lvd = (struct logicalVolDesc *)bh->b_data;
1398 	table_len = le32_to_cpu(lvd->mapTableLength);
1399 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1400 		udf_err(sb, "error loading logical volume descriptor: "
1401 			"Partition table too long (%u > %lu)\n", table_len,
1402 			sb->s_blocksize - sizeof(*lvd));
1403 		ret = -EIO;
1404 		goto out_bh;
1405 	}
1406 
1407 	ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1408 					   "logical volume");
1409 	if (ret)
1410 		goto out_bh;
1411 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1412 	if (ret)
1413 		goto out_bh;
1414 
1415 	for (i = 0, offset = 0;
1416 	     i < sbi->s_partitions && offset < table_len;
1417 	     i++, offset += gpm->partitionMapLength) {
1418 		struct udf_part_map *map = &sbi->s_partmaps[i];
1419 		gpm = (struct genericPartitionMap *)
1420 				&(lvd->partitionMaps[offset]);
1421 		type = gpm->partitionMapType;
1422 		if (type == 1) {
1423 			struct genericPartitionMap1 *gpm1 =
1424 				(struct genericPartitionMap1 *)gpm;
1425 			map->s_partition_type = UDF_TYPE1_MAP15;
1426 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1427 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1428 			map->s_partition_func = NULL;
1429 		} else if (type == 2) {
1430 			struct udfPartitionMap2 *upm2 =
1431 						(struct udfPartitionMap2 *)gpm;
1432 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1433 						strlen(UDF_ID_VIRTUAL))) {
1434 				u16 suf =
1435 					le16_to_cpu(((__le16 *)upm2->partIdent.
1436 							identSuffix)[0]);
1437 				if (suf < 0x0200) {
1438 					map->s_partition_type =
1439 							UDF_VIRTUAL_MAP15;
1440 					map->s_partition_func =
1441 							udf_get_pblock_virt15;
1442 				} else {
1443 					map->s_partition_type =
1444 							UDF_VIRTUAL_MAP20;
1445 					map->s_partition_func =
1446 							udf_get_pblock_virt20;
1447 				}
1448 			} else if (!strncmp(upm2->partIdent.ident,
1449 						UDF_ID_SPARABLE,
1450 						strlen(UDF_ID_SPARABLE))) {
1451 				ret = udf_load_sparable_map(sb, map,
1452 					(struct sparablePartitionMap *)gpm);
1453 				if (ret < 0)
1454 					goto out_bh;
1455 			} else if (!strncmp(upm2->partIdent.ident,
1456 						UDF_ID_METADATA,
1457 						strlen(UDF_ID_METADATA))) {
1458 				struct udf_meta_data *mdata =
1459 					&map->s_type_specific.s_metadata;
1460 				struct metadataPartitionMap *mdm =
1461 						(struct metadataPartitionMap *)
1462 						&(lvd->partitionMaps[offset]);
1463 				udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1464 					  i, type, UDF_ID_METADATA);
1465 
1466 				map->s_partition_type = UDF_METADATA_MAP25;
1467 				map->s_partition_func = udf_get_pblock_meta25;
1468 
1469 				mdata->s_meta_file_loc   =
1470 					le32_to_cpu(mdm->metadataFileLoc);
1471 				mdata->s_mirror_file_loc =
1472 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1473 				mdata->s_bitmap_file_loc =
1474 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1475 				mdata->s_alloc_unit_size =
1476 					le32_to_cpu(mdm->allocUnitSize);
1477 				mdata->s_align_unit_size =
1478 					le16_to_cpu(mdm->alignUnitSize);
1479 				if (mdm->flags & 0x01)
1480 					mdata->s_flags |= MF_DUPLICATE_MD;
1481 
1482 				udf_debug("Metadata Ident suffix=0x%x\n",
1483 					  le16_to_cpu(*(__le16 *)
1484 						      mdm->partIdent.identSuffix));
1485 				udf_debug("Metadata part num=%u\n",
1486 					  le16_to_cpu(mdm->partitionNum));
1487 				udf_debug("Metadata part alloc unit size=%u\n",
1488 					  le32_to_cpu(mdm->allocUnitSize));
1489 				udf_debug("Metadata file loc=%u\n",
1490 					  le32_to_cpu(mdm->metadataFileLoc));
1491 				udf_debug("Mirror file loc=%u\n",
1492 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1493 				udf_debug("Bitmap file loc=%u\n",
1494 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1495 				udf_debug("Flags: %d %u\n",
1496 					  mdata->s_flags, mdm->flags);
1497 			} else {
1498 				udf_debug("Unknown ident: %s\n",
1499 					  upm2->partIdent.ident);
1500 				continue;
1501 			}
1502 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1503 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1504 		}
1505 		udf_debug("Partition (%d:%u) type %u on volume %u\n",
1506 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1507 	}
1508 
1509 	if (fileset) {
1510 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1511 
1512 		*fileset = lelb_to_cpu(la->extLocation);
1513 		udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1514 			  fileset->logicalBlockNum,
1515 			  fileset->partitionReferenceNum);
1516 	}
1517 	if (lvd->integritySeqExt.extLength)
1518 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1519 	ret = 0;
1520 
1521 	if (!sbi->s_lvid_bh) {
1522 		/* We can't generate unique IDs without a valid LVID */
1523 		if (sb_rdonly(sb)) {
1524 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1525 		} else {
1526 			udf_warn(sb, "Damaged or missing LVID, forcing "
1527 				     "readonly mount\n");
1528 			ret = -EACCES;
1529 		}
1530 	}
1531 out_bh:
1532 	brelse(bh);
1533 	return ret;
1534 }
1535 
1536 /*
1537  * Find the prevailing Logical Volume Integrity Descriptor.
1538  */
udf_load_logicalvolint(struct super_block * sb,struct kernel_extent_ad loc)1539 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1540 {
1541 	struct buffer_head *bh, *final_bh;
1542 	uint16_t ident;
1543 	struct udf_sb_info *sbi = UDF_SB(sb);
1544 	struct logicalVolIntegrityDesc *lvid;
1545 	int indirections = 0;
1546 	u32 parts, impuselen;
1547 
1548 	while (++indirections <= UDF_MAX_LVID_NESTING) {
1549 		final_bh = NULL;
1550 		while (loc.extLength > 0 &&
1551 			(bh = udf_read_tagged(sb, loc.extLocation,
1552 					loc.extLocation, &ident))) {
1553 			if (ident != TAG_IDENT_LVID) {
1554 				brelse(bh);
1555 				break;
1556 			}
1557 
1558 			brelse(final_bh);
1559 			final_bh = bh;
1560 
1561 			loc.extLength -= sb->s_blocksize;
1562 			loc.extLocation++;
1563 		}
1564 
1565 		if (!final_bh)
1566 			return;
1567 
1568 		brelse(sbi->s_lvid_bh);
1569 		sbi->s_lvid_bh = final_bh;
1570 
1571 		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1572 		if (lvid->nextIntegrityExt.extLength == 0)
1573 			goto check;
1574 
1575 		loc = leea_to_cpu(lvid->nextIntegrityExt);
1576 	}
1577 
1578 	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1579 		UDF_MAX_LVID_NESTING);
1580 out_err:
1581 	brelse(sbi->s_lvid_bh);
1582 	sbi->s_lvid_bh = NULL;
1583 	return;
1584 check:
1585 	parts = le32_to_cpu(lvid->numOfPartitions);
1586 	impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1587 	if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1588 	    sizeof(struct logicalVolIntegrityDesc) + impuselen +
1589 	    2 * parts * sizeof(u32) > sb->s_blocksize) {
1590 		udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1591 			 "ignoring.\n", parts, impuselen);
1592 		goto out_err;
1593 	}
1594 }
1595 
1596 /*
1597  * Step for reallocation of table of partition descriptor sequence numbers.
1598  * Must be power of 2.
1599  */
1600 #define PART_DESC_ALLOC_STEP 32
1601 
1602 struct part_desc_seq_scan_data {
1603 	struct udf_vds_record rec;
1604 	u32 partnum;
1605 };
1606 
1607 struct desc_seq_scan_data {
1608 	struct udf_vds_record vds[VDS_POS_LENGTH];
1609 	unsigned int size_part_descs;
1610 	unsigned int num_part_descs;
1611 	struct part_desc_seq_scan_data *part_descs_loc;
1612 };
1613 
handle_partition_descriptor(struct buffer_head * bh,struct desc_seq_scan_data * data)1614 static struct udf_vds_record *handle_partition_descriptor(
1615 				struct buffer_head *bh,
1616 				struct desc_seq_scan_data *data)
1617 {
1618 	struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1619 	int partnum;
1620 	int i;
1621 
1622 	partnum = le16_to_cpu(desc->partitionNumber);
1623 	for (i = 0; i < data->num_part_descs; i++)
1624 		if (partnum == data->part_descs_loc[i].partnum)
1625 			return &(data->part_descs_loc[i].rec);
1626 	if (data->num_part_descs >= data->size_part_descs) {
1627 		struct part_desc_seq_scan_data *new_loc;
1628 		unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1629 
1630 		new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1631 		if (!new_loc)
1632 			return ERR_PTR(-ENOMEM);
1633 		memcpy(new_loc, data->part_descs_loc,
1634 		       data->size_part_descs * sizeof(*new_loc));
1635 		kfree(data->part_descs_loc);
1636 		data->part_descs_loc = new_loc;
1637 		data->size_part_descs = new_size;
1638 	}
1639 	return &(data->part_descs_loc[data->num_part_descs++].rec);
1640 }
1641 
1642 
get_volume_descriptor_record(uint16_t ident,struct buffer_head * bh,struct desc_seq_scan_data * data)1643 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1644 		struct buffer_head *bh, struct desc_seq_scan_data *data)
1645 {
1646 	switch (ident) {
1647 	case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1648 		return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1649 	case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1650 		return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1651 	case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1652 		return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1653 	case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1654 		return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1655 	case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1656 		return handle_partition_descriptor(bh, data);
1657 	}
1658 	return NULL;
1659 }
1660 
1661 /*
1662  * Process a main/reserve volume descriptor sequence.
1663  *   @block		First block of first extent of the sequence.
1664  *   @lastblock		Lastblock of first extent of the sequence.
1665  *   @fileset		There we store extent containing root fileset
1666  *
1667  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1668  * sequence
1669  */
udf_process_sequence(struct super_block * sb,sector_t block,sector_t lastblock,struct kernel_lb_addr * fileset)1670 static noinline int udf_process_sequence(
1671 		struct super_block *sb,
1672 		sector_t block, sector_t lastblock,
1673 		struct kernel_lb_addr *fileset)
1674 {
1675 	struct buffer_head *bh = NULL;
1676 	struct udf_vds_record *curr;
1677 	struct generic_desc *gd;
1678 	struct volDescPtr *vdp;
1679 	bool done = false;
1680 	uint32_t vdsn;
1681 	uint16_t ident;
1682 	int ret;
1683 	unsigned int indirections = 0;
1684 	struct desc_seq_scan_data data;
1685 	unsigned int i;
1686 
1687 	memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1688 	data.size_part_descs = PART_DESC_ALLOC_STEP;
1689 	data.num_part_descs = 0;
1690 	data.part_descs_loc = kcalloc(data.size_part_descs,
1691 				      sizeof(*data.part_descs_loc),
1692 				      GFP_KERNEL);
1693 	if (!data.part_descs_loc)
1694 		return -ENOMEM;
1695 
1696 	/*
1697 	 * Read the main descriptor sequence and find which descriptors
1698 	 * are in it.
1699 	 */
1700 	for (; (!done && block <= lastblock); block++) {
1701 		bh = udf_read_tagged(sb, block, block, &ident);
1702 		if (!bh)
1703 			break;
1704 
1705 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1706 		gd = (struct generic_desc *)bh->b_data;
1707 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1708 		switch (ident) {
1709 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1710 			if (++indirections > UDF_MAX_TD_NESTING) {
1711 				udf_err(sb, "too many Volume Descriptor "
1712 					"Pointers (max %u supported)\n",
1713 					UDF_MAX_TD_NESTING);
1714 				brelse(bh);
1715 				ret = -EIO;
1716 				goto out;
1717 			}
1718 
1719 			vdp = (struct volDescPtr *)bh->b_data;
1720 			block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1721 			lastblock = le32_to_cpu(
1722 				vdp->nextVolDescSeqExt.extLength) >>
1723 				sb->s_blocksize_bits;
1724 			lastblock += block - 1;
1725 			/* For loop is going to increment 'block' again */
1726 			block--;
1727 			break;
1728 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1729 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1730 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1731 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1732 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1733 			curr = get_volume_descriptor_record(ident, bh, &data);
1734 			if (IS_ERR(curr)) {
1735 				brelse(bh);
1736 				ret = PTR_ERR(curr);
1737 				goto out;
1738 			}
1739 			/* Descriptor we don't care about? */
1740 			if (!curr)
1741 				break;
1742 			if (vdsn >= curr->volDescSeqNum) {
1743 				curr->volDescSeqNum = vdsn;
1744 				curr->block = block;
1745 			}
1746 			break;
1747 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1748 			done = true;
1749 			break;
1750 		}
1751 		brelse(bh);
1752 	}
1753 	/*
1754 	 * Now read interesting descriptors again and process them
1755 	 * in a suitable order
1756 	 */
1757 	if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1758 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1759 		ret = -EAGAIN;
1760 		goto out;
1761 	}
1762 	ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1763 	if (ret < 0)
1764 		goto out;
1765 
1766 	if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1767 		ret = udf_load_logicalvol(sb,
1768 				data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1769 				fileset);
1770 		if (ret < 0)
1771 			goto out;
1772 	}
1773 
1774 	/* Now handle prevailing Partition Descriptors */
1775 	for (i = 0; i < data.num_part_descs; i++) {
1776 		ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1777 		if (ret < 0)
1778 			goto out;
1779 	}
1780 	ret = 0;
1781 out:
1782 	kfree(data.part_descs_loc);
1783 	return ret;
1784 }
1785 
1786 /*
1787  * Load Volume Descriptor Sequence described by anchor in bh
1788  *
1789  * Returns <0 on error, 0 on success
1790  */
udf_load_sequence(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * fileset)1791 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1792 			     struct kernel_lb_addr *fileset)
1793 {
1794 	struct anchorVolDescPtr *anchor;
1795 	sector_t main_s, main_e, reserve_s, reserve_e;
1796 	int ret;
1797 
1798 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1799 
1800 	/* Locate the main sequence */
1801 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1802 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1803 	main_e = main_e >> sb->s_blocksize_bits;
1804 	main_e += main_s - 1;
1805 
1806 	/* Locate the reserve sequence */
1807 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1808 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1809 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1810 	reserve_e += reserve_s - 1;
1811 
1812 	/* Process the main & reserve sequences */
1813 	/* responsible for finding the PartitionDesc(s) */
1814 	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1815 	if (ret != -EAGAIN)
1816 		return ret;
1817 	udf_sb_free_partitions(sb);
1818 	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1819 	if (ret < 0) {
1820 		udf_sb_free_partitions(sb);
1821 		/* No sequence was OK, return -EIO */
1822 		if (ret == -EAGAIN)
1823 			ret = -EIO;
1824 	}
1825 	return ret;
1826 }
1827 
1828 /*
1829  * Check whether there is an anchor block in the given block and
1830  * load Volume Descriptor Sequence if so.
1831  *
1832  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1833  * block
1834  */
udf_check_anchor_block(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1835 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1836 				  struct kernel_lb_addr *fileset)
1837 {
1838 	struct buffer_head *bh;
1839 	uint16_t ident;
1840 	int ret;
1841 
1842 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1843 	    udf_fixed_to_variable(block) >= sb_bdev_nr_blocks(sb))
1844 		return -EAGAIN;
1845 
1846 	bh = udf_read_tagged(sb, block, block, &ident);
1847 	if (!bh)
1848 		return -EAGAIN;
1849 	if (ident != TAG_IDENT_AVDP) {
1850 		brelse(bh);
1851 		return -EAGAIN;
1852 	}
1853 	ret = udf_load_sequence(sb, bh, fileset);
1854 	brelse(bh);
1855 	return ret;
1856 }
1857 
1858 /*
1859  * Search for an anchor volume descriptor pointer.
1860  *
1861  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1862  * of anchors.
1863  */
udf_scan_anchors(struct super_block * sb,sector_t * lastblock,struct kernel_lb_addr * fileset)1864 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1865 			    struct kernel_lb_addr *fileset)
1866 {
1867 	sector_t last[6];
1868 	int i;
1869 	struct udf_sb_info *sbi = UDF_SB(sb);
1870 	int last_count = 0;
1871 	int ret;
1872 
1873 	/* First try user provided anchor */
1874 	if (sbi->s_anchor) {
1875 		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1876 		if (ret != -EAGAIN)
1877 			return ret;
1878 	}
1879 	/*
1880 	 * according to spec, anchor is in either:
1881 	 *     block 256
1882 	 *     lastblock-256
1883 	 *     lastblock
1884 	 *  however, if the disc isn't closed, it could be 512.
1885 	 */
1886 	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1887 	if (ret != -EAGAIN)
1888 		return ret;
1889 	/*
1890 	 * The trouble is which block is the last one. Drives often misreport
1891 	 * this so we try various possibilities.
1892 	 */
1893 	last[last_count++] = *lastblock;
1894 	if (*lastblock >= 1)
1895 		last[last_count++] = *lastblock - 1;
1896 	last[last_count++] = *lastblock + 1;
1897 	if (*lastblock >= 2)
1898 		last[last_count++] = *lastblock - 2;
1899 	if (*lastblock >= 150)
1900 		last[last_count++] = *lastblock - 150;
1901 	if (*lastblock >= 152)
1902 		last[last_count++] = *lastblock - 152;
1903 
1904 	for (i = 0; i < last_count; i++) {
1905 		if (last[i] >= sb_bdev_nr_blocks(sb))
1906 			continue;
1907 		ret = udf_check_anchor_block(sb, last[i], fileset);
1908 		if (ret != -EAGAIN) {
1909 			if (!ret)
1910 				*lastblock = last[i];
1911 			return ret;
1912 		}
1913 		if (last[i] < 256)
1914 			continue;
1915 		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1916 		if (ret != -EAGAIN) {
1917 			if (!ret)
1918 				*lastblock = last[i];
1919 			return ret;
1920 		}
1921 	}
1922 
1923 	/* Finally try block 512 in case media is open */
1924 	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1925 }
1926 
1927 /*
1928  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1929  * area specified by it. The function expects sbi->s_lastblock to be the last
1930  * block on the media.
1931  *
1932  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1933  * was not found.
1934  */
udf_find_anchor(struct super_block * sb,struct kernel_lb_addr * fileset)1935 static int udf_find_anchor(struct super_block *sb,
1936 			   struct kernel_lb_addr *fileset)
1937 {
1938 	struct udf_sb_info *sbi = UDF_SB(sb);
1939 	sector_t lastblock = sbi->s_last_block;
1940 	int ret;
1941 
1942 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1943 	if (ret != -EAGAIN)
1944 		goto out;
1945 
1946 	/* No anchor found? Try VARCONV conversion of block numbers */
1947 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1948 	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1949 	/* Firstly, we try to not convert number of the last block */
1950 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1951 	if (ret != -EAGAIN)
1952 		goto out;
1953 
1954 	lastblock = sbi->s_last_block;
1955 	/* Secondly, we try with converted number of the last block */
1956 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1957 	if (ret < 0) {
1958 		/* VARCONV didn't help. Clear it. */
1959 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1960 	}
1961 out:
1962 	if (ret == 0)
1963 		sbi->s_last_block = lastblock;
1964 	return ret;
1965 }
1966 
1967 /*
1968  * Check Volume Structure Descriptor, find Anchor block and load Volume
1969  * Descriptor Sequence.
1970  *
1971  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1972  * block was not found.
1973  */
udf_load_vrs(struct super_block * sb,struct udf_options * uopt,int silent,struct kernel_lb_addr * fileset)1974 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1975 			int silent, struct kernel_lb_addr *fileset)
1976 {
1977 	struct udf_sb_info *sbi = UDF_SB(sb);
1978 	int nsr = 0;
1979 	int ret;
1980 
1981 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1982 		if (!silent)
1983 			udf_warn(sb, "Bad block size\n");
1984 		return -EINVAL;
1985 	}
1986 	sbi->s_last_block = uopt->lastblock;
1987 	if (!uopt->novrs) {
1988 		/* Check that it is NSR02 compliant */
1989 		nsr = udf_check_vsd(sb);
1990 		if (!nsr) {
1991 			if (!silent)
1992 				udf_warn(sb, "No VRS found\n");
1993 			return -EINVAL;
1994 		}
1995 		if (nsr == -1)
1996 			udf_debug("Failed to read sector at offset %d. "
1997 				  "Assuming open disc. Skipping validity "
1998 				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1999 		if (!sbi->s_last_block)
2000 			sbi->s_last_block = udf_get_last_block(sb);
2001 	} else {
2002 		udf_debug("Validity check skipped because of novrs option\n");
2003 	}
2004 
2005 	/* Look for anchor block and load Volume Descriptor Sequence */
2006 	sbi->s_anchor = uopt->anchor;
2007 	ret = udf_find_anchor(sb, fileset);
2008 	if (ret < 0) {
2009 		if (!silent && ret == -EAGAIN)
2010 			udf_warn(sb, "No anchor found\n");
2011 		return ret;
2012 	}
2013 	return 0;
2014 }
2015 
udf_finalize_lvid(struct logicalVolIntegrityDesc * lvid)2016 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2017 {
2018 	struct timespec64 ts;
2019 
2020 	ktime_get_real_ts64(&ts);
2021 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2022 	lvid->descTag.descCRC = cpu_to_le16(
2023 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2024 			le16_to_cpu(lvid->descTag.descCRCLength)));
2025 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2026 }
2027 
udf_open_lvid(struct super_block * sb)2028 static void udf_open_lvid(struct super_block *sb)
2029 {
2030 	struct udf_sb_info *sbi = UDF_SB(sb);
2031 	struct buffer_head *bh = sbi->s_lvid_bh;
2032 	struct logicalVolIntegrityDesc *lvid;
2033 	struct logicalVolIntegrityDescImpUse *lvidiu;
2034 
2035 	if (!bh)
2036 		return;
2037 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2038 	lvidiu = udf_sb_lvidiu(sb);
2039 	if (!lvidiu)
2040 		return;
2041 
2042 	mutex_lock(&sbi->s_alloc_mutex);
2043 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2044 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2045 	if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2046 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2047 	else
2048 		UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2049 
2050 	udf_finalize_lvid(lvid);
2051 	mark_buffer_dirty(bh);
2052 	sbi->s_lvid_dirty = 0;
2053 	mutex_unlock(&sbi->s_alloc_mutex);
2054 	/* Make opening of filesystem visible on the media immediately */
2055 	sync_dirty_buffer(bh);
2056 }
2057 
udf_close_lvid(struct super_block * sb)2058 static void udf_close_lvid(struct super_block *sb)
2059 {
2060 	struct udf_sb_info *sbi = UDF_SB(sb);
2061 	struct buffer_head *bh = sbi->s_lvid_bh;
2062 	struct logicalVolIntegrityDesc *lvid;
2063 	struct logicalVolIntegrityDescImpUse *lvidiu;
2064 
2065 	if (!bh)
2066 		return;
2067 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2068 	lvidiu = udf_sb_lvidiu(sb);
2069 	if (!lvidiu)
2070 		return;
2071 
2072 	mutex_lock(&sbi->s_alloc_mutex);
2073 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2074 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2075 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2076 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2077 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2078 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2079 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2080 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2081 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2082 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2083 
2084 	/*
2085 	 * We set buffer uptodate unconditionally here to avoid spurious
2086 	 * warnings from mark_buffer_dirty() when previous EIO has marked
2087 	 * the buffer as !uptodate
2088 	 */
2089 	set_buffer_uptodate(bh);
2090 	udf_finalize_lvid(lvid);
2091 	mark_buffer_dirty(bh);
2092 	sbi->s_lvid_dirty = 0;
2093 	mutex_unlock(&sbi->s_alloc_mutex);
2094 	/* Make closing of filesystem visible on the media immediately */
2095 	sync_dirty_buffer(bh);
2096 }
2097 
lvid_get_unique_id(struct super_block * sb)2098 u64 lvid_get_unique_id(struct super_block *sb)
2099 {
2100 	struct buffer_head *bh;
2101 	struct udf_sb_info *sbi = UDF_SB(sb);
2102 	struct logicalVolIntegrityDesc *lvid;
2103 	struct logicalVolHeaderDesc *lvhd;
2104 	u64 uniqueID;
2105 	u64 ret;
2106 
2107 	bh = sbi->s_lvid_bh;
2108 	if (!bh)
2109 		return 0;
2110 
2111 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2112 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2113 
2114 	mutex_lock(&sbi->s_alloc_mutex);
2115 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2116 	if (!(++uniqueID & 0xFFFFFFFF))
2117 		uniqueID += 16;
2118 	lvhd->uniqueID = cpu_to_le64(uniqueID);
2119 	udf_updated_lvid(sb);
2120 	mutex_unlock(&sbi->s_alloc_mutex);
2121 
2122 	return ret;
2123 }
2124 
udf_fill_super(struct super_block * sb,void * options,int silent)2125 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2126 {
2127 	int ret = -EINVAL;
2128 	struct inode *inode = NULL;
2129 	struct udf_options uopt;
2130 	struct kernel_lb_addr rootdir, fileset;
2131 	struct udf_sb_info *sbi;
2132 	bool lvid_open = false;
2133 
2134 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2135 	/* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2136 	uopt.uid = make_kuid(current_user_ns(), overflowuid);
2137 	uopt.gid = make_kgid(current_user_ns(), overflowgid);
2138 	uopt.umask = 0;
2139 	uopt.fmode = UDF_INVALID_MODE;
2140 	uopt.dmode = UDF_INVALID_MODE;
2141 	uopt.nls_map = NULL;
2142 
2143 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2144 	if (!sbi)
2145 		return -ENOMEM;
2146 
2147 	sb->s_fs_info = sbi;
2148 
2149 	mutex_init(&sbi->s_alloc_mutex);
2150 
2151 	if (!udf_parse_options((char *)options, &uopt, false))
2152 		goto parse_options_failure;
2153 
2154 	fileset.logicalBlockNum = 0xFFFFFFFF;
2155 	fileset.partitionReferenceNum = 0xFFFF;
2156 
2157 	sbi->s_flags = uopt.flags;
2158 	sbi->s_uid = uopt.uid;
2159 	sbi->s_gid = uopt.gid;
2160 	sbi->s_umask = uopt.umask;
2161 	sbi->s_fmode = uopt.fmode;
2162 	sbi->s_dmode = uopt.dmode;
2163 	sbi->s_nls_map = uopt.nls_map;
2164 	rwlock_init(&sbi->s_cred_lock);
2165 
2166 	if (uopt.session == 0xFFFFFFFF)
2167 		sbi->s_session = udf_get_last_session(sb);
2168 	else
2169 		sbi->s_session = uopt.session;
2170 
2171 	udf_debug("Multi-session=%d\n", sbi->s_session);
2172 
2173 	/* Fill in the rest of the superblock */
2174 	sb->s_op = &udf_sb_ops;
2175 	sb->s_export_op = &udf_export_ops;
2176 
2177 	sb->s_magic = UDF_SUPER_MAGIC;
2178 	sb->s_time_gran = 1000;
2179 
2180 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2181 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2182 	} else {
2183 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2184 		while (uopt.blocksize <= 4096) {
2185 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2186 			if (ret < 0) {
2187 				if (!silent && ret != -EACCES) {
2188 					pr_notice("Scanning with blocksize %u failed\n",
2189 						  uopt.blocksize);
2190 				}
2191 				brelse(sbi->s_lvid_bh);
2192 				sbi->s_lvid_bh = NULL;
2193 				/*
2194 				 * EACCES is special - we want to propagate to
2195 				 * upper layers that we cannot handle RW mount.
2196 				 */
2197 				if (ret == -EACCES)
2198 					break;
2199 			} else
2200 				break;
2201 
2202 			uopt.blocksize <<= 1;
2203 		}
2204 	}
2205 	if (ret < 0) {
2206 		if (ret == -EAGAIN) {
2207 			udf_warn(sb, "No partition found (1)\n");
2208 			ret = -EINVAL;
2209 		}
2210 		goto error_out;
2211 	}
2212 
2213 	udf_debug("Lastblock=%u\n", sbi->s_last_block);
2214 
2215 	if (sbi->s_lvid_bh) {
2216 		struct logicalVolIntegrityDescImpUse *lvidiu =
2217 							udf_sb_lvidiu(sb);
2218 		uint16_t minUDFReadRev;
2219 		uint16_t minUDFWriteRev;
2220 
2221 		if (!lvidiu) {
2222 			ret = -EINVAL;
2223 			goto error_out;
2224 		}
2225 		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2226 		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2227 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2228 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2229 				minUDFReadRev,
2230 				UDF_MAX_READ_VERSION);
2231 			ret = -EINVAL;
2232 			goto error_out;
2233 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2234 			if (!sb_rdonly(sb)) {
2235 				ret = -EACCES;
2236 				goto error_out;
2237 			}
2238 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2239 		}
2240 
2241 		sbi->s_udfrev = minUDFWriteRev;
2242 
2243 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2244 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2245 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2246 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2247 	}
2248 
2249 	if (!sbi->s_partitions) {
2250 		udf_warn(sb, "No partition found (2)\n");
2251 		ret = -EINVAL;
2252 		goto error_out;
2253 	}
2254 
2255 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2256 			UDF_PART_FLAG_READ_ONLY) {
2257 		if (!sb_rdonly(sb)) {
2258 			ret = -EACCES;
2259 			goto error_out;
2260 		}
2261 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2262 	}
2263 
2264 	ret = udf_find_fileset(sb, &fileset, &rootdir);
2265 	if (ret < 0) {
2266 		udf_warn(sb, "No fileset found\n");
2267 		goto error_out;
2268 	}
2269 
2270 	if (!silent) {
2271 		struct timestamp ts;
2272 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2273 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2274 			 sbi->s_volume_ident,
2275 			 le16_to_cpu(ts.year), ts.month, ts.day,
2276 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2277 	}
2278 	if (!sb_rdonly(sb)) {
2279 		udf_open_lvid(sb);
2280 		lvid_open = true;
2281 	}
2282 
2283 	/* Assign the root inode */
2284 	/* assign inodes by physical block number */
2285 	/* perhaps it's not extensible enough, but for now ... */
2286 	inode = udf_iget(sb, &rootdir);
2287 	if (IS_ERR(inode)) {
2288 		udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2289 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2290 		ret = PTR_ERR(inode);
2291 		goto error_out;
2292 	}
2293 
2294 	/* Allocate a dentry for the root inode */
2295 	sb->s_root = d_make_root(inode);
2296 	if (!sb->s_root) {
2297 		udf_err(sb, "Couldn't allocate root dentry\n");
2298 		ret = -ENOMEM;
2299 		goto error_out;
2300 	}
2301 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2302 	sb->s_max_links = UDF_MAX_LINKS;
2303 	return 0;
2304 
2305 error_out:
2306 	iput(sbi->s_vat_inode);
2307 parse_options_failure:
2308 	unload_nls(uopt.nls_map);
2309 	if (lvid_open)
2310 		udf_close_lvid(sb);
2311 	brelse(sbi->s_lvid_bh);
2312 	udf_sb_free_partitions(sb);
2313 	kfree(sbi);
2314 	sb->s_fs_info = NULL;
2315 
2316 	return ret;
2317 }
2318 
_udf_err(struct super_block * sb,const char * function,const char * fmt,...)2319 void _udf_err(struct super_block *sb, const char *function,
2320 	      const char *fmt, ...)
2321 {
2322 	struct va_format vaf;
2323 	va_list args;
2324 
2325 	va_start(args, fmt);
2326 
2327 	vaf.fmt = fmt;
2328 	vaf.va = &args;
2329 
2330 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2331 
2332 	va_end(args);
2333 }
2334 
_udf_warn(struct super_block * sb,const char * function,const char * fmt,...)2335 void _udf_warn(struct super_block *sb, const char *function,
2336 	       const char *fmt, ...)
2337 {
2338 	struct va_format vaf;
2339 	va_list args;
2340 
2341 	va_start(args, fmt);
2342 
2343 	vaf.fmt = fmt;
2344 	vaf.va = &args;
2345 
2346 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2347 
2348 	va_end(args);
2349 }
2350 
udf_put_super(struct super_block * sb)2351 static void udf_put_super(struct super_block *sb)
2352 {
2353 	struct udf_sb_info *sbi;
2354 
2355 	sbi = UDF_SB(sb);
2356 
2357 	iput(sbi->s_vat_inode);
2358 	unload_nls(sbi->s_nls_map);
2359 	if (!sb_rdonly(sb))
2360 		udf_close_lvid(sb);
2361 	brelse(sbi->s_lvid_bh);
2362 	udf_sb_free_partitions(sb);
2363 	mutex_destroy(&sbi->s_alloc_mutex);
2364 	kfree(sb->s_fs_info);
2365 	sb->s_fs_info = NULL;
2366 }
2367 
udf_sync_fs(struct super_block * sb,int wait)2368 static int udf_sync_fs(struct super_block *sb, int wait)
2369 {
2370 	struct udf_sb_info *sbi = UDF_SB(sb);
2371 
2372 	mutex_lock(&sbi->s_alloc_mutex);
2373 	if (sbi->s_lvid_dirty) {
2374 		struct buffer_head *bh = sbi->s_lvid_bh;
2375 		struct logicalVolIntegrityDesc *lvid;
2376 
2377 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2378 		udf_finalize_lvid(lvid);
2379 
2380 		/*
2381 		 * Blockdevice will be synced later so we don't have to submit
2382 		 * the buffer for IO
2383 		 */
2384 		mark_buffer_dirty(bh);
2385 		sbi->s_lvid_dirty = 0;
2386 	}
2387 	mutex_unlock(&sbi->s_alloc_mutex);
2388 
2389 	return 0;
2390 }
2391 
udf_statfs(struct dentry * dentry,struct kstatfs * buf)2392 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2393 {
2394 	struct super_block *sb = dentry->d_sb;
2395 	struct udf_sb_info *sbi = UDF_SB(sb);
2396 	struct logicalVolIntegrityDescImpUse *lvidiu;
2397 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2398 
2399 	lvidiu = udf_sb_lvidiu(sb);
2400 	buf->f_type = UDF_SUPER_MAGIC;
2401 	buf->f_bsize = sb->s_blocksize;
2402 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2403 	buf->f_bfree = udf_count_free(sb);
2404 	buf->f_bavail = buf->f_bfree;
2405 	/*
2406 	 * Let's pretend each free block is also a free 'inode' since UDF does
2407 	 * not have separate preallocated table of inodes.
2408 	 */
2409 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2410 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2411 			+ buf->f_bfree;
2412 	buf->f_ffree = buf->f_bfree;
2413 	buf->f_namelen = UDF_NAME_LEN;
2414 	buf->f_fsid = u64_to_fsid(id);
2415 
2416 	return 0;
2417 }
2418 
udf_count_free_bitmap(struct super_block * sb,struct udf_bitmap * bitmap)2419 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2420 					  struct udf_bitmap *bitmap)
2421 {
2422 	struct buffer_head *bh = NULL;
2423 	unsigned int accum = 0;
2424 	int index;
2425 	udf_pblk_t block = 0, newblock;
2426 	struct kernel_lb_addr loc;
2427 	uint32_t bytes;
2428 	uint8_t *ptr;
2429 	uint16_t ident;
2430 	struct spaceBitmapDesc *bm;
2431 
2432 	loc.logicalBlockNum = bitmap->s_extPosition;
2433 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2434 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2435 
2436 	if (!bh) {
2437 		udf_err(sb, "udf_count_free failed\n");
2438 		goto out;
2439 	} else if (ident != TAG_IDENT_SBD) {
2440 		brelse(bh);
2441 		udf_err(sb, "udf_count_free failed\n");
2442 		goto out;
2443 	}
2444 
2445 	bm = (struct spaceBitmapDesc *)bh->b_data;
2446 	bytes = le32_to_cpu(bm->numOfBytes);
2447 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2448 	ptr = (uint8_t *)bh->b_data;
2449 
2450 	while (bytes > 0) {
2451 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2452 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2453 					cur_bytes * 8);
2454 		bytes -= cur_bytes;
2455 		if (bytes) {
2456 			brelse(bh);
2457 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2458 			bh = udf_tread(sb, newblock);
2459 			if (!bh) {
2460 				udf_debug("read failed\n");
2461 				goto out;
2462 			}
2463 			index = 0;
2464 			ptr = (uint8_t *)bh->b_data;
2465 		}
2466 	}
2467 	brelse(bh);
2468 out:
2469 	return accum;
2470 }
2471 
udf_count_free_table(struct super_block * sb,struct inode * table)2472 static unsigned int udf_count_free_table(struct super_block *sb,
2473 					 struct inode *table)
2474 {
2475 	unsigned int accum = 0;
2476 	uint32_t elen;
2477 	struct kernel_lb_addr eloc;
2478 	struct extent_position epos;
2479 
2480 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2481 	epos.block = UDF_I(table)->i_location;
2482 	epos.offset = sizeof(struct unallocSpaceEntry);
2483 	epos.bh = NULL;
2484 
2485 	while (udf_next_aext(table, &epos, &eloc, &elen, 1) != -1)
2486 		accum += (elen >> table->i_sb->s_blocksize_bits);
2487 
2488 	brelse(epos.bh);
2489 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2490 
2491 	return accum;
2492 }
2493 
udf_count_free(struct super_block * sb)2494 static unsigned int udf_count_free(struct super_block *sb)
2495 {
2496 	unsigned int accum = 0;
2497 	struct udf_sb_info *sbi = UDF_SB(sb);
2498 	struct udf_part_map *map;
2499 	unsigned int part = sbi->s_partition;
2500 	int ptype = sbi->s_partmaps[part].s_partition_type;
2501 
2502 	if (ptype == UDF_METADATA_MAP25) {
2503 		part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2504 							s_phys_partition_ref;
2505 	} else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2506 		/*
2507 		 * Filesystems with VAT are append-only and we cannot write to
2508  		 * them. Let's just report 0 here.
2509 		 */
2510 		return 0;
2511 	}
2512 
2513 	if (sbi->s_lvid_bh) {
2514 		struct logicalVolIntegrityDesc *lvid =
2515 			(struct logicalVolIntegrityDesc *)
2516 			sbi->s_lvid_bh->b_data;
2517 		if (le32_to_cpu(lvid->numOfPartitions) > part) {
2518 			accum = le32_to_cpu(
2519 					lvid->freeSpaceTable[part]);
2520 			if (accum == 0xFFFFFFFF)
2521 				accum = 0;
2522 		}
2523 	}
2524 
2525 	if (accum)
2526 		return accum;
2527 
2528 	map = &sbi->s_partmaps[part];
2529 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2530 		accum += udf_count_free_bitmap(sb,
2531 					       map->s_uspace.s_bitmap);
2532 	}
2533 	if (accum)
2534 		return accum;
2535 
2536 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2537 		accum += udf_count_free_table(sb,
2538 					      map->s_uspace.s_table);
2539 	}
2540 	return accum;
2541 }
2542 
2543 MODULE_AUTHOR("Ben Fennema");
2544 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2545 MODULE_LICENSE("GPL");
2546 module_init(init_udf_fs)
2547 module_exit(exit_udf_fs)
2548