1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * https://www.ecma.ch/
15 * https://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 #include <linux/iversion.h>
61
62 #include "udf_sb.h"
63 #include "udf_i.h"
64
65 #include <linux/init.h>
66 #include <linux/uaccess.h>
67
68 enum {
69 VDS_POS_PRIMARY_VOL_DESC,
70 VDS_POS_UNALLOC_SPACE_DESC,
71 VDS_POS_LOGICAL_VOL_DESC,
72 VDS_POS_IMP_USE_VOL_DESC,
73 VDS_POS_LENGTH
74 };
75
76 #define VSD_FIRST_SECTOR_OFFSET 32768
77 #define VSD_MAX_SECTOR_OFFSET 0x800000
78
79 /*
80 * Maximum number of Terminating Descriptor / Logical Volume Integrity
81 * Descriptor redirections. The chosen numbers are arbitrary - just that we
82 * hopefully don't limit any real use of rewritten inode on write-once media
83 * but avoid looping for too long on corrupted media.
84 */
85 #define UDF_MAX_TD_NESTING 64
86 #define UDF_MAX_LVID_NESTING 1000
87
88 enum { UDF_MAX_LINKS = 0xffff };
89
90 /* These are the "meat" - everything else is stuffing */
91 static int udf_fill_super(struct super_block *, void *, int);
92 static void udf_put_super(struct super_block *);
93 static int udf_sync_fs(struct super_block *, int);
94 static int udf_remount_fs(struct super_block *, int *, char *);
95 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
96 static void udf_open_lvid(struct super_block *);
97 static void udf_close_lvid(struct super_block *);
98 static unsigned int udf_count_free(struct super_block *);
99 static int udf_statfs(struct dentry *, struct kstatfs *);
100 static int udf_show_options(struct seq_file *, struct dentry *);
101
udf_sb_lvidiu(struct super_block * sb)102 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
103 {
104 struct logicalVolIntegrityDesc *lvid;
105 unsigned int partnum;
106 unsigned int offset;
107
108 if (!UDF_SB(sb)->s_lvid_bh)
109 return NULL;
110 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
111 partnum = le32_to_cpu(lvid->numOfPartitions);
112 /* The offset is to skip freeSpaceTable and sizeTable arrays */
113 offset = partnum * 2 * sizeof(uint32_t);
114 return (struct logicalVolIntegrityDescImpUse *)
115 (((uint8_t *)(lvid + 1)) + offset);
116 }
117
118 /* UDF filesystem type */
udf_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)119 static struct dentry *udf_mount(struct file_system_type *fs_type,
120 int flags, const char *dev_name, void *data)
121 {
122 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
123 }
124
125 static struct file_system_type udf_fstype = {
126 .owner = THIS_MODULE,
127 .name = "udf",
128 .mount = udf_mount,
129 .kill_sb = kill_block_super,
130 .fs_flags = FS_REQUIRES_DEV,
131 };
132 MODULE_ALIAS_FS("udf");
133
134 static struct kmem_cache *udf_inode_cachep;
135
udf_alloc_inode(struct super_block * sb)136 static struct inode *udf_alloc_inode(struct super_block *sb)
137 {
138 struct udf_inode_info *ei;
139 ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL);
140 if (!ei)
141 return NULL;
142
143 ei->i_unique = 0;
144 ei->i_lenExtents = 0;
145 ei->i_lenStreams = 0;
146 ei->i_next_alloc_block = 0;
147 ei->i_next_alloc_goal = 0;
148 ei->i_strat4096 = 0;
149 ei->i_streamdir = 0;
150 ei->i_hidden = 0;
151 init_rwsem(&ei->i_data_sem);
152 ei->cached_extent.lstart = -1;
153 spin_lock_init(&ei->i_extent_cache_lock);
154 inode_set_iversion(&ei->vfs_inode, 1);
155
156 return &ei->vfs_inode;
157 }
158
udf_free_in_core_inode(struct inode * inode)159 static void udf_free_in_core_inode(struct inode *inode)
160 {
161 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
162 }
163
init_once(void * foo)164 static void init_once(void *foo)
165 {
166 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
167
168 ei->i_data = NULL;
169 inode_init_once(&ei->vfs_inode);
170 }
171
init_inodecache(void)172 static int __init init_inodecache(void)
173 {
174 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
175 sizeof(struct udf_inode_info),
176 0, (SLAB_RECLAIM_ACCOUNT |
177 SLAB_MEM_SPREAD |
178 SLAB_ACCOUNT),
179 init_once);
180 if (!udf_inode_cachep)
181 return -ENOMEM;
182 return 0;
183 }
184
destroy_inodecache(void)185 static void destroy_inodecache(void)
186 {
187 /*
188 * Make sure all delayed rcu free inodes are flushed before we
189 * destroy cache.
190 */
191 rcu_barrier();
192 kmem_cache_destroy(udf_inode_cachep);
193 }
194
195 /* Superblock operations */
196 static const struct super_operations udf_sb_ops = {
197 .alloc_inode = udf_alloc_inode,
198 .free_inode = udf_free_in_core_inode,
199 .write_inode = udf_write_inode,
200 .evict_inode = udf_evict_inode,
201 .put_super = udf_put_super,
202 .sync_fs = udf_sync_fs,
203 .statfs = udf_statfs,
204 .remount_fs = udf_remount_fs,
205 .show_options = udf_show_options,
206 };
207
208 struct udf_options {
209 unsigned char novrs;
210 unsigned int blocksize;
211 unsigned int session;
212 unsigned int lastblock;
213 unsigned int anchor;
214 unsigned int flags;
215 umode_t umask;
216 kgid_t gid;
217 kuid_t uid;
218 umode_t fmode;
219 umode_t dmode;
220 struct nls_table *nls_map;
221 };
222
init_udf_fs(void)223 static int __init init_udf_fs(void)
224 {
225 int err;
226
227 err = init_inodecache();
228 if (err)
229 goto out1;
230 err = register_filesystem(&udf_fstype);
231 if (err)
232 goto out;
233
234 return 0;
235
236 out:
237 destroy_inodecache();
238
239 out1:
240 return err;
241 }
242
exit_udf_fs(void)243 static void __exit exit_udf_fs(void)
244 {
245 unregister_filesystem(&udf_fstype);
246 destroy_inodecache();
247 }
248
udf_sb_alloc_partition_maps(struct super_block * sb,u32 count)249 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
250 {
251 struct udf_sb_info *sbi = UDF_SB(sb);
252
253 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
254 if (!sbi->s_partmaps) {
255 sbi->s_partitions = 0;
256 return -ENOMEM;
257 }
258
259 sbi->s_partitions = count;
260 return 0;
261 }
262
udf_sb_free_bitmap(struct udf_bitmap * bitmap)263 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
264 {
265 int i;
266 int nr_groups = bitmap->s_nr_groups;
267
268 for (i = 0; i < nr_groups; i++)
269 brelse(bitmap->s_block_bitmap[i]);
270
271 kvfree(bitmap);
272 }
273
udf_free_partition(struct udf_part_map * map)274 static void udf_free_partition(struct udf_part_map *map)
275 {
276 int i;
277 struct udf_meta_data *mdata;
278
279 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
280 iput(map->s_uspace.s_table);
281 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
282 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
283 if (map->s_partition_type == UDF_SPARABLE_MAP15)
284 for (i = 0; i < 4; i++)
285 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
286 else if (map->s_partition_type == UDF_METADATA_MAP25) {
287 mdata = &map->s_type_specific.s_metadata;
288 iput(mdata->s_metadata_fe);
289 mdata->s_metadata_fe = NULL;
290
291 iput(mdata->s_mirror_fe);
292 mdata->s_mirror_fe = NULL;
293
294 iput(mdata->s_bitmap_fe);
295 mdata->s_bitmap_fe = NULL;
296 }
297 }
298
udf_sb_free_partitions(struct super_block * sb)299 static void udf_sb_free_partitions(struct super_block *sb)
300 {
301 struct udf_sb_info *sbi = UDF_SB(sb);
302 int i;
303
304 if (!sbi->s_partmaps)
305 return;
306 for (i = 0; i < sbi->s_partitions; i++)
307 udf_free_partition(&sbi->s_partmaps[i]);
308 kfree(sbi->s_partmaps);
309 sbi->s_partmaps = NULL;
310 }
311
udf_show_options(struct seq_file * seq,struct dentry * root)312 static int udf_show_options(struct seq_file *seq, struct dentry *root)
313 {
314 struct super_block *sb = root->d_sb;
315 struct udf_sb_info *sbi = UDF_SB(sb);
316
317 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
318 seq_puts(seq, ",nostrict");
319 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
320 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
321 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
322 seq_puts(seq, ",unhide");
323 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
324 seq_puts(seq, ",undelete");
325 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
326 seq_puts(seq, ",noadinicb");
327 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
328 seq_puts(seq, ",shortad");
329 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
330 seq_puts(seq, ",uid=forget");
331 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
332 seq_puts(seq, ",gid=forget");
333 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
334 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
335 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
336 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
337 if (sbi->s_umask != 0)
338 seq_printf(seq, ",umask=%ho", sbi->s_umask);
339 if (sbi->s_fmode != UDF_INVALID_MODE)
340 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
341 if (sbi->s_dmode != UDF_INVALID_MODE)
342 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
344 seq_printf(seq, ",session=%d", sbi->s_session);
345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
346 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
347 if (sbi->s_anchor != 0)
348 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
349 if (sbi->s_nls_map)
350 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
351 else
352 seq_puts(seq, ",iocharset=utf8");
353
354 return 0;
355 }
356
357 /*
358 * udf_parse_options
359 *
360 * PURPOSE
361 * Parse mount options.
362 *
363 * DESCRIPTION
364 * The following mount options are supported:
365 *
366 * gid= Set the default group.
367 * umask= Set the default umask.
368 * mode= Set the default file permissions.
369 * dmode= Set the default directory permissions.
370 * uid= Set the default user.
371 * bs= Set the block size.
372 * unhide Show otherwise hidden files.
373 * undelete Show deleted files in lists.
374 * adinicb Embed data in the inode (default)
375 * noadinicb Don't embed data in the inode
376 * shortad Use short ad's
377 * longad Use long ad's (default)
378 * nostrict Unset strict conformance
379 * iocharset= Set the NLS character set
380 *
381 * The remaining are for debugging and disaster recovery:
382 *
383 * novrs Skip volume sequence recognition
384 *
385 * The following expect a offset from 0.
386 *
387 * session= Set the CDROM session (default= last session)
388 * anchor= Override standard anchor location. (default= 256)
389 * volume= Override the VolumeDesc location. (unused)
390 * partition= Override the PartitionDesc location. (unused)
391 * lastblock= Set the last block of the filesystem/
392 *
393 * The following expect a offset from the partition root.
394 *
395 * fileset= Override the fileset block location. (unused)
396 * rootdir= Override the root directory location. (unused)
397 * WARNING: overriding the rootdir to a non-directory may
398 * yield highly unpredictable results.
399 *
400 * PRE-CONDITIONS
401 * options Pointer to mount options string.
402 * uopts Pointer to mount options variable.
403 *
404 * POST-CONDITIONS
405 * <return> 1 Mount options parsed okay.
406 * <return> 0 Error parsing mount options.
407 *
408 * HISTORY
409 * July 1, 1997 - Andrew E. Mileski
410 * Written, tested, and released.
411 */
412
413 enum {
414 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
415 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
416 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
417 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
418 Opt_rootdir, Opt_utf8, Opt_iocharset,
419 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
420 Opt_fmode, Opt_dmode
421 };
422
423 static const match_table_t tokens = {
424 {Opt_novrs, "novrs"},
425 {Opt_nostrict, "nostrict"},
426 {Opt_bs, "bs=%u"},
427 {Opt_unhide, "unhide"},
428 {Opt_undelete, "undelete"},
429 {Opt_noadinicb, "noadinicb"},
430 {Opt_adinicb, "adinicb"},
431 {Opt_shortad, "shortad"},
432 {Opt_longad, "longad"},
433 {Opt_uforget, "uid=forget"},
434 {Opt_uignore, "uid=ignore"},
435 {Opt_gforget, "gid=forget"},
436 {Opt_gignore, "gid=ignore"},
437 {Opt_gid, "gid=%u"},
438 {Opt_uid, "uid=%u"},
439 {Opt_umask, "umask=%o"},
440 {Opt_session, "session=%u"},
441 {Opt_lastblock, "lastblock=%u"},
442 {Opt_anchor, "anchor=%u"},
443 {Opt_volume, "volume=%u"},
444 {Opt_partition, "partition=%u"},
445 {Opt_fileset, "fileset=%u"},
446 {Opt_rootdir, "rootdir=%u"},
447 {Opt_utf8, "utf8"},
448 {Opt_iocharset, "iocharset=%s"},
449 {Opt_fmode, "mode=%o"},
450 {Opt_dmode, "dmode=%o"},
451 {Opt_err, NULL}
452 };
453
udf_parse_options(char * options,struct udf_options * uopt,bool remount)454 static int udf_parse_options(char *options, struct udf_options *uopt,
455 bool remount)
456 {
457 char *p;
458 int option;
459 unsigned int uv;
460
461 uopt->novrs = 0;
462 uopt->session = 0xFFFFFFFF;
463 uopt->lastblock = 0;
464 uopt->anchor = 0;
465
466 if (!options)
467 return 1;
468
469 while ((p = strsep(&options, ",")) != NULL) {
470 substring_t args[MAX_OPT_ARGS];
471 int token;
472 unsigned n;
473 if (!*p)
474 continue;
475
476 token = match_token(p, tokens, args);
477 switch (token) {
478 case Opt_novrs:
479 uopt->novrs = 1;
480 break;
481 case Opt_bs:
482 if (match_int(&args[0], &option))
483 return 0;
484 n = option;
485 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
486 return 0;
487 uopt->blocksize = n;
488 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
489 break;
490 case Opt_unhide:
491 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
492 break;
493 case Opt_undelete:
494 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
495 break;
496 case Opt_noadinicb:
497 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
498 break;
499 case Opt_adinicb:
500 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
501 break;
502 case Opt_shortad:
503 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
504 break;
505 case Opt_longad:
506 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
507 break;
508 case Opt_gid:
509 if (match_uint(args, &uv))
510 return 0;
511 uopt->gid = make_kgid(current_user_ns(), uv);
512 if (!gid_valid(uopt->gid))
513 return 0;
514 uopt->flags |= (1 << UDF_FLAG_GID_SET);
515 break;
516 case Opt_uid:
517 if (match_uint(args, &uv))
518 return 0;
519 uopt->uid = make_kuid(current_user_ns(), uv);
520 if (!uid_valid(uopt->uid))
521 return 0;
522 uopt->flags |= (1 << UDF_FLAG_UID_SET);
523 break;
524 case Opt_umask:
525 if (match_octal(args, &option))
526 return 0;
527 uopt->umask = option;
528 break;
529 case Opt_nostrict:
530 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
531 break;
532 case Opt_session:
533 if (match_int(args, &option))
534 return 0;
535 uopt->session = option;
536 if (!remount)
537 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
538 break;
539 case Opt_lastblock:
540 if (match_int(args, &option))
541 return 0;
542 uopt->lastblock = option;
543 if (!remount)
544 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
545 break;
546 case Opt_anchor:
547 if (match_int(args, &option))
548 return 0;
549 uopt->anchor = option;
550 break;
551 case Opt_volume:
552 case Opt_partition:
553 case Opt_fileset:
554 case Opt_rootdir:
555 /* Ignored (never implemented properly) */
556 break;
557 case Opt_utf8:
558 if (!remount) {
559 unload_nls(uopt->nls_map);
560 uopt->nls_map = NULL;
561 }
562 break;
563 case Opt_iocharset:
564 if (!remount) {
565 unload_nls(uopt->nls_map);
566 uopt->nls_map = NULL;
567 }
568 /* When nls_map is not loaded then UTF-8 is used */
569 if (!remount && strcmp(args[0].from, "utf8") != 0) {
570 uopt->nls_map = load_nls(args[0].from);
571 if (!uopt->nls_map) {
572 pr_err("iocharset %s not found\n",
573 args[0].from);
574 return 0;
575 }
576 }
577 break;
578 case Opt_uforget:
579 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
580 break;
581 case Opt_uignore:
582 case Opt_gignore:
583 /* These options are superseeded by uid=<number> */
584 break;
585 case Opt_gforget:
586 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
587 break;
588 case Opt_fmode:
589 if (match_octal(args, &option))
590 return 0;
591 uopt->fmode = option & 0777;
592 break;
593 case Opt_dmode:
594 if (match_octal(args, &option))
595 return 0;
596 uopt->dmode = option & 0777;
597 break;
598 default:
599 pr_err("bad mount option \"%s\" or missing value\n", p);
600 return 0;
601 }
602 }
603 return 1;
604 }
605
udf_remount_fs(struct super_block * sb,int * flags,char * options)606 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
607 {
608 struct udf_options uopt;
609 struct udf_sb_info *sbi = UDF_SB(sb);
610 int error = 0;
611
612 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
613 return -EACCES;
614
615 sync_filesystem(sb);
616
617 uopt.flags = sbi->s_flags;
618 uopt.uid = sbi->s_uid;
619 uopt.gid = sbi->s_gid;
620 uopt.umask = sbi->s_umask;
621 uopt.fmode = sbi->s_fmode;
622 uopt.dmode = sbi->s_dmode;
623 uopt.nls_map = NULL;
624
625 if (!udf_parse_options(options, &uopt, true))
626 return -EINVAL;
627
628 write_lock(&sbi->s_cred_lock);
629 sbi->s_flags = uopt.flags;
630 sbi->s_uid = uopt.uid;
631 sbi->s_gid = uopt.gid;
632 sbi->s_umask = uopt.umask;
633 sbi->s_fmode = uopt.fmode;
634 sbi->s_dmode = uopt.dmode;
635 write_unlock(&sbi->s_cred_lock);
636
637 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
638 goto out_unlock;
639
640 if (*flags & SB_RDONLY)
641 udf_close_lvid(sb);
642 else
643 udf_open_lvid(sb);
644
645 out_unlock:
646 return error;
647 }
648
649 /*
650 * Check VSD descriptor. Returns -1 in case we are at the end of volume
651 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
652 * we found one of NSR descriptors we are looking for.
653 */
identify_vsd(const struct volStructDesc * vsd)654 static int identify_vsd(const struct volStructDesc *vsd)
655 {
656 int ret = 0;
657
658 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
659 switch (vsd->structType) {
660 case 0:
661 udf_debug("ISO9660 Boot Record found\n");
662 break;
663 case 1:
664 udf_debug("ISO9660 Primary Volume Descriptor found\n");
665 break;
666 case 2:
667 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
668 break;
669 case 3:
670 udf_debug("ISO9660 Volume Partition Descriptor found\n");
671 break;
672 case 255:
673 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
674 break;
675 default:
676 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
677 break;
678 }
679 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
680 ; /* ret = 0 */
681 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
682 ret = 1;
683 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
684 ret = 1;
685 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
686 ; /* ret = 0 */
687 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
688 ; /* ret = 0 */
689 else {
690 /* TEA01 or invalid id : end of volume recognition area */
691 ret = -1;
692 }
693
694 return ret;
695 }
696
697 /*
698 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
699 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
700 * @return 1 if NSR02 or NSR03 found,
701 * -1 if first sector read error, 0 otherwise
702 */
udf_check_vsd(struct super_block * sb)703 static int udf_check_vsd(struct super_block *sb)
704 {
705 struct volStructDesc *vsd = NULL;
706 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
707 int sectorsize;
708 struct buffer_head *bh = NULL;
709 int nsr = 0;
710 struct udf_sb_info *sbi;
711 loff_t session_offset;
712
713 sbi = UDF_SB(sb);
714 if (sb->s_blocksize < sizeof(struct volStructDesc))
715 sectorsize = sizeof(struct volStructDesc);
716 else
717 sectorsize = sb->s_blocksize;
718
719 session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
720 sector += session_offset;
721
722 udf_debug("Starting at sector %u (%lu byte sectors)\n",
723 (unsigned int)(sector >> sb->s_blocksize_bits),
724 sb->s_blocksize);
725 /* Process the sequence (if applicable). The hard limit on the sector
726 * offset is arbitrary, hopefully large enough so that all valid UDF
727 * filesystems will be recognised. There is no mention of an upper
728 * bound to the size of the volume recognition area in the standard.
729 * The limit will prevent the code to read all the sectors of a
730 * specially crafted image (like a bluray disc full of CD001 sectors),
731 * potentially causing minutes or even hours of uninterruptible I/O
732 * activity. This actually happened with uninitialised SSD partitions
733 * (all 0xFF) before the check for the limit and all valid IDs were
734 * added */
735 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
736 /* Read a block */
737 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
738 if (!bh)
739 break;
740
741 vsd = (struct volStructDesc *)(bh->b_data +
742 (sector & (sb->s_blocksize - 1)));
743 nsr = identify_vsd(vsd);
744 /* Found NSR or end? */
745 if (nsr) {
746 brelse(bh);
747 break;
748 }
749 /*
750 * Special handling for improperly formatted VRS (e.g., Win10)
751 * where components are separated by 2048 bytes even though
752 * sectors are 4K
753 */
754 if (sb->s_blocksize == 4096) {
755 nsr = identify_vsd(vsd + 1);
756 /* Ignore unknown IDs... */
757 if (nsr < 0)
758 nsr = 0;
759 }
760 brelse(bh);
761 }
762
763 if (nsr > 0)
764 return 1;
765 else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
766 return -1;
767 else
768 return 0;
769 }
770
udf_verify_domain_identifier(struct super_block * sb,struct regid * ident,char * dname)771 static int udf_verify_domain_identifier(struct super_block *sb,
772 struct regid *ident, char *dname)
773 {
774 struct domainIdentSuffix *suffix;
775
776 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
777 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
778 goto force_ro;
779 }
780 if (ident->flags & ENTITYID_FLAGS_DIRTY) {
781 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
782 dname);
783 goto force_ro;
784 }
785 suffix = (struct domainIdentSuffix *)ident->identSuffix;
786 if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
787 (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
788 if (!sb_rdonly(sb)) {
789 udf_warn(sb, "Descriptor for %s marked write protected."
790 " Forcing read only mount.\n", dname);
791 }
792 goto force_ro;
793 }
794 return 0;
795
796 force_ro:
797 if (!sb_rdonly(sb))
798 return -EACCES;
799 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
800 return 0;
801 }
802
udf_load_fileset(struct super_block * sb,struct fileSetDesc * fset,struct kernel_lb_addr * root)803 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
804 struct kernel_lb_addr *root)
805 {
806 int ret;
807
808 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
809 if (ret < 0)
810 return ret;
811
812 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
813 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
814
815 udf_debug("Rootdir at block=%u, partition=%u\n",
816 root->logicalBlockNum, root->partitionReferenceNum);
817 return 0;
818 }
819
udf_find_fileset(struct super_block * sb,struct kernel_lb_addr * fileset,struct kernel_lb_addr * root)820 static int udf_find_fileset(struct super_block *sb,
821 struct kernel_lb_addr *fileset,
822 struct kernel_lb_addr *root)
823 {
824 struct buffer_head *bh = NULL;
825 uint16_t ident;
826 int ret;
827
828 if (fileset->logicalBlockNum == 0xFFFFFFFF &&
829 fileset->partitionReferenceNum == 0xFFFF)
830 return -EINVAL;
831
832 bh = udf_read_ptagged(sb, fileset, 0, &ident);
833 if (!bh)
834 return -EIO;
835 if (ident != TAG_IDENT_FSD) {
836 brelse(bh);
837 return -EINVAL;
838 }
839
840 udf_debug("Fileset at block=%u, partition=%u\n",
841 fileset->logicalBlockNum, fileset->partitionReferenceNum);
842
843 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
844 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
845 brelse(bh);
846 return ret;
847 }
848
849 /*
850 * Load primary Volume Descriptor Sequence
851 *
852 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
853 * should be tried.
854 */
udf_load_pvoldesc(struct super_block * sb,sector_t block)855 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
856 {
857 struct primaryVolDesc *pvoldesc;
858 uint8_t *outstr;
859 struct buffer_head *bh;
860 uint16_t ident;
861 int ret;
862 struct timestamp *ts;
863
864 outstr = kmalloc(128, GFP_NOFS);
865 if (!outstr)
866 return -ENOMEM;
867
868 bh = udf_read_tagged(sb, block, block, &ident);
869 if (!bh) {
870 ret = -EAGAIN;
871 goto out2;
872 }
873
874 if (ident != TAG_IDENT_PVD) {
875 ret = -EIO;
876 goto out_bh;
877 }
878
879 pvoldesc = (struct primaryVolDesc *)bh->b_data;
880
881 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
882 pvoldesc->recordingDateAndTime);
883 ts = &pvoldesc->recordingDateAndTime;
884 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
885 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
886 ts->minute, le16_to_cpu(ts->typeAndTimezone));
887
888 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
889 if (ret < 0) {
890 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
891 pr_warn("incorrect volume identification, setting to "
892 "'InvalidName'\n");
893 } else {
894 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
895 }
896 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
897
898 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
899 if (ret < 0) {
900 ret = 0;
901 goto out_bh;
902 }
903 outstr[ret] = 0;
904 udf_debug("volSetIdent[] = '%s'\n", outstr);
905
906 ret = 0;
907 out_bh:
908 brelse(bh);
909 out2:
910 kfree(outstr);
911 return ret;
912 }
913
udf_find_metadata_inode_efe(struct super_block * sb,u32 meta_file_loc,u32 partition_ref)914 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
915 u32 meta_file_loc, u32 partition_ref)
916 {
917 struct kernel_lb_addr addr;
918 struct inode *metadata_fe;
919
920 addr.logicalBlockNum = meta_file_loc;
921 addr.partitionReferenceNum = partition_ref;
922
923 metadata_fe = udf_iget_special(sb, &addr);
924
925 if (IS_ERR(metadata_fe)) {
926 udf_warn(sb, "metadata inode efe not found\n");
927 return metadata_fe;
928 }
929 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
930 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
931 iput(metadata_fe);
932 return ERR_PTR(-EIO);
933 }
934
935 return metadata_fe;
936 }
937
udf_load_metadata_files(struct super_block * sb,int partition,int type1_index)938 static int udf_load_metadata_files(struct super_block *sb, int partition,
939 int type1_index)
940 {
941 struct udf_sb_info *sbi = UDF_SB(sb);
942 struct udf_part_map *map;
943 struct udf_meta_data *mdata;
944 struct kernel_lb_addr addr;
945 struct inode *fe;
946
947 map = &sbi->s_partmaps[partition];
948 mdata = &map->s_type_specific.s_metadata;
949 mdata->s_phys_partition_ref = type1_index;
950
951 /* metadata address */
952 udf_debug("Metadata file location: block = %u part = %u\n",
953 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
954
955 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
956 mdata->s_phys_partition_ref);
957 if (IS_ERR(fe)) {
958 /* mirror file entry */
959 udf_debug("Mirror metadata file location: block = %u part = %u\n",
960 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
961
962 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
963 mdata->s_phys_partition_ref);
964
965 if (IS_ERR(fe)) {
966 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
967 return PTR_ERR(fe);
968 }
969 mdata->s_mirror_fe = fe;
970 } else
971 mdata->s_metadata_fe = fe;
972
973
974 /*
975 * bitmap file entry
976 * Note:
977 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
978 */
979 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
980 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
981 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
982
983 udf_debug("Bitmap file location: block = %u part = %u\n",
984 addr.logicalBlockNum, addr.partitionReferenceNum);
985
986 fe = udf_iget_special(sb, &addr);
987 if (IS_ERR(fe)) {
988 if (sb_rdonly(sb))
989 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
990 else {
991 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
992 return PTR_ERR(fe);
993 }
994 } else
995 mdata->s_bitmap_fe = fe;
996 }
997
998 udf_debug("udf_load_metadata_files Ok\n");
999 return 0;
1000 }
1001
udf_compute_nr_groups(struct super_block * sb,u32 partition)1002 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1003 {
1004 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1005 return DIV_ROUND_UP(map->s_partition_len +
1006 (sizeof(struct spaceBitmapDesc) << 3),
1007 sb->s_blocksize * 8);
1008 }
1009
udf_sb_alloc_bitmap(struct super_block * sb,u32 index)1010 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1011 {
1012 struct udf_bitmap *bitmap;
1013 int nr_groups = udf_compute_nr_groups(sb, index);
1014
1015 bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1016 GFP_KERNEL);
1017 if (!bitmap)
1018 return NULL;
1019
1020 bitmap->s_nr_groups = nr_groups;
1021 return bitmap;
1022 }
1023
check_partition_desc(struct super_block * sb,struct partitionDesc * p,struct udf_part_map * map)1024 static int check_partition_desc(struct super_block *sb,
1025 struct partitionDesc *p,
1026 struct udf_part_map *map)
1027 {
1028 bool umap, utable, fmap, ftable;
1029 struct partitionHeaderDesc *phd;
1030
1031 switch (le32_to_cpu(p->accessType)) {
1032 case PD_ACCESS_TYPE_READ_ONLY:
1033 case PD_ACCESS_TYPE_WRITE_ONCE:
1034 case PD_ACCESS_TYPE_NONE:
1035 goto force_ro;
1036 }
1037
1038 /* No Partition Header Descriptor? */
1039 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1040 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1041 goto force_ro;
1042
1043 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1044 utable = phd->unallocSpaceTable.extLength;
1045 umap = phd->unallocSpaceBitmap.extLength;
1046 ftable = phd->freedSpaceTable.extLength;
1047 fmap = phd->freedSpaceBitmap.extLength;
1048
1049 /* No allocation info? */
1050 if (!utable && !umap && !ftable && !fmap)
1051 goto force_ro;
1052
1053 /* We don't support blocks that require erasing before overwrite */
1054 if (ftable || fmap)
1055 goto force_ro;
1056 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1057 if (utable && umap)
1058 goto force_ro;
1059
1060 if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1061 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1062 map->s_partition_type == UDF_METADATA_MAP25)
1063 goto force_ro;
1064
1065 return 0;
1066 force_ro:
1067 if (!sb_rdonly(sb))
1068 return -EACCES;
1069 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1070 return 0;
1071 }
1072
udf_fill_partdesc_info(struct super_block * sb,struct partitionDesc * p,int p_index)1073 static int udf_fill_partdesc_info(struct super_block *sb,
1074 struct partitionDesc *p, int p_index)
1075 {
1076 struct udf_part_map *map;
1077 struct udf_sb_info *sbi = UDF_SB(sb);
1078 struct partitionHeaderDesc *phd;
1079 int err;
1080
1081 map = &sbi->s_partmaps[p_index];
1082
1083 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1084 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1085
1086 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1087 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1088 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1089 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1090 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1091 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1092 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1093 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1094
1095 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1096 p_index, map->s_partition_type,
1097 map->s_partition_root, map->s_partition_len);
1098
1099 err = check_partition_desc(sb, p, map);
1100 if (err)
1101 return err;
1102
1103 /*
1104 * Skip loading allocation info it we cannot ever write to the fs.
1105 * This is a correctness thing as we may have decided to force ro mount
1106 * to avoid allocation info we don't support.
1107 */
1108 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1109 return 0;
1110
1111 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1112 if (phd->unallocSpaceTable.extLength) {
1113 struct kernel_lb_addr loc = {
1114 .logicalBlockNum = le32_to_cpu(
1115 phd->unallocSpaceTable.extPosition),
1116 .partitionReferenceNum = p_index,
1117 };
1118 struct inode *inode;
1119
1120 inode = udf_iget_special(sb, &loc);
1121 if (IS_ERR(inode)) {
1122 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1123 p_index);
1124 return PTR_ERR(inode);
1125 }
1126 map->s_uspace.s_table = inode;
1127 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1128 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1129 p_index, map->s_uspace.s_table->i_ino);
1130 }
1131
1132 if (phd->unallocSpaceBitmap.extLength) {
1133 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1134 if (!bitmap)
1135 return -ENOMEM;
1136 map->s_uspace.s_bitmap = bitmap;
1137 bitmap->s_extPosition = le32_to_cpu(
1138 phd->unallocSpaceBitmap.extPosition);
1139 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1140 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1141 p_index, bitmap->s_extPosition);
1142 }
1143
1144 return 0;
1145 }
1146
udf_find_vat_block(struct super_block * sb,int p_index,int type1_index,sector_t start_block)1147 static void udf_find_vat_block(struct super_block *sb, int p_index,
1148 int type1_index, sector_t start_block)
1149 {
1150 struct udf_sb_info *sbi = UDF_SB(sb);
1151 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1152 sector_t vat_block;
1153 struct kernel_lb_addr ino;
1154 struct inode *inode;
1155
1156 /*
1157 * VAT file entry is in the last recorded block. Some broken disks have
1158 * it a few blocks before so try a bit harder...
1159 */
1160 ino.partitionReferenceNum = type1_index;
1161 for (vat_block = start_block;
1162 vat_block >= map->s_partition_root &&
1163 vat_block >= start_block - 3; vat_block--) {
1164 ino.logicalBlockNum = vat_block - map->s_partition_root;
1165 inode = udf_iget_special(sb, &ino);
1166 if (!IS_ERR(inode)) {
1167 sbi->s_vat_inode = inode;
1168 break;
1169 }
1170 }
1171 }
1172
udf_load_vat(struct super_block * sb,int p_index,int type1_index)1173 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1174 {
1175 struct udf_sb_info *sbi = UDF_SB(sb);
1176 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1177 struct buffer_head *bh = NULL;
1178 struct udf_inode_info *vati;
1179 uint32_t pos;
1180 struct virtualAllocationTable20 *vat20;
1181 sector_t blocks = sb_bdev_nr_blocks(sb);
1182
1183 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1184 if (!sbi->s_vat_inode &&
1185 sbi->s_last_block != blocks - 1) {
1186 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1187 (unsigned long)sbi->s_last_block,
1188 (unsigned long)blocks - 1);
1189 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1190 }
1191 if (!sbi->s_vat_inode)
1192 return -EIO;
1193
1194 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1195 map->s_type_specific.s_virtual.s_start_offset = 0;
1196 map->s_type_specific.s_virtual.s_num_entries =
1197 (sbi->s_vat_inode->i_size - 36) >> 2;
1198 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1199 vati = UDF_I(sbi->s_vat_inode);
1200 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1201 pos = udf_block_map(sbi->s_vat_inode, 0);
1202 bh = sb_bread(sb, pos);
1203 if (!bh)
1204 return -EIO;
1205 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1206 } else {
1207 vat20 = (struct virtualAllocationTable20 *)
1208 vati->i_data;
1209 }
1210
1211 map->s_type_specific.s_virtual.s_start_offset =
1212 le16_to_cpu(vat20->lengthHeader);
1213 map->s_type_specific.s_virtual.s_num_entries =
1214 (sbi->s_vat_inode->i_size -
1215 map->s_type_specific.s_virtual.
1216 s_start_offset) >> 2;
1217 brelse(bh);
1218 }
1219 return 0;
1220 }
1221
1222 /*
1223 * Load partition descriptor block
1224 *
1225 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1226 * sequence.
1227 */
udf_load_partdesc(struct super_block * sb,sector_t block)1228 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1229 {
1230 struct buffer_head *bh;
1231 struct partitionDesc *p;
1232 struct udf_part_map *map;
1233 struct udf_sb_info *sbi = UDF_SB(sb);
1234 int i, type1_idx;
1235 uint16_t partitionNumber;
1236 uint16_t ident;
1237 int ret;
1238
1239 bh = udf_read_tagged(sb, block, block, &ident);
1240 if (!bh)
1241 return -EAGAIN;
1242 if (ident != TAG_IDENT_PD) {
1243 ret = 0;
1244 goto out_bh;
1245 }
1246
1247 p = (struct partitionDesc *)bh->b_data;
1248 partitionNumber = le16_to_cpu(p->partitionNumber);
1249
1250 /* First scan for TYPE1 and SPARABLE partitions */
1251 for (i = 0; i < sbi->s_partitions; i++) {
1252 map = &sbi->s_partmaps[i];
1253 udf_debug("Searching map: (%u == %u)\n",
1254 map->s_partition_num, partitionNumber);
1255 if (map->s_partition_num == partitionNumber &&
1256 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1257 map->s_partition_type == UDF_SPARABLE_MAP15))
1258 break;
1259 }
1260
1261 if (i >= sbi->s_partitions) {
1262 udf_debug("Partition (%u) not found in partition map\n",
1263 partitionNumber);
1264 ret = 0;
1265 goto out_bh;
1266 }
1267
1268 ret = udf_fill_partdesc_info(sb, p, i);
1269 if (ret < 0)
1270 goto out_bh;
1271
1272 /*
1273 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1274 * PHYSICAL partitions are already set up
1275 */
1276 type1_idx = i;
1277 map = NULL; /* supress 'maybe used uninitialized' warning */
1278 for (i = 0; i < sbi->s_partitions; i++) {
1279 map = &sbi->s_partmaps[i];
1280
1281 if (map->s_partition_num == partitionNumber &&
1282 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1283 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1284 map->s_partition_type == UDF_METADATA_MAP25))
1285 break;
1286 }
1287
1288 if (i >= sbi->s_partitions) {
1289 ret = 0;
1290 goto out_bh;
1291 }
1292
1293 ret = udf_fill_partdesc_info(sb, p, i);
1294 if (ret < 0)
1295 goto out_bh;
1296
1297 if (map->s_partition_type == UDF_METADATA_MAP25) {
1298 ret = udf_load_metadata_files(sb, i, type1_idx);
1299 if (ret < 0) {
1300 udf_err(sb, "error loading MetaData partition map %d\n",
1301 i);
1302 goto out_bh;
1303 }
1304 } else {
1305 /*
1306 * If we have a partition with virtual map, we don't handle
1307 * writing to it (we overwrite blocks instead of relocating
1308 * them).
1309 */
1310 if (!sb_rdonly(sb)) {
1311 ret = -EACCES;
1312 goto out_bh;
1313 }
1314 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1315 ret = udf_load_vat(sb, i, type1_idx);
1316 if (ret < 0)
1317 goto out_bh;
1318 }
1319 ret = 0;
1320 out_bh:
1321 /* In case loading failed, we handle cleanup in udf_fill_super */
1322 brelse(bh);
1323 return ret;
1324 }
1325
udf_load_sparable_map(struct super_block * sb,struct udf_part_map * map,struct sparablePartitionMap * spm)1326 static int udf_load_sparable_map(struct super_block *sb,
1327 struct udf_part_map *map,
1328 struct sparablePartitionMap *spm)
1329 {
1330 uint32_t loc;
1331 uint16_t ident;
1332 struct sparingTable *st;
1333 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1334 int i;
1335 struct buffer_head *bh;
1336
1337 map->s_partition_type = UDF_SPARABLE_MAP15;
1338 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1339 if (!is_power_of_2(sdata->s_packet_len)) {
1340 udf_err(sb, "error loading logical volume descriptor: "
1341 "Invalid packet length %u\n",
1342 (unsigned)sdata->s_packet_len);
1343 return -EIO;
1344 }
1345 if (spm->numSparingTables > 4) {
1346 udf_err(sb, "error loading logical volume descriptor: "
1347 "Too many sparing tables (%d)\n",
1348 (int)spm->numSparingTables);
1349 return -EIO;
1350 }
1351 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1352 udf_err(sb, "error loading logical volume descriptor: "
1353 "Too big sparing table size (%u)\n",
1354 le32_to_cpu(spm->sizeSparingTable));
1355 return -EIO;
1356 }
1357
1358 for (i = 0; i < spm->numSparingTables; i++) {
1359 loc = le32_to_cpu(spm->locSparingTable[i]);
1360 bh = udf_read_tagged(sb, loc, loc, &ident);
1361 if (!bh)
1362 continue;
1363
1364 st = (struct sparingTable *)bh->b_data;
1365 if (ident != 0 ||
1366 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1367 strlen(UDF_ID_SPARING)) ||
1368 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1369 sb->s_blocksize) {
1370 brelse(bh);
1371 continue;
1372 }
1373
1374 sdata->s_spar_map[i] = bh;
1375 }
1376 map->s_partition_func = udf_get_pblock_spar15;
1377 return 0;
1378 }
1379
udf_load_logicalvol(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1380 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1381 struct kernel_lb_addr *fileset)
1382 {
1383 struct logicalVolDesc *lvd;
1384 int i, offset;
1385 uint8_t type;
1386 struct udf_sb_info *sbi = UDF_SB(sb);
1387 struct genericPartitionMap *gpm;
1388 uint16_t ident;
1389 struct buffer_head *bh;
1390 unsigned int table_len;
1391 int ret;
1392
1393 bh = udf_read_tagged(sb, block, block, &ident);
1394 if (!bh)
1395 return -EAGAIN;
1396 BUG_ON(ident != TAG_IDENT_LVD);
1397 lvd = (struct logicalVolDesc *)bh->b_data;
1398 table_len = le32_to_cpu(lvd->mapTableLength);
1399 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1400 udf_err(sb, "error loading logical volume descriptor: "
1401 "Partition table too long (%u > %lu)\n", table_len,
1402 sb->s_blocksize - sizeof(*lvd));
1403 ret = -EIO;
1404 goto out_bh;
1405 }
1406
1407 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1408 "logical volume");
1409 if (ret)
1410 goto out_bh;
1411 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1412 if (ret)
1413 goto out_bh;
1414
1415 for (i = 0, offset = 0;
1416 i < sbi->s_partitions && offset < table_len;
1417 i++, offset += gpm->partitionMapLength) {
1418 struct udf_part_map *map = &sbi->s_partmaps[i];
1419 gpm = (struct genericPartitionMap *)
1420 &(lvd->partitionMaps[offset]);
1421 type = gpm->partitionMapType;
1422 if (type == 1) {
1423 struct genericPartitionMap1 *gpm1 =
1424 (struct genericPartitionMap1 *)gpm;
1425 map->s_partition_type = UDF_TYPE1_MAP15;
1426 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1427 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1428 map->s_partition_func = NULL;
1429 } else if (type == 2) {
1430 struct udfPartitionMap2 *upm2 =
1431 (struct udfPartitionMap2 *)gpm;
1432 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1433 strlen(UDF_ID_VIRTUAL))) {
1434 u16 suf =
1435 le16_to_cpu(((__le16 *)upm2->partIdent.
1436 identSuffix)[0]);
1437 if (suf < 0x0200) {
1438 map->s_partition_type =
1439 UDF_VIRTUAL_MAP15;
1440 map->s_partition_func =
1441 udf_get_pblock_virt15;
1442 } else {
1443 map->s_partition_type =
1444 UDF_VIRTUAL_MAP20;
1445 map->s_partition_func =
1446 udf_get_pblock_virt20;
1447 }
1448 } else if (!strncmp(upm2->partIdent.ident,
1449 UDF_ID_SPARABLE,
1450 strlen(UDF_ID_SPARABLE))) {
1451 ret = udf_load_sparable_map(sb, map,
1452 (struct sparablePartitionMap *)gpm);
1453 if (ret < 0)
1454 goto out_bh;
1455 } else if (!strncmp(upm2->partIdent.ident,
1456 UDF_ID_METADATA,
1457 strlen(UDF_ID_METADATA))) {
1458 struct udf_meta_data *mdata =
1459 &map->s_type_specific.s_metadata;
1460 struct metadataPartitionMap *mdm =
1461 (struct metadataPartitionMap *)
1462 &(lvd->partitionMaps[offset]);
1463 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1464 i, type, UDF_ID_METADATA);
1465
1466 map->s_partition_type = UDF_METADATA_MAP25;
1467 map->s_partition_func = udf_get_pblock_meta25;
1468
1469 mdata->s_meta_file_loc =
1470 le32_to_cpu(mdm->metadataFileLoc);
1471 mdata->s_mirror_file_loc =
1472 le32_to_cpu(mdm->metadataMirrorFileLoc);
1473 mdata->s_bitmap_file_loc =
1474 le32_to_cpu(mdm->metadataBitmapFileLoc);
1475 mdata->s_alloc_unit_size =
1476 le32_to_cpu(mdm->allocUnitSize);
1477 mdata->s_align_unit_size =
1478 le16_to_cpu(mdm->alignUnitSize);
1479 if (mdm->flags & 0x01)
1480 mdata->s_flags |= MF_DUPLICATE_MD;
1481
1482 udf_debug("Metadata Ident suffix=0x%x\n",
1483 le16_to_cpu(*(__le16 *)
1484 mdm->partIdent.identSuffix));
1485 udf_debug("Metadata part num=%u\n",
1486 le16_to_cpu(mdm->partitionNum));
1487 udf_debug("Metadata part alloc unit size=%u\n",
1488 le32_to_cpu(mdm->allocUnitSize));
1489 udf_debug("Metadata file loc=%u\n",
1490 le32_to_cpu(mdm->metadataFileLoc));
1491 udf_debug("Mirror file loc=%u\n",
1492 le32_to_cpu(mdm->metadataMirrorFileLoc));
1493 udf_debug("Bitmap file loc=%u\n",
1494 le32_to_cpu(mdm->metadataBitmapFileLoc));
1495 udf_debug("Flags: %d %u\n",
1496 mdata->s_flags, mdm->flags);
1497 } else {
1498 udf_debug("Unknown ident: %s\n",
1499 upm2->partIdent.ident);
1500 continue;
1501 }
1502 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1503 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1504 }
1505 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1506 i, map->s_partition_num, type, map->s_volumeseqnum);
1507 }
1508
1509 if (fileset) {
1510 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1511
1512 *fileset = lelb_to_cpu(la->extLocation);
1513 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1514 fileset->logicalBlockNum,
1515 fileset->partitionReferenceNum);
1516 }
1517 if (lvd->integritySeqExt.extLength)
1518 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1519 ret = 0;
1520
1521 if (!sbi->s_lvid_bh) {
1522 /* We can't generate unique IDs without a valid LVID */
1523 if (sb_rdonly(sb)) {
1524 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1525 } else {
1526 udf_warn(sb, "Damaged or missing LVID, forcing "
1527 "readonly mount\n");
1528 ret = -EACCES;
1529 }
1530 }
1531 out_bh:
1532 brelse(bh);
1533 return ret;
1534 }
1535
1536 /*
1537 * Find the prevailing Logical Volume Integrity Descriptor.
1538 */
udf_load_logicalvolint(struct super_block * sb,struct kernel_extent_ad loc)1539 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1540 {
1541 struct buffer_head *bh, *final_bh;
1542 uint16_t ident;
1543 struct udf_sb_info *sbi = UDF_SB(sb);
1544 struct logicalVolIntegrityDesc *lvid;
1545 int indirections = 0;
1546 u32 parts, impuselen;
1547
1548 while (++indirections <= UDF_MAX_LVID_NESTING) {
1549 final_bh = NULL;
1550 while (loc.extLength > 0 &&
1551 (bh = udf_read_tagged(sb, loc.extLocation,
1552 loc.extLocation, &ident))) {
1553 if (ident != TAG_IDENT_LVID) {
1554 brelse(bh);
1555 break;
1556 }
1557
1558 brelse(final_bh);
1559 final_bh = bh;
1560
1561 loc.extLength -= sb->s_blocksize;
1562 loc.extLocation++;
1563 }
1564
1565 if (!final_bh)
1566 return;
1567
1568 brelse(sbi->s_lvid_bh);
1569 sbi->s_lvid_bh = final_bh;
1570
1571 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1572 if (lvid->nextIntegrityExt.extLength == 0)
1573 goto check;
1574
1575 loc = leea_to_cpu(lvid->nextIntegrityExt);
1576 }
1577
1578 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1579 UDF_MAX_LVID_NESTING);
1580 out_err:
1581 brelse(sbi->s_lvid_bh);
1582 sbi->s_lvid_bh = NULL;
1583 return;
1584 check:
1585 parts = le32_to_cpu(lvid->numOfPartitions);
1586 impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1587 if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1588 sizeof(struct logicalVolIntegrityDesc) + impuselen +
1589 2 * parts * sizeof(u32) > sb->s_blocksize) {
1590 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1591 "ignoring.\n", parts, impuselen);
1592 goto out_err;
1593 }
1594 }
1595
1596 /*
1597 * Step for reallocation of table of partition descriptor sequence numbers.
1598 * Must be power of 2.
1599 */
1600 #define PART_DESC_ALLOC_STEP 32
1601
1602 struct part_desc_seq_scan_data {
1603 struct udf_vds_record rec;
1604 u32 partnum;
1605 };
1606
1607 struct desc_seq_scan_data {
1608 struct udf_vds_record vds[VDS_POS_LENGTH];
1609 unsigned int size_part_descs;
1610 unsigned int num_part_descs;
1611 struct part_desc_seq_scan_data *part_descs_loc;
1612 };
1613
handle_partition_descriptor(struct buffer_head * bh,struct desc_seq_scan_data * data)1614 static struct udf_vds_record *handle_partition_descriptor(
1615 struct buffer_head *bh,
1616 struct desc_seq_scan_data *data)
1617 {
1618 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1619 int partnum;
1620 int i;
1621
1622 partnum = le16_to_cpu(desc->partitionNumber);
1623 for (i = 0; i < data->num_part_descs; i++)
1624 if (partnum == data->part_descs_loc[i].partnum)
1625 return &(data->part_descs_loc[i].rec);
1626 if (data->num_part_descs >= data->size_part_descs) {
1627 struct part_desc_seq_scan_data *new_loc;
1628 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1629
1630 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1631 if (!new_loc)
1632 return ERR_PTR(-ENOMEM);
1633 memcpy(new_loc, data->part_descs_loc,
1634 data->size_part_descs * sizeof(*new_loc));
1635 kfree(data->part_descs_loc);
1636 data->part_descs_loc = new_loc;
1637 data->size_part_descs = new_size;
1638 }
1639 return &(data->part_descs_loc[data->num_part_descs++].rec);
1640 }
1641
1642
get_volume_descriptor_record(uint16_t ident,struct buffer_head * bh,struct desc_seq_scan_data * data)1643 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1644 struct buffer_head *bh, struct desc_seq_scan_data *data)
1645 {
1646 switch (ident) {
1647 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1648 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1649 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1650 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1651 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1652 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1653 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1654 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1655 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1656 return handle_partition_descriptor(bh, data);
1657 }
1658 return NULL;
1659 }
1660
1661 /*
1662 * Process a main/reserve volume descriptor sequence.
1663 * @block First block of first extent of the sequence.
1664 * @lastblock Lastblock of first extent of the sequence.
1665 * @fileset There we store extent containing root fileset
1666 *
1667 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1668 * sequence
1669 */
udf_process_sequence(struct super_block * sb,sector_t block,sector_t lastblock,struct kernel_lb_addr * fileset)1670 static noinline int udf_process_sequence(
1671 struct super_block *sb,
1672 sector_t block, sector_t lastblock,
1673 struct kernel_lb_addr *fileset)
1674 {
1675 struct buffer_head *bh = NULL;
1676 struct udf_vds_record *curr;
1677 struct generic_desc *gd;
1678 struct volDescPtr *vdp;
1679 bool done = false;
1680 uint32_t vdsn;
1681 uint16_t ident;
1682 int ret;
1683 unsigned int indirections = 0;
1684 struct desc_seq_scan_data data;
1685 unsigned int i;
1686
1687 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1688 data.size_part_descs = PART_DESC_ALLOC_STEP;
1689 data.num_part_descs = 0;
1690 data.part_descs_loc = kcalloc(data.size_part_descs,
1691 sizeof(*data.part_descs_loc),
1692 GFP_KERNEL);
1693 if (!data.part_descs_loc)
1694 return -ENOMEM;
1695
1696 /*
1697 * Read the main descriptor sequence and find which descriptors
1698 * are in it.
1699 */
1700 for (; (!done && block <= lastblock); block++) {
1701 bh = udf_read_tagged(sb, block, block, &ident);
1702 if (!bh)
1703 break;
1704
1705 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1706 gd = (struct generic_desc *)bh->b_data;
1707 vdsn = le32_to_cpu(gd->volDescSeqNum);
1708 switch (ident) {
1709 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1710 if (++indirections > UDF_MAX_TD_NESTING) {
1711 udf_err(sb, "too many Volume Descriptor "
1712 "Pointers (max %u supported)\n",
1713 UDF_MAX_TD_NESTING);
1714 brelse(bh);
1715 ret = -EIO;
1716 goto out;
1717 }
1718
1719 vdp = (struct volDescPtr *)bh->b_data;
1720 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1721 lastblock = le32_to_cpu(
1722 vdp->nextVolDescSeqExt.extLength) >>
1723 sb->s_blocksize_bits;
1724 lastblock += block - 1;
1725 /* For loop is going to increment 'block' again */
1726 block--;
1727 break;
1728 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1729 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1730 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1731 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1732 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1733 curr = get_volume_descriptor_record(ident, bh, &data);
1734 if (IS_ERR(curr)) {
1735 brelse(bh);
1736 ret = PTR_ERR(curr);
1737 goto out;
1738 }
1739 /* Descriptor we don't care about? */
1740 if (!curr)
1741 break;
1742 if (vdsn >= curr->volDescSeqNum) {
1743 curr->volDescSeqNum = vdsn;
1744 curr->block = block;
1745 }
1746 break;
1747 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1748 done = true;
1749 break;
1750 }
1751 brelse(bh);
1752 }
1753 /*
1754 * Now read interesting descriptors again and process them
1755 * in a suitable order
1756 */
1757 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1758 udf_err(sb, "Primary Volume Descriptor not found!\n");
1759 ret = -EAGAIN;
1760 goto out;
1761 }
1762 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1763 if (ret < 0)
1764 goto out;
1765
1766 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1767 ret = udf_load_logicalvol(sb,
1768 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1769 fileset);
1770 if (ret < 0)
1771 goto out;
1772 }
1773
1774 /* Now handle prevailing Partition Descriptors */
1775 for (i = 0; i < data.num_part_descs; i++) {
1776 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1777 if (ret < 0)
1778 goto out;
1779 }
1780 ret = 0;
1781 out:
1782 kfree(data.part_descs_loc);
1783 return ret;
1784 }
1785
1786 /*
1787 * Load Volume Descriptor Sequence described by anchor in bh
1788 *
1789 * Returns <0 on error, 0 on success
1790 */
udf_load_sequence(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * fileset)1791 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1792 struct kernel_lb_addr *fileset)
1793 {
1794 struct anchorVolDescPtr *anchor;
1795 sector_t main_s, main_e, reserve_s, reserve_e;
1796 int ret;
1797
1798 anchor = (struct anchorVolDescPtr *)bh->b_data;
1799
1800 /* Locate the main sequence */
1801 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1802 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1803 main_e = main_e >> sb->s_blocksize_bits;
1804 main_e += main_s - 1;
1805
1806 /* Locate the reserve sequence */
1807 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1808 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1809 reserve_e = reserve_e >> sb->s_blocksize_bits;
1810 reserve_e += reserve_s - 1;
1811
1812 /* Process the main & reserve sequences */
1813 /* responsible for finding the PartitionDesc(s) */
1814 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1815 if (ret != -EAGAIN)
1816 return ret;
1817 udf_sb_free_partitions(sb);
1818 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1819 if (ret < 0) {
1820 udf_sb_free_partitions(sb);
1821 /* No sequence was OK, return -EIO */
1822 if (ret == -EAGAIN)
1823 ret = -EIO;
1824 }
1825 return ret;
1826 }
1827
1828 /*
1829 * Check whether there is an anchor block in the given block and
1830 * load Volume Descriptor Sequence if so.
1831 *
1832 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1833 * block
1834 */
udf_check_anchor_block(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1835 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1836 struct kernel_lb_addr *fileset)
1837 {
1838 struct buffer_head *bh;
1839 uint16_t ident;
1840 int ret;
1841
1842 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1843 udf_fixed_to_variable(block) >= sb_bdev_nr_blocks(sb))
1844 return -EAGAIN;
1845
1846 bh = udf_read_tagged(sb, block, block, &ident);
1847 if (!bh)
1848 return -EAGAIN;
1849 if (ident != TAG_IDENT_AVDP) {
1850 brelse(bh);
1851 return -EAGAIN;
1852 }
1853 ret = udf_load_sequence(sb, bh, fileset);
1854 brelse(bh);
1855 return ret;
1856 }
1857
1858 /*
1859 * Search for an anchor volume descriptor pointer.
1860 *
1861 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1862 * of anchors.
1863 */
udf_scan_anchors(struct super_block * sb,sector_t * lastblock,struct kernel_lb_addr * fileset)1864 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1865 struct kernel_lb_addr *fileset)
1866 {
1867 sector_t last[6];
1868 int i;
1869 struct udf_sb_info *sbi = UDF_SB(sb);
1870 int last_count = 0;
1871 int ret;
1872
1873 /* First try user provided anchor */
1874 if (sbi->s_anchor) {
1875 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1876 if (ret != -EAGAIN)
1877 return ret;
1878 }
1879 /*
1880 * according to spec, anchor is in either:
1881 * block 256
1882 * lastblock-256
1883 * lastblock
1884 * however, if the disc isn't closed, it could be 512.
1885 */
1886 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1887 if (ret != -EAGAIN)
1888 return ret;
1889 /*
1890 * The trouble is which block is the last one. Drives often misreport
1891 * this so we try various possibilities.
1892 */
1893 last[last_count++] = *lastblock;
1894 if (*lastblock >= 1)
1895 last[last_count++] = *lastblock - 1;
1896 last[last_count++] = *lastblock + 1;
1897 if (*lastblock >= 2)
1898 last[last_count++] = *lastblock - 2;
1899 if (*lastblock >= 150)
1900 last[last_count++] = *lastblock - 150;
1901 if (*lastblock >= 152)
1902 last[last_count++] = *lastblock - 152;
1903
1904 for (i = 0; i < last_count; i++) {
1905 if (last[i] >= sb_bdev_nr_blocks(sb))
1906 continue;
1907 ret = udf_check_anchor_block(sb, last[i], fileset);
1908 if (ret != -EAGAIN) {
1909 if (!ret)
1910 *lastblock = last[i];
1911 return ret;
1912 }
1913 if (last[i] < 256)
1914 continue;
1915 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1916 if (ret != -EAGAIN) {
1917 if (!ret)
1918 *lastblock = last[i];
1919 return ret;
1920 }
1921 }
1922
1923 /* Finally try block 512 in case media is open */
1924 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1925 }
1926
1927 /*
1928 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1929 * area specified by it. The function expects sbi->s_lastblock to be the last
1930 * block on the media.
1931 *
1932 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1933 * was not found.
1934 */
udf_find_anchor(struct super_block * sb,struct kernel_lb_addr * fileset)1935 static int udf_find_anchor(struct super_block *sb,
1936 struct kernel_lb_addr *fileset)
1937 {
1938 struct udf_sb_info *sbi = UDF_SB(sb);
1939 sector_t lastblock = sbi->s_last_block;
1940 int ret;
1941
1942 ret = udf_scan_anchors(sb, &lastblock, fileset);
1943 if (ret != -EAGAIN)
1944 goto out;
1945
1946 /* No anchor found? Try VARCONV conversion of block numbers */
1947 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1948 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1949 /* Firstly, we try to not convert number of the last block */
1950 ret = udf_scan_anchors(sb, &lastblock, fileset);
1951 if (ret != -EAGAIN)
1952 goto out;
1953
1954 lastblock = sbi->s_last_block;
1955 /* Secondly, we try with converted number of the last block */
1956 ret = udf_scan_anchors(sb, &lastblock, fileset);
1957 if (ret < 0) {
1958 /* VARCONV didn't help. Clear it. */
1959 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1960 }
1961 out:
1962 if (ret == 0)
1963 sbi->s_last_block = lastblock;
1964 return ret;
1965 }
1966
1967 /*
1968 * Check Volume Structure Descriptor, find Anchor block and load Volume
1969 * Descriptor Sequence.
1970 *
1971 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1972 * block was not found.
1973 */
udf_load_vrs(struct super_block * sb,struct udf_options * uopt,int silent,struct kernel_lb_addr * fileset)1974 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1975 int silent, struct kernel_lb_addr *fileset)
1976 {
1977 struct udf_sb_info *sbi = UDF_SB(sb);
1978 int nsr = 0;
1979 int ret;
1980
1981 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1982 if (!silent)
1983 udf_warn(sb, "Bad block size\n");
1984 return -EINVAL;
1985 }
1986 sbi->s_last_block = uopt->lastblock;
1987 if (!uopt->novrs) {
1988 /* Check that it is NSR02 compliant */
1989 nsr = udf_check_vsd(sb);
1990 if (!nsr) {
1991 if (!silent)
1992 udf_warn(sb, "No VRS found\n");
1993 return -EINVAL;
1994 }
1995 if (nsr == -1)
1996 udf_debug("Failed to read sector at offset %d. "
1997 "Assuming open disc. Skipping validity "
1998 "check\n", VSD_FIRST_SECTOR_OFFSET);
1999 if (!sbi->s_last_block)
2000 sbi->s_last_block = udf_get_last_block(sb);
2001 } else {
2002 udf_debug("Validity check skipped because of novrs option\n");
2003 }
2004
2005 /* Look for anchor block and load Volume Descriptor Sequence */
2006 sbi->s_anchor = uopt->anchor;
2007 ret = udf_find_anchor(sb, fileset);
2008 if (ret < 0) {
2009 if (!silent && ret == -EAGAIN)
2010 udf_warn(sb, "No anchor found\n");
2011 return ret;
2012 }
2013 return 0;
2014 }
2015
udf_finalize_lvid(struct logicalVolIntegrityDesc * lvid)2016 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2017 {
2018 struct timespec64 ts;
2019
2020 ktime_get_real_ts64(&ts);
2021 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2022 lvid->descTag.descCRC = cpu_to_le16(
2023 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2024 le16_to_cpu(lvid->descTag.descCRCLength)));
2025 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2026 }
2027
udf_open_lvid(struct super_block * sb)2028 static void udf_open_lvid(struct super_block *sb)
2029 {
2030 struct udf_sb_info *sbi = UDF_SB(sb);
2031 struct buffer_head *bh = sbi->s_lvid_bh;
2032 struct logicalVolIntegrityDesc *lvid;
2033 struct logicalVolIntegrityDescImpUse *lvidiu;
2034
2035 if (!bh)
2036 return;
2037 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2038 lvidiu = udf_sb_lvidiu(sb);
2039 if (!lvidiu)
2040 return;
2041
2042 mutex_lock(&sbi->s_alloc_mutex);
2043 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2044 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2045 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2046 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2047 else
2048 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2049
2050 udf_finalize_lvid(lvid);
2051 mark_buffer_dirty(bh);
2052 sbi->s_lvid_dirty = 0;
2053 mutex_unlock(&sbi->s_alloc_mutex);
2054 /* Make opening of filesystem visible on the media immediately */
2055 sync_dirty_buffer(bh);
2056 }
2057
udf_close_lvid(struct super_block * sb)2058 static void udf_close_lvid(struct super_block *sb)
2059 {
2060 struct udf_sb_info *sbi = UDF_SB(sb);
2061 struct buffer_head *bh = sbi->s_lvid_bh;
2062 struct logicalVolIntegrityDesc *lvid;
2063 struct logicalVolIntegrityDescImpUse *lvidiu;
2064
2065 if (!bh)
2066 return;
2067 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2068 lvidiu = udf_sb_lvidiu(sb);
2069 if (!lvidiu)
2070 return;
2071
2072 mutex_lock(&sbi->s_alloc_mutex);
2073 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2074 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2075 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2076 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2077 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2078 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2079 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2080 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2081 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2082 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2083
2084 /*
2085 * We set buffer uptodate unconditionally here to avoid spurious
2086 * warnings from mark_buffer_dirty() when previous EIO has marked
2087 * the buffer as !uptodate
2088 */
2089 set_buffer_uptodate(bh);
2090 udf_finalize_lvid(lvid);
2091 mark_buffer_dirty(bh);
2092 sbi->s_lvid_dirty = 0;
2093 mutex_unlock(&sbi->s_alloc_mutex);
2094 /* Make closing of filesystem visible on the media immediately */
2095 sync_dirty_buffer(bh);
2096 }
2097
lvid_get_unique_id(struct super_block * sb)2098 u64 lvid_get_unique_id(struct super_block *sb)
2099 {
2100 struct buffer_head *bh;
2101 struct udf_sb_info *sbi = UDF_SB(sb);
2102 struct logicalVolIntegrityDesc *lvid;
2103 struct logicalVolHeaderDesc *lvhd;
2104 u64 uniqueID;
2105 u64 ret;
2106
2107 bh = sbi->s_lvid_bh;
2108 if (!bh)
2109 return 0;
2110
2111 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2112 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2113
2114 mutex_lock(&sbi->s_alloc_mutex);
2115 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2116 if (!(++uniqueID & 0xFFFFFFFF))
2117 uniqueID += 16;
2118 lvhd->uniqueID = cpu_to_le64(uniqueID);
2119 udf_updated_lvid(sb);
2120 mutex_unlock(&sbi->s_alloc_mutex);
2121
2122 return ret;
2123 }
2124
udf_fill_super(struct super_block * sb,void * options,int silent)2125 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2126 {
2127 int ret = -EINVAL;
2128 struct inode *inode = NULL;
2129 struct udf_options uopt;
2130 struct kernel_lb_addr rootdir, fileset;
2131 struct udf_sb_info *sbi;
2132 bool lvid_open = false;
2133
2134 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2135 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2136 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2137 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2138 uopt.umask = 0;
2139 uopt.fmode = UDF_INVALID_MODE;
2140 uopt.dmode = UDF_INVALID_MODE;
2141 uopt.nls_map = NULL;
2142
2143 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2144 if (!sbi)
2145 return -ENOMEM;
2146
2147 sb->s_fs_info = sbi;
2148
2149 mutex_init(&sbi->s_alloc_mutex);
2150
2151 if (!udf_parse_options((char *)options, &uopt, false))
2152 goto parse_options_failure;
2153
2154 fileset.logicalBlockNum = 0xFFFFFFFF;
2155 fileset.partitionReferenceNum = 0xFFFF;
2156
2157 sbi->s_flags = uopt.flags;
2158 sbi->s_uid = uopt.uid;
2159 sbi->s_gid = uopt.gid;
2160 sbi->s_umask = uopt.umask;
2161 sbi->s_fmode = uopt.fmode;
2162 sbi->s_dmode = uopt.dmode;
2163 sbi->s_nls_map = uopt.nls_map;
2164 rwlock_init(&sbi->s_cred_lock);
2165
2166 if (uopt.session == 0xFFFFFFFF)
2167 sbi->s_session = udf_get_last_session(sb);
2168 else
2169 sbi->s_session = uopt.session;
2170
2171 udf_debug("Multi-session=%d\n", sbi->s_session);
2172
2173 /* Fill in the rest of the superblock */
2174 sb->s_op = &udf_sb_ops;
2175 sb->s_export_op = &udf_export_ops;
2176
2177 sb->s_magic = UDF_SUPER_MAGIC;
2178 sb->s_time_gran = 1000;
2179
2180 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2181 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2182 } else {
2183 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2184 while (uopt.blocksize <= 4096) {
2185 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2186 if (ret < 0) {
2187 if (!silent && ret != -EACCES) {
2188 pr_notice("Scanning with blocksize %u failed\n",
2189 uopt.blocksize);
2190 }
2191 brelse(sbi->s_lvid_bh);
2192 sbi->s_lvid_bh = NULL;
2193 /*
2194 * EACCES is special - we want to propagate to
2195 * upper layers that we cannot handle RW mount.
2196 */
2197 if (ret == -EACCES)
2198 break;
2199 } else
2200 break;
2201
2202 uopt.blocksize <<= 1;
2203 }
2204 }
2205 if (ret < 0) {
2206 if (ret == -EAGAIN) {
2207 udf_warn(sb, "No partition found (1)\n");
2208 ret = -EINVAL;
2209 }
2210 goto error_out;
2211 }
2212
2213 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2214
2215 if (sbi->s_lvid_bh) {
2216 struct logicalVolIntegrityDescImpUse *lvidiu =
2217 udf_sb_lvidiu(sb);
2218 uint16_t minUDFReadRev;
2219 uint16_t minUDFWriteRev;
2220
2221 if (!lvidiu) {
2222 ret = -EINVAL;
2223 goto error_out;
2224 }
2225 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2226 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2227 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2228 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2229 minUDFReadRev,
2230 UDF_MAX_READ_VERSION);
2231 ret = -EINVAL;
2232 goto error_out;
2233 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2234 if (!sb_rdonly(sb)) {
2235 ret = -EACCES;
2236 goto error_out;
2237 }
2238 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2239 }
2240
2241 sbi->s_udfrev = minUDFWriteRev;
2242
2243 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2244 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2245 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2246 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2247 }
2248
2249 if (!sbi->s_partitions) {
2250 udf_warn(sb, "No partition found (2)\n");
2251 ret = -EINVAL;
2252 goto error_out;
2253 }
2254
2255 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2256 UDF_PART_FLAG_READ_ONLY) {
2257 if (!sb_rdonly(sb)) {
2258 ret = -EACCES;
2259 goto error_out;
2260 }
2261 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2262 }
2263
2264 ret = udf_find_fileset(sb, &fileset, &rootdir);
2265 if (ret < 0) {
2266 udf_warn(sb, "No fileset found\n");
2267 goto error_out;
2268 }
2269
2270 if (!silent) {
2271 struct timestamp ts;
2272 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2273 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2274 sbi->s_volume_ident,
2275 le16_to_cpu(ts.year), ts.month, ts.day,
2276 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2277 }
2278 if (!sb_rdonly(sb)) {
2279 udf_open_lvid(sb);
2280 lvid_open = true;
2281 }
2282
2283 /* Assign the root inode */
2284 /* assign inodes by physical block number */
2285 /* perhaps it's not extensible enough, but for now ... */
2286 inode = udf_iget(sb, &rootdir);
2287 if (IS_ERR(inode)) {
2288 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2289 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2290 ret = PTR_ERR(inode);
2291 goto error_out;
2292 }
2293
2294 /* Allocate a dentry for the root inode */
2295 sb->s_root = d_make_root(inode);
2296 if (!sb->s_root) {
2297 udf_err(sb, "Couldn't allocate root dentry\n");
2298 ret = -ENOMEM;
2299 goto error_out;
2300 }
2301 sb->s_maxbytes = MAX_LFS_FILESIZE;
2302 sb->s_max_links = UDF_MAX_LINKS;
2303 return 0;
2304
2305 error_out:
2306 iput(sbi->s_vat_inode);
2307 parse_options_failure:
2308 unload_nls(uopt.nls_map);
2309 if (lvid_open)
2310 udf_close_lvid(sb);
2311 brelse(sbi->s_lvid_bh);
2312 udf_sb_free_partitions(sb);
2313 kfree(sbi);
2314 sb->s_fs_info = NULL;
2315
2316 return ret;
2317 }
2318
_udf_err(struct super_block * sb,const char * function,const char * fmt,...)2319 void _udf_err(struct super_block *sb, const char *function,
2320 const char *fmt, ...)
2321 {
2322 struct va_format vaf;
2323 va_list args;
2324
2325 va_start(args, fmt);
2326
2327 vaf.fmt = fmt;
2328 vaf.va = &args;
2329
2330 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2331
2332 va_end(args);
2333 }
2334
_udf_warn(struct super_block * sb,const char * function,const char * fmt,...)2335 void _udf_warn(struct super_block *sb, const char *function,
2336 const char *fmt, ...)
2337 {
2338 struct va_format vaf;
2339 va_list args;
2340
2341 va_start(args, fmt);
2342
2343 vaf.fmt = fmt;
2344 vaf.va = &args;
2345
2346 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2347
2348 va_end(args);
2349 }
2350
udf_put_super(struct super_block * sb)2351 static void udf_put_super(struct super_block *sb)
2352 {
2353 struct udf_sb_info *sbi;
2354
2355 sbi = UDF_SB(sb);
2356
2357 iput(sbi->s_vat_inode);
2358 unload_nls(sbi->s_nls_map);
2359 if (!sb_rdonly(sb))
2360 udf_close_lvid(sb);
2361 brelse(sbi->s_lvid_bh);
2362 udf_sb_free_partitions(sb);
2363 mutex_destroy(&sbi->s_alloc_mutex);
2364 kfree(sb->s_fs_info);
2365 sb->s_fs_info = NULL;
2366 }
2367
udf_sync_fs(struct super_block * sb,int wait)2368 static int udf_sync_fs(struct super_block *sb, int wait)
2369 {
2370 struct udf_sb_info *sbi = UDF_SB(sb);
2371
2372 mutex_lock(&sbi->s_alloc_mutex);
2373 if (sbi->s_lvid_dirty) {
2374 struct buffer_head *bh = sbi->s_lvid_bh;
2375 struct logicalVolIntegrityDesc *lvid;
2376
2377 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2378 udf_finalize_lvid(lvid);
2379
2380 /*
2381 * Blockdevice will be synced later so we don't have to submit
2382 * the buffer for IO
2383 */
2384 mark_buffer_dirty(bh);
2385 sbi->s_lvid_dirty = 0;
2386 }
2387 mutex_unlock(&sbi->s_alloc_mutex);
2388
2389 return 0;
2390 }
2391
udf_statfs(struct dentry * dentry,struct kstatfs * buf)2392 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2393 {
2394 struct super_block *sb = dentry->d_sb;
2395 struct udf_sb_info *sbi = UDF_SB(sb);
2396 struct logicalVolIntegrityDescImpUse *lvidiu;
2397 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2398
2399 lvidiu = udf_sb_lvidiu(sb);
2400 buf->f_type = UDF_SUPER_MAGIC;
2401 buf->f_bsize = sb->s_blocksize;
2402 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2403 buf->f_bfree = udf_count_free(sb);
2404 buf->f_bavail = buf->f_bfree;
2405 /*
2406 * Let's pretend each free block is also a free 'inode' since UDF does
2407 * not have separate preallocated table of inodes.
2408 */
2409 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2410 le32_to_cpu(lvidiu->numDirs)) : 0)
2411 + buf->f_bfree;
2412 buf->f_ffree = buf->f_bfree;
2413 buf->f_namelen = UDF_NAME_LEN;
2414 buf->f_fsid = u64_to_fsid(id);
2415
2416 return 0;
2417 }
2418
udf_count_free_bitmap(struct super_block * sb,struct udf_bitmap * bitmap)2419 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2420 struct udf_bitmap *bitmap)
2421 {
2422 struct buffer_head *bh = NULL;
2423 unsigned int accum = 0;
2424 int index;
2425 udf_pblk_t block = 0, newblock;
2426 struct kernel_lb_addr loc;
2427 uint32_t bytes;
2428 uint8_t *ptr;
2429 uint16_t ident;
2430 struct spaceBitmapDesc *bm;
2431
2432 loc.logicalBlockNum = bitmap->s_extPosition;
2433 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2434 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2435
2436 if (!bh) {
2437 udf_err(sb, "udf_count_free failed\n");
2438 goto out;
2439 } else if (ident != TAG_IDENT_SBD) {
2440 brelse(bh);
2441 udf_err(sb, "udf_count_free failed\n");
2442 goto out;
2443 }
2444
2445 bm = (struct spaceBitmapDesc *)bh->b_data;
2446 bytes = le32_to_cpu(bm->numOfBytes);
2447 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2448 ptr = (uint8_t *)bh->b_data;
2449
2450 while (bytes > 0) {
2451 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2452 accum += bitmap_weight((const unsigned long *)(ptr + index),
2453 cur_bytes * 8);
2454 bytes -= cur_bytes;
2455 if (bytes) {
2456 brelse(bh);
2457 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2458 bh = udf_tread(sb, newblock);
2459 if (!bh) {
2460 udf_debug("read failed\n");
2461 goto out;
2462 }
2463 index = 0;
2464 ptr = (uint8_t *)bh->b_data;
2465 }
2466 }
2467 brelse(bh);
2468 out:
2469 return accum;
2470 }
2471
udf_count_free_table(struct super_block * sb,struct inode * table)2472 static unsigned int udf_count_free_table(struct super_block *sb,
2473 struct inode *table)
2474 {
2475 unsigned int accum = 0;
2476 uint32_t elen;
2477 struct kernel_lb_addr eloc;
2478 struct extent_position epos;
2479
2480 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2481 epos.block = UDF_I(table)->i_location;
2482 epos.offset = sizeof(struct unallocSpaceEntry);
2483 epos.bh = NULL;
2484
2485 while (udf_next_aext(table, &epos, &eloc, &elen, 1) != -1)
2486 accum += (elen >> table->i_sb->s_blocksize_bits);
2487
2488 brelse(epos.bh);
2489 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2490
2491 return accum;
2492 }
2493
udf_count_free(struct super_block * sb)2494 static unsigned int udf_count_free(struct super_block *sb)
2495 {
2496 unsigned int accum = 0;
2497 struct udf_sb_info *sbi = UDF_SB(sb);
2498 struct udf_part_map *map;
2499 unsigned int part = sbi->s_partition;
2500 int ptype = sbi->s_partmaps[part].s_partition_type;
2501
2502 if (ptype == UDF_METADATA_MAP25) {
2503 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2504 s_phys_partition_ref;
2505 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2506 /*
2507 * Filesystems with VAT are append-only and we cannot write to
2508 * them. Let's just report 0 here.
2509 */
2510 return 0;
2511 }
2512
2513 if (sbi->s_lvid_bh) {
2514 struct logicalVolIntegrityDesc *lvid =
2515 (struct logicalVolIntegrityDesc *)
2516 sbi->s_lvid_bh->b_data;
2517 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2518 accum = le32_to_cpu(
2519 lvid->freeSpaceTable[part]);
2520 if (accum == 0xFFFFFFFF)
2521 accum = 0;
2522 }
2523 }
2524
2525 if (accum)
2526 return accum;
2527
2528 map = &sbi->s_partmaps[part];
2529 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2530 accum += udf_count_free_bitmap(sb,
2531 map->s_uspace.s_bitmap);
2532 }
2533 if (accum)
2534 return accum;
2535
2536 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2537 accum += udf_count_free_table(sb,
2538 map->s_uspace.s_table);
2539 }
2540 return accum;
2541 }
2542
2543 MODULE_AUTHOR("Ben Fennema");
2544 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2545 MODULE_LICENSE("GPL");
2546 module_init(init_udf_fs)
2547 module_exit(exit_udf_fs)
2548