1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2003-2022, Intel Corporation. All rights reserved.
4 * Intel Management Engine Interface (Intel MEI) Linux driver
5 */
6
7 #include <linux/pci.h>
8
9 #include <linux/kthread.h>
10 #include <linux/interrupt.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/sizes.h>
13 #include <linux/delay.h>
14
15 #include "mei_dev.h"
16 #include "hbm.h"
17
18 #include "hw-me.h"
19 #include "hw-me-regs.h"
20
21 #include "mei-trace.h"
22
23 /**
24 * mei_me_reg_read - Reads 32bit data from the mei device
25 *
26 * @hw: the me hardware structure
27 * @offset: offset from which to read the data
28 *
29 * Return: register value (u32)
30 */
mei_me_reg_read(const struct mei_me_hw * hw,unsigned long offset)31 static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
32 unsigned long offset)
33 {
34 return ioread32(hw->mem_addr + offset);
35 }
36
37
38 /**
39 * mei_me_reg_write - Writes 32bit data to the mei device
40 *
41 * @hw: the me hardware structure
42 * @offset: offset from which to write the data
43 * @value: register value to write (u32)
44 */
mei_me_reg_write(const struct mei_me_hw * hw,unsigned long offset,u32 value)45 static inline void mei_me_reg_write(const struct mei_me_hw *hw,
46 unsigned long offset, u32 value)
47 {
48 iowrite32(value, hw->mem_addr + offset);
49 }
50
51 /**
52 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
53 * read window register
54 *
55 * @dev: the device structure
56 *
57 * Return: ME_CB_RW register value (u32)
58 */
mei_me_mecbrw_read(const struct mei_device * dev)59 static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
60 {
61 return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
62 }
63
64 /**
65 * mei_me_hcbww_write - write 32bit data to the host circular buffer
66 *
67 * @dev: the device structure
68 * @data: 32bit data to be written to the host circular buffer
69 */
mei_me_hcbww_write(struct mei_device * dev,u32 data)70 static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
71 {
72 mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
73 }
74
75 /**
76 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
77 *
78 * @dev: the device structure
79 *
80 * Return: ME_CSR_HA register value (u32)
81 */
mei_me_mecsr_read(const struct mei_device * dev)82 static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
83 {
84 u32 reg;
85
86 reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
87 trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);
88
89 return reg;
90 }
91
92 /**
93 * mei_hcsr_read - Reads 32bit data from the host CSR
94 *
95 * @dev: the device structure
96 *
97 * Return: H_CSR register value (u32)
98 */
mei_hcsr_read(const struct mei_device * dev)99 static inline u32 mei_hcsr_read(const struct mei_device *dev)
100 {
101 u32 reg;
102
103 reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
104 trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);
105
106 return reg;
107 }
108
109 /**
110 * mei_hcsr_write - writes H_CSR register to the mei device
111 *
112 * @dev: the device structure
113 * @reg: new register value
114 */
mei_hcsr_write(struct mei_device * dev,u32 reg)115 static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
116 {
117 trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
118 mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
119 }
120
121 /**
122 * mei_hcsr_set - writes H_CSR register to the mei device,
123 * and ignores the H_IS bit for it is write-one-to-zero.
124 *
125 * @dev: the device structure
126 * @reg: new register value
127 */
mei_hcsr_set(struct mei_device * dev,u32 reg)128 static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
129 {
130 reg &= ~H_CSR_IS_MASK;
131 mei_hcsr_write(dev, reg);
132 }
133
134 /**
135 * mei_hcsr_set_hig - set host interrupt (set H_IG)
136 *
137 * @dev: the device structure
138 */
mei_hcsr_set_hig(struct mei_device * dev)139 static inline void mei_hcsr_set_hig(struct mei_device *dev)
140 {
141 u32 hcsr;
142
143 hcsr = mei_hcsr_read(dev) | H_IG;
144 mei_hcsr_set(dev, hcsr);
145 }
146
147 /**
148 * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
149 *
150 * @dev: the device structure
151 *
152 * Return: H_D0I3C register value (u32)
153 */
mei_me_d0i3c_read(const struct mei_device * dev)154 static inline u32 mei_me_d0i3c_read(const struct mei_device *dev)
155 {
156 u32 reg;
157
158 reg = mei_me_reg_read(to_me_hw(dev), H_D0I3C);
159 trace_mei_reg_read(dev->dev, "H_D0I3C", H_D0I3C, reg);
160
161 return reg;
162 }
163
164 /**
165 * mei_me_d0i3c_write - writes H_D0I3C register to device
166 *
167 * @dev: the device structure
168 * @reg: new register value
169 */
mei_me_d0i3c_write(struct mei_device * dev,u32 reg)170 static inline void mei_me_d0i3c_write(struct mei_device *dev, u32 reg)
171 {
172 trace_mei_reg_write(dev->dev, "H_D0I3C", H_D0I3C, reg);
173 mei_me_reg_write(to_me_hw(dev), H_D0I3C, reg);
174 }
175
176 /**
177 * mei_me_trc_status - read trc status register
178 *
179 * @dev: mei device
180 * @trc: trc status register value
181 *
182 * Return: 0 on success, error otherwise
183 */
mei_me_trc_status(struct mei_device * dev,u32 * trc)184 static int mei_me_trc_status(struct mei_device *dev, u32 *trc)
185 {
186 struct mei_me_hw *hw = to_me_hw(dev);
187
188 if (!hw->cfg->hw_trc_supported)
189 return -EOPNOTSUPP;
190
191 *trc = mei_me_reg_read(hw, ME_TRC);
192 trace_mei_reg_read(dev->dev, "ME_TRC", ME_TRC, *trc);
193
194 return 0;
195 }
196
197 /**
198 * mei_me_fw_status - read fw status register from pci config space
199 *
200 * @dev: mei device
201 * @fw_status: fw status register values
202 *
203 * Return: 0 on success, error otherwise
204 */
mei_me_fw_status(struct mei_device * dev,struct mei_fw_status * fw_status)205 static int mei_me_fw_status(struct mei_device *dev,
206 struct mei_fw_status *fw_status)
207 {
208 struct mei_me_hw *hw = to_me_hw(dev);
209 const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
210 int ret;
211 int i;
212
213 if (!fw_status || !hw->read_fws)
214 return -EINVAL;
215
216 fw_status->count = fw_src->count;
217 for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
218 ret = hw->read_fws(dev, fw_src->status[i],
219 &fw_status->status[i]);
220 trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_X",
221 fw_src->status[i],
222 fw_status->status[i]);
223 if (ret)
224 return ret;
225 }
226
227 return 0;
228 }
229
230 /**
231 * mei_me_hw_config - configure hw dependent settings
232 *
233 * @dev: mei device
234 *
235 * Return:
236 * * -EINVAL when read_fws is not set
237 * * 0 on success
238 *
239 */
mei_me_hw_config(struct mei_device * dev)240 static int mei_me_hw_config(struct mei_device *dev)
241 {
242 struct mei_me_hw *hw = to_me_hw(dev);
243 u32 hcsr, reg;
244
245 if (WARN_ON(!hw->read_fws))
246 return -EINVAL;
247
248 /* Doesn't change in runtime */
249 hcsr = mei_hcsr_read(dev);
250 hw->hbuf_depth = (hcsr & H_CBD) >> 24;
251
252 reg = 0;
253 hw->read_fws(dev, PCI_CFG_HFS_1, ®);
254 trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
255 hw->d0i3_supported =
256 ((reg & PCI_CFG_HFS_1_D0I3_MSK) == PCI_CFG_HFS_1_D0I3_MSK);
257
258 hw->pg_state = MEI_PG_OFF;
259 if (hw->d0i3_supported) {
260 reg = mei_me_d0i3c_read(dev);
261 if (reg & H_D0I3C_I3)
262 hw->pg_state = MEI_PG_ON;
263 }
264
265 return 0;
266 }
267
268 /**
269 * mei_me_pg_state - translate internal pg state
270 * to the mei power gating state
271 *
272 * @dev: mei device
273 *
274 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
275 */
mei_me_pg_state(struct mei_device * dev)276 static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
277 {
278 struct mei_me_hw *hw = to_me_hw(dev);
279
280 return hw->pg_state;
281 }
282
me_intr_src(u32 hcsr)283 static inline u32 me_intr_src(u32 hcsr)
284 {
285 return hcsr & H_CSR_IS_MASK;
286 }
287
288 /**
289 * me_intr_disable - disables mei device interrupts
290 * using supplied hcsr register value.
291 *
292 * @dev: the device structure
293 * @hcsr: supplied hcsr register value
294 */
me_intr_disable(struct mei_device * dev,u32 hcsr)295 static inline void me_intr_disable(struct mei_device *dev, u32 hcsr)
296 {
297 hcsr &= ~H_CSR_IE_MASK;
298 mei_hcsr_set(dev, hcsr);
299 }
300
301 /**
302 * me_intr_clear - clear and stop interrupts
303 *
304 * @dev: the device structure
305 * @hcsr: supplied hcsr register value
306 */
me_intr_clear(struct mei_device * dev,u32 hcsr)307 static inline void me_intr_clear(struct mei_device *dev, u32 hcsr)
308 {
309 if (me_intr_src(hcsr))
310 mei_hcsr_write(dev, hcsr);
311 }
312
313 /**
314 * mei_me_intr_clear - clear and stop interrupts
315 *
316 * @dev: the device structure
317 */
mei_me_intr_clear(struct mei_device * dev)318 static void mei_me_intr_clear(struct mei_device *dev)
319 {
320 u32 hcsr = mei_hcsr_read(dev);
321
322 me_intr_clear(dev, hcsr);
323 }
324 /**
325 * mei_me_intr_enable - enables mei device interrupts
326 *
327 * @dev: the device structure
328 */
mei_me_intr_enable(struct mei_device * dev)329 static void mei_me_intr_enable(struct mei_device *dev)
330 {
331 u32 hcsr;
332
333 if (mei_me_hw_use_polling(to_me_hw(dev)))
334 return;
335
336 hcsr = mei_hcsr_read(dev) | H_CSR_IE_MASK;
337 mei_hcsr_set(dev, hcsr);
338 }
339
340 /**
341 * mei_me_intr_disable - disables mei device interrupts
342 *
343 * @dev: the device structure
344 */
mei_me_intr_disable(struct mei_device * dev)345 static void mei_me_intr_disable(struct mei_device *dev)
346 {
347 u32 hcsr = mei_hcsr_read(dev);
348
349 me_intr_disable(dev, hcsr);
350 }
351
352 /**
353 * mei_me_synchronize_irq - wait for pending IRQ handlers
354 *
355 * @dev: the device structure
356 */
mei_me_synchronize_irq(struct mei_device * dev)357 static void mei_me_synchronize_irq(struct mei_device *dev)
358 {
359 struct mei_me_hw *hw = to_me_hw(dev);
360
361 if (mei_me_hw_use_polling(hw))
362 return;
363
364 synchronize_irq(hw->irq);
365 }
366
367 /**
368 * mei_me_hw_reset_release - release device from the reset
369 *
370 * @dev: the device structure
371 */
mei_me_hw_reset_release(struct mei_device * dev)372 static void mei_me_hw_reset_release(struct mei_device *dev)
373 {
374 u32 hcsr = mei_hcsr_read(dev);
375
376 hcsr |= H_IG;
377 hcsr &= ~H_RST;
378 mei_hcsr_set(dev, hcsr);
379 }
380
381 /**
382 * mei_me_host_set_ready - enable device
383 *
384 * @dev: mei device
385 */
mei_me_host_set_ready(struct mei_device * dev)386 static void mei_me_host_set_ready(struct mei_device *dev)
387 {
388 u32 hcsr = mei_hcsr_read(dev);
389
390 if (!mei_me_hw_use_polling(to_me_hw(dev)))
391 hcsr |= H_CSR_IE_MASK;
392
393 hcsr |= H_IG | H_RDY;
394 mei_hcsr_set(dev, hcsr);
395 }
396
397 /**
398 * mei_me_host_is_ready - check whether the host has turned ready
399 *
400 * @dev: mei device
401 * Return: bool
402 */
mei_me_host_is_ready(struct mei_device * dev)403 static bool mei_me_host_is_ready(struct mei_device *dev)
404 {
405 u32 hcsr = mei_hcsr_read(dev);
406
407 return (hcsr & H_RDY) == H_RDY;
408 }
409
410 /**
411 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
412 *
413 * @dev: mei device
414 * Return: bool
415 */
mei_me_hw_is_ready(struct mei_device * dev)416 static bool mei_me_hw_is_ready(struct mei_device *dev)
417 {
418 u32 mecsr = mei_me_mecsr_read(dev);
419
420 return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
421 }
422
423 /**
424 * mei_me_hw_is_resetting - check whether the me(hw) is in reset
425 *
426 * @dev: mei device
427 * Return: bool
428 */
mei_me_hw_is_resetting(struct mei_device * dev)429 static bool mei_me_hw_is_resetting(struct mei_device *dev)
430 {
431 u32 mecsr = mei_me_mecsr_read(dev);
432
433 return (mecsr & ME_RST_HRA) == ME_RST_HRA;
434 }
435
436 /**
437 * mei_gsc_pxp_check - check for gsc firmware entering pxp mode
438 *
439 * @dev: the device structure
440 */
mei_gsc_pxp_check(struct mei_device * dev)441 static void mei_gsc_pxp_check(struct mei_device *dev)
442 {
443 struct mei_me_hw *hw = to_me_hw(dev);
444 u32 fwsts5 = 0;
445
446 if (dev->pxp_mode == MEI_DEV_PXP_DEFAULT)
447 return;
448
449 hw->read_fws(dev, PCI_CFG_HFS_5, &fwsts5);
450 trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_5", PCI_CFG_HFS_5, fwsts5);
451 if ((fwsts5 & GSC_CFG_HFS_5_BOOT_TYPE_MSK) == GSC_CFG_HFS_5_BOOT_TYPE_PXP) {
452 dev_dbg(dev->dev, "pxp mode is ready 0x%08x\n", fwsts5);
453 dev->pxp_mode = MEI_DEV_PXP_READY;
454 } else {
455 dev_dbg(dev->dev, "pxp mode is not ready 0x%08x\n", fwsts5);
456 }
457 }
458
459 /**
460 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
461 * or timeout is reached
462 *
463 * @dev: mei device
464 * Return: 0 on success, error otherwise
465 */
mei_me_hw_ready_wait(struct mei_device * dev)466 static int mei_me_hw_ready_wait(struct mei_device *dev)
467 {
468 mutex_unlock(&dev->device_lock);
469 wait_event_timeout(dev->wait_hw_ready,
470 dev->recvd_hw_ready,
471 dev->timeouts.hw_ready);
472 mutex_lock(&dev->device_lock);
473 if (!dev->recvd_hw_ready) {
474 dev_err(dev->dev, "wait hw ready failed\n");
475 return -ETIME;
476 }
477
478 mei_gsc_pxp_check(dev);
479
480 mei_me_hw_reset_release(dev);
481 dev->recvd_hw_ready = false;
482 return 0;
483 }
484
485 /**
486 * mei_me_hw_start - hw start routine
487 *
488 * @dev: mei device
489 * Return: 0 on success, error otherwise
490 */
mei_me_hw_start(struct mei_device * dev)491 static int mei_me_hw_start(struct mei_device *dev)
492 {
493 int ret = mei_me_hw_ready_wait(dev);
494
495 if (ret)
496 return ret;
497 dev_dbg(dev->dev, "hw is ready\n");
498
499 mei_me_host_set_ready(dev);
500 return ret;
501 }
502
503
504 /**
505 * mei_hbuf_filled_slots - gets number of device filled buffer slots
506 *
507 * @dev: the device structure
508 *
509 * Return: number of filled slots
510 */
mei_hbuf_filled_slots(struct mei_device * dev)511 static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
512 {
513 u32 hcsr;
514 char read_ptr, write_ptr;
515
516 hcsr = mei_hcsr_read(dev);
517
518 read_ptr = (char) ((hcsr & H_CBRP) >> 8);
519 write_ptr = (char) ((hcsr & H_CBWP) >> 16);
520
521 return (unsigned char) (write_ptr - read_ptr);
522 }
523
524 /**
525 * mei_me_hbuf_is_empty - checks if host buffer is empty.
526 *
527 * @dev: the device structure
528 *
529 * Return: true if empty, false - otherwise.
530 */
mei_me_hbuf_is_empty(struct mei_device * dev)531 static bool mei_me_hbuf_is_empty(struct mei_device *dev)
532 {
533 return mei_hbuf_filled_slots(dev) == 0;
534 }
535
536 /**
537 * mei_me_hbuf_empty_slots - counts write empty slots.
538 *
539 * @dev: the device structure
540 *
541 * Return: -EOVERFLOW if overflow, otherwise empty slots count
542 */
mei_me_hbuf_empty_slots(struct mei_device * dev)543 static int mei_me_hbuf_empty_slots(struct mei_device *dev)
544 {
545 struct mei_me_hw *hw = to_me_hw(dev);
546 unsigned char filled_slots, empty_slots;
547
548 filled_slots = mei_hbuf_filled_slots(dev);
549 empty_slots = hw->hbuf_depth - filled_slots;
550
551 /* check for overflow */
552 if (filled_slots > hw->hbuf_depth)
553 return -EOVERFLOW;
554
555 return empty_slots;
556 }
557
558 /**
559 * mei_me_hbuf_depth - returns depth of the hw buffer.
560 *
561 * @dev: the device structure
562 *
563 * Return: size of hw buffer in slots
564 */
mei_me_hbuf_depth(const struct mei_device * dev)565 static u32 mei_me_hbuf_depth(const struct mei_device *dev)
566 {
567 struct mei_me_hw *hw = to_me_hw(dev);
568
569 return hw->hbuf_depth;
570 }
571
572 /**
573 * mei_me_hbuf_write - writes a message to host hw buffer.
574 *
575 * @dev: the device structure
576 * @hdr: header of message
577 * @hdr_len: header length in bytes: must be multiplication of a slot (4bytes)
578 * @data: payload
579 * @data_len: payload length in bytes
580 *
581 * Return: 0 if success, < 0 - otherwise.
582 */
mei_me_hbuf_write(struct mei_device * dev,const void * hdr,size_t hdr_len,const void * data,size_t data_len)583 static int mei_me_hbuf_write(struct mei_device *dev,
584 const void *hdr, size_t hdr_len,
585 const void *data, size_t data_len)
586 {
587 unsigned long rem;
588 unsigned long i;
589 const u32 *reg_buf;
590 u32 dw_cnt;
591 int empty_slots;
592
593 if (WARN_ON(!hdr || !data || hdr_len & 0x3))
594 return -EINVAL;
595
596 dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM((struct mei_msg_hdr *)hdr));
597
598 empty_slots = mei_hbuf_empty_slots(dev);
599 dev_dbg(dev->dev, "empty slots = %d.\n", empty_slots);
600
601 if (empty_slots < 0)
602 return -EOVERFLOW;
603
604 dw_cnt = mei_data2slots(hdr_len + data_len);
605 if (dw_cnt > (u32)empty_slots)
606 return -EMSGSIZE;
607
608 reg_buf = hdr;
609 for (i = 0; i < hdr_len / MEI_SLOT_SIZE; i++)
610 mei_me_hcbww_write(dev, reg_buf[i]);
611
612 reg_buf = data;
613 for (i = 0; i < data_len / MEI_SLOT_SIZE; i++)
614 mei_me_hcbww_write(dev, reg_buf[i]);
615
616 rem = data_len & 0x3;
617 if (rem > 0) {
618 u32 reg = 0;
619
620 memcpy(®, (const u8 *)data + data_len - rem, rem);
621 mei_me_hcbww_write(dev, reg);
622 }
623
624 mei_hcsr_set_hig(dev);
625 if (!mei_me_hw_is_ready(dev))
626 return -EIO;
627
628 return 0;
629 }
630
631 /**
632 * mei_me_count_full_read_slots - counts read full slots.
633 *
634 * @dev: the device structure
635 *
636 * Return: -EOVERFLOW if overflow, otherwise filled slots count
637 */
mei_me_count_full_read_slots(struct mei_device * dev)638 static int mei_me_count_full_read_slots(struct mei_device *dev)
639 {
640 u32 me_csr;
641 char read_ptr, write_ptr;
642 unsigned char buffer_depth, filled_slots;
643
644 me_csr = mei_me_mecsr_read(dev);
645 buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
646 read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
647 write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
648 filled_slots = (unsigned char) (write_ptr - read_ptr);
649
650 /* check for overflow */
651 if (filled_slots > buffer_depth)
652 return -EOVERFLOW;
653
654 dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
655 return (int)filled_slots;
656 }
657
658 /**
659 * mei_me_read_slots - reads a message from mei device.
660 *
661 * @dev: the device structure
662 * @buffer: message buffer will be written
663 * @buffer_length: message size will be read
664 *
665 * Return: always 0
666 */
mei_me_read_slots(struct mei_device * dev,unsigned char * buffer,unsigned long buffer_length)667 static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
668 unsigned long buffer_length)
669 {
670 u32 *reg_buf = (u32 *)buffer;
671
672 for (; buffer_length >= MEI_SLOT_SIZE; buffer_length -= MEI_SLOT_SIZE)
673 *reg_buf++ = mei_me_mecbrw_read(dev);
674
675 if (buffer_length > 0) {
676 u32 reg = mei_me_mecbrw_read(dev);
677
678 memcpy(reg_buf, ®, buffer_length);
679 }
680
681 mei_hcsr_set_hig(dev);
682 return 0;
683 }
684
685 /**
686 * mei_me_pg_set - write pg enter register
687 *
688 * @dev: the device structure
689 */
mei_me_pg_set(struct mei_device * dev)690 static void mei_me_pg_set(struct mei_device *dev)
691 {
692 struct mei_me_hw *hw = to_me_hw(dev);
693 u32 reg;
694
695 reg = mei_me_reg_read(hw, H_HPG_CSR);
696 trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
697
698 reg |= H_HPG_CSR_PGI;
699
700 trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
701 mei_me_reg_write(hw, H_HPG_CSR, reg);
702 }
703
704 /**
705 * mei_me_pg_unset - write pg exit register
706 *
707 * @dev: the device structure
708 */
mei_me_pg_unset(struct mei_device * dev)709 static void mei_me_pg_unset(struct mei_device *dev)
710 {
711 struct mei_me_hw *hw = to_me_hw(dev);
712 u32 reg;
713
714 reg = mei_me_reg_read(hw, H_HPG_CSR);
715 trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
716
717 WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
718
719 reg |= H_HPG_CSR_PGIHEXR;
720
721 trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
722 mei_me_reg_write(hw, H_HPG_CSR, reg);
723 }
724
725 /**
726 * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
727 *
728 * @dev: the device structure
729 *
730 * Return: 0 on success an error code otherwise
731 */
mei_me_pg_legacy_enter_sync(struct mei_device * dev)732 static int mei_me_pg_legacy_enter_sync(struct mei_device *dev)
733 {
734 struct mei_me_hw *hw = to_me_hw(dev);
735 int ret;
736
737 dev->pg_event = MEI_PG_EVENT_WAIT;
738
739 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
740 if (ret)
741 return ret;
742
743 mutex_unlock(&dev->device_lock);
744 wait_event_timeout(dev->wait_pg,
745 dev->pg_event == MEI_PG_EVENT_RECEIVED,
746 dev->timeouts.pgi);
747 mutex_lock(&dev->device_lock);
748
749 if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
750 mei_me_pg_set(dev);
751 ret = 0;
752 } else {
753 ret = -ETIME;
754 }
755
756 dev->pg_event = MEI_PG_EVENT_IDLE;
757 hw->pg_state = MEI_PG_ON;
758
759 return ret;
760 }
761
762 /**
763 * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
764 *
765 * @dev: the device structure
766 *
767 * Return: 0 on success an error code otherwise
768 */
mei_me_pg_legacy_exit_sync(struct mei_device * dev)769 static int mei_me_pg_legacy_exit_sync(struct mei_device *dev)
770 {
771 struct mei_me_hw *hw = to_me_hw(dev);
772 int ret;
773
774 if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
775 goto reply;
776
777 dev->pg_event = MEI_PG_EVENT_WAIT;
778
779 mei_me_pg_unset(dev);
780
781 mutex_unlock(&dev->device_lock);
782 wait_event_timeout(dev->wait_pg,
783 dev->pg_event == MEI_PG_EVENT_RECEIVED,
784 dev->timeouts.pgi);
785 mutex_lock(&dev->device_lock);
786
787 reply:
788 if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
789 ret = -ETIME;
790 goto out;
791 }
792
793 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
794 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
795 if (ret)
796 return ret;
797
798 mutex_unlock(&dev->device_lock);
799 wait_event_timeout(dev->wait_pg,
800 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED,
801 dev->timeouts.pgi);
802 mutex_lock(&dev->device_lock);
803
804 if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
805 ret = 0;
806 else
807 ret = -ETIME;
808
809 out:
810 dev->pg_event = MEI_PG_EVENT_IDLE;
811 hw->pg_state = MEI_PG_OFF;
812
813 return ret;
814 }
815
816 /**
817 * mei_me_pg_in_transition - is device now in pg transition
818 *
819 * @dev: the device structure
820 *
821 * Return: true if in pg transition, false otherwise
822 */
mei_me_pg_in_transition(struct mei_device * dev)823 static bool mei_me_pg_in_transition(struct mei_device *dev)
824 {
825 return dev->pg_event >= MEI_PG_EVENT_WAIT &&
826 dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
827 }
828
829 /**
830 * mei_me_pg_is_enabled - detect if PG is supported by HW
831 *
832 * @dev: the device structure
833 *
834 * Return: true is pg supported, false otherwise
835 */
mei_me_pg_is_enabled(struct mei_device * dev)836 static bool mei_me_pg_is_enabled(struct mei_device *dev)
837 {
838 struct mei_me_hw *hw = to_me_hw(dev);
839 u32 reg = mei_me_mecsr_read(dev);
840
841 if (hw->d0i3_supported)
842 return true;
843
844 if ((reg & ME_PGIC_HRA) == 0)
845 goto notsupported;
846
847 if (!dev->hbm_f_pg_supported)
848 goto notsupported;
849
850 return true;
851
852 notsupported:
853 dev_dbg(dev->dev, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
854 hw->d0i3_supported,
855 !!(reg & ME_PGIC_HRA),
856 dev->version.major_version,
857 dev->version.minor_version,
858 HBM_MAJOR_VERSION_PGI,
859 HBM_MINOR_VERSION_PGI);
860
861 return false;
862 }
863
864 /**
865 * mei_me_d0i3_set - write d0i3 register bit on mei device.
866 *
867 * @dev: the device structure
868 * @intr: ask for interrupt
869 *
870 * Return: D0I3C register value
871 */
mei_me_d0i3_set(struct mei_device * dev,bool intr)872 static u32 mei_me_d0i3_set(struct mei_device *dev, bool intr)
873 {
874 u32 reg = mei_me_d0i3c_read(dev);
875
876 reg |= H_D0I3C_I3;
877 if (intr)
878 reg |= H_D0I3C_IR;
879 else
880 reg &= ~H_D0I3C_IR;
881 mei_me_d0i3c_write(dev, reg);
882 /* read it to ensure HW consistency */
883 reg = mei_me_d0i3c_read(dev);
884 return reg;
885 }
886
887 /**
888 * mei_me_d0i3_unset - clean d0i3 register bit on mei device.
889 *
890 * @dev: the device structure
891 *
892 * Return: D0I3C register value
893 */
mei_me_d0i3_unset(struct mei_device * dev)894 static u32 mei_me_d0i3_unset(struct mei_device *dev)
895 {
896 u32 reg = mei_me_d0i3c_read(dev);
897
898 reg &= ~H_D0I3C_I3;
899 reg |= H_D0I3C_IR;
900 mei_me_d0i3c_write(dev, reg);
901 /* read it to ensure HW consistency */
902 reg = mei_me_d0i3c_read(dev);
903 return reg;
904 }
905
906 /**
907 * mei_me_d0i3_enter_sync - perform d0i3 entry procedure
908 *
909 * @dev: the device structure
910 *
911 * Return: 0 on success an error code otherwise
912 */
mei_me_d0i3_enter_sync(struct mei_device * dev)913 static int mei_me_d0i3_enter_sync(struct mei_device *dev)
914 {
915 struct mei_me_hw *hw = to_me_hw(dev);
916 int ret;
917 u32 reg;
918
919 reg = mei_me_d0i3c_read(dev);
920 if (reg & H_D0I3C_I3) {
921 /* we are in d0i3, nothing to do */
922 dev_dbg(dev->dev, "d0i3 set not needed\n");
923 ret = 0;
924 goto on;
925 }
926
927 /* PGI entry procedure */
928 dev->pg_event = MEI_PG_EVENT_WAIT;
929
930 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
931 if (ret)
932 /* FIXME: should we reset here? */
933 goto out;
934
935 mutex_unlock(&dev->device_lock);
936 wait_event_timeout(dev->wait_pg,
937 dev->pg_event == MEI_PG_EVENT_RECEIVED,
938 dev->timeouts.pgi);
939 mutex_lock(&dev->device_lock);
940
941 if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
942 ret = -ETIME;
943 goto out;
944 }
945 /* end PGI entry procedure */
946
947 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
948
949 reg = mei_me_d0i3_set(dev, true);
950 if (!(reg & H_D0I3C_CIP)) {
951 dev_dbg(dev->dev, "d0i3 enter wait not needed\n");
952 ret = 0;
953 goto on;
954 }
955
956 mutex_unlock(&dev->device_lock);
957 wait_event_timeout(dev->wait_pg,
958 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED,
959 dev->timeouts.d0i3);
960 mutex_lock(&dev->device_lock);
961
962 if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
963 reg = mei_me_d0i3c_read(dev);
964 if (!(reg & H_D0I3C_I3)) {
965 ret = -ETIME;
966 goto out;
967 }
968 }
969
970 ret = 0;
971 on:
972 hw->pg_state = MEI_PG_ON;
973 out:
974 dev->pg_event = MEI_PG_EVENT_IDLE;
975 dev_dbg(dev->dev, "d0i3 enter ret = %d\n", ret);
976 return ret;
977 }
978
979 /**
980 * mei_me_d0i3_enter - perform d0i3 entry procedure
981 * no hbm PG handshake
982 * no waiting for confirmation; runs with interrupts
983 * disabled
984 *
985 * @dev: the device structure
986 *
987 * Return: 0 on success an error code otherwise
988 */
mei_me_d0i3_enter(struct mei_device * dev)989 static int mei_me_d0i3_enter(struct mei_device *dev)
990 {
991 struct mei_me_hw *hw = to_me_hw(dev);
992 u32 reg;
993
994 reg = mei_me_d0i3c_read(dev);
995 if (reg & H_D0I3C_I3) {
996 /* we are in d0i3, nothing to do */
997 dev_dbg(dev->dev, "already d0i3 : set not needed\n");
998 goto on;
999 }
1000
1001 mei_me_d0i3_set(dev, false);
1002 on:
1003 hw->pg_state = MEI_PG_ON;
1004 dev->pg_event = MEI_PG_EVENT_IDLE;
1005 dev_dbg(dev->dev, "d0i3 enter\n");
1006 return 0;
1007 }
1008
1009 /**
1010 * mei_me_d0i3_exit_sync - perform d0i3 exit procedure
1011 *
1012 * @dev: the device structure
1013 *
1014 * Return: 0 on success an error code otherwise
1015 */
mei_me_d0i3_exit_sync(struct mei_device * dev)1016 static int mei_me_d0i3_exit_sync(struct mei_device *dev)
1017 {
1018 struct mei_me_hw *hw = to_me_hw(dev);
1019 int ret;
1020 u32 reg;
1021
1022 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
1023
1024 reg = mei_me_d0i3c_read(dev);
1025 if (!(reg & H_D0I3C_I3)) {
1026 /* we are not in d0i3, nothing to do */
1027 dev_dbg(dev->dev, "d0i3 exit not needed\n");
1028 ret = 0;
1029 goto off;
1030 }
1031
1032 reg = mei_me_d0i3_unset(dev);
1033 if (!(reg & H_D0I3C_CIP)) {
1034 dev_dbg(dev->dev, "d0i3 exit wait not needed\n");
1035 ret = 0;
1036 goto off;
1037 }
1038
1039 mutex_unlock(&dev->device_lock);
1040 wait_event_timeout(dev->wait_pg,
1041 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED,
1042 dev->timeouts.d0i3);
1043 mutex_lock(&dev->device_lock);
1044
1045 if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
1046 reg = mei_me_d0i3c_read(dev);
1047 if (reg & H_D0I3C_I3) {
1048 ret = -ETIME;
1049 goto out;
1050 }
1051 }
1052
1053 ret = 0;
1054 off:
1055 hw->pg_state = MEI_PG_OFF;
1056 out:
1057 dev->pg_event = MEI_PG_EVENT_IDLE;
1058
1059 dev_dbg(dev->dev, "d0i3 exit ret = %d\n", ret);
1060 return ret;
1061 }
1062
1063 /**
1064 * mei_me_pg_legacy_intr - perform legacy pg processing
1065 * in interrupt thread handler
1066 *
1067 * @dev: the device structure
1068 */
mei_me_pg_legacy_intr(struct mei_device * dev)1069 static void mei_me_pg_legacy_intr(struct mei_device *dev)
1070 {
1071 struct mei_me_hw *hw = to_me_hw(dev);
1072
1073 if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
1074 return;
1075
1076 dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
1077 hw->pg_state = MEI_PG_OFF;
1078 if (waitqueue_active(&dev->wait_pg))
1079 wake_up(&dev->wait_pg);
1080 }
1081
1082 /**
1083 * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
1084 *
1085 * @dev: the device structure
1086 * @intr_source: interrupt source
1087 */
mei_me_d0i3_intr(struct mei_device * dev,u32 intr_source)1088 static void mei_me_d0i3_intr(struct mei_device *dev, u32 intr_source)
1089 {
1090 struct mei_me_hw *hw = to_me_hw(dev);
1091
1092 if (dev->pg_event == MEI_PG_EVENT_INTR_WAIT &&
1093 (intr_source & H_D0I3C_IS)) {
1094 dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
1095 if (hw->pg_state == MEI_PG_ON) {
1096 hw->pg_state = MEI_PG_OFF;
1097 if (dev->hbm_state != MEI_HBM_IDLE) {
1098 /*
1099 * force H_RDY because it could be
1100 * wiped off during PG
1101 */
1102 dev_dbg(dev->dev, "d0i3 set host ready\n");
1103 mei_me_host_set_ready(dev);
1104 }
1105 } else {
1106 hw->pg_state = MEI_PG_ON;
1107 }
1108
1109 wake_up(&dev->wait_pg);
1110 }
1111
1112 if (hw->pg_state == MEI_PG_ON && (intr_source & H_IS)) {
1113 /*
1114 * HW sent some data and we are in D0i3, so
1115 * we got here because of HW initiated exit from D0i3.
1116 * Start runtime pm resume sequence to exit low power state.
1117 */
1118 dev_dbg(dev->dev, "d0i3 want resume\n");
1119 mei_hbm_pg_resume(dev);
1120 }
1121 }
1122
1123 /**
1124 * mei_me_pg_intr - perform pg processing in interrupt thread handler
1125 *
1126 * @dev: the device structure
1127 * @intr_source: interrupt source
1128 */
mei_me_pg_intr(struct mei_device * dev,u32 intr_source)1129 static void mei_me_pg_intr(struct mei_device *dev, u32 intr_source)
1130 {
1131 struct mei_me_hw *hw = to_me_hw(dev);
1132
1133 if (hw->d0i3_supported)
1134 mei_me_d0i3_intr(dev, intr_source);
1135 else
1136 mei_me_pg_legacy_intr(dev);
1137 }
1138
1139 /**
1140 * mei_me_pg_enter_sync - perform runtime pm entry procedure
1141 *
1142 * @dev: the device structure
1143 *
1144 * Return: 0 on success an error code otherwise
1145 */
mei_me_pg_enter_sync(struct mei_device * dev)1146 int mei_me_pg_enter_sync(struct mei_device *dev)
1147 {
1148 struct mei_me_hw *hw = to_me_hw(dev);
1149
1150 if (hw->d0i3_supported)
1151 return mei_me_d0i3_enter_sync(dev);
1152 else
1153 return mei_me_pg_legacy_enter_sync(dev);
1154 }
1155
1156 /**
1157 * mei_me_pg_exit_sync - perform runtime pm exit procedure
1158 *
1159 * @dev: the device structure
1160 *
1161 * Return: 0 on success an error code otherwise
1162 */
mei_me_pg_exit_sync(struct mei_device * dev)1163 int mei_me_pg_exit_sync(struct mei_device *dev)
1164 {
1165 struct mei_me_hw *hw = to_me_hw(dev);
1166
1167 if (hw->d0i3_supported)
1168 return mei_me_d0i3_exit_sync(dev);
1169 else
1170 return mei_me_pg_legacy_exit_sync(dev);
1171 }
1172
1173 /**
1174 * mei_me_hw_reset - resets fw via mei csr register.
1175 *
1176 * @dev: the device structure
1177 * @intr_enable: if interrupt should be enabled after reset.
1178 *
1179 * Return: 0 on success an error code otherwise
1180 */
mei_me_hw_reset(struct mei_device * dev,bool intr_enable)1181 static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
1182 {
1183 struct mei_me_hw *hw = to_me_hw(dev);
1184 int ret;
1185 u32 hcsr;
1186
1187 if (intr_enable) {
1188 mei_me_intr_enable(dev);
1189 if (hw->d0i3_supported) {
1190 ret = mei_me_d0i3_exit_sync(dev);
1191 if (ret)
1192 return ret;
1193 } else {
1194 hw->pg_state = MEI_PG_OFF;
1195 }
1196 }
1197
1198 pm_runtime_set_active(dev->dev);
1199
1200 hcsr = mei_hcsr_read(dev);
1201 /* H_RST may be found lit before reset is started,
1202 * for example if preceding reset flow hasn't completed.
1203 * In that case asserting H_RST will be ignored, therefore
1204 * we need to clean H_RST bit to start a successful reset sequence.
1205 */
1206 if ((hcsr & H_RST) == H_RST) {
1207 dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
1208 hcsr &= ~H_RST;
1209 mei_hcsr_set(dev, hcsr);
1210 hcsr = mei_hcsr_read(dev);
1211 }
1212
1213 hcsr |= H_RST | H_IG | H_CSR_IS_MASK;
1214
1215 if (!intr_enable || mei_me_hw_use_polling(to_me_hw(dev)))
1216 hcsr &= ~H_CSR_IE_MASK;
1217
1218 dev->recvd_hw_ready = false;
1219 mei_hcsr_write(dev, hcsr);
1220
1221 /*
1222 * Host reads the H_CSR once to ensure that the
1223 * posted write to H_CSR completes.
1224 */
1225 hcsr = mei_hcsr_read(dev);
1226
1227 if ((hcsr & H_RST) == 0)
1228 dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
1229
1230 if ((hcsr & H_RDY) == H_RDY)
1231 dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
1232
1233 if (!intr_enable) {
1234 mei_me_hw_reset_release(dev);
1235 if (hw->d0i3_supported) {
1236 ret = mei_me_d0i3_enter(dev);
1237 if (ret)
1238 return ret;
1239 }
1240 }
1241 return 0;
1242 }
1243
1244 /**
1245 * mei_me_irq_quick_handler - The ISR of the MEI device
1246 *
1247 * @irq: The irq number
1248 * @dev_id: pointer to the device structure
1249 *
1250 * Return: irqreturn_t
1251 */
mei_me_irq_quick_handler(int irq,void * dev_id)1252 irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
1253 {
1254 struct mei_device *dev = (struct mei_device *)dev_id;
1255 u32 hcsr;
1256
1257 hcsr = mei_hcsr_read(dev);
1258 if (!me_intr_src(hcsr))
1259 return IRQ_NONE;
1260
1261 dev_dbg(dev->dev, "interrupt source 0x%08X\n", me_intr_src(hcsr));
1262
1263 /* disable interrupts on device */
1264 me_intr_disable(dev, hcsr);
1265 return IRQ_WAKE_THREAD;
1266 }
1267 EXPORT_SYMBOL_GPL(mei_me_irq_quick_handler);
1268
1269 /**
1270 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
1271 * processing.
1272 *
1273 * @irq: The irq number
1274 * @dev_id: pointer to the device structure
1275 *
1276 * Return: irqreturn_t
1277 *
1278 */
mei_me_irq_thread_handler(int irq,void * dev_id)1279 irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
1280 {
1281 struct mei_device *dev = (struct mei_device *) dev_id;
1282 struct list_head cmpl_list;
1283 s32 slots;
1284 u32 hcsr;
1285 int rets = 0;
1286
1287 dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
1288 /* initialize our complete list */
1289 mutex_lock(&dev->device_lock);
1290
1291 hcsr = mei_hcsr_read(dev);
1292 me_intr_clear(dev, hcsr);
1293
1294 INIT_LIST_HEAD(&cmpl_list);
1295
1296 /* check if ME wants a reset */
1297 if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
1298 dev_warn(dev->dev, "FW not ready: resetting: dev_state = %d pxp = %d\n",
1299 dev->dev_state, dev->pxp_mode);
1300 if (dev->dev_state == MEI_DEV_POWERING_DOWN ||
1301 dev->dev_state == MEI_DEV_POWER_DOWN)
1302 mei_cl_all_disconnect(dev);
1303 else if (dev->dev_state != MEI_DEV_DISABLED)
1304 schedule_work(&dev->reset_work);
1305 goto end;
1306 }
1307
1308 if (mei_me_hw_is_resetting(dev))
1309 mei_hcsr_set_hig(dev);
1310
1311 mei_me_pg_intr(dev, me_intr_src(hcsr));
1312
1313 /* check if we need to start the dev */
1314 if (!mei_host_is_ready(dev)) {
1315 if (mei_hw_is_ready(dev)) {
1316 dev_dbg(dev->dev, "we need to start the dev.\n");
1317 dev->recvd_hw_ready = true;
1318 wake_up(&dev->wait_hw_ready);
1319 } else {
1320 dev_dbg(dev->dev, "Spurious Interrupt\n");
1321 }
1322 goto end;
1323 }
1324 /* check slots available for reading */
1325 slots = mei_count_full_read_slots(dev);
1326 while (slots > 0) {
1327 dev_dbg(dev->dev, "slots to read = %08x\n", slots);
1328 rets = mei_irq_read_handler(dev, &cmpl_list, &slots);
1329 /* There is a race between ME write and interrupt delivery:
1330 * Not all data is always available immediately after the
1331 * interrupt, so try to read again on the next interrupt.
1332 */
1333 if (rets == -ENODATA)
1334 break;
1335
1336 if (rets) {
1337 dev_err(dev->dev, "mei_irq_read_handler ret = %d, state = %d.\n",
1338 rets, dev->dev_state);
1339 if (dev->dev_state != MEI_DEV_RESETTING &&
1340 dev->dev_state != MEI_DEV_DISABLED &&
1341 dev->dev_state != MEI_DEV_POWERING_DOWN &&
1342 dev->dev_state != MEI_DEV_POWER_DOWN)
1343 schedule_work(&dev->reset_work);
1344 goto end;
1345 }
1346 }
1347
1348 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1349
1350 /*
1351 * During PG handshake only allowed write is the replay to the
1352 * PG exit message, so block calling write function
1353 * if the pg event is in PG handshake
1354 */
1355 if (dev->pg_event != MEI_PG_EVENT_WAIT &&
1356 dev->pg_event != MEI_PG_EVENT_RECEIVED) {
1357 rets = mei_irq_write_handler(dev, &cmpl_list);
1358 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1359 }
1360
1361 mei_irq_compl_handler(dev, &cmpl_list);
1362
1363 end:
1364 dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1365 mei_me_intr_enable(dev);
1366 mutex_unlock(&dev->device_lock);
1367 return IRQ_HANDLED;
1368 }
1369 EXPORT_SYMBOL_GPL(mei_me_irq_thread_handler);
1370
1371 #define MEI_POLLING_TIMEOUT_ACTIVE 100
1372 #define MEI_POLLING_TIMEOUT_IDLE 500
1373
1374 /**
1375 * mei_me_polling_thread - interrupt register polling thread
1376 *
1377 * The thread monitors the interrupt source register and calls
1378 * mei_me_irq_thread_handler() to handle the firmware
1379 * input.
1380 *
1381 * The function polls in MEI_POLLING_TIMEOUT_ACTIVE timeout
1382 * in case there was an event, in idle case the polling
1383 * time increases yet again by MEI_POLLING_TIMEOUT_ACTIVE
1384 * up to MEI_POLLING_TIMEOUT_IDLE.
1385 *
1386 * @_dev: mei device
1387 *
1388 * Return: always 0
1389 */
mei_me_polling_thread(void * _dev)1390 int mei_me_polling_thread(void *_dev)
1391 {
1392 struct mei_device *dev = _dev;
1393 irqreturn_t irq_ret;
1394 long polling_timeout = MEI_POLLING_TIMEOUT_ACTIVE;
1395
1396 dev_dbg(dev->dev, "kernel thread is running\n");
1397 while (!kthread_should_stop()) {
1398 struct mei_me_hw *hw = to_me_hw(dev);
1399 u32 hcsr;
1400
1401 wait_event_timeout(hw->wait_active,
1402 hw->is_active || kthread_should_stop(),
1403 msecs_to_jiffies(MEI_POLLING_TIMEOUT_IDLE));
1404
1405 if (kthread_should_stop())
1406 break;
1407
1408 hcsr = mei_hcsr_read(dev);
1409 if (me_intr_src(hcsr)) {
1410 polling_timeout = MEI_POLLING_TIMEOUT_ACTIVE;
1411 irq_ret = mei_me_irq_thread_handler(1, dev);
1412 if (irq_ret != IRQ_HANDLED)
1413 dev_err(dev->dev, "irq_ret %d\n", irq_ret);
1414 } else {
1415 /*
1416 * Increase timeout by MEI_POLLING_TIMEOUT_ACTIVE
1417 * up to MEI_POLLING_TIMEOUT_IDLE
1418 */
1419 polling_timeout = clamp_val(polling_timeout + MEI_POLLING_TIMEOUT_ACTIVE,
1420 MEI_POLLING_TIMEOUT_ACTIVE,
1421 MEI_POLLING_TIMEOUT_IDLE);
1422 }
1423
1424 schedule_timeout_interruptible(msecs_to_jiffies(polling_timeout));
1425 }
1426
1427 return 0;
1428 }
1429 EXPORT_SYMBOL_GPL(mei_me_polling_thread);
1430
1431 static const struct mei_hw_ops mei_me_hw_ops = {
1432
1433 .trc_status = mei_me_trc_status,
1434 .fw_status = mei_me_fw_status,
1435 .pg_state = mei_me_pg_state,
1436
1437 .host_is_ready = mei_me_host_is_ready,
1438
1439 .hw_is_ready = mei_me_hw_is_ready,
1440 .hw_reset = mei_me_hw_reset,
1441 .hw_config = mei_me_hw_config,
1442 .hw_start = mei_me_hw_start,
1443
1444 .pg_in_transition = mei_me_pg_in_transition,
1445 .pg_is_enabled = mei_me_pg_is_enabled,
1446
1447 .intr_clear = mei_me_intr_clear,
1448 .intr_enable = mei_me_intr_enable,
1449 .intr_disable = mei_me_intr_disable,
1450 .synchronize_irq = mei_me_synchronize_irq,
1451
1452 .hbuf_free_slots = mei_me_hbuf_empty_slots,
1453 .hbuf_is_ready = mei_me_hbuf_is_empty,
1454 .hbuf_depth = mei_me_hbuf_depth,
1455
1456 .write = mei_me_hbuf_write,
1457
1458 .rdbuf_full_slots = mei_me_count_full_read_slots,
1459 .read_hdr = mei_me_mecbrw_read,
1460 .read = mei_me_read_slots
1461 };
1462
1463 /**
1464 * mei_me_fw_type_nm() - check for nm sku
1465 *
1466 * Read ME FW Status register to check for the Node Manager (NM) Firmware.
1467 * The NM FW is only signaled in PCI function 0.
1468 * __Note__: Deprecated by PCH8 and newer.
1469 *
1470 * @pdev: pci device
1471 *
1472 * Return: true in case of NM firmware
1473 */
mei_me_fw_type_nm(const struct pci_dev * pdev)1474 static bool mei_me_fw_type_nm(const struct pci_dev *pdev)
1475 {
1476 u32 reg;
1477 unsigned int devfn;
1478
1479 devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
1480 pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_2, ®);
1481 trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_2", PCI_CFG_HFS_2, reg);
1482 /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
1483 return (reg & 0x600) == 0x200;
1484 }
1485
1486 #define MEI_CFG_FW_NM \
1487 .quirk_probe = mei_me_fw_type_nm
1488
1489 /**
1490 * mei_me_fw_type_sps_4() - check for sps 4.0 sku
1491 *
1492 * Read ME FW Status register to check for SPS Firmware.
1493 * The SPS FW is only signaled in the PCI function 0.
1494 * __Note__: Deprecated by SPS 5.0 and newer.
1495 *
1496 * @pdev: pci device
1497 *
1498 * Return: true in case of SPS firmware
1499 */
mei_me_fw_type_sps_4(const struct pci_dev * pdev)1500 static bool mei_me_fw_type_sps_4(const struct pci_dev *pdev)
1501 {
1502 u32 reg;
1503 unsigned int devfn;
1504
1505 devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
1506 pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_1, ®);
1507 trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
1508 return (reg & PCI_CFG_HFS_1_OPMODE_MSK) == PCI_CFG_HFS_1_OPMODE_SPS;
1509 }
1510
1511 #define MEI_CFG_FW_SPS_4 \
1512 .quirk_probe = mei_me_fw_type_sps_4
1513
1514 /**
1515 * mei_me_fw_type_sps_ign() - check for sps or ign sku
1516 *
1517 * Read ME FW Status register to check for SPS or IGN Firmware.
1518 * The SPS/IGN FW is only signaled in pci function 0
1519 *
1520 * @pdev: pci device
1521 *
1522 * Return: true in case of SPS/IGN firmware
1523 */
mei_me_fw_type_sps_ign(const struct pci_dev * pdev)1524 static bool mei_me_fw_type_sps_ign(const struct pci_dev *pdev)
1525 {
1526 u32 reg;
1527 u32 fw_type;
1528 unsigned int devfn;
1529
1530 devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
1531 pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_3, ®);
1532 trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_3", PCI_CFG_HFS_3, reg);
1533 fw_type = (reg & PCI_CFG_HFS_3_FW_SKU_MSK);
1534
1535 dev_dbg(&pdev->dev, "fw type is %d\n", fw_type);
1536
1537 return fw_type == PCI_CFG_HFS_3_FW_SKU_IGN ||
1538 fw_type == PCI_CFG_HFS_3_FW_SKU_SPS;
1539 }
1540
1541 #define MEI_CFG_KIND_ITOUCH \
1542 .kind = "itouch"
1543
1544 #define MEI_CFG_TYPE_GSC \
1545 .kind = "gsc"
1546
1547 #define MEI_CFG_TYPE_GSCFI \
1548 .kind = "gscfi"
1549
1550 #define MEI_CFG_FW_SPS_IGN \
1551 .quirk_probe = mei_me_fw_type_sps_ign
1552
1553 #define MEI_CFG_FW_VER_SUPP \
1554 .fw_ver_supported = 1
1555
1556 #define MEI_CFG_ICH_HFS \
1557 .fw_status.count = 0
1558
1559 #define MEI_CFG_ICH10_HFS \
1560 .fw_status.count = 1, \
1561 .fw_status.status[0] = PCI_CFG_HFS_1
1562
1563 #define MEI_CFG_PCH_HFS \
1564 .fw_status.count = 2, \
1565 .fw_status.status[0] = PCI_CFG_HFS_1, \
1566 .fw_status.status[1] = PCI_CFG_HFS_2
1567
1568 #define MEI_CFG_PCH8_HFS \
1569 .fw_status.count = 6, \
1570 .fw_status.status[0] = PCI_CFG_HFS_1, \
1571 .fw_status.status[1] = PCI_CFG_HFS_2, \
1572 .fw_status.status[2] = PCI_CFG_HFS_3, \
1573 .fw_status.status[3] = PCI_CFG_HFS_4, \
1574 .fw_status.status[4] = PCI_CFG_HFS_5, \
1575 .fw_status.status[5] = PCI_CFG_HFS_6
1576
1577 #define MEI_CFG_DMA_128 \
1578 .dma_size[DMA_DSCR_HOST] = SZ_128K, \
1579 .dma_size[DMA_DSCR_DEVICE] = SZ_128K, \
1580 .dma_size[DMA_DSCR_CTRL] = PAGE_SIZE
1581
1582 #define MEI_CFG_TRC \
1583 .hw_trc_supported = 1
1584
1585 /* ICH Legacy devices */
1586 static const struct mei_cfg mei_me_ich_cfg = {
1587 MEI_CFG_ICH_HFS,
1588 };
1589
1590 /* ICH devices */
1591 static const struct mei_cfg mei_me_ich10_cfg = {
1592 MEI_CFG_ICH10_HFS,
1593 };
1594
1595 /* PCH6 devices */
1596 static const struct mei_cfg mei_me_pch6_cfg = {
1597 MEI_CFG_PCH_HFS,
1598 };
1599
1600 /* PCH7 devices */
1601 static const struct mei_cfg mei_me_pch7_cfg = {
1602 MEI_CFG_PCH_HFS,
1603 MEI_CFG_FW_VER_SUPP,
1604 };
1605
1606 /* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
1607 static const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
1608 MEI_CFG_PCH_HFS,
1609 MEI_CFG_FW_VER_SUPP,
1610 MEI_CFG_FW_NM,
1611 };
1612
1613 /* PCH8 Lynx Point and newer devices */
1614 static const struct mei_cfg mei_me_pch8_cfg = {
1615 MEI_CFG_PCH8_HFS,
1616 MEI_CFG_FW_VER_SUPP,
1617 };
1618
1619 /* PCH8 Lynx Point and newer devices - iTouch */
1620 static const struct mei_cfg mei_me_pch8_itouch_cfg = {
1621 MEI_CFG_KIND_ITOUCH,
1622 MEI_CFG_PCH8_HFS,
1623 MEI_CFG_FW_VER_SUPP,
1624 };
1625
1626 /* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
1627 static const struct mei_cfg mei_me_pch8_sps_4_cfg = {
1628 MEI_CFG_PCH8_HFS,
1629 MEI_CFG_FW_VER_SUPP,
1630 MEI_CFG_FW_SPS_4,
1631 };
1632
1633 /* LBG with quirk for SPS (4.0) Firmware exclusion */
1634 static const struct mei_cfg mei_me_pch12_sps_4_cfg = {
1635 MEI_CFG_PCH8_HFS,
1636 MEI_CFG_FW_VER_SUPP,
1637 MEI_CFG_FW_SPS_4,
1638 };
1639
1640 /* Cannon Lake and newer devices */
1641 static const struct mei_cfg mei_me_pch12_cfg = {
1642 MEI_CFG_PCH8_HFS,
1643 MEI_CFG_FW_VER_SUPP,
1644 MEI_CFG_DMA_128,
1645 };
1646
1647 /* Cannon Lake with quirk for SPS 5.0 and newer Firmware exclusion */
1648 static const struct mei_cfg mei_me_pch12_sps_cfg = {
1649 MEI_CFG_PCH8_HFS,
1650 MEI_CFG_FW_VER_SUPP,
1651 MEI_CFG_DMA_128,
1652 MEI_CFG_FW_SPS_IGN,
1653 };
1654
1655 /* Cannon Lake itouch with quirk for SPS 5.0 and newer Firmware exclusion
1656 * w/o DMA support.
1657 */
1658 static const struct mei_cfg mei_me_pch12_itouch_sps_cfg = {
1659 MEI_CFG_KIND_ITOUCH,
1660 MEI_CFG_PCH8_HFS,
1661 MEI_CFG_FW_VER_SUPP,
1662 MEI_CFG_FW_SPS_IGN,
1663 };
1664
1665 /* Tiger Lake and newer devices */
1666 static const struct mei_cfg mei_me_pch15_cfg = {
1667 MEI_CFG_PCH8_HFS,
1668 MEI_CFG_FW_VER_SUPP,
1669 MEI_CFG_DMA_128,
1670 MEI_CFG_TRC,
1671 };
1672
1673 /* Tiger Lake with quirk for SPS 5.0 and newer Firmware exclusion */
1674 static const struct mei_cfg mei_me_pch15_sps_cfg = {
1675 MEI_CFG_PCH8_HFS,
1676 MEI_CFG_FW_VER_SUPP,
1677 MEI_CFG_DMA_128,
1678 MEI_CFG_TRC,
1679 MEI_CFG_FW_SPS_IGN,
1680 };
1681
1682 /* Graphics System Controller */
1683 static const struct mei_cfg mei_me_gsc_cfg = {
1684 MEI_CFG_TYPE_GSC,
1685 MEI_CFG_PCH8_HFS,
1686 MEI_CFG_FW_VER_SUPP,
1687 };
1688
1689 /* Graphics System Controller Firmware Interface */
1690 static const struct mei_cfg mei_me_gscfi_cfg = {
1691 MEI_CFG_TYPE_GSCFI,
1692 MEI_CFG_PCH8_HFS,
1693 MEI_CFG_FW_VER_SUPP,
1694 };
1695
1696 /*
1697 * mei_cfg_list - A list of platform platform specific configurations.
1698 * Note: has to be synchronized with enum mei_cfg_idx.
1699 */
1700 static const struct mei_cfg *const mei_cfg_list[] = {
1701 [MEI_ME_UNDEF_CFG] = NULL,
1702 [MEI_ME_ICH_CFG] = &mei_me_ich_cfg,
1703 [MEI_ME_ICH10_CFG] = &mei_me_ich10_cfg,
1704 [MEI_ME_PCH6_CFG] = &mei_me_pch6_cfg,
1705 [MEI_ME_PCH7_CFG] = &mei_me_pch7_cfg,
1706 [MEI_ME_PCH_CPT_PBG_CFG] = &mei_me_pch_cpt_pbg_cfg,
1707 [MEI_ME_PCH8_CFG] = &mei_me_pch8_cfg,
1708 [MEI_ME_PCH8_ITOUCH_CFG] = &mei_me_pch8_itouch_cfg,
1709 [MEI_ME_PCH8_SPS_4_CFG] = &mei_me_pch8_sps_4_cfg,
1710 [MEI_ME_PCH12_CFG] = &mei_me_pch12_cfg,
1711 [MEI_ME_PCH12_SPS_4_CFG] = &mei_me_pch12_sps_4_cfg,
1712 [MEI_ME_PCH12_SPS_CFG] = &mei_me_pch12_sps_cfg,
1713 [MEI_ME_PCH12_SPS_ITOUCH_CFG] = &mei_me_pch12_itouch_sps_cfg,
1714 [MEI_ME_PCH15_CFG] = &mei_me_pch15_cfg,
1715 [MEI_ME_PCH15_SPS_CFG] = &mei_me_pch15_sps_cfg,
1716 [MEI_ME_GSC_CFG] = &mei_me_gsc_cfg,
1717 [MEI_ME_GSCFI_CFG] = &mei_me_gscfi_cfg,
1718 };
1719
mei_me_get_cfg(kernel_ulong_t idx)1720 const struct mei_cfg *mei_me_get_cfg(kernel_ulong_t idx)
1721 {
1722 BUILD_BUG_ON(ARRAY_SIZE(mei_cfg_list) != MEI_ME_NUM_CFG);
1723
1724 if (idx >= MEI_ME_NUM_CFG)
1725 return NULL;
1726
1727 return mei_cfg_list[idx];
1728 }
1729 EXPORT_SYMBOL_GPL(mei_me_get_cfg);
1730
1731 /**
1732 * mei_me_dev_init - allocates and initializes the mei device structure
1733 *
1734 * @parent: device associated with physical device (pci/platform)
1735 * @cfg: per device generation config
1736 * @slow_fw: configure longer timeouts as FW is slow
1737 *
1738 * Return: The mei_device pointer on success, NULL on failure.
1739 */
mei_me_dev_init(struct device * parent,const struct mei_cfg * cfg,bool slow_fw)1740 struct mei_device *mei_me_dev_init(struct device *parent,
1741 const struct mei_cfg *cfg, bool slow_fw)
1742 {
1743 struct mei_device *dev;
1744 struct mei_me_hw *hw;
1745 int i;
1746
1747 dev = devm_kzalloc(parent, sizeof(*dev) + sizeof(*hw), GFP_KERNEL);
1748 if (!dev)
1749 return NULL;
1750
1751 hw = to_me_hw(dev);
1752
1753 for (i = 0; i < DMA_DSCR_NUM; i++)
1754 dev->dr_dscr[i].size = cfg->dma_size[i];
1755
1756 mei_device_init(dev, parent, slow_fw, &mei_me_hw_ops);
1757 hw->cfg = cfg;
1758
1759 dev->fw_f_fw_ver_supported = cfg->fw_ver_supported;
1760
1761 dev->kind = cfg->kind;
1762
1763 return dev;
1764 }
1765 EXPORT_SYMBOL_GPL(mei_me_dev_init);
1766