1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2010-2017 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 *
5 * membarrier system call
6 */
7
8 /*
9 * For documentation purposes, here are some membarrier ordering
10 * scenarios to keep in mind:
11 *
12 * A) Userspace thread execution after IPI vs membarrier's memory
13 * barrier before sending the IPI
14 *
15 * Userspace variables:
16 *
17 * int x = 0, y = 0;
18 *
19 * The memory barrier at the start of membarrier() on CPU0 is necessary in
20 * order to enforce the guarantee that any writes occurring on CPU0 before
21 * the membarrier() is executed will be visible to any code executing on
22 * CPU1 after the IPI-induced memory barrier:
23 *
24 * CPU0 CPU1
25 *
26 * x = 1
27 * membarrier():
28 * a: smp_mb()
29 * b: send IPI IPI-induced mb
30 * c: smp_mb()
31 * r2 = y
32 * y = 1
33 * barrier()
34 * r1 = x
35 *
36 * BUG_ON(r1 == 0 && r2 == 0)
37 *
38 * The write to y and load from x by CPU1 are unordered by the hardware,
39 * so it's possible to have "r1 = x" reordered before "y = 1" at any
40 * point after (b). If the memory barrier at (a) is omitted, then "x = 1"
41 * can be reordered after (a) (although not after (c)), so we get r1 == 0
42 * and r2 == 0. This violates the guarantee that membarrier() is
43 * supposed by provide.
44 *
45 * The timing of the memory barrier at (a) has to ensure that it executes
46 * before the IPI-induced memory barrier on CPU1.
47 *
48 * B) Userspace thread execution before IPI vs membarrier's memory
49 * barrier after completing the IPI
50 *
51 * Userspace variables:
52 *
53 * int x = 0, y = 0;
54 *
55 * The memory barrier at the end of membarrier() on CPU0 is necessary in
56 * order to enforce the guarantee that any writes occurring on CPU1 before
57 * the membarrier() is executed will be visible to any code executing on
58 * CPU0 after the membarrier():
59 *
60 * CPU0 CPU1
61 *
62 * x = 1
63 * barrier()
64 * y = 1
65 * r2 = y
66 * membarrier():
67 * a: smp_mb()
68 * b: send IPI IPI-induced mb
69 * c: smp_mb()
70 * r1 = x
71 * BUG_ON(r1 == 0 && r2 == 1)
72 *
73 * The writes to x and y are unordered by the hardware, so it's possible to
74 * have "r2 = 1" even though the write to x doesn't execute until (b). If
75 * the memory barrier at (c) is omitted then "r1 = x" can be reordered
76 * before (b) (although not before (a)), so we get "r1 = 0". This violates
77 * the guarantee that membarrier() is supposed to provide.
78 *
79 * The timing of the memory barrier at (c) has to ensure that it executes
80 * after the IPI-induced memory barrier on CPU1.
81 *
82 * C) Scheduling userspace thread -> kthread -> userspace thread vs membarrier
83 *
84 * CPU0 CPU1
85 *
86 * membarrier():
87 * a: smp_mb()
88 * d: switch to kthread (includes mb)
89 * b: read rq->curr->mm == NULL
90 * e: switch to user (includes mb)
91 * c: smp_mb()
92 *
93 * Using the scenario from (A), we can show that (a) needs to be paired
94 * with (e). Using the scenario from (B), we can show that (c) needs to
95 * be paired with (d).
96 *
97 * D) exit_mm vs membarrier
98 *
99 * Two thread groups are created, A and B. Thread group B is created by
100 * issuing clone from group A with flag CLONE_VM set, but not CLONE_THREAD.
101 * Let's assume we have a single thread within each thread group (Thread A
102 * and Thread B). Thread A runs on CPU0, Thread B runs on CPU1.
103 *
104 * CPU0 CPU1
105 *
106 * membarrier():
107 * a: smp_mb()
108 * exit_mm():
109 * d: smp_mb()
110 * e: current->mm = NULL
111 * b: read rq->curr->mm == NULL
112 * c: smp_mb()
113 *
114 * Using scenario (B), we can show that (c) needs to be paired with (d).
115 *
116 * E) kthread_{use,unuse}_mm vs membarrier
117 *
118 * CPU0 CPU1
119 *
120 * membarrier():
121 * a: smp_mb()
122 * kthread_unuse_mm()
123 * d: smp_mb()
124 * e: current->mm = NULL
125 * b: read rq->curr->mm == NULL
126 * kthread_use_mm()
127 * f: current->mm = mm
128 * g: smp_mb()
129 * c: smp_mb()
130 *
131 * Using the scenario from (A), we can show that (a) needs to be paired
132 * with (g). Using the scenario from (B), we can show that (c) needs to
133 * be paired with (d).
134 */
135
136 /*
137 * Bitmask made from a "or" of all commands within enum membarrier_cmd,
138 * except MEMBARRIER_CMD_QUERY.
139 */
140 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE
141 #define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK \
142 (MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE \
143 | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE)
144 #else
145 #define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK 0
146 #endif
147
148 #ifdef CONFIG_RSEQ
149 #define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK \
150 (MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ \
151 | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ)
152 #else
153 #define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK 0
154 #endif
155
156 #define MEMBARRIER_CMD_BITMASK \
157 (MEMBARRIER_CMD_GLOBAL | MEMBARRIER_CMD_GLOBAL_EXPEDITED \
158 | MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED \
159 | MEMBARRIER_CMD_PRIVATE_EXPEDITED \
160 | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED \
161 | MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK \
162 | MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK)
163
164 static DEFINE_MUTEX(membarrier_ipi_mutex);
165 #define SERIALIZE_IPI() guard(mutex)(&membarrier_ipi_mutex)
166
ipi_mb(void * info)167 static void ipi_mb(void *info)
168 {
169 smp_mb(); /* IPIs should be serializing but paranoid. */
170 }
171
ipi_sync_core(void * info)172 static void ipi_sync_core(void *info)
173 {
174 /*
175 * The smp_mb() in membarrier after all the IPIs is supposed to
176 * ensure that memory on remote CPUs that occur before the IPI
177 * become visible to membarrier()'s caller -- see scenario B in
178 * the big comment at the top of this file.
179 *
180 * A sync_core() would provide this guarantee, but
181 * sync_core_before_usermode() might end up being deferred until
182 * after membarrier()'s smp_mb().
183 */
184 smp_mb(); /* IPIs should be serializing but paranoid. */
185
186 sync_core_before_usermode();
187 }
188
ipi_rseq(void * info)189 static void ipi_rseq(void *info)
190 {
191 /*
192 * Ensure that all stores done by the calling thread are visible
193 * to the current task before the current task resumes. We could
194 * probably optimize this away on most architectures, but by the
195 * time we've already sent an IPI, the cost of the extra smp_mb()
196 * is negligible.
197 */
198 smp_mb();
199 rseq_preempt(current);
200 }
201
ipi_sync_rq_state(void * info)202 static void ipi_sync_rq_state(void *info)
203 {
204 struct mm_struct *mm = (struct mm_struct *) info;
205
206 if (current->mm != mm)
207 return;
208 this_cpu_write(runqueues.membarrier_state,
209 atomic_read(&mm->membarrier_state));
210 /*
211 * Issue a memory barrier after setting
212 * MEMBARRIER_STATE_GLOBAL_EXPEDITED in the current runqueue to
213 * guarantee that no memory access following registration is reordered
214 * before registration.
215 */
216 smp_mb();
217 }
218
membarrier_exec_mmap(struct mm_struct * mm)219 void membarrier_exec_mmap(struct mm_struct *mm)
220 {
221 /*
222 * Issue a memory barrier before clearing membarrier_state to
223 * guarantee that no memory access prior to exec is reordered after
224 * clearing this state.
225 */
226 smp_mb();
227 atomic_set(&mm->membarrier_state, 0);
228 /*
229 * Keep the runqueue membarrier_state in sync with this mm
230 * membarrier_state.
231 */
232 this_cpu_write(runqueues.membarrier_state, 0);
233 }
234
membarrier_update_current_mm(struct mm_struct * next_mm)235 void membarrier_update_current_mm(struct mm_struct *next_mm)
236 {
237 struct rq *rq = this_rq();
238 int membarrier_state = 0;
239
240 if (next_mm)
241 membarrier_state = atomic_read(&next_mm->membarrier_state);
242 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
243 return;
244 WRITE_ONCE(rq->membarrier_state, membarrier_state);
245 }
246
membarrier_global_expedited(void)247 static int membarrier_global_expedited(void)
248 {
249 int cpu;
250 cpumask_var_t tmpmask;
251
252 if (num_online_cpus() == 1)
253 return 0;
254
255 /*
256 * Matches memory barriers around rq->curr modification in
257 * scheduler.
258 */
259 smp_mb(); /* system call entry is not a mb. */
260
261 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
262 return -ENOMEM;
263
264 SERIALIZE_IPI();
265 cpus_read_lock();
266 rcu_read_lock();
267 for_each_online_cpu(cpu) {
268 struct task_struct *p;
269
270 /*
271 * Skipping the current CPU is OK even through we can be
272 * migrated at any point. The current CPU, at the point
273 * where we read raw_smp_processor_id(), is ensured to
274 * be in program order with respect to the caller
275 * thread. Therefore, we can skip this CPU from the
276 * iteration.
277 */
278 if (cpu == raw_smp_processor_id())
279 continue;
280
281 if (!(READ_ONCE(cpu_rq(cpu)->membarrier_state) &
282 MEMBARRIER_STATE_GLOBAL_EXPEDITED))
283 continue;
284
285 /*
286 * Skip the CPU if it runs a kernel thread which is not using
287 * a task mm.
288 */
289 p = rcu_dereference(cpu_rq(cpu)->curr);
290 if (!p->mm)
291 continue;
292
293 __cpumask_set_cpu(cpu, tmpmask);
294 }
295 rcu_read_unlock();
296
297 preempt_disable();
298 smp_call_function_many(tmpmask, ipi_mb, NULL, 1);
299 preempt_enable();
300
301 free_cpumask_var(tmpmask);
302 cpus_read_unlock();
303
304 /*
305 * Memory barrier on the caller thread _after_ we finished
306 * waiting for the last IPI. Matches memory barriers around
307 * rq->curr modification in scheduler.
308 */
309 smp_mb(); /* exit from system call is not a mb */
310 return 0;
311 }
312
membarrier_private_expedited(int flags,int cpu_id)313 static int membarrier_private_expedited(int flags, int cpu_id)
314 {
315 cpumask_var_t tmpmask;
316 struct mm_struct *mm = current->mm;
317 smp_call_func_t ipi_func = ipi_mb;
318
319 if (flags == MEMBARRIER_FLAG_SYNC_CORE) {
320 if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE))
321 return -EINVAL;
322 if (!(atomic_read(&mm->membarrier_state) &
323 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY))
324 return -EPERM;
325 ipi_func = ipi_sync_core;
326 } else if (flags == MEMBARRIER_FLAG_RSEQ) {
327 if (!IS_ENABLED(CONFIG_RSEQ))
328 return -EINVAL;
329 if (!(atomic_read(&mm->membarrier_state) &
330 MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY))
331 return -EPERM;
332 ipi_func = ipi_rseq;
333 } else {
334 WARN_ON_ONCE(flags);
335 if (!(atomic_read(&mm->membarrier_state) &
336 MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY))
337 return -EPERM;
338 }
339
340 if (flags != MEMBARRIER_FLAG_SYNC_CORE &&
341 (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1))
342 return 0;
343
344 /*
345 * Matches memory barriers around rq->curr modification in
346 * scheduler.
347 */
348 smp_mb(); /* system call entry is not a mb. */
349
350 if (cpu_id < 0 && !zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
351 return -ENOMEM;
352
353 SERIALIZE_IPI();
354 cpus_read_lock();
355
356 if (cpu_id >= 0) {
357 struct task_struct *p;
358
359 if (cpu_id >= nr_cpu_ids || !cpu_online(cpu_id))
360 goto out;
361 rcu_read_lock();
362 p = rcu_dereference(cpu_rq(cpu_id)->curr);
363 if (!p || p->mm != mm) {
364 rcu_read_unlock();
365 goto out;
366 }
367 rcu_read_unlock();
368 } else {
369 int cpu;
370
371 rcu_read_lock();
372 for_each_online_cpu(cpu) {
373 struct task_struct *p;
374
375 p = rcu_dereference(cpu_rq(cpu)->curr);
376 if (p && p->mm == mm)
377 __cpumask_set_cpu(cpu, tmpmask);
378 }
379 rcu_read_unlock();
380 }
381
382 if (cpu_id >= 0) {
383 /*
384 * smp_call_function_single() will call ipi_func() if cpu_id
385 * is the calling CPU.
386 */
387 smp_call_function_single(cpu_id, ipi_func, NULL, 1);
388 } else {
389 /*
390 * For regular membarrier, we can save a few cycles by
391 * skipping the current cpu -- we're about to do smp_mb()
392 * below, and if we migrate to a different cpu, this cpu
393 * and the new cpu will execute a full barrier in the
394 * scheduler.
395 *
396 * For SYNC_CORE, we do need a barrier on the current cpu --
397 * otherwise, if we are migrated and replaced by a different
398 * task in the same mm just before, during, or after
399 * membarrier, we will end up with some thread in the mm
400 * running without a core sync.
401 *
402 * For RSEQ, don't rseq_preempt() the caller. User code
403 * is not supposed to issue syscalls at all from inside an
404 * rseq critical section.
405 */
406 if (flags != MEMBARRIER_FLAG_SYNC_CORE) {
407 preempt_disable();
408 smp_call_function_many(tmpmask, ipi_func, NULL, true);
409 preempt_enable();
410 } else {
411 on_each_cpu_mask(tmpmask, ipi_func, NULL, true);
412 }
413 }
414
415 out:
416 if (cpu_id < 0)
417 free_cpumask_var(tmpmask);
418 cpus_read_unlock();
419
420 /*
421 * Memory barrier on the caller thread _after_ we finished
422 * waiting for the last IPI. Matches memory barriers around
423 * rq->curr modification in scheduler.
424 */
425 smp_mb(); /* exit from system call is not a mb */
426
427 return 0;
428 }
429
sync_runqueues_membarrier_state(struct mm_struct * mm)430 static int sync_runqueues_membarrier_state(struct mm_struct *mm)
431 {
432 int membarrier_state = atomic_read(&mm->membarrier_state);
433 cpumask_var_t tmpmask;
434 int cpu;
435
436 if (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1) {
437 this_cpu_write(runqueues.membarrier_state, membarrier_state);
438
439 /*
440 * For single mm user, we can simply issue a memory barrier
441 * after setting MEMBARRIER_STATE_GLOBAL_EXPEDITED in the
442 * mm and in the current runqueue to guarantee that no memory
443 * access following registration is reordered before
444 * registration.
445 */
446 smp_mb();
447 return 0;
448 }
449
450 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
451 return -ENOMEM;
452
453 /*
454 * For mm with multiple users, we need to ensure all future
455 * scheduler executions will observe @mm's new membarrier
456 * state.
457 */
458 synchronize_rcu();
459
460 /*
461 * For each cpu runqueue, if the task's mm match @mm, ensure that all
462 * @mm's membarrier state set bits are also set in the runqueue's
463 * membarrier state. This ensures that a runqueue scheduling
464 * between threads which are users of @mm has its membarrier state
465 * updated.
466 */
467 SERIALIZE_IPI();
468 cpus_read_lock();
469 rcu_read_lock();
470 for_each_online_cpu(cpu) {
471 struct rq *rq = cpu_rq(cpu);
472 struct task_struct *p;
473
474 p = rcu_dereference(rq->curr);
475 if (p && p->mm == mm)
476 __cpumask_set_cpu(cpu, tmpmask);
477 }
478 rcu_read_unlock();
479
480 on_each_cpu_mask(tmpmask, ipi_sync_rq_state, mm, true);
481
482 free_cpumask_var(tmpmask);
483 cpus_read_unlock();
484
485 return 0;
486 }
487
membarrier_register_global_expedited(void)488 static int membarrier_register_global_expedited(void)
489 {
490 struct task_struct *p = current;
491 struct mm_struct *mm = p->mm;
492 int ret;
493
494 if (atomic_read(&mm->membarrier_state) &
495 MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY)
496 return 0;
497 atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED, &mm->membarrier_state);
498 ret = sync_runqueues_membarrier_state(mm);
499 if (ret)
500 return ret;
501 atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY,
502 &mm->membarrier_state);
503
504 return 0;
505 }
506
membarrier_register_private_expedited(int flags)507 static int membarrier_register_private_expedited(int flags)
508 {
509 struct task_struct *p = current;
510 struct mm_struct *mm = p->mm;
511 int ready_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY,
512 set_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED,
513 ret;
514
515 if (flags == MEMBARRIER_FLAG_SYNC_CORE) {
516 if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE))
517 return -EINVAL;
518 ready_state =
519 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY;
520 } else if (flags == MEMBARRIER_FLAG_RSEQ) {
521 if (!IS_ENABLED(CONFIG_RSEQ))
522 return -EINVAL;
523 ready_state =
524 MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY;
525 } else {
526 WARN_ON_ONCE(flags);
527 }
528
529 /*
530 * We need to consider threads belonging to different thread
531 * groups, which use the same mm. (CLONE_VM but not
532 * CLONE_THREAD).
533 */
534 if ((atomic_read(&mm->membarrier_state) & ready_state) == ready_state)
535 return 0;
536 if (flags & MEMBARRIER_FLAG_SYNC_CORE)
537 set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE;
538 if (flags & MEMBARRIER_FLAG_RSEQ)
539 set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ;
540 atomic_or(set_state, &mm->membarrier_state);
541 ret = sync_runqueues_membarrier_state(mm);
542 if (ret)
543 return ret;
544 atomic_or(ready_state, &mm->membarrier_state);
545
546 return 0;
547 }
548
549 /**
550 * sys_membarrier - issue memory barriers on a set of threads
551 * @cmd: Takes command values defined in enum membarrier_cmd.
552 * @flags: Currently needs to be 0 for all commands other than
553 * MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ: in the latter
554 * case it can be MEMBARRIER_CMD_FLAG_CPU, indicating that @cpu_id
555 * contains the CPU on which to interrupt (= restart)
556 * the RSEQ critical section.
557 * @cpu_id: if @flags == MEMBARRIER_CMD_FLAG_CPU, indicates the cpu on which
558 * RSEQ CS should be interrupted (@cmd must be
559 * MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ).
560 *
561 * If this system call is not implemented, -ENOSYS is returned. If the
562 * command specified does not exist, not available on the running
563 * kernel, or if the command argument is invalid, this system call
564 * returns -EINVAL. For a given command, with flags argument set to 0,
565 * if this system call returns -ENOSYS or -EINVAL, it is guaranteed to
566 * always return the same value until reboot. In addition, it can return
567 * -ENOMEM if there is not enough memory available to perform the system
568 * call.
569 *
570 * All memory accesses performed in program order from each targeted thread
571 * is guaranteed to be ordered with respect to sys_membarrier(). If we use
572 * the semantic "barrier()" to represent a compiler barrier forcing memory
573 * accesses to be performed in program order across the barrier, and
574 * smp_mb() to represent explicit memory barriers forcing full memory
575 * ordering across the barrier, we have the following ordering table for
576 * each pair of barrier(), sys_membarrier() and smp_mb():
577 *
578 * The pair ordering is detailed as (O: ordered, X: not ordered):
579 *
580 * barrier() smp_mb() sys_membarrier()
581 * barrier() X X O
582 * smp_mb() X O O
583 * sys_membarrier() O O O
584 */
SYSCALL_DEFINE3(membarrier,int,cmd,unsigned int,flags,int,cpu_id)585 SYSCALL_DEFINE3(membarrier, int, cmd, unsigned int, flags, int, cpu_id)
586 {
587 switch (cmd) {
588 case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ:
589 if (unlikely(flags && flags != MEMBARRIER_CMD_FLAG_CPU))
590 return -EINVAL;
591 break;
592 default:
593 if (unlikely(flags))
594 return -EINVAL;
595 }
596
597 if (!(flags & MEMBARRIER_CMD_FLAG_CPU))
598 cpu_id = -1;
599
600 switch (cmd) {
601 case MEMBARRIER_CMD_QUERY:
602 {
603 int cmd_mask = MEMBARRIER_CMD_BITMASK;
604
605 if (tick_nohz_full_enabled())
606 cmd_mask &= ~MEMBARRIER_CMD_GLOBAL;
607 return cmd_mask;
608 }
609 case MEMBARRIER_CMD_GLOBAL:
610 /* MEMBARRIER_CMD_GLOBAL is not compatible with nohz_full. */
611 if (tick_nohz_full_enabled())
612 return -EINVAL;
613 if (num_online_cpus() > 1)
614 synchronize_rcu();
615 return 0;
616 case MEMBARRIER_CMD_GLOBAL_EXPEDITED:
617 return membarrier_global_expedited();
618 case MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED:
619 return membarrier_register_global_expedited();
620 case MEMBARRIER_CMD_PRIVATE_EXPEDITED:
621 return membarrier_private_expedited(0, cpu_id);
622 case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED:
623 return membarrier_register_private_expedited(0);
624 case MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE:
625 return membarrier_private_expedited(MEMBARRIER_FLAG_SYNC_CORE, cpu_id);
626 case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE:
627 return membarrier_register_private_expedited(MEMBARRIER_FLAG_SYNC_CORE);
628 case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ:
629 return membarrier_private_expedited(MEMBARRIER_FLAG_RSEQ, cpu_id);
630 case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ:
631 return membarrier_register_private_expedited(MEMBARRIER_FLAG_RSEQ);
632 default:
633 return -EINVAL;
634 }
635 }
636