1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block driver for media (i.e., flash cards)
4 *
5 * Copyright 2002 Hewlett-Packard Company
6 * Copyright 2005-2008 Pierre Ossman
7 *
8 * Use consistent with the GNU GPL is permitted,
9 * provided that this copyright notice is
10 * preserved in its entirety in all copies and derived works.
11 *
12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 *
16 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 *
18 * Author: Andrew Christian
19 * 28 May 2002
20 */
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kref.h>
32 #include <linux/blkdev.h>
33 #include <linux/cdev.h>
34 #include <linux/mutex.h>
35 #include <linux/scatterlist.h>
36 #include <linux/string_helpers.h>
37 #include <linux/delay.h>
38 #include <linux/capability.h>
39 #include <linux/compat.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/idr.h>
42 #include <linux/debugfs.h>
43
44 #include <linux/mmc/ioctl.h>
45 #include <linux/mmc/card.h>
46 #include <linux/mmc/host.h>
47 #include <linux/mmc/mmc.h>
48 #include <linux/mmc/sd.h>
49 #include <trace/hooks/mmc.h>
50
51 #include <linux/uaccess.h>
52
53 #include <trace/hooks/mmc.h>
54
55 #include "queue.h"
56 #include "block.h"
57 #include "core.h"
58 #include "card.h"
59 #include "crypto.h"
60 #include "host.h"
61 #include "bus.h"
62 #include "mmc_ops.h"
63 #include "quirks.h"
64 #include "sd_ops.h"
65
66 MODULE_ALIAS("mmc:block");
67 #ifdef MODULE_PARAM_PREFIX
68 #undef MODULE_PARAM_PREFIX
69 #endif
70 #define MODULE_PARAM_PREFIX "mmcblk."
71
72 /*
73 * Set a 10 second timeout for polling write request busy state. Note, mmc core
74 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
75 * second software timer to timeout the whole request, so 10 seconds should be
76 * ample.
77 */
78 #define MMC_BLK_TIMEOUT_MS (10 * 1000)
79 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
80 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
81
82 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
83 (rq_data_dir(req) == WRITE))
84 static DEFINE_MUTEX(block_mutex);
85
86 /*
87 * The defaults come from config options but can be overriden by module
88 * or bootarg options.
89 */
90 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
91
92 /*
93 * We've only got one major, so number of mmcblk devices is
94 * limited to (1 << 20) / number of minors per device. It is also
95 * limited by the MAX_DEVICES below.
96 */
97 static int max_devices;
98
99 #define MAX_DEVICES 256
100
101 static DEFINE_IDA(mmc_blk_ida);
102 static DEFINE_IDA(mmc_rpmb_ida);
103
104 struct mmc_blk_busy_data {
105 struct mmc_card *card;
106 u32 status;
107 };
108
109 /*
110 * There is one mmc_blk_data per slot.
111 */
112 struct mmc_blk_data {
113 struct device *parent;
114 struct gendisk *disk;
115 struct mmc_queue queue;
116 struct list_head part;
117 struct list_head rpmbs;
118
119 unsigned int flags;
120 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
121 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
122
123 struct kref kref;
124 unsigned int read_only;
125 unsigned int part_type;
126 unsigned int reset_done;
127 #define MMC_BLK_READ BIT(0)
128 #define MMC_BLK_WRITE BIT(1)
129 #define MMC_BLK_DISCARD BIT(2)
130 #define MMC_BLK_SECDISCARD BIT(3)
131 #define MMC_BLK_CQE_RECOVERY BIT(4)
132 #define MMC_BLK_TRIM BIT(5)
133
134 /*
135 * Only set in main mmc_blk_data associated
136 * with mmc_card with dev_set_drvdata, and keeps
137 * track of the current selected device partition.
138 */
139 unsigned int part_curr;
140 #define MMC_BLK_PART_INVALID UINT_MAX /* Unknown partition active */
141 int area_type;
142
143 /* debugfs files (only in main mmc_blk_data) */
144 struct dentry *status_dentry;
145 struct dentry *ext_csd_dentry;
146 };
147
148 /* Device type for RPMB character devices */
149 static dev_t mmc_rpmb_devt;
150
151 /* Bus type for RPMB character devices */
152 static struct bus_type mmc_rpmb_bus_type = {
153 .name = "mmc_rpmb",
154 };
155
156 /**
157 * struct mmc_rpmb_data - special RPMB device type for these areas
158 * @dev: the device for the RPMB area
159 * @chrdev: character device for the RPMB area
160 * @id: unique device ID number
161 * @part_index: partition index (0 on first)
162 * @md: parent MMC block device
163 * @node: list item, so we can put this device on a list
164 */
165 struct mmc_rpmb_data {
166 struct device dev;
167 struct cdev chrdev;
168 int id;
169 unsigned int part_index;
170 struct mmc_blk_data *md;
171 struct list_head node;
172 };
173
174 static DEFINE_MUTEX(open_lock);
175
176 module_param(perdev_minors, int, 0444);
177 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
178
179 static inline int mmc_blk_part_switch(struct mmc_card *card,
180 unsigned int part_type);
181 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
182 struct mmc_card *card,
183 int recovery_mode,
184 struct mmc_queue *mq);
185 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
186 static int mmc_spi_err_check(struct mmc_card *card);
187 static int mmc_blk_busy_cb(void *cb_data, bool *busy);
188
mmc_blk_get(struct gendisk * disk)189 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
190 {
191 struct mmc_blk_data *md;
192
193 mutex_lock(&open_lock);
194 md = disk->private_data;
195 if (md && !kref_get_unless_zero(&md->kref))
196 md = NULL;
197 mutex_unlock(&open_lock);
198
199 return md;
200 }
201
mmc_get_devidx(struct gendisk * disk)202 static inline int mmc_get_devidx(struct gendisk *disk)
203 {
204 int devidx = disk->first_minor / perdev_minors;
205 return devidx;
206 }
207
mmc_blk_kref_release(struct kref * ref)208 static void mmc_blk_kref_release(struct kref *ref)
209 {
210 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
211 int devidx;
212
213 devidx = mmc_get_devidx(md->disk);
214 ida_simple_remove(&mmc_blk_ida, devidx);
215
216 mutex_lock(&open_lock);
217 md->disk->private_data = NULL;
218 mutex_unlock(&open_lock);
219
220 put_disk(md->disk);
221 kfree(md);
222 }
223
mmc_blk_put(struct mmc_blk_data * md)224 static void mmc_blk_put(struct mmc_blk_data *md)
225 {
226 kref_put(&md->kref, mmc_blk_kref_release);
227 }
228
power_ro_lock_show(struct device * dev,struct device_attribute * attr,char * buf)229 static ssize_t power_ro_lock_show(struct device *dev,
230 struct device_attribute *attr, char *buf)
231 {
232 int ret;
233 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
234 struct mmc_card *card = md->queue.card;
235 int locked = 0;
236
237 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
238 locked = 2;
239 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
240 locked = 1;
241
242 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
243
244 mmc_blk_put(md);
245
246 return ret;
247 }
248
power_ro_lock_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)249 static ssize_t power_ro_lock_store(struct device *dev,
250 struct device_attribute *attr, const char *buf, size_t count)
251 {
252 int ret;
253 struct mmc_blk_data *md, *part_md;
254 struct mmc_queue *mq;
255 struct request *req;
256 unsigned long set;
257
258 if (kstrtoul(buf, 0, &set))
259 return -EINVAL;
260
261 if (set != 1)
262 return count;
263
264 md = mmc_blk_get(dev_to_disk(dev));
265 mq = &md->queue;
266
267 /* Dispatch locking to the block layer */
268 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
269 if (IS_ERR(req)) {
270 count = PTR_ERR(req);
271 goto out_put;
272 }
273 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
274 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
275 blk_execute_rq(req, false);
276 ret = req_to_mmc_queue_req(req)->drv_op_result;
277 blk_mq_free_request(req);
278
279 if (!ret) {
280 pr_info("%s: Locking boot partition ro until next power on\n",
281 md->disk->disk_name);
282 set_disk_ro(md->disk, 1);
283
284 list_for_each_entry(part_md, &md->part, part)
285 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
286 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
287 set_disk_ro(part_md->disk, 1);
288 }
289 }
290 out_put:
291 mmc_blk_put(md);
292 return count;
293 }
294
295 static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
296 power_ro_lock_show, power_ro_lock_store);
297
force_ro_show(struct device * dev,struct device_attribute * attr,char * buf)298 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
299 char *buf)
300 {
301 int ret;
302 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
303
304 ret = snprintf(buf, PAGE_SIZE, "%d\n",
305 get_disk_ro(dev_to_disk(dev)) ^
306 md->read_only);
307 mmc_blk_put(md);
308 return ret;
309 }
310
force_ro_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)311 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
312 const char *buf, size_t count)
313 {
314 int ret;
315 char *end;
316 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
317 unsigned long set = simple_strtoul(buf, &end, 0);
318 if (end == buf) {
319 ret = -EINVAL;
320 goto out;
321 }
322
323 set_disk_ro(dev_to_disk(dev), set || md->read_only);
324 ret = count;
325 out:
326 mmc_blk_put(md);
327 return ret;
328 }
329
330 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
331
332 static struct attribute *mmc_disk_attrs[] = {
333 &dev_attr_force_ro.attr,
334 &dev_attr_ro_lock_until_next_power_on.attr,
335 NULL,
336 };
337
mmc_disk_attrs_is_visible(struct kobject * kobj,struct attribute * a,int n)338 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
339 struct attribute *a, int n)
340 {
341 struct device *dev = kobj_to_dev(kobj);
342 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
343 umode_t mode = a->mode;
344
345 if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
346 (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
347 md->queue.card->ext_csd.boot_ro_lockable) {
348 mode = S_IRUGO;
349 if (!(md->queue.card->ext_csd.boot_ro_lock &
350 EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
351 mode |= S_IWUSR;
352 }
353
354 mmc_blk_put(md);
355 return mode;
356 }
357
358 static const struct attribute_group mmc_disk_attr_group = {
359 .is_visible = mmc_disk_attrs_is_visible,
360 .attrs = mmc_disk_attrs,
361 };
362
363 static const struct attribute_group *mmc_disk_attr_groups[] = {
364 &mmc_disk_attr_group,
365 NULL,
366 };
367
mmc_blk_open(struct block_device * bdev,fmode_t mode)368 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
369 {
370 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
371 int ret = -ENXIO;
372
373 mutex_lock(&block_mutex);
374 if (md) {
375 ret = 0;
376 if ((mode & FMODE_WRITE) && md->read_only) {
377 mmc_blk_put(md);
378 ret = -EROFS;
379 }
380 }
381 mutex_unlock(&block_mutex);
382
383 return ret;
384 }
385
mmc_blk_release(struct gendisk * disk,fmode_t mode)386 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
387 {
388 struct mmc_blk_data *md = disk->private_data;
389
390 mutex_lock(&block_mutex);
391 mmc_blk_put(md);
392 mutex_unlock(&block_mutex);
393 }
394
395 static int
mmc_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)396 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
397 {
398 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
399 geo->heads = 4;
400 geo->sectors = 16;
401 return 0;
402 }
403
404 struct mmc_blk_ioc_data {
405 struct mmc_ioc_cmd ic;
406 unsigned char *buf;
407 u64 buf_bytes;
408 unsigned int flags;
409 #define MMC_BLK_IOC_DROP BIT(0) /* drop this mrq */
410 #define MMC_BLK_IOC_SBC BIT(1) /* use mrq.sbc */
411
412 struct mmc_rpmb_data *rpmb;
413 };
414
mmc_blk_ioctl_copy_from_user(struct mmc_ioc_cmd __user * user)415 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
416 struct mmc_ioc_cmd __user *user)
417 {
418 struct mmc_blk_ioc_data *idata;
419 int err;
420
421 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
422 if (!idata) {
423 err = -ENOMEM;
424 goto out;
425 }
426
427 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
428 err = -EFAULT;
429 goto idata_err;
430 }
431
432 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
433 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
434 err = -EOVERFLOW;
435 goto idata_err;
436 }
437
438 if (!idata->buf_bytes) {
439 idata->buf = NULL;
440 return idata;
441 }
442
443 idata->buf = memdup_user((void __user *)(unsigned long)
444 idata->ic.data_ptr, idata->buf_bytes);
445 if (IS_ERR(idata->buf)) {
446 err = PTR_ERR(idata->buf);
447 goto idata_err;
448 }
449
450 return idata;
451
452 idata_err:
453 kfree(idata);
454 out:
455 return ERR_PTR(err);
456 }
457
mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user * ic_ptr,struct mmc_blk_ioc_data * idata)458 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
459 struct mmc_blk_ioc_data *idata)
460 {
461 struct mmc_ioc_cmd *ic = &idata->ic;
462
463 if (copy_to_user(&(ic_ptr->response), ic->response,
464 sizeof(ic->response)))
465 return -EFAULT;
466
467 if (!idata->ic.write_flag) {
468 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
469 idata->buf, idata->buf_bytes))
470 return -EFAULT;
471 }
472
473 return 0;
474 }
475
__mmc_blk_ioctl_cmd(struct mmc_card * card,struct mmc_blk_data * md,struct mmc_blk_ioc_data ** idatas,int i)476 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
477 struct mmc_blk_ioc_data **idatas, int i)
478 {
479 struct mmc_command cmd = {}, sbc = {};
480 struct mmc_data data = {};
481 struct mmc_request mrq = {};
482 struct scatterlist sg;
483 bool r1b_resp;
484 unsigned int busy_timeout_ms;
485 int err;
486 unsigned int target_part;
487 struct mmc_blk_ioc_data *idata = idatas[i];
488 struct mmc_blk_ioc_data *prev_idata = NULL;
489
490 if (!card || !md || !idata)
491 return -EINVAL;
492
493 if (idata->flags & MMC_BLK_IOC_DROP)
494 return 0;
495
496 if (idata->flags & MMC_BLK_IOC_SBC)
497 prev_idata = idatas[i - 1];
498
499 /*
500 * The RPMB accesses comes in from the character device, so we
501 * need to target these explicitly. Else we just target the
502 * partition type for the block device the ioctl() was issued
503 * on.
504 */
505 if (idata->rpmb) {
506 /* Support multiple RPMB partitions */
507 target_part = idata->rpmb->part_index;
508 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
509 } else {
510 target_part = md->part_type;
511 }
512
513 cmd.opcode = idata->ic.opcode;
514 cmd.arg = idata->ic.arg;
515 cmd.flags = idata->ic.flags;
516
517 if (idata->buf_bytes) {
518 data.sg = &sg;
519 data.sg_len = 1;
520 data.blksz = idata->ic.blksz;
521 data.blocks = idata->ic.blocks;
522
523 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
524
525 if (idata->ic.write_flag)
526 data.flags = MMC_DATA_WRITE;
527 else
528 data.flags = MMC_DATA_READ;
529
530 /* data.flags must already be set before doing this. */
531 mmc_set_data_timeout(&data, card);
532
533 /* Allow overriding the timeout_ns for empirical tuning. */
534 if (idata->ic.data_timeout_ns)
535 data.timeout_ns = idata->ic.data_timeout_ns;
536
537 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
538 /*
539 * Pretend this is a data transfer and rely on the
540 * host driver to compute timeout. When all host
541 * drivers support cmd.cmd_timeout for R1B, this
542 * can be changed to:
543 *
544 * mrq.data = NULL;
545 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
546 */
547 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
548 }
549
550 mrq.data = &data;
551 }
552
553 mrq.cmd = &cmd;
554
555 err = mmc_blk_part_switch(card, target_part);
556 if (err)
557 return err;
558
559 if (idata->ic.is_acmd) {
560 err = mmc_app_cmd(card->host, card);
561 if (err)
562 return err;
563 }
564
565 if (idata->rpmb || prev_idata) {
566 sbc.opcode = MMC_SET_BLOCK_COUNT;
567 /*
568 * We don't do any blockcount validation because the max size
569 * may be increased by a future standard. We just copy the
570 * 'Reliable Write' bit here.
571 */
572 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
573 if (prev_idata)
574 sbc.arg = prev_idata->ic.arg;
575 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
576 mrq.sbc = &sbc;
577 }
578
579 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
580 (cmd.opcode == MMC_SWITCH))
581 return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
582
583 /* If it's an R1B response we need some more preparations. */
584 busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS;
585 r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B;
586 if (r1b_resp)
587 mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout_ms);
588
589 mmc_wait_for_req(card->host, &mrq);
590 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
591
592 if (prev_idata) {
593 memcpy(&prev_idata->ic.response, sbc.resp, sizeof(sbc.resp));
594 if (sbc.error) {
595 dev_err(mmc_dev(card->host), "%s: sbc error %d\n",
596 __func__, sbc.error);
597 return sbc.error;
598 }
599 }
600
601 if (cmd.error) {
602 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
603 __func__, cmd.error);
604 return cmd.error;
605 }
606 if (data.error) {
607 dev_err(mmc_dev(card->host), "%s: data error %d\n",
608 __func__, data.error);
609 return data.error;
610 }
611
612 /*
613 * Make sure the cache of the PARTITION_CONFIG register and
614 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
615 * changed it successfully.
616 */
617 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
618 (cmd.opcode == MMC_SWITCH)) {
619 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
620 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
621
622 /*
623 * Update cache so the next mmc_blk_part_switch call operates
624 * on up-to-date data.
625 */
626 card->ext_csd.part_config = value;
627 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
628 }
629
630 /*
631 * Make sure to update CACHE_CTRL in case it was changed. The cache
632 * will get turned back on if the card is re-initialized, e.g.
633 * suspend/resume or hw reset in recovery.
634 */
635 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
636 (cmd.opcode == MMC_SWITCH)) {
637 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
638
639 card->ext_csd.cache_ctrl = value;
640 }
641
642 /*
643 * According to the SD specs, some commands require a delay after
644 * issuing the command.
645 */
646 if (idata->ic.postsleep_min_us)
647 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
648
649 if (mmc_host_is_spi(card->host)) {
650 if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY)
651 return mmc_spi_err_check(card);
652 return err;
653 }
654
655 /*
656 * Ensure RPMB, writes and R1B responses are completed by polling with
657 * CMD13. Note that, usually we don't need to poll when using HW busy
658 * detection, but here it's needed since some commands may indicate the
659 * error through the R1 status bits.
660 */
661 if (idata->rpmb || idata->ic.write_flag || r1b_resp) {
662 struct mmc_blk_busy_data cb_data = {
663 .card = card,
664 };
665
666 err = __mmc_poll_for_busy(card->host, 0, busy_timeout_ms,
667 &mmc_blk_busy_cb, &cb_data);
668
669 idata->ic.response[0] = cb_data.status;
670 }
671
672 return err;
673 }
674
mmc_blk_ioctl_cmd(struct mmc_blk_data * md,struct mmc_ioc_cmd __user * ic_ptr,struct mmc_rpmb_data * rpmb)675 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
676 struct mmc_ioc_cmd __user *ic_ptr,
677 struct mmc_rpmb_data *rpmb)
678 {
679 struct mmc_blk_ioc_data *idata;
680 struct mmc_blk_ioc_data *idatas[1];
681 struct mmc_queue *mq;
682 struct mmc_card *card;
683 int err = 0, ioc_err = 0;
684 struct request *req;
685
686 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
687 if (IS_ERR(idata))
688 return PTR_ERR(idata);
689 /* This will be NULL on non-RPMB ioctl():s */
690 idata->rpmb = rpmb;
691
692 card = md->queue.card;
693 if (IS_ERR(card)) {
694 err = PTR_ERR(card);
695 goto cmd_done;
696 }
697
698 /*
699 * Dispatch the ioctl() into the block request queue.
700 */
701 mq = &md->queue;
702 req = blk_mq_alloc_request(mq->queue,
703 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
704 if (IS_ERR(req)) {
705 err = PTR_ERR(req);
706 goto cmd_done;
707 }
708 idatas[0] = idata;
709 req_to_mmc_queue_req(req)->drv_op =
710 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
711 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
712 req_to_mmc_queue_req(req)->drv_op_data = idatas;
713 req_to_mmc_queue_req(req)->ioc_count = 1;
714 blk_execute_rq(req, false);
715 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
716 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
717 blk_mq_free_request(req);
718
719 cmd_done:
720 kfree(idata->buf);
721 kfree(idata);
722 return ioc_err ? ioc_err : err;
723 }
724
mmc_blk_ioctl_multi_cmd(struct mmc_blk_data * md,struct mmc_ioc_multi_cmd __user * user,struct mmc_rpmb_data * rpmb)725 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
726 struct mmc_ioc_multi_cmd __user *user,
727 struct mmc_rpmb_data *rpmb)
728 {
729 struct mmc_blk_ioc_data **idata = NULL;
730 struct mmc_ioc_cmd __user *cmds = user->cmds;
731 struct mmc_card *card;
732 struct mmc_queue *mq;
733 int err = 0, ioc_err = 0;
734 __u64 num_of_cmds;
735 unsigned int i, n;
736 struct request *req;
737
738 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
739 sizeof(num_of_cmds)))
740 return -EFAULT;
741
742 if (!num_of_cmds)
743 return 0;
744
745 if (num_of_cmds > MMC_IOC_MAX_CMDS)
746 return -EINVAL;
747
748 n = num_of_cmds;
749 idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
750 if (!idata)
751 return -ENOMEM;
752
753 for (i = 0; i < n; i++) {
754 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
755 if (IS_ERR(idata[i])) {
756 err = PTR_ERR(idata[i]);
757 n = i;
758 goto cmd_err;
759 }
760 /* This will be NULL on non-RPMB ioctl():s */
761 idata[i]->rpmb = rpmb;
762 }
763
764 card = md->queue.card;
765 if (IS_ERR(card)) {
766 err = PTR_ERR(card);
767 goto cmd_err;
768 }
769
770
771 /*
772 * Dispatch the ioctl()s into the block request queue.
773 */
774 mq = &md->queue;
775 req = blk_mq_alloc_request(mq->queue,
776 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
777 if (IS_ERR(req)) {
778 err = PTR_ERR(req);
779 goto cmd_err;
780 }
781 req_to_mmc_queue_req(req)->drv_op =
782 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
783 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
784 req_to_mmc_queue_req(req)->drv_op_data = idata;
785 req_to_mmc_queue_req(req)->ioc_count = n;
786 blk_execute_rq(req, false);
787 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
788
789 /* copy to user if data and response */
790 for (i = 0; i < n && !err; i++)
791 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
792
793 blk_mq_free_request(req);
794
795 cmd_err:
796 for (i = 0; i < n; i++) {
797 kfree(idata[i]->buf);
798 kfree(idata[i]);
799 }
800 kfree(idata);
801 return ioc_err ? ioc_err : err;
802 }
803
mmc_blk_check_blkdev(struct block_device * bdev)804 static int mmc_blk_check_blkdev(struct block_device *bdev)
805 {
806 /*
807 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
808 * whole block device, not on a partition. This prevents overspray
809 * between sibling partitions.
810 */
811 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
812 return -EPERM;
813 return 0;
814 }
815
mmc_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)816 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
817 unsigned int cmd, unsigned long arg)
818 {
819 struct mmc_blk_data *md;
820 int ret;
821
822 switch (cmd) {
823 case MMC_IOC_CMD:
824 ret = mmc_blk_check_blkdev(bdev);
825 if (ret)
826 return ret;
827 md = mmc_blk_get(bdev->bd_disk);
828 if (!md)
829 return -EINVAL;
830 ret = mmc_blk_ioctl_cmd(md,
831 (struct mmc_ioc_cmd __user *)arg,
832 NULL);
833 mmc_blk_put(md);
834 return ret;
835 case MMC_IOC_MULTI_CMD:
836 ret = mmc_blk_check_blkdev(bdev);
837 if (ret)
838 return ret;
839 md = mmc_blk_get(bdev->bd_disk);
840 if (!md)
841 return -EINVAL;
842 ret = mmc_blk_ioctl_multi_cmd(md,
843 (struct mmc_ioc_multi_cmd __user *)arg,
844 NULL);
845 mmc_blk_put(md);
846 return ret;
847 default:
848 return -EINVAL;
849 }
850 }
851
852 #ifdef CONFIG_COMPAT
mmc_blk_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)853 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
854 unsigned int cmd, unsigned long arg)
855 {
856 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
857 }
858 #endif
859
mmc_blk_alternative_gpt_sector(struct gendisk * disk,sector_t * sector)860 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
861 sector_t *sector)
862 {
863 struct mmc_blk_data *md;
864 int ret;
865
866 md = mmc_blk_get(disk);
867 if (!md)
868 return -EINVAL;
869
870 if (md->queue.card)
871 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
872 else
873 ret = -ENODEV;
874
875 mmc_blk_put(md);
876
877 return ret;
878 }
879
880 static const struct block_device_operations mmc_bdops = {
881 .open = mmc_blk_open,
882 .release = mmc_blk_release,
883 .getgeo = mmc_blk_getgeo,
884 .owner = THIS_MODULE,
885 .ioctl = mmc_blk_ioctl,
886 #ifdef CONFIG_COMPAT
887 .compat_ioctl = mmc_blk_compat_ioctl,
888 #endif
889 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector,
890 };
891
mmc_blk_part_switch_pre(struct mmc_card * card,unsigned int part_type)892 static int mmc_blk_part_switch_pre(struct mmc_card *card,
893 unsigned int part_type)
894 {
895 const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_RPMB;
896 int ret = 0;
897
898 if ((part_type & mask) == mask) {
899 if (card->ext_csd.cmdq_en) {
900 ret = mmc_cmdq_disable(card);
901 if (ret)
902 return ret;
903 }
904 mmc_retune_pause(card->host);
905 }
906
907 return ret;
908 }
909
mmc_blk_part_switch_post(struct mmc_card * card,unsigned int part_type)910 static int mmc_blk_part_switch_post(struct mmc_card *card,
911 unsigned int part_type)
912 {
913 const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_RPMB;
914 int ret = 0;
915
916 if ((part_type & mask) == mask) {
917 mmc_retune_unpause(card->host);
918 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
919 ret = mmc_cmdq_enable(card);
920 }
921
922 return ret;
923 }
924
mmc_blk_part_switch(struct mmc_card * card,unsigned int part_type)925 static inline int mmc_blk_part_switch(struct mmc_card *card,
926 unsigned int part_type)
927 {
928 int ret = 0;
929 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
930
931 if (main_md->part_curr == part_type)
932 return 0;
933
934 if (mmc_card_mmc(card)) {
935 u8 part_config = card->ext_csd.part_config;
936
937 ret = mmc_blk_part_switch_pre(card, part_type);
938 if (ret)
939 return ret;
940
941 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
942 part_config |= part_type;
943
944 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
945 EXT_CSD_PART_CONFIG, part_config,
946 card->ext_csd.part_time);
947 if (ret) {
948 mmc_blk_part_switch_post(card, part_type);
949 return ret;
950 }
951
952 card->ext_csd.part_config = part_config;
953
954 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
955 }
956
957 main_md->part_curr = part_type;
958 return ret;
959 }
960
mmc_sd_num_wr_blocks(struct mmc_card * card,u32 * written_blocks)961 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
962 {
963 int err;
964 u32 result;
965 __be32 *blocks;
966
967 struct mmc_request mrq = {};
968 struct mmc_command cmd = {};
969 struct mmc_data data = {};
970
971 struct scatterlist sg;
972
973 cmd.opcode = MMC_APP_CMD;
974 cmd.arg = card->rca << 16;
975 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
976
977 err = mmc_wait_for_cmd(card->host, &cmd, 0);
978 if (err)
979 return err;
980 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
981 return -EIO;
982
983 memset(&cmd, 0, sizeof(struct mmc_command));
984
985 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
986 cmd.arg = 0;
987 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
988
989 data.blksz = 4;
990 data.blocks = 1;
991 data.flags = MMC_DATA_READ;
992 data.sg = &sg;
993 data.sg_len = 1;
994 mmc_set_data_timeout(&data, card);
995
996 mrq.cmd = &cmd;
997 mrq.data = &data;
998
999 blocks = kmalloc(4, GFP_KERNEL);
1000 if (!blocks)
1001 return -ENOMEM;
1002
1003 sg_init_one(&sg, blocks, 4);
1004
1005 mmc_wait_for_req(card->host, &mrq);
1006
1007 result = ntohl(*blocks);
1008 kfree(blocks);
1009
1010 if (cmd.error || data.error)
1011 return -EIO;
1012
1013 *written_blocks = result;
1014
1015 return 0;
1016 }
1017
mmc_blk_clock_khz(struct mmc_host * host)1018 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
1019 {
1020 if (host->actual_clock)
1021 return host->actual_clock / 1000;
1022
1023 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
1024 if (host->ios.clock)
1025 return host->ios.clock / 2000;
1026
1027 /* How can there be no clock */
1028 WARN_ON_ONCE(1);
1029 return 100; /* 100 kHz is minimum possible value */
1030 }
1031
mmc_blk_data_timeout_ms(struct mmc_host * host,struct mmc_data * data)1032 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
1033 struct mmc_data *data)
1034 {
1035 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
1036 unsigned int khz;
1037
1038 if (data->timeout_clks) {
1039 khz = mmc_blk_clock_khz(host);
1040 ms += DIV_ROUND_UP(data->timeout_clks, khz);
1041 }
1042
1043 return ms;
1044 }
1045
1046 /*
1047 * Attempts to reset the card and get back to the requested partition.
1048 * Therefore any error here must result in cancelling the block layer
1049 * request, it must not be reattempted without going through the mmc_blk
1050 * partition sanity checks.
1051 */
mmc_blk_reset(struct mmc_blk_data * md,struct mmc_host * host,int type)1052 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1053 int type)
1054 {
1055 int err;
1056 struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
1057
1058 if (md->reset_done & type)
1059 return -EEXIST;
1060
1061 md->reset_done |= type;
1062 err = mmc_hw_reset(host->card);
1063 /*
1064 * A successful reset will leave the card in the main partition, but
1065 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
1066 * in that case.
1067 */
1068 main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1069 if (err)
1070 return err;
1071 /* Ensure we switch back to the correct partition */
1072 if (mmc_blk_part_switch(host->card, md->part_type))
1073 /*
1074 * We have failed to get back into the correct
1075 * partition, so we need to abort the whole request.
1076 */
1077 return -ENODEV;
1078 return 0;
1079 }
1080
mmc_blk_reset_success(struct mmc_blk_data * md,int type)1081 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1082 {
1083 md->reset_done &= ~type;
1084 }
1085
mmc_blk_check_sbc(struct mmc_queue_req * mq_rq)1086 static void mmc_blk_check_sbc(struct mmc_queue_req *mq_rq)
1087 {
1088 struct mmc_blk_ioc_data **idata = mq_rq->drv_op_data;
1089 int i;
1090
1091 for (i = 1; i < mq_rq->ioc_count; i++) {
1092 if (idata[i - 1]->ic.opcode == MMC_SET_BLOCK_COUNT &&
1093 mmc_op_multi(idata[i]->ic.opcode)) {
1094 idata[i - 1]->flags |= MMC_BLK_IOC_DROP;
1095 idata[i]->flags |= MMC_BLK_IOC_SBC;
1096 }
1097 }
1098 }
1099
1100 /*
1101 * The non-block commands come back from the block layer after it queued it and
1102 * processed it with all other requests and then they get issued in this
1103 * function.
1104 */
mmc_blk_issue_drv_op(struct mmc_queue * mq,struct request * req)1105 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1106 {
1107 struct mmc_queue_req *mq_rq;
1108 struct mmc_card *card = mq->card;
1109 struct mmc_blk_data *md = mq->blkdata;
1110 struct mmc_blk_ioc_data **idata;
1111 bool rpmb_ioctl;
1112 u8 **ext_csd;
1113 u32 status;
1114 int ret;
1115 int i;
1116
1117 mq_rq = req_to_mmc_queue_req(req);
1118 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1119
1120 switch (mq_rq->drv_op) {
1121 case MMC_DRV_OP_IOCTL:
1122 if (card->ext_csd.cmdq_en) {
1123 ret = mmc_cmdq_disable(card);
1124 if (ret)
1125 break;
1126 }
1127
1128 mmc_blk_check_sbc(mq_rq);
1129
1130 fallthrough;
1131 case MMC_DRV_OP_IOCTL_RPMB:
1132 idata = mq_rq->drv_op_data;
1133 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1134 ret = __mmc_blk_ioctl_cmd(card, md, idata, i);
1135 if (ret)
1136 break;
1137 }
1138 /* Always switch back to main area after RPMB access */
1139 if (rpmb_ioctl)
1140 mmc_blk_part_switch(card, 0);
1141 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1142 mmc_cmdq_enable(card);
1143 break;
1144 case MMC_DRV_OP_BOOT_WP:
1145 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1146 card->ext_csd.boot_ro_lock |
1147 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1148 card->ext_csd.part_time);
1149 if (ret)
1150 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1151 md->disk->disk_name, ret);
1152 else
1153 card->ext_csd.boot_ro_lock |=
1154 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1155 break;
1156 case MMC_DRV_OP_GET_CARD_STATUS:
1157 ret = mmc_send_status(card, &status);
1158 if (!ret)
1159 ret = status;
1160 break;
1161 case MMC_DRV_OP_GET_EXT_CSD:
1162 ext_csd = mq_rq->drv_op_data;
1163 ret = mmc_get_ext_csd(card, ext_csd);
1164 break;
1165 default:
1166 pr_err("%s: unknown driver specific operation\n",
1167 md->disk->disk_name);
1168 ret = -EINVAL;
1169 break;
1170 }
1171 mq_rq->drv_op_result = ret;
1172 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1173 }
1174
mmc_blk_issue_erase_rq(struct mmc_queue * mq,struct request * req,int type,unsigned int erase_arg)1175 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1176 int type, unsigned int erase_arg)
1177 {
1178 struct mmc_blk_data *md = mq->blkdata;
1179 struct mmc_card *card = md->queue.card;
1180 unsigned int from, nr;
1181 int err = 0;
1182 blk_status_t status = BLK_STS_OK;
1183
1184 if (!mmc_can_erase(card)) {
1185 status = BLK_STS_NOTSUPP;
1186 goto fail;
1187 }
1188
1189 from = blk_rq_pos(req);
1190 nr = blk_rq_sectors(req);
1191
1192 do {
1193 err = 0;
1194 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1195 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1196 INAND_CMD38_ARG_EXT_CSD,
1197 erase_arg == MMC_TRIM_ARG ?
1198 INAND_CMD38_ARG_TRIM :
1199 INAND_CMD38_ARG_ERASE,
1200 card->ext_csd.generic_cmd6_time);
1201 }
1202 if (!err)
1203 err = mmc_erase(card, from, nr, erase_arg);
1204 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1205 if (err)
1206 status = BLK_STS_IOERR;
1207 else
1208 mmc_blk_reset_success(md, type);
1209 fail:
1210 blk_mq_end_request(req, status);
1211 }
1212
mmc_blk_issue_trim_rq(struct mmc_queue * mq,struct request * req)1213 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1214 {
1215 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1216 }
1217
mmc_blk_issue_discard_rq(struct mmc_queue * mq,struct request * req)1218 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1219 {
1220 struct mmc_blk_data *md = mq->blkdata;
1221 struct mmc_card *card = md->queue.card;
1222 unsigned int arg = card->erase_arg;
1223
1224 if (mmc_card_broken_sd_discard(card))
1225 arg = SD_ERASE_ARG;
1226
1227 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1228 }
1229
mmc_blk_issue_secdiscard_rq(struct mmc_queue * mq,struct request * req)1230 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1231 struct request *req)
1232 {
1233 struct mmc_blk_data *md = mq->blkdata;
1234 struct mmc_card *card = md->queue.card;
1235 unsigned int from, nr, arg;
1236 int err = 0, type = MMC_BLK_SECDISCARD;
1237 blk_status_t status = BLK_STS_OK;
1238
1239 if (!(mmc_can_secure_erase_trim(card))) {
1240 status = BLK_STS_NOTSUPP;
1241 goto out;
1242 }
1243
1244 from = blk_rq_pos(req);
1245 nr = blk_rq_sectors(req);
1246
1247 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1248 arg = MMC_SECURE_TRIM1_ARG;
1249 else
1250 arg = MMC_SECURE_ERASE_ARG;
1251
1252 retry:
1253 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1254 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1255 INAND_CMD38_ARG_EXT_CSD,
1256 arg == MMC_SECURE_TRIM1_ARG ?
1257 INAND_CMD38_ARG_SECTRIM1 :
1258 INAND_CMD38_ARG_SECERASE,
1259 card->ext_csd.generic_cmd6_time);
1260 if (err)
1261 goto out_retry;
1262 }
1263
1264 err = mmc_erase(card, from, nr, arg);
1265 if (err == -EIO)
1266 goto out_retry;
1267 if (err) {
1268 status = BLK_STS_IOERR;
1269 goto out;
1270 }
1271
1272 if (arg == MMC_SECURE_TRIM1_ARG) {
1273 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1274 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1275 INAND_CMD38_ARG_EXT_CSD,
1276 INAND_CMD38_ARG_SECTRIM2,
1277 card->ext_csd.generic_cmd6_time);
1278 if (err)
1279 goto out_retry;
1280 }
1281
1282 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1283 if (err == -EIO)
1284 goto out_retry;
1285 if (err) {
1286 status = BLK_STS_IOERR;
1287 goto out;
1288 }
1289 }
1290
1291 out_retry:
1292 if (err && !mmc_blk_reset(md, card->host, type))
1293 goto retry;
1294 if (!err)
1295 mmc_blk_reset_success(md, type);
1296 out:
1297 blk_mq_end_request(req, status);
1298 }
1299
mmc_blk_issue_flush(struct mmc_queue * mq,struct request * req)1300 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1301 {
1302 struct mmc_blk_data *md = mq->blkdata;
1303 struct mmc_card *card = md->queue.card;
1304 int ret = 0;
1305
1306 ret = mmc_flush_cache(card->host);
1307 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1308 }
1309
1310 /*
1311 * Reformat current write as a reliable write, supporting
1312 * both legacy and the enhanced reliable write MMC cards.
1313 * In each transfer we'll handle only as much as a single
1314 * reliable write can handle, thus finish the request in
1315 * partial completions.
1316 */
mmc_apply_rel_rw(struct mmc_blk_request * brq,struct mmc_card * card,struct request * req)1317 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1318 struct mmc_card *card,
1319 struct request *req)
1320 {
1321 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1322 /* Legacy mode imposes restrictions on transfers. */
1323 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1324 brq->data.blocks = 1;
1325
1326 if (brq->data.blocks > card->ext_csd.rel_sectors)
1327 brq->data.blocks = card->ext_csd.rel_sectors;
1328 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1329 brq->data.blocks = 1;
1330 }
1331 }
1332
1333 #define CMD_ERRORS_EXCL_OOR \
1334 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1335 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1336 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1337 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1338 R1_CC_ERROR | /* Card controller error */ \
1339 R1_ERROR) /* General/unknown error */
1340
1341 #define CMD_ERRORS \
1342 (CMD_ERRORS_EXCL_OOR | \
1343 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1344
mmc_blk_eval_resp_error(struct mmc_blk_request * brq)1345 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1346 {
1347 u32 val;
1348
1349 /*
1350 * Per the SD specification(physical layer version 4.10)[1],
1351 * section 4.3.3, it explicitly states that "When the last
1352 * block of user area is read using CMD18, the host should
1353 * ignore OUT_OF_RANGE error that may occur even the sequence
1354 * is correct". And JESD84-B51 for eMMC also has a similar
1355 * statement on section 6.8.3.
1356 *
1357 * Multiple block read/write could be done by either predefined
1358 * method, namely CMD23, or open-ending mode. For open-ending mode,
1359 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1360 *
1361 * However the spec[1] doesn't tell us whether we should also
1362 * ignore that for predefined method. But per the spec[1], section
1363 * 4.15 Set Block Count Command, it says"If illegal block count
1364 * is set, out of range error will be indicated during read/write
1365 * operation (For example, data transfer is stopped at user area
1366 * boundary)." In another word, we could expect a out of range error
1367 * in the response for the following CMD18/25. And if argument of
1368 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1369 * we could also expect to get a -ETIMEDOUT or any error number from
1370 * the host drivers due to missing data response(for write)/data(for
1371 * read), as the cards will stop the data transfer by itself per the
1372 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1373 */
1374
1375 if (!brq->stop.error) {
1376 bool oor_with_open_end;
1377 /* If there is no error yet, check R1 response */
1378
1379 val = brq->stop.resp[0] & CMD_ERRORS;
1380 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1381
1382 if (val && !oor_with_open_end)
1383 brq->stop.error = -EIO;
1384 }
1385 }
1386
mmc_blk_data_prep(struct mmc_queue * mq,struct mmc_queue_req * mqrq,int recovery_mode,bool * do_rel_wr_p,bool * do_data_tag_p)1387 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1388 int recovery_mode, bool *do_rel_wr_p,
1389 bool *do_data_tag_p)
1390 {
1391 struct mmc_blk_data *md = mq->blkdata;
1392 struct mmc_card *card = md->queue.card;
1393 struct mmc_blk_request *brq = &mqrq->brq;
1394 struct request *req = mmc_queue_req_to_req(mqrq);
1395 bool do_rel_wr, do_data_tag;
1396
1397 /*
1398 * Reliable writes are used to implement Forced Unit Access and
1399 * are supported only on MMCs.
1400 */
1401 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1402 rq_data_dir(req) == WRITE &&
1403 (md->flags & MMC_BLK_REL_WR);
1404
1405 memset(brq, 0, sizeof(struct mmc_blk_request));
1406
1407 mmc_crypto_prepare_req(mqrq);
1408
1409 brq->mrq.data = &brq->data;
1410 brq->mrq.tag = req->tag;
1411
1412 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1413 brq->stop.arg = 0;
1414
1415 if (rq_data_dir(req) == READ) {
1416 brq->data.flags = MMC_DATA_READ;
1417 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1418 } else {
1419 brq->data.flags = MMC_DATA_WRITE;
1420 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1421 }
1422
1423 brq->data.blksz = 512;
1424 brq->data.blocks = blk_rq_sectors(req);
1425 brq->data.blk_addr = blk_rq_pos(req);
1426
1427 /*
1428 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1429 * The eMMC will give "high" priority tasks priority over "simple"
1430 * priority tasks. Here we always set "simple" priority by not setting
1431 * MMC_DATA_PRIO.
1432 */
1433
1434 /*
1435 * The block layer doesn't support all sector count
1436 * restrictions, so we need to be prepared for too big
1437 * requests.
1438 */
1439 if (brq->data.blocks > card->host->max_blk_count)
1440 brq->data.blocks = card->host->max_blk_count;
1441
1442 if (brq->data.blocks > 1) {
1443 /*
1444 * Some SD cards in SPI mode return a CRC error or even lock up
1445 * completely when trying to read the last block using a
1446 * multiblock read command.
1447 */
1448 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1449 (blk_rq_pos(req) + blk_rq_sectors(req) ==
1450 get_capacity(md->disk)))
1451 brq->data.blocks--;
1452
1453 /*
1454 * After a read error, we redo the request one (native) sector
1455 * at a time in order to accurately determine which
1456 * sectors can be read successfully.
1457 */
1458 if (recovery_mode)
1459 brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1460
1461 /*
1462 * Some controllers have HW issues while operating
1463 * in multiple I/O mode
1464 */
1465 if (card->host->ops->multi_io_quirk)
1466 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1467 (rq_data_dir(req) == READ) ?
1468 MMC_DATA_READ : MMC_DATA_WRITE,
1469 brq->data.blocks);
1470 }
1471
1472 if (do_rel_wr) {
1473 mmc_apply_rel_rw(brq, card, req);
1474 brq->data.flags |= MMC_DATA_REL_WR;
1475 }
1476
1477 /*
1478 * Data tag is used only during writing meta data to speed
1479 * up write and any subsequent read of this meta data
1480 */
1481 do_data_tag = card->ext_csd.data_tag_unit_size &&
1482 (req->cmd_flags & REQ_META) &&
1483 (rq_data_dir(req) == WRITE) &&
1484 ((brq->data.blocks * brq->data.blksz) >=
1485 card->ext_csd.data_tag_unit_size);
1486
1487 if (do_data_tag)
1488 brq->data.flags |= MMC_DATA_DAT_TAG;
1489
1490 mmc_set_data_timeout(&brq->data, card);
1491
1492 brq->data.sg = mqrq->sg;
1493 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1494
1495 /*
1496 * Adjust the sg list so it is the same size as the
1497 * request.
1498 */
1499 if (brq->data.blocks != blk_rq_sectors(req)) {
1500 int i, data_size = brq->data.blocks << 9;
1501 struct scatterlist *sg;
1502
1503 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1504 data_size -= sg->length;
1505 if (data_size <= 0) {
1506 sg->length += data_size;
1507 i++;
1508 break;
1509 }
1510 }
1511 brq->data.sg_len = i;
1512 }
1513
1514 if (do_rel_wr_p)
1515 *do_rel_wr_p = do_rel_wr;
1516
1517 if (do_data_tag_p)
1518 *do_data_tag_p = do_data_tag;
1519 }
1520
1521 #define MMC_CQE_RETRIES 2
1522
mmc_blk_cqe_complete_rq(struct mmc_queue * mq,struct request * req)1523 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1524 {
1525 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1526 struct mmc_request *mrq = &mqrq->brq.mrq;
1527 struct request_queue *q = req->q;
1528 struct mmc_host *host = mq->card->host;
1529 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1530 unsigned long flags;
1531 bool put_card;
1532 int err;
1533
1534 mmc_cqe_post_req(host, mrq);
1535
1536 if (mrq->cmd && mrq->cmd->error)
1537 err = mrq->cmd->error;
1538 else if (mrq->data && mrq->data->error)
1539 err = mrq->data->error;
1540 else
1541 err = 0;
1542
1543 if (err) {
1544 if (mqrq->retries++ < MMC_CQE_RETRIES)
1545 blk_mq_requeue_request(req, true);
1546 else
1547 blk_mq_end_request(req, BLK_STS_IOERR);
1548 } else if (mrq->data) {
1549 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1550 blk_mq_requeue_request(req, true);
1551 else
1552 __blk_mq_end_request(req, BLK_STS_OK);
1553 } else if (mq->in_recovery) {
1554 blk_mq_requeue_request(req, true);
1555 } else {
1556 blk_mq_end_request(req, BLK_STS_OK);
1557 }
1558
1559 spin_lock_irqsave(&mq->lock, flags);
1560
1561 mq->in_flight[issue_type] -= 1;
1562
1563 put_card = (mmc_tot_in_flight(mq) == 0);
1564
1565 mmc_cqe_check_busy(mq);
1566
1567 spin_unlock_irqrestore(&mq->lock, flags);
1568
1569 if (!mq->cqe_busy)
1570 blk_mq_run_hw_queues(q, true);
1571
1572 if (put_card)
1573 mmc_put_card(mq->card, &mq->ctx);
1574 }
1575
mmc_blk_cqe_recovery(struct mmc_queue * mq)1576 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1577 {
1578 struct mmc_card *card = mq->card;
1579 struct mmc_host *host = card->host;
1580 int err;
1581
1582 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1583
1584 err = mmc_cqe_recovery(host);
1585 if (err)
1586 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1587 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1588
1589 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1590 }
1591
mmc_blk_cqe_req_done(struct mmc_request * mrq)1592 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1593 {
1594 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1595 brq.mrq);
1596 struct request *req = mmc_queue_req_to_req(mqrq);
1597 struct request_queue *q = req->q;
1598 struct mmc_queue *mq = q->queuedata;
1599
1600 /*
1601 * Block layer timeouts race with completions which means the normal
1602 * completion path cannot be used during recovery.
1603 */
1604 if (mq->in_recovery)
1605 mmc_blk_cqe_complete_rq(mq, req);
1606 else if (likely(!blk_should_fake_timeout(req->q)))
1607 blk_mq_complete_request(req);
1608 }
1609
mmc_blk_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)1610 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1611 {
1612 mrq->done = mmc_blk_cqe_req_done;
1613 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1614
1615 return mmc_cqe_start_req(host, mrq);
1616 }
1617
mmc_blk_cqe_prep_dcmd(struct mmc_queue_req * mqrq,struct request * req)1618 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1619 struct request *req)
1620 {
1621 struct mmc_blk_request *brq = &mqrq->brq;
1622
1623 memset(brq, 0, sizeof(*brq));
1624
1625 brq->mrq.cmd = &brq->cmd;
1626 brq->mrq.tag = req->tag;
1627
1628 return &brq->mrq;
1629 }
1630
mmc_blk_cqe_issue_flush(struct mmc_queue * mq,struct request * req)1631 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1632 {
1633 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1634 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1635
1636 mrq->cmd->opcode = MMC_SWITCH;
1637 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1638 (EXT_CSD_FLUSH_CACHE << 16) |
1639 (1 << 8) |
1640 EXT_CSD_CMD_SET_NORMAL;
1641 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1642
1643 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1644 }
1645
mmc_blk_hsq_issue_rw_rq(struct mmc_queue * mq,struct request * req)1646 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1647 {
1648 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1649 struct mmc_host *host = mq->card->host;
1650 int err;
1651
1652 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1653 mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1654 mmc_pre_req(host, &mqrq->brq.mrq);
1655
1656 err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1657 if (err)
1658 mmc_post_req(host, &mqrq->brq.mrq, err);
1659
1660 return err;
1661 }
1662
mmc_blk_cqe_issue_rw_rq(struct mmc_queue * mq,struct request * req)1663 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1664 {
1665 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1666 struct mmc_host *host = mq->card->host;
1667
1668 if (host->hsq_enabled)
1669 return mmc_blk_hsq_issue_rw_rq(mq, req);
1670
1671 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1672
1673 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1674 }
1675
mmc_blk_rw_rq_prep(struct mmc_queue_req * mqrq,struct mmc_card * card,int recovery_mode,struct mmc_queue * mq)1676 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1677 struct mmc_card *card,
1678 int recovery_mode,
1679 struct mmc_queue *mq)
1680 {
1681 u32 readcmd, writecmd;
1682 struct mmc_blk_request *brq = &mqrq->brq;
1683 struct request *req = mmc_queue_req_to_req(mqrq);
1684 struct mmc_blk_data *md = mq->blkdata;
1685 bool do_rel_wr, do_data_tag;
1686
1687 mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1688
1689 brq->mrq.cmd = &brq->cmd;
1690
1691 brq->cmd.arg = blk_rq_pos(req);
1692 if (!mmc_card_blockaddr(card))
1693 brq->cmd.arg <<= 9;
1694 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1695
1696 if (brq->data.blocks > 1 || do_rel_wr) {
1697 /* SPI multiblock writes terminate using a special
1698 * token, not a STOP_TRANSMISSION request.
1699 */
1700 if (!mmc_host_is_spi(card->host) ||
1701 rq_data_dir(req) == READ)
1702 brq->mrq.stop = &brq->stop;
1703 readcmd = MMC_READ_MULTIPLE_BLOCK;
1704 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1705 } else {
1706 brq->mrq.stop = NULL;
1707 readcmd = MMC_READ_SINGLE_BLOCK;
1708 writecmd = MMC_WRITE_BLOCK;
1709 }
1710 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1711
1712 /*
1713 * Pre-defined multi-block transfers are preferable to
1714 * open ended-ones (and necessary for reliable writes).
1715 * However, it is not sufficient to just send CMD23,
1716 * and avoid the final CMD12, as on an error condition
1717 * CMD12 (stop) needs to be sent anyway. This, coupled
1718 * with Auto-CMD23 enhancements provided by some
1719 * hosts, means that the complexity of dealing
1720 * with this is best left to the host. If CMD23 is
1721 * supported by card and host, we'll fill sbc in and let
1722 * the host deal with handling it correctly. This means
1723 * that for hosts that don't expose MMC_CAP_CMD23, no
1724 * change of behavior will be observed.
1725 *
1726 * N.B: Some MMC cards experience perf degradation.
1727 * We'll avoid using CMD23-bounded multiblock writes for
1728 * these, while retaining features like reliable writes.
1729 */
1730 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1731 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1732 do_data_tag)) {
1733 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1734 brq->sbc.arg = brq->data.blocks |
1735 (do_rel_wr ? (1 << 31) : 0) |
1736 (do_data_tag ? (1 << 29) : 0);
1737 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1738 brq->mrq.sbc = &brq->sbc;
1739 }
1740 }
1741
1742 #define MMC_MAX_RETRIES 5
1743 #define MMC_DATA_RETRIES 2
1744 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1745
mmc_blk_send_stop(struct mmc_card * card,unsigned int timeout)1746 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1747 {
1748 struct mmc_command cmd = {
1749 .opcode = MMC_STOP_TRANSMISSION,
1750 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1751 /* Some hosts wait for busy anyway, so provide a busy timeout */
1752 .busy_timeout = timeout,
1753 };
1754
1755 return mmc_wait_for_cmd(card->host, &cmd, 5);
1756 }
1757
mmc_blk_fix_state(struct mmc_card * card,struct request * req)1758 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1759 {
1760 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1761 struct mmc_blk_request *brq = &mqrq->brq;
1762 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1763 int err;
1764
1765 mmc_retune_hold_now(card->host);
1766
1767 mmc_blk_send_stop(card, timeout);
1768
1769 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1770
1771 mmc_retune_release(card->host);
1772
1773 return err;
1774 }
1775
1776 #define MMC_READ_SINGLE_RETRIES 2
1777
1778 /* Single (native) sector read during recovery */
mmc_blk_read_single(struct mmc_queue * mq,struct request * req)1779 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1780 {
1781 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1782 struct mmc_request *mrq = &mqrq->brq.mrq;
1783 struct mmc_card *card = mq->card;
1784 struct mmc_host *host = card->host;
1785 blk_status_t error = BLK_STS_OK;
1786 size_t bytes_per_read = queue_physical_block_size(mq->queue);
1787
1788 do {
1789 u32 status;
1790 int err;
1791 int retries = 0;
1792
1793 while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1794 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1795
1796 mmc_wait_for_req(host, mrq);
1797
1798 err = mmc_send_status(card, &status);
1799 if (err)
1800 goto error_exit;
1801
1802 if (!mmc_host_is_spi(host) &&
1803 !mmc_ready_for_data(status)) {
1804 err = mmc_blk_fix_state(card, req);
1805 if (err)
1806 goto error_exit;
1807 }
1808
1809 if (!mrq->cmd->error)
1810 break;
1811 }
1812
1813 if (mrq->cmd->error ||
1814 mrq->data->error ||
1815 (!mmc_host_is_spi(host) &&
1816 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1817 error = BLK_STS_IOERR;
1818 else
1819 error = BLK_STS_OK;
1820
1821 } while (blk_update_request(req, error, bytes_per_read));
1822
1823 return;
1824
1825 error_exit:
1826 mrq->data->bytes_xfered = 0;
1827 blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1828 /* Let it try the remaining request again */
1829 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1830 mqrq->retries = MMC_MAX_RETRIES - 1;
1831 }
1832
mmc_blk_oor_valid(struct mmc_blk_request * brq)1833 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1834 {
1835 return !!brq->mrq.sbc;
1836 }
1837
mmc_blk_stop_err_bits(struct mmc_blk_request * brq)1838 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1839 {
1840 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1841 }
1842
1843 /*
1844 * Check for errors the host controller driver might not have seen such as
1845 * response mode errors or invalid card state.
1846 */
mmc_blk_status_error(struct request * req,u32 status)1847 static bool mmc_blk_status_error(struct request *req, u32 status)
1848 {
1849 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1850 struct mmc_blk_request *brq = &mqrq->brq;
1851 struct mmc_queue *mq = req->q->queuedata;
1852 u32 stop_err_bits;
1853
1854 if (mmc_host_is_spi(mq->card->host))
1855 return false;
1856
1857 stop_err_bits = mmc_blk_stop_err_bits(brq);
1858
1859 return brq->cmd.resp[0] & CMD_ERRORS ||
1860 brq->stop.resp[0] & stop_err_bits ||
1861 status & stop_err_bits ||
1862 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1863 }
1864
mmc_blk_cmd_started(struct mmc_blk_request * brq)1865 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1866 {
1867 return !brq->sbc.error && !brq->cmd.error &&
1868 !(brq->cmd.resp[0] & CMD_ERRORS);
1869 }
1870
1871 /*
1872 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1873 * policy:
1874 * 1. A request that has transferred at least some data is considered
1875 * successful and will be requeued if there is remaining data to
1876 * transfer.
1877 * 2. Otherwise the number of retries is incremented and the request
1878 * will be requeued if there are remaining retries.
1879 * 3. Otherwise the request will be errored out.
1880 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1881 * mqrq->retries. So there are only 4 possible actions here:
1882 * 1. do not accept the bytes_xfered value i.e. set it to zero
1883 * 2. change mqrq->retries to determine the number of retries
1884 * 3. try to reset the card
1885 * 4. read one sector at a time
1886 */
mmc_blk_mq_rw_recovery(struct mmc_queue * mq,struct request * req)1887 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1888 {
1889 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1890 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1891 struct mmc_blk_request *brq = &mqrq->brq;
1892 struct mmc_blk_data *md = mq->blkdata;
1893 struct mmc_card *card = mq->card;
1894 u32 status;
1895 u32 blocks;
1896 int err;
1897
1898 /*
1899 * Some errors the host driver might not have seen. Set the number of
1900 * bytes transferred to zero in that case.
1901 */
1902 err = __mmc_send_status(card, &status, 0);
1903 if (err || mmc_blk_status_error(req, status))
1904 brq->data.bytes_xfered = 0;
1905
1906 mmc_retune_release(card->host);
1907
1908 /*
1909 * Try again to get the status. This also provides an opportunity for
1910 * re-tuning.
1911 */
1912 if (err)
1913 err = __mmc_send_status(card, &status, 0);
1914
1915 /*
1916 * Nothing more to do after the number of bytes transferred has been
1917 * updated and there is no card.
1918 */
1919 if (err && mmc_detect_card_removed(card->host))
1920 return;
1921
1922 /* Try to get back to "tran" state */
1923 if (!mmc_host_is_spi(mq->card->host) &&
1924 (err || !mmc_ready_for_data(status)))
1925 err = mmc_blk_fix_state(mq->card, req);
1926
1927 /*
1928 * Special case for SD cards where the card might record the number of
1929 * blocks written.
1930 */
1931 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1932 rq_data_dir(req) == WRITE) {
1933 if (mmc_sd_num_wr_blocks(card, &blocks))
1934 brq->data.bytes_xfered = 0;
1935 else
1936 brq->data.bytes_xfered = blocks << 9;
1937 }
1938
1939 /* Reset if the card is in a bad state */
1940 if (!mmc_host_is_spi(mq->card->host) &&
1941 err && mmc_blk_reset(md, card->host, type)) {
1942 pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1943 mqrq->retries = MMC_NO_RETRIES;
1944 trace_android_vh_mmc_blk_mq_rw_recovery(card);
1945 return;
1946 }
1947
1948 /*
1949 * If anything was done, just return and if there is anything remaining
1950 * on the request it will get requeued.
1951 */
1952 if (brq->data.bytes_xfered)
1953 return;
1954
1955 /* Reset before last retry */
1956 if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
1957 mmc_blk_reset(md, card->host, type))
1958 return;
1959
1960 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1961 if (brq->sbc.error || brq->cmd.error)
1962 return;
1963
1964 /* Reduce the remaining retries for data errors */
1965 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1966 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1967 return;
1968 }
1969
1970 if (rq_data_dir(req) == READ && brq->data.blocks >
1971 queue_physical_block_size(mq->queue) >> 9) {
1972 /* Read one (native) sector at a time */
1973 mmc_blk_read_single(mq, req);
1974 return;
1975 }
1976 }
1977
mmc_blk_rq_error(struct mmc_blk_request * brq)1978 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1979 {
1980 mmc_blk_eval_resp_error(brq);
1981
1982 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1983 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1984 }
1985
mmc_spi_err_check(struct mmc_card * card)1986 static int mmc_spi_err_check(struct mmc_card *card)
1987 {
1988 u32 status = 0;
1989 int err;
1990
1991 /*
1992 * SPI does not have a TRAN state we have to wait on, instead the
1993 * card is ready again when it no longer holds the line LOW.
1994 * We still have to ensure two things here before we know the write
1995 * was successful:
1996 * 1. The card has not disconnected during busy and we actually read our
1997 * own pull-up, thinking it was still connected, so ensure it
1998 * still responds.
1999 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
2000 * just reconnected card after being disconnected during busy.
2001 */
2002 err = __mmc_send_status(card, &status, 0);
2003 if (err)
2004 return err;
2005 /* All R1 and R2 bits of SPI are errors in our case */
2006 if (status)
2007 return -EIO;
2008 return 0;
2009 }
2010
mmc_blk_busy_cb(void * cb_data,bool * busy)2011 static int mmc_blk_busy_cb(void *cb_data, bool *busy)
2012 {
2013 struct mmc_blk_busy_data *data = cb_data;
2014 u32 status = 0;
2015 int err;
2016
2017 err = mmc_send_status(data->card, &status);
2018 if (err)
2019 return err;
2020
2021 /* Accumulate response error bits. */
2022 data->status |= status;
2023
2024 *busy = !mmc_ready_for_data(status);
2025 return 0;
2026 }
2027
mmc_blk_card_busy(struct mmc_card * card,struct request * req)2028 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
2029 {
2030 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2031 struct mmc_blk_busy_data cb_data;
2032 int err;
2033
2034 if (rq_data_dir(req) == READ)
2035 return 0;
2036
2037 if (mmc_host_is_spi(card->host)) {
2038 err = mmc_spi_err_check(card);
2039 if (err)
2040 mqrq->brq.data.bytes_xfered = 0;
2041 return err;
2042 }
2043
2044 cb_data.card = card;
2045 cb_data.status = 0;
2046 err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
2047 &mmc_blk_busy_cb, &cb_data);
2048
2049 /*
2050 * Do not assume data transferred correctly if there are any error bits
2051 * set.
2052 */
2053 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
2054 mqrq->brq.data.bytes_xfered = 0;
2055 err = err ? err : -EIO;
2056 }
2057
2058 /* Copy the exception bit so it will be seen later on */
2059 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
2060 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
2061
2062 return err;
2063 }
2064
mmc_blk_rw_reset_success(struct mmc_queue * mq,struct request * req)2065 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
2066 struct request *req)
2067 {
2068 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
2069
2070 mmc_blk_reset_success(mq->blkdata, type);
2071 }
2072
mmc_blk_mq_complete_rq(struct mmc_queue * mq,struct request * req)2073 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
2074 {
2075 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2076 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
2077
2078 if (nr_bytes) {
2079 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
2080 blk_mq_requeue_request(req, true);
2081 else
2082 __blk_mq_end_request(req, BLK_STS_OK);
2083 } else if (!blk_rq_bytes(req)) {
2084 __blk_mq_end_request(req, BLK_STS_IOERR);
2085 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2086 blk_mq_requeue_request(req, true);
2087 } else {
2088 if (mmc_card_removed(mq->card))
2089 req->rq_flags |= RQF_QUIET;
2090 blk_mq_end_request(req, BLK_STS_IOERR);
2091 }
2092 }
2093
mmc_blk_urgent_bkops_needed(struct mmc_queue * mq,struct mmc_queue_req * mqrq)2094 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2095 struct mmc_queue_req *mqrq)
2096 {
2097 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2098 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2099 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2100 }
2101
mmc_blk_urgent_bkops(struct mmc_queue * mq,struct mmc_queue_req * mqrq)2102 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2103 struct mmc_queue_req *mqrq)
2104 {
2105 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2106 mmc_run_bkops(mq->card);
2107 }
2108
mmc_blk_hsq_req_done(struct mmc_request * mrq)2109 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2110 {
2111 struct mmc_queue_req *mqrq =
2112 container_of(mrq, struct mmc_queue_req, brq.mrq);
2113 struct request *req = mmc_queue_req_to_req(mqrq);
2114 struct request_queue *q = req->q;
2115 struct mmc_queue *mq = q->queuedata;
2116 struct mmc_host *host = mq->card->host;
2117 unsigned long flags;
2118
2119 if (mmc_blk_rq_error(&mqrq->brq) ||
2120 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2121 spin_lock_irqsave(&mq->lock, flags);
2122 mq->recovery_needed = true;
2123 mq->recovery_req = req;
2124 spin_unlock_irqrestore(&mq->lock, flags);
2125
2126 host->cqe_ops->cqe_recovery_start(host);
2127
2128 schedule_work(&mq->recovery_work);
2129 return;
2130 }
2131
2132 mmc_blk_rw_reset_success(mq, req);
2133
2134 /*
2135 * Block layer timeouts race with completions which means the normal
2136 * completion path cannot be used during recovery.
2137 */
2138 if (mq->in_recovery)
2139 mmc_blk_cqe_complete_rq(mq, req);
2140 else if (likely(!blk_should_fake_timeout(req->q)))
2141 blk_mq_complete_request(req);
2142 }
2143
mmc_blk_mq_complete(struct request * req)2144 void mmc_blk_mq_complete(struct request *req)
2145 {
2146 struct mmc_queue *mq = req->q->queuedata;
2147 struct mmc_host *host = mq->card->host;
2148
2149 if (host->cqe_enabled)
2150 mmc_blk_cqe_complete_rq(mq, req);
2151 else if (likely(!blk_should_fake_timeout(req->q)))
2152 mmc_blk_mq_complete_rq(mq, req);
2153 }
2154
mmc_blk_mq_poll_completion(struct mmc_queue * mq,struct request * req)2155 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2156 struct request *req)
2157 {
2158 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2159 struct mmc_host *host = mq->card->host;
2160
2161 if (mmc_blk_rq_error(&mqrq->brq) ||
2162 mmc_blk_card_busy(mq->card, req)) {
2163 mmc_blk_mq_rw_recovery(mq, req);
2164 } else {
2165 mmc_blk_rw_reset_success(mq, req);
2166 mmc_retune_release(host);
2167 }
2168
2169 mmc_blk_urgent_bkops(mq, mqrq);
2170 }
2171
mmc_blk_mq_dec_in_flight(struct mmc_queue * mq,enum mmc_issue_type issue_type)2172 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type)
2173 {
2174 unsigned long flags;
2175 bool put_card;
2176
2177 spin_lock_irqsave(&mq->lock, flags);
2178
2179 mq->in_flight[issue_type] -= 1;
2180
2181 put_card = (mmc_tot_in_flight(mq) == 0);
2182
2183 spin_unlock_irqrestore(&mq->lock, flags);
2184
2185 if (put_card)
2186 mmc_put_card(mq->card, &mq->ctx);
2187 }
2188
mmc_blk_mq_post_req(struct mmc_queue * mq,struct request * req,bool can_sleep)2189 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2190 bool can_sleep)
2191 {
2192 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
2193 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2194 struct mmc_request *mrq = &mqrq->brq.mrq;
2195 struct mmc_host *host = mq->card->host;
2196
2197 mmc_post_req(host, mrq, 0);
2198
2199 /*
2200 * Block layer timeouts race with completions which means the normal
2201 * completion path cannot be used during recovery.
2202 */
2203 if (mq->in_recovery) {
2204 mmc_blk_mq_complete_rq(mq, req);
2205 } else if (likely(!blk_should_fake_timeout(req->q))) {
2206 if (can_sleep)
2207 blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2208 else
2209 blk_mq_complete_request(req);
2210 }
2211
2212 mmc_blk_mq_dec_in_flight(mq, issue_type);
2213 }
2214
mmc_blk_mq_recovery(struct mmc_queue * mq)2215 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2216 {
2217 struct request *req = mq->recovery_req;
2218 struct mmc_host *host = mq->card->host;
2219 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2220
2221 mq->recovery_req = NULL;
2222 mq->rw_wait = false;
2223
2224 if (mmc_blk_rq_error(&mqrq->brq)) {
2225 mmc_retune_hold_now(host);
2226 mmc_blk_mq_rw_recovery(mq, req);
2227 }
2228
2229 mmc_blk_urgent_bkops(mq, mqrq);
2230
2231 mmc_blk_mq_post_req(mq, req, true);
2232 }
2233
mmc_blk_mq_complete_prev_req(struct mmc_queue * mq,struct request ** prev_req)2234 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2235 struct request **prev_req)
2236 {
2237 if (mmc_host_done_complete(mq->card->host))
2238 return;
2239
2240 mutex_lock(&mq->complete_lock);
2241
2242 if (!mq->complete_req)
2243 goto out_unlock;
2244
2245 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2246
2247 if (prev_req)
2248 *prev_req = mq->complete_req;
2249 else
2250 mmc_blk_mq_post_req(mq, mq->complete_req, true);
2251
2252 mq->complete_req = NULL;
2253
2254 out_unlock:
2255 mutex_unlock(&mq->complete_lock);
2256 }
2257
mmc_blk_mq_complete_work(struct work_struct * work)2258 void mmc_blk_mq_complete_work(struct work_struct *work)
2259 {
2260 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2261 complete_work);
2262
2263 mmc_blk_mq_complete_prev_req(mq, NULL);
2264 }
2265
mmc_blk_mq_req_done(struct mmc_request * mrq)2266 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2267 {
2268 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2269 brq.mrq);
2270 struct request *req = mmc_queue_req_to_req(mqrq);
2271 struct request_queue *q = req->q;
2272 struct mmc_queue *mq = q->queuedata;
2273 struct mmc_host *host = mq->card->host;
2274 unsigned long flags;
2275
2276 if (!mmc_host_done_complete(host)) {
2277 bool waiting;
2278
2279 /*
2280 * We cannot complete the request in this context, so record
2281 * that there is a request to complete, and that a following
2282 * request does not need to wait (although it does need to
2283 * complete complete_req first).
2284 */
2285 spin_lock_irqsave(&mq->lock, flags);
2286 mq->complete_req = req;
2287 mq->rw_wait = false;
2288 waiting = mq->waiting;
2289 spin_unlock_irqrestore(&mq->lock, flags);
2290
2291 /*
2292 * If 'waiting' then the waiting task will complete this
2293 * request, otherwise queue a work to do it. Note that
2294 * complete_work may still race with the dispatch of a following
2295 * request.
2296 */
2297 if (waiting)
2298 wake_up(&mq->wait);
2299 else
2300 queue_work(mq->card->complete_wq, &mq->complete_work);
2301
2302 return;
2303 }
2304
2305 /* Take the recovery path for errors or urgent background operations */
2306 if (mmc_blk_rq_error(&mqrq->brq) ||
2307 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2308 spin_lock_irqsave(&mq->lock, flags);
2309 mq->recovery_needed = true;
2310 mq->recovery_req = req;
2311 spin_unlock_irqrestore(&mq->lock, flags);
2312 wake_up(&mq->wait);
2313 schedule_work(&mq->recovery_work);
2314 return;
2315 }
2316
2317 mmc_blk_rw_reset_success(mq, req);
2318
2319 mq->rw_wait = false;
2320 wake_up(&mq->wait);
2321
2322 /* context unknown */
2323 mmc_blk_mq_post_req(mq, req, false);
2324 }
2325
mmc_blk_rw_wait_cond(struct mmc_queue * mq,int * err)2326 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2327 {
2328 unsigned long flags;
2329 bool done;
2330
2331 /*
2332 * Wait while there is another request in progress, but not if recovery
2333 * is needed. Also indicate whether there is a request waiting to start.
2334 */
2335 spin_lock_irqsave(&mq->lock, flags);
2336 if (mq->recovery_needed) {
2337 *err = -EBUSY;
2338 done = true;
2339 } else {
2340 done = !mq->rw_wait;
2341 }
2342 mq->waiting = !done;
2343 spin_unlock_irqrestore(&mq->lock, flags);
2344
2345 return done;
2346 }
2347
mmc_blk_rw_wait(struct mmc_queue * mq,struct request ** prev_req)2348 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2349 {
2350 int err = 0;
2351
2352 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2353
2354 /* Always complete the previous request if there is one */
2355 mmc_blk_mq_complete_prev_req(mq, prev_req);
2356
2357 return err;
2358 }
2359
mmc_blk_mq_issue_rw_rq(struct mmc_queue * mq,struct request * req)2360 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2361 struct request *req)
2362 {
2363 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2364 struct mmc_host *host = mq->card->host;
2365 struct request *prev_req = NULL;
2366 int err = 0;
2367
2368 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2369
2370 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2371
2372 mmc_pre_req(host, &mqrq->brq.mrq);
2373
2374 err = mmc_blk_rw_wait(mq, &prev_req);
2375 if (err)
2376 goto out_post_req;
2377
2378 mq->rw_wait = true;
2379
2380 err = mmc_start_request(host, &mqrq->brq.mrq);
2381
2382 if (prev_req)
2383 mmc_blk_mq_post_req(mq, prev_req, true);
2384
2385 if (err)
2386 mq->rw_wait = false;
2387
2388 /* Release re-tuning here where there is no synchronization required */
2389 if (err || mmc_host_done_complete(host))
2390 mmc_retune_release(host);
2391
2392 out_post_req:
2393 if (err)
2394 mmc_post_req(host, &mqrq->brq.mrq, err);
2395
2396 return err;
2397 }
2398
mmc_blk_wait_for_idle(struct mmc_queue * mq,struct mmc_host * host)2399 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2400 {
2401 if (host->cqe_enabled)
2402 return host->cqe_ops->cqe_wait_for_idle(host);
2403
2404 return mmc_blk_rw_wait(mq, NULL);
2405 }
2406
mmc_blk_mq_issue_rq(struct mmc_queue * mq,struct request * req)2407 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2408 {
2409 struct mmc_blk_data *md = mq->blkdata;
2410 struct mmc_card *card = md->queue.card;
2411 struct mmc_host *host = card->host;
2412 int ret;
2413
2414 ret = mmc_blk_part_switch(card, md->part_type);
2415 if (ret)
2416 return MMC_REQ_FAILED_TO_START;
2417
2418 switch (mmc_issue_type(mq, req)) {
2419 case MMC_ISSUE_SYNC:
2420 ret = mmc_blk_wait_for_idle(mq, host);
2421 if (ret)
2422 return MMC_REQ_BUSY;
2423 switch (req_op(req)) {
2424 case REQ_OP_DRV_IN:
2425 case REQ_OP_DRV_OUT:
2426 mmc_blk_issue_drv_op(mq, req);
2427 break;
2428 case REQ_OP_DISCARD:
2429 mmc_blk_issue_discard_rq(mq, req);
2430 break;
2431 case REQ_OP_SECURE_ERASE:
2432 mmc_blk_issue_secdiscard_rq(mq, req);
2433 break;
2434 case REQ_OP_WRITE_ZEROES:
2435 mmc_blk_issue_trim_rq(mq, req);
2436 break;
2437 case REQ_OP_FLUSH:
2438 mmc_blk_issue_flush(mq, req);
2439 break;
2440 default:
2441 WARN_ON_ONCE(1);
2442 return MMC_REQ_FAILED_TO_START;
2443 }
2444 return MMC_REQ_FINISHED;
2445 case MMC_ISSUE_DCMD:
2446 case MMC_ISSUE_ASYNC:
2447 switch (req_op(req)) {
2448 case REQ_OP_FLUSH:
2449 if (!mmc_cache_enabled(host)) {
2450 blk_mq_end_request(req, BLK_STS_OK);
2451 return MMC_REQ_FINISHED;
2452 }
2453 ret = mmc_blk_cqe_issue_flush(mq, req);
2454 break;
2455 case REQ_OP_READ:
2456 case REQ_OP_WRITE:
2457 if (host->cqe_enabled)
2458 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2459 else
2460 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2461 break;
2462 default:
2463 WARN_ON_ONCE(1);
2464 ret = -EINVAL;
2465 }
2466 if (!ret)
2467 return MMC_REQ_STARTED;
2468 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2469 default:
2470 WARN_ON_ONCE(1);
2471 return MMC_REQ_FAILED_TO_START;
2472 }
2473 }
2474
mmc_blk_readonly(struct mmc_card * card)2475 static inline int mmc_blk_readonly(struct mmc_card *card)
2476 {
2477 return mmc_card_readonly(card) ||
2478 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2479 }
2480
mmc_blk_alloc_req(struct mmc_card * card,struct device * parent,sector_t size,bool default_ro,const char * subname,int area_type,unsigned int part_type)2481 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2482 struct device *parent,
2483 sector_t size,
2484 bool default_ro,
2485 const char *subname,
2486 int area_type,
2487 unsigned int part_type)
2488 {
2489 struct mmc_blk_data *md;
2490 int devidx, ret;
2491 char cap_str[10];
2492 bool cache_enabled = false;
2493 bool fua_enabled = false;
2494
2495 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2496 if (devidx < 0) {
2497 /*
2498 * We get -ENOSPC because there are no more any available
2499 * devidx. The reason may be that, either userspace haven't yet
2500 * unmounted the partitions, which postpones mmc_blk_release()
2501 * from being called, or the device has more partitions than
2502 * what we support.
2503 */
2504 if (devidx == -ENOSPC)
2505 dev_err(mmc_dev(card->host),
2506 "no more device IDs available\n");
2507
2508 return ERR_PTR(devidx);
2509 }
2510
2511 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2512 if (!md) {
2513 ret = -ENOMEM;
2514 goto out;
2515 }
2516
2517 md->area_type = area_type;
2518
2519 /*
2520 * Set the read-only status based on the supported commands
2521 * and the write protect switch.
2522 */
2523 md->read_only = mmc_blk_readonly(card);
2524
2525 md->disk = mmc_init_queue(&md->queue, card);
2526 if (IS_ERR(md->disk)) {
2527 ret = PTR_ERR(md->disk);
2528 goto err_kfree;
2529 }
2530
2531 INIT_LIST_HEAD(&md->part);
2532 INIT_LIST_HEAD(&md->rpmbs);
2533 kref_init(&md->kref);
2534
2535 md->queue.blkdata = md;
2536 md->part_type = part_type;
2537
2538 md->disk->major = MMC_BLOCK_MAJOR;
2539 md->disk->minors = perdev_minors;
2540 md->disk->first_minor = devidx * perdev_minors;
2541 md->disk->fops = &mmc_bdops;
2542 md->disk->private_data = md;
2543 md->parent = parent;
2544 set_disk_ro(md->disk, md->read_only || default_ro);
2545 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2546 md->disk->flags |= GENHD_FL_NO_PART;
2547
2548 /*
2549 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2550 *
2551 * - be set for removable media with permanent block devices
2552 * - be unset for removable block devices with permanent media
2553 *
2554 * Since MMC block devices clearly fall under the second
2555 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2556 * should use the block device creation/destruction hotplug
2557 * messages to tell when the card is present.
2558 */
2559
2560 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2561 "mmcblk%u%s", card->host->index, subname ? subname : "");
2562
2563 set_capacity(md->disk, size);
2564
2565 if (mmc_host_cmd23(card->host)) {
2566 if ((mmc_card_mmc(card) &&
2567 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2568 (mmc_card_sd(card) &&
2569 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2570 md->flags |= MMC_BLK_CMD23;
2571 }
2572
2573 if (md->flags & MMC_BLK_CMD23 &&
2574 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2575 card->ext_csd.rel_sectors)) {
2576 md->flags |= MMC_BLK_REL_WR;
2577 fua_enabled = true;
2578 cache_enabled = true;
2579 }
2580 if (mmc_cache_enabled(card->host))
2581 cache_enabled = true;
2582
2583 blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled);
2584
2585 string_get_size((u64)size, 512, STRING_UNITS_2,
2586 cap_str, sizeof(cap_str));
2587 pr_info("%s: %s %s %s %s\n",
2588 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2589 cap_str, md->read_only ? "(ro)" : "");
2590
2591 /* used in ->open, must be set before add_disk: */
2592 if (area_type == MMC_BLK_DATA_AREA_MAIN)
2593 dev_set_drvdata(&card->dev, md);
2594 ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2595 if (ret)
2596 goto err_put_disk;
2597 return md;
2598
2599 err_put_disk:
2600 put_disk(md->disk);
2601 blk_mq_free_tag_set(&md->queue.tag_set);
2602 err_kfree:
2603 kfree(md);
2604 out:
2605 ida_simple_remove(&mmc_blk_ida, devidx);
2606 return ERR_PTR(ret);
2607 }
2608
mmc_blk_alloc(struct mmc_card * card)2609 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2610 {
2611 sector_t size;
2612
2613 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2614 /*
2615 * The EXT_CSD sector count is in number or 512 byte
2616 * sectors.
2617 */
2618 size = card->ext_csd.sectors;
2619 } else {
2620 /*
2621 * The CSD capacity field is in units of read_blkbits.
2622 * set_capacity takes units of 512 bytes.
2623 */
2624 size = (typeof(sector_t))card->csd.capacity
2625 << (card->csd.read_blkbits - 9);
2626 }
2627
2628 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2629 MMC_BLK_DATA_AREA_MAIN, 0);
2630 }
2631
mmc_blk_alloc_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_type,sector_t size,bool default_ro,const char * subname,int area_type)2632 static int mmc_blk_alloc_part(struct mmc_card *card,
2633 struct mmc_blk_data *md,
2634 unsigned int part_type,
2635 sector_t size,
2636 bool default_ro,
2637 const char *subname,
2638 int area_type)
2639 {
2640 struct mmc_blk_data *part_md;
2641
2642 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2643 subname, area_type, part_type);
2644 if (IS_ERR(part_md))
2645 return PTR_ERR(part_md);
2646 list_add(&part_md->part, &md->part);
2647
2648 return 0;
2649 }
2650
2651 /**
2652 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2653 * @filp: the character device file
2654 * @cmd: the ioctl() command
2655 * @arg: the argument from userspace
2656 *
2657 * This will essentially just redirect the ioctl()s coming in over to
2658 * the main block device spawning the RPMB character device.
2659 */
mmc_rpmb_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2660 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2661 unsigned long arg)
2662 {
2663 struct mmc_rpmb_data *rpmb = filp->private_data;
2664 int ret;
2665
2666 switch (cmd) {
2667 case MMC_IOC_CMD:
2668 ret = mmc_blk_ioctl_cmd(rpmb->md,
2669 (struct mmc_ioc_cmd __user *)arg,
2670 rpmb);
2671 break;
2672 case MMC_IOC_MULTI_CMD:
2673 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2674 (struct mmc_ioc_multi_cmd __user *)arg,
2675 rpmb);
2676 break;
2677 default:
2678 ret = -EINVAL;
2679 break;
2680 }
2681
2682 return ret;
2683 }
2684
2685 #ifdef CONFIG_COMPAT
mmc_rpmb_ioctl_compat(struct file * filp,unsigned int cmd,unsigned long arg)2686 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2687 unsigned long arg)
2688 {
2689 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2690 }
2691 #endif
2692
mmc_rpmb_chrdev_open(struct inode * inode,struct file * filp)2693 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2694 {
2695 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2696 struct mmc_rpmb_data, chrdev);
2697
2698 get_device(&rpmb->dev);
2699 filp->private_data = rpmb;
2700 mmc_blk_get(rpmb->md->disk);
2701
2702 return nonseekable_open(inode, filp);
2703 }
2704
mmc_rpmb_chrdev_release(struct inode * inode,struct file * filp)2705 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2706 {
2707 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2708 struct mmc_rpmb_data, chrdev);
2709
2710 mmc_blk_put(rpmb->md);
2711 put_device(&rpmb->dev);
2712
2713 return 0;
2714 }
2715
2716 static const struct file_operations mmc_rpmb_fileops = {
2717 .release = mmc_rpmb_chrdev_release,
2718 .open = mmc_rpmb_chrdev_open,
2719 .owner = THIS_MODULE,
2720 .llseek = no_llseek,
2721 .unlocked_ioctl = mmc_rpmb_ioctl,
2722 #ifdef CONFIG_COMPAT
2723 .compat_ioctl = mmc_rpmb_ioctl_compat,
2724 #endif
2725 };
2726
mmc_blk_rpmb_device_release(struct device * dev)2727 static void mmc_blk_rpmb_device_release(struct device *dev)
2728 {
2729 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2730
2731 ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2732 kfree(rpmb);
2733 }
2734
mmc_blk_alloc_rpmb_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_index,sector_t size,const char * subname)2735 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2736 struct mmc_blk_data *md,
2737 unsigned int part_index,
2738 sector_t size,
2739 const char *subname)
2740 {
2741 int devidx, ret;
2742 char rpmb_name[DISK_NAME_LEN];
2743 char cap_str[10];
2744 struct mmc_rpmb_data *rpmb;
2745
2746 /* This creates the minor number for the RPMB char device */
2747 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2748 if (devidx < 0)
2749 return devidx;
2750
2751 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2752 if (!rpmb) {
2753 ida_simple_remove(&mmc_rpmb_ida, devidx);
2754 return -ENOMEM;
2755 }
2756
2757 snprintf(rpmb_name, sizeof(rpmb_name),
2758 "mmcblk%u%s", card->host->index, subname ? subname : "");
2759
2760 rpmb->id = devidx;
2761 rpmb->part_index = part_index;
2762 rpmb->dev.init_name = rpmb_name;
2763 rpmb->dev.bus = &mmc_rpmb_bus_type;
2764 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2765 rpmb->dev.parent = &card->dev;
2766 rpmb->dev.release = mmc_blk_rpmb_device_release;
2767 device_initialize(&rpmb->dev);
2768 dev_set_drvdata(&rpmb->dev, rpmb);
2769 rpmb->md = md;
2770
2771 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2772 rpmb->chrdev.owner = THIS_MODULE;
2773 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2774 if (ret) {
2775 pr_err("%s: could not add character device\n", rpmb_name);
2776 goto out_put_device;
2777 }
2778
2779 list_add(&rpmb->node, &md->rpmbs);
2780
2781 string_get_size((u64)size, 512, STRING_UNITS_2,
2782 cap_str, sizeof(cap_str));
2783
2784 pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2785 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2786 MAJOR(mmc_rpmb_devt), rpmb->id);
2787
2788 return 0;
2789
2790 out_put_device:
2791 put_device(&rpmb->dev);
2792 return ret;
2793 }
2794
mmc_blk_remove_rpmb_part(struct mmc_rpmb_data * rpmb)2795 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2796
2797 {
2798 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2799 put_device(&rpmb->dev);
2800 }
2801
2802 /* MMC Physical partitions consist of two boot partitions and
2803 * up to four general purpose partitions.
2804 * For each partition enabled in EXT_CSD a block device will be allocatedi
2805 * to provide access to the partition.
2806 */
2807
mmc_blk_alloc_parts(struct mmc_card * card,struct mmc_blk_data * md)2808 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2809 {
2810 int idx, ret;
2811
2812 if (!mmc_card_mmc(card))
2813 return 0;
2814
2815 for (idx = 0; idx < card->nr_parts; idx++) {
2816 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2817 /*
2818 * RPMB partitions does not provide block access, they
2819 * are only accessed using ioctl():s. Thus create
2820 * special RPMB block devices that do not have a
2821 * backing block queue for these.
2822 */
2823 ret = mmc_blk_alloc_rpmb_part(card, md,
2824 card->part[idx].part_cfg,
2825 card->part[idx].size >> 9,
2826 card->part[idx].name);
2827 if (ret)
2828 return ret;
2829 } else if (card->part[idx].size) {
2830 ret = mmc_blk_alloc_part(card, md,
2831 card->part[idx].part_cfg,
2832 card->part[idx].size >> 9,
2833 card->part[idx].force_ro,
2834 card->part[idx].name,
2835 card->part[idx].area_type);
2836 if (ret)
2837 return ret;
2838 }
2839 }
2840
2841 return 0;
2842 }
2843
mmc_blk_remove_req(struct mmc_blk_data * md)2844 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2845 {
2846 /*
2847 * Flush remaining requests and free queues. It is freeing the queue
2848 * that stops new requests from being accepted.
2849 */
2850 del_gendisk(md->disk);
2851 mmc_cleanup_queue(&md->queue);
2852 mmc_blk_put(md);
2853 }
2854
mmc_blk_remove_parts(struct mmc_card * card,struct mmc_blk_data * md)2855 static void mmc_blk_remove_parts(struct mmc_card *card,
2856 struct mmc_blk_data *md)
2857 {
2858 struct list_head *pos, *q;
2859 struct mmc_blk_data *part_md;
2860 struct mmc_rpmb_data *rpmb;
2861
2862 /* Remove RPMB partitions */
2863 list_for_each_safe(pos, q, &md->rpmbs) {
2864 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2865 list_del(pos);
2866 mmc_blk_remove_rpmb_part(rpmb);
2867 }
2868 /* Remove block partitions */
2869 list_for_each_safe(pos, q, &md->part) {
2870 part_md = list_entry(pos, struct mmc_blk_data, part);
2871 list_del(pos);
2872 mmc_blk_remove_req(part_md);
2873 }
2874 }
2875
2876 #ifdef CONFIG_DEBUG_FS
2877
mmc_dbg_card_status_get(void * data,u64 * val)2878 static int mmc_dbg_card_status_get(void *data, u64 *val)
2879 {
2880 struct mmc_card *card = data;
2881 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2882 struct mmc_queue *mq = &md->queue;
2883 struct request *req;
2884 int ret;
2885
2886 /* Ask the block layer about the card status */
2887 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2888 if (IS_ERR(req))
2889 return PTR_ERR(req);
2890 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2891 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2892 blk_execute_rq(req, false);
2893 ret = req_to_mmc_queue_req(req)->drv_op_result;
2894 if (ret >= 0) {
2895 *val = ret;
2896 ret = 0;
2897 }
2898 blk_mq_free_request(req);
2899
2900 return ret;
2901 }
2902 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2903 NULL, "%08llx\n");
2904
2905 /* That is two digits * 512 + 1 for newline */
2906 #define EXT_CSD_STR_LEN 1025
2907
mmc_ext_csd_open(struct inode * inode,struct file * filp)2908 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2909 {
2910 struct mmc_card *card = inode->i_private;
2911 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2912 struct mmc_queue *mq = &md->queue;
2913 struct request *req;
2914 char *buf;
2915 ssize_t n = 0;
2916 u8 *ext_csd;
2917 int err, i;
2918
2919 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2920 if (!buf)
2921 return -ENOMEM;
2922
2923 /* Ask the block layer for the EXT CSD */
2924 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2925 if (IS_ERR(req)) {
2926 err = PTR_ERR(req);
2927 goto out_free;
2928 }
2929 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2930 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2931 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2932 blk_execute_rq(req, false);
2933 err = req_to_mmc_queue_req(req)->drv_op_result;
2934 blk_mq_free_request(req);
2935 if (err) {
2936 pr_err("FAILED %d\n", err);
2937 goto out_free;
2938 }
2939
2940 for (i = 0; i < 512; i++)
2941 n += sprintf(buf + n, "%02x", ext_csd[i]);
2942 n += sprintf(buf + n, "\n");
2943
2944 if (n != EXT_CSD_STR_LEN) {
2945 err = -EINVAL;
2946 kfree(ext_csd);
2947 goto out_free;
2948 }
2949
2950 filp->private_data = buf;
2951 kfree(ext_csd);
2952 return 0;
2953
2954 out_free:
2955 kfree(buf);
2956 return err;
2957 }
2958
mmc_ext_csd_read(struct file * filp,char __user * ubuf,size_t cnt,loff_t * ppos)2959 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2960 size_t cnt, loff_t *ppos)
2961 {
2962 char *buf = filp->private_data;
2963
2964 return simple_read_from_buffer(ubuf, cnt, ppos,
2965 buf, EXT_CSD_STR_LEN);
2966 }
2967
mmc_ext_csd_release(struct inode * inode,struct file * file)2968 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2969 {
2970 kfree(file->private_data);
2971 return 0;
2972 }
2973
2974 static const struct file_operations mmc_dbg_ext_csd_fops = {
2975 .open = mmc_ext_csd_open,
2976 .read = mmc_ext_csd_read,
2977 .release = mmc_ext_csd_release,
2978 .llseek = default_llseek,
2979 };
2980
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2981 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2982 {
2983 struct dentry *root;
2984
2985 if (!card->debugfs_root)
2986 return 0;
2987
2988 root = card->debugfs_root;
2989
2990 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2991 md->status_dentry =
2992 debugfs_create_file_unsafe("status", 0400, root,
2993 card,
2994 &mmc_dbg_card_status_fops);
2995 if (!md->status_dentry)
2996 return -EIO;
2997 }
2998
2999 if (mmc_card_mmc(card)) {
3000 md->ext_csd_dentry =
3001 debugfs_create_file("ext_csd", S_IRUSR, root, card,
3002 &mmc_dbg_ext_csd_fops);
3003 if (!md->ext_csd_dentry)
3004 return -EIO;
3005 }
3006
3007 return 0;
3008 }
3009
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)3010 static void mmc_blk_remove_debugfs(struct mmc_card *card,
3011 struct mmc_blk_data *md)
3012 {
3013 if (!card->debugfs_root)
3014 return;
3015
3016 if (!IS_ERR_OR_NULL(md->status_dentry)) {
3017 debugfs_remove(md->status_dentry);
3018 md->status_dentry = NULL;
3019 }
3020
3021 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
3022 debugfs_remove(md->ext_csd_dentry);
3023 md->ext_csd_dentry = NULL;
3024 }
3025 }
3026
3027 #else
3028
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)3029 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
3030 {
3031 return 0;
3032 }
3033
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)3034 static void mmc_blk_remove_debugfs(struct mmc_card *card,
3035 struct mmc_blk_data *md)
3036 {
3037 }
3038
3039 #endif /* CONFIG_DEBUG_FS */
3040
mmc_blk_probe(struct mmc_card * card)3041 static int mmc_blk_probe(struct mmc_card *card)
3042 {
3043 struct mmc_blk_data *md;
3044 int ret = 0;
3045
3046 /*
3047 * Check that the card supports the command class(es) we need.
3048 */
3049 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
3050 return -ENODEV;
3051
3052 mmc_fixup_device(card, mmc_blk_fixups);
3053
3054 card->complete_wq = alloc_workqueue("mmc_complete",
3055 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3056 if (!card->complete_wq) {
3057 pr_err("Failed to create mmc completion workqueue");
3058 return -ENOMEM;
3059 }
3060
3061 md = mmc_blk_alloc(card);
3062 if (IS_ERR(md)) {
3063 ret = PTR_ERR(md);
3064 goto out_free;
3065 }
3066 trace_android_vh_mmc_update_mmc_queue(card, &md->queue);
3067
3068 ret = mmc_blk_alloc_parts(card, md);
3069 if (ret)
3070 goto out;
3071
3072 /* Add two debugfs entries */
3073 mmc_blk_add_debugfs(card, md);
3074
3075 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
3076 pm_runtime_use_autosuspend(&card->dev);
3077
3078 /*
3079 * Don't enable runtime PM for SD-combo cards here. Leave that
3080 * decision to be taken during the SDIO init sequence instead.
3081 */
3082 if (!mmc_card_sd_combo(card)) {
3083 pm_runtime_set_active(&card->dev);
3084 pm_runtime_enable(&card->dev);
3085 }
3086
3087 return 0;
3088
3089 out:
3090 mmc_blk_remove_parts(card, md);
3091 mmc_blk_remove_req(md);
3092 out_free:
3093 destroy_workqueue(card->complete_wq);
3094 return ret;
3095 }
3096
mmc_blk_remove(struct mmc_card * card)3097 static void mmc_blk_remove(struct mmc_card *card)
3098 {
3099 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3100
3101 mmc_blk_remove_debugfs(card, md);
3102 mmc_blk_remove_parts(card, md);
3103 pm_runtime_get_sync(&card->dev);
3104 if (md->part_curr != md->part_type) {
3105 mmc_claim_host(card->host);
3106 mmc_blk_part_switch(card, md->part_type);
3107 mmc_release_host(card->host);
3108 }
3109 if (!mmc_card_sd_combo(card))
3110 pm_runtime_disable(&card->dev);
3111 pm_runtime_put_noidle(&card->dev);
3112 mmc_blk_remove_req(md);
3113 dev_set_drvdata(&card->dev, NULL);
3114 destroy_workqueue(card->complete_wq);
3115 }
3116
_mmc_blk_suspend(struct mmc_card * card)3117 static int _mmc_blk_suspend(struct mmc_card *card)
3118 {
3119 struct mmc_blk_data *part_md;
3120 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3121
3122 if (md) {
3123 mmc_queue_suspend(&md->queue);
3124 list_for_each_entry(part_md, &md->part, part) {
3125 mmc_queue_suspend(&part_md->queue);
3126 }
3127 }
3128 return 0;
3129 }
3130
mmc_blk_shutdown(struct mmc_card * card)3131 static void mmc_blk_shutdown(struct mmc_card *card)
3132 {
3133 _mmc_blk_suspend(card);
3134 }
3135
3136 #ifdef CONFIG_PM_SLEEP
mmc_blk_suspend(struct device * dev)3137 static int mmc_blk_suspend(struct device *dev)
3138 {
3139 struct mmc_card *card = mmc_dev_to_card(dev);
3140
3141 return _mmc_blk_suspend(card);
3142 }
3143
mmc_blk_resume(struct device * dev)3144 static int mmc_blk_resume(struct device *dev)
3145 {
3146 struct mmc_blk_data *part_md;
3147 struct mmc_blk_data *md = dev_get_drvdata(dev);
3148
3149 if (md) {
3150 /*
3151 * Resume involves the card going into idle state,
3152 * so current partition is always the main one.
3153 */
3154 md->part_curr = md->part_type;
3155 mmc_queue_resume(&md->queue);
3156 list_for_each_entry(part_md, &md->part, part) {
3157 mmc_queue_resume(&part_md->queue);
3158 }
3159 }
3160 return 0;
3161 }
3162 #endif
3163
3164 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3165
3166 static struct mmc_driver mmc_driver = {
3167 .drv = {
3168 .name = "mmcblk",
3169 .pm = &mmc_blk_pm_ops,
3170 },
3171 .probe = mmc_blk_probe,
3172 .remove = mmc_blk_remove,
3173 .shutdown = mmc_blk_shutdown,
3174 };
3175
mmc_blk_init(void)3176 static int __init mmc_blk_init(void)
3177 {
3178 int res;
3179
3180 res = bus_register(&mmc_rpmb_bus_type);
3181 if (res < 0) {
3182 pr_err("mmcblk: could not register RPMB bus type\n");
3183 return res;
3184 }
3185 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3186 if (res < 0) {
3187 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3188 goto out_bus_unreg;
3189 }
3190
3191 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3192 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3193
3194 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3195
3196 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3197 if (res)
3198 goto out_chrdev_unreg;
3199
3200 res = mmc_register_driver(&mmc_driver);
3201 if (res)
3202 goto out_blkdev_unreg;
3203
3204 return 0;
3205
3206 out_blkdev_unreg:
3207 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3208 out_chrdev_unreg:
3209 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3210 out_bus_unreg:
3211 bus_unregister(&mmc_rpmb_bus_type);
3212 return res;
3213 }
3214
mmc_blk_exit(void)3215 static void __exit mmc_blk_exit(void)
3216 {
3217 mmc_unregister_driver(&mmc_driver);
3218 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3219 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3220 bus_unregister(&mmc_rpmb_bus_type);
3221 }
3222
3223 module_init(mmc_blk_init);
3224 module_exit(mmc_blk_exit);
3225
3226 MODULE_LICENSE("GPL");
3227 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3228