1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/core/core.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pm_wakeup.h>
23 #include <linux/suspend.h>
24 #include <linux/fault-inject.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28
29 #include <linux/mmc/card.h>
30 #include <linux/mmc/host.h>
31 #include <linux/mmc/mmc.h>
32 #include <linux/mmc/sd.h>
33 #include <linux/mmc/slot-gpio.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/mmc.h>
37
38 #include "core.h"
39 #include "card.h"
40 #include "crypto.h"
41 #include "bus.h"
42 #include "host.h"
43 #include "sdio_bus.h"
44 #include "pwrseq.h"
45
46 #include "mmc_ops.h"
47 #include "sd_ops.h"
48 #include "sdio_ops.h"
49
50 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
51 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
52 #define SD_DISCARD_TIMEOUT_MS (250)
53
54 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
55
56 /*
57 * Enabling software CRCs on the data blocks can be a significant (30%)
58 * performance cost, and for other reasons may not always be desired.
59 * So we allow it it to be disabled.
60 */
61 bool use_spi_crc = 1;
62 module_param(use_spi_crc, bool, 0);
63
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)64 static int mmc_schedule_delayed_work(struct delayed_work *work,
65 unsigned long delay)
66 {
67 /*
68 * We use the system_freezable_wq, because of two reasons.
69 * First, it allows several works (not the same work item) to be
70 * executed simultaneously. Second, the queue becomes frozen when
71 * userspace becomes frozen during system PM.
72 */
73 return queue_delayed_work(system_freezable_wq, work, delay);
74 }
75
76 #ifdef CONFIG_FAIL_MMC_REQUEST
77
78 /*
79 * Internal function. Inject random data errors.
80 * If mmc_data is NULL no errors are injected.
81 */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)82 static void mmc_should_fail_request(struct mmc_host *host,
83 struct mmc_request *mrq)
84 {
85 struct mmc_command *cmd = mrq->cmd;
86 struct mmc_data *data = mrq->data;
87 static const int data_errors[] = {
88 -ETIMEDOUT,
89 -EILSEQ,
90 -EIO,
91 };
92
93 if (!data)
94 return;
95
96 if ((cmd && cmd->error) || data->error ||
97 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
98 return;
99
100 data->error = data_errors[prandom_u32_max(ARRAY_SIZE(data_errors))];
101 data->bytes_xfered = prandom_u32_max(data->bytes_xfered >> 9) << 9;
102 }
103
104 #else /* CONFIG_FAIL_MMC_REQUEST */
105
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)106 static inline void mmc_should_fail_request(struct mmc_host *host,
107 struct mmc_request *mrq)
108 {
109 }
110
111 #endif /* CONFIG_FAIL_MMC_REQUEST */
112
mmc_complete_cmd(struct mmc_request * mrq)113 static inline void mmc_complete_cmd(struct mmc_request *mrq)
114 {
115 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
116 complete_all(&mrq->cmd_completion);
117 }
118
mmc_command_done(struct mmc_host * host,struct mmc_request * mrq)119 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
120 {
121 if (!mrq->cap_cmd_during_tfr)
122 return;
123
124 mmc_complete_cmd(mrq);
125
126 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
127 mmc_hostname(host), mrq->cmd->opcode);
128 }
129 EXPORT_SYMBOL(mmc_command_done);
130
131 /**
132 * mmc_request_done - finish processing an MMC request
133 * @host: MMC host which completed request
134 * @mrq: MMC request which request
135 *
136 * MMC drivers should call this function when they have completed
137 * their processing of a request.
138 */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)139 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140 {
141 struct mmc_command *cmd = mrq->cmd;
142 int err = cmd->error;
143
144 /* Flag re-tuning needed on CRC errors */
145 if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
146 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
147 !host->retune_crc_disable &&
148 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
149 (mrq->data && mrq->data->error == -EILSEQ) ||
150 (mrq->stop && mrq->stop->error == -EILSEQ)))
151 mmc_retune_needed(host);
152
153 if (err && cmd->retries && mmc_host_is_spi(host)) {
154 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
155 cmd->retries = 0;
156 }
157
158 if (host->ongoing_mrq == mrq)
159 host->ongoing_mrq = NULL;
160
161 mmc_complete_cmd(mrq);
162
163 trace_mmc_request_done(host, mrq);
164
165 /*
166 * We list various conditions for the command to be considered
167 * properly done:
168 *
169 * - There was no error, OK fine then
170 * - We are not doing some kind of retry
171 * - The card was removed (...so just complete everything no matter
172 * if there are errors or retries)
173 */
174 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
175 mmc_should_fail_request(host, mrq);
176
177 if (!host->ongoing_mrq)
178 led_trigger_event(host->led, LED_OFF);
179
180 if (mrq->sbc) {
181 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
182 mmc_hostname(host), mrq->sbc->opcode,
183 mrq->sbc->error,
184 mrq->sbc->resp[0], mrq->sbc->resp[1],
185 mrq->sbc->resp[2], mrq->sbc->resp[3]);
186 }
187
188 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
189 mmc_hostname(host), cmd->opcode, err,
190 cmd->resp[0], cmd->resp[1],
191 cmd->resp[2], cmd->resp[3]);
192
193 if (mrq->data) {
194 pr_debug("%s: %d bytes transferred: %d\n",
195 mmc_hostname(host),
196 mrq->data->bytes_xfered, mrq->data->error);
197 }
198
199 if (mrq->stop) {
200 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
201 mmc_hostname(host), mrq->stop->opcode,
202 mrq->stop->error,
203 mrq->stop->resp[0], mrq->stop->resp[1],
204 mrq->stop->resp[2], mrq->stop->resp[3]);
205 }
206 }
207 /*
208 * Request starter must handle retries - see
209 * mmc_wait_for_req_done().
210 */
211 if (mrq->done)
212 mrq->done(mrq);
213 }
214
215 EXPORT_SYMBOL(mmc_request_done);
216
__mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)217 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
218 {
219 int err;
220
221 /* Assumes host controller has been runtime resumed by mmc_claim_host */
222 err = mmc_retune(host);
223 if (err) {
224 mrq->cmd->error = err;
225 mmc_request_done(host, mrq);
226 return;
227 }
228
229 /*
230 * For sdio rw commands we must wait for card busy otherwise some
231 * sdio devices won't work properly.
232 * And bypass I/O abort, reset and bus suspend operations.
233 */
234 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
235 host->ops->card_busy) {
236 int tries = 500; /* Wait aprox 500ms at maximum */
237
238 while (host->ops->card_busy(host) && --tries)
239 mmc_delay(1);
240
241 if (tries == 0) {
242 mrq->cmd->error = -EBUSY;
243 mmc_request_done(host, mrq);
244 return;
245 }
246 }
247
248 if (mrq->cap_cmd_during_tfr) {
249 host->ongoing_mrq = mrq;
250 /*
251 * Retry path could come through here without having waiting on
252 * cmd_completion, so ensure it is reinitialised.
253 */
254 reinit_completion(&mrq->cmd_completion);
255 }
256
257 trace_mmc_request_start(host, mrq);
258
259 if (host->cqe_on)
260 host->cqe_ops->cqe_off(host);
261
262 host->ops->request(host, mrq);
263 }
264
mmc_mrq_pr_debug(struct mmc_host * host,struct mmc_request * mrq,bool cqe)265 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
266 bool cqe)
267 {
268 if (mrq->sbc) {
269 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
270 mmc_hostname(host), mrq->sbc->opcode,
271 mrq->sbc->arg, mrq->sbc->flags);
272 }
273
274 if (mrq->cmd) {
275 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
276 mmc_hostname(host), cqe ? "CQE direct " : "",
277 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
278 } else if (cqe) {
279 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
280 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
281 }
282
283 if (mrq->data) {
284 pr_debug("%s: blksz %d blocks %d flags %08x "
285 "tsac %d ms nsac %d\n",
286 mmc_hostname(host), mrq->data->blksz,
287 mrq->data->blocks, mrq->data->flags,
288 mrq->data->timeout_ns / 1000000,
289 mrq->data->timeout_clks);
290 }
291
292 if (mrq->stop) {
293 pr_debug("%s: CMD%u arg %08x flags %08x\n",
294 mmc_hostname(host), mrq->stop->opcode,
295 mrq->stop->arg, mrq->stop->flags);
296 }
297 }
298
mmc_mrq_prep(struct mmc_host * host,struct mmc_request * mrq)299 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
300 {
301 unsigned int i, sz = 0;
302 struct scatterlist *sg;
303
304 if (mrq->cmd) {
305 mrq->cmd->error = 0;
306 mrq->cmd->mrq = mrq;
307 mrq->cmd->data = mrq->data;
308 }
309 if (mrq->sbc) {
310 mrq->sbc->error = 0;
311 mrq->sbc->mrq = mrq;
312 }
313 if (mrq->data) {
314 if (mrq->data->blksz > host->max_blk_size ||
315 mrq->data->blocks > host->max_blk_count ||
316 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
317 return -EINVAL;
318
319 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
320 sz += sg->length;
321 if (sz != mrq->data->blocks * mrq->data->blksz)
322 return -EINVAL;
323
324 mrq->data->error = 0;
325 mrq->data->mrq = mrq;
326 if (mrq->stop) {
327 mrq->data->stop = mrq->stop;
328 mrq->stop->error = 0;
329 mrq->stop->mrq = mrq;
330 }
331 }
332
333 return 0;
334 }
335
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)336 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
337 {
338 int err;
339
340 init_completion(&mrq->cmd_completion);
341
342 mmc_retune_hold(host);
343
344 if (mmc_card_removed(host->card))
345 return -ENOMEDIUM;
346
347 mmc_mrq_pr_debug(host, mrq, false);
348
349 WARN_ON(!host->claimed);
350
351 err = mmc_mrq_prep(host, mrq);
352 if (err)
353 return err;
354
355 led_trigger_event(host->led, LED_FULL);
356 __mmc_start_request(host, mrq);
357
358 return 0;
359 }
360 EXPORT_SYMBOL(mmc_start_request);
361
mmc_wait_done(struct mmc_request * mrq)362 static void mmc_wait_done(struct mmc_request *mrq)
363 {
364 complete(&mrq->completion);
365 }
366
mmc_wait_ongoing_tfr_cmd(struct mmc_host * host)367 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
368 {
369 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
370
371 /*
372 * If there is an ongoing transfer, wait for the command line to become
373 * available.
374 */
375 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
376 wait_for_completion(&ongoing_mrq->cmd_completion);
377 }
378
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)379 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
380 {
381 int err;
382
383 mmc_wait_ongoing_tfr_cmd(host);
384
385 init_completion(&mrq->completion);
386 mrq->done = mmc_wait_done;
387
388 err = mmc_start_request(host, mrq);
389 if (err) {
390 mrq->cmd->error = err;
391 mmc_complete_cmd(mrq);
392 complete(&mrq->completion);
393 }
394
395 return err;
396 }
397
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)398 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
399 {
400 struct mmc_command *cmd;
401
402 while (1) {
403 wait_for_completion(&mrq->completion);
404
405 cmd = mrq->cmd;
406
407 if (!cmd->error || !cmd->retries ||
408 mmc_card_removed(host->card))
409 break;
410
411 mmc_retune_recheck(host);
412
413 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
414 mmc_hostname(host), cmd->opcode, cmd->error);
415 cmd->retries--;
416 cmd->error = 0;
417 __mmc_start_request(host, mrq);
418 }
419
420 mmc_retune_release(host);
421 }
422 EXPORT_SYMBOL(mmc_wait_for_req_done);
423
424 /*
425 * mmc_cqe_start_req - Start a CQE request.
426 * @host: MMC host to start the request
427 * @mrq: request to start
428 *
429 * Start the request, re-tuning if needed and it is possible. Returns an error
430 * code if the request fails to start or -EBUSY if CQE is busy.
431 */
mmc_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)432 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
433 {
434 int err;
435
436 /*
437 * CQE cannot process re-tuning commands. Caller must hold retuning
438 * while CQE is in use. Re-tuning can happen here only when CQE has no
439 * active requests i.e. this is the first. Note, re-tuning will call
440 * ->cqe_off().
441 */
442 err = mmc_retune(host);
443 if (err)
444 goto out_err;
445
446 mrq->host = host;
447
448 mmc_mrq_pr_debug(host, mrq, true);
449
450 err = mmc_mrq_prep(host, mrq);
451 if (err)
452 goto out_err;
453
454 err = host->cqe_ops->cqe_request(host, mrq);
455 if (err)
456 goto out_err;
457
458 trace_mmc_request_start(host, mrq);
459
460 return 0;
461
462 out_err:
463 if (mrq->cmd) {
464 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
465 mmc_hostname(host), mrq->cmd->opcode, err);
466 } else {
467 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
468 mmc_hostname(host), mrq->tag, err);
469 }
470 return err;
471 }
472 EXPORT_SYMBOL(mmc_cqe_start_req);
473
474 /**
475 * mmc_cqe_request_done - CQE has finished processing an MMC request
476 * @host: MMC host which completed request
477 * @mrq: MMC request which completed
478 *
479 * CQE drivers should call this function when they have completed
480 * their processing of a request.
481 */
mmc_cqe_request_done(struct mmc_host * host,struct mmc_request * mrq)482 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
483 {
484 mmc_should_fail_request(host, mrq);
485
486 /* Flag re-tuning needed on CRC errors */
487 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
488 (mrq->data && mrq->data->error == -EILSEQ))
489 mmc_retune_needed(host);
490
491 trace_mmc_request_done(host, mrq);
492
493 if (mrq->cmd) {
494 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
495 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
496 } else {
497 pr_debug("%s: CQE transfer done tag %d\n",
498 mmc_hostname(host), mrq->tag);
499 }
500
501 if (mrq->data) {
502 pr_debug("%s: %d bytes transferred: %d\n",
503 mmc_hostname(host),
504 mrq->data->bytes_xfered, mrq->data->error);
505 }
506
507 mrq->done(mrq);
508 }
509 EXPORT_SYMBOL(mmc_cqe_request_done);
510
511 /**
512 * mmc_cqe_post_req - CQE post process of a completed MMC request
513 * @host: MMC host
514 * @mrq: MMC request to be processed
515 */
mmc_cqe_post_req(struct mmc_host * host,struct mmc_request * mrq)516 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
517 {
518 if (host->cqe_ops->cqe_post_req)
519 host->cqe_ops->cqe_post_req(host, mrq);
520 }
521 EXPORT_SYMBOL(mmc_cqe_post_req);
522
523 /* Arbitrary 1 second timeout */
524 #define MMC_CQE_RECOVERY_TIMEOUT 1000
525
526 /*
527 * mmc_cqe_recovery - Recover from CQE errors.
528 * @host: MMC host to recover
529 *
530 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
531 * in eMMC, and discarding the queue in CQE. CQE must call
532 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
533 * fails to discard its queue.
534 */
mmc_cqe_recovery(struct mmc_host * host)535 int mmc_cqe_recovery(struct mmc_host *host)
536 {
537 struct mmc_command cmd;
538 int err;
539
540 mmc_retune_hold_now(host);
541
542 /*
543 * Recovery is expected seldom, if at all, but it reduces performance,
544 * so make sure it is not completely silent.
545 */
546 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
547
548 host->cqe_ops->cqe_recovery_start(host);
549
550 memset(&cmd, 0, sizeof(cmd));
551 cmd.opcode = MMC_STOP_TRANSMISSION;
552 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
553 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
554 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
555 mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
556
557 mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, true, MMC_BUSY_IO);
558
559 memset(&cmd, 0, sizeof(cmd));
560 cmd.opcode = MMC_CMDQ_TASK_MGMT;
561 cmd.arg = 1; /* Discard entire queue */
562 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
563 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
564 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
565 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
566
567 host->cqe_ops->cqe_recovery_finish(host);
568
569 if (err)
570 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
571
572 mmc_retune_release(host);
573
574 return err;
575 }
576 EXPORT_SYMBOL(mmc_cqe_recovery);
577
578 /**
579 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
580 * @host: MMC host
581 * @mrq: MMC request
582 *
583 * mmc_is_req_done() is used with requests that have
584 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
585 * starting a request and before waiting for it to complete. That is,
586 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
587 * and before mmc_wait_for_req_done(). If it is called at other times the
588 * result is not meaningful.
589 */
mmc_is_req_done(struct mmc_host * host,struct mmc_request * mrq)590 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
591 {
592 return completion_done(&mrq->completion);
593 }
594 EXPORT_SYMBOL(mmc_is_req_done);
595
596 /**
597 * mmc_wait_for_req - start a request and wait for completion
598 * @host: MMC host to start command
599 * @mrq: MMC request to start
600 *
601 * Start a new MMC custom command request for a host, and wait
602 * for the command to complete. In the case of 'cap_cmd_during_tfr'
603 * requests, the transfer is ongoing and the caller can issue further
604 * commands that do not use the data lines, and then wait by calling
605 * mmc_wait_for_req_done().
606 * Does not attempt to parse the response.
607 */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)608 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
609 {
610 __mmc_start_req(host, mrq);
611
612 if (!mrq->cap_cmd_during_tfr)
613 mmc_wait_for_req_done(host, mrq);
614 }
615 EXPORT_SYMBOL(mmc_wait_for_req);
616
617 /**
618 * mmc_wait_for_cmd - start a command and wait for completion
619 * @host: MMC host to start command
620 * @cmd: MMC command to start
621 * @retries: maximum number of retries
622 *
623 * Start a new MMC command for a host, and wait for the command
624 * to complete. Return any error that occurred while the command
625 * was executing. Do not attempt to parse the response.
626 */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)627 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
628 {
629 struct mmc_request mrq = {};
630
631 WARN_ON(!host->claimed);
632
633 memset(cmd->resp, 0, sizeof(cmd->resp));
634 cmd->retries = retries;
635
636 mrq.cmd = cmd;
637 cmd->data = NULL;
638
639 mmc_wait_for_req(host, &mrq);
640
641 return cmd->error;
642 }
643
644 EXPORT_SYMBOL(mmc_wait_for_cmd);
645
646 /**
647 * mmc_set_data_timeout - set the timeout for a data command
648 * @data: data phase for command
649 * @card: the MMC card associated with the data transfer
650 *
651 * Computes the data timeout parameters according to the
652 * correct algorithm given the card type.
653 */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)654 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
655 {
656 unsigned int mult;
657
658 /*
659 * SDIO cards only define an upper 1 s limit on access.
660 */
661 if (mmc_card_sdio(card)) {
662 data->timeout_ns = 1000000000;
663 data->timeout_clks = 0;
664 return;
665 }
666
667 /*
668 * SD cards use a 100 multiplier rather than 10
669 */
670 mult = mmc_card_sd(card) ? 100 : 10;
671
672 /*
673 * Scale up the multiplier (and therefore the timeout) by
674 * the r2w factor for writes.
675 */
676 if (data->flags & MMC_DATA_WRITE)
677 mult <<= card->csd.r2w_factor;
678
679 data->timeout_ns = card->csd.taac_ns * mult;
680 data->timeout_clks = card->csd.taac_clks * mult;
681
682 /*
683 * SD cards also have an upper limit on the timeout.
684 */
685 if (mmc_card_sd(card)) {
686 unsigned int timeout_us, limit_us;
687
688 timeout_us = data->timeout_ns / 1000;
689 if (card->host->ios.clock)
690 timeout_us += data->timeout_clks * 1000 /
691 (card->host->ios.clock / 1000);
692
693 if (data->flags & MMC_DATA_WRITE)
694 /*
695 * The MMC spec "It is strongly recommended
696 * for hosts to implement more than 500ms
697 * timeout value even if the card indicates
698 * the 250ms maximum busy length." Even the
699 * previous value of 300ms is known to be
700 * insufficient for some cards.
701 */
702 limit_us = 3000000;
703 else
704 limit_us = 100000;
705
706 /*
707 * SDHC cards always use these fixed values.
708 */
709 if (timeout_us > limit_us) {
710 data->timeout_ns = limit_us * 1000;
711 data->timeout_clks = 0;
712 }
713
714 /* assign limit value if invalid */
715 if (timeout_us == 0)
716 data->timeout_ns = limit_us * 1000;
717 }
718
719 /*
720 * Some cards require longer data read timeout than indicated in CSD.
721 * Address this by setting the read timeout to a "reasonably high"
722 * value. For the cards tested, 600ms has proven enough. If necessary,
723 * this value can be increased if other problematic cards require this.
724 */
725 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
726 data->timeout_ns = 600000000;
727 data->timeout_clks = 0;
728 }
729
730 /*
731 * Some cards need very high timeouts if driven in SPI mode.
732 * The worst observed timeout was 900ms after writing a
733 * continuous stream of data until the internal logic
734 * overflowed.
735 */
736 if (mmc_host_is_spi(card->host)) {
737 if (data->flags & MMC_DATA_WRITE) {
738 if (data->timeout_ns < 1000000000)
739 data->timeout_ns = 1000000000; /* 1s */
740 } else {
741 if (data->timeout_ns < 100000000)
742 data->timeout_ns = 100000000; /* 100ms */
743 }
744 }
745 }
746 EXPORT_SYMBOL(mmc_set_data_timeout);
747
748 /*
749 * Allow claiming an already claimed host if the context is the same or there is
750 * no context but the task is the same.
751 */
mmc_ctx_matches(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)752 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
753 struct task_struct *task)
754 {
755 return host->claimer == ctx ||
756 (!ctx && task && host->claimer->task == task);
757 }
758
mmc_ctx_set_claimer(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)759 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
760 struct mmc_ctx *ctx,
761 struct task_struct *task)
762 {
763 if (!host->claimer) {
764 if (ctx)
765 host->claimer = ctx;
766 else
767 host->claimer = &host->default_ctx;
768 }
769 if (task)
770 host->claimer->task = task;
771 }
772
773 /**
774 * __mmc_claim_host - exclusively claim a host
775 * @host: mmc host to claim
776 * @ctx: context that claims the host or NULL in which case the default
777 * context will be used
778 * @abort: whether or not the operation should be aborted
779 *
780 * Claim a host for a set of operations. If @abort is non null and
781 * dereference a non-zero value then this will return prematurely with
782 * that non-zero value without acquiring the lock. Returns zero
783 * with the lock held otherwise.
784 */
__mmc_claim_host(struct mmc_host * host,struct mmc_ctx * ctx,atomic_t * abort)785 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
786 atomic_t *abort)
787 {
788 struct task_struct *task = ctx ? NULL : current;
789 DECLARE_WAITQUEUE(wait, current);
790 unsigned long flags;
791 int stop;
792 bool pm = false;
793
794 might_sleep();
795
796 add_wait_queue(&host->wq, &wait);
797 spin_lock_irqsave(&host->lock, flags);
798 while (1) {
799 set_current_state(TASK_UNINTERRUPTIBLE);
800 stop = abort ? atomic_read(abort) : 0;
801 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
802 break;
803 spin_unlock_irqrestore(&host->lock, flags);
804 schedule();
805 spin_lock_irqsave(&host->lock, flags);
806 }
807 set_current_state(TASK_RUNNING);
808 if (!stop) {
809 host->claimed = 1;
810 mmc_ctx_set_claimer(host, ctx, task);
811 host->claim_cnt += 1;
812 if (host->claim_cnt == 1)
813 pm = true;
814 } else
815 wake_up(&host->wq);
816 spin_unlock_irqrestore(&host->lock, flags);
817 remove_wait_queue(&host->wq, &wait);
818
819 if (pm)
820 pm_runtime_get_sync(mmc_dev(host));
821
822 return stop;
823 }
824 EXPORT_SYMBOL(__mmc_claim_host);
825
826 /**
827 * mmc_release_host - release a host
828 * @host: mmc host to release
829 *
830 * Release a MMC host, allowing others to claim the host
831 * for their operations.
832 */
mmc_release_host(struct mmc_host * host)833 void mmc_release_host(struct mmc_host *host)
834 {
835 unsigned long flags;
836
837 WARN_ON(!host->claimed);
838
839 spin_lock_irqsave(&host->lock, flags);
840 if (--host->claim_cnt) {
841 /* Release for nested claim */
842 spin_unlock_irqrestore(&host->lock, flags);
843 } else {
844 host->claimed = 0;
845 host->claimer->task = NULL;
846 host->claimer = NULL;
847 spin_unlock_irqrestore(&host->lock, flags);
848 wake_up(&host->wq);
849 pm_runtime_mark_last_busy(mmc_dev(host));
850 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
851 pm_runtime_put_sync_suspend(mmc_dev(host));
852 else
853 pm_runtime_put_autosuspend(mmc_dev(host));
854 }
855 }
856 EXPORT_SYMBOL(mmc_release_host);
857
858 /*
859 * This is a helper function, which fetches a runtime pm reference for the
860 * card device and also claims the host.
861 */
mmc_get_card(struct mmc_card * card,struct mmc_ctx * ctx)862 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
863 {
864 pm_runtime_get_sync(&card->dev);
865 __mmc_claim_host(card->host, ctx, NULL);
866 }
867 EXPORT_SYMBOL(mmc_get_card);
868
869 /*
870 * This is a helper function, which releases the host and drops the runtime
871 * pm reference for the card device.
872 */
mmc_put_card(struct mmc_card * card,struct mmc_ctx * ctx)873 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
874 {
875 struct mmc_host *host = card->host;
876
877 WARN_ON(ctx && host->claimer != ctx);
878
879 mmc_release_host(host);
880 pm_runtime_mark_last_busy(&card->dev);
881 pm_runtime_put_autosuspend(&card->dev);
882 }
883 EXPORT_SYMBOL(mmc_put_card);
884
885 /*
886 * Internal function that does the actual ios call to the host driver,
887 * optionally printing some debug output.
888 */
mmc_set_ios(struct mmc_host * host)889 static inline void mmc_set_ios(struct mmc_host *host)
890 {
891 struct mmc_ios *ios = &host->ios;
892
893 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
894 "width %u timing %u\n",
895 mmc_hostname(host), ios->clock, ios->bus_mode,
896 ios->power_mode, ios->chip_select, ios->vdd,
897 1 << ios->bus_width, ios->timing);
898
899 host->ops->set_ios(host, ios);
900 }
901
902 /*
903 * Control chip select pin on a host.
904 */
mmc_set_chip_select(struct mmc_host * host,int mode)905 void mmc_set_chip_select(struct mmc_host *host, int mode)
906 {
907 host->ios.chip_select = mode;
908 mmc_set_ios(host);
909 }
910
911 /*
912 * Sets the host clock to the highest possible frequency that
913 * is below "hz".
914 */
mmc_set_clock(struct mmc_host * host,unsigned int hz)915 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
916 {
917 WARN_ON(hz && hz < host->f_min);
918
919 if (hz > host->f_max)
920 hz = host->f_max;
921
922 host->ios.clock = hz;
923 mmc_set_ios(host);
924 }
925 EXPORT_SYMBOL_GPL(mmc_set_clock);
926
mmc_execute_tuning(struct mmc_card * card)927 int mmc_execute_tuning(struct mmc_card *card)
928 {
929 struct mmc_host *host = card->host;
930 u32 opcode;
931 int err;
932
933 if (!host->ops->execute_tuning)
934 return 0;
935
936 if (host->cqe_on)
937 host->cqe_ops->cqe_off(host);
938
939 if (mmc_card_mmc(card))
940 opcode = MMC_SEND_TUNING_BLOCK_HS200;
941 else
942 opcode = MMC_SEND_TUNING_BLOCK;
943
944 err = host->ops->execute_tuning(host, opcode);
945 if (!err) {
946 mmc_retune_clear(host);
947 mmc_retune_enable(host);
948 return 0;
949 }
950
951 /* Only print error when we don't check for card removal */
952 if (!host->detect_change) {
953 pr_err("%s: tuning execution failed: %d\n",
954 mmc_hostname(host), err);
955 mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
956 }
957
958 return err;
959 }
960 EXPORT_SYMBOL_GPL(mmc_execute_tuning);
961
962 /*
963 * Change the bus mode (open drain/push-pull) of a host.
964 */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)965 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
966 {
967 host->ios.bus_mode = mode;
968 mmc_set_ios(host);
969 }
970 EXPORT_SYMBOL_GPL(mmc_set_bus_mode);
971
972 /*
973 * Change data bus width of a host.
974 */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)975 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
976 {
977 host->ios.bus_width = width;
978 mmc_set_ios(host);
979 }
980 EXPORT_SYMBOL_GPL(mmc_set_bus_width);
981
982 /*
983 * Set initial state after a power cycle or a hw_reset.
984 */
mmc_set_initial_state(struct mmc_host * host)985 void mmc_set_initial_state(struct mmc_host *host)
986 {
987 if (host->cqe_on)
988 host->cqe_ops->cqe_off(host);
989
990 mmc_retune_disable(host);
991
992 if (mmc_host_is_spi(host))
993 host->ios.chip_select = MMC_CS_HIGH;
994 else
995 host->ios.chip_select = MMC_CS_DONTCARE;
996 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
997 host->ios.bus_width = MMC_BUS_WIDTH_1;
998 host->ios.timing = MMC_TIMING_LEGACY;
999 host->ios.drv_type = 0;
1000 host->ios.enhanced_strobe = false;
1001
1002 /*
1003 * Make sure we are in non-enhanced strobe mode before we
1004 * actually enable it in ext_csd.
1005 */
1006 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1007 host->ops->hs400_enhanced_strobe)
1008 host->ops->hs400_enhanced_strobe(host, &host->ios);
1009
1010 mmc_set_ios(host);
1011
1012 mmc_crypto_set_initial_state(host);
1013 }
1014 EXPORT_SYMBOL_GPL(mmc_set_initial_state);
1015
1016 /**
1017 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1018 * @vdd: voltage (mV)
1019 * @low_bits: prefer low bits in boundary cases
1020 *
1021 * This function returns the OCR bit number according to the provided @vdd
1022 * value. If conversion is not possible a negative errno value returned.
1023 *
1024 * Depending on the @low_bits flag the function prefers low or high OCR bits
1025 * on boundary voltages. For example,
1026 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1027 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1028 *
1029 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1030 */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)1031 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1032 {
1033 const int max_bit = ilog2(MMC_VDD_35_36);
1034 int bit;
1035
1036 if (vdd < 1650 || vdd > 3600)
1037 return -EINVAL;
1038
1039 if (vdd >= 1650 && vdd <= 1950)
1040 return ilog2(MMC_VDD_165_195);
1041
1042 if (low_bits)
1043 vdd -= 1;
1044
1045 /* Base 2000 mV, step 100 mV, bit's base 8. */
1046 bit = (vdd - 2000) / 100 + 8;
1047 if (bit > max_bit)
1048 return max_bit;
1049 return bit;
1050 }
1051
1052 /**
1053 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1054 * @vdd_min: minimum voltage value (mV)
1055 * @vdd_max: maximum voltage value (mV)
1056 *
1057 * This function returns the OCR mask bits according to the provided @vdd_min
1058 * and @vdd_max values. If conversion is not possible the function returns 0.
1059 *
1060 * Notes wrt boundary cases:
1061 * This function sets the OCR bits for all boundary voltages, for example
1062 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1063 * MMC_VDD_34_35 mask.
1064 */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1065 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1066 {
1067 u32 mask = 0;
1068
1069 if (vdd_max < vdd_min)
1070 return 0;
1071
1072 /* Prefer high bits for the boundary vdd_max values. */
1073 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1074 if (vdd_max < 0)
1075 return 0;
1076
1077 /* Prefer low bits for the boundary vdd_min values. */
1078 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1079 if (vdd_min < 0)
1080 return 0;
1081
1082 /* Fill the mask, from max bit to min bit. */
1083 while (vdd_max >= vdd_min)
1084 mask |= 1 << vdd_max--;
1085
1086 return mask;
1087 }
1088
mmc_of_get_func_num(struct device_node * node)1089 static int mmc_of_get_func_num(struct device_node *node)
1090 {
1091 u32 reg;
1092 int ret;
1093
1094 ret = of_property_read_u32(node, "reg", ®);
1095 if (ret < 0)
1096 return ret;
1097
1098 return reg;
1099 }
1100
mmc_of_find_child_device(struct mmc_host * host,unsigned func_num)1101 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1102 unsigned func_num)
1103 {
1104 struct device_node *node;
1105
1106 if (!host->parent || !host->parent->of_node)
1107 return NULL;
1108
1109 for_each_child_of_node(host->parent->of_node, node) {
1110 if (mmc_of_get_func_num(node) == func_num)
1111 return node;
1112 }
1113
1114 return NULL;
1115 }
1116
1117 /*
1118 * Mask off any voltages we don't support and select
1119 * the lowest voltage
1120 */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1121 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1122 {
1123 int bit;
1124
1125 /*
1126 * Sanity check the voltages that the card claims to
1127 * support.
1128 */
1129 if (ocr & 0x7F) {
1130 dev_warn(mmc_dev(host),
1131 "card claims to support voltages below defined range\n");
1132 ocr &= ~0x7F;
1133 }
1134
1135 ocr &= host->ocr_avail;
1136 if (!ocr) {
1137 dev_warn(mmc_dev(host), "no support for card's volts\n");
1138 return 0;
1139 }
1140
1141 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1142 bit = ffs(ocr) - 1;
1143 ocr &= 3 << bit;
1144 mmc_power_cycle(host, ocr);
1145 } else {
1146 bit = fls(ocr) - 1;
1147 /*
1148 * The bit variable represents the highest voltage bit set in
1149 * the OCR register.
1150 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1151 * we must shift the mask '3' with (bit - 1).
1152 */
1153 ocr &= 3 << (bit - 1);
1154 if (bit != host->ios.vdd)
1155 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1156 }
1157
1158 return ocr;
1159 }
1160
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1161 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1162 {
1163 int err = 0;
1164 int old_signal_voltage = host->ios.signal_voltage;
1165
1166 host->ios.signal_voltage = signal_voltage;
1167 if (host->ops->start_signal_voltage_switch)
1168 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1169
1170 if (err)
1171 host->ios.signal_voltage = old_signal_voltage;
1172
1173 return err;
1174
1175 }
1176
mmc_set_initial_signal_voltage(struct mmc_host * host)1177 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1178 {
1179 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1180 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1181 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1182 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1183 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1184 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1185 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1186 }
1187
mmc_host_set_uhs_voltage(struct mmc_host * host)1188 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1189 {
1190 u32 clock;
1191
1192 /*
1193 * During a signal voltage level switch, the clock must be gated
1194 * for 5 ms according to the SD spec
1195 */
1196 clock = host->ios.clock;
1197 host->ios.clock = 0;
1198 mmc_set_ios(host);
1199
1200 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1201 return -EAGAIN;
1202
1203 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1204 mmc_delay(10);
1205 host->ios.clock = clock;
1206 mmc_set_ios(host);
1207
1208 return 0;
1209 }
1210
mmc_set_uhs_voltage(struct mmc_host * host,u32 ocr)1211 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1212 {
1213 struct mmc_command cmd = {};
1214 int err = 0;
1215
1216 /*
1217 * If we cannot switch voltages, return failure so the caller
1218 * can continue without UHS mode
1219 */
1220 if (!host->ops->start_signal_voltage_switch)
1221 return -EPERM;
1222 if (!host->ops->card_busy)
1223 pr_warn("%s: cannot verify signal voltage switch\n",
1224 mmc_hostname(host));
1225
1226 cmd.opcode = SD_SWITCH_VOLTAGE;
1227 cmd.arg = 0;
1228 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1229
1230 err = mmc_wait_for_cmd(host, &cmd, 0);
1231 if (err)
1232 goto power_cycle;
1233
1234 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1235 return -EIO;
1236
1237 /*
1238 * The card should drive cmd and dat[0:3] low immediately
1239 * after the response of cmd11, but wait 1 ms to be sure
1240 */
1241 mmc_delay(1);
1242 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1243 err = -EAGAIN;
1244 goto power_cycle;
1245 }
1246
1247 if (mmc_host_set_uhs_voltage(host)) {
1248 /*
1249 * Voltages may not have been switched, but we've already
1250 * sent CMD11, so a power cycle is required anyway
1251 */
1252 err = -EAGAIN;
1253 goto power_cycle;
1254 }
1255
1256 /* Wait for at least 1 ms according to spec */
1257 mmc_delay(1);
1258
1259 /*
1260 * Failure to switch is indicated by the card holding
1261 * dat[0:3] low
1262 */
1263 if (host->ops->card_busy && host->ops->card_busy(host))
1264 err = -EAGAIN;
1265
1266 power_cycle:
1267 if (err) {
1268 pr_debug("%s: Signal voltage switch failed, "
1269 "power cycling card\n", mmc_hostname(host));
1270 mmc_power_cycle(host, ocr);
1271 }
1272
1273 return err;
1274 }
1275
1276 /*
1277 * Select timing parameters for host.
1278 */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1279 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1280 {
1281 host->ios.timing = timing;
1282 mmc_set_ios(host);
1283 }
1284 EXPORT_SYMBOL_GPL(mmc_set_timing);
1285
1286 /*
1287 * Select appropriate driver type for host.
1288 */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1289 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1290 {
1291 host->ios.drv_type = drv_type;
1292 mmc_set_ios(host);
1293 }
1294
mmc_select_drive_strength(struct mmc_card * card,unsigned int max_dtr,int card_drv_type,int * drv_type)1295 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1296 int card_drv_type, int *drv_type)
1297 {
1298 struct mmc_host *host = card->host;
1299 int host_drv_type = SD_DRIVER_TYPE_B;
1300
1301 *drv_type = 0;
1302
1303 if (!host->ops->select_drive_strength)
1304 return 0;
1305
1306 /* Use SD definition of driver strength for hosts */
1307 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1308 host_drv_type |= SD_DRIVER_TYPE_A;
1309
1310 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1311 host_drv_type |= SD_DRIVER_TYPE_C;
1312
1313 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1314 host_drv_type |= SD_DRIVER_TYPE_D;
1315
1316 /*
1317 * The drive strength that the hardware can support
1318 * depends on the board design. Pass the appropriate
1319 * information and let the hardware specific code
1320 * return what is possible given the options
1321 */
1322 return host->ops->select_drive_strength(card, max_dtr,
1323 host_drv_type,
1324 card_drv_type,
1325 drv_type);
1326 }
1327
1328 /*
1329 * Apply power to the MMC stack. This is a two-stage process.
1330 * First, we enable power to the card without the clock running.
1331 * We then wait a bit for the power to stabilise. Finally,
1332 * enable the bus drivers and clock to the card.
1333 *
1334 * We must _NOT_ enable the clock prior to power stablising.
1335 *
1336 * If a host does all the power sequencing itself, ignore the
1337 * initial MMC_POWER_UP stage.
1338 */
mmc_power_up(struct mmc_host * host,u32 ocr)1339 void mmc_power_up(struct mmc_host *host, u32 ocr)
1340 {
1341 if (host->ios.power_mode == MMC_POWER_ON)
1342 return;
1343
1344 mmc_pwrseq_pre_power_on(host);
1345
1346 host->ios.vdd = fls(ocr) - 1;
1347 host->ios.power_mode = MMC_POWER_UP;
1348 /* Set initial state and call mmc_set_ios */
1349 mmc_set_initial_state(host);
1350
1351 mmc_set_initial_signal_voltage(host);
1352
1353 /*
1354 * This delay should be sufficient to allow the power supply
1355 * to reach the minimum voltage.
1356 */
1357 mmc_delay(host->ios.power_delay_ms);
1358
1359 mmc_pwrseq_post_power_on(host);
1360
1361 host->ios.clock = host->f_init;
1362
1363 host->ios.power_mode = MMC_POWER_ON;
1364 mmc_set_ios(host);
1365
1366 /*
1367 * This delay must be at least 74 clock sizes, or 1 ms, or the
1368 * time required to reach a stable voltage.
1369 */
1370 mmc_delay(host->ios.power_delay_ms);
1371 }
1372
mmc_power_off(struct mmc_host * host)1373 void mmc_power_off(struct mmc_host *host)
1374 {
1375 if (host->ios.power_mode == MMC_POWER_OFF)
1376 return;
1377
1378 mmc_pwrseq_power_off(host);
1379
1380 host->ios.clock = 0;
1381 host->ios.vdd = 0;
1382
1383 host->ios.power_mode = MMC_POWER_OFF;
1384 /* Set initial state and call mmc_set_ios */
1385 mmc_set_initial_state(host);
1386
1387 /*
1388 * Some configurations, such as the 802.11 SDIO card in the OLPC
1389 * XO-1.5, require a short delay after poweroff before the card
1390 * can be successfully turned on again.
1391 */
1392 mmc_delay(1);
1393 }
1394
mmc_power_cycle(struct mmc_host * host,u32 ocr)1395 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1396 {
1397 mmc_power_off(host);
1398 /* Wait at least 1 ms according to SD spec */
1399 mmc_delay(1);
1400 mmc_power_up(host, ocr);
1401 }
1402
1403 /*
1404 * Assign a mmc bus handler to a host. Only one bus handler may control a
1405 * host at any given time.
1406 */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1407 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1408 {
1409 host->bus_ops = ops;
1410 }
1411
1412 /*
1413 * Remove the current bus handler from a host.
1414 */
mmc_detach_bus(struct mmc_host * host)1415 void mmc_detach_bus(struct mmc_host *host)
1416 {
1417 host->bus_ops = NULL;
1418 }
1419
_mmc_detect_change(struct mmc_host * host,unsigned long delay,bool cd_irq)1420 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1421 {
1422 /*
1423 * Prevent system sleep for 5s to allow user space to consume the
1424 * corresponding uevent. This is especially useful, when CD irq is used
1425 * as a system wakeup, but doesn't hurt in other cases.
1426 */
1427 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1428 __pm_wakeup_event(host->ws, 5000);
1429
1430 host->detect_change = 1;
1431 mmc_schedule_delayed_work(&host->detect, delay);
1432 }
1433
1434 /**
1435 * mmc_detect_change - process change of state on a MMC socket
1436 * @host: host which changed state.
1437 * @delay: optional delay to wait before detection (jiffies)
1438 *
1439 * MMC drivers should call this when they detect a card has been
1440 * inserted or removed. The MMC layer will confirm that any
1441 * present card is still functional, and initialize any newly
1442 * inserted.
1443 */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1444 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1445 {
1446 _mmc_detect_change(host, delay, true);
1447 }
1448 EXPORT_SYMBOL(mmc_detect_change);
1449
mmc_init_erase(struct mmc_card * card)1450 void mmc_init_erase(struct mmc_card *card)
1451 {
1452 unsigned int sz;
1453
1454 if (is_power_of_2(card->erase_size))
1455 card->erase_shift = ffs(card->erase_size) - 1;
1456 else
1457 card->erase_shift = 0;
1458
1459 /*
1460 * It is possible to erase an arbitrarily large area of an SD or MMC
1461 * card. That is not desirable because it can take a long time
1462 * (minutes) potentially delaying more important I/O, and also the
1463 * timeout calculations become increasingly hugely over-estimated.
1464 * Consequently, 'pref_erase' is defined as a guide to limit erases
1465 * to that size and alignment.
1466 *
1467 * For SD cards that define Allocation Unit size, limit erases to one
1468 * Allocation Unit at a time.
1469 * For MMC, have a stab at ai good value and for modern cards it will
1470 * end up being 4MiB. Note that if the value is too small, it can end
1471 * up taking longer to erase. Also note, erase_size is already set to
1472 * High Capacity Erase Size if available when this function is called.
1473 */
1474 if (mmc_card_sd(card) && card->ssr.au) {
1475 card->pref_erase = card->ssr.au;
1476 card->erase_shift = ffs(card->ssr.au) - 1;
1477 } else if (card->erase_size) {
1478 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1479 if (sz < 128)
1480 card->pref_erase = 512 * 1024 / 512;
1481 else if (sz < 512)
1482 card->pref_erase = 1024 * 1024 / 512;
1483 else if (sz < 1024)
1484 card->pref_erase = 2 * 1024 * 1024 / 512;
1485 else
1486 card->pref_erase = 4 * 1024 * 1024 / 512;
1487 if (card->pref_erase < card->erase_size)
1488 card->pref_erase = card->erase_size;
1489 else {
1490 sz = card->pref_erase % card->erase_size;
1491 if (sz)
1492 card->pref_erase += card->erase_size - sz;
1493 }
1494 } else
1495 card->pref_erase = 0;
1496 }
1497
is_trim_arg(unsigned int arg)1498 static bool is_trim_arg(unsigned int arg)
1499 {
1500 return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1501 }
1502
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1503 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1504 unsigned int arg, unsigned int qty)
1505 {
1506 unsigned int erase_timeout;
1507
1508 if (arg == MMC_DISCARD_ARG ||
1509 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1510 erase_timeout = card->ext_csd.trim_timeout;
1511 } else if (card->ext_csd.erase_group_def & 1) {
1512 /* High Capacity Erase Group Size uses HC timeouts */
1513 if (arg == MMC_TRIM_ARG)
1514 erase_timeout = card->ext_csd.trim_timeout;
1515 else
1516 erase_timeout = card->ext_csd.hc_erase_timeout;
1517 } else {
1518 /* CSD Erase Group Size uses write timeout */
1519 unsigned int mult = (10 << card->csd.r2w_factor);
1520 unsigned int timeout_clks = card->csd.taac_clks * mult;
1521 unsigned int timeout_us;
1522
1523 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1524 if (card->csd.taac_ns < 1000000)
1525 timeout_us = (card->csd.taac_ns * mult) / 1000;
1526 else
1527 timeout_us = (card->csd.taac_ns / 1000) * mult;
1528
1529 /*
1530 * ios.clock is only a target. The real clock rate might be
1531 * less but not that much less, so fudge it by multiplying by 2.
1532 */
1533 timeout_clks <<= 1;
1534 timeout_us += (timeout_clks * 1000) /
1535 (card->host->ios.clock / 1000);
1536
1537 erase_timeout = timeout_us / 1000;
1538
1539 /*
1540 * Theoretically, the calculation could underflow so round up
1541 * to 1ms in that case.
1542 */
1543 if (!erase_timeout)
1544 erase_timeout = 1;
1545 }
1546
1547 /* Multiplier for secure operations */
1548 if (arg & MMC_SECURE_ARGS) {
1549 if (arg == MMC_SECURE_ERASE_ARG)
1550 erase_timeout *= card->ext_csd.sec_erase_mult;
1551 else
1552 erase_timeout *= card->ext_csd.sec_trim_mult;
1553 }
1554
1555 erase_timeout *= qty;
1556
1557 /*
1558 * Ensure at least a 1 second timeout for SPI as per
1559 * 'mmc_set_data_timeout()'
1560 */
1561 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1562 erase_timeout = 1000;
1563
1564 return erase_timeout;
1565 }
1566
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1567 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1568 unsigned int arg,
1569 unsigned int qty)
1570 {
1571 unsigned int erase_timeout;
1572
1573 /* for DISCARD none of the below calculation applies.
1574 * the busy timeout is 250msec per discard command.
1575 */
1576 if (arg == SD_DISCARD_ARG)
1577 return SD_DISCARD_TIMEOUT_MS;
1578
1579 if (card->ssr.erase_timeout) {
1580 /* Erase timeout specified in SD Status Register (SSR) */
1581 erase_timeout = card->ssr.erase_timeout * qty +
1582 card->ssr.erase_offset;
1583 } else {
1584 /*
1585 * Erase timeout not specified in SD Status Register (SSR) so
1586 * use 250ms per write block.
1587 */
1588 erase_timeout = 250 * qty;
1589 }
1590
1591 /* Must not be less than 1 second */
1592 if (erase_timeout < 1000)
1593 erase_timeout = 1000;
1594
1595 return erase_timeout;
1596 }
1597
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1598 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1599 unsigned int arg,
1600 unsigned int qty)
1601 {
1602 if (mmc_card_sd(card))
1603 return mmc_sd_erase_timeout(card, arg, qty);
1604 else
1605 return mmc_mmc_erase_timeout(card, arg, qty);
1606 }
1607
mmc_do_erase(struct mmc_card * card,unsigned int from,unsigned int to,unsigned int arg)1608 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1609 unsigned int to, unsigned int arg)
1610 {
1611 struct mmc_command cmd = {};
1612 unsigned int qty = 0, busy_timeout = 0;
1613 bool use_r1b_resp;
1614 int err;
1615
1616 mmc_retune_hold(card->host);
1617
1618 /*
1619 * qty is used to calculate the erase timeout which depends on how many
1620 * erase groups (or allocation units in SD terminology) are affected.
1621 * We count erasing part of an erase group as one erase group.
1622 * For SD, the allocation units are always a power of 2. For MMC, the
1623 * erase group size is almost certainly also power of 2, but it does not
1624 * seem to insist on that in the JEDEC standard, so we fall back to
1625 * division in that case. SD may not specify an allocation unit size,
1626 * in which case the timeout is based on the number of write blocks.
1627 *
1628 * Note that the timeout for secure trim 2 will only be correct if the
1629 * number of erase groups specified is the same as the total of all
1630 * preceding secure trim 1 commands. Since the power may have been
1631 * lost since the secure trim 1 commands occurred, it is generally
1632 * impossible to calculate the secure trim 2 timeout correctly.
1633 */
1634 if (card->erase_shift)
1635 qty += ((to >> card->erase_shift) -
1636 (from >> card->erase_shift)) + 1;
1637 else if (mmc_card_sd(card))
1638 qty += to - from + 1;
1639 else
1640 qty += ((to / card->erase_size) -
1641 (from / card->erase_size)) + 1;
1642
1643 if (!mmc_card_blockaddr(card)) {
1644 from <<= 9;
1645 to <<= 9;
1646 }
1647
1648 if (mmc_card_sd(card))
1649 cmd.opcode = SD_ERASE_WR_BLK_START;
1650 else
1651 cmd.opcode = MMC_ERASE_GROUP_START;
1652 cmd.arg = from;
1653 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1654 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1655 if (err) {
1656 pr_err("mmc_erase: group start error %d, "
1657 "status %#x\n", err, cmd.resp[0]);
1658 err = -EIO;
1659 goto out;
1660 }
1661
1662 memset(&cmd, 0, sizeof(struct mmc_command));
1663 if (mmc_card_sd(card))
1664 cmd.opcode = SD_ERASE_WR_BLK_END;
1665 else
1666 cmd.opcode = MMC_ERASE_GROUP_END;
1667 cmd.arg = to;
1668 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1669 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1670 if (err) {
1671 pr_err("mmc_erase: group end error %d, status %#x\n",
1672 err, cmd.resp[0]);
1673 err = -EIO;
1674 goto out;
1675 }
1676
1677 memset(&cmd, 0, sizeof(struct mmc_command));
1678 cmd.opcode = MMC_ERASE;
1679 cmd.arg = arg;
1680 busy_timeout = mmc_erase_timeout(card, arg, qty);
1681 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1682
1683 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1684 if (err) {
1685 pr_err("mmc_erase: erase error %d, status %#x\n",
1686 err, cmd.resp[0]);
1687 err = -EIO;
1688 goto out;
1689 }
1690
1691 if (mmc_host_is_spi(card->host))
1692 goto out;
1693
1694 /*
1695 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1696 * shall be avoided.
1697 */
1698 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1699 goto out;
1700
1701 /* Let's poll to find out when the erase operation completes. */
1702 err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1703
1704 out:
1705 mmc_retune_release(card->host);
1706 return err;
1707 }
1708
mmc_align_erase_size(struct mmc_card * card,unsigned int * from,unsigned int * to,unsigned int nr)1709 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1710 unsigned int *from,
1711 unsigned int *to,
1712 unsigned int nr)
1713 {
1714 unsigned int from_new = *from, nr_new = nr, rem;
1715
1716 /*
1717 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1718 * to align the erase size efficiently.
1719 */
1720 if (is_power_of_2(card->erase_size)) {
1721 unsigned int temp = from_new;
1722
1723 from_new = round_up(temp, card->erase_size);
1724 rem = from_new - temp;
1725
1726 if (nr_new > rem)
1727 nr_new -= rem;
1728 else
1729 return 0;
1730
1731 nr_new = round_down(nr_new, card->erase_size);
1732 } else {
1733 rem = from_new % card->erase_size;
1734 if (rem) {
1735 rem = card->erase_size - rem;
1736 from_new += rem;
1737 if (nr_new > rem)
1738 nr_new -= rem;
1739 else
1740 return 0;
1741 }
1742
1743 rem = nr_new % card->erase_size;
1744 if (rem)
1745 nr_new -= rem;
1746 }
1747
1748 if (nr_new == 0)
1749 return 0;
1750
1751 *to = from_new + nr_new;
1752 *from = from_new;
1753
1754 return nr_new;
1755 }
1756
1757 /**
1758 * mmc_erase - erase sectors.
1759 * @card: card to erase
1760 * @from: first sector to erase
1761 * @nr: number of sectors to erase
1762 * @arg: erase command argument
1763 *
1764 * Caller must claim host before calling this function.
1765 */
mmc_erase(struct mmc_card * card,unsigned int from,unsigned int nr,unsigned int arg)1766 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1767 unsigned int arg)
1768 {
1769 unsigned int rem, to = from + nr;
1770 int err;
1771
1772 if (!(card->csd.cmdclass & CCC_ERASE))
1773 return -EOPNOTSUPP;
1774
1775 if (!card->erase_size)
1776 return -EOPNOTSUPP;
1777
1778 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1779 return -EOPNOTSUPP;
1780
1781 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1782 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1783 return -EOPNOTSUPP;
1784
1785 if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1786 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1787 return -EOPNOTSUPP;
1788
1789 if (arg == MMC_SECURE_ERASE_ARG) {
1790 if (from % card->erase_size || nr % card->erase_size)
1791 return -EINVAL;
1792 }
1793
1794 if (arg == MMC_ERASE_ARG)
1795 nr = mmc_align_erase_size(card, &from, &to, nr);
1796
1797 if (nr == 0)
1798 return 0;
1799
1800 if (to <= from)
1801 return -EINVAL;
1802
1803 /* 'from' and 'to' are inclusive */
1804 to -= 1;
1805
1806 /*
1807 * Special case where only one erase-group fits in the timeout budget:
1808 * If the region crosses an erase-group boundary on this particular
1809 * case, we will be trimming more than one erase-group which, does not
1810 * fit in the timeout budget of the controller, so we need to split it
1811 * and call mmc_do_erase() twice if necessary. This special case is
1812 * identified by the card->eg_boundary flag.
1813 */
1814 rem = card->erase_size - (from % card->erase_size);
1815 if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1816 err = mmc_do_erase(card, from, from + rem - 1, arg);
1817 from += rem;
1818 if ((err) || (to <= from))
1819 return err;
1820 }
1821
1822 return mmc_do_erase(card, from, to, arg);
1823 }
1824 EXPORT_SYMBOL(mmc_erase);
1825
mmc_can_erase(struct mmc_card * card)1826 int mmc_can_erase(struct mmc_card *card)
1827 {
1828 if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1829 return 1;
1830 return 0;
1831 }
1832 EXPORT_SYMBOL(mmc_can_erase);
1833
mmc_can_trim(struct mmc_card * card)1834 int mmc_can_trim(struct mmc_card *card)
1835 {
1836 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1837 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1838 return 1;
1839 return 0;
1840 }
1841 EXPORT_SYMBOL(mmc_can_trim);
1842
mmc_can_discard(struct mmc_card * card)1843 int mmc_can_discard(struct mmc_card *card)
1844 {
1845 /*
1846 * As there's no way to detect the discard support bit at v4.5
1847 * use the s/w feature support filed.
1848 */
1849 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1850 return 1;
1851 return 0;
1852 }
1853 EXPORT_SYMBOL(mmc_can_discard);
1854
mmc_can_sanitize(struct mmc_card * card)1855 int mmc_can_sanitize(struct mmc_card *card)
1856 {
1857 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1858 return 0;
1859 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1860 return 1;
1861 return 0;
1862 }
1863
mmc_can_secure_erase_trim(struct mmc_card * card)1864 int mmc_can_secure_erase_trim(struct mmc_card *card)
1865 {
1866 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1867 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1868 return 1;
1869 return 0;
1870 }
1871 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1872
mmc_erase_group_aligned(struct mmc_card * card,unsigned int from,unsigned int nr)1873 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1874 unsigned int nr)
1875 {
1876 if (!card->erase_size)
1877 return 0;
1878 if (from % card->erase_size || nr % card->erase_size)
1879 return 0;
1880 return 1;
1881 }
1882 EXPORT_SYMBOL(mmc_erase_group_aligned);
1883
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)1884 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1885 unsigned int arg)
1886 {
1887 struct mmc_host *host = card->host;
1888 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1889 unsigned int last_timeout = 0;
1890 unsigned int max_busy_timeout = host->max_busy_timeout ?
1891 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1892
1893 if (card->erase_shift) {
1894 max_qty = UINT_MAX >> card->erase_shift;
1895 min_qty = card->pref_erase >> card->erase_shift;
1896 } else if (mmc_card_sd(card)) {
1897 max_qty = UINT_MAX;
1898 min_qty = card->pref_erase;
1899 } else {
1900 max_qty = UINT_MAX / card->erase_size;
1901 min_qty = card->pref_erase / card->erase_size;
1902 }
1903
1904 /*
1905 * We should not only use 'host->max_busy_timeout' as the limitation
1906 * when deciding the max discard sectors. We should set a balance value
1907 * to improve the erase speed, and it can not get too long timeout at
1908 * the same time.
1909 *
1910 * Here we set 'card->pref_erase' as the minimal discard sectors no
1911 * matter what size of 'host->max_busy_timeout', but if the
1912 * 'host->max_busy_timeout' is large enough for more discard sectors,
1913 * then we can continue to increase the max discard sectors until we
1914 * get a balance value. In cases when the 'host->max_busy_timeout'
1915 * isn't specified, use the default max erase timeout.
1916 */
1917 do {
1918 y = 0;
1919 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1920 timeout = mmc_erase_timeout(card, arg, qty + x);
1921
1922 if (qty + x > min_qty && timeout > max_busy_timeout)
1923 break;
1924
1925 if (timeout < last_timeout)
1926 break;
1927 last_timeout = timeout;
1928 y = x;
1929 }
1930 qty += y;
1931 } while (y);
1932
1933 if (!qty)
1934 return 0;
1935
1936 /*
1937 * When specifying a sector range to trim, chances are we might cross
1938 * an erase-group boundary even if the amount of sectors is less than
1939 * one erase-group.
1940 * If we can only fit one erase-group in the controller timeout budget,
1941 * we have to care that erase-group boundaries are not crossed by a
1942 * single trim operation. We flag that special case with "eg_boundary".
1943 * In all other cases we can just decrement qty and pretend that we
1944 * always touch (qty + 1) erase-groups as a simple optimization.
1945 */
1946 if (qty == 1)
1947 card->eg_boundary = 1;
1948 else
1949 qty--;
1950
1951 /* Convert qty to sectors */
1952 if (card->erase_shift)
1953 max_discard = qty << card->erase_shift;
1954 else if (mmc_card_sd(card))
1955 max_discard = qty + 1;
1956 else
1957 max_discard = qty * card->erase_size;
1958
1959 return max_discard;
1960 }
1961
mmc_calc_max_discard(struct mmc_card * card)1962 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1963 {
1964 struct mmc_host *host = card->host;
1965 unsigned int max_discard, max_trim;
1966
1967 /*
1968 * Without erase_group_def set, MMC erase timeout depends on clock
1969 * frequence which can change. In that case, the best choice is
1970 * just the preferred erase size.
1971 */
1972 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1973 return card->pref_erase;
1974
1975 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1976 if (mmc_can_trim(card)) {
1977 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1978 if (max_trim < max_discard || max_discard == 0)
1979 max_discard = max_trim;
1980 } else if (max_discard < card->erase_size) {
1981 max_discard = 0;
1982 }
1983 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1984 mmc_hostname(host), max_discard, host->max_busy_timeout ?
1985 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1986 return max_discard;
1987 }
1988 EXPORT_SYMBOL(mmc_calc_max_discard);
1989
mmc_card_is_blockaddr(struct mmc_card * card)1990 bool mmc_card_is_blockaddr(struct mmc_card *card)
1991 {
1992 return card ? mmc_card_blockaddr(card) : false;
1993 }
1994 EXPORT_SYMBOL(mmc_card_is_blockaddr);
1995
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)1996 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1997 {
1998 struct mmc_command cmd = {};
1999
2000 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2001 mmc_card_hs400(card) || mmc_card_hs400es(card))
2002 return 0;
2003
2004 cmd.opcode = MMC_SET_BLOCKLEN;
2005 cmd.arg = blocklen;
2006 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2007 return mmc_wait_for_cmd(card->host, &cmd, 5);
2008 }
2009 EXPORT_SYMBOL(mmc_set_blocklen);
2010
mmc_hw_reset_for_init(struct mmc_host * host)2011 static void mmc_hw_reset_for_init(struct mmc_host *host)
2012 {
2013 mmc_pwrseq_reset(host);
2014
2015 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2016 return;
2017 host->ops->card_hw_reset(host);
2018 }
2019
2020 /**
2021 * mmc_hw_reset - reset the card in hardware
2022 * @card: card to be reset
2023 *
2024 * Hard reset the card. This function is only for upper layers, like the
2025 * block layer or card drivers. You cannot use it in host drivers (struct
2026 * mmc_card might be gone then).
2027 *
2028 * Return: 0 on success, -errno on failure
2029 */
mmc_hw_reset(struct mmc_card * card)2030 int mmc_hw_reset(struct mmc_card *card)
2031 {
2032 struct mmc_host *host = card->host;
2033 int ret;
2034
2035 ret = host->bus_ops->hw_reset(host);
2036 if (ret < 0)
2037 pr_warn("%s: tried to HW reset card, got error %d\n",
2038 mmc_hostname(host), ret);
2039
2040 return ret;
2041 }
2042 EXPORT_SYMBOL(mmc_hw_reset);
2043
mmc_sw_reset(struct mmc_card * card)2044 int mmc_sw_reset(struct mmc_card *card)
2045 {
2046 struct mmc_host *host = card->host;
2047 int ret;
2048
2049 if (!host->bus_ops->sw_reset)
2050 return -EOPNOTSUPP;
2051
2052 ret = host->bus_ops->sw_reset(host);
2053 if (ret)
2054 pr_warn("%s: tried to SW reset card, got error %d\n",
2055 mmc_hostname(host), ret);
2056
2057 return ret;
2058 }
2059 EXPORT_SYMBOL(mmc_sw_reset);
2060
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2061 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2062 {
2063 host->f_init = freq;
2064
2065 pr_debug("%s: %s: trying to init card at %u Hz\n",
2066 mmc_hostname(host), __func__, host->f_init);
2067
2068 mmc_power_up(host, host->ocr_avail);
2069
2070 /*
2071 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2072 * do a hardware reset if possible.
2073 */
2074 mmc_hw_reset_for_init(host);
2075
2076 /*
2077 * sdio_reset sends CMD52 to reset card. Since we do not know
2078 * if the card is being re-initialized, just send it. CMD52
2079 * should be ignored by SD/eMMC cards.
2080 * Skip it if we already know that we do not support SDIO commands
2081 */
2082 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2083 sdio_reset(host);
2084
2085 mmc_go_idle(host);
2086
2087 if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2088 if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2089 goto out;
2090 if (mmc_card_sd_express(host))
2091 return 0;
2092 }
2093
2094 /* Order's important: probe SDIO, then SD, then MMC */
2095 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2096 if (!mmc_attach_sdio(host))
2097 return 0;
2098
2099 if (!(host->caps2 & MMC_CAP2_NO_SD))
2100 if (!mmc_attach_sd(host))
2101 return 0;
2102
2103 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2104 if (!mmc_attach_mmc(host))
2105 return 0;
2106
2107 out:
2108 mmc_power_off(host);
2109 return -EIO;
2110 }
2111
_mmc_detect_card_removed(struct mmc_host * host)2112 int _mmc_detect_card_removed(struct mmc_host *host)
2113 {
2114 int ret;
2115
2116 if (!host->card || mmc_card_removed(host->card))
2117 return 1;
2118
2119 ret = host->bus_ops->alive(host);
2120
2121 /*
2122 * Card detect status and alive check may be out of sync if card is
2123 * removed slowly, when card detect switch changes while card/slot
2124 * pads are still contacted in hardware (refer to "SD Card Mechanical
2125 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2126 * detect work 200ms later for this case.
2127 */
2128 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2129 mmc_detect_change(host, msecs_to_jiffies(200));
2130 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2131 }
2132
2133 if (ret) {
2134 mmc_card_set_removed(host->card);
2135 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2136 }
2137
2138 return ret;
2139 }
2140
mmc_detect_card_removed(struct mmc_host * host)2141 int mmc_detect_card_removed(struct mmc_host *host)
2142 {
2143 struct mmc_card *card = host->card;
2144 int ret;
2145
2146 WARN_ON(!host->claimed);
2147
2148 if (!card)
2149 return 1;
2150
2151 if (!mmc_card_is_removable(host))
2152 return 0;
2153
2154 ret = mmc_card_removed(card);
2155 /*
2156 * The card will be considered unchanged unless we have been asked to
2157 * detect a change or host requires polling to provide card detection.
2158 */
2159 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2160 return ret;
2161
2162 host->detect_change = 0;
2163 if (!ret) {
2164 ret = _mmc_detect_card_removed(host);
2165 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2166 /*
2167 * Schedule a detect work as soon as possible to let a
2168 * rescan handle the card removal.
2169 */
2170 cancel_delayed_work(&host->detect);
2171 _mmc_detect_change(host, 0, false);
2172 }
2173 }
2174
2175 return ret;
2176 }
2177 EXPORT_SYMBOL(mmc_detect_card_removed);
2178
mmc_card_alternative_gpt_sector(struct mmc_card * card,sector_t * gpt_sector)2179 int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2180 {
2181 unsigned int boot_sectors_num;
2182
2183 if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2184 return -EOPNOTSUPP;
2185
2186 /* filter out unrelated cards */
2187 if (card->ext_csd.rev < 3 ||
2188 !mmc_card_mmc(card) ||
2189 !mmc_card_is_blockaddr(card) ||
2190 mmc_card_is_removable(card->host))
2191 return -ENOENT;
2192
2193 /*
2194 * eMMC storage has two special boot partitions in addition to the
2195 * main one. NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2196 * accesses, this means that the partition table addresses are shifted
2197 * by the size of boot partitions. In accordance with the eMMC
2198 * specification, the boot partition size is calculated as follows:
2199 *
2200 * boot partition size = 128K byte x BOOT_SIZE_MULT
2201 *
2202 * Calculate number of sectors occupied by the both boot partitions.
2203 */
2204 boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2205 SZ_512 * MMC_NUM_BOOT_PARTITION;
2206
2207 /* Defined by NVIDIA and used by Android devices. */
2208 *gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2209
2210 return 0;
2211 }
2212 EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2213
mmc_rescan(struct work_struct * work)2214 void mmc_rescan(struct work_struct *work)
2215 {
2216 struct mmc_host *host =
2217 container_of(work, struct mmc_host, detect.work);
2218 int i;
2219
2220 if (host->rescan_disable)
2221 return;
2222
2223 /* If there is a non-removable card registered, only scan once */
2224 if (!mmc_card_is_removable(host) && host->rescan_entered)
2225 return;
2226 host->rescan_entered = 1;
2227
2228 if (host->trigger_card_event && host->ops->card_event) {
2229 mmc_claim_host(host);
2230 host->ops->card_event(host);
2231 mmc_release_host(host);
2232 host->trigger_card_event = false;
2233 }
2234
2235 /* Verify a registered card to be functional, else remove it. */
2236 if (host->bus_ops)
2237 host->bus_ops->detect(host);
2238
2239 host->detect_change = 0;
2240
2241 /* if there still is a card present, stop here */
2242 if (host->bus_ops != NULL)
2243 goto out;
2244
2245 mmc_claim_host(host);
2246 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2247 host->ops->get_cd(host) == 0) {
2248 mmc_power_off(host);
2249 mmc_release_host(host);
2250 goto out;
2251 }
2252
2253 /* If an SD express card is present, then leave it as is. */
2254 if (mmc_card_sd_express(host)) {
2255 mmc_release_host(host);
2256 goto out;
2257 }
2258
2259 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2260 unsigned int freq = freqs[i];
2261 if (freq > host->f_max) {
2262 if (i + 1 < ARRAY_SIZE(freqs))
2263 continue;
2264 freq = host->f_max;
2265 }
2266 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2267 break;
2268 if (freqs[i] <= host->f_min)
2269 break;
2270 }
2271
2272 /*
2273 * Ignore the command timeout errors observed during
2274 * the card init as those are excepted.
2275 */
2276 host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2277 mmc_release_host(host);
2278
2279 out:
2280 if (host->caps & MMC_CAP_NEEDS_POLL)
2281 mmc_schedule_delayed_work(&host->detect, HZ);
2282 }
2283
mmc_start_host(struct mmc_host * host)2284 void mmc_start_host(struct mmc_host *host)
2285 {
2286 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2287 host->rescan_disable = 0;
2288
2289 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2290 mmc_claim_host(host);
2291 mmc_power_up(host, host->ocr_avail);
2292 mmc_release_host(host);
2293 }
2294
2295 mmc_gpiod_request_cd_irq(host);
2296 _mmc_detect_change(host, 0, false);
2297 }
2298
__mmc_stop_host(struct mmc_host * host)2299 void __mmc_stop_host(struct mmc_host *host)
2300 {
2301 if (host->slot.cd_irq >= 0) {
2302 mmc_gpio_set_cd_wake(host, false);
2303 disable_irq(host->slot.cd_irq);
2304 }
2305
2306 host->rescan_disable = 1;
2307 cancel_delayed_work_sync(&host->detect);
2308 }
2309
mmc_stop_host(struct mmc_host * host)2310 void mmc_stop_host(struct mmc_host *host)
2311 {
2312 __mmc_stop_host(host);
2313
2314 /* clear pm flags now and let card drivers set them as needed */
2315 host->pm_flags = 0;
2316
2317 if (host->bus_ops) {
2318 /* Calling bus_ops->remove() with a claimed host can deadlock */
2319 host->bus_ops->remove(host);
2320 mmc_claim_host(host);
2321 mmc_detach_bus(host);
2322 mmc_power_off(host);
2323 mmc_release_host(host);
2324 return;
2325 }
2326
2327 mmc_claim_host(host);
2328 mmc_power_off(host);
2329 mmc_release_host(host);
2330 }
2331
mmc_init(void)2332 static int __init mmc_init(void)
2333 {
2334 int ret;
2335
2336 ret = mmc_register_bus();
2337 if (ret)
2338 return ret;
2339
2340 ret = mmc_register_host_class();
2341 if (ret)
2342 goto unregister_bus;
2343
2344 ret = sdio_register_bus();
2345 if (ret)
2346 goto unregister_host_class;
2347
2348 return 0;
2349
2350 unregister_host_class:
2351 mmc_unregister_host_class();
2352 unregister_bus:
2353 mmc_unregister_bus();
2354 return ret;
2355 }
2356
mmc_exit(void)2357 static void __exit mmc_exit(void)
2358 {
2359 sdio_unregister_bus();
2360 mmc_unregister_host_class();
2361 mmc_unregister_bus();
2362 }
2363
2364 subsys_initcall(mmc_init);
2365 module_exit(mmc_exit);
2366
2367 MODULE_LICENSE("GPL");
2368