• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  linux/drivers/mmc/core/mmc_ops.h
4  *
5  *  Copyright 2006-2007 Pierre Ossman
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/types.h>
11 #include <linux/scatterlist.h>
12 
13 #include <linux/mmc/host.h>
14 #include <linux/mmc/card.h>
15 #include <linux/mmc/mmc.h>
16 
17 #include "core.h"
18 #include "card.h"
19 #include "host.h"
20 #include "mmc_ops.h"
21 
22 #define MMC_BKOPS_TIMEOUT_MS		(120 * 1000) /* 120s */
23 #define MMC_SANITIZE_TIMEOUT_MS		(240 * 1000) /* 240s */
24 #define MMC_OP_COND_PERIOD_US		(4 * 1000) /* 4ms */
25 #define MMC_OP_COND_TIMEOUT_MS		1000 /* 1s */
26 
27 static const u8 tuning_blk_pattern_4bit[] = {
28 	0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
29 	0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
30 	0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
31 	0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
32 	0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
33 	0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
34 	0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
35 	0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
36 };
37 
38 static const u8 tuning_blk_pattern_8bit[] = {
39 	0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
40 	0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
41 	0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
42 	0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
43 	0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
44 	0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
45 	0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
46 	0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
47 	0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
48 	0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
49 	0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
50 	0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
51 	0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
52 	0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
53 	0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
54 	0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
55 };
56 
57 struct mmc_busy_data {
58 	struct mmc_card *card;
59 	bool retry_crc_err;
60 	enum mmc_busy_cmd busy_cmd;
61 };
62 
63 struct mmc_op_cond_busy_data {
64 	struct mmc_host *host;
65 	u32 ocr;
66 	struct mmc_command *cmd;
67 };
68 
__mmc_send_status(struct mmc_card * card,u32 * status,unsigned int retries)69 int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries)
70 {
71 	int err;
72 	struct mmc_command cmd = {};
73 
74 	cmd.opcode = MMC_SEND_STATUS;
75 	if (!mmc_host_is_spi(card->host))
76 		cmd.arg = card->rca << 16;
77 	cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
78 
79 	err = mmc_wait_for_cmd(card->host, &cmd, retries);
80 	if (err)
81 		return err;
82 
83 	/* NOTE: callers are required to understand the difference
84 	 * between "native" and SPI format status words!
85 	 */
86 	if (status)
87 		*status = cmd.resp[0];
88 
89 	return 0;
90 }
91 EXPORT_SYMBOL_GPL(__mmc_send_status);
92 
mmc_send_status(struct mmc_card * card,u32 * status)93 int mmc_send_status(struct mmc_card *card, u32 *status)
94 {
95 	return __mmc_send_status(card, status, MMC_CMD_RETRIES);
96 }
97 EXPORT_SYMBOL_GPL(mmc_send_status);
98 
_mmc_select_card(struct mmc_host * host,struct mmc_card * card)99 static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
100 {
101 	struct mmc_command cmd = {};
102 
103 	cmd.opcode = MMC_SELECT_CARD;
104 
105 	if (card) {
106 		cmd.arg = card->rca << 16;
107 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
108 	} else {
109 		cmd.arg = 0;
110 		cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
111 	}
112 
113 	return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
114 }
115 
mmc_select_card(struct mmc_card * card)116 int mmc_select_card(struct mmc_card *card)
117 {
118 
119 	return _mmc_select_card(card->host, card);
120 }
121 EXPORT_SYMBOL_GPL(mmc_select_card);
122 
mmc_deselect_cards(struct mmc_host * host)123 int mmc_deselect_cards(struct mmc_host *host)
124 {
125 	return _mmc_select_card(host, NULL);
126 }
127 
128 /*
129  * Write the value specified in the device tree or board code into the optional
130  * 16 bit Driver Stage Register. This can be used to tune raise/fall times and
131  * drive strength of the DAT and CMD outputs. The actual meaning of a given
132  * value is hardware dependant.
133  * The presence of the DSR register can be determined from the CSD register,
134  * bit 76.
135  */
mmc_set_dsr(struct mmc_host * host)136 int mmc_set_dsr(struct mmc_host *host)
137 {
138 	struct mmc_command cmd = {};
139 
140 	cmd.opcode = MMC_SET_DSR;
141 
142 	cmd.arg = (host->dsr << 16) | 0xffff;
143 	cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
144 
145 	return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
146 }
147 
mmc_go_idle(struct mmc_host * host)148 int mmc_go_idle(struct mmc_host *host)
149 {
150 	int err;
151 	struct mmc_command cmd = {};
152 
153 	/*
154 	 * Non-SPI hosts need to prevent chipselect going active during
155 	 * GO_IDLE; that would put chips into SPI mode.  Remind them of
156 	 * that in case of hardware that won't pull up DAT3/nCS otherwise.
157 	 *
158 	 * SPI hosts ignore ios.chip_select; it's managed according to
159 	 * rules that must accommodate non-MMC slaves which this layer
160 	 * won't even know about.
161 	 */
162 	if (!mmc_host_is_spi(host)) {
163 		mmc_set_chip_select(host, MMC_CS_HIGH);
164 		mmc_delay(1);
165 	}
166 
167 	cmd.opcode = MMC_GO_IDLE_STATE;
168 	cmd.arg = 0;
169 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
170 
171 	err = mmc_wait_for_cmd(host, &cmd, 0);
172 
173 	mmc_delay(1);
174 
175 	if (!mmc_host_is_spi(host)) {
176 		mmc_set_chip_select(host, MMC_CS_DONTCARE);
177 		mmc_delay(1);
178 	}
179 
180 	host->use_spi_crc = 0;
181 
182 	return err;
183 }
184 
__mmc_send_op_cond_cb(void * cb_data,bool * busy)185 static int __mmc_send_op_cond_cb(void *cb_data, bool *busy)
186 {
187 	struct mmc_op_cond_busy_data *data = cb_data;
188 	struct mmc_host *host = data->host;
189 	struct mmc_command *cmd = data->cmd;
190 	u32 ocr = data->ocr;
191 	int err = 0;
192 
193 	err = mmc_wait_for_cmd(host, cmd, 0);
194 	if (err)
195 		return err;
196 
197 	if (mmc_host_is_spi(host)) {
198 		if (!(cmd->resp[0] & R1_SPI_IDLE)) {
199 			*busy = false;
200 			return 0;
201 		}
202 	} else {
203 		if (cmd->resp[0] & MMC_CARD_BUSY) {
204 			*busy = false;
205 			return 0;
206 		}
207 	}
208 
209 	*busy = true;
210 
211 	/*
212 	 * According to eMMC specification v5.1 section 6.4.3, we
213 	 * should issue CMD1 repeatedly in the idle state until
214 	 * the eMMC is ready. Otherwise some eMMC devices seem to enter
215 	 * the inactive mode after mmc_init_card() issued CMD0 when
216 	 * the eMMC device is busy.
217 	 */
218 	if (!ocr && !mmc_host_is_spi(host))
219 		cmd->arg = cmd->resp[0] | BIT(30);
220 
221 	return 0;
222 }
223 
mmc_send_op_cond(struct mmc_host * host,u32 ocr,u32 * rocr)224 int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
225 {
226 	struct mmc_command cmd = {};
227 	int err = 0;
228 	struct mmc_op_cond_busy_data cb_data = {
229 		.host = host,
230 		.ocr = ocr,
231 		.cmd = &cmd
232 	};
233 
234 	cmd.opcode = MMC_SEND_OP_COND;
235 	cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
236 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
237 
238 	err = __mmc_poll_for_busy(host, MMC_OP_COND_PERIOD_US,
239 				  MMC_OP_COND_TIMEOUT_MS,
240 				  &__mmc_send_op_cond_cb, &cb_data);
241 	if (err)
242 		return err;
243 
244 	if (rocr && !mmc_host_is_spi(host))
245 		*rocr = cmd.resp[0];
246 
247 	return err;
248 }
249 
mmc_set_relative_addr(struct mmc_card * card)250 int mmc_set_relative_addr(struct mmc_card *card)
251 {
252 	struct mmc_command cmd = {};
253 
254 	cmd.opcode = MMC_SET_RELATIVE_ADDR;
255 	cmd.arg = card->rca << 16;
256 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
257 
258 	return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
259 }
260 
261 static int
mmc_send_cxd_native(struct mmc_host * host,u32 arg,u32 * cxd,int opcode)262 mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
263 {
264 	int err;
265 	struct mmc_command cmd = {};
266 
267 	cmd.opcode = opcode;
268 	cmd.arg = arg;
269 	cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
270 
271 	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
272 	if (err)
273 		return err;
274 
275 	memcpy(cxd, cmd.resp, sizeof(u32) * 4);
276 
277 	return 0;
278 }
279 
280 /*
281  * NOTE: void *buf, caller for the buf is required to use DMA-capable
282  * buffer or on-stack buffer (with some overhead in callee).
283  */
mmc_send_adtc_data(struct mmc_card * card,struct mmc_host * host,u32 opcode,u32 args,void * buf,unsigned len)284 int mmc_send_adtc_data(struct mmc_card *card, struct mmc_host *host, u32 opcode,
285 		       u32 args, void *buf, unsigned len)
286 {
287 	struct mmc_request mrq = {};
288 	struct mmc_command cmd = {};
289 	struct mmc_data data = {};
290 	struct scatterlist sg;
291 
292 	mrq.cmd = &cmd;
293 	mrq.data = &data;
294 
295 	cmd.opcode = opcode;
296 	cmd.arg = args;
297 
298 	/* NOTE HACK:  the MMC_RSP_SPI_R1 is always correct here, but we
299 	 * rely on callers to never use this with "native" calls for reading
300 	 * CSD or CID.  Native versions of those commands use the R2 type,
301 	 * not R1 plus a data block.
302 	 */
303 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
304 
305 	data.blksz = len;
306 	data.blocks = 1;
307 	data.flags = MMC_DATA_READ;
308 	data.sg = &sg;
309 	data.sg_len = 1;
310 
311 	sg_init_one(&sg, buf, len);
312 
313 	if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
314 		/*
315 		 * The spec states that CSR and CID accesses have a timeout
316 		 * of 64 clock cycles.
317 		 */
318 		data.timeout_ns = 0;
319 		data.timeout_clks = 64;
320 	} else
321 		mmc_set_data_timeout(&data, card);
322 
323 	mmc_wait_for_req(host, &mrq);
324 
325 	if (cmd.error)
326 		return cmd.error;
327 	if (data.error)
328 		return data.error;
329 
330 	return 0;
331 }
332 
mmc_spi_send_cxd(struct mmc_host * host,u32 * cxd,u32 opcode)333 static int mmc_spi_send_cxd(struct mmc_host *host, u32 *cxd, u32 opcode)
334 {
335 	int ret, i;
336 	__be32 *cxd_tmp;
337 
338 	cxd_tmp = kzalloc(16, GFP_KERNEL);
339 	if (!cxd_tmp)
340 		return -ENOMEM;
341 
342 	ret = mmc_send_adtc_data(NULL, host, opcode, 0, cxd_tmp, 16);
343 	if (ret)
344 		goto err;
345 
346 	for (i = 0; i < 4; i++)
347 		cxd[i] = be32_to_cpu(cxd_tmp[i]);
348 
349 err:
350 	kfree(cxd_tmp);
351 	return ret;
352 }
353 
mmc_send_csd(struct mmc_card * card,u32 * csd)354 int mmc_send_csd(struct mmc_card *card, u32 *csd)
355 {
356 	if (mmc_host_is_spi(card->host))
357 		return mmc_spi_send_cxd(card->host, csd, MMC_SEND_CSD);
358 
359 	return mmc_send_cxd_native(card->host, card->rca << 16,	csd,
360 				MMC_SEND_CSD);
361 }
362 
mmc_send_cid(struct mmc_host * host,u32 * cid)363 int mmc_send_cid(struct mmc_host *host, u32 *cid)
364 {
365 	if (mmc_host_is_spi(host))
366 		return mmc_spi_send_cxd(host, cid, MMC_SEND_CID);
367 
368 	return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID);
369 }
370 
mmc_get_ext_csd(struct mmc_card * card,u8 ** new_ext_csd)371 int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
372 {
373 	int err;
374 	u8 *ext_csd;
375 
376 	if (!card || !new_ext_csd)
377 		return -EINVAL;
378 
379 	if (!mmc_can_ext_csd(card))
380 		return -EOPNOTSUPP;
381 
382 	/*
383 	 * As the ext_csd is so large and mostly unused, we don't store the
384 	 * raw block in mmc_card.
385 	 */
386 	ext_csd = kzalloc(512, GFP_KERNEL);
387 	if (!ext_csd)
388 		return -ENOMEM;
389 
390 	err = mmc_send_adtc_data(card, card->host, MMC_SEND_EXT_CSD, 0, ext_csd,
391 				512);
392 	if (err)
393 		kfree(ext_csd);
394 	else
395 		*new_ext_csd = ext_csd;
396 
397 	return err;
398 }
399 EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
400 
mmc_spi_read_ocr(struct mmc_host * host,int highcap,u32 * ocrp)401 int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
402 {
403 	struct mmc_command cmd = {};
404 	int err;
405 
406 	cmd.opcode = MMC_SPI_READ_OCR;
407 	cmd.arg = highcap ? (1 << 30) : 0;
408 	cmd.flags = MMC_RSP_SPI_R3;
409 
410 	err = mmc_wait_for_cmd(host, &cmd, 0);
411 
412 	*ocrp = cmd.resp[1];
413 	return err;
414 }
415 
mmc_spi_set_crc(struct mmc_host * host,int use_crc)416 int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
417 {
418 	struct mmc_command cmd = {};
419 	int err;
420 
421 	cmd.opcode = MMC_SPI_CRC_ON_OFF;
422 	cmd.flags = MMC_RSP_SPI_R1;
423 	cmd.arg = use_crc;
424 
425 	err = mmc_wait_for_cmd(host, &cmd, 0);
426 	if (!err)
427 		host->use_spi_crc = use_crc;
428 	return err;
429 }
430 
mmc_switch_status_error(struct mmc_host * host,u32 status)431 static int mmc_switch_status_error(struct mmc_host *host, u32 status)
432 {
433 	if (mmc_host_is_spi(host)) {
434 		if (status & R1_SPI_ILLEGAL_COMMAND)
435 			return -EBADMSG;
436 	} else {
437 		if (R1_STATUS(status))
438 			pr_warn("%s: unexpected status %#x after switch\n",
439 				mmc_hostname(host), status);
440 		if (status & R1_SWITCH_ERROR)
441 			return -EBADMSG;
442 	}
443 	return 0;
444 }
445 
446 /* Caller must hold re-tuning */
mmc_switch_status(struct mmc_card * card,bool crc_err_fatal)447 int mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
448 {
449 	u32 status;
450 	int err;
451 
452 	err = mmc_send_status(card, &status);
453 	if (!crc_err_fatal && err == -EILSEQ)
454 		return 0;
455 	if (err)
456 		return err;
457 
458 	return mmc_switch_status_error(card->host, status);
459 }
460 
mmc_busy_cb(void * cb_data,bool * busy)461 static int mmc_busy_cb(void *cb_data, bool *busy)
462 {
463 	struct mmc_busy_data *data = cb_data;
464 	struct mmc_host *host = data->card->host;
465 	u32 status = 0;
466 	int err;
467 
468 	if (data->busy_cmd != MMC_BUSY_IO && host->ops->card_busy) {
469 		*busy = host->ops->card_busy(host);
470 		return 0;
471 	}
472 
473 	err = mmc_send_status(data->card, &status);
474 	if (data->retry_crc_err && err == -EILSEQ) {
475 		*busy = true;
476 		return 0;
477 	}
478 	if (err)
479 		return err;
480 
481 	switch (data->busy_cmd) {
482 	case MMC_BUSY_CMD6:
483 		err = mmc_switch_status_error(host, status);
484 		break;
485 	case MMC_BUSY_ERASE:
486 		err = R1_STATUS(status) ? -EIO : 0;
487 		break;
488 	case MMC_BUSY_HPI:
489 	case MMC_BUSY_EXTR_SINGLE:
490 	case MMC_BUSY_IO:
491 		break;
492 	default:
493 		err = -EINVAL;
494 	}
495 
496 	if (err)
497 		return err;
498 
499 	*busy = !mmc_ready_for_data(status);
500 	return 0;
501 }
502 
__mmc_poll_for_busy(struct mmc_host * host,unsigned int period_us,unsigned int timeout_ms,int (* busy_cb)(void * cb_data,bool * busy),void * cb_data)503 int __mmc_poll_for_busy(struct mmc_host *host, unsigned int period_us,
504 			unsigned int timeout_ms,
505 			int (*busy_cb)(void *cb_data, bool *busy),
506 			void *cb_data)
507 {
508 	int err;
509 	unsigned long timeout;
510 	unsigned int udelay = period_us ? period_us : 32, udelay_max = 32768;
511 	bool expired = false;
512 	bool busy = false;
513 
514 	timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1;
515 	do {
516 		/*
517 		 * Due to the possibility of being preempted while polling,
518 		 * check the expiration time first.
519 		 */
520 		expired = time_after(jiffies, timeout);
521 
522 		err = (*busy_cb)(cb_data, &busy);
523 		if (err)
524 			return err;
525 
526 		/* Timeout if the device still remains busy. */
527 		if (expired && busy) {
528 			pr_err("%s: Card stuck being busy! %s\n",
529 				mmc_hostname(host), __func__);
530 			return -ETIMEDOUT;
531 		}
532 
533 		/* Throttle the polling rate to avoid hogging the CPU. */
534 		if (busy) {
535 			usleep_range(udelay, udelay * 2);
536 			if (udelay < udelay_max)
537 				udelay *= 2;
538 		}
539 	} while (busy);
540 
541 	return 0;
542 }
543 EXPORT_SYMBOL_GPL(__mmc_poll_for_busy);
544 
mmc_poll_for_busy(struct mmc_card * card,unsigned int timeout_ms,bool retry_crc_err,enum mmc_busy_cmd busy_cmd)545 int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
546 		      bool retry_crc_err, enum mmc_busy_cmd busy_cmd)
547 {
548 	struct mmc_host *host = card->host;
549 	struct mmc_busy_data cb_data;
550 
551 	cb_data.card = card;
552 	cb_data.retry_crc_err = retry_crc_err;
553 	cb_data.busy_cmd = busy_cmd;
554 
555 	return __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_busy_cb, &cb_data);
556 }
557 EXPORT_SYMBOL_GPL(mmc_poll_for_busy);
558 
mmc_prepare_busy_cmd(struct mmc_host * host,struct mmc_command * cmd,unsigned int timeout_ms)559 bool mmc_prepare_busy_cmd(struct mmc_host *host, struct mmc_command *cmd,
560 			  unsigned int timeout_ms)
561 {
562 	/*
563 	 * If the max_busy_timeout of the host is specified, make sure it's
564 	 * enough to fit the used timeout_ms. In case it's not, let's instruct
565 	 * the host to avoid HW busy detection, by converting to a R1 response
566 	 * instead of a R1B. Note, some hosts requires R1B, which also means
567 	 * they are on their own when it comes to deal with the busy timeout.
568 	 */
569 	if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
570 	    (timeout_ms > host->max_busy_timeout)) {
571 		cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1 | MMC_RSP_R1;
572 		return false;
573 	}
574 
575 	cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1B | MMC_RSP_R1B;
576 	cmd->busy_timeout = timeout_ms;
577 	return true;
578 }
579 EXPORT_SYMBOL_GPL(mmc_prepare_busy_cmd);
580 
581 /**
582  *	__mmc_switch - modify EXT_CSD register
583  *	@card: the MMC card associated with the data transfer
584  *	@set: cmd set values
585  *	@index: EXT_CSD register index
586  *	@value: value to program into EXT_CSD register
587  *	@timeout_ms: timeout (ms) for operation performed by register write,
588  *                   timeout of zero implies maximum possible timeout
589  *	@timing: new timing to change to
590  *	@send_status: send status cmd to poll for busy
591  *	@retry_crc_err: retry when CRC errors when polling with CMD13 for busy
592  *	@retries: number of retries
593  *
594  *	Modifies the EXT_CSD register for selected card.
595  */
__mmc_switch(struct mmc_card * card,u8 set,u8 index,u8 value,unsigned int timeout_ms,unsigned char timing,bool send_status,bool retry_crc_err,unsigned int retries)596 int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
597 		unsigned int timeout_ms, unsigned char timing,
598 		bool send_status, bool retry_crc_err, unsigned int retries)
599 {
600 	struct mmc_host *host = card->host;
601 	int err;
602 	struct mmc_command cmd = {};
603 	bool use_r1b_resp;
604 	unsigned char old_timing = host->ios.timing;
605 
606 	mmc_retune_hold(host);
607 
608 	if (!timeout_ms) {
609 		pr_warn("%s: unspecified timeout for CMD6 - use generic\n",
610 			mmc_hostname(host));
611 		timeout_ms = card->ext_csd.generic_cmd6_time;
612 	}
613 
614 	cmd.opcode = MMC_SWITCH;
615 	cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
616 		  (index << 16) |
617 		  (value << 8) |
618 		  set;
619 	use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
620 
621 	err = mmc_wait_for_cmd(host, &cmd, retries);
622 	if (err)
623 		goto out;
624 
625 	/*If SPI or used HW busy detection above, then we don't need to poll. */
626 	if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
627 		mmc_host_is_spi(host))
628 		goto out_tim;
629 
630 	/*
631 	 * If the host doesn't support HW polling via the ->card_busy() ops and
632 	 * when it's not allowed to poll by using CMD13, then we need to rely on
633 	 * waiting the stated timeout to be sufficient.
634 	 */
635 	if (!send_status && !host->ops->card_busy) {
636 		mmc_delay(timeout_ms);
637 		goto out_tim;
638 	}
639 
640 	/* Let's try to poll to find out when the command is completed. */
641 	err = mmc_poll_for_busy(card, timeout_ms, retry_crc_err, MMC_BUSY_CMD6);
642 	if (err)
643 		goto out;
644 
645 out_tim:
646 	/* Switch to new timing before check switch status. */
647 	if (timing)
648 		mmc_set_timing(host, timing);
649 
650 	if (send_status) {
651 		err = mmc_switch_status(card, true);
652 		if (err && timing)
653 			mmc_set_timing(host, old_timing);
654 	}
655 out:
656 	mmc_retune_release(host);
657 
658 	return err;
659 }
660 
mmc_switch(struct mmc_card * card,u8 set,u8 index,u8 value,unsigned int timeout_ms)661 int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
662 		unsigned int timeout_ms)
663 {
664 	return __mmc_switch(card, set, index, value, timeout_ms, 0,
665 			    true, false, MMC_CMD_RETRIES);
666 }
667 EXPORT_SYMBOL_GPL(mmc_switch);
668 
mmc_send_tuning(struct mmc_host * host,u32 opcode,int * cmd_error)669 int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
670 {
671 	struct mmc_request mrq = {};
672 	struct mmc_command cmd = {};
673 	struct mmc_data data = {};
674 	struct scatterlist sg;
675 	struct mmc_ios *ios = &host->ios;
676 	const u8 *tuning_block_pattern;
677 	int size, err = 0;
678 	u8 *data_buf;
679 
680 	if (ios->bus_width == MMC_BUS_WIDTH_8) {
681 		tuning_block_pattern = tuning_blk_pattern_8bit;
682 		size = sizeof(tuning_blk_pattern_8bit);
683 	} else if (ios->bus_width == MMC_BUS_WIDTH_4) {
684 		tuning_block_pattern = tuning_blk_pattern_4bit;
685 		size = sizeof(tuning_blk_pattern_4bit);
686 	} else
687 		return -EINVAL;
688 
689 	data_buf = kzalloc(size, GFP_KERNEL);
690 	if (!data_buf)
691 		return -ENOMEM;
692 
693 	mrq.cmd = &cmd;
694 	mrq.data = &data;
695 
696 	cmd.opcode = opcode;
697 	cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
698 
699 	data.blksz = size;
700 	data.blocks = 1;
701 	data.flags = MMC_DATA_READ;
702 
703 	/*
704 	 * According to the tuning specs, Tuning process
705 	 * is normally shorter 40 executions of CMD19,
706 	 * and timeout value should be shorter than 150 ms
707 	 */
708 	data.timeout_ns = 150 * NSEC_PER_MSEC;
709 
710 	data.sg = &sg;
711 	data.sg_len = 1;
712 	sg_init_one(&sg, data_buf, size);
713 
714 	mmc_wait_for_req(host, &mrq);
715 
716 	if (cmd_error)
717 		*cmd_error = cmd.error;
718 
719 	if (cmd.error) {
720 		err = cmd.error;
721 		goto out;
722 	}
723 
724 	if (data.error) {
725 		err = data.error;
726 		goto out;
727 	}
728 
729 	if (memcmp(data_buf, tuning_block_pattern, size))
730 		err = -EIO;
731 
732 out:
733 	kfree(data_buf);
734 	return err;
735 }
736 EXPORT_SYMBOL_GPL(mmc_send_tuning);
737 
mmc_send_abort_tuning(struct mmc_host * host,u32 opcode)738 int mmc_send_abort_tuning(struct mmc_host *host, u32 opcode)
739 {
740 	struct mmc_command cmd = {};
741 
742 	/*
743 	 * eMMC specification specifies that CMD12 can be used to stop a tuning
744 	 * command, but SD specification does not, so do nothing unless it is
745 	 * eMMC.
746 	 */
747 	if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
748 		return 0;
749 
750 	cmd.opcode = MMC_STOP_TRANSMISSION;
751 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
752 
753 	/*
754 	 * For drivers that override R1 to R1b, set an arbitrary timeout based
755 	 * on the tuning timeout i.e. 150ms.
756 	 */
757 	cmd.busy_timeout = 150;
758 
759 	return mmc_wait_for_cmd(host, &cmd, 0);
760 }
761 EXPORT_SYMBOL_GPL(mmc_send_abort_tuning);
762 
763 static int
mmc_send_bus_test(struct mmc_card * card,struct mmc_host * host,u8 opcode,u8 len)764 mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
765 		  u8 len)
766 {
767 	struct mmc_request mrq = {};
768 	struct mmc_command cmd = {};
769 	struct mmc_data data = {};
770 	struct scatterlist sg;
771 	u8 *data_buf;
772 	u8 *test_buf;
773 	int i, err;
774 	static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
775 	static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
776 
777 	/* dma onto stack is unsafe/nonportable, but callers to this
778 	 * routine normally provide temporary on-stack buffers ...
779 	 */
780 	data_buf = kmalloc(len, GFP_KERNEL);
781 	if (!data_buf)
782 		return -ENOMEM;
783 
784 	if (len == 8)
785 		test_buf = testdata_8bit;
786 	else if (len == 4)
787 		test_buf = testdata_4bit;
788 	else {
789 		pr_err("%s: Invalid bus_width %d\n",
790 		       mmc_hostname(host), len);
791 		kfree(data_buf);
792 		return -EINVAL;
793 	}
794 
795 	if (opcode == MMC_BUS_TEST_W)
796 		memcpy(data_buf, test_buf, len);
797 
798 	mrq.cmd = &cmd;
799 	mrq.data = &data;
800 	cmd.opcode = opcode;
801 	cmd.arg = 0;
802 
803 	/* NOTE HACK:  the MMC_RSP_SPI_R1 is always correct here, but we
804 	 * rely on callers to never use this with "native" calls for reading
805 	 * CSD or CID.  Native versions of those commands use the R2 type,
806 	 * not R1 plus a data block.
807 	 */
808 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
809 
810 	data.blksz = len;
811 	data.blocks = 1;
812 	if (opcode == MMC_BUS_TEST_R)
813 		data.flags = MMC_DATA_READ;
814 	else
815 		data.flags = MMC_DATA_WRITE;
816 
817 	data.sg = &sg;
818 	data.sg_len = 1;
819 	mmc_set_data_timeout(&data, card);
820 	sg_init_one(&sg, data_buf, len);
821 	mmc_wait_for_req(host, &mrq);
822 	err = 0;
823 	if (opcode == MMC_BUS_TEST_R) {
824 		for (i = 0; i < len / 4; i++)
825 			if ((test_buf[i] ^ data_buf[i]) != 0xff) {
826 				err = -EIO;
827 				break;
828 			}
829 	}
830 	kfree(data_buf);
831 
832 	if (cmd.error)
833 		return cmd.error;
834 	if (data.error)
835 		return data.error;
836 
837 	return err;
838 }
839 
mmc_bus_test(struct mmc_card * card,u8 bus_width)840 int mmc_bus_test(struct mmc_card *card, u8 bus_width)
841 {
842 	int width;
843 
844 	if (bus_width == MMC_BUS_WIDTH_8)
845 		width = 8;
846 	else if (bus_width == MMC_BUS_WIDTH_4)
847 		width = 4;
848 	else if (bus_width == MMC_BUS_WIDTH_1)
849 		return 0; /* no need for test */
850 	else
851 		return -EINVAL;
852 
853 	/*
854 	 * Ignore errors from BUS_TEST_W.  BUS_TEST_R will fail if there
855 	 * is a problem.  This improves chances that the test will work.
856 	 */
857 	mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
858 	return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
859 }
860 
mmc_send_hpi_cmd(struct mmc_card * card)861 static int mmc_send_hpi_cmd(struct mmc_card *card)
862 {
863 	unsigned int busy_timeout_ms = card->ext_csd.out_of_int_time;
864 	struct mmc_host *host = card->host;
865 	bool use_r1b_resp = false;
866 	struct mmc_command cmd = {};
867 	int err;
868 
869 	cmd.opcode = card->ext_csd.hpi_cmd;
870 	cmd.arg = card->rca << 16 | 1;
871 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
872 
873 	if (cmd.opcode == MMC_STOP_TRANSMISSION)
874 		use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd,
875 						    busy_timeout_ms);
876 
877 	err = mmc_wait_for_cmd(host, &cmd, 0);
878 	if (err) {
879 		pr_warn("%s: HPI error %d. Command response %#x\n",
880 			mmc_hostname(host), err, cmd.resp[0]);
881 		return err;
882 	}
883 
884 	/* No need to poll when using HW busy detection. */
885 	if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
886 		return 0;
887 
888 	/* Let's poll to find out when the HPI request completes. */
889 	return mmc_poll_for_busy(card, busy_timeout_ms, false, MMC_BUSY_HPI);
890 }
891 
892 /**
893  *	mmc_interrupt_hpi - Issue for High priority Interrupt
894  *	@card: the MMC card associated with the HPI transfer
895  *
896  *	Issued High Priority Interrupt, and check for card status
897  *	until out-of prg-state.
898  */
mmc_interrupt_hpi(struct mmc_card * card)899 static int mmc_interrupt_hpi(struct mmc_card *card)
900 {
901 	int err;
902 	u32 status;
903 
904 	if (!card->ext_csd.hpi_en) {
905 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
906 		return 1;
907 	}
908 
909 	err = mmc_send_status(card, &status);
910 	if (err) {
911 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
912 		goto out;
913 	}
914 
915 	switch (R1_CURRENT_STATE(status)) {
916 	case R1_STATE_IDLE:
917 	case R1_STATE_READY:
918 	case R1_STATE_STBY:
919 	case R1_STATE_TRAN:
920 		/*
921 		 * In idle and transfer states, HPI is not needed and the caller
922 		 * can issue the next intended command immediately
923 		 */
924 		goto out;
925 	case R1_STATE_PRG:
926 		break;
927 	default:
928 		/* In all other states, it's illegal to issue HPI */
929 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
930 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
931 		err = -EINVAL;
932 		goto out;
933 	}
934 
935 	err = mmc_send_hpi_cmd(card);
936 out:
937 	return err;
938 }
939 
mmc_can_ext_csd(struct mmc_card * card)940 int mmc_can_ext_csd(struct mmc_card *card)
941 {
942 	return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
943 }
944 
mmc_read_bkops_status(struct mmc_card * card)945 static int mmc_read_bkops_status(struct mmc_card *card)
946 {
947 	int err;
948 	u8 *ext_csd;
949 
950 	err = mmc_get_ext_csd(card, &ext_csd);
951 	if (err)
952 		return err;
953 
954 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
955 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
956 	kfree(ext_csd);
957 	return 0;
958 }
959 
960 /**
961  *	mmc_run_bkops - Run BKOPS for supported cards
962  *	@card: MMC card to run BKOPS for
963  *
964  *	Run background operations synchronously for cards having manual BKOPS
965  *	enabled and in case it reports urgent BKOPS level.
966 */
mmc_run_bkops(struct mmc_card * card)967 void mmc_run_bkops(struct mmc_card *card)
968 {
969 	int err;
970 
971 	if (!card->ext_csd.man_bkops_en)
972 		return;
973 
974 	err = mmc_read_bkops_status(card);
975 	if (err) {
976 		pr_err("%s: Failed to read bkops status: %d\n",
977 		       mmc_hostname(card->host), err);
978 		return;
979 	}
980 
981 	if (!card->ext_csd.raw_bkops_status ||
982 	    card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2)
983 		return;
984 
985 	mmc_retune_hold(card->host);
986 
987 	/*
988 	 * For urgent BKOPS status, LEVEL_2 and higher, let's execute
989 	 * synchronously. Future wise, we may consider to start BKOPS, for less
990 	 * urgent levels by using an asynchronous background task, when idle.
991 	 */
992 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
993 			 EXT_CSD_BKOPS_START, 1, MMC_BKOPS_TIMEOUT_MS);
994 	/*
995 	 * If the BKOPS timed out, the card is probably still busy in the
996 	 * R1_STATE_PRG. Rather than continue to wait, let's try to abort
997 	 * it with a HPI command to get back into R1_STATE_TRAN.
998 	 */
999 	if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
1000 		pr_warn("%s: BKOPS aborted\n", mmc_hostname(card->host));
1001 	else if (err)
1002 		pr_warn("%s: Error %d running bkops\n",
1003 			mmc_hostname(card->host), err);
1004 
1005 	mmc_retune_release(card->host);
1006 }
1007 EXPORT_SYMBOL(mmc_run_bkops);
1008 
mmc_cmdq_switch(struct mmc_card * card,bool enable)1009 static int mmc_cmdq_switch(struct mmc_card *card, bool enable)
1010 {
1011 	u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0;
1012 	int err;
1013 
1014 	if (!card->ext_csd.cmdq_support)
1015 		return -EOPNOTSUPP;
1016 
1017 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN,
1018 			 val, card->ext_csd.generic_cmd6_time);
1019 	if (!err)
1020 		card->ext_csd.cmdq_en = enable;
1021 
1022 	return err;
1023 }
1024 
mmc_cmdq_enable(struct mmc_card * card)1025 int mmc_cmdq_enable(struct mmc_card *card)
1026 {
1027 	return mmc_cmdq_switch(card, true);
1028 }
1029 EXPORT_SYMBOL_GPL(mmc_cmdq_enable);
1030 
mmc_cmdq_disable(struct mmc_card * card)1031 int mmc_cmdq_disable(struct mmc_card *card)
1032 {
1033 	return mmc_cmdq_switch(card, false);
1034 }
1035 EXPORT_SYMBOL_GPL(mmc_cmdq_disable);
1036 
mmc_sanitize(struct mmc_card * card,unsigned int timeout_ms)1037 int mmc_sanitize(struct mmc_card *card, unsigned int timeout_ms)
1038 {
1039 	struct mmc_host *host = card->host;
1040 	int err;
1041 
1042 	if (!mmc_can_sanitize(card)) {
1043 		pr_warn("%s: Sanitize not supported\n", mmc_hostname(host));
1044 		return -EOPNOTSUPP;
1045 	}
1046 
1047 	if (!timeout_ms)
1048 		timeout_ms = MMC_SANITIZE_TIMEOUT_MS;
1049 
1050 	pr_debug("%s: Sanitize in progress...\n", mmc_hostname(host));
1051 
1052 	mmc_retune_hold(host);
1053 
1054 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START,
1055 			   1, timeout_ms, 0, true, false, 0);
1056 	if (err)
1057 		pr_err("%s: Sanitize failed err=%d\n", mmc_hostname(host), err);
1058 
1059 	/*
1060 	 * If the sanitize operation timed out, the card is probably still busy
1061 	 * in the R1_STATE_PRG. Rather than continue to wait, let's try to abort
1062 	 * it with a HPI command to get back into R1_STATE_TRAN.
1063 	 */
1064 	if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
1065 		pr_warn("%s: Sanitize aborted\n", mmc_hostname(host));
1066 
1067 	mmc_retune_release(host);
1068 
1069 	pr_debug("%s: Sanitize completed\n", mmc_hostname(host));
1070 	return err;
1071 }
1072 EXPORT_SYMBOL_GPL(mmc_sanitize);
1073