1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 md.c : Multiple Devices driver for Linux
4 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5
6 completely rewritten, based on the MD driver code from Marc Zyngier
7
8 Changes:
9
10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
14 - kmod support by: Cyrus Durgin
15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17
18 - lots of fixes and improvements to the RAID1/RAID5 and generic
19 RAID code (such as request based resynchronization):
20
21 Neil Brown <neilb@cse.unsw.edu.au>.
22
23 - persistent bitmap code
24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25
26
27 Errors, Warnings, etc.
28 Please use:
29 pr_crit() for error conditions that risk data loss
30 pr_err() for error conditions that are unexpected, like an IO error
31 or internal inconsistency
32 pr_warn() for error conditions that could have been predicated, like
33 adding a device to an array when it has incompatible metadata
34 pr_info() for every interesting, very rare events, like an array starting
35 or stopping, or resync starting or stopping
36 pr_debug() for everything else.
37
38 */
39
40 #include <linux/sched/mm.h>
41 #include <linux/sched/signal.h>
42 #include <linux/kthread.h>
43 #include <linux/blkdev.h>
44 #include <linux/blk-integrity.h>
45 #include <linux/badblocks.h>
46 #include <linux/sysctl.h>
47 #include <linux/seq_file.h>
48 #include <linux/fs.h>
49 #include <linux/poll.h>
50 #include <linux/ctype.h>
51 #include <linux/string.h>
52 #include <linux/hdreg.h>
53 #include <linux/proc_fs.h>
54 #include <linux/random.h>
55 #include <linux/major.h>
56 #include <linux/module.h>
57 #include <linux/reboot.h>
58 #include <linux/file.h>
59 #include <linux/compat.h>
60 #include <linux/delay.h>
61 #include <linux/raid/md_p.h>
62 #include <linux/raid/md_u.h>
63 #include <linux/raid/detect.h>
64 #include <linux/slab.h>
65 #include <linux/percpu-refcount.h>
66 #include <linux/part_stat.h>
67
68 #include <trace/events/block.h>
69 #include "md.h"
70 #include "md-bitmap.h"
71 #include "md-cluster.h"
72
73 /* pers_list is a list of registered personalities protected
74 * by pers_lock.
75 * pers_lock does extra service to protect accesses to
76 * mddev->thread when the mutex cannot be held.
77 */
78 static LIST_HEAD(pers_list);
79 static DEFINE_SPINLOCK(pers_lock);
80
81 static struct kobj_type md_ktype;
82
83 struct md_cluster_operations *md_cluster_ops;
84 EXPORT_SYMBOL(md_cluster_ops);
85 static struct module *md_cluster_mod;
86
87 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
88 static struct workqueue_struct *md_wq;
89 static struct workqueue_struct *md_misc_wq;
90 static struct workqueue_struct *md_rdev_misc_wq;
91
92 static int remove_and_add_spares(struct mddev *mddev,
93 struct md_rdev *this);
94 static void mddev_detach(struct mddev *mddev);
95
96 enum md_ro_state {
97 MD_RDWR,
98 MD_RDONLY,
99 MD_AUTO_READ,
100 MD_MAX_STATE
101 };
102
md_is_rdwr(struct mddev * mddev)103 static bool md_is_rdwr(struct mddev *mddev)
104 {
105 return (mddev->ro == MD_RDWR);
106 }
107
108 /*
109 * Default number of read corrections we'll attempt on an rdev
110 * before ejecting it from the array. We divide the read error
111 * count by 2 for every hour elapsed between read errors.
112 */
113 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
114 /* Default safemode delay: 200 msec */
115 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
116 /*
117 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
118 * is 1000 KB/sec, so the extra system load does not show up that much.
119 * Increase it if you want to have more _guaranteed_ speed. Note that
120 * the RAID driver will use the maximum available bandwidth if the IO
121 * subsystem is idle. There is also an 'absolute maximum' reconstruction
122 * speed limit - in case reconstruction slows down your system despite
123 * idle IO detection.
124 *
125 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
126 * or /sys/block/mdX/md/sync_speed_{min,max}
127 */
128
129 static int sysctl_speed_limit_min = 1000;
130 static int sysctl_speed_limit_max = 200000;
speed_min(struct mddev * mddev)131 static inline int speed_min(struct mddev *mddev)
132 {
133 return mddev->sync_speed_min ?
134 mddev->sync_speed_min : sysctl_speed_limit_min;
135 }
136
speed_max(struct mddev * mddev)137 static inline int speed_max(struct mddev *mddev)
138 {
139 return mddev->sync_speed_max ?
140 mddev->sync_speed_max : sysctl_speed_limit_max;
141 }
142
rdev_uninit_serial(struct md_rdev * rdev)143 static void rdev_uninit_serial(struct md_rdev *rdev)
144 {
145 if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
146 return;
147
148 kvfree(rdev->serial);
149 rdev->serial = NULL;
150 }
151
rdevs_uninit_serial(struct mddev * mddev)152 static void rdevs_uninit_serial(struct mddev *mddev)
153 {
154 struct md_rdev *rdev;
155
156 rdev_for_each(rdev, mddev)
157 rdev_uninit_serial(rdev);
158 }
159
rdev_init_serial(struct md_rdev * rdev)160 static int rdev_init_serial(struct md_rdev *rdev)
161 {
162 /* serial_nums equals with BARRIER_BUCKETS_NR */
163 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
164 struct serial_in_rdev *serial = NULL;
165
166 if (test_bit(CollisionCheck, &rdev->flags))
167 return 0;
168
169 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
170 GFP_KERNEL);
171 if (!serial)
172 return -ENOMEM;
173
174 for (i = 0; i < serial_nums; i++) {
175 struct serial_in_rdev *serial_tmp = &serial[i];
176
177 spin_lock_init(&serial_tmp->serial_lock);
178 serial_tmp->serial_rb = RB_ROOT_CACHED;
179 init_waitqueue_head(&serial_tmp->serial_io_wait);
180 }
181
182 rdev->serial = serial;
183 set_bit(CollisionCheck, &rdev->flags);
184
185 return 0;
186 }
187
rdevs_init_serial(struct mddev * mddev)188 static int rdevs_init_serial(struct mddev *mddev)
189 {
190 struct md_rdev *rdev;
191 int ret = 0;
192
193 rdev_for_each(rdev, mddev) {
194 ret = rdev_init_serial(rdev);
195 if (ret)
196 break;
197 }
198
199 /* Free all resources if pool is not existed */
200 if (ret && !mddev->serial_info_pool)
201 rdevs_uninit_serial(mddev);
202
203 return ret;
204 }
205
206 /*
207 * rdev needs to enable serial stuffs if it meets the conditions:
208 * 1. it is multi-queue device flaged with writemostly.
209 * 2. the write-behind mode is enabled.
210 */
rdev_need_serial(struct md_rdev * rdev)211 static int rdev_need_serial(struct md_rdev *rdev)
212 {
213 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
214 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
215 test_bit(WriteMostly, &rdev->flags));
216 }
217
218 /*
219 * Init resource for rdev(s), then create serial_info_pool if:
220 * 1. rdev is the first device which return true from rdev_enable_serial.
221 * 2. rdev is NULL, means we want to enable serialization for all rdevs.
222 */
mddev_create_serial_pool(struct mddev * mddev,struct md_rdev * rdev,bool is_suspend)223 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
224 bool is_suspend)
225 {
226 int ret = 0;
227
228 if (rdev && !rdev_need_serial(rdev) &&
229 !test_bit(CollisionCheck, &rdev->flags))
230 return;
231
232 if (!is_suspend)
233 mddev_suspend(mddev);
234
235 if (!rdev)
236 ret = rdevs_init_serial(mddev);
237 else
238 ret = rdev_init_serial(rdev);
239 if (ret)
240 goto abort;
241
242 if (mddev->serial_info_pool == NULL) {
243 /*
244 * already in memalloc noio context by
245 * mddev_suspend()
246 */
247 mddev->serial_info_pool =
248 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
249 sizeof(struct serial_info));
250 if (!mddev->serial_info_pool) {
251 rdevs_uninit_serial(mddev);
252 pr_err("can't alloc memory pool for serialization\n");
253 }
254 }
255
256 abort:
257 if (!is_suspend)
258 mddev_resume(mddev);
259 }
260
261 /*
262 * Free resource from rdev(s), and destroy serial_info_pool under conditions:
263 * 1. rdev is the last device flaged with CollisionCheck.
264 * 2. when bitmap is destroyed while policy is not enabled.
265 * 3. for disable policy, the pool is destroyed only when no rdev needs it.
266 */
mddev_destroy_serial_pool(struct mddev * mddev,struct md_rdev * rdev,bool is_suspend)267 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
268 bool is_suspend)
269 {
270 if (rdev && !test_bit(CollisionCheck, &rdev->flags))
271 return;
272
273 if (mddev->serial_info_pool) {
274 struct md_rdev *temp;
275 int num = 0; /* used to track if other rdevs need the pool */
276
277 if (!is_suspend)
278 mddev_suspend(mddev);
279 rdev_for_each(temp, mddev) {
280 if (!rdev) {
281 if (!mddev->serialize_policy ||
282 !rdev_need_serial(temp))
283 rdev_uninit_serial(temp);
284 else
285 num++;
286 } else if (temp != rdev &&
287 test_bit(CollisionCheck, &temp->flags))
288 num++;
289 }
290
291 if (rdev)
292 rdev_uninit_serial(rdev);
293
294 if (num)
295 pr_info("The mempool could be used by other devices\n");
296 else {
297 mempool_destroy(mddev->serial_info_pool);
298 mddev->serial_info_pool = NULL;
299 }
300 if (!is_suspend)
301 mddev_resume(mddev);
302 }
303 }
304
305 static struct ctl_table_header *raid_table_header;
306
307 static struct ctl_table raid_table[] = {
308 {
309 .procname = "speed_limit_min",
310 .data = &sysctl_speed_limit_min,
311 .maxlen = sizeof(int),
312 .mode = S_IRUGO|S_IWUSR,
313 .proc_handler = proc_dointvec,
314 },
315 {
316 .procname = "speed_limit_max",
317 .data = &sysctl_speed_limit_max,
318 .maxlen = sizeof(int),
319 .mode = S_IRUGO|S_IWUSR,
320 .proc_handler = proc_dointvec,
321 },
322 { }
323 };
324
325 static struct ctl_table raid_dir_table[] = {
326 {
327 .procname = "raid",
328 .maxlen = 0,
329 .mode = S_IRUGO|S_IXUGO,
330 .child = raid_table,
331 },
332 { }
333 };
334
335 static struct ctl_table raid_root_table[] = {
336 {
337 .procname = "dev",
338 .maxlen = 0,
339 .mode = 0555,
340 .child = raid_dir_table,
341 },
342 { }
343 };
344
345 static int start_readonly;
346
347 /*
348 * The original mechanism for creating an md device is to create
349 * a device node in /dev and to open it. This causes races with device-close.
350 * The preferred method is to write to the "new_array" module parameter.
351 * This can avoid races.
352 * Setting create_on_open to false disables the original mechanism
353 * so all the races disappear.
354 */
355 static bool create_on_open = true;
356
357 /*
358 * We have a system wide 'event count' that is incremented
359 * on any 'interesting' event, and readers of /proc/mdstat
360 * can use 'poll' or 'select' to find out when the event
361 * count increases.
362 *
363 * Events are:
364 * start array, stop array, error, add device, remove device,
365 * start build, activate spare
366 */
367 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
368 static atomic_t md_event_count;
md_new_event(void)369 void md_new_event(void)
370 {
371 atomic_inc(&md_event_count);
372 wake_up(&md_event_waiters);
373 }
374 EXPORT_SYMBOL_GPL(md_new_event);
375
376 /*
377 * Enables to iterate over all existing md arrays
378 * all_mddevs_lock protects this list.
379 */
380 static LIST_HEAD(all_mddevs);
381 static DEFINE_SPINLOCK(all_mddevs_lock);
382
is_md_suspended(struct mddev * mddev)383 static bool is_md_suspended(struct mddev *mddev)
384 {
385 return percpu_ref_is_dying(&mddev->active_io);
386 }
387 /* Rather than calling directly into the personality make_request function,
388 * IO requests come here first so that we can check if the device is
389 * being suspended pending a reconfiguration.
390 * We hold a refcount over the call to ->make_request. By the time that
391 * call has finished, the bio has been linked into some internal structure
392 * and so is visible to ->quiesce(), so we don't need the refcount any more.
393 */
is_suspended(struct mddev * mddev,struct bio * bio)394 static bool is_suspended(struct mddev *mddev, struct bio *bio)
395 {
396 if (is_md_suspended(mddev))
397 return true;
398 if (bio_data_dir(bio) != WRITE)
399 return false;
400 if (mddev->suspend_lo >= mddev->suspend_hi)
401 return false;
402 if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
403 return false;
404 if (bio_end_sector(bio) < mddev->suspend_lo)
405 return false;
406 return true;
407 }
408
md_handle_request(struct mddev * mddev,struct bio * bio)409 void md_handle_request(struct mddev *mddev, struct bio *bio)
410 {
411 check_suspended:
412 if (is_suspended(mddev, bio)) {
413 DEFINE_WAIT(__wait);
414 /* Bail out if REQ_NOWAIT is set for the bio */
415 if (bio->bi_opf & REQ_NOWAIT) {
416 bio_wouldblock_error(bio);
417 return;
418 }
419 for (;;) {
420 prepare_to_wait(&mddev->sb_wait, &__wait,
421 TASK_UNINTERRUPTIBLE);
422 if (!is_suspended(mddev, bio))
423 break;
424 schedule();
425 }
426 finish_wait(&mddev->sb_wait, &__wait);
427 }
428 if (!percpu_ref_tryget_live(&mddev->active_io))
429 goto check_suspended;
430
431 if (!mddev->pers->make_request(mddev, bio)) {
432 percpu_ref_put(&mddev->active_io);
433 goto check_suspended;
434 }
435
436 percpu_ref_put(&mddev->active_io);
437 }
438 EXPORT_SYMBOL(md_handle_request);
439
md_submit_bio(struct bio * bio)440 static void md_submit_bio(struct bio *bio)
441 {
442 const int rw = bio_data_dir(bio);
443 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data;
444
445 if (mddev == NULL || mddev->pers == NULL) {
446 bio_io_error(bio);
447 return;
448 }
449
450 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
451 bio_io_error(bio);
452 return;
453 }
454
455 bio = bio_split_to_limits(bio);
456 if (!bio)
457 return;
458
459 if (mddev->ro == MD_RDONLY && unlikely(rw == WRITE)) {
460 if (bio_sectors(bio) != 0)
461 bio->bi_status = BLK_STS_IOERR;
462 bio_endio(bio);
463 return;
464 }
465
466 /* bio could be mergeable after passing to underlayer */
467 bio->bi_opf &= ~REQ_NOMERGE;
468
469 md_handle_request(mddev, bio);
470 }
471
472 /* mddev_suspend makes sure no new requests are submitted
473 * to the device, and that any requests that have been submitted
474 * are completely handled.
475 * Once mddev_detach() is called and completes, the module will be
476 * completely unused.
477 */
mddev_suspend(struct mddev * mddev)478 void mddev_suspend(struct mddev *mddev)
479 {
480 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
481 lockdep_assert_held(&mddev->reconfig_mutex);
482 if (mddev->suspended++)
483 return;
484 wake_up(&mddev->sb_wait);
485 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
486 percpu_ref_kill(&mddev->active_io);
487 wait_event(mddev->sb_wait, percpu_ref_is_zero(&mddev->active_io));
488 mddev->pers->quiesce(mddev, 1);
489 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
490 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
491
492 del_timer_sync(&mddev->safemode_timer);
493 /* restrict memory reclaim I/O during raid array is suspend */
494 mddev->noio_flag = memalloc_noio_save();
495 }
496 EXPORT_SYMBOL_GPL(mddev_suspend);
497
mddev_resume(struct mddev * mddev)498 void mddev_resume(struct mddev *mddev)
499 {
500 lockdep_assert_held(&mddev->reconfig_mutex);
501 if (--mddev->suspended)
502 return;
503
504 /* entred the memalloc scope from mddev_suspend() */
505 memalloc_noio_restore(mddev->noio_flag);
506
507 percpu_ref_resurrect(&mddev->active_io);
508 wake_up(&mddev->sb_wait);
509 mddev->pers->quiesce(mddev, 0);
510
511 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
512 md_wakeup_thread(mddev->thread);
513 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
514 }
515 EXPORT_SYMBOL_GPL(mddev_resume);
516
517 /*
518 * Generic flush handling for md
519 */
520
md_end_flush(struct bio * bio)521 static void md_end_flush(struct bio *bio)
522 {
523 struct md_rdev *rdev = bio->bi_private;
524 struct mddev *mddev = rdev->mddev;
525
526 bio_put(bio);
527
528 rdev_dec_pending(rdev, mddev);
529
530 if (atomic_dec_and_test(&mddev->flush_pending)) {
531 /* The pair is percpu_ref_get() from md_flush_request() */
532 percpu_ref_put(&mddev->active_io);
533
534 /* The pre-request flush has finished */
535 queue_work(md_wq, &mddev->flush_work);
536 }
537 }
538
539 static void md_submit_flush_data(struct work_struct *ws);
540
submit_flushes(struct work_struct * ws)541 static void submit_flushes(struct work_struct *ws)
542 {
543 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
544 struct md_rdev *rdev;
545
546 mddev->start_flush = ktime_get_boottime();
547 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
548 atomic_set(&mddev->flush_pending, 1);
549 rcu_read_lock();
550 rdev_for_each_rcu(rdev, mddev)
551 if (rdev->raid_disk >= 0 &&
552 !test_bit(Faulty, &rdev->flags)) {
553 struct bio *bi;
554
555 atomic_inc(&rdev->nr_pending);
556 rcu_read_unlock();
557 bi = bio_alloc_bioset(rdev->bdev, 0,
558 REQ_OP_WRITE | REQ_PREFLUSH,
559 GFP_NOIO, &mddev->bio_set);
560 bi->bi_end_io = md_end_flush;
561 bi->bi_private = rdev;
562 atomic_inc(&mddev->flush_pending);
563 submit_bio(bi);
564 rcu_read_lock();
565 }
566 rcu_read_unlock();
567 if (atomic_dec_and_test(&mddev->flush_pending)) {
568 /* The pair is percpu_ref_get() from md_flush_request() */
569 percpu_ref_put(&mddev->active_io);
570
571 queue_work(md_wq, &mddev->flush_work);
572 }
573 }
574
md_submit_flush_data(struct work_struct * ws)575 static void md_submit_flush_data(struct work_struct *ws)
576 {
577 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
578 struct bio *bio = mddev->flush_bio;
579
580 /*
581 * must reset flush_bio before calling into md_handle_request to avoid a
582 * deadlock, because other bios passed md_handle_request suspend check
583 * could wait for this and below md_handle_request could wait for those
584 * bios because of suspend check
585 */
586 spin_lock_irq(&mddev->lock);
587 mddev->prev_flush_start = mddev->start_flush;
588 mddev->flush_bio = NULL;
589 spin_unlock_irq(&mddev->lock);
590 wake_up(&mddev->sb_wait);
591
592 if (bio->bi_iter.bi_size == 0) {
593 /* an empty barrier - all done */
594 bio_endio(bio);
595 } else {
596 bio->bi_opf &= ~REQ_PREFLUSH;
597 md_handle_request(mddev, bio);
598 }
599 }
600
601 /*
602 * Manages consolidation of flushes and submitting any flushes needed for
603 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is
604 * being finished in another context. Returns false if the flushing is
605 * complete but still needs the I/O portion of the bio to be processed.
606 */
md_flush_request(struct mddev * mddev,struct bio * bio)607 bool md_flush_request(struct mddev *mddev, struct bio *bio)
608 {
609 ktime_t req_start = ktime_get_boottime();
610 spin_lock_irq(&mddev->lock);
611 /* flush requests wait until ongoing flush completes,
612 * hence coalescing all the pending requests.
613 */
614 wait_event_lock_irq(mddev->sb_wait,
615 !mddev->flush_bio ||
616 ktime_before(req_start, mddev->prev_flush_start),
617 mddev->lock);
618 /* new request after previous flush is completed */
619 if (ktime_after(req_start, mddev->prev_flush_start)) {
620 WARN_ON(mddev->flush_bio);
621 /*
622 * Grab a reference to make sure mddev_suspend() will wait for
623 * this flush to be done.
624 *
625 * md_flush_reqeust() is called under md_handle_request() and
626 * 'active_io' is already grabbed, hence percpu_ref_is_zero()
627 * won't pass, percpu_ref_tryget_live() can't be used because
628 * percpu_ref_kill() can be called by mddev_suspend()
629 * concurrently.
630 */
631 WARN_ON(percpu_ref_is_zero(&mddev->active_io));
632 percpu_ref_get(&mddev->active_io);
633 mddev->flush_bio = bio;
634 bio = NULL;
635 }
636 spin_unlock_irq(&mddev->lock);
637
638 if (!bio) {
639 INIT_WORK(&mddev->flush_work, submit_flushes);
640 queue_work(md_wq, &mddev->flush_work);
641 } else {
642 /* flush was performed for some other bio while we waited. */
643 if (bio->bi_iter.bi_size == 0)
644 /* an empty barrier - all done */
645 bio_endio(bio);
646 else {
647 bio->bi_opf &= ~REQ_PREFLUSH;
648 return false;
649 }
650 }
651 return true;
652 }
653 EXPORT_SYMBOL(md_flush_request);
654
mddev_get(struct mddev * mddev)655 static inline struct mddev *mddev_get(struct mddev *mddev)
656 {
657 lockdep_assert_held(&all_mddevs_lock);
658
659 if (test_bit(MD_DELETED, &mddev->flags))
660 return NULL;
661 atomic_inc(&mddev->active);
662 return mddev;
663 }
664
665 static void mddev_delayed_delete(struct work_struct *ws);
666
mddev_put(struct mddev * mddev)667 void mddev_put(struct mddev *mddev)
668 {
669 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
670 return;
671 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
672 mddev->ctime == 0 && !mddev->hold_active) {
673 /* Array is not configured at all, and not held active,
674 * so destroy it */
675 set_bit(MD_DELETED, &mddev->flags);
676
677 /*
678 * Call queue_work inside the spinlock so that
679 * flush_workqueue() after mddev_find will succeed in waiting
680 * for the work to be done.
681 */
682 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
683 queue_work(md_misc_wq, &mddev->del_work);
684 }
685 spin_unlock(&all_mddevs_lock);
686 }
687
688 static void md_safemode_timeout(struct timer_list *t);
689
mddev_init(struct mddev * mddev)690 void mddev_init(struct mddev *mddev)
691 {
692 mutex_init(&mddev->open_mutex);
693 mutex_init(&mddev->reconfig_mutex);
694 mutex_init(&mddev->bitmap_info.mutex);
695 INIT_LIST_HEAD(&mddev->disks);
696 INIT_LIST_HEAD(&mddev->all_mddevs);
697 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
698 atomic_set(&mddev->active, 1);
699 atomic_set(&mddev->openers, 0);
700 spin_lock_init(&mddev->lock);
701 atomic_set(&mddev->flush_pending, 0);
702 init_waitqueue_head(&mddev->sb_wait);
703 init_waitqueue_head(&mddev->recovery_wait);
704 mddev->reshape_position = MaxSector;
705 mddev->reshape_backwards = 0;
706 mddev->last_sync_action = "none";
707 mddev->resync_min = 0;
708 mddev->resync_max = MaxSector;
709 mddev->level = LEVEL_NONE;
710 }
711 EXPORT_SYMBOL_GPL(mddev_init);
712
mddev_find_locked(dev_t unit)713 static struct mddev *mddev_find_locked(dev_t unit)
714 {
715 struct mddev *mddev;
716
717 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
718 if (mddev->unit == unit)
719 return mddev;
720
721 return NULL;
722 }
723
724 /* find an unused unit number */
mddev_alloc_unit(void)725 static dev_t mddev_alloc_unit(void)
726 {
727 static int next_minor = 512;
728 int start = next_minor;
729 bool is_free = 0;
730 dev_t dev = 0;
731
732 while (!is_free) {
733 dev = MKDEV(MD_MAJOR, next_minor);
734 next_minor++;
735 if (next_minor > MINORMASK)
736 next_minor = 0;
737 if (next_minor == start)
738 return 0; /* Oh dear, all in use. */
739 is_free = !mddev_find_locked(dev);
740 }
741
742 return dev;
743 }
744
mddev_alloc(dev_t unit)745 static struct mddev *mddev_alloc(dev_t unit)
746 {
747 struct mddev *new;
748 int error;
749
750 if (unit && MAJOR(unit) != MD_MAJOR)
751 unit &= ~((1 << MdpMinorShift) - 1);
752
753 new = kzalloc(sizeof(*new), GFP_KERNEL);
754 if (!new)
755 return ERR_PTR(-ENOMEM);
756 mddev_init(new);
757
758 spin_lock(&all_mddevs_lock);
759 if (unit) {
760 error = -EEXIST;
761 if (mddev_find_locked(unit))
762 goto out_free_new;
763 new->unit = unit;
764 if (MAJOR(unit) == MD_MAJOR)
765 new->md_minor = MINOR(unit);
766 else
767 new->md_minor = MINOR(unit) >> MdpMinorShift;
768 new->hold_active = UNTIL_IOCTL;
769 } else {
770 error = -ENODEV;
771 new->unit = mddev_alloc_unit();
772 if (!new->unit)
773 goto out_free_new;
774 new->md_minor = MINOR(new->unit);
775 new->hold_active = UNTIL_STOP;
776 }
777
778 list_add(&new->all_mddevs, &all_mddevs);
779 spin_unlock(&all_mddevs_lock);
780 return new;
781 out_free_new:
782 spin_unlock(&all_mddevs_lock);
783 kfree(new);
784 return ERR_PTR(error);
785 }
786
mddev_free(struct mddev * mddev)787 static void mddev_free(struct mddev *mddev)
788 {
789 spin_lock(&all_mddevs_lock);
790 list_del(&mddev->all_mddevs);
791 spin_unlock(&all_mddevs_lock);
792
793 kfree(mddev);
794 }
795
796 static const struct attribute_group md_redundancy_group;
797
mddev_unlock(struct mddev * mddev)798 void mddev_unlock(struct mddev *mddev)
799 {
800 if (mddev->to_remove) {
801 /* These cannot be removed under reconfig_mutex as
802 * an access to the files will try to take reconfig_mutex
803 * while holding the file unremovable, which leads to
804 * a deadlock.
805 * So hold set sysfs_active while the remove in happeing,
806 * and anything else which might set ->to_remove or my
807 * otherwise change the sysfs namespace will fail with
808 * -EBUSY if sysfs_active is still set.
809 * We set sysfs_active under reconfig_mutex and elsewhere
810 * test it under the same mutex to ensure its correct value
811 * is seen.
812 */
813 const struct attribute_group *to_remove = mddev->to_remove;
814 mddev->to_remove = NULL;
815 mddev->sysfs_active = 1;
816 mutex_unlock(&mddev->reconfig_mutex);
817
818 if (mddev->kobj.sd) {
819 if (to_remove != &md_redundancy_group)
820 sysfs_remove_group(&mddev->kobj, to_remove);
821 if (mddev->pers == NULL ||
822 mddev->pers->sync_request == NULL) {
823 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
824 if (mddev->sysfs_action)
825 sysfs_put(mddev->sysfs_action);
826 if (mddev->sysfs_completed)
827 sysfs_put(mddev->sysfs_completed);
828 if (mddev->sysfs_degraded)
829 sysfs_put(mddev->sysfs_degraded);
830 mddev->sysfs_action = NULL;
831 mddev->sysfs_completed = NULL;
832 mddev->sysfs_degraded = NULL;
833 }
834 }
835 mddev->sysfs_active = 0;
836 } else
837 mutex_unlock(&mddev->reconfig_mutex);
838
839 /* As we've dropped the mutex we need a spinlock to
840 * make sure the thread doesn't disappear
841 */
842 spin_lock(&pers_lock);
843 md_wakeup_thread(mddev->thread);
844 wake_up(&mddev->sb_wait);
845 spin_unlock(&pers_lock);
846 }
847 EXPORT_SYMBOL_GPL(mddev_unlock);
848
md_find_rdev_nr_rcu(struct mddev * mddev,int nr)849 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
850 {
851 struct md_rdev *rdev;
852
853 rdev_for_each_rcu(rdev, mddev)
854 if (rdev->desc_nr == nr)
855 return rdev;
856
857 return NULL;
858 }
859 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
860
find_rdev(struct mddev * mddev,dev_t dev)861 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
862 {
863 struct md_rdev *rdev;
864
865 rdev_for_each(rdev, mddev)
866 if (rdev->bdev->bd_dev == dev)
867 return rdev;
868
869 return NULL;
870 }
871
md_find_rdev_rcu(struct mddev * mddev,dev_t dev)872 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
873 {
874 struct md_rdev *rdev;
875
876 rdev_for_each_rcu(rdev, mddev)
877 if (rdev->bdev->bd_dev == dev)
878 return rdev;
879
880 return NULL;
881 }
882 EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
883
find_pers(int level,char * clevel)884 static struct md_personality *find_pers(int level, char *clevel)
885 {
886 struct md_personality *pers;
887 list_for_each_entry(pers, &pers_list, list) {
888 if (level != LEVEL_NONE && pers->level == level)
889 return pers;
890 if (strcmp(pers->name, clevel)==0)
891 return pers;
892 }
893 return NULL;
894 }
895
896 /* return the offset of the super block in 512byte sectors */
calc_dev_sboffset(struct md_rdev * rdev)897 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
898 {
899 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev));
900 }
901
alloc_disk_sb(struct md_rdev * rdev)902 static int alloc_disk_sb(struct md_rdev *rdev)
903 {
904 rdev->sb_page = alloc_page(GFP_KERNEL);
905 if (!rdev->sb_page)
906 return -ENOMEM;
907 return 0;
908 }
909
md_rdev_clear(struct md_rdev * rdev)910 void md_rdev_clear(struct md_rdev *rdev)
911 {
912 if (rdev->sb_page) {
913 put_page(rdev->sb_page);
914 rdev->sb_loaded = 0;
915 rdev->sb_page = NULL;
916 rdev->sb_start = 0;
917 rdev->sectors = 0;
918 }
919 if (rdev->bb_page) {
920 put_page(rdev->bb_page);
921 rdev->bb_page = NULL;
922 }
923 badblocks_exit(&rdev->badblocks);
924 }
925 EXPORT_SYMBOL_GPL(md_rdev_clear);
926
super_written(struct bio * bio)927 static void super_written(struct bio *bio)
928 {
929 struct md_rdev *rdev = bio->bi_private;
930 struct mddev *mddev = rdev->mddev;
931
932 if (bio->bi_status) {
933 pr_err("md: %s gets error=%d\n", __func__,
934 blk_status_to_errno(bio->bi_status));
935 md_error(mddev, rdev);
936 if (!test_bit(Faulty, &rdev->flags)
937 && (bio->bi_opf & MD_FAILFAST)) {
938 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
939 set_bit(LastDev, &rdev->flags);
940 }
941 } else
942 clear_bit(LastDev, &rdev->flags);
943
944 bio_put(bio);
945
946 rdev_dec_pending(rdev, mddev);
947
948 if (atomic_dec_and_test(&mddev->pending_writes))
949 wake_up(&mddev->sb_wait);
950 }
951
md_super_write(struct mddev * mddev,struct md_rdev * rdev,sector_t sector,int size,struct page * page)952 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
953 sector_t sector, int size, struct page *page)
954 {
955 /* write first size bytes of page to sector of rdev
956 * Increment mddev->pending_writes before returning
957 * and decrement it on completion, waking up sb_wait
958 * if zero is reached.
959 * If an error occurred, call md_error
960 */
961 struct bio *bio;
962
963 if (!page)
964 return;
965
966 if (test_bit(Faulty, &rdev->flags))
967 return;
968
969 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev,
970 1,
971 REQ_OP_WRITE | REQ_SYNC | REQ_IDLE | REQ_META
972 | REQ_PREFLUSH | REQ_FUA,
973 GFP_NOIO, &mddev->sync_set);
974
975 atomic_inc(&rdev->nr_pending);
976
977 bio->bi_iter.bi_sector = sector;
978 bio_add_page(bio, page, size, 0);
979 bio->bi_private = rdev;
980 bio->bi_end_io = super_written;
981
982 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
983 test_bit(FailFast, &rdev->flags) &&
984 !test_bit(LastDev, &rdev->flags))
985 bio->bi_opf |= MD_FAILFAST;
986
987 atomic_inc(&mddev->pending_writes);
988 submit_bio(bio);
989 }
990
md_super_wait(struct mddev * mddev)991 int md_super_wait(struct mddev *mddev)
992 {
993 /* wait for all superblock writes that were scheduled to complete */
994 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
995 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
996 return -EAGAIN;
997 return 0;
998 }
999
sync_page_io(struct md_rdev * rdev,sector_t sector,int size,struct page * page,blk_opf_t opf,bool metadata_op)1000 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
1001 struct page *page, blk_opf_t opf, bool metadata_op)
1002 {
1003 struct bio bio;
1004 struct bio_vec bvec;
1005
1006 if (metadata_op && rdev->meta_bdev)
1007 bio_init(&bio, rdev->meta_bdev, &bvec, 1, opf);
1008 else
1009 bio_init(&bio, rdev->bdev, &bvec, 1, opf);
1010
1011 if (metadata_op)
1012 bio.bi_iter.bi_sector = sector + rdev->sb_start;
1013 else if (rdev->mddev->reshape_position != MaxSector &&
1014 (rdev->mddev->reshape_backwards ==
1015 (sector >= rdev->mddev->reshape_position)))
1016 bio.bi_iter.bi_sector = sector + rdev->new_data_offset;
1017 else
1018 bio.bi_iter.bi_sector = sector + rdev->data_offset;
1019 bio_add_page(&bio, page, size, 0);
1020
1021 submit_bio_wait(&bio);
1022
1023 return !bio.bi_status;
1024 }
1025 EXPORT_SYMBOL_GPL(sync_page_io);
1026
read_disk_sb(struct md_rdev * rdev,int size)1027 static int read_disk_sb(struct md_rdev *rdev, int size)
1028 {
1029 if (rdev->sb_loaded)
1030 return 0;
1031
1032 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true))
1033 goto fail;
1034 rdev->sb_loaded = 1;
1035 return 0;
1036
1037 fail:
1038 pr_err("md: disabled device %pg, could not read superblock.\n",
1039 rdev->bdev);
1040 return -EINVAL;
1041 }
1042
md_uuid_equal(mdp_super_t * sb1,mdp_super_t * sb2)1043 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1044 {
1045 return sb1->set_uuid0 == sb2->set_uuid0 &&
1046 sb1->set_uuid1 == sb2->set_uuid1 &&
1047 sb1->set_uuid2 == sb2->set_uuid2 &&
1048 sb1->set_uuid3 == sb2->set_uuid3;
1049 }
1050
md_sb_equal(mdp_super_t * sb1,mdp_super_t * sb2)1051 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1052 {
1053 int ret;
1054 mdp_super_t *tmp1, *tmp2;
1055
1056 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
1057 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
1058
1059 if (!tmp1 || !tmp2) {
1060 ret = 0;
1061 goto abort;
1062 }
1063
1064 *tmp1 = *sb1;
1065 *tmp2 = *sb2;
1066
1067 /*
1068 * nr_disks is not constant
1069 */
1070 tmp1->nr_disks = 0;
1071 tmp2->nr_disks = 0;
1072
1073 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
1074 abort:
1075 kfree(tmp1);
1076 kfree(tmp2);
1077 return ret;
1078 }
1079
md_csum_fold(u32 csum)1080 static u32 md_csum_fold(u32 csum)
1081 {
1082 csum = (csum & 0xffff) + (csum >> 16);
1083 return (csum & 0xffff) + (csum >> 16);
1084 }
1085
calc_sb_csum(mdp_super_t * sb)1086 static unsigned int calc_sb_csum(mdp_super_t *sb)
1087 {
1088 u64 newcsum = 0;
1089 u32 *sb32 = (u32*)sb;
1090 int i;
1091 unsigned int disk_csum, csum;
1092
1093 disk_csum = sb->sb_csum;
1094 sb->sb_csum = 0;
1095
1096 for (i = 0; i < MD_SB_BYTES/4 ; i++)
1097 newcsum += sb32[i];
1098 csum = (newcsum & 0xffffffff) + (newcsum>>32);
1099
1100 #ifdef CONFIG_ALPHA
1101 /* This used to use csum_partial, which was wrong for several
1102 * reasons including that different results are returned on
1103 * different architectures. It isn't critical that we get exactly
1104 * the same return value as before (we always csum_fold before
1105 * testing, and that removes any differences). However as we
1106 * know that csum_partial always returned a 16bit value on
1107 * alphas, do a fold to maximise conformity to previous behaviour.
1108 */
1109 sb->sb_csum = md_csum_fold(disk_csum);
1110 #else
1111 sb->sb_csum = disk_csum;
1112 #endif
1113 return csum;
1114 }
1115
1116 /*
1117 * Handle superblock details.
1118 * We want to be able to handle multiple superblock formats
1119 * so we have a common interface to them all, and an array of
1120 * different handlers.
1121 * We rely on user-space to write the initial superblock, and support
1122 * reading and updating of superblocks.
1123 * Interface methods are:
1124 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1125 * loads and validates a superblock on dev.
1126 * if refdev != NULL, compare superblocks on both devices
1127 * Return:
1128 * 0 - dev has a superblock that is compatible with refdev
1129 * 1 - dev has a superblock that is compatible and newer than refdev
1130 * so dev should be used as the refdev in future
1131 * -EINVAL superblock incompatible or invalid
1132 * -othererror e.g. -EIO
1133 *
1134 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1135 * Verify that dev is acceptable into mddev.
1136 * The first time, mddev->raid_disks will be 0, and data from
1137 * dev should be merged in. Subsequent calls check that dev
1138 * is new enough. Return 0 or -EINVAL
1139 *
1140 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1141 * Update the superblock for rdev with data in mddev
1142 * This does not write to disc.
1143 *
1144 */
1145
1146 struct super_type {
1147 char *name;
1148 struct module *owner;
1149 int (*load_super)(struct md_rdev *rdev,
1150 struct md_rdev *refdev,
1151 int minor_version);
1152 int (*validate_super)(struct mddev *mddev,
1153 struct md_rdev *freshest,
1154 struct md_rdev *rdev);
1155 void (*sync_super)(struct mddev *mddev,
1156 struct md_rdev *rdev);
1157 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1158 sector_t num_sectors);
1159 int (*allow_new_offset)(struct md_rdev *rdev,
1160 unsigned long long new_offset);
1161 };
1162
1163 /*
1164 * Check that the given mddev has no bitmap.
1165 *
1166 * This function is called from the run method of all personalities that do not
1167 * support bitmaps. It prints an error message and returns non-zero if mddev
1168 * has a bitmap. Otherwise, it returns 0.
1169 *
1170 */
md_check_no_bitmap(struct mddev * mddev)1171 int md_check_no_bitmap(struct mddev *mddev)
1172 {
1173 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1174 return 0;
1175 pr_warn("%s: bitmaps are not supported for %s\n",
1176 mdname(mddev), mddev->pers->name);
1177 return 1;
1178 }
1179 EXPORT_SYMBOL(md_check_no_bitmap);
1180
1181 /*
1182 * load_super for 0.90.0
1183 */
super_90_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1184 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1185 {
1186 mdp_super_t *sb;
1187 int ret;
1188 bool spare_disk = true;
1189
1190 /*
1191 * Calculate the position of the superblock (512byte sectors),
1192 * it's at the end of the disk.
1193 *
1194 * It also happens to be a multiple of 4Kb.
1195 */
1196 rdev->sb_start = calc_dev_sboffset(rdev);
1197
1198 ret = read_disk_sb(rdev, MD_SB_BYTES);
1199 if (ret)
1200 return ret;
1201
1202 ret = -EINVAL;
1203
1204 sb = page_address(rdev->sb_page);
1205
1206 if (sb->md_magic != MD_SB_MAGIC) {
1207 pr_warn("md: invalid raid superblock magic on %pg\n",
1208 rdev->bdev);
1209 goto abort;
1210 }
1211
1212 if (sb->major_version != 0 ||
1213 sb->minor_version < 90 ||
1214 sb->minor_version > 91) {
1215 pr_warn("Bad version number %d.%d on %pg\n",
1216 sb->major_version, sb->minor_version, rdev->bdev);
1217 goto abort;
1218 }
1219
1220 if (sb->raid_disks <= 0)
1221 goto abort;
1222
1223 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1224 pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev);
1225 goto abort;
1226 }
1227
1228 rdev->preferred_minor = sb->md_minor;
1229 rdev->data_offset = 0;
1230 rdev->new_data_offset = 0;
1231 rdev->sb_size = MD_SB_BYTES;
1232 rdev->badblocks.shift = -1;
1233
1234 if (sb->level == LEVEL_MULTIPATH)
1235 rdev->desc_nr = -1;
1236 else
1237 rdev->desc_nr = sb->this_disk.number;
1238
1239 /* not spare disk, or LEVEL_MULTIPATH */
1240 if (sb->level == LEVEL_MULTIPATH ||
1241 (rdev->desc_nr >= 0 &&
1242 rdev->desc_nr < MD_SB_DISKS &&
1243 sb->disks[rdev->desc_nr].state &
1244 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))))
1245 spare_disk = false;
1246
1247 if (!refdev) {
1248 if (!spare_disk)
1249 ret = 1;
1250 else
1251 ret = 0;
1252 } else {
1253 __u64 ev1, ev2;
1254 mdp_super_t *refsb = page_address(refdev->sb_page);
1255 if (!md_uuid_equal(refsb, sb)) {
1256 pr_warn("md: %pg has different UUID to %pg\n",
1257 rdev->bdev, refdev->bdev);
1258 goto abort;
1259 }
1260 if (!md_sb_equal(refsb, sb)) {
1261 pr_warn("md: %pg has same UUID but different superblock to %pg\n",
1262 rdev->bdev, refdev->bdev);
1263 goto abort;
1264 }
1265 ev1 = md_event(sb);
1266 ev2 = md_event(refsb);
1267
1268 if (!spare_disk && ev1 > ev2)
1269 ret = 1;
1270 else
1271 ret = 0;
1272 }
1273 rdev->sectors = rdev->sb_start;
1274 /* Limit to 4TB as metadata cannot record more than that.
1275 * (not needed for Linear and RAID0 as metadata doesn't
1276 * record this size)
1277 */
1278 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1279 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1280
1281 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1282 /* "this cannot possibly happen" ... */
1283 ret = -EINVAL;
1284
1285 abort:
1286 return ret;
1287 }
1288
1289 /*
1290 * validate_super for 0.90.0
1291 * note: we are not using "freshest" for 0.9 superblock
1292 */
super_90_validate(struct mddev * mddev,struct md_rdev * freshest,struct md_rdev * rdev)1293 static int super_90_validate(struct mddev *mddev, struct md_rdev *freshest, struct md_rdev *rdev)
1294 {
1295 mdp_disk_t *desc;
1296 mdp_super_t *sb = page_address(rdev->sb_page);
1297 __u64 ev1 = md_event(sb);
1298
1299 rdev->raid_disk = -1;
1300 clear_bit(Faulty, &rdev->flags);
1301 clear_bit(In_sync, &rdev->flags);
1302 clear_bit(Bitmap_sync, &rdev->flags);
1303 clear_bit(WriteMostly, &rdev->flags);
1304
1305 if (mddev->raid_disks == 0) {
1306 mddev->major_version = 0;
1307 mddev->minor_version = sb->minor_version;
1308 mddev->patch_version = sb->patch_version;
1309 mddev->external = 0;
1310 mddev->chunk_sectors = sb->chunk_size >> 9;
1311 mddev->ctime = sb->ctime;
1312 mddev->utime = sb->utime;
1313 mddev->level = sb->level;
1314 mddev->clevel[0] = 0;
1315 mddev->layout = sb->layout;
1316 mddev->raid_disks = sb->raid_disks;
1317 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1318 mddev->events = ev1;
1319 mddev->bitmap_info.offset = 0;
1320 mddev->bitmap_info.space = 0;
1321 /* bitmap can use 60 K after the 4K superblocks */
1322 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1323 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1324 mddev->reshape_backwards = 0;
1325
1326 if (mddev->minor_version >= 91) {
1327 mddev->reshape_position = sb->reshape_position;
1328 mddev->delta_disks = sb->delta_disks;
1329 mddev->new_level = sb->new_level;
1330 mddev->new_layout = sb->new_layout;
1331 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1332 if (mddev->delta_disks < 0)
1333 mddev->reshape_backwards = 1;
1334 } else {
1335 mddev->reshape_position = MaxSector;
1336 mddev->delta_disks = 0;
1337 mddev->new_level = mddev->level;
1338 mddev->new_layout = mddev->layout;
1339 mddev->new_chunk_sectors = mddev->chunk_sectors;
1340 }
1341 if (mddev->level == 0)
1342 mddev->layout = -1;
1343
1344 if (sb->state & (1<<MD_SB_CLEAN))
1345 mddev->recovery_cp = MaxSector;
1346 else {
1347 if (sb->events_hi == sb->cp_events_hi &&
1348 sb->events_lo == sb->cp_events_lo) {
1349 mddev->recovery_cp = sb->recovery_cp;
1350 } else
1351 mddev->recovery_cp = 0;
1352 }
1353
1354 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1355 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1356 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1357 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1358
1359 mddev->max_disks = MD_SB_DISKS;
1360
1361 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1362 mddev->bitmap_info.file == NULL) {
1363 mddev->bitmap_info.offset =
1364 mddev->bitmap_info.default_offset;
1365 mddev->bitmap_info.space =
1366 mddev->bitmap_info.default_space;
1367 }
1368
1369 } else if (mddev->pers == NULL) {
1370 /* Insist on good event counter while assembling, except
1371 * for spares (which don't need an event count) */
1372 ++ev1;
1373 if (sb->disks[rdev->desc_nr].state & (
1374 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1375 if (ev1 < mddev->events)
1376 return -EINVAL;
1377 } else if (mddev->bitmap) {
1378 /* if adding to array with a bitmap, then we can accept an
1379 * older device ... but not too old.
1380 */
1381 if (ev1 < mddev->bitmap->events_cleared)
1382 return 0;
1383 if (ev1 < mddev->events)
1384 set_bit(Bitmap_sync, &rdev->flags);
1385 } else {
1386 if (ev1 < mddev->events)
1387 /* just a hot-add of a new device, leave raid_disk at -1 */
1388 return 0;
1389 }
1390
1391 if (mddev->level != LEVEL_MULTIPATH) {
1392 desc = sb->disks + rdev->desc_nr;
1393
1394 if (desc->state & (1<<MD_DISK_FAULTY))
1395 set_bit(Faulty, &rdev->flags);
1396 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1397 desc->raid_disk < mddev->raid_disks */) {
1398 set_bit(In_sync, &rdev->flags);
1399 rdev->raid_disk = desc->raid_disk;
1400 rdev->saved_raid_disk = desc->raid_disk;
1401 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1402 /* active but not in sync implies recovery up to
1403 * reshape position. We don't know exactly where
1404 * that is, so set to zero for now */
1405 if (mddev->minor_version >= 91) {
1406 rdev->recovery_offset = 0;
1407 rdev->raid_disk = desc->raid_disk;
1408 }
1409 }
1410 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1411 set_bit(WriteMostly, &rdev->flags);
1412 if (desc->state & (1<<MD_DISK_FAILFAST))
1413 set_bit(FailFast, &rdev->flags);
1414 } else /* MULTIPATH are always insync */
1415 set_bit(In_sync, &rdev->flags);
1416 return 0;
1417 }
1418
1419 /*
1420 * sync_super for 0.90.0
1421 */
super_90_sync(struct mddev * mddev,struct md_rdev * rdev)1422 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1423 {
1424 mdp_super_t *sb;
1425 struct md_rdev *rdev2;
1426 int next_spare = mddev->raid_disks;
1427
1428 /* make rdev->sb match mddev data..
1429 *
1430 * 1/ zero out disks
1431 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1432 * 3/ any empty disks < next_spare become removed
1433 *
1434 * disks[0] gets initialised to REMOVED because
1435 * we cannot be sure from other fields if it has
1436 * been initialised or not.
1437 */
1438 int i;
1439 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1440
1441 rdev->sb_size = MD_SB_BYTES;
1442
1443 sb = page_address(rdev->sb_page);
1444
1445 memset(sb, 0, sizeof(*sb));
1446
1447 sb->md_magic = MD_SB_MAGIC;
1448 sb->major_version = mddev->major_version;
1449 sb->patch_version = mddev->patch_version;
1450 sb->gvalid_words = 0; /* ignored */
1451 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1452 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1453 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1454 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1455
1456 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1457 sb->level = mddev->level;
1458 sb->size = mddev->dev_sectors / 2;
1459 sb->raid_disks = mddev->raid_disks;
1460 sb->md_minor = mddev->md_minor;
1461 sb->not_persistent = 0;
1462 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1463 sb->state = 0;
1464 sb->events_hi = (mddev->events>>32);
1465 sb->events_lo = (u32)mddev->events;
1466
1467 if (mddev->reshape_position == MaxSector)
1468 sb->minor_version = 90;
1469 else {
1470 sb->minor_version = 91;
1471 sb->reshape_position = mddev->reshape_position;
1472 sb->new_level = mddev->new_level;
1473 sb->delta_disks = mddev->delta_disks;
1474 sb->new_layout = mddev->new_layout;
1475 sb->new_chunk = mddev->new_chunk_sectors << 9;
1476 }
1477 mddev->minor_version = sb->minor_version;
1478 if (mddev->in_sync)
1479 {
1480 sb->recovery_cp = mddev->recovery_cp;
1481 sb->cp_events_hi = (mddev->events>>32);
1482 sb->cp_events_lo = (u32)mddev->events;
1483 if (mddev->recovery_cp == MaxSector)
1484 sb->state = (1<< MD_SB_CLEAN);
1485 } else
1486 sb->recovery_cp = 0;
1487
1488 sb->layout = mddev->layout;
1489 sb->chunk_size = mddev->chunk_sectors << 9;
1490
1491 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1492 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1493
1494 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1495 rdev_for_each(rdev2, mddev) {
1496 mdp_disk_t *d;
1497 int desc_nr;
1498 int is_active = test_bit(In_sync, &rdev2->flags);
1499
1500 if (rdev2->raid_disk >= 0 &&
1501 sb->minor_version >= 91)
1502 /* we have nowhere to store the recovery_offset,
1503 * but if it is not below the reshape_position,
1504 * we can piggy-back on that.
1505 */
1506 is_active = 1;
1507 if (rdev2->raid_disk < 0 ||
1508 test_bit(Faulty, &rdev2->flags))
1509 is_active = 0;
1510 if (is_active)
1511 desc_nr = rdev2->raid_disk;
1512 else
1513 desc_nr = next_spare++;
1514 rdev2->desc_nr = desc_nr;
1515 d = &sb->disks[rdev2->desc_nr];
1516 nr_disks++;
1517 d->number = rdev2->desc_nr;
1518 d->major = MAJOR(rdev2->bdev->bd_dev);
1519 d->minor = MINOR(rdev2->bdev->bd_dev);
1520 if (is_active)
1521 d->raid_disk = rdev2->raid_disk;
1522 else
1523 d->raid_disk = rdev2->desc_nr; /* compatibility */
1524 if (test_bit(Faulty, &rdev2->flags))
1525 d->state = (1<<MD_DISK_FAULTY);
1526 else if (is_active) {
1527 d->state = (1<<MD_DISK_ACTIVE);
1528 if (test_bit(In_sync, &rdev2->flags))
1529 d->state |= (1<<MD_DISK_SYNC);
1530 active++;
1531 working++;
1532 } else {
1533 d->state = 0;
1534 spare++;
1535 working++;
1536 }
1537 if (test_bit(WriteMostly, &rdev2->flags))
1538 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1539 if (test_bit(FailFast, &rdev2->flags))
1540 d->state |= (1<<MD_DISK_FAILFAST);
1541 }
1542 /* now set the "removed" and "faulty" bits on any missing devices */
1543 for (i=0 ; i < mddev->raid_disks ; i++) {
1544 mdp_disk_t *d = &sb->disks[i];
1545 if (d->state == 0 && d->number == 0) {
1546 d->number = i;
1547 d->raid_disk = i;
1548 d->state = (1<<MD_DISK_REMOVED);
1549 d->state |= (1<<MD_DISK_FAULTY);
1550 failed++;
1551 }
1552 }
1553 sb->nr_disks = nr_disks;
1554 sb->active_disks = active;
1555 sb->working_disks = working;
1556 sb->failed_disks = failed;
1557 sb->spare_disks = spare;
1558
1559 sb->this_disk = sb->disks[rdev->desc_nr];
1560 sb->sb_csum = calc_sb_csum(sb);
1561 }
1562
1563 /*
1564 * rdev_size_change for 0.90.0
1565 */
1566 static unsigned long long
super_90_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1567 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1568 {
1569 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1570 return 0; /* component must fit device */
1571 if (rdev->mddev->bitmap_info.offset)
1572 return 0; /* can't move bitmap */
1573 rdev->sb_start = calc_dev_sboffset(rdev);
1574 if (!num_sectors || num_sectors > rdev->sb_start)
1575 num_sectors = rdev->sb_start;
1576 /* Limit to 4TB as metadata cannot record more than that.
1577 * 4TB == 2^32 KB, or 2*2^32 sectors.
1578 */
1579 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1580 num_sectors = (sector_t)(2ULL << 32) - 2;
1581 do {
1582 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1583 rdev->sb_page);
1584 } while (md_super_wait(rdev->mddev) < 0);
1585 return num_sectors;
1586 }
1587
1588 static int
super_90_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1589 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1590 {
1591 /* non-zero offset changes not possible with v0.90 */
1592 return new_offset == 0;
1593 }
1594
1595 /*
1596 * version 1 superblock
1597 */
1598
calc_sb_1_csum(struct mdp_superblock_1 * sb)1599 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1600 {
1601 __le32 disk_csum;
1602 u32 csum;
1603 unsigned long long newcsum;
1604 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1605 __le32 *isuper = (__le32*)sb;
1606
1607 disk_csum = sb->sb_csum;
1608 sb->sb_csum = 0;
1609 newcsum = 0;
1610 for (; size >= 4; size -= 4)
1611 newcsum += le32_to_cpu(*isuper++);
1612
1613 if (size == 2)
1614 newcsum += le16_to_cpu(*(__le16*) isuper);
1615
1616 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1617 sb->sb_csum = disk_csum;
1618 return cpu_to_le32(csum);
1619 }
1620
super_1_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1621 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1622 {
1623 struct mdp_superblock_1 *sb;
1624 int ret;
1625 sector_t sb_start;
1626 sector_t sectors;
1627 int bmask;
1628 bool spare_disk = true;
1629
1630 /*
1631 * Calculate the position of the superblock in 512byte sectors.
1632 * It is always aligned to a 4K boundary and
1633 * depeding on minor_version, it can be:
1634 * 0: At least 8K, but less than 12K, from end of device
1635 * 1: At start of device
1636 * 2: 4K from start of device.
1637 */
1638 switch(minor_version) {
1639 case 0:
1640 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2;
1641 sb_start &= ~(sector_t)(4*2-1);
1642 break;
1643 case 1:
1644 sb_start = 0;
1645 break;
1646 case 2:
1647 sb_start = 8;
1648 break;
1649 default:
1650 return -EINVAL;
1651 }
1652 rdev->sb_start = sb_start;
1653
1654 /* superblock is rarely larger than 1K, but it can be larger,
1655 * and it is safe to read 4k, so we do that
1656 */
1657 ret = read_disk_sb(rdev, 4096);
1658 if (ret) return ret;
1659
1660 sb = page_address(rdev->sb_page);
1661
1662 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1663 sb->major_version != cpu_to_le32(1) ||
1664 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1665 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1666 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1667 return -EINVAL;
1668
1669 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1670 pr_warn("md: invalid superblock checksum on %pg\n",
1671 rdev->bdev);
1672 return -EINVAL;
1673 }
1674 if (le64_to_cpu(sb->data_size) < 10) {
1675 pr_warn("md: data_size too small on %pg\n",
1676 rdev->bdev);
1677 return -EINVAL;
1678 }
1679 if (sb->pad0 ||
1680 sb->pad3[0] ||
1681 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1682 /* Some padding is non-zero, might be a new feature */
1683 return -EINVAL;
1684
1685 rdev->preferred_minor = 0xffff;
1686 rdev->data_offset = le64_to_cpu(sb->data_offset);
1687 rdev->new_data_offset = rdev->data_offset;
1688 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1689 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1690 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1691 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1692
1693 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1694 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1695 if (rdev->sb_size & bmask)
1696 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1697
1698 if (minor_version
1699 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1700 return -EINVAL;
1701 if (minor_version
1702 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1703 return -EINVAL;
1704
1705 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1706 rdev->desc_nr = -1;
1707 else
1708 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1709
1710 if (!rdev->bb_page) {
1711 rdev->bb_page = alloc_page(GFP_KERNEL);
1712 if (!rdev->bb_page)
1713 return -ENOMEM;
1714 }
1715 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1716 rdev->badblocks.count == 0) {
1717 /* need to load the bad block list.
1718 * Currently we limit it to one page.
1719 */
1720 s32 offset;
1721 sector_t bb_sector;
1722 __le64 *bbp;
1723 int i;
1724 int sectors = le16_to_cpu(sb->bblog_size);
1725 if (sectors > (PAGE_SIZE / 512))
1726 return -EINVAL;
1727 offset = le32_to_cpu(sb->bblog_offset);
1728 if (offset == 0)
1729 return -EINVAL;
1730 bb_sector = (long long)offset;
1731 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1732 rdev->bb_page, REQ_OP_READ, true))
1733 return -EIO;
1734 bbp = (__le64 *)page_address(rdev->bb_page);
1735 rdev->badblocks.shift = sb->bblog_shift;
1736 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1737 u64 bb = le64_to_cpu(*bbp);
1738 int count = bb & (0x3ff);
1739 u64 sector = bb >> 10;
1740 sector <<= sb->bblog_shift;
1741 count <<= sb->bblog_shift;
1742 if (bb + 1 == 0)
1743 break;
1744 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1745 return -EINVAL;
1746 }
1747 } else if (sb->bblog_offset != 0)
1748 rdev->badblocks.shift = 0;
1749
1750 if ((le32_to_cpu(sb->feature_map) &
1751 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1752 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1753 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1754 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1755 }
1756
1757 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
1758 sb->level != 0)
1759 return -EINVAL;
1760
1761 /* not spare disk, or LEVEL_MULTIPATH */
1762 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) ||
1763 (rdev->desc_nr >= 0 &&
1764 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1765 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1766 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)))
1767 spare_disk = false;
1768
1769 if (!refdev) {
1770 if (!spare_disk)
1771 ret = 1;
1772 else
1773 ret = 0;
1774 } else {
1775 __u64 ev1, ev2;
1776 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1777
1778 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1779 sb->level != refsb->level ||
1780 sb->layout != refsb->layout ||
1781 sb->chunksize != refsb->chunksize) {
1782 pr_warn("md: %pg has strangely different superblock to %pg\n",
1783 rdev->bdev,
1784 refdev->bdev);
1785 return -EINVAL;
1786 }
1787 ev1 = le64_to_cpu(sb->events);
1788 ev2 = le64_to_cpu(refsb->events);
1789
1790 if (!spare_disk && ev1 > ev2)
1791 ret = 1;
1792 else
1793 ret = 0;
1794 }
1795 if (minor_version)
1796 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
1797 else
1798 sectors = rdev->sb_start;
1799 if (sectors < le64_to_cpu(sb->data_size))
1800 return -EINVAL;
1801 rdev->sectors = le64_to_cpu(sb->data_size);
1802 return ret;
1803 }
1804
super_1_validate(struct mddev * mddev,struct md_rdev * freshest,struct md_rdev * rdev)1805 static int super_1_validate(struct mddev *mddev, struct md_rdev *freshest, struct md_rdev *rdev)
1806 {
1807 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1808 __u64 ev1 = le64_to_cpu(sb->events);
1809
1810 rdev->raid_disk = -1;
1811 clear_bit(Faulty, &rdev->flags);
1812 clear_bit(In_sync, &rdev->flags);
1813 clear_bit(Bitmap_sync, &rdev->flags);
1814 clear_bit(WriteMostly, &rdev->flags);
1815
1816 if (mddev->raid_disks == 0) {
1817 mddev->major_version = 1;
1818 mddev->patch_version = 0;
1819 mddev->external = 0;
1820 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1821 mddev->ctime = le64_to_cpu(sb->ctime);
1822 mddev->utime = le64_to_cpu(sb->utime);
1823 mddev->level = le32_to_cpu(sb->level);
1824 mddev->clevel[0] = 0;
1825 mddev->layout = le32_to_cpu(sb->layout);
1826 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1827 mddev->dev_sectors = le64_to_cpu(sb->size);
1828 mddev->events = ev1;
1829 mddev->bitmap_info.offset = 0;
1830 mddev->bitmap_info.space = 0;
1831 /* Default location for bitmap is 1K after superblock
1832 * using 3K - total of 4K
1833 */
1834 mddev->bitmap_info.default_offset = 1024 >> 9;
1835 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1836 mddev->reshape_backwards = 0;
1837
1838 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1839 memcpy(mddev->uuid, sb->set_uuid, 16);
1840
1841 mddev->max_disks = (4096-256)/2;
1842
1843 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1844 mddev->bitmap_info.file == NULL) {
1845 mddev->bitmap_info.offset =
1846 (__s32)le32_to_cpu(sb->bitmap_offset);
1847 /* Metadata doesn't record how much space is available.
1848 * For 1.0, we assume we can use up to the superblock
1849 * if before, else to 4K beyond superblock.
1850 * For others, assume no change is possible.
1851 */
1852 if (mddev->minor_version > 0)
1853 mddev->bitmap_info.space = 0;
1854 else if (mddev->bitmap_info.offset > 0)
1855 mddev->bitmap_info.space =
1856 8 - mddev->bitmap_info.offset;
1857 else
1858 mddev->bitmap_info.space =
1859 -mddev->bitmap_info.offset;
1860 }
1861
1862 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1863 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1864 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1865 mddev->new_level = le32_to_cpu(sb->new_level);
1866 mddev->new_layout = le32_to_cpu(sb->new_layout);
1867 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1868 if (mddev->delta_disks < 0 ||
1869 (mddev->delta_disks == 0 &&
1870 (le32_to_cpu(sb->feature_map)
1871 & MD_FEATURE_RESHAPE_BACKWARDS)))
1872 mddev->reshape_backwards = 1;
1873 } else {
1874 mddev->reshape_position = MaxSector;
1875 mddev->delta_disks = 0;
1876 mddev->new_level = mddev->level;
1877 mddev->new_layout = mddev->layout;
1878 mddev->new_chunk_sectors = mddev->chunk_sectors;
1879 }
1880
1881 if (mddev->level == 0 &&
1882 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
1883 mddev->layout = -1;
1884
1885 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1886 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1887
1888 if (le32_to_cpu(sb->feature_map) &
1889 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1890 if (le32_to_cpu(sb->feature_map) &
1891 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1892 return -EINVAL;
1893 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1894 (le32_to_cpu(sb->feature_map) &
1895 MD_FEATURE_MULTIPLE_PPLS))
1896 return -EINVAL;
1897 set_bit(MD_HAS_PPL, &mddev->flags);
1898 }
1899 } else if (mddev->pers == NULL) {
1900 /* Insist of good event counter while assembling, except for
1901 * spares (which don't need an event count).
1902 * Similar to mdadm, we allow event counter difference of 1
1903 * from the freshest device.
1904 */
1905 if (rdev->desc_nr >= 0 &&
1906 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1907 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1908 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1909 if (ev1 + 1 < mddev->events)
1910 return -EINVAL;
1911 } else if (mddev->bitmap) {
1912 /* If adding to array with a bitmap, then we can accept an
1913 * older device, but not too old.
1914 */
1915 if (ev1 < mddev->bitmap->events_cleared)
1916 return 0;
1917 if (ev1 < mddev->events)
1918 set_bit(Bitmap_sync, &rdev->flags);
1919 } else {
1920 if (ev1 < mddev->events)
1921 /* just a hot-add of a new device, leave raid_disk at -1 */
1922 return 0;
1923 }
1924 if (mddev->level != LEVEL_MULTIPATH) {
1925 int role;
1926 if (rdev->desc_nr < 0 ||
1927 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1928 role = MD_DISK_ROLE_SPARE;
1929 rdev->desc_nr = -1;
1930 } else if (mddev->pers == NULL && freshest && ev1 < mddev->events) {
1931 /*
1932 * If we are assembling, and our event counter is smaller than the
1933 * highest event counter, we cannot trust our superblock about the role.
1934 * It could happen that our rdev was marked as Faulty, and all other
1935 * superblocks were updated with +1 event counter.
1936 * Then, before the next superblock update, which typically happens when
1937 * remove_and_add_spares() removes the device from the array, there was
1938 * a crash or reboot.
1939 * If we allow current rdev without consulting the freshest superblock,
1940 * we could cause data corruption.
1941 * Note that in this case our event counter is smaller by 1 than the
1942 * highest, otherwise, this rdev would not be allowed into array;
1943 * both kernel and mdadm allow event counter difference of 1.
1944 */
1945 struct mdp_superblock_1 *freshest_sb = page_address(freshest->sb_page);
1946 u32 freshest_max_dev = le32_to_cpu(freshest_sb->max_dev);
1947
1948 if (rdev->desc_nr >= freshest_max_dev) {
1949 /* this is unexpected, better not proceed */
1950 pr_warn("md: %s: rdev[%pg]: desc_nr(%d) >= freshest(%pg)->sb->max_dev(%u)\n",
1951 mdname(mddev), rdev->bdev, rdev->desc_nr,
1952 freshest->bdev, freshest_max_dev);
1953 return -EUCLEAN;
1954 }
1955
1956 role = le16_to_cpu(freshest_sb->dev_roles[rdev->desc_nr]);
1957 pr_debug("md: %s: rdev[%pg]: role=%d(0x%x) according to freshest %pg\n",
1958 mdname(mddev), rdev->bdev, role, role, freshest->bdev);
1959 } else {
1960 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1961 }
1962 switch(role) {
1963 case MD_DISK_ROLE_SPARE: /* spare */
1964 break;
1965 case MD_DISK_ROLE_FAULTY: /* faulty */
1966 set_bit(Faulty, &rdev->flags);
1967 break;
1968 case MD_DISK_ROLE_JOURNAL: /* journal device */
1969 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1970 /* journal device without journal feature */
1971 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1972 return -EINVAL;
1973 }
1974 set_bit(Journal, &rdev->flags);
1975 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1976 rdev->raid_disk = 0;
1977 break;
1978 default:
1979 rdev->saved_raid_disk = role;
1980 if ((le32_to_cpu(sb->feature_map) &
1981 MD_FEATURE_RECOVERY_OFFSET)) {
1982 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1983 if (!(le32_to_cpu(sb->feature_map) &
1984 MD_FEATURE_RECOVERY_BITMAP))
1985 rdev->saved_raid_disk = -1;
1986 } else {
1987 /*
1988 * If the array is FROZEN, then the device can't
1989 * be in_sync with rest of array.
1990 */
1991 if (!test_bit(MD_RECOVERY_FROZEN,
1992 &mddev->recovery))
1993 set_bit(In_sync, &rdev->flags);
1994 }
1995 rdev->raid_disk = role;
1996 break;
1997 }
1998 if (sb->devflags & WriteMostly1)
1999 set_bit(WriteMostly, &rdev->flags);
2000 if (sb->devflags & FailFast1)
2001 set_bit(FailFast, &rdev->flags);
2002 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
2003 set_bit(Replacement, &rdev->flags);
2004 } else /* MULTIPATH are always insync */
2005 set_bit(In_sync, &rdev->flags);
2006
2007 return 0;
2008 }
2009
super_1_sync(struct mddev * mddev,struct md_rdev * rdev)2010 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
2011 {
2012 struct mdp_superblock_1 *sb;
2013 struct md_rdev *rdev2;
2014 int max_dev, i;
2015 /* make rdev->sb match mddev and rdev data. */
2016
2017 sb = page_address(rdev->sb_page);
2018
2019 sb->feature_map = 0;
2020 sb->pad0 = 0;
2021 sb->recovery_offset = cpu_to_le64(0);
2022 memset(sb->pad3, 0, sizeof(sb->pad3));
2023
2024 sb->utime = cpu_to_le64((__u64)mddev->utime);
2025 sb->events = cpu_to_le64(mddev->events);
2026 if (mddev->in_sync)
2027 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
2028 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
2029 sb->resync_offset = cpu_to_le64(MaxSector);
2030 else
2031 sb->resync_offset = cpu_to_le64(0);
2032
2033 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
2034
2035 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
2036 sb->size = cpu_to_le64(mddev->dev_sectors);
2037 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
2038 sb->level = cpu_to_le32(mddev->level);
2039 sb->layout = cpu_to_le32(mddev->layout);
2040 if (test_bit(FailFast, &rdev->flags))
2041 sb->devflags |= FailFast1;
2042 else
2043 sb->devflags &= ~FailFast1;
2044
2045 if (test_bit(WriteMostly, &rdev->flags))
2046 sb->devflags |= WriteMostly1;
2047 else
2048 sb->devflags &= ~WriteMostly1;
2049 sb->data_offset = cpu_to_le64(rdev->data_offset);
2050 sb->data_size = cpu_to_le64(rdev->sectors);
2051
2052 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
2053 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
2054 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
2055 }
2056
2057 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
2058 !test_bit(In_sync, &rdev->flags)) {
2059 sb->feature_map |=
2060 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
2061 sb->recovery_offset =
2062 cpu_to_le64(rdev->recovery_offset);
2063 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
2064 sb->feature_map |=
2065 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
2066 }
2067 /* Note: recovery_offset and journal_tail share space */
2068 if (test_bit(Journal, &rdev->flags))
2069 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
2070 if (test_bit(Replacement, &rdev->flags))
2071 sb->feature_map |=
2072 cpu_to_le32(MD_FEATURE_REPLACEMENT);
2073
2074 if (mddev->reshape_position != MaxSector) {
2075 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
2076 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2077 sb->new_layout = cpu_to_le32(mddev->new_layout);
2078 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2079 sb->new_level = cpu_to_le32(mddev->new_level);
2080 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
2081 if (mddev->delta_disks == 0 &&
2082 mddev->reshape_backwards)
2083 sb->feature_map
2084 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
2085 if (rdev->new_data_offset != rdev->data_offset) {
2086 sb->feature_map
2087 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
2088 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
2089 - rdev->data_offset));
2090 }
2091 }
2092
2093 if (mddev_is_clustered(mddev))
2094 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
2095
2096 if (rdev->badblocks.count == 0)
2097 /* Nothing to do for bad blocks*/ ;
2098 else if (sb->bblog_offset == 0)
2099 /* Cannot record bad blocks on this device */
2100 md_error(mddev, rdev);
2101 else {
2102 struct badblocks *bb = &rdev->badblocks;
2103 __le64 *bbp = (__le64 *)page_address(rdev->bb_page);
2104 u64 *p = bb->page;
2105 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
2106 if (bb->changed) {
2107 unsigned seq;
2108
2109 retry:
2110 seq = read_seqbegin(&bb->lock);
2111
2112 memset(bbp, 0xff, PAGE_SIZE);
2113
2114 for (i = 0 ; i < bb->count ; i++) {
2115 u64 internal_bb = p[i];
2116 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
2117 | BB_LEN(internal_bb));
2118 bbp[i] = cpu_to_le64(store_bb);
2119 }
2120 bb->changed = 0;
2121 if (read_seqretry(&bb->lock, seq))
2122 goto retry;
2123
2124 bb->sector = (rdev->sb_start +
2125 (int)le32_to_cpu(sb->bblog_offset));
2126 bb->size = le16_to_cpu(sb->bblog_size);
2127 }
2128 }
2129
2130 max_dev = 0;
2131 rdev_for_each(rdev2, mddev)
2132 if (rdev2->desc_nr+1 > max_dev)
2133 max_dev = rdev2->desc_nr+1;
2134
2135 if (max_dev > le32_to_cpu(sb->max_dev)) {
2136 int bmask;
2137 sb->max_dev = cpu_to_le32(max_dev);
2138 rdev->sb_size = max_dev * 2 + 256;
2139 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
2140 if (rdev->sb_size & bmask)
2141 rdev->sb_size = (rdev->sb_size | bmask) + 1;
2142 } else
2143 max_dev = le32_to_cpu(sb->max_dev);
2144
2145 for (i=0; i<max_dev;i++)
2146 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2147
2148 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
2149 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
2150
2151 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
2152 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
2153 sb->feature_map |=
2154 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
2155 else
2156 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
2157 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
2158 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
2159 }
2160
2161 rdev_for_each(rdev2, mddev) {
2162 i = rdev2->desc_nr;
2163 if (test_bit(Faulty, &rdev2->flags))
2164 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
2165 else if (test_bit(In_sync, &rdev2->flags))
2166 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2167 else if (test_bit(Journal, &rdev2->flags))
2168 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
2169 else if (rdev2->raid_disk >= 0)
2170 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2171 else
2172 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2173 }
2174
2175 sb->sb_csum = calc_sb_1_csum(sb);
2176 }
2177
super_1_choose_bm_space(sector_t dev_size)2178 static sector_t super_1_choose_bm_space(sector_t dev_size)
2179 {
2180 sector_t bm_space;
2181
2182 /* if the device is bigger than 8Gig, save 64k for bitmap
2183 * usage, if bigger than 200Gig, save 128k
2184 */
2185 if (dev_size < 64*2)
2186 bm_space = 0;
2187 else if (dev_size - 64*2 >= 200*1024*1024*2)
2188 bm_space = 128*2;
2189 else if (dev_size - 4*2 > 8*1024*1024*2)
2190 bm_space = 64*2;
2191 else
2192 bm_space = 4*2;
2193 return bm_space;
2194 }
2195
2196 static unsigned long long
super_1_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)2197 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
2198 {
2199 struct mdp_superblock_1 *sb;
2200 sector_t max_sectors;
2201 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
2202 return 0; /* component must fit device */
2203 if (rdev->data_offset != rdev->new_data_offset)
2204 return 0; /* too confusing */
2205 if (rdev->sb_start < rdev->data_offset) {
2206 /* minor versions 1 and 2; superblock before data */
2207 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
2208 if (!num_sectors || num_sectors > max_sectors)
2209 num_sectors = max_sectors;
2210 } else if (rdev->mddev->bitmap_info.offset) {
2211 /* minor version 0 with bitmap we can't move */
2212 return 0;
2213 } else {
2214 /* minor version 0; superblock after data */
2215 sector_t sb_start, bm_space;
2216 sector_t dev_size = bdev_nr_sectors(rdev->bdev);
2217
2218 /* 8K is for superblock */
2219 sb_start = dev_size - 8*2;
2220 sb_start &= ~(sector_t)(4*2 - 1);
2221
2222 bm_space = super_1_choose_bm_space(dev_size);
2223
2224 /* Space that can be used to store date needs to decrease
2225 * superblock bitmap space and bad block space(4K)
2226 */
2227 max_sectors = sb_start - bm_space - 4*2;
2228
2229 if (!num_sectors || num_sectors > max_sectors)
2230 num_sectors = max_sectors;
2231 rdev->sb_start = sb_start;
2232 }
2233 sb = page_address(rdev->sb_page);
2234 sb->data_size = cpu_to_le64(num_sectors);
2235 sb->super_offset = cpu_to_le64(rdev->sb_start);
2236 sb->sb_csum = calc_sb_1_csum(sb);
2237 do {
2238 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
2239 rdev->sb_page);
2240 } while (md_super_wait(rdev->mddev) < 0);
2241 return num_sectors;
2242
2243 }
2244
2245 static int
super_1_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)2246 super_1_allow_new_offset(struct md_rdev *rdev,
2247 unsigned long long new_offset)
2248 {
2249 /* All necessary checks on new >= old have been done */
2250 struct bitmap *bitmap;
2251 if (new_offset >= rdev->data_offset)
2252 return 1;
2253
2254 /* with 1.0 metadata, there is no metadata to tread on
2255 * so we can always move back */
2256 if (rdev->mddev->minor_version == 0)
2257 return 1;
2258
2259 /* otherwise we must be sure not to step on
2260 * any metadata, so stay:
2261 * 36K beyond start of superblock
2262 * beyond end of badblocks
2263 * beyond write-intent bitmap
2264 */
2265 if (rdev->sb_start + (32+4)*2 > new_offset)
2266 return 0;
2267 bitmap = rdev->mddev->bitmap;
2268 if (bitmap && !rdev->mddev->bitmap_info.file &&
2269 rdev->sb_start + rdev->mddev->bitmap_info.offset +
2270 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2271 return 0;
2272 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2273 return 0;
2274
2275 return 1;
2276 }
2277
2278 static struct super_type super_types[] = {
2279 [0] = {
2280 .name = "0.90.0",
2281 .owner = THIS_MODULE,
2282 .load_super = super_90_load,
2283 .validate_super = super_90_validate,
2284 .sync_super = super_90_sync,
2285 .rdev_size_change = super_90_rdev_size_change,
2286 .allow_new_offset = super_90_allow_new_offset,
2287 },
2288 [1] = {
2289 .name = "md-1",
2290 .owner = THIS_MODULE,
2291 .load_super = super_1_load,
2292 .validate_super = super_1_validate,
2293 .sync_super = super_1_sync,
2294 .rdev_size_change = super_1_rdev_size_change,
2295 .allow_new_offset = super_1_allow_new_offset,
2296 },
2297 };
2298
sync_super(struct mddev * mddev,struct md_rdev * rdev)2299 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2300 {
2301 if (mddev->sync_super) {
2302 mddev->sync_super(mddev, rdev);
2303 return;
2304 }
2305
2306 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2307
2308 super_types[mddev->major_version].sync_super(mddev, rdev);
2309 }
2310
match_mddev_units(struct mddev * mddev1,struct mddev * mddev2)2311 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2312 {
2313 struct md_rdev *rdev, *rdev2;
2314
2315 rcu_read_lock();
2316 rdev_for_each_rcu(rdev, mddev1) {
2317 if (test_bit(Faulty, &rdev->flags) ||
2318 test_bit(Journal, &rdev->flags) ||
2319 rdev->raid_disk == -1)
2320 continue;
2321 rdev_for_each_rcu(rdev2, mddev2) {
2322 if (test_bit(Faulty, &rdev2->flags) ||
2323 test_bit(Journal, &rdev2->flags) ||
2324 rdev2->raid_disk == -1)
2325 continue;
2326 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) {
2327 rcu_read_unlock();
2328 return 1;
2329 }
2330 }
2331 }
2332 rcu_read_unlock();
2333 return 0;
2334 }
2335
2336 static LIST_HEAD(pending_raid_disks);
2337
2338 /*
2339 * Try to register data integrity profile for an mddev
2340 *
2341 * This is called when an array is started and after a disk has been kicked
2342 * from the array. It only succeeds if all working and active component devices
2343 * are integrity capable with matching profiles.
2344 */
md_integrity_register(struct mddev * mddev)2345 int md_integrity_register(struct mddev *mddev)
2346 {
2347 struct md_rdev *rdev, *reference = NULL;
2348
2349 if (list_empty(&mddev->disks))
2350 return 0; /* nothing to do */
2351 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2352 return 0; /* shouldn't register, or already is */
2353 rdev_for_each(rdev, mddev) {
2354 /* skip spares and non-functional disks */
2355 if (test_bit(Faulty, &rdev->flags))
2356 continue;
2357 if (rdev->raid_disk < 0)
2358 continue;
2359 if (!reference) {
2360 /* Use the first rdev as the reference */
2361 reference = rdev;
2362 continue;
2363 }
2364 /* does this rdev's profile match the reference profile? */
2365 if (blk_integrity_compare(reference->bdev->bd_disk,
2366 rdev->bdev->bd_disk) < 0)
2367 return -EINVAL;
2368 }
2369 if (!reference || !bdev_get_integrity(reference->bdev))
2370 return 0;
2371 /*
2372 * All component devices are integrity capable and have matching
2373 * profiles, register the common profile for the md device.
2374 */
2375 blk_integrity_register(mddev->gendisk,
2376 bdev_get_integrity(reference->bdev));
2377
2378 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2379 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) ||
2380 (mddev->level != 1 && mddev->level != 10 &&
2381 bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) {
2382 /*
2383 * No need to handle the failure of bioset_integrity_create,
2384 * because the function is called by md_run() -> pers->run(),
2385 * md_run calls bioset_exit -> bioset_integrity_free in case
2386 * of failure case.
2387 */
2388 pr_err("md: failed to create integrity pool for %s\n",
2389 mdname(mddev));
2390 return -EINVAL;
2391 }
2392 return 0;
2393 }
2394 EXPORT_SYMBOL(md_integrity_register);
2395
2396 /*
2397 * Attempt to add an rdev, but only if it is consistent with the current
2398 * integrity profile
2399 */
md_integrity_add_rdev(struct md_rdev * rdev,struct mddev * mddev)2400 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2401 {
2402 struct blk_integrity *bi_mddev;
2403
2404 if (!mddev->gendisk)
2405 return 0;
2406
2407 bi_mddev = blk_get_integrity(mddev->gendisk);
2408
2409 if (!bi_mddev) /* nothing to do */
2410 return 0;
2411
2412 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2413 pr_err("%s: incompatible integrity profile for %pg\n",
2414 mdname(mddev), rdev->bdev);
2415 return -ENXIO;
2416 }
2417
2418 return 0;
2419 }
2420 EXPORT_SYMBOL(md_integrity_add_rdev);
2421
rdev_read_only(struct md_rdev * rdev)2422 static bool rdev_read_only(struct md_rdev *rdev)
2423 {
2424 return bdev_read_only(rdev->bdev) ||
2425 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev));
2426 }
2427
bind_rdev_to_array(struct md_rdev * rdev,struct mddev * mddev)2428 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2429 {
2430 char b[BDEVNAME_SIZE];
2431 int err;
2432
2433 /* prevent duplicates */
2434 if (find_rdev(mddev, rdev->bdev->bd_dev))
2435 return -EEXIST;
2436
2437 if (rdev_read_only(rdev) && mddev->pers)
2438 return -EROFS;
2439
2440 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2441 if (!test_bit(Journal, &rdev->flags) &&
2442 rdev->sectors &&
2443 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2444 if (mddev->pers) {
2445 /* Cannot change size, so fail
2446 * If mddev->level <= 0, then we don't care
2447 * about aligning sizes (e.g. linear)
2448 */
2449 if (mddev->level > 0)
2450 return -ENOSPC;
2451 } else
2452 mddev->dev_sectors = rdev->sectors;
2453 }
2454
2455 /* Verify rdev->desc_nr is unique.
2456 * If it is -1, assign a free number, else
2457 * check number is not in use
2458 */
2459 rcu_read_lock();
2460 if (rdev->desc_nr < 0) {
2461 int choice = 0;
2462 if (mddev->pers)
2463 choice = mddev->raid_disks;
2464 while (md_find_rdev_nr_rcu(mddev, choice))
2465 choice++;
2466 rdev->desc_nr = choice;
2467 } else {
2468 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2469 rcu_read_unlock();
2470 return -EBUSY;
2471 }
2472 }
2473 rcu_read_unlock();
2474 if (!test_bit(Journal, &rdev->flags) &&
2475 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2476 pr_warn("md: %s: array is limited to %d devices\n",
2477 mdname(mddev), mddev->max_disks);
2478 return -EBUSY;
2479 }
2480 snprintf(b, sizeof(b), "%pg", rdev->bdev);
2481 strreplace(b, '/', '!');
2482
2483 rdev->mddev = mddev;
2484 pr_debug("md: bind<%s>\n", b);
2485
2486 if (mddev->raid_disks)
2487 mddev_create_serial_pool(mddev, rdev, false);
2488
2489 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2490 goto fail;
2491
2492 /* failure here is OK */
2493 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block");
2494 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2495 rdev->sysfs_unack_badblocks =
2496 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
2497 rdev->sysfs_badblocks =
2498 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
2499
2500 list_add_rcu(&rdev->same_set, &mddev->disks);
2501 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2502
2503 /* May as well allow recovery to be retried once */
2504 mddev->recovery_disabled++;
2505
2506 return 0;
2507
2508 fail:
2509 pr_warn("md: failed to register dev-%s for %s\n",
2510 b, mdname(mddev));
2511 return err;
2512 }
2513
rdev_delayed_delete(struct work_struct * ws)2514 static void rdev_delayed_delete(struct work_struct *ws)
2515 {
2516 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2517 kobject_del(&rdev->kobj);
2518 kobject_put(&rdev->kobj);
2519 }
2520
unbind_rdev_from_array(struct md_rdev * rdev)2521 static void unbind_rdev_from_array(struct md_rdev *rdev)
2522 {
2523 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2524 list_del_rcu(&rdev->same_set);
2525 pr_debug("md: unbind<%pg>\n", rdev->bdev);
2526 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2527 rdev->mddev = NULL;
2528 sysfs_remove_link(&rdev->kobj, "block");
2529 sysfs_put(rdev->sysfs_state);
2530 sysfs_put(rdev->sysfs_unack_badblocks);
2531 sysfs_put(rdev->sysfs_badblocks);
2532 rdev->sysfs_state = NULL;
2533 rdev->sysfs_unack_badblocks = NULL;
2534 rdev->sysfs_badblocks = NULL;
2535 rdev->badblocks.count = 0;
2536 /* We need to delay this, otherwise we can deadlock when
2537 * writing to 'remove' to "dev/state". We also need
2538 * to delay it due to rcu usage.
2539 */
2540 synchronize_rcu();
2541 INIT_WORK(&rdev->del_work, rdev_delayed_delete);
2542 kobject_get(&rdev->kobj);
2543 queue_work(md_rdev_misc_wq, &rdev->del_work);
2544 }
2545
2546 /*
2547 * prevent the device from being mounted, repartitioned or
2548 * otherwise reused by a RAID array (or any other kernel
2549 * subsystem), by bd_claiming the device.
2550 */
lock_rdev(struct md_rdev * rdev,dev_t dev,int shared)2551 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2552 {
2553 int err = 0;
2554 struct block_device *bdev;
2555
2556 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2557 shared ? (struct md_rdev *)lock_rdev : rdev);
2558 if (IS_ERR(bdev)) {
2559 pr_warn("md: could not open device unknown-block(%u,%u).\n",
2560 MAJOR(dev), MINOR(dev));
2561 return PTR_ERR(bdev);
2562 }
2563 rdev->bdev = bdev;
2564 return err;
2565 }
2566
unlock_rdev(struct md_rdev * rdev)2567 static void unlock_rdev(struct md_rdev *rdev)
2568 {
2569 struct block_device *bdev = rdev->bdev;
2570 rdev->bdev = NULL;
2571 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2572 }
2573
2574 void md_autodetect_dev(dev_t dev);
2575
export_rdev(struct md_rdev * rdev)2576 static void export_rdev(struct md_rdev *rdev)
2577 {
2578 pr_debug("md: export_rdev(%pg)\n", rdev->bdev);
2579 md_rdev_clear(rdev);
2580 #ifndef MODULE
2581 if (test_bit(AutoDetected, &rdev->flags))
2582 md_autodetect_dev(rdev->bdev->bd_dev);
2583 #endif
2584 unlock_rdev(rdev);
2585 kobject_put(&rdev->kobj);
2586 }
2587
md_kick_rdev_from_array(struct md_rdev * rdev)2588 void md_kick_rdev_from_array(struct md_rdev *rdev)
2589 {
2590 unbind_rdev_from_array(rdev);
2591 export_rdev(rdev);
2592 }
2593 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2594
export_array(struct mddev * mddev)2595 static void export_array(struct mddev *mddev)
2596 {
2597 struct md_rdev *rdev;
2598
2599 while (!list_empty(&mddev->disks)) {
2600 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2601 same_set);
2602 md_kick_rdev_from_array(rdev);
2603 }
2604 mddev->raid_disks = 0;
2605 mddev->major_version = 0;
2606 }
2607
set_in_sync(struct mddev * mddev)2608 static bool set_in_sync(struct mddev *mddev)
2609 {
2610 lockdep_assert_held(&mddev->lock);
2611 if (!mddev->in_sync) {
2612 mddev->sync_checkers++;
2613 spin_unlock(&mddev->lock);
2614 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2615 spin_lock(&mddev->lock);
2616 if (!mddev->in_sync &&
2617 percpu_ref_is_zero(&mddev->writes_pending)) {
2618 mddev->in_sync = 1;
2619 /*
2620 * Ensure ->in_sync is visible before we clear
2621 * ->sync_checkers.
2622 */
2623 smp_mb();
2624 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2625 sysfs_notify_dirent_safe(mddev->sysfs_state);
2626 }
2627 if (--mddev->sync_checkers == 0)
2628 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2629 }
2630 if (mddev->safemode == 1)
2631 mddev->safemode = 0;
2632 return mddev->in_sync;
2633 }
2634
sync_sbs(struct mddev * mddev,int nospares)2635 static void sync_sbs(struct mddev *mddev, int nospares)
2636 {
2637 /* Update each superblock (in-memory image), but
2638 * if we are allowed to, skip spares which already
2639 * have the right event counter, or have one earlier
2640 * (which would mean they aren't being marked as dirty
2641 * with the rest of the array)
2642 */
2643 struct md_rdev *rdev;
2644 rdev_for_each(rdev, mddev) {
2645 if (rdev->sb_events == mddev->events ||
2646 (nospares &&
2647 rdev->raid_disk < 0 &&
2648 rdev->sb_events+1 == mddev->events)) {
2649 /* Don't update this superblock */
2650 rdev->sb_loaded = 2;
2651 } else {
2652 sync_super(mddev, rdev);
2653 rdev->sb_loaded = 1;
2654 }
2655 }
2656 }
2657
does_sb_need_changing(struct mddev * mddev)2658 static bool does_sb_need_changing(struct mddev *mddev)
2659 {
2660 struct md_rdev *rdev = NULL, *iter;
2661 struct mdp_superblock_1 *sb;
2662 int role;
2663
2664 /* Find a good rdev */
2665 rdev_for_each(iter, mddev)
2666 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) {
2667 rdev = iter;
2668 break;
2669 }
2670
2671 /* No good device found. */
2672 if (!rdev)
2673 return false;
2674
2675 sb = page_address(rdev->sb_page);
2676 /* Check if a device has become faulty or a spare become active */
2677 rdev_for_each(rdev, mddev) {
2678 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2679 /* Device activated? */
2680 if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 &&
2681 !test_bit(Faulty, &rdev->flags))
2682 return true;
2683 /* Device turned faulty? */
2684 if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX))
2685 return true;
2686 }
2687
2688 /* Check if any mddev parameters have changed */
2689 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2690 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2691 (mddev->layout != le32_to_cpu(sb->layout)) ||
2692 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2693 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2694 return true;
2695
2696 return false;
2697 }
2698
md_update_sb(struct mddev * mddev,int force_change)2699 void md_update_sb(struct mddev *mddev, int force_change)
2700 {
2701 struct md_rdev *rdev;
2702 int sync_req;
2703 int nospares = 0;
2704 int any_badblocks_changed = 0;
2705 int ret = -1;
2706
2707 if (!md_is_rdwr(mddev)) {
2708 if (force_change)
2709 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2710 return;
2711 }
2712
2713 repeat:
2714 if (mddev_is_clustered(mddev)) {
2715 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2716 force_change = 1;
2717 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2718 nospares = 1;
2719 ret = md_cluster_ops->metadata_update_start(mddev);
2720 /* Has someone else has updated the sb */
2721 if (!does_sb_need_changing(mddev)) {
2722 if (ret == 0)
2723 md_cluster_ops->metadata_update_cancel(mddev);
2724 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2725 BIT(MD_SB_CHANGE_DEVS) |
2726 BIT(MD_SB_CHANGE_CLEAN));
2727 return;
2728 }
2729 }
2730
2731 /*
2732 * First make sure individual recovery_offsets are correct
2733 * curr_resync_completed can only be used during recovery.
2734 * During reshape/resync it might use array-addresses rather
2735 * that device addresses.
2736 */
2737 rdev_for_each(rdev, mddev) {
2738 if (rdev->raid_disk >= 0 &&
2739 mddev->delta_disks >= 0 &&
2740 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2741 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2742 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2743 !test_bit(Journal, &rdev->flags) &&
2744 !test_bit(In_sync, &rdev->flags) &&
2745 mddev->curr_resync_completed > rdev->recovery_offset)
2746 rdev->recovery_offset = mddev->curr_resync_completed;
2747
2748 }
2749 if (!mddev->persistent) {
2750 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2751 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2752 if (!mddev->external) {
2753 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2754 rdev_for_each(rdev, mddev) {
2755 if (rdev->badblocks.changed) {
2756 rdev->badblocks.changed = 0;
2757 ack_all_badblocks(&rdev->badblocks);
2758 md_error(mddev, rdev);
2759 }
2760 clear_bit(Blocked, &rdev->flags);
2761 clear_bit(BlockedBadBlocks, &rdev->flags);
2762 wake_up(&rdev->blocked_wait);
2763 }
2764 }
2765 wake_up(&mddev->sb_wait);
2766 return;
2767 }
2768
2769 spin_lock(&mddev->lock);
2770
2771 mddev->utime = ktime_get_real_seconds();
2772
2773 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2774 force_change = 1;
2775 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2776 /* just a clean<-> dirty transition, possibly leave spares alone,
2777 * though if events isn't the right even/odd, we will have to do
2778 * spares after all
2779 */
2780 nospares = 1;
2781 if (force_change)
2782 nospares = 0;
2783 if (mddev->degraded)
2784 /* If the array is degraded, then skipping spares is both
2785 * dangerous and fairly pointless.
2786 * Dangerous because a device that was removed from the array
2787 * might have a event_count that still looks up-to-date,
2788 * so it can be re-added without a resync.
2789 * Pointless because if there are any spares to skip,
2790 * then a recovery will happen and soon that array won't
2791 * be degraded any more and the spare can go back to sleep then.
2792 */
2793 nospares = 0;
2794
2795 sync_req = mddev->in_sync;
2796
2797 /* If this is just a dirty<->clean transition, and the array is clean
2798 * and 'events' is odd, we can roll back to the previous clean state */
2799 if (nospares
2800 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2801 && mddev->can_decrease_events
2802 && mddev->events != 1) {
2803 mddev->events--;
2804 mddev->can_decrease_events = 0;
2805 } else {
2806 /* otherwise we have to go forward and ... */
2807 mddev->events ++;
2808 mddev->can_decrease_events = nospares;
2809 }
2810
2811 /*
2812 * This 64-bit counter should never wrap.
2813 * Either we are in around ~1 trillion A.C., assuming
2814 * 1 reboot per second, or we have a bug...
2815 */
2816 WARN_ON(mddev->events == 0);
2817
2818 rdev_for_each(rdev, mddev) {
2819 if (rdev->badblocks.changed)
2820 any_badblocks_changed++;
2821 if (test_bit(Faulty, &rdev->flags))
2822 set_bit(FaultRecorded, &rdev->flags);
2823 }
2824
2825 sync_sbs(mddev, nospares);
2826 spin_unlock(&mddev->lock);
2827
2828 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2829 mdname(mddev), mddev->in_sync);
2830
2831 if (mddev->queue)
2832 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2833 rewrite:
2834 md_bitmap_update_sb(mddev->bitmap);
2835 rdev_for_each(rdev, mddev) {
2836 if (rdev->sb_loaded != 1)
2837 continue; /* no noise on spare devices */
2838
2839 if (!test_bit(Faulty, &rdev->flags)) {
2840 md_super_write(mddev,rdev,
2841 rdev->sb_start, rdev->sb_size,
2842 rdev->sb_page);
2843 pr_debug("md: (write) %pg's sb offset: %llu\n",
2844 rdev->bdev,
2845 (unsigned long long)rdev->sb_start);
2846 rdev->sb_events = mddev->events;
2847 if (rdev->badblocks.size) {
2848 md_super_write(mddev, rdev,
2849 rdev->badblocks.sector,
2850 rdev->badblocks.size << 9,
2851 rdev->bb_page);
2852 rdev->badblocks.size = 0;
2853 }
2854
2855 } else
2856 pr_debug("md: %pg (skipping faulty)\n",
2857 rdev->bdev);
2858
2859 if (mddev->level == LEVEL_MULTIPATH)
2860 /* only need to write one superblock... */
2861 break;
2862 }
2863 if (md_super_wait(mddev) < 0)
2864 goto rewrite;
2865 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2866
2867 if (mddev_is_clustered(mddev) && ret == 0)
2868 md_cluster_ops->metadata_update_finish(mddev);
2869
2870 if (mddev->in_sync != sync_req ||
2871 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2872 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2873 /* have to write it out again */
2874 goto repeat;
2875 wake_up(&mddev->sb_wait);
2876 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2877 sysfs_notify_dirent_safe(mddev->sysfs_completed);
2878
2879 rdev_for_each(rdev, mddev) {
2880 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2881 clear_bit(Blocked, &rdev->flags);
2882
2883 if (any_badblocks_changed)
2884 ack_all_badblocks(&rdev->badblocks);
2885 clear_bit(BlockedBadBlocks, &rdev->flags);
2886 wake_up(&rdev->blocked_wait);
2887 }
2888 }
2889 EXPORT_SYMBOL(md_update_sb);
2890
add_bound_rdev(struct md_rdev * rdev)2891 static int add_bound_rdev(struct md_rdev *rdev)
2892 {
2893 struct mddev *mddev = rdev->mddev;
2894 int err = 0;
2895 bool add_journal = test_bit(Journal, &rdev->flags);
2896
2897 if (!mddev->pers->hot_remove_disk || add_journal) {
2898 /* If there is hot_add_disk but no hot_remove_disk
2899 * then added disks for geometry changes,
2900 * and should be added immediately.
2901 */
2902 super_types[mddev->major_version].
2903 validate_super(mddev, NULL/*freshest*/, rdev);
2904 if (add_journal)
2905 mddev_suspend(mddev);
2906 err = mddev->pers->hot_add_disk(mddev, rdev);
2907 if (add_journal)
2908 mddev_resume(mddev);
2909 if (err) {
2910 md_kick_rdev_from_array(rdev);
2911 return err;
2912 }
2913 }
2914 sysfs_notify_dirent_safe(rdev->sysfs_state);
2915
2916 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2917 if (mddev->degraded)
2918 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2919 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2920 md_new_event();
2921 md_wakeup_thread(mddev->thread);
2922 return 0;
2923 }
2924
2925 /* words written to sysfs files may, or may not, be \n terminated.
2926 * We want to accept with case. For this we use cmd_match.
2927 */
cmd_match(const char * cmd,const char * str)2928 static int cmd_match(const char *cmd, const char *str)
2929 {
2930 /* See if cmd, written into a sysfs file, matches
2931 * str. They must either be the same, or cmd can
2932 * have a trailing newline
2933 */
2934 while (*cmd && *str && *cmd == *str) {
2935 cmd++;
2936 str++;
2937 }
2938 if (*cmd == '\n')
2939 cmd++;
2940 if (*str || *cmd)
2941 return 0;
2942 return 1;
2943 }
2944
2945 struct rdev_sysfs_entry {
2946 struct attribute attr;
2947 ssize_t (*show)(struct md_rdev *, char *);
2948 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2949 };
2950
2951 static ssize_t
state_show(struct md_rdev * rdev,char * page)2952 state_show(struct md_rdev *rdev, char *page)
2953 {
2954 char *sep = ",";
2955 size_t len = 0;
2956 unsigned long flags = READ_ONCE(rdev->flags);
2957
2958 if (test_bit(Faulty, &flags) ||
2959 (!test_bit(ExternalBbl, &flags) &&
2960 rdev->badblocks.unacked_exist))
2961 len += sprintf(page+len, "faulty%s", sep);
2962 if (test_bit(In_sync, &flags))
2963 len += sprintf(page+len, "in_sync%s", sep);
2964 if (test_bit(Journal, &flags))
2965 len += sprintf(page+len, "journal%s", sep);
2966 if (test_bit(WriteMostly, &flags))
2967 len += sprintf(page+len, "write_mostly%s", sep);
2968 if (test_bit(Blocked, &flags) ||
2969 (rdev->badblocks.unacked_exist
2970 && !test_bit(Faulty, &flags)))
2971 len += sprintf(page+len, "blocked%s", sep);
2972 if (!test_bit(Faulty, &flags) &&
2973 !test_bit(Journal, &flags) &&
2974 !test_bit(In_sync, &flags))
2975 len += sprintf(page+len, "spare%s", sep);
2976 if (test_bit(WriteErrorSeen, &flags))
2977 len += sprintf(page+len, "write_error%s", sep);
2978 if (test_bit(WantReplacement, &flags))
2979 len += sprintf(page+len, "want_replacement%s", sep);
2980 if (test_bit(Replacement, &flags))
2981 len += sprintf(page+len, "replacement%s", sep);
2982 if (test_bit(ExternalBbl, &flags))
2983 len += sprintf(page+len, "external_bbl%s", sep);
2984 if (test_bit(FailFast, &flags))
2985 len += sprintf(page+len, "failfast%s", sep);
2986
2987 if (len)
2988 len -= strlen(sep);
2989
2990 return len+sprintf(page+len, "\n");
2991 }
2992
2993 static ssize_t
state_store(struct md_rdev * rdev,const char * buf,size_t len)2994 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2995 {
2996 /* can write
2997 * faulty - simulates an error
2998 * remove - disconnects the device
2999 * writemostly - sets write_mostly
3000 * -writemostly - clears write_mostly
3001 * blocked - sets the Blocked flags
3002 * -blocked - clears the Blocked and possibly simulates an error
3003 * insync - sets Insync providing device isn't active
3004 * -insync - clear Insync for a device with a slot assigned,
3005 * so that it gets rebuilt based on bitmap
3006 * write_error - sets WriteErrorSeen
3007 * -write_error - clears WriteErrorSeen
3008 * {,-}failfast - set/clear FailFast
3009 */
3010
3011 struct mddev *mddev = rdev->mddev;
3012 int err = -EINVAL;
3013 bool need_update_sb = false;
3014
3015 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
3016 md_error(rdev->mddev, rdev);
3017
3018 if (test_bit(MD_BROKEN, &rdev->mddev->flags))
3019 err = -EBUSY;
3020 else
3021 err = 0;
3022 } else if (cmd_match(buf, "remove")) {
3023 if (rdev->mddev->pers) {
3024 clear_bit(Blocked, &rdev->flags);
3025 remove_and_add_spares(rdev->mddev, rdev);
3026 }
3027 if (rdev->raid_disk >= 0)
3028 err = -EBUSY;
3029 else {
3030 err = 0;
3031 if (mddev_is_clustered(mddev))
3032 err = md_cluster_ops->remove_disk(mddev, rdev);
3033
3034 if (err == 0) {
3035 md_kick_rdev_from_array(rdev);
3036 if (mddev->pers) {
3037 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3038 md_wakeup_thread(mddev->thread);
3039 }
3040 md_new_event();
3041 }
3042 }
3043 } else if (cmd_match(buf, "writemostly")) {
3044 set_bit(WriteMostly, &rdev->flags);
3045 mddev_create_serial_pool(rdev->mddev, rdev, false);
3046 need_update_sb = true;
3047 err = 0;
3048 } else if (cmd_match(buf, "-writemostly")) {
3049 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
3050 clear_bit(WriteMostly, &rdev->flags);
3051 need_update_sb = true;
3052 err = 0;
3053 } else if (cmd_match(buf, "blocked")) {
3054 set_bit(Blocked, &rdev->flags);
3055 err = 0;
3056 } else if (cmd_match(buf, "-blocked")) {
3057 if (!test_bit(Faulty, &rdev->flags) &&
3058 !test_bit(ExternalBbl, &rdev->flags) &&
3059 rdev->badblocks.unacked_exist) {
3060 /* metadata handler doesn't understand badblocks,
3061 * so we need to fail the device
3062 */
3063 md_error(rdev->mddev, rdev);
3064 }
3065 clear_bit(Blocked, &rdev->flags);
3066 clear_bit(BlockedBadBlocks, &rdev->flags);
3067 wake_up(&rdev->blocked_wait);
3068 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3069 md_wakeup_thread(rdev->mddev->thread);
3070
3071 err = 0;
3072 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
3073 set_bit(In_sync, &rdev->flags);
3074 err = 0;
3075 } else if (cmd_match(buf, "failfast")) {
3076 set_bit(FailFast, &rdev->flags);
3077 need_update_sb = true;
3078 err = 0;
3079 } else if (cmd_match(buf, "-failfast")) {
3080 clear_bit(FailFast, &rdev->flags);
3081 need_update_sb = true;
3082 err = 0;
3083 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
3084 !test_bit(Journal, &rdev->flags)) {
3085 if (rdev->mddev->pers == NULL) {
3086 clear_bit(In_sync, &rdev->flags);
3087 rdev->saved_raid_disk = rdev->raid_disk;
3088 rdev->raid_disk = -1;
3089 err = 0;
3090 }
3091 } else if (cmd_match(buf, "write_error")) {
3092 set_bit(WriteErrorSeen, &rdev->flags);
3093 err = 0;
3094 } else if (cmd_match(buf, "-write_error")) {
3095 clear_bit(WriteErrorSeen, &rdev->flags);
3096 err = 0;
3097 } else if (cmd_match(buf, "want_replacement")) {
3098 /* Any non-spare device that is not a replacement can
3099 * become want_replacement at any time, but we then need to
3100 * check if recovery is needed.
3101 */
3102 if (rdev->raid_disk >= 0 &&
3103 !test_bit(Journal, &rdev->flags) &&
3104 !test_bit(Replacement, &rdev->flags))
3105 set_bit(WantReplacement, &rdev->flags);
3106 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3107 md_wakeup_thread(rdev->mddev->thread);
3108 err = 0;
3109 } else if (cmd_match(buf, "-want_replacement")) {
3110 /* Clearing 'want_replacement' is always allowed.
3111 * Once replacements starts it is too late though.
3112 */
3113 err = 0;
3114 clear_bit(WantReplacement, &rdev->flags);
3115 } else if (cmd_match(buf, "replacement")) {
3116 /* Can only set a device as a replacement when array has not
3117 * yet been started. Once running, replacement is automatic
3118 * from spares, or by assigning 'slot'.
3119 */
3120 if (rdev->mddev->pers)
3121 err = -EBUSY;
3122 else {
3123 set_bit(Replacement, &rdev->flags);
3124 err = 0;
3125 }
3126 } else if (cmd_match(buf, "-replacement")) {
3127 /* Similarly, can only clear Replacement before start */
3128 if (rdev->mddev->pers)
3129 err = -EBUSY;
3130 else {
3131 clear_bit(Replacement, &rdev->flags);
3132 err = 0;
3133 }
3134 } else if (cmd_match(buf, "re-add")) {
3135 if (!rdev->mddev->pers)
3136 err = -EINVAL;
3137 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
3138 rdev->saved_raid_disk >= 0) {
3139 /* clear_bit is performed _after_ all the devices
3140 * have their local Faulty bit cleared. If any writes
3141 * happen in the meantime in the local node, they
3142 * will land in the local bitmap, which will be synced
3143 * by this node eventually
3144 */
3145 if (!mddev_is_clustered(rdev->mddev) ||
3146 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
3147 clear_bit(Faulty, &rdev->flags);
3148 err = add_bound_rdev(rdev);
3149 }
3150 } else
3151 err = -EBUSY;
3152 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
3153 set_bit(ExternalBbl, &rdev->flags);
3154 rdev->badblocks.shift = 0;
3155 err = 0;
3156 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
3157 clear_bit(ExternalBbl, &rdev->flags);
3158 err = 0;
3159 }
3160 if (need_update_sb)
3161 md_update_sb(mddev, 1);
3162 if (!err)
3163 sysfs_notify_dirent_safe(rdev->sysfs_state);
3164 return err ? err : len;
3165 }
3166 static struct rdev_sysfs_entry rdev_state =
3167 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
3168
3169 static ssize_t
errors_show(struct md_rdev * rdev,char * page)3170 errors_show(struct md_rdev *rdev, char *page)
3171 {
3172 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
3173 }
3174
3175 static ssize_t
errors_store(struct md_rdev * rdev,const char * buf,size_t len)3176 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
3177 {
3178 unsigned int n;
3179 int rv;
3180
3181 rv = kstrtouint(buf, 10, &n);
3182 if (rv < 0)
3183 return rv;
3184 atomic_set(&rdev->corrected_errors, n);
3185 return len;
3186 }
3187 static struct rdev_sysfs_entry rdev_errors =
3188 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
3189
3190 static ssize_t
slot_show(struct md_rdev * rdev,char * page)3191 slot_show(struct md_rdev *rdev, char *page)
3192 {
3193 if (test_bit(Journal, &rdev->flags))
3194 return sprintf(page, "journal\n");
3195 else if (rdev->raid_disk < 0)
3196 return sprintf(page, "none\n");
3197 else
3198 return sprintf(page, "%d\n", rdev->raid_disk);
3199 }
3200
3201 static ssize_t
slot_store(struct md_rdev * rdev,const char * buf,size_t len)3202 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
3203 {
3204 int slot;
3205 int err;
3206
3207 if (test_bit(Journal, &rdev->flags))
3208 return -EBUSY;
3209 if (strncmp(buf, "none", 4)==0)
3210 slot = -1;
3211 else {
3212 err = kstrtouint(buf, 10, (unsigned int *)&slot);
3213 if (err < 0)
3214 return err;
3215 if (slot < 0)
3216 /* overflow */
3217 return -ENOSPC;
3218 }
3219 if (rdev->mddev->pers && slot == -1) {
3220 /* Setting 'slot' on an active array requires also
3221 * updating the 'rd%d' link, and communicating
3222 * with the personality with ->hot_*_disk.
3223 * For now we only support removing
3224 * failed/spare devices. This normally happens automatically,
3225 * but not when the metadata is externally managed.
3226 */
3227 if (rdev->raid_disk == -1)
3228 return -EEXIST;
3229 /* personality does all needed checks */
3230 if (rdev->mddev->pers->hot_remove_disk == NULL)
3231 return -EINVAL;
3232 clear_bit(Blocked, &rdev->flags);
3233 remove_and_add_spares(rdev->mddev, rdev);
3234 if (rdev->raid_disk >= 0)
3235 return -EBUSY;
3236 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3237 md_wakeup_thread(rdev->mddev->thread);
3238 } else if (rdev->mddev->pers) {
3239 /* Activating a spare .. or possibly reactivating
3240 * if we ever get bitmaps working here.
3241 */
3242 int err;
3243
3244 if (rdev->raid_disk != -1)
3245 return -EBUSY;
3246
3247 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
3248 return -EBUSY;
3249
3250 if (rdev->mddev->pers->hot_add_disk == NULL)
3251 return -EINVAL;
3252
3253 if (slot >= rdev->mddev->raid_disks &&
3254 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3255 return -ENOSPC;
3256
3257 rdev->raid_disk = slot;
3258 if (test_bit(In_sync, &rdev->flags))
3259 rdev->saved_raid_disk = slot;
3260 else
3261 rdev->saved_raid_disk = -1;
3262 clear_bit(In_sync, &rdev->flags);
3263 clear_bit(Bitmap_sync, &rdev->flags);
3264 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
3265 if (err) {
3266 rdev->raid_disk = -1;
3267 return err;
3268 } else
3269 sysfs_notify_dirent_safe(rdev->sysfs_state);
3270 /* failure here is OK */;
3271 sysfs_link_rdev(rdev->mddev, rdev);
3272 /* don't wakeup anyone, leave that to userspace. */
3273 } else {
3274 if (slot >= rdev->mddev->raid_disks &&
3275 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3276 return -ENOSPC;
3277 rdev->raid_disk = slot;
3278 /* assume it is working */
3279 clear_bit(Faulty, &rdev->flags);
3280 clear_bit(WriteMostly, &rdev->flags);
3281 set_bit(In_sync, &rdev->flags);
3282 sysfs_notify_dirent_safe(rdev->sysfs_state);
3283 }
3284 return len;
3285 }
3286
3287 static struct rdev_sysfs_entry rdev_slot =
3288 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3289
3290 static ssize_t
offset_show(struct md_rdev * rdev,char * page)3291 offset_show(struct md_rdev *rdev, char *page)
3292 {
3293 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3294 }
3295
3296 static ssize_t
offset_store(struct md_rdev * rdev,const char * buf,size_t len)3297 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3298 {
3299 unsigned long long offset;
3300 if (kstrtoull(buf, 10, &offset) < 0)
3301 return -EINVAL;
3302 if (rdev->mddev->pers && rdev->raid_disk >= 0)
3303 return -EBUSY;
3304 if (rdev->sectors && rdev->mddev->external)
3305 /* Must set offset before size, so overlap checks
3306 * can be sane */
3307 return -EBUSY;
3308 rdev->data_offset = offset;
3309 rdev->new_data_offset = offset;
3310 return len;
3311 }
3312
3313 static struct rdev_sysfs_entry rdev_offset =
3314 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3315
new_offset_show(struct md_rdev * rdev,char * page)3316 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3317 {
3318 return sprintf(page, "%llu\n",
3319 (unsigned long long)rdev->new_data_offset);
3320 }
3321
new_offset_store(struct md_rdev * rdev,const char * buf,size_t len)3322 static ssize_t new_offset_store(struct md_rdev *rdev,
3323 const char *buf, size_t len)
3324 {
3325 unsigned long long new_offset;
3326 struct mddev *mddev = rdev->mddev;
3327
3328 if (kstrtoull(buf, 10, &new_offset) < 0)
3329 return -EINVAL;
3330
3331 if (mddev->sync_thread ||
3332 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3333 return -EBUSY;
3334 if (new_offset == rdev->data_offset)
3335 /* reset is always permitted */
3336 ;
3337 else if (new_offset > rdev->data_offset) {
3338 /* must not push array size beyond rdev_sectors */
3339 if (new_offset - rdev->data_offset
3340 + mddev->dev_sectors > rdev->sectors)
3341 return -E2BIG;
3342 }
3343 /* Metadata worries about other space details. */
3344
3345 /* decreasing the offset is inconsistent with a backwards
3346 * reshape.
3347 */
3348 if (new_offset < rdev->data_offset &&
3349 mddev->reshape_backwards)
3350 return -EINVAL;
3351 /* Increasing offset is inconsistent with forwards
3352 * reshape. reshape_direction should be set to
3353 * 'backwards' first.
3354 */
3355 if (new_offset > rdev->data_offset &&
3356 !mddev->reshape_backwards)
3357 return -EINVAL;
3358
3359 if (mddev->pers && mddev->persistent &&
3360 !super_types[mddev->major_version]
3361 .allow_new_offset(rdev, new_offset))
3362 return -E2BIG;
3363 rdev->new_data_offset = new_offset;
3364 if (new_offset > rdev->data_offset)
3365 mddev->reshape_backwards = 1;
3366 else if (new_offset < rdev->data_offset)
3367 mddev->reshape_backwards = 0;
3368
3369 return len;
3370 }
3371 static struct rdev_sysfs_entry rdev_new_offset =
3372 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3373
3374 static ssize_t
rdev_size_show(struct md_rdev * rdev,char * page)3375 rdev_size_show(struct md_rdev *rdev, char *page)
3376 {
3377 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3378 }
3379
md_rdevs_overlap(struct md_rdev * a,struct md_rdev * b)3380 static int md_rdevs_overlap(struct md_rdev *a, struct md_rdev *b)
3381 {
3382 /* check if two start/length pairs overlap */
3383 if (a->data_offset + a->sectors <= b->data_offset)
3384 return false;
3385 if (b->data_offset + b->sectors <= a->data_offset)
3386 return false;
3387 return true;
3388 }
3389
md_rdev_overlaps(struct md_rdev * rdev)3390 static bool md_rdev_overlaps(struct md_rdev *rdev)
3391 {
3392 struct mddev *mddev;
3393 struct md_rdev *rdev2;
3394
3395 spin_lock(&all_mddevs_lock);
3396 list_for_each_entry(mddev, &all_mddevs, all_mddevs) {
3397 if (test_bit(MD_DELETED, &mddev->flags))
3398 continue;
3399 rdev_for_each(rdev2, mddev) {
3400 if (rdev != rdev2 && rdev->bdev == rdev2->bdev &&
3401 md_rdevs_overlap(rdev, rdev2)) {
3402 spin_unlock(&all_mddevs_lock);
3403 return true;
3404 }
3405 }
3406 }
3407 spin_unlock(&all_mddevs_lock);
3408 return false;
3409 }
3410
strict_blocks_to_sectors(const char * buf,sector_t * sectors)3411 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3412 {
3413 unsigned long long blocks;
3414 sector_t new;
3415
3416 if (kstrtoull(buf, 10, &blocks) < 0)
3417 return -EINVAL;
3418
3419 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3420 return -EINVAL; /* sector conversion overflow */
3421
3422 new = blocks * 2;
3423 if (new != blocks * 2)
3424 return -EINVAL; /* unsigned long long to sector_t overflow */
3425
3426 *sectors = new;
3427 return 0;
3428 }
3429
3430 static ssize_t
rdev_size_store(struct md_rdev * rdev,const char * buf,size_t len)3431 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3432 {
3433 struct mddev *my_mddev = rdev->mddev;
3434 sector_t oldsectors = rdev->sectors;
3435 sector_t sectors;
3436
3437 if (test_bit(Journal, &rdev->flags))
3438 return -EBUSY;
3439 if (strict_blocks_to_sectors(buf, §ors) < 0)
3440 return -EINVAL;
3441 if (rdev->data_offset != rdev->new_data_offset)
3442 return -EINVAL; /* too confusing */
3443 if (my_mddev->pers && rdev->raid_disk >= 0) {
3444 if (my_mddev->persistent) {
3445 sectors = super_types[my_mddev->major_version].
3446 rdev_size_change(rdev, sectors);
3447 if (!sectors)
3448 return -EBUSY;
3449 } else if (!sectors)
3450 sectors = bdev_nr_sectors(rdev->bdev) -
3451 rdev->data_offset;
3452 if (!my_mddev->pers->resize)
3453 /* Cannot change size for RAID0 or Linear etc */
3454 return -EINVAL;
3455 }
3456 if (sectors < my_mddev->dev_sectors)
3457 return -EINVAL; /* component must fit device */
3458
3459 rdev->sectors = sectors;
3460
3461 /*
3462 * Check that all other rdevs with the same bdev do not overlap. This
3463 * check does not provide a hard guarantee, it just helps avoid
3464 * dangerous mistakes.
3465 */
3466 if (sectors > oldsectors && my_mddev->external &&
3467 md_rdev_overlaps(rdev)) {
3468 /*
3469 * Someone else could have slipped in a size change here, but
3470 * doing so is just silly. We put oldsectors back because we
3471 * know it is safe, and trust userspace not to race with itself.
3472 */
3473 rdev->sectors = oldsectors;
3474 return -EBUSY;
3475 }
3476 return len;
3477 }
3478
3479 static struct rdev_sysfs_entry rdev_size =
3480 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3481
recovery_start_show(struct md_rdev * rdev,char * page)3482 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3483 {
3484 unsigned long long recovery_start = rdev->recovery_offset;
3485
3486 if (test_bit(In_sync, &rdev->flags) ||
3487 recovery_start == MaxSector)
3488 return sprintf(page, "none\n");
3489
3490 return sprintf(page, "%llu\n", recovery_start);
3491 }
3492
recovery_start_store(struct md_rdev * rdev,const char * buf,size_t len)3493 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3494 {
3495 unsigned long long recovery_start;
3496
3497 if (cmd_match(buf, "none"))
3498 recovery_start = MaxSector;
3499 else if (kstrtoull(buf, 10, &recovery_start))
3500 return -EINVAL;
3501
3502 if (rdev->mddev->pers &&
3503 rdev->raid_disk >= 0)
3504 return -EBUSY;
3505
3506 rdev->recovery_offset = recovery_start;
3507 if (recovery_start == MaxSector)
3508 set_bit(In_sync, &rdev->flags);
3509 else
3510 clear_bit(In_sync, &rdev->flags);
3511 return len;
3512 }
3513
3514 static struct rdev_sysfs_entry rdev_recovery_start =
3515 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3516
3517 /* sysfs access to bad-blocks list.
3518 * We present two files.
3519 * 'bad-blocks' lists sector numbers and lengths of ranges that
3520 * are recorded as bad. The list is truncated to fit within
3521 * the one-page limit of sysfs.
3522 * Writing "sector length" to this file adds an acknowledged
3523 * bad block list.
3524 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3525 * been acknowledged. Writing to this file adds bad blocks
3526 * without acknowledging them. This is largely for testing.
3527 */
bb_show(struct md_rdev * rdev,char * page)3528 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3529 {
3530 return badblocks_show(&rdev->badblocks, page, 0);
3531 }
bb_store(struct md_rdev * rdev,const char * page,size_t len)3532 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3533 {
3534 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3535 /* Maybe that ack was all we needed */
3536 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3537 wake_up(&rdev->blocked_wait);
3538 return rv;
3539 }
3540 static struct rdev_sysfs_entry rdev_bad_blocks =
3541 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3542
ubb_show(struct md_rdev * rdev,char * page)3543 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3544 {
3545 return badblocks_show(&rdev->badblocks, page, 1);
3546 }
ubb_store(struct md_rdev * rdev,const char * page,size_t len)3547 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3548 {
3549 return badblocks_store(&rdev->badblocks, page, len, 1);
3550 }
3551 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3552 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3553
3554 static ssize_t
ppl_sector_show(struct md_rdev * rdev,char * page)3555 ppl_sector_show(struct md_rdev *rdev, char *page)
3556 {
3557 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3558 }
3559
3560 static ssize_t
ppl_sector_store(struct md_rdev * rdev,const char * buf,size_t len)3561 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3562 {
3563 unsigned long long sector;
3564
3565 if (kstrtoull(buf, 10, §or) < 0)
3566 return -EINVAL;
3567 if (sector != (sector_t)sector)
3568 return -EINVAL;
3569
3570 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3571 rdev->raid_disk >= 0)
3572 return -EBUSY;
3573
3574 if (rdev->mddev->persistent) {
3575 if (rdev->mddev->major_version == 0)
3576 return -EINVAL;
3577 if ((sector > rdev->sb_start &&
3578 sector - rdev->sb_start > S16_MAX) ||
3579 (sector < rdev->sb_start &&
3580 rdev->sb_start - sector > -S16_MIN))
3581 return -EINVAL;
3582 rdev->ppl.offset = sector - rdev->sb_start;
3583 } else if (!rdev->mddev->external) {
3584 return -EBUSY;
3585 }
3586 rdev->ppl.sector = sector;
3587 return len;
3588 }
3589
3590 static struct rdev_sysfs_entry rdev_ppl_sector =
3591 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3592
3593 static ssize_t
ppl_size_show(struct md_rdev * rdev,char * page)3594 ppl_size_show(struct md_rdev *rdev, char *page)
3595 {
3596 return sprintf(page, "%u\n", rdev->ppl.size);
3597 }
3598
3599 static ssize_t
ppl_size_store(struct md_rdev * rdev,const char * buf,size_t len)3600 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3601 {
3602 unsigned int size;
3603
3604 if (kstrtouint(buf, 10, &size) < 0)
3605 return -EINVAL;
3606
3607 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3608 rdev->raid_disk >= 0)
3609 return -EBUSY;
3610
3611 if (rdev->mddev->persistent) {
3612 if (rdev->mddev->major_version == 0)
3613 return -EINVAL;
3614 if (size > U16_MAX)
3615 return -EINVAL;
3616 } else if (!rdev->mddev->external) {
3617 return -EBUSY;
3618 }
3619 rdev->ppl.size = size;
3620 return len;
3621 }
3622
3623 static struct rdev_sysfs_entry rdev_ppl_size =
3624 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3625
3626 static struct attribute *rdev_default_attrs[] = {
3627 &rdev_state.attr,
3628 &rdev_errors.attr,
3629 &rdev_slot.attr,
3630 &rdev_offset.attr,
3631 &rdev_new_offset.attr,
3632 &rdev_size.attr,
3633 &rdev_recovery_start.attr,
3634 &rdev_bad_blocks.attr,
3635 &rdev_unack_bad_blocks.attr,
3636 &rdev_ppl_sector.attr,
3637 &rdev_ppl_size.attr,
3638 NULL,
3639 };
3640 ATTRIBUTE_GROUPS(rdev_default);
3641 static ssize_t
rdev_attr_show(struct kobject * kobj,struct attribute * attr,char * page)3642 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3643 {
3644 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3645 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3646
3647 if (!entry->show)
3648 return -EIO;
3649 if (!rdev->mddev)
3650 return -ENODEV;
3651 return entry->show(rdev, page);
3652 }
3653
3654 static ssize_t
rdev_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)3655 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3656 const char *page, size_t length)
3657 {
3658 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3659 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3660 ssize_t rv;
3661 struct mddev *mddev = rdev->mddev;
3662
3663 if (!entry->store)
3664 return -EIO;
3665 if (!capable(CAP_SYS_ADMIN))
3666 return -EACCES;
3667 rv = mddev ? mddev_lock(mddev) : -ENODEV;
3668 if (!rv) {
3669 if (rdev->mddev == NULL)
3670 rv = -ENODEV;
3671 else
3672 rv = entry->store(rdev, page, length);
3673 mddev_unlock(mddev);
3674 }
3675 return rv;
3676 }
3677
rdev_free(struct kobject * ko)3678 static void rdev_free(struct kobject *ko)
3679 {
3680 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3681 kfree(rdev);
3682 }
3683 static const struct sysfs_ops rdev_sysfs_ops = {
3684 .show = rdev_attr_show,
3685 .store = rdev_attr_store,
3686 };
3687 static struct kobj_type rdev_ktype = {
3688 .release = rdev_free,
3689 .sysfs_ops = &rdev_sysfs_ops,
3690 .default_groups = rdev_default_groups,
3691 };
3692
md_rdev_init(struct md_rdev * rdev)3693 int md_rdev_init(struct md_rdev *rdev)
3694 {
3695 rdev->desc_nr = -1;
3696 rdev->saved_raid_disk = -1;
3697 rdev->raid_disk = -1;
3698 rdev->flags = 0;
3699 rdev->data_offset = 0;
3700 rdev->new_data_offset = 0;
3701 rdev->sb_events = 0;
3702 rdev->last_read_error = 0;
3703 rdev->sb_loaded = 0;
3704 rdev->bb_page = NULL;
3705 atomic_set(&rdev->nr_pending, 0);
3706 atomic_set(&rdev->read_errors, 0);
3707 atomic_set(&rdev->corrected_errors, 0);
3708
3709 INIT_LIST_HEAD(&rdev->same_set);
3710 init_waitqueue_head(&rdev->blocked_wait);
3711
3712 /* Add space to store bad block list.
3713 * This reserves the space even on arrays where it cannot
3714 * be used - I wonder if that matters
3715 */
3716 return badblocks_init(&rdev->badblocks, 0);
3717 }
3718 EXPORT_SYMBOL_GPL(md_rdev_init);
3719 /*
3720 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3721 *
3722 * mark the device faulty if:
3723 *
3724 * - the device is nonexistent (zero size)
3725 * - the device has no valid superblock
3726 *
3727 * a faulty rdev _never_ has rdev->sb set.
3728 */
md_import_device(dev_t newdev,int super_format,int super_minor)3729 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3730 {
3731 int err;
3732 struct md_rdev *rdev;
3733 sector_t size;
3734
3735 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3736 if (!rdev)
3737 return ERR_PTR(-ENOMEM);
3738
3739 err = md_rdev_init(rdev);
3740 if (err)
3741 goto abort_free;
3742 err = alloc_disk_sb(rdev);
3743 if (err)
3744 goto abort_free;
3745
3746 err = lock_rdev(rdev, newdev, super_format == -2);
3747 if (err)
3748 goto abort_free;
3749
3750 kobject_init(&rdev->kobj, &rdev_ktype);
3751
3752 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS;
3753 if (!size) {
3754 pr_warn("md: %pg has zero or unknown size, marking faulty!\n",
3755 rdev->bdev);
3756 err = -EINVAL;
3757 goto abort_free;
3758 }
3759
3760 if (super_format >= 0) {
3761 err = super_types[super_format].
3762 load_super(rdev, NULL, super_minor);
3763 if (err == -EINVAL) {
3764 pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n",
3765 rdev->bdev,
3766 super_format, super_minor);
3767 goto abort_free;
3768 }
3769 if (err < 0) {
3770 pr_warn("md: could not read %pg's sb, not importing!\n",
3771 rdev->bdev);
3772 goto abort_free;
3773 }
3774 }
3775
3776 return rdev;
3777
3778 abort_free:
3779 if (rdev->bdev)
3780 unlock_rdev(rdev);
3781 md_rdev_clear(rdev);
3782 kfree(rdev);
3783 return ERR_PTR(err);
3784 }
3785
3786 /*
3787 * Check a full RAID array for plausibility
3788 */
3789
analyze_sbs(struct mddev * mddev)3790 static int analyze_sbs(struct mddev *mddev)
3791 {
3792 int i;
3793 struct md_rdev *rdev, *freshest, *tmp;
3794
3795 freshest = NULL;
3796 rdev_for_each_safe(rdev, tmp, mddev)
3797 switch (super_types[mddev->major_version].
3798 load_super(rdev, freshest, mddev->minor_version)) {
3799 case 1:
3800 freshest = rdev;
3801 break;
3802 case 0:
3803 break;
3804 default:
3805 pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n",
3806 rdev->bdev);
3807 md_kick_rdev_from_array(rdev);
3808 }
3809
3810 /* Cannot find a valid fresh disk */
3811 if (!freshest) {
3812 pr_warn("md: cannot find a valid disk\n");
3813 return -EINVAL;
3814 }
3815
3816 super_types[mddev->major_version].
3817 validate_super(mddev, NULL/*freshest*/, freshest);
3818
3819 i = 0;
3820 rdev_for_each_safe(rdev, tmp, mddev) {
3821 if (mddev->max_disks &&
3822 (rdev->desc_nr >= mddev->max_disks ||
3823 i > mddev->max_disks)) {
3824 pr_warn("md: %s: %pg: only %d devices permitted\n",
3825 mdname(mddev), rdev->bdev,
3826 mddev->max_disks);
3827 md_kick_rdev_from_array(rdev);
3828 continue;
3829 }
3830 if (rdev != freshest) {
3831 if (super_types[mddev->major_version].
3832 validate_super(mddev, freshest, rdev)) {
3833 pr_warn("md: kicking non-fresh %pg from array!\n",
3834 rdev->bdev);
3835 md_kick_rdev_from_array(rdev);
3836 continue;
3837 }
3838 }
3839 if (mddev->level == LEVEL_MULTIPATH) {
3840 rdev->desc_nr = i++;
3841 rdev->raid_disk = rdev->desc_nr;
3842 set_bit(In_sync, &rdev->flags);
3843 } else if (rdev->raid_disk >=
3844 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3845 !test_bit(Journal, &rdev->flags)) {
3846 rdev->raid_disk = -1;
3847 clear_bit(In_sync, &rdev->flags);
3848 }
3849 }
3850
3851 return 0;
3852 }
3853
3854 /* Read a fixed-point number.
3855 * Numbers in sysfs attributes should be in "standard" units where
3856 * possible, so time should be in seconds.
3857 * However we internally use a a much smaller unit such as
3858 * milliseconds or jiffies.
3859 * This function takes a decimal number with a possible fractional
3860 * component, and produces an integer which is the result of
3861 * multiplying that number by 10^'scale'.
3862 * all without any floating-point arithmetic.
3863 */
strict_strtoul_scaled(const char * cp,unsigned long * res,int scale)3864 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3865 {
3866 unsigned long result = 0;
3867 long decimals = -1;
3868 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3869 if (*cp == '.')
3870 decimals = 0;
3871 else if (decimals < scale) {
3872 unsigned int value;
3873 value = *cp - '0';
3874 result = result * 10 + value;
3875 if (decimals >= 0)
3876 decimals++;
3877 }
3878 cp++;
3879 }
3880 if (*cp == '\n')
3881 cp++;
3882 if (*cp)
3883 return -EINVAL;
3884 if (decimals < 0)
3885 decimals = 0;
3886 *res = result * int_pow(10, scale - decimals);
3887 return 0;
3888 }
3889
3890 static ssize_t
safe_delay_show(struct mddev * mddev,char * page)3891 safe_delay_show(struct mddev *mddev, char *page)
3892 {
3893 unsigned int msec = ((unsigned long)mddev->safemode_delay*1000)/HZ;
3894
3895 return sprintf(page, "%u.%03u\n", msec/1000, msec%1000);
3896 }
3897 static ssize_t
safe_delay_store(struct mddev * mddev,const char * cbuf,size_t len)3898 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3899 {
3900 unsigned long msec;
3901
3902 if (mddev_is_clustered(mddev)) {
3903 pr_warn("md: Safemode is disabled for clustered mode\n");
3904 return -EINVAL;
3905 }
3906
3907 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0 || msec > UINT_MAX / HZ)
3908 return -EINVAL;
3909 if (msec == 0)
3910 mddev->safemode_delay = 0;
3911 else {
3912 unsigned long old_delay = mddev->safemode_delay;
3913 unsigned long new_delay = (msec*HZ)/1000;
3914
3915 if (new_delay == 0)
3916 new_delay = 1;
3917 mddev->safemode_delay = new_delay;
3918 if (new_delay < old_delay || old_delay == 0)
3919 mod_timer(&mddev->safemode_timer, jiffies+1);
3920 }
3921 return len;
3922 }
3923 static struct md_sysfs_entry md_safe_delay =
3924 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3925
3926 static ssize_t
level_show(struct mddev * mddev,char * page)3927 level_show(struct mddev *mddev, char *page)
3928 {
3929 struct md_personality *p;
3930 int ret;
3931 spin_lock(&mddev->lock);
3932 p = mddev->pers;
3933 if (p)
3934 ret = sprintf(page, "%s\n", p->name);
3935 else if (mddev->clevel[0])
3936 ret = sprintf(page, "%s\n", mddev->clevel);
3937 else if (mddev->level != LEVEL_NONE)
3938 ret = sprintf(page, "%d\n", mddev->level);
3939 else
3940 ret = 0;
3941 spin_unlock(&mddev->lock);
3942 return ret;
3943 }
3944
3945 static ssize_t
level_store(struct mddev * mddev,const char * buf,size_t len)3946 level_store(struct mddev *mddev, const char *buf, size_t len)
3947 {
3948 char clevel[16];
3949 ssize_t rv;
3950 size_t slen = len;
3951 struct md_personality *pers, *oldpers;
3952 long level;
3953 void *priv, *oldpriv;
3954 struct md_rdev *rdev;
3955
3956 if (slen == 0 || slen >= sizeof(clevel))
3957 return -EINVAL;
3958
3959 rv = mddev_lock(mddev);
3960 if (rv)
3961 return rv;
3962
3963 if (mddev->pers == NULL) {
3964 strncpy(mddev->clevel, buf, slen);
3965 if (mddev->clevel[slen-1] == '\n')
3966 slen--;
3967 mddev->clevel[slen] = 0;
3968 mddev->level = LEVEL_NONE;
3969 rv = len;
3970 goto out_unlock;
3971 }
3972 rv = -EROFS;
3973 if (!md_is_rdwr(mddev))
3974 goto out_unlock;
3975
3976 /* request to change the personality. Need to ensure:
3977 * - array is not engaged in resync/recovery/reshape
3978 * - old personality can be suspended
3979 * - new personality will access other array.
3980 */
3981
3982 rv = -EBUSY;
3983 if (mddev->sync_thread ||
3984 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3985 mddev->reshape_position != MaxSector ||
3986 mddev->sysfs_active)
3987 goto out_unlock;
3988
3989 rv = -EINVAL;
3990 if (!mddev->pers->quiesce) {
3991 pr_warn("md: %s: %s does not support online personality change\n",
3992 mdname(mddev), mddev->pers->name);
3993 goto out_unlock;
3994 }
3995
3996 /* Now find the new personality */
3997 strncpy(clevel, buf, slen);
3998 if (clevel[slen-1] == '\n')
3999 slen--;
4000 clevel[slen] = 0;
4001 if (kstrtol(clevel, 10, &level))
4002 level = LEVEL_NONE;
4003
4004 if (request_module("md-%s", clevel) != 0)
4005 request_module("md-level-%s", clevel);
4006 spin_lock(&pers_lock);
4007 pers = find_pers(level, clevel);
4008 if (!pers || !try_module_get(pers->owner)) {
4009 spin_unlock(&pers_lock);
4010 pr_warn("md: personality %s not loaded\n", clevel);
4011 rv = -EINVAL;
4012 goto out_unlock;
4013 }
4014 spin_unlock(&pers_lock);
4015
4016 if (pers == mddev->pers) {
4017 /* Nothing to do! */
4018 module_put(pers->owner);
4019 rv = len;
4020 goto out_unlock;
4021 }
4022 if (!pers->takeover) {
4023 module_put(pers->owner);
4024 pr_warn("md: %s: %s does not support personality takeover\n",
4025 mdname(mddev), clevel);
4026 rv = -EINVAL;
4027 goto out_unlock;
4028 }
4029
4030 rdev_for_each(rdev, mddev)
4031 rdev->new_raid_disk = rdev->raid_disk;
4032
4033 /* ->takeover must set new_* and/or delta_disks
4034 * if it succeeds, and may set them when it fails.
4035 */
4036 priv = pers->takeover(mddev);
4037 if (IS_ERR(priv)) {
4038 mddev->new_level = mddev->level;
4039 mddev->new_layout = mddev->layout;
4040 mddev->new_chunk_sectors = mddev->chunk_sectors;
4041 mddev->raid_disks -= mddev->delta_disks;
4042 mddev->delta_disks = 0;
4043 mddev->reshape_backwards = 0;
4044 module_put(pers->owner);
4045 pr_warn("md: %s: %s would not accept array\n",
4046 mdname(mddev), clevel);
4047 rv = PTR_ERR(priv);
4048 goto out_unlock;
4049 }
4050
4051 /* Looks like we have a winner */
4052 mddev_suspend(mddev);
4053 mddev_detach(mddev);
4054
4055 spin_lock(&mddev->lock);
4056 oldpers = mddev->pers;
4057 oldpriv = mddev->private;
4058 mddev->pers = pers;
4059 mddev->private = priv;
4060 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4061 mddev->level = mddev->new_level;
4062 mddev->layout = mddev->new_layout;
4063 mddev->chunk_sectors = mddev->new_chunk_sectors;
4064 mddev->delta_disks = 0;
4065 mddev->reshape_backwards = 0;
4066 mddev->degraded = 0;
4067 spin_unlock(&mddev->lock);
4068
4069 if (oldpers->sync_request == NULL &&
4070 mddev->external) {
4071 /* We are converting from a no-redundancy array
4072 * to a redundancy array and metadata is managed
4073 * externally so we need to be sure that writes
4074 * won't block due to a need to transition
4075 * clean->dirty
4076 * until external management is started.
4077 */
4078 mddev->in_sync = 0;
4079 mddev->safemode_delay = 0;
4080 mddev->safemode = 0;
4081 }
4082
4083 oldpers->free(mddev, oldpriv);
4084
4085 if (oldpers->sync_request == NULL &&
4086 pers->sync_request != NULL) {
4087 /* need to add the md_redundancy_group */
4088 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4089 pr_warn("md: cannot register extra attributes for %s\n",
4090 mdname(mddev));
4091 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4092 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
4093 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
4094 }
4095 if (oldpers->sync_request != NULL &&
4096 pers->sync_request == NULL) {
4097 /* need to remove the md_redundancy_group */
4098 if (mddev->to_remove == NULL)
4099 mddev->to_remove = &md_redundancy_group;
4100 }
4101
4102 module_put(oldpers->owner);
4103
4104 rdev_for_each(rdev, mddev) {
4105 if (rdev->raid_disk < 0)
4106 continue;
4107 if (rdev->new_raid_disk >= mddev->raid_disks)
4108 rdev->new_raid_disk = -1;
4109 if (rdev->new_raid_disk == rdev->raid_disk)
4110 continue;
4111 sysfs_unlink_rdev(mddev, rdev);
4112 }
4113 rdev_for_each(rdev, mddev) {
4114 if (rdev->raid_disk < 0)
4115 continue;
4116 if (rdev->new_raid_disk == rdev->raid_disk)
4117 continue;
4118 rdev->raid_disk = rdev->new_raid_disk;
4119 if (rdev->raid_disk < 0)
4120 clear_bit(In_sync, &rdev->flags);
4121 else {
4122 if (sysfs_link_rdev(mddev, rdev))
4123 pr_warn("md: cannot register rd%d for %s after level change\n",
4124 rdev->raid_disk, mdname(mddev));
4125 }
4126 }
4127
4128 if (pers->sync_request == NULL) {
4129 /* this is now an array without redundancy, so
4130 * it must always be in_sync
4131 */
4132 mddev->in_sync = 1;
4133 del_timer_sync(&mddev->safemode_timer);
4134 }
4135 blk_set_stacking_limits(&mddev->queue->limits);
4136 pers->run(mddev);
4137 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4138 mddev_resume(mddev);
4139 if (!mddev->thread)
4140 md_update_sb(mddev, 1);
4141 sysfs_notify_dirent_safe(mddev->sysfs_level);
4142 md_new_event();
4143 rv = len;
4144 out_unlock:
4145 mddev_unlock(mddev);
4146 return rv;
4147 }
4148
4149 static struct md_sysfs_entry md_level =
4150 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
4151
4152 static ssize_t
layout_show(struct mddev * mddev,char * page)4153 layout_show(struct mddev *mddev, char *page)
4154 {
4155 /* just a number, not meaningful for all levels */
4156 if (mddev->reshape_position != MaxSector &&
4157 mddev->layout != mddev->new_layout)
4158 return sprintf(page, "%d (%d)\n",
4159 mddev->new_layout, mddev->layout);
4160 return sprintf(page, "%d\n", mddev->layout);
4161 }
4162
4163 static ssize_t
layout_store(struct mddev * mddev,const char * buf,size_t len)4164 layout_store(struct mddev *mddev, const char *buf, size_t len)
4165 {
4166 unsigned int n;
4167 int err;
4168
4169 err = kstrtouint(buf, 10, &n);
4170 if (err < 0)
4171 return err;
4172 err = mddev_lock(mddev);
4173 if (err)
4174 return err;
4175
4176 if (mddev->pers) {
4177 if (mddev->pers->check_reshape == NULL)
4178 err = -EBUSY;
4179 else if (!md_is_rdwr(mddev))
4180 err = -EROFS;
4181 else {
4182 mddev->new_layout = n;
4183 err = mddev->pers->check_reshape(mddev);
4184 if (err)
4185 mddev->new_layout = mddev->layout;
4186 }
4187 } else {
4188 mddev->new_layout = n;
4189 if (mddev->reshape_position == MaxSector)
4190 mddev->layout = n;
4191 }
4192 mddev_unlock(mddev);
4193 return err ?: len;
4194 }
4195 static struct md_sysfs_entry md_layout =
4196 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
4197
4198 static ssize_t
raid_disks_show(struct mddev * mddev,char * page)4199 raid_disks_show(struct mddev *mddev, char *page)
4200 {
4201 if (mddev->raid_disks == 0)
4202 return 0;
4203 if (mddev->reshape_position != MaxSector &&
4204 mddev->delta_disks != 0)
4205 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
4206 mddev->raid_disks - mddev->delta_disks);
4207 return sprintf(page, "%d\n", mddev->raid_disks);
4208 }
4209
4210 static int update_raid_disks(struct mddev *mddev, int raid_disks);
4211
4212 static ssize_t
raid_disks_store(struct mddev * mddev,const char * buf,size_t len)4213 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
4214 {
4215 unsigned int n;
4216 int err;
4217
4218 err = kstrtouint(buf, 10, &n);
4219 if (err < 0)
4220 return err;
4221
4222 err = mddev_lock(mddev);
4223 if (err)
4224 return err;
4225 if (mddev->pers)
4226 err = update_raid_disks(mddev, n);
4227 else if (mddev->reshape_position != MaxSector) {
4228 struct md_rdev *rdev;
4229 int olddisks = mddev->raid_disks - mddev->delta_disks;
4230
4231 err = -EINVAL;
4232 rdev_for_each(rdev, mddev) {
4233 if (olddisks < n &&
4234 rdev->data_offset < rdev->new_data_offset)
4235 goto out_unlock;
4236 if (olddisks > n &&
4237 rdev->data_offset > rdev->new_data_offset)
4238 goto out_unlock;
4239 }
4240 err = 0;
4241 mddev->delta_disks = n - olddisks;
4242 mddev->raid_disks = n;
4243 mddev->reshape_backwards = (mddev->delta_disks < 0);
4244 } else
4245 mddev->raid_disks = n;
4246 out_unlock:
4247 mddev_unlock(mddev);
4248 return err ? err : len;
4249 }
4250 static struct md_sysfs_entry md_raid_disks =
4251 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
4252
4253 static ssize_t
uuid_show(struct mddev * mddev,char * page)4254 uuid_show(struct mddev *mddev, char *page)
4255 {
4256 return sprintf(page, "%pU\n", mddev->uuid);
4257 }
4258 static struct md_sysfs_entry md_uuid =
4259 __ATTR(uuid, S_IRUGO, uuid_show, NULL);
4260
4261 static ssize_t
chunk_size_show(struct mddev * mddev,char * page)4262 chunk_size_show(struct mddev *mddev, char *page)
4263 {
4264 if (mddev->reshape_position != MaxSector &&
4265 mddev->chunk_sectors != mddev->new_chunk_sectors)
4266 return sprintf(page, "%d (%d)\n",
4267 mddev->new_chunk_sectors << 9,
4268 mddev->chunk_sectors << 9);
4269 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
4270 }
4271
4272 static ssize_t
chunk_size_store(struct mddev * mddev,const char * buf,size_t len)4273 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
4274 {
4275 unsigned long n;
4276 int err;
4277
4278 err = kstrtoul(buf, 10, &n);
4279 if (err < 0)
4280 return err;
4281
4282 err = mddev_lock(mddev);
4283 if (err)
4284 return err;
4285 if (mddev->pers) {
4286 if (mddev->pers->check_reshape == NULL)
4287 err = -EBUSY;
4288 else if (!md_is_rdwr(mddev))
4289 err = -EROFS;
4290 else {
4291 mddev->new_chunk_sectors = n >> 9;
4292 err = mddev->pers->check_reshape(mddev);
4293 if (err)
4294 mddev->new_chunk_sectors = mddev->chunk_sectors;
4295 }
4296 } else {
4297 mddev->new_chunk_sectors = n >> 9;
4298 if (mddev->reshape_position == MaxSector)
4299 mddev->chunk_sectors = n >> 9;
4300 }
4301 mddev_unlock(mddev);
4302 return err ?: len;
4303 }
4304 static struct md_sysfs_entry md_chunk_size =
4305 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4306
4307 static ssize_t
resync_start_show(struct mddev * mddev,char * page)4308 resync_start_show(struct mddev *mddev, char *page)
4309 {
4310 if (mddev->recovery_cp == MaxSector)
4311 return sprintf(page, "none\n");
4312 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4313 }
4314
4315 static ssize_t
resync_start_store(struct mddev * mddev,const char * buf,size_t len)4316 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4317 {
4318 unsigned long long n;
4319 int err;
4320
4321 if (cmd_match(buf, "none"))
4322 n = MaxSector;
4323 else {
4324 err = kstrtoull(buf, 10, &n);
4325 if (err < 0)
4326 return err;
4327 if (n != (sector_t)n)
4328 return -EINVAL;
4329 }
4330
4331 err = mddev_lock(mddev);
4332 if (err)
4333 return err;
4334 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4335 err = -EBUSY;
4336
4337 if (!err) {
4338 mddev->recovery_cp = n;
4339 if (mddev->pers)
4340 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4341 }
4342 mddev_unlock(mddev);
4343 return err ?: len;
4344 }
4345 static struct md_sysfs_entry md_resync_start =
4346 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4347 resync_start_show, resync_start_store);
4348
4349 /*
4350 * The array state can be:
4351 *
4352 * clear
4353 * No devices, no size, no level
4354 * Equivalent to STOP_ARRAY ioctl
4355 * inactive
4356 * May have some settings, but array is not active
4357 * all IO results in error
4358 * When written, doesn't tear down array, but just stops it
4359 * suspended (not supported yet)
4360 * All IO requests will block. The array can be reconfigured.
4361 * Writing this, if accepted, will block until array is quiescent
4362 * readonly
4363 * no resync can happen. no superblocks get written.
4364 * write requests fail
4365 * read-auto
4366 * like readonly, but behaves like 'clean' on a write request.
4367 *
4368 * clean - no pending writes, but otherwise active.
4369 * When written to inactive array, starts without resync
4370 * If a write request arrives then
4371 * if metadata is known, mark 'dirty' and switch to 'active'.
4372 * if not known, block and switch to write-pending
4373 * If written to an active array that has pending writes, then fails.
4374 * active
4375 * fully active: IO and resync can be happening.
4376 * When written to inactive array, starts with resync
4377 *
4378 * write-pending
4379 * clean, but writes are blocked waiting for 'active' to be written.
4380 *
4381 * active-idle
4382 * like active, but no writes have been seen for a while (100msec).
4383 *
4384 * broken
4385 * Array is failed. It's useful because mounted-arrays aren't stopped
4386 * when array is failed, so this state will at least alert the user that
4387 * something is wrong.
4388 */
4389 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4390 write_pending, active_idle, broken, bad_word};
4391 static char *array_states[] = {
4392 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4393 "write-pending", "active-idle", "broken", NULL };
4394
match_word(const char * word,char ** list)4395 static int match_word(const char *word, char **list)
4396 {
4397 int n;
4398 for (n=0; list[n]; n++)
4399 if (cmd_match(word, list[n]))
4400 break;
4401 return n;
4402 }
4403
4404 static ssize_t
array_state_show(struct mddev * mddev,char * page)4405 array_state_show(struct mddev *mddev, char *page)
4406 {
4407 enum array_state st = inactive;
4408
4409 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
4410 switch(mddev->ro) {
4411 case MD_RDONLY:
4412 st = readonly;
4413 break;
4414 case MD_AUTO_READ:
4415 st = read_auto;
4416 break;
4417 case MD_RDWR:
4418 spin_lock(&mddev->lock);
4419 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4420 st = write_pending;
4421 else if (mddev->in_sync)
4422 st = clean;
4423 else if (mddev->safemode)
4424 st = active_idle;
4425 else
4426 st = active;
4427 spin_unlock(&mddev->lock);
4428 }
4429
4430 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
4431 st = broken;
4432 } else {
4433 if (list_empty(&mddev->disks) &&
4434 mddev->raid_disks == 0 &&
4435 mddev->dev_sectors == 0)
4436 st = clear;
4437 else
4438 st = inactive;
4439 }
4440 return sprintf(page, "%s\n", array_states[st]);
4441 }
4442
4443 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4444 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4445 static int restart_array(struct mddev *mddev);
4446
4447 static ssize_t
array_state_store(struct mddev * mddev,const char * buf,size_t len)4448 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4449 {
4450 int err = 0;
4451 enum array_state st = match_word(buf, array_states);
4452
4453 if (mddev->pers && (st == active || st == clean) &&
4454 mddev->ro != MD_RDONLY) {
4455 /* don't take reconfig_mutex when toggling between
4456 * clean and active
4457 */
4458 spin_lock(&mddev->lock);
4459 if (st == active) {
4460 restart_array(mddev);
4461 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4462 md_wakeup_thread(mddev->thread);
4463 wake_up(&mddev->sb_wait);
4464 } else /* st == clean */ {
4465 restart_array(mddev);
4466 if (!set_in_sync(mddev))
4467 err = -EBUSY;
4468 }
4469 if (!err)
4470 sysfs_notify_dirent_safe(mddev->sysfs_state);
4471 spin_unlock(&mddev->lock);
4472 return err ?: len;
4473 }
4474 err = mddev_lock(mddev);
4475 if (err)
4476 return err;
4477 err = -EINVAL;
4478 switch(st) {
4479 case bad_word:
4480 break;
4481 case clear:
4482 /* stopping an active array */
4483 err = do_md_stop(mddev, 0, NULL);
4484 break;
4485 case inactive:
4486 /* stopping an active array */
4487 if (mddev->pers)
4488 err = do_md_stop(mddev, 2, NULL);
4489 else
4490 err = 0; /* already inactive */
4491 break;
4492 case suspended:
4493 break; /* not supported yet */
4494 case readonly:
4495 if (mddev->pers)
4496 err = md_set_readonly(mddev, NULL);
4497 else {
4498 mddev->ro = MD_RDONLY;
4499 set_disk_ro(mddev->gendisk, 1);
4500 err = do_md_run(mddev);
4501 }
4502 break;
4503 case read_auto:
4504 if (mddev->pers) {
4505 if (md_is_rdwr(mddev))
4506 err = md_set_readonly(mddev, NULL);
4507 else if (mddev->ro == MD_RDONLY)
4508 err = restart_array(mddev);
4509 if (err == 0) {
4510 mddev->ro = MD_AUTO_READ;
4511 set_disk_ro(mddev->gendisk, 0);
4512 }
4513 } else {
4514 mddev->ro = MD_AUTO_READ;
4515 err = do_md_run(mddev);
4516 }
4517 break;
4518 case clean:
4519 if (mddev->pers) {
4520 err = restart_array(mddev);
4521 if (err)
4522 break;
4523 spin_lock(&mddev->lock);
4524 if (!set_in_sync(mddev))
4525 err = -EBUSY;
4526 spin_unlock(&mddev->lock);
4527 } else
4528 err = -EINVAL;
4529 break;
4530 case active:
4531 if (mddev->pers) {
4532 err = restart_array(mddev);
4533 if (err)
4534 break;
4535 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4536 wake_up(&mddev->sb_wait);
4537 err = 0;
4538 } else {
4539 mddev->ro = MD_RDWR;
4540 set_disk_ro(mddev->gendisk, 0);
4541 err = do_md_run(mddev);
4542 }
4543 break;
4544 case write_pending:
4545 case active_idle:
4546 case broken:
4547 /* these cannot be set */
4548 break;
4549 }
4550
4551 if (!err) {
4552 if (mddev->hold_active == UNTIL_IOCTL)
4553 mddev->hold_active = 0;
4554 sysfs_notify_dirent_safe(mddev->sysfs_state);
4555 }
4556 mddev_unlock(mddev);
4557 return err ?: len;
4558 }
4559 static struct md_sysfs_entry md_array_state =
4560 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4561
4562 static ssize_t
max_corrected_read_errors_show(struct mddev * mddev,char * page)4563 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4564 return sprintf(page, "%d\n",
4565 atomic_read(&mddev->max_corr_read_errors));
4566 }
4567
4568 static ssize_t
max_corrected_read_errors_store(struct mddev * mddev,const char * buf,size_t len)4569 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4570 {
4571 unsigned int n;
4572 int rv;
4573
4574 rv = kstrtouint(buf, 10, &n);
4575 if (rv < 0)
4576 return rv;
4577 if (n > INT_MAX)
4578 return -EINVAL;
4579 atomic_set(&mddev->max_corr_read_errors, n);
4580 return len;
4581 }
4582
4583 static struct md_sysfs_entry max_corr_read_errors =
4584 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4585 max_corrected_read_errors_store);
4586
4587 static ssize_t
null_show(struct mddev * mddev,char * page)4588 null_show(struct mddev *mddev, char *page)
4589 {
4590 return -EINVAL;
4591 }
4592
4593 /* need to ensure rdev_delayed_delete() has completed */
flush_rdev_wq(struct mddev * mddev)4594 static void flush_rdev_wq(struct mddev *mddev)
4595 {
4596 struct md_rdev *rdev;
4597
4598 rcu_read_lock();
4599 rdev_for_each_rcu(rdev, mddev)
4600 if (work_pending(&rdev->del_work)) {
4601 flush_workqueue(md_rdev_misc_wq);
4602 break;
4603 }
4604 rcu_read_unlock();
4605 }
4606
4607 static ssize_t
new_dev_store(struct mddev * mddev,const char * buf,size_t len)4608 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4609 {
4610 /* buf must be %d:%d\n? giving major and minor numbers */
4611 /* The new device is added to the array.
4612 * If the array has a persistent superblock, we read the
4613 * superblock to initialise info and check validity.
4614 * Otherwise, only checking done is that in bind_rdev_to_array,
4615 * which mainly checks size.
4616 */
4617 char *e;
4618 int major = simple_strtoul(buf, &e, 10);
4619 int minor;
4620 dev_t dev;
4621 struct md_rdev *rdev;
4622 int err;
4623
4624 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4625 return -EINVAL;
4626 minor = simple_strtoul(e+1, &e, 10);
4627 if (*e && *e != '\n')
4628 return -EINVAL;
4629 dev = MKDEV(major, minor);
4630 if (major != MAJOR(dev) ||
4631 minor != MINOR(dev))
4632 return -EOVERFLOW;
4633
4634 flush_rdev_wq(mddev);
4635 err = mddev_lock(mddev);
4636 if (err)
4637 return err;
4638 if (mddev->persistent) {
4639 rdev = md_import_device(dev, mddev->major_version,
4640 mddev->minor_version);
4641 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4642 struct md_rdev *rdev0
4643 = list_entry(mddev->disks.next,
4644 struct md_rdev, same_set);
4645 err = super_types[mddev->major_version]
4646 .load_super(rdev, rdev0, mddev->minor_version);
4647 if (err < 0)
4648 goto out;
4649 }
4650 } else if (mddev->external)
4651 rdev = md_import_device(dev, -2, -1);
4652 else
4653 rdev = md_import_device(dev, -1, -1);
4654
4655 if (IS_ERR(rdev)) {
4656 mddev_unlock(mddev);
4657 return PTR_ERR(rdev);
4658 }
4659 err = bind_rdev_to_array(rdev, mddev);
4660 out:
4661 if (err)
4662 export_rdev(rdev);
4663 mddev_unlock(mddev);
4664 if (!err)
4665 md_new_event();
4666 return err ? err : len;
4667 }
4668
4669 static struct md_sysfs_entry md_new_device =
4670 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4671
4672 static ssize_t
bitmap_store(struct mddev * mddev,const char * buf,size_t len)4673 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4674 {
4675 char *end;
4676 unsigned long chunk, end_chunk;
4677 int err;
4678
4679 err = mddev_lock(mddev);
4680 if (err)
4681 return err;
4682 if (!mddev->bitmap)
4683 goto out;
4684 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4685 while (*buf) {
4686 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4687 if (buf == end) break;
4688 if (*end == '-') { /* range */
4689 buf = end + 1;
4690 end_chunk = simple_strtoul(buf, &end, 0);
4691 if (buf == end) break;
4692 }
4693 if (*end && !isspace(*end)) break;
4694 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4695 buf = skip_spaces(end);
4696 }
4697 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4698 out:
4699 mddev_unlock(mddev);
4700 return len;
4701 }
4702
4703 static struct md_sysfs_entry md_bitmap =
4704 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4705
4706 static ssize_t
size_show(struct mddev * mddev,char * page)4707 size_show(struct mddev *mddev, char *page)
4708 {
4709 return sprintf(page, "%llu\n",
4710 (unsigned long long)mddev->dev_sectors / 2);
4711 }
4712
4713 static int update_size(struct mddev *mddev, sector_t num_sectors);
4714
4715 static ssize_t
size_store(struct mddev * mddev,const char * buf,size_t len)4716 size_store(struct mddev *mddev, const char *buf, size_t len)
4717 {
4718 /* If array is inactive, we can reduce the component size, but
4719 * not increase it (except from 0).
4720 * If array is active, we can try an on-line resize
4721 */
4722 sector_t sectors;
4723 int err = strict_blocks_to_sectors(buf, §ors);
4724
4725 if (err < 0)
4726 return err;
4727 err = mddev_lock(mddev);
4728 if (err)
4729 return err;
4730 if (mddev->pers) {
4731 err = update_size(mddev, sectors);
4732 if (err == 0)
4733 md_update_sb(mddev, 1);
4734 } else {
4735 if (mddev->dev_sectors == 0 ||
4736 mddev->dev_sectors > sectors)
4737 mddev->dev_sectors = sectors;
4738 else
4739 err = -ENOSPC;
4740 }
4741 mddev_unlock(mddev);
4742 return err ? err : len;
4743 }
4744
4745 static struct md_sysfs_entry md_size =
4746 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4747
4748 /* Metadata version.
4749 * This is one of
4750 * 'none' for arrays with no metadata (good luck...)
4751 * 'external' for arrays with externally managed metadata,
4752 * or N.M for internally known formats
4753 */
4754 static ssize_t
metadata_show(struct mddev * mddev,char * page)4755 metadata_show(struct mddev *mddev, char *page)
4756 {
4757 if (mddev->persistent)
4758 return sprintf(page, "%d.%d\n",
4759 mddev->major_version, mddev->minor_version);
4760 else if (mddev->external)
4761 return sprintf(page, "external:%s\n", mddev->metadata_type);
4762 else
4763 return sprintf(page, "none\n");
4764 }
4765
4766 static ssize_t
metadata_store(struct mddev * mddev,const char * buf,size_t len)4767 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4768 {
4769 int major, minor;
4770 char *e;
4771 int err;
4772 /* Changing the details of 'external' metadata is
4773 * always permitted. Otherwise there must be
4774 * no devices attached to the array.
4775 */
4776
4777 err = mddev_lock(mddev);
4778 if (err)
4779 return err;
4780 err = -EBUSY;
4781 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4782 ;
4783 else if (!list_empty(&mddev->disks))
4784 goto out_unlock;
4785
4786 err = 0;
4787 if (cmd_match(buf, "none")) {
4788 mddev->persistent = 0;
4789 mddev->external = 0;
4790 mddev->major_version = 0;
4791 mddev->minor_version = 90;
4792 goto out_unlock;
4793 }
4794 if (strncmp(buf, "external:", 9) == 0) {
4795 size_t namelen = len-9;
4796 if (namelen >= sizeof(mddev->metadata_type))
4797 namelen = sizeof(mddev->metadata_type)-1;
4798 strncpy(mddev->metadata_type, buf+9, namelen);
4799 mddev->metadata_type[namelen] = 0;
4800 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4801 mddev->metadata_type[--namelen] = 0;
4802 mddev->persistent = 0;
4803 mddev->external = 1;
4804 mddev->major_version = 0;
4805 mddev->minor_version = 90;
4806 goto out_unlock;
4807 }
4808 major = simple_strtoul(buf, &e, 10);
4809 err = -EINVAL;
4810 if (e==buf || *e != '.')
4811 goto out_unlock;
4812 buf = e+1;
4813 minor = simple_strtoul(buf, &e, 10);
4814 if (e==buf || (*e && *e != '\n') )
4815 goto out_unlock;
4816 err = -ENOENT;
4817 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4818 goto out_unlock;
4819 mddev->major_version = major;
4820 mddev->minor_version = minor;
4821 mddev->persistent = 1;
4822 mddev->external = 0;
4823 err = 0;
4824 out_unlock:
4825 mddev_unlock(mddev);
4826 return err ?: len;
4827 }
4828
4829 static struct md_sysfs_entry md_metadata =
4830 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4831
4832 static ssize_t
action_show(struct mddev * mddev,char * page)4833 action_show(struct mddev *mddev, char *page)
4834 {
4835 char *type = "idle";
4836 unsigned long recovery = mddev->recovery;
4837 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4838 type = "frozen";
4839 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4840 (md_is_rdwr(mddev) && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4841 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4842 type = "reshape";
4843 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4844 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4845 type = "resync";
4846 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4847 type = "check";
4848 else
4849 type = "repair";
4850 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4851 type = "recover";
4852 else if (mddev->reshape_position != MaxSector)
4853 type = "reshape";
4854 }
4855 return sprintf(page, "%s\n", type);
4856 }
4857
4858 static ssize_t
action_store(struct mddev * mddev,const char * page,size_t len)4859 action_store(struct mddev *mddev, const char *page, size_t len)
4860 {
4861 if (!mddev->pers || !mddev->pers->sync_request)
4862 return -EINVAL;
4863
4864
4865 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4866 if (cmd_match(page, "frozen"))
4867 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4868 else
4869 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4870 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4871 mddev_lock(mddev) == 0) {
4872 if (work_pending(&mddev->del_work))
4873 flush_workqueue(md_misc_wq);
4874 if (mddev->sync_thread) {
4875 sector_t save_rp = mddev->reshape_position;
4876
4877 mddev_unlock(mddev);
4878 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4879 md_unregister_thread(&mddev->sync_thread);
4880 mddev_lock_nointr(mddev);
4881 /*
4882 * set RECOVERY_INTR again and restore reshape
4883 * position in case others changed them after
4884 * got lock, eg, reshape_position_store and
4885 * md_check_recovery.
4886 */
4887 mddev->reshape_position = save_rp;
4888 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4889 md_reap_sync_thread(mddev);
4890 }
4891 mddev_unlock(mddev);
4892 }
4893 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4894 return -EBUSY;
4895 else if (cmd_match(page, "resync"))
4896 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4897 else if (cmd_match(page, "recover")) {
4898 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4899 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4900 } else if (cmd_match(page, "reshape")) {
4901 int err;
4902 if (mddev->pers->start_reshape == NULL)
4903 return -EINVAL;
4904 err = mddev_lock(mddev);
4905 if (!err) {
4906 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4907 err = -EBUSY;
4908 else {
4909 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4910 err = mddev->pers->start_reshape(mddev);
4911 }
4912 mddev_unlock(mddev);
4913 }
4914 if (err)
4915 return err;
4916 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
4917 } else {
4918 if (cmd_match(page, "check"))
4919 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4920 else if (!cmd_match(page, "repair"))
4921 return -EINVAL;
4922 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4923 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4924 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4925 }
4926 if (mddev->ro == MD_AUTO_READ) {
4927 /* A write to sync_action is enough to justify
4928 * canceling read-auto mode
4929 */
4930 mddev->ro = MD_RDWR;
4931 md_wakeup_thread(mddev->sync_thread);
4932 }
4933 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4934 md_wakeup_thread(mddev->thread);
4935 sysfs_notify_dirent_safe(mddev->sysfs_action);
4936 return len;
4937 }
4938
4939 static struct md_sysfs_entry md_scan_mode =
4940 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4941
4942 static ssize_t
last_sync_action_show(struct mddev * mddev,char * page)4943 last_sync_action_show(struct mddev *mddev, char *page)
4944 {
4945 return sprintf(page, "%s\n", mddev->last_sync_action);
4946 }
4947
4948 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4949
4950 static ssize_t
mismatch_cnt_show(struct mddev * mddev,char * page)4951 mismatch_cnt_show(struct mddev *mddev, char *page)
4952 {
4953 return sprintf(page, "%llu\n",
4954 (unsigned long long)
4955 atomic64_read(&mddev->resync_mismatches));
4956 }
4957
4958 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4959
4960 static ssize_t
sync_min_show(struct mddev * mddev,char * page)4961 sync_min_show(struct mddev *mddev, char *page)
4962 {
4963 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4964 mddev->sync_speed_min ? "local": "system");
4965 }
4966
4967 static ssize_t
sync_min_store(struct mddev * mddev,const char * buf,size_t len)4968 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4969 {
4970 unsigned int min;
4971 int rv;
4972
4973 if (strncmp(buf, "system", 6)==0) {
4974 min = 0;
4975 } else {
4976 rv = kstrtouint(buf, 10, &min);
4977 if (rv < 0)
4978 return rv;
4979 if (min == 0)
4980 return -EINVAL;
4981 }
4982 mddev->sync_speed_min = min;
4983 return len;
4984 }
4985
4986 static struct md_sysfs_entry md_sync_min =
4987 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4988
4989 static ssize_t
sync_max_show(struct mddev * mddev,char * page)4990 sync_max_show(struct mddev *mddev, char *page)
4991 {
4992 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4993 mddev->sync_speed_max ? "local": "system");
4994 }
4995
4996 static ssize_t
sync_max_store(struct mddev * mddev,const char * buf,size_t len)4997 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4998 {
4999 unsigned int max;
5000 int rv;
5001
5002 if (strncmp(buf, "system", 6)==0) {
5003 max = 0;
5004 } else {
5005 rv = kstrtouint(buf, 10, &max);
5006 if (rv < 0)
5007 return rv;
5008 if (max == 0)
5009 return -EINVAL;
5010 }
5011 mddev->sync_speed_max = max;
5012 return len;
5013 }
5014
5015 static struct md_sysfs_entry md_sync_max =
5016 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
5017
5018 static ssize_t
degraded_show(struct mddev * mddev,char * page)5019 degraded_show(struct mddev *mddev, char *page)
5020 {
5021 return sprintf(page, "%d\n", mddev->degraded);
5022 }
5023 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
5024
5025 static ssize_t
sync_force_parallel_show(struct mddev * mddev,char * page)5026 sync_force_parallel_show(struct mddev *mddev, char *page)
5027 {
5028 return sprintf(page, "%d\n", mddev->parallel_resync);
5029 }
5030
5031 static ssize_t
sync_force_parallel_store(struct mddev * mddev,const char * buf,size_t len)5032 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
5033 {
5034 long n;
5035
5036 if (kstrtol(buf, 10, &n))
5037 return -EINVAL;
5038
5039 if (n != 0 && n != 1)
5040 return -EINVAL;
5041
5042 mddev->parallel_resync = n;
5043
5044 if (mddev->sync_thread)
5045 wake_up(&resync_wait);
5046
5047 return len;
5048 }
5049
5050 /* force parallel resync, even with shared block devices */
5051 static struct md_sysfs_entry md_sync_force_parallel =
5052 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
5053 sync_force_parallel_show, sync_force_parallel_store);
5054
5055 static ssize_t
sync_speed_show(struct mddev * mddev,char * page)5056 sync_speed_show(struct mddev *mddev, char *page)
5057 {
5058 unsigned long resync, dt, db;
5059 if (mddev->curr_resync == MD_RESYNC_NONE)
5060 return sprintf(page, "none\n");
5061 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
5062 dt = (jiffies - mddev->resync_mark) / HZ;
5063 if (!dt) dt++;
5064 db = resync - mddev->resync_mark_cnt;
5065 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
5066 }
5067
5068 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
5069
5070 static ssize_t
sync_completed_show(struct mddev * mddev,char * page)5071 sync_completed_show(struct mddev *mddev, char *page)
5072 {
5073 unsigned long long max_sectors, resync;
5074
5075 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5076 return sprintf(page, "none\n");
5077
5078 if (mddev->curr_resync == MD_RESYNC_YIELDED ||
5079 mddev->curr_resync == MD_RESYNC_DELAYED)
5080 return sprintf(page, "delayed\n");
5081
5082 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
5083 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5084 max_sectors = mddev->resync_max_sectors;
5085 else
5086 max_sectors = mddev->dev_sectors;
5087
5088 resync = mddev->curr_resync_completed;
5089 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
5090 }
5091
5092 static struct md_sysfs_entry md_sync_completed =
5093 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
5094
5095 static ssize_t
min_sync_show(struct mddev * mddev,char * page)5096 min_sync_show(struct mddev *mddev, char *page)
5097 {
5098 return sprintf(page, "%llu\n",
5099 (unsigned long long)mddev->resync_min);
5100 }
5101 static ssize_t
min_sync_store(struct mddev * mddev,const char * buf,size_t len)5102 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
5103 {
5104 unsigned long long min;
5105 int err;
5106
5107 if (kstrtoull(buf, 10, &min))
5108 return -EINVAL;
5109
5110 spin_lock(&mddev->lock);
5111 err = -EINVAL;
5112 if (min > mddev->resync_max)
5113 goto out_unlock;
5114
5115 err = -EBUSY;
5116 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5117 goto out_unlock;
5118
5119 /* Round down to multiple of 4K for safety */
5120 mddev->resync_min = round_down(min, 8);
5121 err = 0;
5122
5123 out_unlock:
5124 spin_unlock(&mddev->lock);
5125 return err ?: len;
5126 }
5127
5128 static struct md_sysfs_entry md_min_sync =
5129 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
5130
5131 static ssize_t
max_sync_show(struct mddev * mddev,char * page)5132 max_sync_show(struct mddev *mddev, char *page)
5133 {
5134 if (mddev->resync_max == MaxSector)
5135 return sprintf(page, "max\n");
5136 else
5137 return sprintf(page, "%llu\n",
5138 (unsigned long long)mddev->resync_max);
5139 }
5140 static ssize_t
max_sync_store(struct mddev * mddev,const char * buf,size_t len)5141 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
5142 {
5143 int err;
5144 spin_lock(&mddev->lock);
5145 if (strncmp(buf, "max", 3) == 0)
5146 mddev->resync_max = MaxSector;
5147 else {
5148 unsigned long long max;
5149 int chunk;
5150
5151 err = -EINVAL;
5152 if (kstrtoull(buf, 10, &max))
5153 goto out_unlock;
5154 if (max < mddev->resync_min)
5155 goto out_unlock;
5156
5157 err = -EBUSY;
5158 if (max < mddev->resync_max && md_is_rdwr(mddev) &&
5159 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5160 goto out_unlock;
5161
5162 /* Must be a multiple of chunk_size */
5163 chunk = mddev->chunk_sectors;
5164 if (chunk) {
5165 sector_t temp = max;
5166
5167 err = -EINVAL;
5168 if (sector_div(temp, chunk))
5169 goto out_unlock;
5170 }
5171 mddev->resync_max = max;
5172 }
5173 wake_up(&mddev->recovery_wait);
5174 err = 0;
5175 out_unlock:
5176 spin_unlock(&mddev->lock);
5177 return err ?: len;
5178 }
5179
5180 static struct md_sysfs_entry md_max_sync =
5181 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
5182
5183 static ssize_t
suspend_lo_show(struct mddev * mddev,char * page)5184 suspend_lo_show(struct mddev *mddev, char *page)
5185 {
5186 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
5187 }
5188
5189 static ssize_t
suspend_lo_store(struct mddev * mddev,const char * buf,size_t len)5190 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
5191 {
5192 unsigned long long new;
5193 int err;
5194
5195 err = kstrtoull(buf, 10, &new);
5196 if (err < 0)
5197 return err;
5198 if (new != (sector_t)new)
5199 return -EINVAL;
5200
5201 err = mddev_lock(mddev);
5202 if (err)
5203 return err;
5204 err = -EINVAL;
5205 if (mddev->pers == NULL ||
5206 mddev->pers->quiesce == NULL)
5207 goto unlock;
5208 mddev_suspend(mddev);
5209 mddev->suspend_lo = new;
5210 mddev_resume(mddev);
5211
5212 err = 0;
5213 unlock:
5214 mddev_unlock(mddev);
5215 return err ?: len;
5216 }
5217 static struct md_sysfs_entry md_suspend_lo =
5218 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
5219
5220 static ssize_t
suspend_hi_show(struct mddev * mddev,char * page)5221 suspend_hi_show(struct mddev *mddev, char *page)
5222 {
5223 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
5224 }
5225
5226 static ssize_t
suspend_hi_store(struct mddev * mddev,const char * buf,size_t len)5227 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
5228 {
5229 unsigned long long new;
5230 int err;
5231
5232 err = kstrtoull(buf, 10, &new);
5233 if (err < 0)
5234 return err;
5235 if (new != (sector_t)new)
5236 return -EINVAL;
5237
5238 err = mddev_lock(mddev);
5239 if (err)
5240 return err;
5241 err = -EINVAL;
5242 if (mddev->pers == NULL)
5243 goto unlock;
5244
5245 mddev_suspend(mddev);
5246 mddev->suspend_hi = new;
5247 mddev_resume(mddev);
5248
5249 err = 0;
5250 unlock:
5251 mddev_unlock(mddev);
5252 return err ?: len;
5253 }
5254 static struct md_sysfs_entry md_suspend_hi =
5255 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
5256
5257 static ssize_t
reshape_position_show(struct mddev * mddev,char * page)5258 reshape_position_show(struct mddev *mddev, char *page)
5259 {
5260 if (mddev->reshape_position != MaxSector)
5261 return sprintf(page, "%llu\n",
5262 (unsigned long long)mddev->reshape_position);
5263 strcpy(page, "none\n");
5264 return 5;
5265 }
5266
5267 static ssize_t
reshape_position_store(struct mddev * mddev,const char * buf,size_t len)5268 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
5269 {
5270 struct md_rdev *rdev;
5271 unsigned long long new;
5272 int err;
5273
5274 err = kstrtoull(buf, 10, &new);
5275 if (err < 0)
5276 return err;
5277 if (new != (sector_t)new)
5278 return -EINVAL;
5279 err = mddev_lock(mddev);
5280 if (err)
5281 return err;
5282 err = -EBUSY;
5283 if (mddev->pers)
5284 goto unlock;
5285 mddev->reshape_position = new;
5286 mddev->delta_disks = 0;
5287 mddev->reshape_backwards = 0;
5288 mddev->new_level = mddev->level;
5289 mddev->new_layout = mddev->layout;
5290 mddev->new_chunk_sectors = mddev->chunk_sectors;
5291 rdev_for_each(rdev, mddev)
5292 rdev->new_data_offset = rdev->data_offset;
5293 err = 0;
5294 unlock:
5295 mddev_unlock(mddev);
5296 return err ?: len;
5297 }
5298
5299 static struct md_sysfs_entry md_reshape_position =
5300 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
5301 reshape_position_store);
5302
5303 static ssize_t
reshape_direction_show(struct mddev * mddev,char * page)5304 reshape_direction_show(struct mddev *mddev, char *page)
5305 {
5306 return sprintf(page, "%s\n",
5307 mddev->reshape_backwards ? "backwards" : "forwards");
5308 }
5309
5310 static ssize_t
reshape_direction_store(struct mddev * mddev,const char * buf,size_t len)5311 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
5312 {
5313 int backwards = 0;
5314 int err;
5315
5316 if (cmd_match(buf, "forwards"))
5317 backwards = 0;
5318 else if (cmd_match(buf, "backwards"))
5319 backwards = 1;
5320 else
5321 return -EINVAL;
5322 if (mddev->reshape_backwards == backwards)
5323 return len;
5324
5325 err = mddev_lock(mddev);
5326 if (err)
5327 return err;
5328 /* check if we are allowed to change */
5329 if (mddev->delta_disks)
5330 err = -EBUSY;
5331 else if (mddev->persistent &&
5332 mddev->major_version == 0)
5333 err = -EINVAL;
5334 else
5335 mddev->reshape_backwards = backwards;
5336 mddev_unlock(mddev);
5337 return err ?: len;
5338 }
5339
5340 static struct md_sysfs_entry md_reshape_direction =
5341 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5342 reshape_direction_store);
5343
5344 static ssize_t
array_size_show(struct mddev * mddev,char * page)5345 array_size_show(struct mddev *mddev, char *page)
5346 {
5347 if (mddev->external_size)
5348 return sprintf(page, "%llu\n",
5349 (unsigned long long)mddev->array_sectors/2);
5350 else
5351 return sprintf(page, "default\n");
5352 }
5353
5354 static ssize_t
array_size_store(struct mddev * mddev,const char * buf,size_t len)5355 array_size_store(struct mddev *mddev, const char *buf, size_t len)
5356 {
5357 sector_t sectors;
5358 int err;
5359
5360 err = mddev_lock(mddev);
5361 if (err)
5362 return err;
5363
5364 /* cluster raid doesn't support change array_sectors */
5365 if (mddev_is_clustered(mddev)) {
5366 mddev_unlock(mddev);
5367 return -EINVAL;
5368 }
5369
5370 if (strncmp(buf, "default", 7) == 0) {
5371 if (mddev->pers)
5372 sectors = mddev->pers->size(mddev, 0, 0);
5373 else
5374 sectors = mddev->array_sectors;
5375
5376 mddev->external_size = 0;
5377 } else {
5378 if (strict_blocks_to_sectors(buf, §ors) < 0)
5379 err = -EINVAL;
5380 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5381 err = -E2BIG;
5382 else
5383 mddev->external_size = 1;
5384 }
5385
5386 if (!err) {
5387 mddev->array_sectors = sectors;
5388 if (mddev->pers)
5389 set_capacity_and_notify(mddev->gendisk,
5390 mddev->array_sectors);
5391 }
5392 mddev_unlock(mddev);
5393 return err ?: len;
5394 }
5395
5396 static struct md_sysfs_entry md_array_size =
5397 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5398 array_size_store);
5399
5400 static ssize_t
consistency_policy_show(struct mddev * mddev,char * page)5401 consistency_policy_show(struct mddev *mddev, char *page)
5402 {
5403 int ret;
5404
5405 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5406 ret = sprintf(page, "journal\n");
5407 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5408 ret = sprintf(page, "ppl\n");
5409 } else if (mddev->bitmap) {
5410 ret = sprintf(page, "bitmap\n");
5411 } else if (mddev->pers) {
5412 if (mddev->pers->sync_request)
5413 ret = sprintf(page, "resync\n");
5414 else
5415 ret = sprintf(page, "none\n");
5416 } else {
5417 ret = sprintf(page, "unknown\n");
5418 }
5419
5420 return ret;
5421 }
5422
5423 static ssize_t
consistency_policy_store(struct mddev * mddev,const char * buf,size_t len)5424 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5425 {
5426 int err = 0;
5427
5428 if (mddev->pers) {
5429 if (mddev->pers->change_consistency_policy)
5430 err = mddev->pers->change_consistency_policy(mddev, buf);
5431 else
5432 err = -EBUSY;
5433 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5434 set_bit(MD_HAS_PPL, &mddev->flags);
5435 } else {
5436 err = -EINVAL;
5437 }
5438
5439 return err ? err : len;
5440 }
5441
5442 static struct md_sysfs_entry md_consistency_policy =
5443 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5444 consistency_policy_store);
5445
fail_last_dev_show(struct mddev * mddev,char * page)5446 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
5447 {
5448 return sprintf(page, "%d\n", mddev->fail_last_dev);
5449 }
5450
5451 /*
5452 * Setting fail_last_dev to true to allow last device to be forcibly removed
5453 * from RAID1/RAID10.
5454 */
5455 static ssize_t
fail_last_dev_store(struct mddev * mddev,const char * buf,size_t len)5456 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
5457 {
5458 int ret;
5459 bool value;
5460
5461 ret = kstrtobool(buf, &value);
5462 if (ret)
5463 return ret;
5464
5465 if (value != mddev->fail_last_dev)
5466 mddev->fail_last_dev = value;
5467
5468 return len;
5469 }
5470 static struct md_sysfs_entry md_fail_last_dev =
5471 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
5472 fail_last_dev_store);
5473
serialize_policy_show(struct mddev * mddev,char * page)5474 static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
5475 {
5476 if (mddev->pers == NULL || (mddev->pers->level != 1))
5477 return sprintf(page, "n/a\n");
5478 else
5479 return sprintf(page, "%d\n", mddev->serialize_policy);
5480 }
5481
5482 /*
5483 * Setting serialize_policy to true to enforce write IO is not reordered
5484 * for raid1.
5485 */
5486 static ssize_t
serialize_policy_store(struct mddev * mddev,const char * buf,size_t len)5487 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
5488 {
5489 int err;
5490 bool value;
5491
5492 err = kstrtobool(buf, &value);
5493 if (err)
5494 return err;
5495
5496 if (value == mddev->serialize_policy)
5497 return len;
5498
5499 err = mddev_lock(mddev);
5500 if (err)
5501 return err;
5502 if (mddev->pers == NULL || (mddev->pers->level != 1)) {
5503 pr_err("md: serialize_policy is only effective for raid1\n");
5504 err = -EINVAL;
5505 goto unlock;
5506 }
5507
5508 mddev_suspend(mddev);
5509 if (value)
5510 mddev_create_serial_pool(mddev, NULL, true);
5511 else
5512 mddev_destroy_serial_pool(mddev, NULL, true);
5513 mddev->serialize_policy = value;
5514 mddev_resume(mddev);
5515 unlock:
5516 mddev_unlock(mddev);
5517 return err ?: len;
5518 }
5519
5520 static struct md_sysfs_entry md_serialize_policy =
5521 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
5522 serialize_policy_store);
5523
5524
5525 static struct attribute *md_default_attrs[] = {
5526 &md_level.attr,
5527 &md_layout.attr,
5528 &md_raid_disks.attr,
5529 &md_uuid.attr,
5530 &md_chunk_size.attr,
5531 &md_size.attr,
5532 &md_resync_start.attr,
5533 &md_metadata.attr,
5534 &md_new_device.attr,
5535 &md_safe_delay.attr,
5536 &md_array_state.attr,
5537 &md_reshape_position.attr,
5538 &md_reshape_direction.attr,
5539 &md_array_size.attr,
5540 &max_corr_read_errors.attr,
5541 &md_consistency_policy.attr,
5542 &md_fail_last_dev.attr,
5543 &md_serialize_policy.attr,
5544 NULL,
5545 };
5546
5547 static const struct attribute_group md_default_group = {
5548 .attrs = md_default_attrs,
5549 };
5550
5551 static struct attribute *md_redundancy_attrs[] = {
5552 &md_scan_mode.attr,
5553 &md_last_scan_mode.attr,
5554 &md_mismatches.attr,
5555 &md_sync_min.attr,
5556 &md_sync_max.attr,
5557 &md_sync_speed.attr,
5558 &md_sync_force_parallel.attr,
5559 &md_sync_completed.attr,
5560 &md_min_sync.attr,
5561 &md_max_sync.attr,
5562 &md_suspend_lo.attr,
5563 &md_suspend_hi.attr,
5564 &md_bitmap.attr,
5565 &md_degraded.attr,
5566 NULL,
5567 };
5568 static const struct attribute_group md_redundancy_group = {
5569 .name = NULL,
5570 .attrs = md_redundancy_attrs,
5571 };
5572
5573 static const struct attribute_group *md_attr_groups[] = {
5574 &md_default_group,
5575 &md_bitmap_group,
5576 NULL,
5577 };
5578
5579 static ssize_t
md_attr_show(struct kobject * kobj,struct attribute * attr,char * page)5580 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5581 {
5582 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5583 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5584 ssize_t rv;
5585
5586 if (!entry->show)
5587 return -EIO;
5588 spin_lock(&all_mddevs_lock);
5589 if (!mddev_get(mddev)) {
5590 spin_unlock(&all_mddevs_lock);
5591 return -EBUSY;
5592 }
5593 spin_unlock(&all_mddevs_lock);
5594
5595 rv = entry->show(mddev, page);
5596 mddev_put(mddev);
5597 return rv;
5598 }
5599
5600 static ssize_t
md_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)5601 md_attr_store(struct kobject *kobj, struct attribute *attr,
5602 const char *page, size_t length)
5603 {
5604 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5605 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5606 ssize_t rv;
5607
5608 if (!entry->store)
5609 return -EIO;
5610 if (!capable(CAP_SYS_ADMIN))
5611 return -EACCES;
5612 spin_lock(&all_mddevs_lock);
5613 if (!mddev_get(mddev)) {
5614 spin_unlock(&all_mddevs_lock);
5615 return -EBUSY;
5616 }
5617 spin_unlock(&all_mddevs_lock);
5618 rv = entry->store(mddev, page, length);
5619 mddev_put(mddev);
5620 return rv;
5621 }
5622
md_kobj_release(struct kobject * ko)5623 static void md_kobj_release(struct kobject *ko)
5624 {
5625 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5626
5627 if (mddev->sysfs_state)
5628 sysfs_put(mddev->sysfs_state);
5629 if (mddev->sysfs_level)
5630 sysfs_put(mddev->sysfs_level);
5631
5632 del_gendisk(mddev->gendisk);
5633 put_disk(mddev->gendisk);
5634 }
5635
5636 static const struct sysfs_ops md_sysfs_ops = {
5637 .show = md_attr_show,
5638 .store = md_attr_store,
5639 };
5640 static struct kobj_type md_ktype = {
5641 .release = md_kobj_release,
5642 .sysfs_ops = &md_sysfs_ops,
5643 .default_groups = md_attr_groups,
5644 };
5645
5646 int mdp_major = 0;
5647
mddev_delayed_delete(struct work_struct * ws)5648 static void mddev_delayed_delete(struct work_struct *ws)
5649 {
5650 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5651
5652 kobject_put(&mddev->kobj);
5653 }
5654
no_op(struct percpu_ref * r)5655 static void no_op(struct percpu_ref *r) {}
5656
mddev_init_writes_pending(struct mddev * mddev)5657 int mddev_init_writes_pending(struct mddev *mddev)
5658 {
5659 if (mddev->writes_pending.percpu_count_ptr)
5660 return 0;
5661 if (percpu_ref_init(&mddev->writes_pending, no_op,
5662 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0)
5663 return -ENOMEM;
5664 /* We want to start with the refcount at zero */
5665 percpu_ref_put(&mddev->writes_pending);
5666 return 0;
5667 }
5668 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5669
md_alloc(dev_t dev,char * name)5670 struct mddev *md_alloc(dev_t dev, char *name)
5671 {
5672 /*
5673 * If dev is zero, name is the name of a device to allocate with
5674 * an arbitrary minor number. It will be "md_???"
5675 * If dev is non-zero it must be a device number with a MAJOR of
5676 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5677 * the device is being created by opening a node in /dev.
5678 * If "name" is not NULL, the device is being created by
5679 * writing to /sys/module/md_mod/parameters/new_array.
5680 */
5681 static DEFINE_MUTEX(disks_mutex);
5682 struct mddev *mddev;
5683 struct gendisk *disk;
5684 int partitioned;
5685 int shift;
5686 int unit;
5687 int error ;
5688
5689 /*
5690 * Wait for any previous instance of this device to be completely
5691 * removed (mddev_delayed_delete).
5692 */
5693 flush_workqueue(md_misc_wq);
5694 flush_workqueue(md_rdev_misc_wq);
5695
5696 mutex_lock(&disks_mutex);
5697 mddev = mddev_alloc(dev);
5698 if (IS_ERR(mddev)) {
5699 error = PTR_ERR(mddev);
5700 goto out_unlock;
5701 }
5702
5703 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5704 shift = partitioned ? MdpMinorShift : 0;
5705 unit = MINOR(mddev->unit) >> shift;
5706
5707 if (name && !dev) {
5708 /* Need to ensure that 'name' is not a duplicate.
5709 */
5710 struct mddev *mddev2;
5711 spin_lock(&all_mddevs_lock);
5712
5713 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5714 if (mddev2->gendisk &&
5715 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5716 spin_unlock(&all_mddevs_lock);
5717 error = -EEXIST;
5718 goto out_free_mddev;
5719 }
5720 spin_unlock(&all_mddevs_lock);
5721 }
5722 if (name && dev)
5723 /*
5724 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5725 */
5726 mddev->hold_active = UNTIL_STOP;
5727
5728 error = -ENOMEM;
5729 disk = blk_alloc_disk(NUMA_NO_NODE);
5730 if (!disk)
5731 goto out_free_mddev;
5732
5733 disk->major = MAJOR(mddev->unit);
5734 disk->first_minor = unit << shift;
5735 disk->minors = 1 << shift;
5736 if (name)
5737 strcpy(disk->disk_name, name);
5738 else if (partitioned)
5739 sprintf(disk->disk_name, "md_d%d", unit);
5740 else
5741 sprintf(disk->disk_name, "md%d", unit);
5742 disk->fops = &md_fops;
5743 disk->private_data = mddev;
5744
5745 mddev->queue = disk->queue;
5746 blk_set_stacking_limits(&mddev->queue->limits);
5747 blk_queue_write_cache(mddev->queue, true, true);
5748 disk->events |= DISK_EVENT_MEDIA_CHANGE;
5749 mddev->gendisk = disk;
5750 error = add_disk(disk);
5751 if (error)
5752 goto out_put_disk;
5753
5754 kobject_init(&mddev->kobj, &md_ktype);
5755 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5756 if (error) {
5757 /*
5758 * The disk is already live at this point. Clear the hold flag
5759 * and let mddev_put take care of the deletion, as it isn't any
5760 * different from a normal close on last release now.
5761 */
5762 mddev->hold_active = 0;
5763 mutex_unlock(&disks_mutex);
5764 mddev_put(mddev);
5765 return ERR_PTR(error);
5766 }
5767
5768 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5769 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5770 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
5771 mutex_unlock(&disks_mutex);
5772 return mddev;
5773
5774 out_put_disk:
5775 put_disk(disk);
5776 out_free_mddev:
5777 mddev_free(mddev);
5778 out_unlock:
5779 mutex_unlock(&disks_mutex);
5780 return ERR_PTR(error);
5781 }
5782
md_alloc_and_put(dev_t dev,char * name)5783 static int md_alloc_and_put(dev_t dev, char *name)
5784 {
5785 struct mddev *mddev = md_alloc(dev, name);
5786
5787 if (IS_ERR(mddev))
5788 return PTR_ERR(mddev);
5789 mddev_put(mddev);
5790 return 0;
5791 }
5792
md_probe(dev_t dev)5793 static void md_probe(dev_t dev)
5794 {
5795 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512)
5796 return;
5797 if (create_on_open)
5798 md_alloc_and_put(dev, NULL);
5799 }
5800
add_named_array(const char * val,const struct kernel_param * kp)5801 static int add_named_array(const char *val, const struct kernel_param *kp)
5802 {
5803 /*
5804 * val must be "md_*" or "mdNNN".
5805 * For "md_*" we allocate an array with a large free minor number, and
5806 * set the name to val. val must not already be an active name.
5807 * For "mdNNN" we allocate an array with the minor number NNN
5808 * which must not already be in use.
5809 */
5810 int len = strlen(val);
5811 char buf[DISK_NAME_LEN];
5812 unsigned long devnum;
5813
5814 while (len && val[len-1] == '\n')
5815 len--;
5816 if (len >= DISK_NAME_LEN)
5817 return -E2BIG;
5818 strscpy(buf, val, len+1);
5819 if (strncmp(buf, "md_", 3) == 0)
5820 return md_alloc_and_put(0, buf);
5821 if (strncmp(buf, "md", 2) == 0 &&
5822 isdigit(buf[2]) &&
5823 kstrtoul(buf+2, 10, &devnum) == 0 &&
5824 devnum <= MINORMASK)
5825 return md_alloc_and_put(MKDEV(MD_MAJOR, devnum), NULL);
5826
5827 return -EINVAL;
5828 }
5829
md_safemode_timeout(struct timer_list * t)5830 static void md_safemode_timeout(struct timer_list *t)
5831 {
5832 struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5833
5834 mddev->safemode = 1;
5835 if (mddev->external)
5836 sysfs_notify_dirent_safe(mddev->sysfs_state);
5837
5838 md_wakeup_thread(mddev->thread);
5839 }
5840
5841 static int start_dirty_degraded;
active_io_release(struct percpu_ref * ref)5842 static void active_io_release(struct percpu_ref *ref)
5843 {
5844 struct mddev *mddev = container_of(ref, struct mddev, active_io);
5845
5846 wake_up(&mddev->sb_wait);
5847 }
5848
md_run(struct mddev * mddev)5849 int md_run(struct mddev *mddev)
5850 {
5851 int err;
5852 struct md_rdev *rdev;
5853 struct md_personality *pers;
5854 bool nowait = true;
5855
5856 if (list_empty(&mddev->disks))
5857 /* cannot run an array with no devices.. */
5858 return -EINVAL;
5859
5860 if (mddev->pers)
5861 return -EBUSY;
5862 /* Cannot run until previous stop completes properly */
5863 if (mddev->sysfs_active)
5864 return -EBUSY;
5865
5866 /*
5867 * Analyze all RAID superblock(s)
5868 */
5869 if (!mddev->raid_disks) {
5870 if (!mddev->persistent)
5871 return -EINVAL;
5872 err = analyze_sbs(mddev);
5873 if (err)
5874 return -EINVAL;
5875 }
5876
5877 if (mddev->level != LEVEL_NONE)
5878 request_module("md-level-%d", mddev->level);
5879 else if (mddev->clevel[0])
5880 request_module("md-%s", mddev->clevel);
5881
5882 /*
5883 * Drop all container device buffers, from now on
5884 * the only valid external interface is through the md
5885 * device.
5886 */
5887 mddev->has_superblocks = false;
5888 rdev_for_each(rdev, mddev) {
5889 if (test_bit(Faulty, &rdev->flags))
5890 continue;
5891 sync_blockdev(rdev->bdev);
5892 invalidate_bdev(rdev->bdev);
5893 if (mddev->ro != MD_RDONLY && rdev_read_only(rdev)) {
5894 mddev->ro = MD_RDONLY;
5895 if (mddev->gendisk)
5896 set_disk_ro(mddev->gendisk, 1);
5897 }
5898
5899 if (rdev->sb_page)
5900 mddev->has_superblocks = true;
5901
5902 /* perform some consistency tests on the device.
5903 * We don't want the data to overlap the metadata,
5904 * Internal Bitmap issues have been handled elsewhere.
5905 */
5906 if (rdev->meta_bdev) {
5907 /* Nothing to check */;
5908 } else if (rdev->data_offset < rdev->sb_start) {
5909 if (mddev->dev_sectors &&
5910 rdev->data_offset + mddev->dev_sectors
5911 > rdev->sb_start) {
5912 pr_warn("md: %s: data overlaps metadata\n",
5913 mdname(mddev));
5914 return -EINVAL;
5915 }
5916 } else {
5917 if (rdev->sb_start + rdev->sb_size/512
5918 > rdev->data_offset) {
5919 pr_warn("md: %s: metadata overlaps data\n",
5920 mdname(mddev));
5921 return -EINVAL;
5922 }
5923 }
5924 sysfs_notify_dirent_safe(rdev->sysfs_state);
5925 nowait = nowait && bdev_nowait(rdev->bdev);
5926 }
5927
5928 err = percpu_ref_init(&mddev->active_io, active_io_release,
5929 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
5930 if (err)
5931 return err;
5932
5933 if (!bioset_initialized(&mddev->bio_set)) {
5934 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5935 if (err)
5936 goto exit_active_io;
5937 }
5938 if (!bioset_initialized(&mddev->sync_set)) {
5939 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5940 if (err)
5941 goto exit_bio_set;
5942 }
5943
5944 spin_lock(&pers_lock);
5945 pers = find_pers(mddev->level, mddev->clevel);
5946 if (!pers || !try_module_get(pers->owner)) {
5947 spin_unlock(&pers_lock);
5948 if (mddev->level != LEVEL_NONE)
5949 pr_warn("md: personality for level %d is not loaded!\n",
5950 mddev->level);
5951 else
5952 pr_warn("md: personality for level %s is not loaded!\n",
5953 mddev->clevel);
5954 err = -EINVAL;
5955 goto abort;
5956 }
5957 spin_unlock(&pers_lock);
5958 if (mddev->level != pers->level) {
5959 mddev->level = pers->level;
5960 mddev->new_level = pers->level;
5961 }
5962 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5963
5964 if (mddev->reshape_position != MaxSector &&
5965 pers->start_reshape == NULL) {
5966 /* This personality cannot handle reshaping... */
5967 module_put(pers->owner);
5968 err = -EINVAL;
5969 goto abort;
5970 }
5971
5972 if (pers->sync_request) {
5973 /* Warn if this is a potentially silly
5974 * configuration.
5975 */
5976 struct md_rdev *rdev2;
5977 int warned = 0;
5978
5979 rdev_for_each(rdev, mddev)
5980 rdev_for_each(rdev2, mddev) {
5981 if (rdev < rdev2 &&
5982 rdev->bdev->bd_disk ==
5983 rdev2->bdev->bd_disk) {
5984 pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n",
5985 mdname(mddev),
5986 rdev->bdev,
5987 rdev2->bdev);
5988 warned = 1;
5989 }
5990 }
5991
5992 if (warned)
5993 pr_warn("True protection against single-disk failure might be compromised.\n");
5994 }
5995
5996 mddev->recovery = 0;
5997 /* may be over-ridden by personality */
5998 mddev->resync_max_sectors = mddev->dev_sectors;
5999
6000 mddev->ok_start_degraded = start_dirty_degraded;
6001
6002 if (start_readonly && md_is_rdwr(mddev))
6003 mddev->ro = MD_AUTO_READ; /* read-only, but switch on first write */
6004
6005 err = pers->run(mddev);
6006 if (err)
6007 pr_warn("md: pers->run() failed ...\n");
6008 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
6009 WARN_ONCE(!mddev->external_size,
6010 "%s: default size too small, but 'external_size' not in effect?\n",
6011 __func__);
6012 pr_warn("md: invalid array_size %llu > default size %llu\n",
6013 (unsigned long long)mddev->array_sectors / 2,
6014 (unsigned long long)pers->size(mddev, 0, 0) / 2);
6015 err = -EINVAL;
6016 }
6017 if (err == 0 && pers->sync_request &&
6018 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
6019 struct bitmap *bitmap;
6020
6021 bitmap = md_bitmap_create(mddev, -1);
6022 if (IS_ERR(bitmap)) {
6023 err = PTR_ERR(bitmap);
6024 pr_warn("%s: failed to create bitmap (%d)\n",
6025 mdname(mddev), err);
6026 } else
6027 mddev->bitmap = bitmap;
6028
6029 }
6030 if (err)
6031 goto bitmap_abort;
6032
6033 if (mddev->bitmap_info.max_write_behind > 0) {
6034 bool create_pool = false;
6035
6036 rdev_for_each(rdev, mddev) {
6037 if (test_bit(WriteMostly, &rdev->flags) &&
6038 rdev_init_serial(rdev))
6039 create_pool = true;
6040 }
6041 if (create_pool && mddev->serial_info_pool == NULL) {
6042 mddev->serial_info_pool =
6043 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
6044 sizeof(struct serial_info));
6045 if (!mddev->serial_info_pool) {
6046 err = -ENOMEM;
6047 goto bitmap_abort;
6048 }
6049 }
6050 }
6051
6052 if (mddev->queue) {
6053 bool nonrot = true;
6054
6055 rdev_for_each(rdev, mddev) {
6056 if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) {
6057 nonrot = false;
6058 break;
6059 }
6060 }
6061 if (mddev->degraded)
6062 nonrot = false;
6063 if (nonrot)
6064 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
6065 else
6066 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
6067 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue);
6068
6069 /* Set the NOWAIT flags if all underlying devices support it */
6070 if (nowait)
6071 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue);
6072 }
6073 if (pers->sync_request) {
6074 if (mddev->kobj.sd &&
6075 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
6076 pr_warn("md: cannot register extra attributes for %s\n",
6077 mdname(mddev));
6078 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
6079 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
6080 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
6081 } else if (mddev->ro == MD_AUTO_READ)
6082 mddev->ro = MD_RDWR;
6083
6084 atomic_set(&mddev->max_corr_read_errors,
6085 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
6086 mddev->safemode = 0;
6087 if (mddev_is_clustered(mddev))
6088 mddev->safemode_delay = 0;
6089 else
6090 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
6091 mddev->in_sync = 1;
6092 smp_wmb();
6093 spin_lock(&mddev->lock);
6094 mddev->pers = pers;
6095 spin_unlock(&mddev->lock);
6096 rdev_for_each(rdev, mddev)
6097 if (rdev->raid_disk >= 0)
6098 sysfs_link_rdev(mddev, rdev); /* failure here is OK */
6099
6100 if (mddev->degraded && md_is_rdwr(mddev))
6101 /* This ensures that recovering status is reported immediately
6102 * via sysfs - until a lack of spares is confirmed.
6103 */
6104 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6105 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6106
6107 if (mddev->sb_flags)
6108 md_update_sb(mddev, 0);
6109
6110 md_new_event();
6111 return 0;
6112
6113 bitmap_abort:
6114 mddev_detach(mddev);
6115 if (mddev->private)
6116 pers->free(mddev, mddev->private);
6117 mddev->private = NULL;
6118 module_put(pers->owner);
6119 md_bitmap_destroy(mddev);
6120 abort:
6121 bioset_exit(&mddev->sync_set);
6122 exit_bio_set:
6123 bioset_exit(&mddev->bio_set);
6124 exit_active_io:
6125 percpu_ref_exit(&mddev->active_io);
6126 return err;
6127 }
6128 EXPORT_SYMBOL_GPL(md_run);
6129
do_md_run(struct mddev * mddev)6130 int do_md_run(struct mddev *mddev)
6131 {
6132 int err;
6133
6134 set_bit(MD_NOT_READY, &mddev->flags);
6135 err = md_run(mddev);
6136 if (err)
6137 goto out;
6138 err = md_bitmap_load(mddev);
6139 if (err) {
6140 md_bitmap_destroy(mddev);
6141 goto out;
6142 }
6143
6144 if (mddev_is_clustered(mddev))
6145 md_allow_write(mddev);
6146
6147 /* run start up tasks that require md_thread */
6148 md_start(mddev);
6149
6150 md_wakeup_thread(mddev->thread);
6151 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
6152
6153 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors);
6154 clear_bit(MD_NOT_READY, &mddev->flags);
6155 mddev->changed = 1;
6156 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
6157 sysfs_notify_dirent_safe(mddev->sysfs_state);
6158 sysfs_notify_dirent_safe(mddev->sysfs_action);
6159 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
6160 out:
6161 clear_bit(MD_NOT_READY, &mddev->flags);
6162 return err;
6163 }
6164
md_start(struct mddev * mddev)6165 int md_start(struct mddev *mddev)
6166 {
6167 int ret = 0;
6168
6169 if (mddev->pers->start) {
6170 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6171 md_wakeup_thread(mddev->thread);
6172 ret = mddev->pers->start(mddev);
6173 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6174 md_wakeup_thread(mddev->sync_thread);
6175 }
6176 return ret;
6177 }
6178 EXPORT_SYMBOL_GPL(md_start);
6179
restart_array(struct mddev * mddev)6180 static int restart_array(struct mddev *mddev)
6181 {
6182 struct gendisk *disk = mddev->gendisk;
6183 struct md_rdev *rdev;
6184 bool has_journal = false;
6185 bool has_readonly = false;
6186
6187 /* Complain if it has no devices */
6188 if (list_empty(&mddev->disks))
6189 return -ENXIO;
6190 if (!mddev->pers)
6191 return -EINVAL;
6192 if (md_is_rdwr(mddev))
6193 return -EBUSY;
6194
6195 rcu_read_lock();
6196 rdev_for_each_rcu(rdev, mddev) {
6197 if (test_bit(Journal, &rdev->flags) &&
6198 !test_bit(Faulty, &rdev->flags))
6199 has_journal = true;
6200 if (rdev_read_only(rdev))
6201 has_readonly = true;
6202 }
6203 rcu_read_unlock();
6204 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
6205 /* Don't restart rw with journal missing/faulty */
6206 return -EINVAL;
6207 if (has_readonly)
6208 return -EROFS;
6209
6210 mddev->safemode = 0;
6211 mddev->ro = MD_RDWR;
6212 set_disk_ro(disk, 0);
6213 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
6214 /* Kick recovery or resync if necessary */
6215 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6216 md_wakeup_thread(mddev->thread);
6217 md_wakeup_thread(mddev->sync_thread);
6218 sysfs_notify_dirent_safe(mddev->sysfs_state);
6219 return 0;
6220 }
6221
md_clean(struct mddev * mddev)6222 static void md_clean(struct mddev *mddev)
6223 {
6224 mddev->array_sectors = 0;
6225 mddev->external_size = 0;
6226 mddev->dev_sectors = 0;
6227 mddev->raid_disks = 0;
6228 mddev->recovery_cp = 0;
6229 mddev->resync_min = 0;
6230 mddev->resync_max = MaxSector;
6231 mddev->reshape_position = MaxSector;
6232 mddev->external = 0;
6233 mddev->persistent = 0;
6234 mddev->level = LEVEL_NONE;
6235 mddev->clevel[0] = 0;
6236 mddev->flags = 0;
6237 mddev->sb_flags = 0;
6238 mddev->ro = MD_RDWR;
6239 mddev->metadata_type[0] = 0;
6240 mddev->chunk_sectors = 0;
6241 mddev->ctime = mddev->utime = 0;
6242 mddev->layout = 0;
6243 mddev->max_disks = 0;
6244 mddev->events = 0;
6245 mddev->can_decrease_events = 0;
6246 mddev->delta_disks = 0;
6247 mddev->reshape_backwards = 0;
6248 mddev->new_level = LEVEL_NONE;
6249 mddev->new_layout = 0;
6250 mddev->new_chunk_sectors = 0;
6251 mddev->curr_resync = 0;
6252 atomic64_set(&mddev->resync_mismatches, 0);
6253 mddev->suspend_lo = mddev->suspend_hi = 0;
6254 mddev->sync_speed_min = mddev->sync_speed_max = 0;
6255 mddev->recovery = 0;
6256 mddev->in_sync = 0;
6257 mddev->changed = 0;
6258 mddev->degraded = 0;
6259 mddev->safemode = 0;
6260 mddev->private = NULL;
6261 mddev->cluster_info = NULL;
6262 mddev->bitmap_info.offset = 0;
6263 mddev->bitmap_info.default_offset = 0;
6264 mddev->bitmap_info.default_space = 0;
6265 mddev->bitmap_info.chunksize = 0;
6266 mddev->bitmap_info.daemon_sleep = 0;
6267 mddev->bitmap_info.max_write_behind = 0;
6268 mddev->bitmap_info.nodes = 0;
6269 }
6270
__md_stop_writes(struct mddev * mddev)6271 static void __md_stop_writes(struct mddev *mddev)
6272 {
6273 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6274 if (work_pending(&mddev->del_work))
6275 flush_workqueue(md_misc_wq);
6276 if (mddev->sync_thread) {
6277 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6278 md_unregister_thread(&mddev->sync_thread);
6279 md_reap_sync_thread(mddev);
6280 }
6281
6282 del_timer_sync(&mddev->safemode_timer);
6283
6284 if (mddev->pers && mddev->pers->quiesce) {
6285 mddev->pers->quiesce(mddev, 1);
6286 mddev->pers->quiesce(mddev, 0);
6287 }
6288 md_bitmap_flush(mddev);
6289
6290 if (md_is_rdwr(mddev) &&
6291 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
6292 mddev->sb_flags)) {
6293 /* mark array as shutdown cleanly */
6294 if (!mddev_is_clustered(mddev))
6295 mddev->in_sync = 1;
6296 md_update_sb(mddev, 1);
6297 }
6298 /* disable policy to guarantee rdevs free resources for serialization */
6299 mddev->serialize_policy = 0;
6300 mddev_destroy_serial_pool(mddev, NULL, true);
6301 }
6302
md_stop_writes(struct mddev * mddev)6303 void md_stop_writes(struct mddev *mddev)
6304 {
6305 mddev_lock_nointr(mddev);
6306 __md_stop_writes(mddev);
6307 mddev_unlock(mddev);
6308 }
6309 EXPORT_SYMBOL_GPL(md_stop_writes);
6310
mddev_detach(struct mddev * mddev)6311 static void mddev_detach(struct mddev *mddev)
6312 {
6313 md_bitmap_wait_behind_writes(mddev);
6314 if (mddev->pers && mddev->pers->quiesce && !is_md_suspended(mddev)) {
6315 mddev->pers->quiesce(mddev, 1);
6316 mddev->pers->quiesce(mddev, 0);
6317 }
6318 md_unregister_thread(&mddev->thread);
6319 if (mddev->queue)
6320 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
6321 }
6322
__md_stop(struct mddev * mddev)6323 static void __md_stop(struct mddev *mddev)
6324 {
6325 struct md_personality *pers = mddev->pers;
6326 md_bitmap_destroy(mddev);
6327 mddev_detach(mddev);
6328 /* Ensure ->event_work is done */
6329 if (mddev->event_work.func)
6330 flush_workqueue(md_misc_wq);
6331 spin_lock(&mddev->lock);
6332 mddev->pers = NULL;
6333 spin_unlock(&mddev->lock);
6334 if (mddev->private)
6335 pers->free(mddev, mddev->private);
6336 mddev->private = NULL;
6337 if (pers->sync_request && mddev->to_remove == NULL)
6338 mddev->to_remove = &md_redundancy_group;
6339 module_put(pers->owner);
6340 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6341
6342 percpu_ref_exit(&mddev->active_io);
6343 bioset_exit(&mddev->bio_set);
6344 bioset_exit(&mddev->sync_set);
6345 }
6346
md_stop(struct mddev * mddev)6347 void md_stop(struct mddev *mddev)
6348 {
6349 lockdep_assert_held(&mddev->reconfig_mutex);
6350
6351 /* stop the array and free an attached data structures.
6352 * This is called from dm-raid
6353 */
6354 __md_stop_writes(mddev);
6355 __md_stop(mddev);
6356 percpu_ref_exit(&mddev->writes_pending);
6357 }
6358
6359 EXPORT_SYMBOL_GPL(md_stop);
6360
md_set_readonly(struct mddev * mddev,struct block_device * bdev)6361 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
6362 {
6363 int err = 0;
6364 int did_freeze = 0;
6365
6366 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6367 return -EBUSY;
6368
6369 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6370 did_freeze = 1;
6371 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6372 md_wakeup_thread(mddev->thread);
6373 }
6374 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6375 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6376 if (mddev->sync_thread)
6377 /* Thread might be blocked waiting for metadata update
6378 * which will now never happen */
6379 wake_up_process(mddev->sync_thread->tsk);
6380
6381 mddev_unlock(mddev);
6382 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
6383 &mddev->recovery));
6384 wait_event(mddev->sb_wait,
6385 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
6386 mddev_lock_nointr(mddev);
6387
6388 mutex_lock(&mddev->open_mutex);
6389 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6390 mddev->sync_thread ||
6391 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6392 pr_warn("md: %s still in use.\n",mdname(mddev));
6393 err = -EBUSY;
6394 goto out;
6395 }
6396
6397 if (mddev->pers) {
6398 __md_stop_writes(mddev);
6399
6400 if (mddev->ro == MD_RDONLY) {
6401 err = -ENXIO;
6402 goto out;
6403 }
6404
6405 mddev->ro = MD_RDONLY;
6406 set_disk_ro(mddev->gendisk, 1);
6407 }
6408
6409 out:
6410 if ((mddev->pers && !err) || did_freeze) {
6411 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6412 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6413 md_wakeup_thread(mddev->thread);
6414 sysfs_notify_dirent_safe(mddev->sysfs_state);
6415 }
6416
6417 mutex_unlock(&mddev->open_mutex);
6418 return err;
6419 }
6420
6421 /* mode:
6422 * 0 - completely stop and dis-assemble array
6423 * 2 - stop but do not disassemble array
6424 */
do_md_stop(struct mddev * mddev,int mode,struct block_device * bdev)6425 static int do_md_stop(struct mddev *mddev, int mode,
6426 struct block_device *bdev)
6427 {
6428 struct gendisk *disk = mddev->gendisk;
6429 struct md_rdev *rdev;
6430 int did_freeze = 0;
6431
6432 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6433 did_freeze = 1;
6434 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6435 md_wakeup_thread(mddev->thread);
6436 }
6437 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6438 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6439 if (mddev->sync_thread)
6440 /* Thread might be blocked waiting for metadata update
6441 * which will now never happen */
6442 wake_up_process(mddev->sync_thread->tsk);
6443
6444 mddev_unlock(mddev);
6445 wait_event(resync_wait, (mddev->sync_thread == NULL &&
6446 !test_bit(MD_RECOVERY_RUNNING,
6447 &mddev->recovery)));
6448 mddev_lock_nointr(mddev);
6449
6450 mutex_lock(&mddev->open_mutex);
6451 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6452 mddev->sysfs_active ||
6453 mddev->sync_thread ||
6454 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6455 pr_warn("md: %s still in use.\n",mdname(mddev));
6456 mutex_unlock(&mddev->open_mutex);
6457 if (did_freeze) {
6458 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6459 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6460 md_wakeup_thread(mddev->thread);
6461 }
6462 return -EBUSY;
6463 }
6464 if (mddev->pers) {
6465 if (!md_is_rdwr(mddev))
6466 set_disk_ro(disk, 0);
6467
6468 __md_stop_writes(mddev);
6469 __md_stop(mddev);
6470
6471 /* tell userspace to handle 'inactive' */
6472 sysfs_notify_dirent_safe(mddev->sysfs_state);
6473
6474 rdev_for_each(rdev, mddev)
6475 if (rdev->raid_disk >= 0)
6476 sysfs_unlink_rdev(mddev, rdev);
6477
6478 set_capacity_and_notify(disk, 0);
6479 mutex_unlock(&mddev->open_mutex);
6480 mddev->changed = 1;
6481
6482 if (!md_is_rdwr(mddev))
6483 mddev->ro = MD_RDWR;
6484 } else
6485 mutex_unlock(&mddev->open_mutex);
6486 /*
6487 * Free resources if final stop
6488 */
6489 if (mode == 0) {
6490 pr_info("md: %s stopped.\n", mdname(mddev));
6491
6492 if (mddev->bitmap_info.file) {
6493 struct file *f = mddev->bitmap_info.file;
6494 spin_lock(&mddev->lock);
6495 mddev->bitmap_info.file = NULL;
6496 spin_unlock(&mddev->lock);
6497 fput(f);
6498 }
6499 mddev->bitmap_info.offset = 0;
6500
6501 export_array(mddev);
6502
6503 md_clean(mddev);
6504 if (mddev->hold_active == UNTIL_STOP)
6505 mddev->hold_active = 0;
6506 }
6507 md_new_event();
6508 sysfs_notify_dirent_safe(mddev->sysfs_state);
6509 return 0;
6510 }
6511
6512 #ifndef MODULE
autorun_array(struct mddev * mddev)6513 static void autorun_array(struct mddev *mddev)
6514 {
6515 struct md_rdev *rdev;
6516 int err;
6517
6518 if (list_empty(&mddev->disks))
6519 return;
6520
6521 pr_info("md: running: ");
6522
6523 rdev_for_each(rdev, mddev) {
6524 pr_cont("<%pg>", rdev->bdev);
6525 }
6526 pr_cont("\n");
6527
6528 err = do_md_run(mddev);
6529 if (err) {
6530 pr_warn("md: do_md_run() returned %d\n", err);
6531 do_md_stop(mddev, 0, NULL);
6532 }
6533 }
6534
6535 /*
6536 * lets try to run arrays based on all disks that have arrived
6537 * until now. (those are in pending_raid_disks)
6538 *
6539 * the method: pick the first pending disk, collect all disks with
6540 * the same UUID, remove all from the pending list and put them into
6541 * the 'same_array' list. Then order this list based on superblock
6542 * update time (freshest comes first), kick out 'old' disks and
6543 * compare superblocks. If everything's fine then run it.
6544 *
6545 * If "unit" is allocated, then bump its reference count
6546 */
autorun_devices(int part)6547 static void autorun_devices(int part)
6548 {
6549 struct md_rdev *rdev0, *rdev, *tmp;
6550 struct mddev *mddev;
6551
6552 pr_info("md: autorun ...\n");
6553 while (!list_empty(&pending_raid_disks)) {
6554 int unit;
6555 dev_t dev;
6556 LIST_HEAD(candidates);
6557 rdev0 = list_entry(pending_raid_disks.next,
6558 struct md_rdev, same_set);
6559
6560 pr_debug("md: considering %pg ...\n", rdev0->bdev);
6561 INIT_LIST_HEAD(&candidates);
6562 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6563 if (super_90_load(rdev, rdev0, 0) >= 0) {
6564 pr_debug("md: adding %pg ...\n",
6565 rdev->bdev);
6566 list_move(&rdev->same_set, &candidates);
6567 }
6568 /*
6569 * now we have a set of devices, with all of them having
6570 * mostly sane superblocks. It's time to allocate the
6571 * mddev.
6572 */
6573 if (part) {
6574 dev = MKDEV(mdp_major,
6575 rdev0->preferred_minor << MdpMinorShift);
6576 unit = MINOR(dev) >> MdpMinorShift;
6577 } else {
6578 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6579 unit = MINOR(dev);
6580 }
6581 if (rdev0->preferred_minor != unit) {
6582 pr_warn("md: unit number in %pg is bad: %d\n",
6583 rdev0->bdev, rdev0->preferred_minor);
6584 break;
6585 }
6586
6587 mddev = md_alloc(dev, NULL);
6588 if (IS_ERR(mddev))
6589 break;
6590
6591 if (mddev_lock(mddev))
6592 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6593 else if (mddev->raid_disks || mddev->major_version
6594 || !list_empty(&mddev->disks)) {
6595 pr_warn("md: %s already running, cannot run %pg\n",
6596 mdname(mddev), rdev0->bdev);
6597 mddev_unlock(mddev);
6598 } else {
6599 pr_debug("md: created %s\n", mdname(mddev));
6600 mddev->persistent = 1;
6601 rdev_for_each_list(rdev, tmp, &candidates) {
6602 list_del_init(&rdev->same_set);
6603 if (bind_rdev_to_array(rdev, mddev))
6604 export_rdev(rdev);
6605 }
6606 autorun_array(mddev);
6607 mddev_unlock(mddev);
6608 }
6609 /* on success, candidates will be empty, on error
6610 * it won't...
6611 */
6612 rdev_for_each_list(rdev, tmp, &candidates) {
6613 list_del_init(&rdev->same_set);
6614 export_rdev(rdev);
6615 }
6616 mddev_put(mddev);
6617 }
6618 pr_info("md: ... autorun DONE.\n");
6619 }
6620 #endif /* !MODULE */
6621
get_version(void __user * arg)6622 static int get_version(void __user *arg)
6623 {
6624 mdu_version_t ver;
6625
6626 ver.major = MD_MAJOR_VERSION;
6627 ver.minor = MD_MINOR_VERSION;
6628 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6629
6630 if (copy_to_user(arg, &ver, sizeof(ver)))
6631 return -EFAULT;
6632
6633 return 0;
6634 }
6635
get_array_info(struct mddev * mddev,void __user * arg)6636 static int get_array_info(struct mddev *mddev, void __user *arg)
6637 {
6638 mdu_array_info_t info;
6639 int nr,working,insync,failed,spare;
6640 struct md_rdev *rdev;
6641
6642 nr = working = insync = failed = spare = 0;
6643 rcu_read_lock();
6644 rdev_for_each_rcu(rdev, mddev) {
6645 nr++;
6646 if (test_bit(Faulty, &rdev->flags))
6647 failed++;
6648 else {
6649 working++;
6650 if (test_bit(In_sync, &rdev->flags))
6651 insync++;
6652 else if (test_bit(Journal, &rdev->flags))
6653 /* TODO: add journal count to md_u.h */
6654 ;
6655 else
6656 spare++;
6657 }
6658 }
6659 rcu_read_unlock();
6660
6661 info.major_version = mddev->major_version;
6662 info.minor_version = mddev->minor_version;
6663 info.patch_version = MD_PATCHLEVEL_VERSION;
6664 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6665 info.level = mddev->level;
6666 info.size = mddev->dev_sectors / 2;
6667 if (info.size != mddev->dev_sectors / 2) /* overflow */
6668 info.size = -1;
6669 info.nr_disks = nr;
6670 info.raid_disks = mddev->raid_disks;
6671 info.md_minor = mddev->md_minor;
6672 info.not_persistent= !mddev->persistent;
6673
6674 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6675 info.state = 0;
6676 if (mddev->in_sync)
6677 info.state = (1<<MD_SB_CLEAN);
6678 if (mddev->bitmap && mddev->bitmap_info.offset)
6679 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6680 if (mddev_is_clustered(mddev))
6681 info.state |= (1<<MD_SB_CLUSTERED);
6682 info.active_disks = insync;
6683 info.working_disks = working;
6684 info.failed_disks = failed;
6685 info.spare_disks = spare;
6686
6687 info.layout = mddev->layout;
6688 info.chunk_size = mddev->chunk_sectors << 9;
6689
6690 if (copy_to_user(arg, &info, sizeof(info)))
6691 return -EFAULT;
6692
6693 return 0;
6694 }
6695
get_bitmap_file(struct mddev * mddev,void __user * arg)6696 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6697 {
6698 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6699 char *ptr;
6700 int err;
6701
6702 file = kzalloc(sizeof(*file), GFP_NOIO);
6703 if (!file)
6704 return -ENOMEM;
6705
6706 err = 0;
6707 spin_lock(&mddev->lock);
6708 /* bitmap enabled */
6709 if (mddev->bitmap_info.file) {
6710 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6711 sizeof(file->pathname));
6712 if (IS_ERR(ptr))
6713 err = PTR_ERR(ptr);
6714 else
6715 memmove(file->pathname, ptr,
6716 sizeof(file->pathname)-(ptr-file->pathname));
6717 }
6718 spin_unlock(&mddev->lock);
6719
6720 if (err == 0 &&
6721 copy_to_user(arg, file, sizeof(*file)))
6722 err = -EFAULT;
6723
6724 kfree(file);
6725 return err;
6726 }
6727
get_disk_info(struct mddev * mddev,void __user * arg)6728 static int get_disk_info(struct mddev *mddev, void __user * arg)
6729 {
6730 mdu_disk_info_t info;
6731 struct md_rdev *rdev;
6732
6733 if (copy_from_user(&info, arg, sizeof(info)))
6734 return -EFAULT;
6735
6736 rcu_read_lock();
6737 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6738 if (rdev) {
6739 info.major = MAJOR(rdev->bdev->bd_dev);
6740 info.minor = MINOR(rdev->bdev->bd_dev);
6741 info.raid_disk = rdev->raid_disk;
6742 info.state = 0;
6743 if (test_bit(Faulty, &rdev->flags))
6744 info.state |= (1<<MD_DISK_FAULTY);
6745 else if (test_bit(In_sync, &rdev->flags)) {
6746 info.state |= (1<<MD_DISK_ACTIVE);
6747 info.state |= (1<<MD_DISK_SYNC);
6748 }
6749 if (test_bit(Journal, &rdev->flags))
6750 info.state |= (1<<MD_DISK_JOURNAL);
6751 if (test_bit(WriteMostly, &rdev->flags))
6752 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6753 if (test_bit(FailFast, &rdev->flags))
6754 info.state |= (1<<MD_DISK_FAILFAST);
6755 } else {
6756 info.major = info.minor = 0;
6757 info.raid_disk = -1;
6758 info.state = (1<<MD_DISK_REMOVED);
6759 }
6760 rcu_read_unlock();
6761
6762 if (copy_to_user(arg, &info, sizeof(info)))
6763 return -EFAULT;
6764
6765 return 0;
6766 }
6767
md_add_new_disk(struct mddev * mddev,struct mdu_disk_info_s * info)6768 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info)
6769 {
6770 struct md_rdev *rdev;
6771 dev_t dev = MKDEV(info->major,info->minor);
6772
6773 if (mddev_is_clustered(mddev) &&
6774 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6775 pr_warn("%s: Cannot add to clustered mddev.\n",
6776 mdname(mddev));
6777 return -EINVAL;
6778 }
6779
6780 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6781 return -EOVERFLOW;
6782
6783 if (!mddev->raid_disks) {
6784 int err;
6785 /* expecting a device which has a superblock */
6786 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6787 if (IS_ERR(rdev)) {
6788 pr_warn("md: md_import_device returned %ld\n",
6789 PTR_ERR(rdev));
6790 return PTR_ERR(rdev);
6791 }
6792 if (!list_empty(&mddev->disks)) {
6793 struct md_rdev *rdev0
6794 = list_entry(mddev->disks.next,
6795 struct md_rdev, same_set);
6796 err = super_types[mddev->major_version]
6797 .load_super(rdev, rdev0, mddev->minor_version);
6798 if (err < 0) {
6799 pr_warn("md: %pg has different UUID to %pg\n",
6800 rdev->bdev,
6801 rdev0->bdev);
6802 export_rdev(rdev);
6803 return -EINVAL;
6804 }
6805 }
6806 err = bind_rdev_to_array(rdev, mddev);
6807 if (err)
6808 export_rdev(rdev);
6809 return err;
6810 }
6811
6812 /*
6813 * md_add_new_disk can be used once the array is assembled
6814 * to add "hot spares". They must already have a superblock
6815 * written
6816 */
6817 if (mddev->pers) {
6818 int err;
6819 if (!mddev->pers->hot_add_disk) {
6820 pr_warn("%s: personality does not support diskops!\n",
6821 mdname(mddev));
6822 return -EINVAL;
6823 }
6824 if (mddev->persistent)
6825 rdev = md_import_device(dev, mddev->major_version,
6826 mddev->minor_version);
6827 else
6828 rdev = md_import_device(dev, -1, -1);
6829 if (IS_ERR(rdev)) {
6830 pr_warn("md: md_import_device returned %ld\n",
6831 PTR_ERR(rdev));
6832 return PTR_ERR(rdev);
6833 }
6834 /* set saved_raid_disk if appropriate */
6835 if (!mddev->persistent) {
6836 if (info->state & (1<<MD_DISK_SYNC) &&
6837 info->raid_disk < mddev->raid_disks) {
6838 rdev->raid_disk = info->raid_disk;
6839 set_bit(In_sync, &rdev->flags);
6840 clear_bit(Bitmap_sync, &rdev->flags);
6841 } else
6842 rdev->raid_disk = -1;
6843 rdev->saved_raid_disk = rdev->raid_disk;
6844 } else
6845 super_types[mddev->major_version].
6846 validate_super(mddev, NULL/*freshest*/, rdev);
6847 if ((info->state & (1<<MD_DISK_SYNC)) &&
6848 rdev->raid_disk != info->raid_disk) {
6849 /* This was a hot-add request, but events doesn't
6850 * match, so reject it.
6851 */
6852 export_rdev(rdev);
6853 return -EINVAL;
6854 }
6855
6856 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6857 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6858 set_bit(WriteMostly, &rdev->flags);
6859 else
6860 clear_bit(WriteMostly, &rdev->flags);
6861 if (info->state & (1<<MD_DISK_FAILFAST))
6862 set_bit(FailFast, &rdev->flags);
6863 else
6864 clear_bit(FailFast, &rdev->flags);
6865
6866 if (info->state & (1<<MD_DISK_JOURNAL)) {
6867 struct md_rdev *rdev2;
6868 bool has_journal = false;
6869
6870 /* make sure no existing journal disk */
6871 rdev_for_each(rdev2, mddev) {
6872 if (test_bit(Journal, &rdev2->flags)) {
6873 has_journal = true;
6874 break;
6875 }
6876 }
6877 if (has_journal || mddev->bitmap) {
6878 export_rdev(rdev);
6879 return -EBUSY;
6880 }
6881 set_bit(Journal, &rdev->flags);
6882 }
6883 /*
6884 * check whether the device shows up in other nodes
6885 */
6886 if (mddev_is_clustered(mddev)) {
6887 if (info->state & (1 << MD_DISK_CANDIDATE))
6888 set_bit(Candidate, &rdev->flags);
6889 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6890 /* --add initiated by this node */
6891 err = md_cluster_ops->add_new_disk(mddev, rdev);
6892 if (err) {
6893 export_rdev(rdev);
6894 return err;
6895 }
6896 }
6897 }
6898
6899 rdev->raid_disk = -1;
6900 err = bind_rdev_to_array(rdev, mddev);
6901
6902 if (err)
6903 export_rdev(rdev);
6904
6905 if (mddev_is_clustered(mddev)) {
6906 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6907 if (!err) {
6908 err = md_cluster_ops->new_disk_ack(mddev,
6909 err == 0);
6910 if (err)
6911 md_kick_rdev_from_array(rdev);
6912 }
6913 } else {
6914 if (err)
6915 md_cluster_ops->add_new_disk_cancel(mddev);
6916 else
6917 err = add_bound_rdev(rdev);
6918 }
6919
6920 } else if (!err)
6921 err = add_bound_rdev(rdev);
6922
6923 return err;
6924 }
6925
6926 /* otherwise, md_add_new_disk is only allowed
6927 * for major_version==0 superblocks
6928 */
6929 if (mddev->major_version != 0) {
6930 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6931 return -EINVAL;
6932 }
6933
6934 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6935 int err;
6936 rdev = md_import_device(dev, -1, 0);
6937 if (IS_ERR(rdev)) {
6938 pr_warn("md: error, md_import_device() returned %ld\n",
6939 PTR_ERR(rdev));
6940 return PTR_ERR(rdev);
6941 }
6942 rdev->desc_nr = info->number;
6943 if (info->raid_disk < mddev->raid_disks)
6944 rdev->raid_disk = info->raid_disk;
6945 else
6946 rdev->raid_disk = -1;
6947
6948 if (rdev->raid_disk < mddev->raid_disks)
6949 if (info->state & (1<<MD_DISK_SYNC))
6950 set_bit(In_sync, &rdev->flags);
6951
6952 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6953 set_bit(WriteMostly, &rdev->flags);
6954 if (info->state & (1<<MD_DISK_FAILFAST))
6955 set_bit(FailFast, &rdev->flags);
6956
6957 if (!mddev->persistent) {
6958 pr_debug("md: nonpersistent superblock ...\n");
6959 rdev->sb_start = bdev_nr_sectors(rdev->bdev);
6960 } else
6961 rdev->sb_start = calc_dev_sboffset(rdev);
6962 rdev->sectors = rdev->sb_start;
6963
6964 err = bind_rdev_to_array(rdev, mddev);
6965 if (err) {
6966 export_rdev(rdev);
6967 return err;
6968 }
6969 }
6970
6971 return 0;
6972 }
6973
hot_remove_disk(struct mddev * mddev,dev_t dev)6974 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6975 {
6976 struct md_rdev *rdev;
6977
6978 if (!mddev->pers)
6979 return -ENODEV;
6980
6981 rdev = find_rdev(mddev, dev);
6982 if (!rdev)
6983 return -ENXIO;
6984
6985 if (rdev->raid_disk < 0)
6986 goto kick_rdev;
6987
6988 clear_bit(Blocked, &rdev->flags);
6989 remove_and_add_spares(mddev, rdev);
6990
6991 if (rdev->raid_disk >= 0)
6992 goto busy;
6993
6994 kick_rdev:
6995 if (mddev_is_clustered(mddev)) {
6996 if (md_cluster_ops->remove_disk(mddev, rdev))
6997 goto busy;
6998 }
6999
7000 md_kick_rdev_from_array(rdev);
7001 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7002 if (mddev->thread)
7003 md_wakeup_thread(mddev->thread);
7004 else
7005 md_update_sb(mddev, 1);
7006 md_new_event();
7007
7008 return 0;
7009 busy:
7010 pr_debug("md: cannot remove active disk %pg from %s ...\n",
7011 rdev->bdev, mdname(mddev));
7012 return -EBUSY;
7013 }
7014
hot_add_disk(struct mddev * mddev,dev_t dev)7015 static int hot_add_disk(struct mddev *mddev, dev_t dev)
7016 {
7017 int err;
7018 struct md_rdev *rdev;
7019
7020 if (!mddev->pers)
7021 return -ENODEV;
7022
7023 if (mddev->major_version != 0) {
7024 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
7025 mdname(mddev));
7026 return -EINVAL;
7027 }
7028 if (!mddev->pers->hot_add_disk) {
7029 pr_warn("%s: personality does not support diskops!\n",
7030 mdname(mddev));
7031 return -EINVAL;
7032 }
7033
7034 rdev = md_import_device(dev, -1, 0);
7035 if (IS_ERR(rdev)) {
7036 pr_warn("md: error, md_import_device() returned %ld\n",
7037 PTR_ERR(rdev));
7038 return -EINVAL;
7039 }
7040
7041 if (mddev->persistent)
7042 rdev->sb_start = calc_dev_sboffset(rdev);
7043 else
7044 rdev->sb_start = bdev_nr_sectors(rdev->bdev);
7045
7046 rdev->sectors = rdev->sb_start;
7047
7048 if (test_bit(Faulty, &rdev->flags)) {
7049 pr_warn("md: can not hot-add faulty %pg disk to %s!\n",
7050 rdev->bdev, mdname(mddev));
7051 err = -EINVAL;
7052 goto abort_export;
7053 }
7054
7055 clear_bit(In_sync, &rdev->flags);
7056 rdev->desc_nr = -1;
7057 rdev->saved_raid_disk = -1;
7058 err = bind_rdev_to_array(rdev, mddev);
7059 if (err)
7060 goto abort_export;
7061
7062 /*
7063 * The rest should better be atomic, we can have disk failures
7064 * noticed in interrupt contexts ...
7065 */
7066
7067 rdev->raid_disk = -1;
7068
7069 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7070 if (!mddev->thread)
7071 md_update_sb(mddev, 1);
7072 /*
7073 * If the new disk does not support REQ_NOWAIT,
7074 * disable on the whole MD.
7075 */
7076 if (!bdev_nowait(rdev->bdev)) {
7077 pr_info("%s: Disabling nowait because %pg does not support nowait\n",
7078 mdname(mddev), rdev->bdev);
7079 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue);
7080 }
7081 /*
7082 * Kick recovery, maybe this spare has to be added to the
7083 * array immediately.
7084 */
7085 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7086 md_wakeup_thread(mddev->thread);
7087 md_new_event();
7088 return 0;
7089
7090 abort_export:
7091 export_rdev(rdev);
7092 return err;
7093 }
7094
set_bitmap_file(struct mddev * mddev,int fd)7095 static int set_bitmap_file(struct mddev *mddev, int fd)
7096 {
7097 int err = 0;
7098
7099 if (mddev->pers) {
7100 if (!mddev->pers->quiesce || !mddev->thread)
7101 return -EBUSY;
7102 if (mddev->recovery || mddev->sync_thread)
7103 return -EBUSY;
7104 /* we should be able to change the bitmap.. */
7105 }
7106
7107 if (fd >= 0) {
7108 struct inode *inode;
7109 struct file *f;
7110
7111 if (mddev->bitmap || mddev->bitmap_info.file)
7112 return -EEXIST; /* cannot add when bitmap is present */
7113 f = fget(fd);
7114
7115 if (f == NULL) {
7116 pr_warn("%s: error: failed to get bitmap file\n",
7117 mdname(mddev));
7118 return -EBADF;
7119 }
7120
7121 inode = f->f_mapping->host;
7122 if (!S_ISREG(inode->i_mode)) {
7123 pr_warn("%s: error: bitmap file must be a regular file\n",
7124 mdname(mddev));
7125 err = -EBADF;
7126 } else if (!(f->f_mode & FMODE_WRITE)) {
7127 pr_warn("%s: error: bitmap file must open for write\n",
7128 mdname(mddev));
7129 err = -EBADF;
7130 } else if (atomic_read(&inode->i_writecount) != 1) {
7131 pr_warn("%s: error: bitmap file is already in use\n",
7132 mdname(mddev));
7133 err = -EBUSY;
7134 }
7135 if (err) {
7136 fput(f);
7137 return err;
7138 }
7139 mddev->bitmap_info.file = f;
7140 mddev->bitmap_info.offset = 0; /* file overrides offset */
7141 } else if (mddev->bitmap == NULL)
7142 return -ENOENT; /* cannot remove what isn't there */
7143 err = 0;
7144 if (mddev->pers) {
7145 if (fd >= 0) {
7146 struct bitmap *bitmap;
7147
7148 bitmap = md_bitmap_create(mddev, -1);
7149 mddev_suspend(mddev);
7150 if (!IS_ERR(bitmap)) {
7151 mddev->bitmap = bitmap;
7152 err = md_bitmap_load(mddev);
7153 } else
7154 err = PTR_ERR(bitmap);
7155 if (err) {
7156 md_bitmap_destroy(mddev);
7157 fd = -1;
7158 }
7159 mddev_resume(mddev);
7160 } else if (fd < 0) {
7161 mddev_suspend(mddev);
7162 md_bitmap_destroy(mddev);
7163 mddev_resume(mddev);
7164 }
7165 }
7166 if (fd < 0) {
7167 struct file *f = mddev->bitmap_info.file;
7168 if (f) {
7169 spin_lock(&mddev->lock);
7170 mddev->bitmap_info.file = NULL;
7171 spin_unlock(&mddev->lock);
7172 fput(f);
7173 }
7174 }
7175
7176 return err;
7177 }
7178
7179 /*
7180 * md_set_array_info is used two different ways
7181 * The original usage is when creating a new array.
7182 * In this usage, raid_disks is > 0 and it together with
7183 * level, size, not_persistent,layout,chunksize determine the
7184 * shape of the array.
7185 * This will always create an array with a type-0.90.0 superblock.
7186 * The newer usage is when assembling an array.
7187 * In this case raid_disks will be 0, and the major_version field is
7188 * use to determine which style super-blocks are to be found on the devices.
7189 * The minor and patch _version numbers are also kept incase the
7190 * super_block handler wishes to interpret them.
7191 */
md_set_array_info(struct mddev * mddev,struct mdu_array_info_s * info)7192 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info)
7193 {
7194 if (info->raid_disks == 0) {
7195 /* just setting version number for superblock loading */
7196 if (info->major_version < 0 ||
7197 info->major_version >= ARRAY_SIZE(super_types) ||
7198 super_types[info->major_version].name == NULL) {
7199 /* maybe try to auto-load a module? */
7200 pr_warn("md: superblock version %d not known\n",
7201 info->major_version);
7202 return -EINVAL;
7203 }
7204 mddev->major_version = info->major_version;
7205 mddev->minor_version = info->minor_version;
7206 mddev->patch_version = info->patch_version;
7207 mddev->persistent = !info->not_persistent;
7208 /* ensure mddev_put doesn't delete this now that there
7209 * is some minimal configuration.
7210 */
7211 mddev->ctime = ktime_get_real_seconds();
7212 return 0;
7213 }
7214 mddev->major_version = MD_MAJOR_VERSION;
7215 mddev->minor_version = MD_MINOR_VERSION;
7216 mddev->patch_version = MD_PATCHLEVEL_VERSION;
7217 mddev->ctime = ktime_get_real_seconds();
7218
7219 mddev->level = info->level;
7220 mddev->clevel[0] = 0;
7221 mddev->dev_sectors = 2 * (sector_t)info->size;
7222 mddev->raid_disks = info->raid_disks;
7223 /* don't set md_minor, it is determined by which /dev/md* was
7224 * openned
7225 */
7226 if (info->state & (1<<MD_SB_CLEAN))
7227 mddev->recovery_cp = MaxSector;
7228 else
7229 mddev->recovery_cp = 0;
7230 mddev->persistent = ! info->not_persistent;
7231 mddev->external = 0;
7232
7233 mddev->layout = info->layout;
7234 if (mddev->level == 0)
7235 /* Cannot trust RAID0 layout info here */
7236 mddev->layout = -1;
7237 mddev->chunk_sectors = info->chunk_size >> 9;
7238
7239 if (mddev->persistent) {
7240 mddev->max_disks = MD_SB_DISKS;
7241 mddev->flags = 0;
7242 mddev->sb_flags = 0;
7243 }
7244 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7245
7246 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
7247 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
7248 mddev->bitmap_info.offset = 0;
7249
7250 mddev->reshape_position = MaxSector;
7251
7252 /*
7253 * Generate a 128 bit UUID
7254 */
7255 get_random_bytes(mddev->uuid, 16);
7256
7257 mddev->new_level = mddev->level;
7258 mddev->new_chunk_sectors = mddev->chunk_sectors;
7259 mddev->new_layout = mddev->layout;
7260 mddev->delta_disks = 0;
7261 mddev->reshape_backwards = 0;
7262
7263 return 0;
7264 }
7265
md_set_array_sectors(struct mddev * mddev,sector_t array_sectors)7266 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
7267 {
7268 lockdep_assert_held(&mddev->reconfig_mutex);
7269
7270 if (mddev->external_size)
7271 return;
7272
7273 mddev->array_sectors = array_sectors;
7274 }
7275 EXPORT_SYMBOL(md_set_array_sectors);
7276
update_size(struct mddev * mddev,sector_t num_sectors)7277 static int update_size(struct mddev *mddev, sector_t num_sectors)
7278 {
7279 struct md_rdev *rdev;
7280 int rv;
7281 int fit = (num_sectors == 0);
7282 sector_t old_dev_sectors = mddev->dev_sectors;
7283
7284 if (mddev->pers->resize == NULL)
7285 return -EINVAL;
7286 /* The "num_sectors" is the number of sectors of each device that
7287 * is used. This can only make sense for arrays with redundancy.
7288 * linear and raid0 always use whatever space is available. We can only
7289 * consider changing this number if no resync or reconstruction is
7290 * happening, and if the new size is acceptable. It must fit before the
7291 * sb_start or, if that is <data_offset, it must fit before the size
7292 * of each device. If num_sectors is zero, we find the largest size
7293 * that fits.
7294 */
7295 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7296 mddev->sync_thread)
7297 return -EBUSY;
7298 if (!md_is_rdwr(mddev))
7299 return -EROFS;
7300
7301 rdev_for_each(rdev, mddev) {
7302 sector_t avail = rdev->sectors;
7303
7304 if (fit && (num_sectors == 0 || num_sectors > avail))
7305 num_sectors = avail;
7306 if (avail < num_sectors)
7307 return -ENOSPC;
7308 }
7309 rv = mddev->pers->resize(mddev, num_sectors);
7310 if (!rv) {
7311 if (mddev_is_clustered(mddev))
7312 md_cluster_ops->update_size(mddev, old_dev_sectors);
7313 else if (mddev->queue) {
7314 set_capacity_and_notify(mddev->gendisk,
7315 mddev->array_sectors);
7316 }
7317 }
7318 return rv;
7319 }
7320
update_raid_disks(struct mddev * mddev,int raid_disks)7321 static int update_raid_disks(struct mddev *mddev, int raid_disks)
7322 {
7323 int rv;
7324 struct md_rdev *rdev;
7325 /* change the number of raid disks */
7326 if (mddev->pers->check_reshape == NULL)
7327 return -EINVAL;
7328 if (!md_is_rdwr(mddev))
7329 return -EROFS;
7330 if (raid_disks <= 0 ||
7331 (mddev->max_disks && raid_disks >= mddev->max_disks))
7332 return -EINVAL;
7333 if (mddev->sync_thread ||
7334 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7335 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) ||
7336 mddev->reshape_position != MaxSector)
7337 return -EBUSY;
7338
7339 rdev_for_each(rdev, mddev) {
7340 if (mddev->raid_disks < raid_disks &&
7341 rdev->data_offset < rdev->new_data_offset)
7342 return -EINVAL;
7343 if (mddev->raid_disks > raid_disks &&
7344 rdev->data_offset > rdev->new_data_offset)
7345 return -EINVAL;
7346 }
7347
7348 mddev->delta_disks = raid_disks - mddev->raid_disks;
7349 if (mddev->delta_disks < 0)
7350 mddev->reshape_backwards = 1;
7351 else if (mddev->delta_disks > 0)
7352 mddev->reshape_backwards = 0;
7353
7354 rv = mddev->pers->check_reshape(mddev);
7355 if (rv < 0) {
7356 mddev->delta_disks = 0;
7357 mddev->reshape_backwards = 0;
7358 }
7359 return rv;
7360 }
7361
7362 /*
7363 * update_array_info is used to change the configuration of an
7364 * on-line array.
7365 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
7366 * fields in the info are checked against the array.
7367 * Any differences that cannot be handled will cause an error.
7368 * Normally, only one change can be managed at a time.
7369 */
update_array_info(struct mddev * mddev,mdu_array_info_t * info)7370 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
7371 {
7372 int rv = 0;
7373 int cnt = 0;
7374 int state = 0;
7375
7376 /* calculate expected state,ignoring low bits */
7377 if (mddev->bitmap && mddev->bitmap_info.offset)
7378 state |= (1 << MD_SB_BITMAP_PRESENT);
7379
7380 if (mddev->major_version != info->major_version ||
7381 mddev->minor_version != info->minor_version ||
7382 /* mddev->patch_version != info->patch_version || */
7383 mddev->ctime != info->ctime ||
7384 mddev->level != info->level ||
7385 /* mddev->layout != info->layout || */
7386 mddev->persistent != !info->not_persistent ||
7387 mddev->chunk_sectors != info->chunk_size >> 9 ||
7388 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
7389 ((state^info->state) & 0xfffffe00)
7390 )
7391 return -EINVAL;
7392 /* Check there is only one change */
7393 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7394 cnt++;
7395 if (mddev->raid_disks != info->raid_disks)
7396 cnt++;
7397 if (mddev->layout != info->layout)
7398 cnt++;
7399 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
7400 cnt++;
7401 if (cnt == 0)
7402 return 0;
7403 if (cnt > 1)
7404 return -EINVAL;
7405
7406 if (mddev->layout != info->layout) {
7407 /* Change layout
7408 * we don't need to do anything at the md level, the
7409 * personality will take care of it all.
7410 */
7411 if (mddev->pers->check_reshape == NULL)
7412 return -EINVAL;
7413 else {
7414 mddev->new_layout = info->layout;
7415 rv = mddev->pers->check_reshape(mddev);
7416 if (rv)
7417 mddev->new_layout = mddev->layout;
7418 return rv;
7419 }
7420 }
7421 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7422 rv = update_size(mddev, (sector_t)info->size * 2);
7423
7424 if (mddev->raid_disks != info->raid_disks)
7425 rv = update_raid_disks(mddev, info->raid_disks);
7426
7427 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
7428 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
7429 rv = -EINVAL;
7430 goto err;
7431 }
7432 if (mddev->recovery || mddev->sync_thread) {
7433 rv = -EBUSY;
7434 goto err;
7435 }
7436 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
7437 struct bitmap *bitmap;
7438 /* add the bitmap */
7439 if (mddev->bitmap) {
7440 rv = -EEXIST;
7441 goto err;
7442 }
7443 if (mddev->bitmap_info.default_offset == 0) {
7444 rv = -EINVAL;
7445 goto err;
7446 }
7447 mddev->bitmap_info.offset =
7448 mddev->bitmap_info.default_offset;
7449 mddev->bitmap_info.space =
7450 mddev->bitmap_info.default_space;
7451 bitmap = md_bitmap_create(mddev, -1);
7452 mddev_suspend(mddev);
7453 if (!IS_ERR(bitmap)) {
7454 mddev->bitmap = bitmap;
7455 rv = md_bitmap_load(mddev);
7456 } else
7457 rv = PTR_ERR(bitmap);
7458 if (rv)
7459 md_bitmap_destroy(mddev);
7460 mddev_resume(mddev);
7461 } else {
7462 /* remove the bitmap */
7463 if (!mddev->bitmap) {
7464 rv = -ENOENT;
7465 goto err;
7466 }
7467 if (mddev->bitmap->storage.file) {
7468 rv = -EINVAL;
7469 goto err;
7470 }
7471 if (mddev->bitmap_info.nodes) {
7472 /* hold PW on all the bitmap lock */
7473 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
7474 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
7475 rv = -EPERM;
7476 md_cluster_ops->unlock_all_bitmaps(mddev);
7477 goto err;
7478 }
7479
7480 mddev->bitmap_info.nodes = 0;
7481 md_cluster_ops->leave(mddev);
7482 module_put(md_cluster_mod);
7483 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
7484 }
7485 mddev_suspend(mddev);
7486 md_bitmap_destroy(mddev);
7487 mddev_resume(mddev);
7488 mddev->bitmap_info.offset = 0;
7489 }
7490 }
7491 md_update_sb(mddev, 1);
7492 return rv;
7493 err:
7494 return rv;
7495 }
7496
set_disk_faulty(struct mddev * mddev,dev_t dev)7497 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7498 {
7499 struct md_rdev *rdev;
7500 int err = 0;
7501
7502 if (mddev->pers == NULL)
7503 return -ENODEV;
7504
7505 rcu_read_lock();
7506 rdev = md_find_rdev_rcu(mddev, dev);
7507 if (!rdev)
7508 err = -ENODEV;
7509 else {
7510 md_error(mddev, rdev);
7511 if (test_bit(MD_BROKEN, &mddev->flags))
7512 err = -EBUSY;
7513 }
7514 rcu_read_unlock();
7515 return err;
7516 }
7517
7518 /*
7519 * We have a problem here : there is no easy way to give a CHS
7520 * virtual geometry. We currently pretend that we have a 2 heads
7521 * 4 sectors (with a BIG number of cylinders...). This drives
7522 * dosfs just mad... ;-)
7523 */
md_getgeo(struct block_device * bdev,struct hd_geometry * geo)7524 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7525 {
7526 struct mddev *mddev = bdev->bd_disk->private_data;
7527
7528 geo->heads = 2;
7529 geo->sectors = 4;
7530 geo->cylinders = mddev->array_sectors / 8;
7531 return 0;
7532 }
7533
md_ioctl_valid(unsigned int cmd)7534 static inline bool md_ioctl_valid(unsigned int cmd)
7535 {
7536 switch (cmd) {
7537 case ADD_NEW_DISK:
7538 case GET_ARRAY_INFO:
7539 case GET_BITMAP_FILE:
7540 case GET_DISK_INFO:
7541 case HOT_ADD_DISK:
7542 case HOT_REMOVE_DISK:
7543 case RAID_VERSION:
7544 case RESTART_ARRAY_RW:
7545 case RUN_ARRAY:
7546 case SET_ARRAY_INFO:
7547 case SET_BITMAP_FILE:
7548 case SET_DISK_FAULTY:
7549 case STOP_ARRAY:
7550 case STOP_ARRAY_RO:
7551 case CLUSTERED_DISK_NACK:
7552 return true;
7553 default:
7554 return false;
7555 }
7556 }
7557
md_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)7558 static int md_ioctl(struct block_device *bdev, fmode_t mode,
7559 unsigned int cmd, unsigned long arg)
7560 {
7561 int err = 0;
7562 void __user *argp = (void __user *)arg;
7563 struct mddev *mddev = NULL;
7564 bool did_set_md_closing = false;
7565
7566 if (!md_ioctl_valid(cmd))
7567 return -ENOTTY;
7568
7569 switch (cmd) {
7570 case RAID_VERSION:
7571 case GET_ARRAY_INFO:
7572 case GET_DISK_INFO:
7573 break;
7574 default:
7575 if (!capable(CAP_SYS_ADMIN))
7576 return -EACCES;
7577 }
7578
7579 /*
7580 * Commands dealing with the RAID driver but not any
7581 * particular array:
7582 */
7583 switch (cmd) {
7584 case RAID_VERSION:
7585 err = get_version(argp);
7586 goto out;
7587 default:;
7588 }
7589
7590 /*
7591 * Commands creating/starting a new array:
7592 */
7593
7594 mddev = bdev->bd_disk->private_data;
7595
7596 if (!mddev) {
7597 BUG();
7598 goto out;
7599 }
7600
7601 /* Some actions do not requires the mutex */
7602 switch (cmd) {
7603 case GET_ARRAY_INFO:
7604 if (!mddev->raid_disks && !mddev->external)
7605 err = -ENODEV;
7606 else
7607 err = get_array_info(mddev, argp);
7608 goto out;
7609
7610 case GET_DISK_INFO:
7611 if (!mddev->raid_disks && !mddev->external)
7612 err = -ENODEV;
7613 else
7614 err = get_disk_info(mddev, argp);
7615 goto out;
7616
7617 case SET_DISK_FAULTY:
7618 err = set_disk_faulty(mddev, new_decode_dev(arg));
7619 goto out;
7620
7621 case GET_BITMAP_FILE:
7622 err = get_bitmap_file(mddev, argp);
7623 goto out;
7624
7625 }
7626
7627 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK)
7628 flush_rdev_wq(mddev);
7629
7630 if (cmd == HOT_REMOVE_DISK)
7631 /* need to ensure recovery thread has run */
7632 wait_event_interruptible_timeout(mddev->sb_wait,
7633 !test_bit(MD_RECOVERY_NEEDED,
7634 &mddev->recovery),
7635 msecs_to_jiffies(5000));
7636 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7637 /* Need to flush page cache, and ensure no-one else opens
7638 * and writes
7639 */
7640 mutex_lock(&mddev->open_mutex);
7641 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7642 mutex_unlock(&mddev->open_mutex);
7643 err = -EBUSY;
7644 goto out;
7645 }
7646 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) {
7647 mutex_unlock(&mddev->open_mutex);
7648 err = -EBUSY;
7649 goto out;
7650 }
7651 did_set_md_closing = true;
7652 mutex_unlock(&mddev->open_mutex);
7653 sync_blockdev(bdev);
7654 }
7655 err = mddev_lock(mddev);
7656 if (err) {
7657 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7658 err, cmd);
7659 goto out;
7660 }
7661
7662 if (cmd == SET_ARRAY_INFO) {
7663 mdu_array_info_t info;
7664 if (!arg)
7665 memset(&info, 0, sizeof(info));
7666 else if (copy_from_user(&info, argp, sizeof(info))) {
7667 err = -EFAULT;
7668 goto unlock;
7669 }
7670 if (mddev->pers) {
7671 err = update_array_info(mddev, &info);
7672 if (err) {
7673 pr_warn("md: couldn't update array info. %d\n", err);
7674 goto unlock;
7675 }
7676 goto unlock;
7677 }
7678 if (!list_empty(&mddev->disks)) {
7679 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7680 err = -EBUSY;
7681 goto unlock;
7682 }
7683 if (mddev->raid_disks) {
7684 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7685 err = -EBUSY;
7686 goto unlock;
7687 }
7688 err = md_set_array_info(mddev, &info);
7689 if (err) {
7690 pr_warn("md: couldn't set array info. %d\n", err);
7691 goto unlock;
7692 }
7693 goto unlock;
7694 }
7695
7696 /*
7697 * Commands querying/configuring an existing array:
7698 */
7699 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7700 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7701 if ((!mddev->raid_disks && !mddev->external)
7702 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7703 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7704 && cmd != GET_BITMAP_FILE) {
7705 err = -ENODEV;
7706 goto unlock;
7707 }
7708
7709 /*
7710 * Commands even a read-only array can execute:
7711 */
7712 switch (cmd) {
7713 case RESTART_ARRAY_RW:
7714 err = restart_array(mddev);
7715 goto unlock;
7716
7717 case STOP_ARRAY:
7718 err = do_md_stop(mddev, 0, bdev);
7719 goto unlock;
7720
7721 case STOP_ARRAY_RO:
7722 err = md_set_readonly(mddev, bdev);
7723 goto unlock;
7724
7725 case HOT_REMOVE_DISK:
7726 err = hot_remove_disk(mddev, new_decode_dev(arg));
7727 goto unlock;
7728
7729 case ADD_NEW_DISK:
7730 /* We can support ADD_NEW_DISK on read-only arrays
7731 * only if we are re-adding a preexisting device.
7732 * So require mddev->pers and MD_DISK_SYNC.
7733 */
7734 if (mddev->pers) {
7735 mdu_disk_info_t info;
7736 if (copy_from_user(&info, argp, sizeof(info)))
7737 err = -EFAULT;
7738 else if (!(info.state & (1<<MD_DISK_SYNC)))
7739 /* Need to clear read-only for this */
7740 break;
7741 else
7742 err = md_add_new_disk(mddev, &info);
7743 goto unlock;
7744 }
7745 break;
7746 }
7747
7748 /*
7749 * The remaining ioctls are changing the state of the
7750 * superblock, so we do not allow them on read-only arrays.
7751 */
7752 if (!md_is_rdwr(mddev) && mddev->pers) {
7753 if (mddev->ro != MD_AUTO_READ) {
7754 err = -EROFS;
7755 goto unlock;
7756 }
7757 mddev->ro = MD_RDWR;
7758 sysfs_notify_dirent_safe(mddev->sysfs_state);
7759 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7760 /* mddev_unlock will wake thread */
7761 /* If a device failed while we were read-only, we
7762 * need to make sure the metadata is updated now.
7763 */
7764 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7765 mddev_unlock(mddev);
7766 wait_event(mddev->sb_wait,
7767 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7768 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7769 mddev_lock_nointr(mddev);
7770 }
7771 }
7772
7773 switch (cmd) {
7774 case ADD_NEW_DISK:
7775 {
7776 mdu_disk_info_t info;
7777 if (copy_from_user(&info, argp, sizeof(info)))
7778 err = -EFAULT;
7779 else
7780 err = md_add_new_disk(mddev, &info);
7781 goto unlock;
7782 }
7783
7784 case CLUSTERED_DISK_NACK:
7785 if (mddev_is_clustered(mddev))
7786 md_cluster_ops->new_disk_ack(mddev, false);
7787 else
7788 err = -EINVAL;
7789 goto unlock;
7790
7791 case HOT_ADD_DISK:
7792 err = hot_add_disk(mddev, new_decode_dev(arg));
7793 goto unlock;
7794
7795 case RUN_ARRAY:
7796 err = do_md_run(mddev);
7797 goto unlock;
7798
7799 case SET_BITMAP_FILE:
7800 err = set_bitmap_file(mddev, (int)arg);
7801 goto unlock;
7802
7803 default:
7804 err = -EINVAL;
7805 goto unlock;
7806 }
7807
7808 unlock:
7809 if (mddev->hold_active == UNTIL_IOCTL &&
7810 err != -EINVAL)
7811 mddev->hold_active = 0;
7812 mddev_unlock(mddev);
7813 out:
7814 if(did_set_md_closing)
7815 clear_bit(MD_CLOSING, &mddev->flags);
7816 return err;
7817 }
7818 #ifdef CONFIG_COMPAT
md_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)7819 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7820 unsigned int cmd, unsigned long arg)
7821 {
7822 switch (cmd) {
7823 case HOT_REMOVE_DISK:
7824 case HOT_ADD_DISK:
7825 case SET_DISK_FAULTY:
7826 case SET_BITMAP_FILE:
7827 /* These take in integer arg, do not convert */
7828 break;
7829 default:
7830 arg = (unsigned long)compat_ptr(arg);
7831 break;
7832 }
7833
7834 return md_ioctl(bdev, mode, cmd, arg);
7835 }
7836 #endif /* CONFIG_COMPAT */
7837
md_set_read_only(struct block_device * bdev,bool ro)7838 static int md_set_read_only(struct block_device *bdev, bool ro)
7839 {
7840 struct mddev *mddev = bdev->bd_disk->private_data;
7841 int err;
7842
7843 err = mddev_lock(mddev);
7844 if (err)
7845 return err;
7846
7847 if (!mddev->raid_disks && !mddev->external) {
7848 err = -ENODEV;
7849 goto out_unlock;
7850 }
7851
7852 /*
7853 * Transitioning to read-auto need only happen for arrays that call
7854 * md_write_start and which are not ready for writes yet.
7855 */
7856 if (!ro && mddev->ro == MD_RDONLY && mddev->pers) {
7857 err = restart_array(mddev);
7858 if (err)
7859 goto out_unlock;
7860 mddev->ro = MD_AUTO_READ;
7861 }
7862
7863 out_unlock:
7864 mddev_unlock(mddev);
7865 return err;
7866 }
7867
md_open(struct block_device * bdev,fmode_t mode)7868 static int md_open(struct block_device *bdev, fmode_t mode)
7869 {
7870 struct mddev *mddev;
7871 int err;
7872
7873 spin_lock(&all_mddevs_lock);
7874 mddev = mddev_get(bdev->bd_disk->private_data);
7875 spin_unlock(&all_mddevs_lock);
7876 if (!mddev)
7877 return -ENODEV;
7878
7879 err = mutex_lock_interruptible(&mddev->open_mutex);
7880 if (err)
7881 goto out;
7882
7883 err = -ENODEV;
7884 if (test_bit(MD_CLOSING, &mddev->flags))
7885 goto out_unlock;
7886
7887 atomic_inc(&mddev->openers);
7888 mutex_unlock(&mddev->open_mutex);
7889
7890 bdev_check_media_change(bdev);
7891 return 0;
7892
7893 out_unlock:
7894 mutex_unlock(&mddev->open_mutex);
7895 out:
7896 mddev_put(mddev);
7897 return err;
7898 }
7899
md_release(struct gendisk * disk,fmode_t mode)7900 static void md_release(struct gendisk *disk, fmode_t mode)
7901 {
7902 struct mddev *mddev = disk->private_data;
7903
7904 BUG_ON(!mddev);
7905 atomic_dec(&mddev->openers);
7906 mddev_put(mddev);
7907 }
7908
md_check_events(struct gendisk * disk,unsigned int clearing)7909 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
7910 {
7911 struct mddev *mddev = disk->private_data;
7912 unsigned int ret = 0;
7913
7914 if (mddev->changed)
7915 ret = DISK_EVENT_MEDIA_CHANGE;
7916 mddev->changed = 0;
7917 return ret;
7918 }
7919
md_free_disk(struct gendisk * disk)7920 static void md_free_disk(struct gendisk *disk)
7921 {
7922 struct mddev *mddev = disk->private_data;
7923
7924 percpu_ref_exit(&mddev->writes_pending);
7925 mddev_free(mddev);
7926 }
7927
7928 const struct block_device_operations md_fops =
7929 {
7930 .owner = THIS_MODULE,
7931 .submit_bio = md_submit_bio,
7932 .open = md_open,
7933 .release = md_release,
7934 .ioctl = md_ioctl,
7935 #ifdef CONFIG_COMPAT
7936 .compat_ioctl = md_compat_ioctl,
7937 #endif
7938 .getgeo = md_getgeo,
7939 .check_events = md_check_events,
7940 .set_read_only = md_set_read_only,
7941 .free_disk = md_free_disk,
7942 };
7943
md_thread(void * arg)7944 static int md_thread(void *arg)
7945 {
7946 struct md_thread *thread = arg;
7947
7948 /*
7949 * md_thread is a 'system-thread', it's priority should be very
7950 * high. We avoid resource deadlocks individually in each
7951 * raid personality. (RAID5 does preallocation) We also use RR and
7952 * the very same RT priority as kswapd, thus we will never get
7953 * into a priority inversion deadlock.
7954 *
7955 * we definitely have to have equal or higher priority than
7956 * bdflush, otherwise bdflush will deadlock if there are too
7957 * many dirty RAID5 blocks.
7958 */
7959
7960 allow_signal(SIGKILL);
7961 while (!kthread_should_stop()) {
7962
7963 /* We need to wait INTERRUPTIBLE so that
7964 * we don't add to the load-average.
7965 * That means we need to be sure no signals are
7966 * pending
7967 */
7968 if (signal_pending(current))
7969 flush_signals(current);
7970
7971 wait_event_interruptible_timeout
7972 (thread->wqueue,
7973 test_bit(THREAD_WAKEUP, &thread->flags)
7974 || kthread_should_stop() || kthread_should_park(),
7975 thread->timeout);
7976
7977 clear_bit(THREAD_WAKEUP, &thread->flags);
7978 if (kthread_should_park())
7979 kthread_parkme();
7980 if (!kthread_should_stop())
7981 thread->run(thread);
7982 }
7983
7984 return 0;
7985 }
7986
md_wakeup_thread(struct md_thread * thread)7987 void md_wakeup_thread(struct md_thread *thread)
7988 {
7989 if (thread) {
7990 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7991 set_bit(THREAD_WAKEUP, &thread->flags);
7992 wake_up(&thread->wqueue);
7993 }
7994 }
7995 EXPORT_SYMBOL(md_wakeup_thread);
7996
md_register_thread(void (* run)(struct md_thread *),struct mddev * mddev,const char * name)7997 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7998 struct mddev *mddev, const char *name)
7999 {
8000 struct md_thread *thread;
8001
8002 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
8003 if (!thread)
8004 return NULL;
8005
8006 init_waitqueue_head(&thread->wqueue);
8007
8008 thread->run = run;
8009 thread->mddev = mddev;
8010 thread->timeout = MAX_SCHEDULE_TIMEOUT;
8011 thread->tsk = kthread_run(md_thread, thread,
8012 "%s_%s",
8013 mdname(thread->mddev),
8014 name);
8015 if (IS_ERR(thread->tsk)) {
8016 kfree(thread);
8017 return NULL;
8018 }
8019 return thread;
8020 }
8021 EXPORT_SYMBOL(md_register_thread);
8022
md_unregister_thread(struct md_thread ** threadp)8023 void md_unregister_thread(struct md_thread **threadp)
8024 {
8025 struct md_thread *thread;
8026
8027 /*
8028 * Locking ensures that mddev_unlock does not wake_up a
8029 * non-existent thread
8030 */
8031 spin_lock(&pers_lock);
8032 thread = *threadp;
8033 if (!thread) {
8034 spin_unlock(&pers_lock);
8035 return;
8036 }
8037 *threadp = NULL;
8038 spin_unlock(&pers_lock);
8039
8040 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
8041 kthread_stop(thread->tsk);
8042 kfree(thread);
8043 }
8044 EXPORT_SYMBOL(md_unregister_thread);
8045
md_error(struct mddev * mddev,struct md_rdev * rdev)8046 void md_error(struct mddev *mddev, struct md_rdev *rdev)
8047 {
8048 if (!rdev || test_bit(Faulty, &rdev->flags))
8049 return;
8050
8051 if (!mddev->pers || !mddev->pers->error_handler)
8052 return;
8053 mddev->pers->error_handler(mddev, rdev);
8054
8055 if (mddev->pers->level == 0 || mddev->pers->level == LEVEL_LINEAR)
8056 return;
8057
8058 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags))
8059 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8060 sysfs_notify_dirent_safe(rdev->sysfs_state);
8061 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8062 if (!test_bit(MD_BROKEN, &mddev->flags)) {
8063 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8064 md_wakeup_thread(mddev->thread);
8065 }
8066 if (mddev->event_work.func)
8067 queue_work(md_misc_wq, &mddev->event_work);
8068 md_new_event();
8069 }
8070 EXPORT_SYMBOL(md_error);
8071
8072 /* seq_file implementation /proc/mdstat */
8073
status_unused(struct seq_file * seq)8074 static void status_unused(struct seq_file *seq)
8075 {
8076 int i = 0;
8077 struct md_rdev *rdev;
8078
8079 seq_printf(seq, "unused devices: ");
8080
8081 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
8082 i++;
8083 seq_printf(seq, "%pg ", rdev->bdev);
8084 }
8085 if (!i)
8086 seq_printf(seq, "<none>");
8087
8088 seq_printf(seq, "\n");
8089 }
8090
status_resync(struct seq_file * seq,struct mddev * mddev)8091 static int status_resync(struct seq_file *seq, struct mddev *mddev)
8092 {
8093 sector_t max_sectors, resync, res;
8094 unsigned long dt, db = 0;
8095 sector_t rt, curr_mark_cnt, resync_mark_cnt;
8096 int scale, recovery_active;
8097 unsigned int per_milli;
8098
8099 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8100 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8101 max_sectors = mddev->resync_max_sectors;
8102 else
8103 max_sectors = mddev->dev_sectors;
8104
8105 resync = mddev->curr_resync;
8106 if (resync < MD_RESYNC_ACTIVE) {
8107 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8108 /* Still cleaning up */
8109 resync = max_sectors;
8110 } else if (resync > max_sectors) {
8111 resync = max_sectors;
8112 } else {
8113 res = atomic_read(&mddev->recovery_active);
8114 /*
8115 * Resync has started, but the subtraction has overflowed or
8116 * yielded one of the special values. Force it to active to
8117 * ensure the status reports an active resync.
8118 */
8119 if (resync < res || resync - res < MD_RESYNC_ACTIVE)
8120 resync = MD_RESYNC_ACTIVE;
8121 else
8122 resync -= res;
8123 }
8124
8125 if (resync == MD_RESYNC_NONE) {
8126 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
8127 struct md_rdev *rdev;
8128
8129 rdev_for_each(rdev, mddev)
8130 if (rdev->raid_disk >= 0 &&
8131 !test_bit(Faulty, &rdev->flags) &&
8132 rdev->recovery_offset != MaxSector &&
8133 rdev->recovery_offset) {
8134 seq_printf(seq, "\trecover=REMOTE");
8135 return 1;
8136 }
8137 if (mddev->reshape_position != MaxSector)
8138 seq_printf(seq, "\treshape=REMOTE");
8139 else
8140 seq_printf(seq, "\tresync=REMOTE");
8141 return 1;
8142 }
8143 if (mddev->recovery_cp < MaxSector) {
8144 seq_printf(seq, "\tresync=PENDING");
8145 return 1;
8146 }
8147 return 0;
8148 }
8149 if (resync < MD_RESYNC_ACTIVE) {
8150 seq_printf(seq, "\tresync=DELAYED");
8151 return 1;
8152 }
8153
8154 WARN_ON(max_sectors == 0);
8155 /* Pick 'scale' such that (resync>>scale)*1000 will fit
8156 * in a sector_t, and (max_sectors>>scale) will fit in a
8157 * u32, as those are the requirements for sector_div.
8158 * Thus 'scale' must be at least 10
8159 */
8160 scale = 10;
8161 if (sizeof(sector_t) > sizeof(unsigned long)) {
8162 while ( max_sectors/2 > (1ULL<<(scale+32)))
8163 scale++;
8164 }
8165 res = (resync>>scale)*1000;
8166 sector_div(res, (u32)((max_sectors>>scale)+1));
8167
8168 per_milli = res;
8169 {
8170 int i, x = per_milli/50, y = 20-x;
8171 seq_printf(seq, "[");
8172 for (i = 0; i < x; i++)
8173 seq_printf(seq, "=");
8174 seq_printf(seq, ">");
8175 for (i = 0; i < y; i++)
8176 seq_printf(seq, ".");
8177 seq_printf(seq, "] ");
8178 }
8179 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
8180 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
8181 "reshape" :
8182 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
8183 "check" :
8184 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
8185 "resync" : "recovery"))),
8186 per_milli/10, per_milli % 10,
8187 (unsigned long long) resync/2,
8188 (unsigned long long) max_sectors/2);
8189
8190 /*
8191 * dt: time from mark until now
8192 * db: blocks written from mark until now
8193 * rt: remaining time
8194 *
8195 * rt is a sector_t, which is always 64bit now. We are keeping
8196 * the original algorithm, but it is not really necessary.
8197 *
8198 * Original algorithm:
8199 * So we divide before multiply in case it is 32bit and close
8200 * to the limit.
8201 * We scale the divisor (db) by 32 to avoid losing precision
8202 * near the end of resync when the number of remaining sectors
8203 * is close to 'db'.
8204 * We then divide rt by 32 after multiplying by db to compensate.
8205 * The '+1' avoids division by zero if db is very small.
8206 */
8207 dt = ((jiffies - mddev->resync_mark) / HZ);
8208 if (!dt) dt++;
8209
8210 curr_mark_cnt = mddev->curr_mark_cnt;
8211 recovery_active = atomic_read(&mddev->recovery_active);
8212 resync_mark_cnt = mddev->resync_mark_cnt;
8213
8214 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
8215 db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
8216
8217 rt = max_sectors - resync; /* number of remaining sectors */
8218 rt = div64_u64(rt, db/32+1);
8219 rt *= dt;
8220 rt >>= 5;
8221
8222 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
8223 ((unsigned long)rt % 60)/6);
8224
8225 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
8226 return 1;
8227 }
8228
md_seq_start(struct seq_file * seq,loff_t * pos)8229 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
8230 {
8231 struct list_head *tmp;
8232 loff_t l = *pos;
8233 struct mddev *mddev;
8234
8235 if (l == 0x10000) {
8236 ++*pos;
8237 return (void *)2;
8238 }
8239 if (l > 0x10000)
8240 return NULL;
8241 if (!l--)
8242 /* header */
8243 return (void*)1;
8244
8245 spin_lock(&all_mddevs_lock);
8246 list_for_each(tmp,&all_mddevs)
8247 if (!l--) {
8248 mddev = list_entry(tmp, struct mddev, all_mddevs);
8249 if (!mddev_get(mddev))
8250 continue;
8251 spin_unlock(&all_mddevs_lock);
8252 return mddev;
8253 }
8254 spin_unlock(&all_mddevs_lock);
8255 if (!l--)
8256 return (void*)2;/* tail */
8257 return NULL;
8258 }
8259
md_seq_next(struct seq_file * seq,void * v,loff_t * pos)8260 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
8261 {
8262 struct list_head *tmp;
8263 struct mddev *next_mddev, *mddev = v;
8264 struct mddev *to_put = NULL;
8265
8266 ++*pos;
8267 if (v == (void*)2)
8268 return NULL;
8269
8270 spin_lock(&all_mddevs_lock);
8271 if (v == (void*)1) {
8272 tmp = all_mddevs.next;
8273 } else {
8274 to_put = mddev;
8275 tmp = mddev->all_mddevs.next;
8276 }
8277
8278 for (;;) {
8279 if (tmp == &all_mddevs) {
8280 next_mddev = (void*)2;
8281 *pos = 0x10000;
8282 break;
8283 }
8284 next_mddev = list_entry(tmp, struct mddev, all_mddevs);
8285 if (mddev_get(next_mddev))
8286 break;
8287 mddev = next_mddev;
8288 tmp = mddev->all_mddevs.next;
8289 }
8290 spin_unlock(&all_mddevs_lock);
8291
8292 if (to_put)
8293 mddev_put(to_put);
8294 return next_mddev;
8295
8296 }
8297
md_seq_stop(struct seq_file * seq,void * v)8298 static void md_seq_stop(struct seq_file *seq, void *v)
8299 {
8300 struct mddev *mddev = v;
8301
8302 if (mddev && v != (void*)1 && v != (void*)2)
8303 mddev_put(mddev);
8304 }
8305
md_seq_show(struct seq_file * seq,void * v)8306 static int md_seq_show(struct seq_file *seq, void *v)
8307 {
8308 struct mddev *mddev = v;
8309 sector_t sectors;
8310 struct md_rdev *rdev;
8311
8312 if (v == (void*)1) {
8313 struct md_personality *pers;
8314 seq_printf(seq, "Personalities : ");
8315 spin_lock(&pers_lock);
8316 list_for_each_entry(pers, &pers_list, list)
8317 seq_printf(seq, "[%s] ", pers->name);
8318
8319 spin_unlock(&pers_lock);
8320 seq_printf(seq, "\n");
8321 seq->poll_event = atomic_read(&md_event_count);
8322 return 0;
8323 }
8324 if (v == (void*)2) {
8325 status_unused(seq);
8326 return 0;
8327 }
8328
8329 spin_lock(&mddev->lock);
8330 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
8331 seq_printf(seq, "%s : %sactive", mdname(mddev),
8332 mddev->pers ? "" : "in");
8333 if (mddev->pers) {
8334 if (mddev->ro == MD_RDONLY)
8335 seq_printf(seq, " (read-only)");
8336 if (mddev->ro == MD_AUTO_READ)
8337 seq_printf(seq, " (auto-read-only)");
8338 seq_printf(seq, " %s", mddev->pers->name);
8339 }
8340
8341 sectors = 0;
8342 rcu_read_lock();
8343 rdev_for_each_rcu(rdev, mddev) {
8344 seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr);
8345
8346 if (test_bit(WriteMostly, &rdev->flags))
8347 seq_printf(seq, "(W)");
8348 if (test_bit(Journal, &rdev->flags))
8349 seq_printf(seq, "(J)");
8350 if (test_bit(Faulty, &rdev->flags)) {
8351 seq_printf(seq, "(F)");
8352 continue;
8353 }
8354 if (rdev->raid_disk < 0)
8355 seq_printf(seq, "(S)"); /* spare */
8356 if (test_bit(Replacement, &rdev->flags))
8357 seq_printf(seq, "(R)");
8358 sectors += rdev->sectors;
8359 }
8360 rcu_read_unlock();
8361
8362 if (!list_empty(&mddev->disks)) {
8363 if (mddev->pers)
8364 seq_printf(seq, "\n %llu blocks",
8365 (unsigned long long)
8366 mddev->array_sectors / 2);
8367 else
8368 seq_printf(seq, "\n %llu blocks",
8369 (unsigned long long)sectors / 2);
8370 }
8371 if (mddev->persistent) {
8372 if (mddev->major_version != 0 ||
8373 mddev->minor_version != 90) {
8374 seq_printf(seq," super %d.%d",
8375 mddev->major_version,
8376 mddev->minor_version);
8377 }
8378 } else if (mddev->external)
8379 seq_printf(seq, " super external:%s",
8380 mddev->metadata_type);
8381 else
8382 seq_printf(seq, " super non-persistent");
8383
8384 if (mddev->pers) {
8385 mddev->pers->status(seq, mddev);
8386 seq_printf(seq, "\n ");
8387 if (mddev->pers->sync_request) {
8388 if (status_resync(seq, mddev))
8389 seq_printf(seq, "\n ");
8390 }
8391 } else
8392 seq_printf(seq, "\n ");
8393
8394 md_bitmap_status(seq, mddev->bitmap);
8395
8396 seq_printf(seq, "\n");
8397 }
8398 spin_unlock(&mddev->lock);
8399
8400 return 0;
8401 }
8402
8403 static const struct seq_operations md_seq_ops = {
8404 .start = md_seq_start,
8405 .next = md_seq_next,
8406 .stop = md_seq_stop,
8407 .show = md_seq_show,
8408 };
8409
md_seq_open(struct inode * inode,struct file * file)8410 static int md_seq_open(struct inode *inode, struct file *file)
8411 {
8412 struct seq_file *seq;
8413 int error;
8414
8415 error = seq_open(file, &md_seq_ops);
8416 if (error)
8417 return error;
8418
8419 seq = file->private_data;
8420 seq->poll_event = atomic_read(&md_event_count);
8421 return error;
8422 }
8423
8424 static int md_unloading;
mdstat_poll(struct file * filp,poll_table * wait)8425 static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
8426 {
8427 struct seq_file *seq = filp->private_data;
8428 __poll_t mask;
8429
8430 if (md_unloading)
8431 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
8432 poll_wait(filp, &md_event_waiters, wait);
8433
8434 /* always allow read */
8435 mask = EPOLLIN | EPOLLRDNORM;
8436
8437 if (seq->poll_event != atomic_read(&md_event_count))
8438 mask |= EPOLLERR | EPOLLPRI;
8439 return mask;
8440 }
8441
8442 static const struct proc_ops mdstat_proc_ops = {
8443 .proc_open = md_seq_open,
8444 .proc_read = seq_read,
8445 .proc_lseek = seq_lseek,
8446 .proc_release = seq_release,
8447 .proc_poll = mdstat_poll,
8448 };
8449
register_md_personality(struct md_personality * p)8450 int register_md_personality(struct md_personality *p)
8451 {
8452 pr_debug("md: %s personality registered for level %d\n",
8453 p->name, p->level);
8454 spin_lock(&pers_lock);
8455 list_add_tail(&p->list, &pers_list);
8456 spin_unlock(&pers_lock);
8457 return 0;
8458 }
8459 EXPORT_SYMBOL(register_md_personality);
8460
unregister_md_personality(struct md_personality * p)8461 int unregister_md_personality(struct md_personality *p)
8462 {
8463 pr_debug("md: %s personality unregistered\n", p->name);
8464 spin_lock(&pers_lock);
8465 list_del_init(&p->list);
8466 spin_unlock(&pers_lock);
8467 return 0;
8468 }
8469 EXPORT_SYMBOL(unregister_md_personality);
8470
register_md_cluster_operations(struct md_cluster_operations * ops,struct module * module)8471 int register_md_cluster_operations(struct md_cluster_operations *ops,
8472 struct module *module)
8473 {
8474 int ret = 0;
8475 spin_lock(&pers_lock);
8476 if (md_cluster_ops != NULL)
8477 ret = -EALREADY;
8478 else {
8479 md_cluster_ops = ops;
8480 md_cluster_mod = module;
8481 }
8482 spin_unlock(&pers_lock);
8483 return ret;
8484 }
8485 EXPORT_SYMBOL(register_md_cluster_operations);
8486
unregister_md_cluster_operations(void)8487 int unregister_md_cluster_operations(void)
8488 {
8489 spin_lock(&pers_lock);
8490 md_cluster_ops = NULL;
8491 spin_unlock(&pers_lock);
8492 return 0;
8493 }
8494 EXPORT_SYMBOL(unregister_md_cluster_operations);
8495
md_setup_cluster(struct mddev * mddev,int nodes)8496 int md_setup_cluster(struct mddev *mddev, int nodes)
8497 {
8498 int ret;
8499 if (!md_cluster_ops)
8500 request_module("md-cluster");
8501 spin_lock(&pers_lock);
8502 /* ensure module won't be unloaded */
8503 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
8504 pr_warn("can't find md-cluster module or get its reference.\n");
8505 spin_unlock(&pers_lock);
8506 return -ENOENT;
8507 }
8508 spin_unlock(&pers_lock);
8509
8510 ret = md_cluster_ops->join(mddev, nodes);
8511 if (!ret)
8512 mddev->safemode_delay = 0;
8513 return ret;
8514 }
8515
md_cluster_stop(struct mddev * mddev)8516 void md_cluster_stop(struct mddev *mddev)
8517 {
8518 if (!md_cluster_ops)
8519 return;
8520 md_cluster_ops->leave(mddev);
8521 module_put(md_cluster_mod);
8522 }
8523
is_mddev_idle(struct mddev * mddev,int init)8524 static int is_mddev_idle(struct mddev *mddev, int init)
8525 {
8526 struct md_rdev *rdev;
8527 int idle;
8528 int curr_events;
8529
8530 idle = 1;
8531 rcu_read_lock();
8532 rdev_for_each_rcu(rdev, mddev) {
8533 struct gendisk *disk = rdev->bdev->bd_disk;
8534 curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
8535 atomic_read(&disk->sync_io);
8536 /* sync IO will cause sync_io to increase before the disk_stats
8537 * as sync_io is counted when a request starts, and
8538 * disk_stats is counted when it completes.
8539 * So resync activity will cause curr_events to be smaller than
8540 * when there was no such activity.
8541 * non-sync IO will cause disk_stat to increase without
8542 * increasing sync_io so curr_events will (eventually)
8543 * be larger than it was before. Once it becomes
8544 * substantially larger, the test below will cause
8545 * the array to appear non-idle, and resync will slow
8546 * down.
8547 * If there is a lot of outstanding resync activity when
8548 * we set last_event to curr_events, then all that activity
8549 * completing might cause the array to appear non-idle
8550 * and resync will be slowed down even though there might
8551 * not have been non-resync activity. This will only
8552 * happen once though. 'last_events' will soon reflect
8553 * the state where there is little or no outstanding
8554 * resync requests, and further resync activity will
8555 * always make curr_events less than last_events.
8556 *
8557 */
8558 if (init || curr_events - rdev->last_events > 64) {
8559 rdev->last_events = curr_events;
8560 idle = 0;
8561 }
8562 }
8563 rcu_read_unlock();
8564 return idle;
8565 }
8566
md_done_sync(struct mddev * mddev,int blocks,int ok)8567 void md_done_sync(struct mddev *mddev, int blocks, int ok)
8568 {
8569 /* another "blocks" (512byte) blocks have been synced */
8570 atomic_sub(blocks, &mddev->recovery_active);
8571 wake_up(&mddev->recovery_wait);
8572 if (!ok) {
8573 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8574 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8575 md_wakeup_thread(mddev->thread);
8576 // stop recovery, signal do_sync ....
8577 }
8578 }
8579 EXPORT_SYMBOL(md_done_sync);
8580
8581 /* md_write_start(mddev, bi)
8582 * If we need to update some array metadata (e.g. 'active' flag
8583 * in superblock) before writing, schedule a superblock update
8584 * and wait for it to complete.
8585 * A return value of 'false' means that the write wasn't recorded
8586 * and cannot proceed as the array is being suspend.
8587 */
md_write_start(struct mddev * mddev,struct bio * bi)8588 bool md_write_start(struct mddev *mddev, struct bio *bi)
8589 {
8590 int did_change = 0;
8591
8592 if (bio_data_dir(bi) != WRITE)
8593 return true;
8594
8595 BUG_ON(mddev->ro == MD_RDONLY);
8596 if (mddev->ro == MD_AUTO_READ) {
8597 /* need to switch to read/write */
8598 mddev->ro = MD_RDWR;
8599 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8600 md_wakeup_thread(mddev->thread);
8601 md_wakeup_thread(mddev->sync_thread);
8602 did_change = 1;
8603 }
8604 rcu_read_lock();
8605 percpu_ref_get(&mddev->writes_pending);
8606 smp_mb(); /* Match smp_mb in set_in_sync() */
8607 if (mddev->safemode == 1)
8608 mddev->safemode = 0;
8609 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8610 if (mddev->in_sync || mddev->sync_checkers) {
8611 spin_lock(&mddev->lock);
8612 if (mddev->in_sync) {
8613 mddev->in_sync = 0;
8614 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8615 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8616 md_wakeup_thread(mddev->thread);
8617 did_change = 1;
8618 }
8619 spin_unlock(&mddev->lock);
8620 }
8621 rcu_read_unlock();
8622 if (did_change)
8623 sysfs_notify_dirent_safe(mddev->sysfs_state);
8624 if (!mddev->has_superblocks)
8625 return true;
8626 wait_event(mddev->sb_wait,
8627 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8628 is_md_suspended(mddev));
8629 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8630 percpu_ref_put(&mddev->writes_pending);
8631 return false;
8632 }
8633 return true;
8634 }
8635 EXPORT_SYMBOL(md_write_start);
8636
8637 /* md_write_inc can only be called when md_write_start() has
8638 * already been called at least once of the current request.
8639 * It increments the counter and is useful when a single request
8640 * is split into several parts. Each part causes an increment and
8641 * so needs a matching md_write_end().
8642 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8643 * a spinlocked region.
8644 */
md_write_inc(struct mddev * mddev,struct bio * bi)8645 void md_write_inc(struct mddev *mddev, struct bio *bi)
8646 {
8647 if (bio_data_dir(bi) != WRITE)
8648 return;
8649 WARN_ON_ONCE(mddev->in_sync || !md_is_rdwr(mddev));
8650 percpu_ref_get(&mddev->writes_pending);
8651 }
8652 EXPORT_SYMBOL(md_write_inc);
8653
md_write_end(struct mddev * mddev)8654 void md_write_end(struct mddev *mddev)
8655 {
8656 percpu_ref_put(&mddev->writes_pending);
8657
8658 if (mddev->safemode == 2)
8659 md_wakeup_thread(mddev->thread);
8660 else if (mddev->safemode_delay)
8661 /* The roundup() ensures this only performs locking once
8662 * every ->safemode_delay jiffies
8663 */
8664 mod_timer(&mddev->safemode_timer,
8665 roundup(jiffies, mddev->safemode_delay) +
8666 mddev->safemode_delay);
8667 }
8668
8669 EXPORT_SYMBOL(md_write_end);
8670
8671 /* This is used by raid0 and raid10 */
md_submit_discard_bio(struct mddev * mddev,struct md_rdev * rdev,struct bio * bio,sector_t start,sector_t size)8672 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev,
8673 struct bio *bio, sector_t start, sector_t size)
8674 {
8675 struct bio *discard_bio = NULL;
8676
8677 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO,
8678 &discard_bio) || !discard_bio)
8679 return;
8680
8681 bio_chain(discard_bio, bio);
8682 bio_clone_blkg_association(discard_bio, bio);
8683 if (mddev->gendisk)
8684 trace_block_bio_remap(discard_bio,
8685 disk_devt(mddev->gendisk),
8686 bio->bi_iter.bi_sector);
8687 submit_bio_noacct(discard_bio);
8688 }
8689 EXPORT_SYMBOL_GPL(md_submit_discard_bio);
8690
acct_bioset_init(struct mddev * mddev)8691 int acct_bioset_init(struct mddev *mddev)
8692 {
8693 int err = 0;
8694
8695 if (!bioset_initialized(&mddev->io_acct_set))
8696 err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE,
8697 offsetof(struct md_io_acct, bio_clone), 0);
8698 return err;
8699 }
8700 EXPORT_SYMBOL_GPL(acct_bioset_init);
8701
acct_bioset_exit(struct mddev * mddev)8702 void acct_bioset_exit(struct mddev *mddev)
8703 {
8704 bioset_exit(&mddev->io_acct_set);
8705 }
8706 EXPORT_SYMBOL_GPL(acct_bioset_exit);
8707
md_end_io_acct(struct bio * bio)8708 static void md_end_io_acct(struct bio *bio)
8709 {
8710 struct md_io_acct *md_io_acct = bio->bi_private;
8711 struct bio *orig_bio = md_io_acct->orig_bio;
8712
8713 if (bio->bi_status && !orig_bio->bi_status)
8714 orig_bio->bi_status = bio->bi_status;
8715
8716 bio_end_io_acct(orig_bio, md_io_acct->start_time);
8717 bio_put(bio);
8718 bio_endio(orig_bio);
8719 }
8720
8721 /*
8722 * Used by personalities that don't already clone the bio and thus can't
8723 * easily add the timestamp to their extended bio structure.
8724 */
md_account_bio(struct mddev * mddev,struct bio ** bio)8725 void md_account_bio(struct mddev *mddev, struct bio **bio)
8726 {
8727 struct block_device *bdev = (*bio)->bi_bdev;
8728 struct md_io_acct *md_io_acct;
8729 struct bio *clone;
8730
8731 if (!blk_queue_io_stat(bdev->bd_disk->queue))
8732 return;
8733
8734 clone = bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_acct_set);
8735 md_io_acct = container_of(clone, struct md_io_acct, bio_clone);
8736 md_io_acct->orig_bio = *bio;
8737 md_io_acct->start_time = bio_start_io_acct(*bio);
8738
8739 clone->bi_end_io = md_end_io_acct;
8740 clone->bi_private = md_io_acct;
8741 *bio = clone;
8742 }
8743 EXPORT_SYMBOL_GPL(md_account_bio);
8744
8745 /* md_allow_write(mddev)
8746 * Calling this ensures that the array is marked 'active' so that writes
8747 * may proceed without blocking. It is important to call this before
8748 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8749 * Must be called with mddev_lock held.
8750 */
md_allow_write(struct mddev * mddev)8751 void md_allow_write(struct mddev *mddev)
8752 {
8753 if (!mddev->pers)
8754 return;
8755 if (!md_is_rdwr(mddev))
8756 return;
8757 if (!mddev->pers->sync_request)
8758 return;
8759
8760 spin_lock(&mddev->lock);
8761 if (mddev->in_sync) {
8762 mddev->in_sync = 0;
8763 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8764 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8765 if (mddev->safemode_delay &&
8766 mddev->safemode == 0)
8767 mddev->safemode = 1;
8768 spin_unlock(&mddev->lock);
8769 md_update_sb(mddev, 0);
8770 sysfs_notify_dirent_safe(mddev->sysfs_state);
8771 /* wait for the dirty state to be recorded in the metadata */
8772 wait_event(mddev->sb_wait,
8773 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8774 } else
8775 spin_unlock(&mddev->lock);
8776 }
8777 EXPORT_SYMBOL_GPL(md_allow_write);
8778
8779 #define SYNC_MARKS 10
8780 #define SYNC_MARK_STEP (3*HZ)
8781 #define UPDATE_FREQUENCY (5*60*HZ)
md_do_sync(struct md_thread * thread)8782 void md_do_sync(struct md_thread *thread)
8783 {
8784 struct mddev *mddev = thread->mddev;
8785 struct mddev *mddev2;
8786 unsigned int currspeed = 0, window;
8787 sector_t max_sectors,j, io_sectors, recovery_done;
8788 unsigned long mark[SYNC_MARKS];
8789 unsigned long update_time;
8790 sector_t mark_cnt[SYNC_MARKS];
8791 int last_mark,m;
8792 sector_t last_check;
8793 int skipped = 0;
8794 struct md_rdev *rdev;
8795 char *desc, *action = NULL;
8796 struct blk_plug plug;
8797 int ret;
8798
8799 /* just incase thread restarts... */
8800 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8801 test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8802 return;
8803 if (!md_is_rdwr(mddev)) {/* never try to sync a read-only array */
8804 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8805 return;
8806 }
8807
8808 if (mddev_is_clustered(mddev)) {
8809 ret = md_cluster_ops->resync_start(mddev);
8810 if (ret)
8811 goto skip;
8812
8813 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8814 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8815 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8816 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8817 && ((unsigned long long)mddev->curr_resync_completed
8818 < (unsigned long long)mddev->resync_max_sectors))
8819 goto skip;
8820 }
8821
8822 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8823 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8824 desc = "data-check";
8825 action = "check";
8826 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8827 desc = "requested-resync";
8828 action = "repair";
8829 } else
8830 desc = "resync";
8831 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8832 desc = "reshape";
8833 else
8834 desc = "recovery";
8835
8836 mddev->last_sync_action = action ?: desc;
8837
8838 /*
8839 * Before starting a resync we must have set curr_resync to
8840 * 2, and then checked that every "conflicting" array has curr_resync
8841 * less than ours. When we find one that is the same or higher
8842 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
8843 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8844 * This will mean we have to start checking from the beginning again.
8845 *
8846 */
8847
8848 do {
8849 int mddev2_minor = -1;
8850 mddev->curr_resync = MD_RESYNC_DELAYED;
8851
8852 try_again:
8853 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8854 goto skip;
8855 spin_lock(&all_mddevs_lock);
8856 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) {
8857 if (test_bit(MD_DELETED, &mddev2->flags))
8858 continue;
8859 if (mddev2 == mddev)
8860 continue;
8861 if (!mddev->parallel_resync
8862 && mddev2->curr_resync
8863 && match_mddev_units(mddev, mddev2)) {
8864 DEFINE_WAIT(wq);
8865 if (mddev < mddev2 &&
8866 mddev->curr_resync == MD_RESYNC_DELAYED) {
8867 /* arbitrarily yield */
8868 mddev->curr_resync = MD_RESYNC_YIELDED;
8869 wake_up(&resync_wait);
8870 }
8871 if (mddev > mddev2 &&
8872 mddev->curr_resync == MD_RESYNC_YIELDED)
8873 /* no need to wait here, we can wait the next
8874 * time 'round when curr_resync == 2
8875 */
8876 continue;
8877 /* We need to wait 'interruptible' so as not to
8878 * contribute to the load average, and not to
8879 * be caught by 'softlockup'
8880 */
8881 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8882 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8883 mddev2->curr_resync >= mddev->curr_resync) {
8884 if (mddev2_minor != mddev2->md_minor) {
8885 mddev2_minor = mddev2->md_minor;
8886 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8887 desc, mdname(mddev),
8888 mdname(mddev2));
8889 }
8890 spin_unlock(&all_mddevs_lock);
8891
8892 if (signal_pending(current))
8893 flush_signals(current);
8894 schedule();
8895 finish_wait(&resync_wait, &wq);
8896 goto try_again;
8897 }
8898 finish_wait(&resync_wait, &wq);
8899 }
8900 }
8901 spin_unlock(&all_mddevs_lock);
8902 } while (mddev->curr_resync < MD_RESYNC_DELAYED);
8903
8904 j = 0;
8905 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8906 /* resync follows the size requested by the personality,
8907 * which defaults to physical size, but can be virtual size
8908 */
8909 max_sectors = mddev->resync_max_sectors;
8910 atomic64_set(&mddev->resync_mismatches, 0);
8911 /* we don't use the checkpoint if there's a bitmap */
8912 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8913 j = mddev->resync_min;
8914 else if (!mddev->bitmap)
8915 j = mddev->recovery_cp;
8916
8917 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8918 max_sectors = mddev->resync_max_sectors;
8919 /*
8920 * If the original node aborts reshaping then we continue the
8921 * reshaping, so set j again to avoid restart reshape from the
8922 * first beginning
8923 */
8924 if (mddev_is_clustered(mddev) &&
8925 mddev->reshape_position != MaxSector)
8926 j = mddev->reshape_position;
8927 } else {
8928 /* recovery follows the physical size of devices */
8929 max_sectors = mddev->dev_sectors;
8930 j = MaxSector;
8931 rcu_read_lock();
8932 rdev_for_each_rcu(rdev, mddev)
8933 if (rdev->raid_disk >= 0 &&
8934 !test_bit(Journal, &rdev->flags) &&
8935 !test_bit(Faulty, &rdev->flags) &&
8936 !test_bit(In_sync, &rdev->flags) &&
8937 rdev->recovery_offset < j)
8938 j = rdev->recovery_offset;
8939 rcu_read_unlock();
8940
8941 /* If there is a bitmap, we need to make sure all
8942 * writes that started before we added a spare
8943 * complete before we start doing a recovery.
8944 * Otherwise the write might complete and (via
8945 * bitmap_endwrite) set a bit in the bitmap after the
8946 * recovery has checked that bit and skipped that
8947 * region.
8948 */
8949 if (mddev->bitmap) {
8950 mddev->pers->quiesce(mddev, 1);
8951 mddev->pers->quiesce(mddev, 0);
8952 }
8953 }
8954
8955 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8956 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8957 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8958 speed_max(mddev), desc);
8959
8960 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8961
8962 io_sectors = 0;
8963 for (m = 0; m < SYNC_MARKS; m++) {
8964 mark[m] = jiffies;
8965 mark_cnt[m] = io_sectors;
8966 }
8967 last_mark = 0;
8968 mddev->resync_mark = mark[last_mark];
8969 mddev->resync_mark_cnt = mark_cnt[last_mark];
8970
8971 /*
8972 * Tune reconstruction:
8973 */
8974 window = 32 * (PAGE_SIZE / 512);
8975 pr_debug("md: using %dk window, over a total of %lluk.\n",
8976 window/2, (unsigned long long)max_sectors/2);
8977
8978 atomic_set(&mddev->recovery_active, 0);
8979 last_check = 0;
8980
8981 if (j>2) {
8982 pr_debug("md: resuming %s of %s from checkpoint.\n",
8983 desc, mdname(mddev));
8984 mddev->curr_resync = j;
8985 } else
8986 mddev->curr_resync = MD_RESYNC_ACTIVE; /* no longer delayed */
8987 mddev->curr_resync_completed = j;
8988 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8989 md_new_event();
8990 update_time = jiffies;
8991
8992 blk_start_plug(&plug);
8993 while (j < max_sectors) {
8994 sector_t sectors;
8995
8996 skipped = 0;
8997
8998 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8999 ((mddev->curr_resync > mddev->curr_resync_completed &&
9000 (mddev->curr_resync - mddev->curr_resync_completed)
9001 > (max_sectors >> 4)) ||
9002 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
9003 (j - mddev->curr_resync_completed)*2
9004 >= mddev->resync_max - mddev->curr_resync_completed ||
9005 mddev->curr_resync_completed > mddev->resync_max
9006 )) {
9007 /* time to update curr_resync_completed */
9008 wait_event(mddev->recovery_wait,
9009 atomic_read(&mddev->recovery_active) == 0);
9010 mddev->curr_resync_completed = j;
9011 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
9012 j > mddev->recovery_cp)
9013 mddev->recovery_cp = j;
9014 update_time = jiffies;
9015 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
9016 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9017 }
9018
9019 while (j >= mddev->resync_max &&
9020 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9021 /* As this condition is controlled by user-space,
9022 * we can block indefinitely, so use '_interruptible'
9023 * to avoid triggering warnings.
9024 */
9025 flush_signals(current); /* just in case */
9026 wait_event_interruptible(mddev->recovery_wait,
9027 mddev->resync_max > j
9028 || test_bit(MD_RECOVERY_INTR,
9029 &mddev->recovery));
9030 }
9031
9032 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9033 break;
9034
9035 sectors = mddev->pers->sync_request(mddev, j, &skipped);
9036 if (sectors == 0) {
9037 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9038 break;
9039 }
9040
9041 if (!skipped) { /* actual IO requested */
9042 io_sectors += sectors;
9043 atomic_add(sectors, &mddev->recovery_active);
9044 }
9045
9046 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9047 break;
9048
9049 j += sectors;
9050 if (j > max_sectors)
9051 /* when skipping, extra large numbers can be returned. */
9052 j = max_sectors;
9053 if (j > 2)
9054 mddev->curr_resync = j;
9055 mddev->curr_mark_cnt = io_sectors;
9056 if (last_check == 0)
9057 /* this is the earliest that rebuild will be
9058 * visible in /proc/mdstat
9059 */
9060 md_new_event();
9061
9062 if (last_check + window > io_sectors || j == max_sectors)
9063 continue;
9064
9065 last_check = io_sectors;
9066 repeat:
9067 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
9068 /* step marks */
9069 int next = (last_mark+1) % SYNC_MARKS;
9070
9071 mddev->resync_mark = mark[next];
9072 mddev->resync_mark_cnt = mark_cnt[next];
9073 mark[next] = jiffies;
9074 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
9075 last_mark = next;
9076 }
9077
9078 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9079 break;
9080
9081 /*
9082 * this loop exits only if either when we are slower than
9083 * the 'hard' speed limit, or the system was IO-idle for
9084 * a jiffy.
9085 * the system might be non-idle CPU-wise, but we only care
9086 * about not overloading the IO subsystem. (things like an
9087 * e2fsck being done on the RAID array should execute fast)
9088 */
9089 cond_resched();
9090
9091 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
9092 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
9093 /((jiffies-mddev->resync_mark)/HZ +1) +1;
9094
9095 if (currspeed > speed_min(mddev)) {
9096 if (currspeed > speed_max(mddev)) {
9097 msleep(500);
9098 goto repeat;
9099 }
9100 if (!is_mddev_idle(mddev, 0)) {
9101 /*
9102 * Give other IO more of a chance.
9103 * The faster the devices, the less we wait.
9104 */
9105 wait_event(mddev->recovery_wait,
9106 !atomic_read(&mddev->recovery_active));
9107 }
9108 }
9109 }
9110 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
9111 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
9112 ? "interrupted" : "done");
9113 /*
9114 * this also signals 'finished resyncing' to md_stop
9115 */
9116 blk_finish_plug(&plug);
9117 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
9118
9119 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9120 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9121 mddev->curr_resync >= MD_RESYNC_ACTIVE) {
9122 mddev->curr_resync_completed = mddev->curr_resync;
9123 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9124 }
9125 mddev->pers->sync_request(mddev, max_sectors, &skipped);
9126
9127 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
9128 mddev->curr_resync > MD_RESYNC_ACTIVE) {
9129 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
9130 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9131 if (mddev->curr_resync >= mddev->recovery_cp) {
9132 pr_debug("md: checkpointing %s of %s.\n",
9133 desc, mdname(mddev));
9134 if (test_bit(MD_RECOVERY_ERROR,
9135 &mddev->recovery))
9136 mddev->recovery_cp =
9137 mddev->curr_resync_completed;
9138 else
9139 mddev->recovery_cp =
9140 mddev->curr_resync;
9141 }
9142 } else
9143 mddev->recovery_cp = MaxSector;
9144 } else {
9145 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9146 mddev->curr_resync = MaxSector;
9147 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9148 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
9149 rcu_read_lock();
9150 rdev_for_each_rcu(rdev, mddev)
9151 if (rdev->raid_disk >= 0 &&
9152 mddev->delta_disks >= 0 &&
9153 !test_bit(Journal, &rdev->flags) &&
9154 !test_bit(Faulty, &rdev->flags) &&
9155 !test_bit(In_sync, &rdev->flags) &&
9156 rdev->recovery_offset < mddev->curr_resync)
9157 rdev->recovery_offset = mddev->curr_resync;
9158 rcu_read_unlock();
9159 }
9160 }
9161 }
9162 skip:
9163 /* set CHANGE_PENDING here since maybe another update is needed,
9164 * so other nodes are informed. It should be harmless for normal
9165 * raid */
9166 set_mask_bits(&mddev->sb_flags, 0,
9167 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
9168
9169 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9170 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9171 mddev->delta_disks > 0 &&
9172 mddev->pers->finish_reshape &&
9173 mddev->pers->size &&
9174 mddev->queue) {
9175 mddev_lock_nointr(mddev);
9176 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
9177 mddev_unlock(mddev);
9178 if (!mddev_is_clustered(mddev))
9179 set_capacity_and_notify(mddev->gendisk,
9180 mddev->array_sectors);
9181 }
9182
9183 spin_lock(&mddev->lock);
9184 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9185 /* We completed so min/max setting can be forgotten if used. */
9186 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9187 mddev->resync_min = 0;
9188 mddev->resync_max = MaxSector;
9189 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9190 mddev->resync_min = mddev->curr_resync_completed;
9191 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
9192 mddev->curr_resync = MD_RESYNC_NONE;
9193 spin_unlock(&mddev->lock);
9194
9195 wake_up(&resync_wait);
9196 md_wakeup_thread(mddev->thread);
9197 return;
9198 }
9199 EXPORT_SYMBOL_GPL(md_do_sync);
9200
remove_and_add_spares(struct mddev * mddev,struct md_rdev * this)9201 static int remove_and_add_spares(struct mddev *mddev,
9202 struct md_rdev *this)
9203 {
9204 struct md_rdev *rdev;
9205 int spares = 0;
9206 int removed = 0;
9207 bool remove_some = false;
9208
9209 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
9210 /* Mustn't remove devices when resync thread is running */
9211 return 0;
9212
9213 rdev_for_each(rdev, mddev) {
9214 if ((this == NULL || rdev == this) &&
9215 rdev->raid_disk >= 0 &&
9216 !test_bit(Blocked, &rdev->flags) &&
9217 test_bit(Faulty, &rdev->flags) &&
9218 atomic_read(&rdev->nr_pending)==0) {
9219 /* Faulty non-Blocked devices with nr_pending == 0
9220 * never get nr_pending incremented,
9221 * never get Faulty cleared, and never get Blocked set.
9222 * So we can synchronize_rcu now rather than once per device
9223 */
9224 remove_some = true;
9225 set_bit(RemoveSynchronized, &rdev->flags);
9226 }
9227 }
9228
9229 if (remove_some)
9230 synchronize_rcu();
9231 rdev_for_each(rdev, mddev) {
9232 if ((this == NULL || rdev == this) &&
9233 rdev->raid_disk >= 0 &&
9234 !test_bit(Blocked, &rdev->flags) &&
9235 ((test_bit(RemoveSynchronized, &rdev->flags) ||
9236 (!test_bit(In_sync, &rdev->flags) &&
9237 !test_bit(Journal, &rdev->flags))) &&
9238 atomic_read(&rdev->nr_pending)==0)) {
9239 if (mddev->pers->hot_remove_disk(
9240 mddev, rdev) == 0) {
9241 sysfs_unlink_rdev(mddev, rdev);
9242 rdev->saved_raid_disk = rdev->raid_disk;
9243 rdev->raid_disk = -1;
9244 removed++;
9245 }
9246 }
9247 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
9248 clear_bit(RemoveSynchronized, &rdev->flags);
9249 }
9250
9251 if (removed && mddev->kobj.sd)
9252 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9253
9254 if (this && removed)
9255 goto no_add;
9256
9257 rdev_for_each(rdev, mddev) {
9258 if (this && this != rdev)
9259 continue;
9260 if (test_bit(Candidate, &rdev->flags))
9261 continue;
9262 if (rdev->raid_disk >= 0 &&
9263 !test_bit(In_sync, &rdev->flags) &&
9264 !test_bit(Journal, &rdev->flags) &&
9265 !test_bit(Faulty, &rdev->flags))
9266 spares++;
9267 if (rdev->raid_disk >= 0)
9268 continue;
9269 if (test_bit(Faulty, &rdev->flags))
9270 continue;
9271 if (!test_bit(Journal, &rdev->flags)) {
9272 if (!md_is_rdwr(mddev) &&
9273 !(rdev->saved_raid_disk >= 0 &&
9274 !test_bit(Bitmap_sync, &rdev->flags)))
9275 continue;
9276
9277 rdev->recovery_offset = 0;
9278 }
9279 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
9280 /* failure here is OK */
9281 sysfs_link_rdev(mddev, rdev);
9282 if (!test_bit(Journal, &rdev->flags))
9283 spares++;
9284 md_new_event();
9285 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9286 }
9287 }
9288 no_add:
9289 if (removed)
9290 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9291 return spares;
9292 }
9293
md_start_sync(struct work_struct * ws)9294 static void md_start_sync(struct work_struct *ws)
9295 {
9296 struct mddev *mddev = container_of(ws, struct mddev, del_work);
9297
9298 mddev->sync_thread = md_register_thread(md_do_sync,
9299 mddev,
9300 "resync");
9301 if (!mddev->sync_thread) {
9302 pr_warn("%s: could not start resync thread...\n",
9303 mdname(mddev));
9304 /* leave the spares where they are, it shouldn't hurt */
9305 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9306 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9307 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9308 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9309 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9310 wake_up(&resync_wait);
9311 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9312 &mddev->recovery))
9313 if (mddev->sysfs_action)
9314 sysfs_notify_dirent_safe(mddev->sysfs_action);
9315 } else
9316 md_wakeup_thread(mddev->sync_thread);
9317 sysfs_notify_dirent_safe(mddev->sysfs_action);
9318 md_new_event();
9319 }
9320
9321 /*
9322 * This routine is regularly called by all per-raid-array threads to
9323 * deal with generic issues like resync and super-block update.
9324 * Raid personalities that don't have a thread (linear/raid0) do not
9325 * need this as they never do any recovery or update the superblock.
9326 *
9327 * It does not do any resync itself, but rather "forks" off other threads
9328 * to do that as needed.
9329 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
9330 * "->recovery" and create a thread at ->sync_thread.
9331 * When the thread finishes it sets MD_RECOVERY_DONE
9332 * and wakeups up this thread which will reap the thread and finish up.
9333 * This thread also removes any faulty devices (with nr_pending == 0).
9334 *
9335 * The overall approach is:
9336 * 1/ if the superblock needs updating, update it.
9337 * 2/ If a recovery thread is running, don't do anything else.
9338 * 3/ If recovery has finished, clean up, possibly marking spares active.
9339 * 4/ If there are any faulty devices, remove them.
9340 * 5/ If array is degraded, try to add spares devices
9341 * 6/ If array has spares or is not in-sync, start a resync thread.
9342 */
md_check_recovery(struct mddev * mddev)9343 void md_check_recovery(struct mddev *mddev)
9344 {
9345 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
9346 /* Write superblock - thread that called mddev_suspend()
9347 * holds reconfig_mutex for us.
9348 */
9349 set_bit(MD_UPDATING_SB, &mddev->flags);
9350 smp_mb__after_atomic();
9351 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
9352 md_update_sb(mddev, 0);
9353 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
9354 wake_up(&mddev->sb_wait);
9355 }
9356
9357 if (is_md_suspended(mddev))
9358 return;
9359
9360 if (mddev->bitmap)
9361 md_bitmap_daemon_work(mddev);
9362
9363 if (signal_pending(current)) {
9364 if (mddev->pers->sync_request && !mddev->external) {
9365 pr_debug("md: %s in immediate safe mode\n",
9366 mdname(mddev));
9367 mddev->safemode = 2;
9368 }
9369 flush_signals(current);
9370 }
9371
9372 if (!md_is_rdwr(mddev) &&
9373 !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
9374 return;
9375 if ( ! (
9376 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
9377 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9378 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
9379 (mddev->external == 0 && mddev->safemode == 1) ||
9380 (mddev->safemode == 2
9381 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
9382 ))
9383 return;
9384
9385 if (mddev_trylock(mddev)) {
9386 int spares = 0;
9387 bool try_set_sync = mddev->safemode != 0;
9388
9389 if (!mddev->external && mddev->safemode == 1)
9390 mddev->safemode = 0;
9391
9392 if (!md_is_rdwr(mddev)) {
9393 struct md_rdev *rdev;
9394 if (!mddev->external && mddev->in_sync)
9395 /* 'Blocked' flag not needed as failed devices
9396 * will be recorded if array switched to read/write.
9397 * Leaving it set will prevent the device
9398 * from being removed.
9399 */
9400 rdev_for_each(rdev, mddev)
9401 clear_bit(Blocked, &rdev->flags);
9402 /* On a read-only array we can:
9403 * - remove failed devices
9404 * - add already-in_sync devices if the array itself
9405 * is in-sync.
9406 * As we only add devices that are already in-sync,
9407 * we can activate the spares immediately.
9408 */
9409 remove_and_add_spares(mddev, NULL);
9410 /* There is no thread, but we need to call
9411 * ->spare_active and clear saved_raid_disk
9412 */
9413 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9414 md_unregister_thread(&mddev->sync_thread);
9415 md_reap_sync_thread(mddev);
9416 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9417 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9418 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
9419 goto unlock;
9420 }
9421
9422 if (mddev_is_clustered(mddev)) {
9423 struct md_rdev *rdev, *tmp;
9424 /* kick the device if another node issued a
9425 * remove disk.
9426 */
9427 rdev_for_each_safe(rdev, tmp, mddev) {
9428 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
9429 rdev->raid_disk < 0)
9430 md_kick_rdev_from_array(rdev);
9431 }
9432 }
9433
9434 if (try_set_sync && !mddev->external && !mddev->in_sync) {
9435 spin_lock(&mddev->lock);
9436 set_in_sync(mddev);
9437 spin_unlock(&mddev->lock);
9438 }
9439
9440 if (mddev->sb_flags)
9441 md_update_sb(mddev, 0);
9442
9443 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
9444 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
9445 /* resync/recovery still happening */
9446 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9447 goto unlock;
9448 }
9449 if (mddev->sync_thread) {
9450 md_unregister_thread(&mddev->sync_thread);
9451 md_reap_sync_thread(mddev);
9452 goto unlock;
9453 }
9454 /* Set RUNNING before clearing NEEDED to avoid
9455 * any transients in the value of "sync_action".
9456 */
9457 mddev->curr_resync_completed = 0;
9458 spin_lock(&mddev->lock);
9459 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9460 spin_unlock(&mddev->lock);
9461 /* Clear some bits that don't mean anything, but
9462 * might be left set
9463 */
9464 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
9465 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9466
9467 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9468 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
9469 goto not_running;
9470 /* no recovery is running.
9471 * remove any failed drives, then
9472 * add spares if possible.
9473 * Spares are also removed and re-added, to allow
9474 * the personality to fail the re-add.
9475 */
9476
9477 if (mddev->reshape_position != MaxSector) {
9478 if (mddev->pers->check_reshape == NULL ||
9479 mddev->pers->check_reshape(mddev) != 0)
9480 /* Cannot proceed */
9481 goto not_running;
9482 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9483 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9484 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
9485 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9486 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9487 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9488 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9489 } else if (mddev->recovery_cp < MaxSector) {
9490 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9491 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9492 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
9493 /* nothing to be done ... */
9494 goto not_running;
9495
9496 if (mddev->pers->sync_request) {
9497 if (spares) {
9498 /* We are adding a device or devices to an array
9499 * which has the bitmap stored on all devices.
9500 * So make sure all bitmap pages get written
9501 */
9502 md_bitmap_write_all(mddev->bitmap);
9503 }
9504 INIT_WORK(&mddev->del_work, md_start_sync);
9505 queue_work(md_misc_wq, &mddev->del_work);
9506 goto unlock;
9507 }
9508 not_running:
9509 if (!mddev->sync_thread) {
9510 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9511 wake_up(&resync_wait);
9512 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9513 &mddev->recovery))
9514 if (mddev->sysfs_action)
9515 sysfs_notify_dirent_safe(mddev->sysfs_action);
9516 }
9517 unlock:
9518 wake_up(&mddev->sb_wait);
9519 mddev_unlock(mddev);
9520 }
9521 }
9522 EXPORT_SYMBOL(md_check_recovery);
9523
md_reap_sync_thread(struct mddev * mddev)9524 void md_reap_sync_thread(struct mddev *mddev)
9525 {
9526 struct md_rdev *rdev;
9527 sector_t old_dev_sectors = mddev->dev_sectors;
9528 bool is_reshaped = false;
9529
9530 /* sync_thread should be unregistered, collect result */
9531 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9532 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
9533 mddev->degraded != mddev->raid_disks) {
9534 /* success...*/
9535 /* activate any spares */
9536 if (mddev->pers->spare_active(mddev)) {
9537 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9538 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9539 }
9540 }
9541 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9542 mddev->pers->finish_reshape) {
9543 mddev->pers->finish_reshape(mddev);
9544 if (mddev_is_clustered(mddev))
9545 is_reshaped = true;
9546 }
9547
9548 /* If array is no-longer degraded, then any saved_raid_disk
9549 * information must be scrapped.
9550 */
9551 if (!mddev->degraded)
9552 rdev_for_each(rdev, mddev)
9553 rdev->saved_raid_disk = -1;
9554
9555 md_update_sb(mddev, 1);
9556 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
9557 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
9558 * clustered raid */
9559 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
9560 md_cluster_ops->resync_finish(mddev);
9561 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9562 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9563 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9564 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9565 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9566 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9567 /*
9568 * We call md_cluster_ops->update_size here because sync_size could
9569 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
9570 * so it is time to update size across cluster.
9571 */
9572 if (mddev_is_clustered(mddev) && is_reshaped
9573 && !test_bit(MD_CLOSING, &mddev->flags))
9574 md_cluster_ops->update_size(mddev, old_dev_sectors);
9575 wake_up(&resync_wait);
9576 /* flag recovery needed just to double check */
9577 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9578 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9579 sysfs_notify_dirent_safe(mddev->sysfs_action);
9580 md_new_event();
9581 if (mddev->event_work.func)
9582 queue_work(md_misc_wq, &mddev->event_work);
9583 }
9584 EXPORT_SYMBOL(md_reap_sync_thread);
9585
md_wait_for_blocked_rdev(struct md_rdev * rdev,struct mddev * mddev)9586 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9587 {
9588 sysfs_notify_dirent_safe(rdev->sysfs_state);
9589 wait_event_timeout(rdev->blocked_wait,
9590 !test_bit(Blocked, &rdev->flags) &&
9591 !test_bit(BlockedBadBlocks, &rdev->flags),
9592 msecs_to_jiffies(5000));
9593 rdev_dec_pending(rdev, mddev);
9594 }
9595 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9596
md_finish_reshape(struct mddev * mddev)9597 void md_finish_reshape(struct mddev *mddev)
9598 {
9599 /* called be personality module when reshape completes. */
9600 struct md_rdev *rdev;
9601
9602 rdev_for_each(rdev, mddev) {
9603 if (rdev->data_offset > rdev->new_data_offset)
9604 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9605 else
9606 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9607 rdev->data_offset = rdev->new_data_offset;
9608 }
9609 }
9610 EXPORT_SYMBOL(md_finish_reshape);
9611
9612 /* Bad block management */
9613
9614 /* Returns 1 on success, 0 on failure */
rdev_set_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)9615 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9616 int is_new)
9617 {
9618 struct mddev *mddev = rdev->mddev;
9619 int rv;
9620 if (is_new)
9621 s += rdev->new_data_offset;
9622 else
9623 s += rdev->data_offset;
9624 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9625 if (rv == 0) {
9626 /* Make sure they get written out promptly */
9627 if (test_bit(ExternalBbl, &rdev->flags))
9628 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
9629 sysfs_notify_dirent_safe(rdev->sysfs_state);
9630 set_mask_bits(&mddev->sb_flags, 0,
9631 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9632 md_wakeup_thread(rdev->mddev->thread);
9633 return 1;
9634 } else
9635 return 0;
9636 }
9637 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9638
rdev_clear_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)9639 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9640 int is_new)
9641 {
9642 int rv;
9643 if (is_new)
9644 s += rdev->new_data_offset;
9645 else
9646 s += rdev->data_offset;
9647 rv = badblocks_clear(&rdev->badblocks, s, sectors);
9648 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9649 sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
9650 return rv;
9651 }
9652 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9653
md_notify_reboot(struct notifier_block * this,unsigned long code,void * x)9654 static int md_notify_reboot(struct notifier_block *this,
9655 unsigned long code, void *x)
9656 {
9657 struct mddev *mddev, *n;
9658 int need_delay = 0;
9659
9660 spin_lock(&all_mddevs_lock);
9661 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) {
9662 if (!mddev_get(mddev))
9663 continue;
9664 spin_unlock(&all_mddevs_lock);
9665 if (mddev_trylock(mddev)) {
9666 if (mddev->pers)
9667 __md_stop_writes(mddev);
9668 if (mddev->persistent)
9669 mddev->safemode = 2;
9670 mddev_unlock(mddev);
9671 }
9672 need_delay = 1;
9673 mddev_put(mddev);
9674 spin_lock(&all_mddevs_lock);
9675 }
9676 spin_unlock(&all_mddevs_lock);
9677
9678 /*
9679 * certain more exotic SCSI devices are known to be
9680 * volatile wrt too early system reboots. While the
9681 * right place to handle this issue is the given
9682 * driver, we do want to have a safe RAID driver ...
9683 */
9684 if (need_delay)
9685 msleep(1000);
9686
9687 return NOTIFY_DONE;
9688 }
9689
9690 static struct notifier_block md_notifier = {
9691 .notifier_call = md_notify_reboot,
9692 .next = NULL,
9693 .priority = INT_MAX, /* before any real devices */
9694 };
9695
md_geninit(void)9696 static void md_geninit(void)
9697 {
9698 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9699
9700 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
9701 }
9702
md_init(void)9703 static int __init md_init(void)
9704 {
9705 int ret = -ENOMEM;
9706
9707 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9708 if (!md_wq)
9709 goto err_wq;
9710
9711 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9712 if (!md_misc_wq)
9713 goto err_misc_wq;
9714
9715 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0);
9716 if (!md_rdev_misc_wq)
9717 goto err_rdev_misc_wq;
9718
9719 ret = __register_blkdev(MD_MAJOR, "md", md_probe);
9720 if (ret < 0)
9721 goto err_md;
9722
9723 ret = __register_blkdev(0, "mdp", md_probe);
9724 if (ret < 0)
9725 goto err_mdp;
9726 mdp_major = ret;
9727
9728 register_reboot_notifier(&md_notifier);
9729 raid_table_header = register_sysctl_table(raid_root_table);
9730
9731 md_geninit();
9732 return 0;
9733
9734 err_mdp:
9735 unregister_blkdev(MD_MAJOR, "md");
9736 err_md:
9737 destroy_workqueue(md_rdev_misc_wq);
9738 err_rdev_misc_wq:
9739 destroy_workqueue(md_misc_wq);
9740 err_misc_wq:
9741 destroy_workqueue(md_wq);
9742 err_wq:
9743 return ret;
9744 }
9745
check_sb_changes(struct mddev * mddev,struct md_rdev * rdev)9746 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9747 {
9748 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9749 struct md_rdev *rdev2, *tmp;
9750 int role, ret;
9751
9752 /*
9753 * If size is changed in another node then we need to
9754 * do resize as well.
9755 */
9756 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9757 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9758 if (ret)
9759 pr_info("md-cluster: resize failed\n");
9760 else
9761 md_bitmap_update_sb(mddev->bitmap);
9762 }
9763
9764 /* Check for change of roles in the active devices */
9765 rdev_for_each_safe(rdev2, tmp, mddev) {
9766 if (test_bit(Faulty, &rdev2->flags))
9767 continue;
9768
9769 /* Check if the roles changed */
9770 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9771
9772 if (test_bit(Candidate, &rdev2->flags)) {
9773 if (role == MD_DISK_ROLE_FAULTY) {
9774 pr_info("md: Removing Candidate device %pg because add failed\n",
9775 rdev2->bdev);
9776 md_kick_rdev_from_array(rdev2);
9777 continue;
9778 }
9779 else
9780 clear_bit(Candidate, &rdev2->flags);
9781 }
9782
9783 if (role != rdev2->raid_disk) {
9784 /*
9785 * got activated except reshape is happening.
9786 */
9787 if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE &&
9788 !(le32_to_cpu(sb->feature_map) &
9789 MD_FEATURE_RESHAPE_ACTIVE)) {
9790 rdev2->saved_raid_disk = role;
9791 ret = remove_and_add_spares(mddev, rdev2);
9792 pr_info("Activated spare: %pg\n",
9793 rdev2->bdev);
9794 /* wakeup mddev->thread here, so array could
9795 * perform resync with the new activated disk */
9796 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9797 md_wakeup_thread(mddev->thread);
9798 }
9799 /* device faulty
9800 * We just want to do the minimum to mark the disk
9801 * as faulty. The recovery is performed by the
9802 * one who initiated the error.
9803 */
9804 if (role == MD_DISK_ROLE_FAULTY ||
9805 role == MD_DISK_ROLE_JOURNAL) {
9806 md_error(mddev, rdev2);
9807 clear_bit(Blocked, &rdev2->flags);
9808 }
9809 }
9810 }
9811
9812 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) {
9813 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9814 if (ret)
9815 pr_warn("md: updating array disks failed. %d\n", ret);
9816 }
9817
9818 /*
9819 * Since mddev->delta_disks has already updated in update_raid_disks,
9820 * so it is time to check reshape.
9821 */
9822 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9823 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9824 /*
9825 * reshape is happening in the remote node, we need to
9826 * update reshape_position and call start_reshape.
9827 */
9828 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
9829 if (mddev->pers->update_reshape_pos)
9830 mddev->pers->update_reshape_pos(mddev);
9831 if (mddev->pers->start_reshape)
9832 mddev->pers->start_reshape(mddev);
9833 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9834 mddev->reshape_position != MaxSector &&
9835 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9836 /* reshape is just done in another node. */
9837 mddev->reshape_position = MaxSector;
9838 if (mddev->pers->update_reshape_pos)
9839 mddev->pers->update_reshape_pos(mddev);
9840 }
9841
9842 /* Finally set the event to be up to date */
9843 mddev->events = le64_to_cpu(sb->events);
9844 }
9845
read_rdev(struct mddev * mddev,struct md_rdev * rdev)9846 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9847 {
9848 int err;
9849 struct page *swapout = rdev->sb_page;
9850 struct mdp_superblock_1 *sb;
9851
9852 /* Store the sb page of the rdev in the swapout temporary
9853 * variable in case we err in the future
9854 */
9855 rdev->sb_page = NULL;
9856 err = alloc_disk_sb(rdev);
9857 if (err == 0) {
9858 ClearPageUptodate(rdev->sb_page);
9859 rdev->sb_loaded = 0;
9860 err = super_types[mddev->major_version].
9861 load_super(rdev, NULL, mddev->minor_version);
9862 }
9863 if (err < 0) {
9864 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9865 __func__, __LINE__, rdev->desc_nr, err);
9866 if (rdev->sb_page)
9867 put_page(rdev->sb_page);
9868 rdev->sb_page = swapout;
9869 rdev->sb_loaded = 1;
9870 return err;
9871 }
9872
9873 sb = page_address(rdev->sb_page);
9874 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9875 * is not set
9876 */
9877
9878 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9879 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9880
9881 /* The other node finished recovery, call spare_active to set
9882 * device In_sync and mddev->degraded
9883 */
9884 if (rdev->recovery_offset == MaxSector &&
9885 !test_bit(In_sync, &rdev->flags) &&
9886 mddev->pers->spare_active(mddev))
9887 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9888
9889 put_page(swapout);
9890 return 0;
9891 }
9892
md_reload_sb(struct mddev * mddev,int nr)9893 void md_reload_sb(struct mddev *mddev, int nr)
9894 {
9895 struct md_rdev *rdev = NULL, *iter;
9896 int err;
9897
9898 /* Find the rdev */
9899 rdev_for_each_rcu(iter, mddev) {
9900 if (iter->desc_nr == nr) {
9901 rdev = iter;
9902 break;
9903 }
9904 }
9905
9906 if (!rdev) {
9907 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9908 return;
9909 }
9910
9911 err = read_rdev(mddev, rdev);
9912 if (err < 0)
9913 return;
9914
9915 check_sb_changes(mddev, rdev);
9916
9917 /* Read all rdev's to update recovery_offset */
9918 rdev_for_each_rcu(rdev, mddev) {
9919 if (!test_bit(Faulty, &rdev->flags))
9920 read_rdev(mddev, rdev);
9921 }
9922 }
9923 EXPORT_SYMBOL(md_reload_sb);
9924
9925 #ifndef MODULE
9926
9927 /*
9928 * Searches all registered partitions for autorun RAID arrays
9929 * at boot time.
9930 */
9931
9932 static DEFINE_MUTEX(detected_devices_mutex);
9933 static LIST_HEAD(all_detected_devices);
9934 struct detected_devices_node {
9935 struct list_head list;
9936 dev_t dev;
9937 };
9938
md_autodetect_dev(dev_t dev)9939 void md_autodetect_dev(dev_t dev)
9940 {
9941 struct detected_devices_node *node_detected_dev;
9942
9943 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9944 if (node_detected_dev) {
9945 node_detected_dev->dev = dev;
9946 mutex_lock(&detected_devices_mutex);
9947 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9948 mutex_unlock(&detected_devices_mutex);
9949 }
9950 }
9951
md_autostart_arrays(int part)9952 void md_autostart_arrays(int part)
9953 {
9954 struct md_rdev *rdev;
9955 struct detected_devices_node *node_detected_dev;
9956 dev_t dev;
9957 int i_scanned, i_passed;
9958
9959 i_scanned = 0;
9960 i_passed = 0;
9961
9962 pr_info("md: Autodetecting RAID arrays.\n");
9963
9964 mutex_lock(&detected_devices_mutex);
9965 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9966 i_scanned++;
9967 node_detected_dev = list_entry(all_detected_devices.next,
9968 struct detected_devices_node, list);
9969 list_del(&node_detected_dev->list);
9970 dev = node_detected_dev->dev;
9971 kfree(node_detected_dev);
9972 mutex_unlock(&detected_devices_mutex);
9973 rdev = md_import_device(dev,0, 90);
9974 mutex_lock(&detected_devices_mutex);
9975 if (IS_ERR(rdev))
9976 continue;
9977
9978 if (test_bit(Faulty, &rdev->flags))
9979 continue;
9980
9981 set_bit(AutoDetected, &rdev->flags);
9982 list_add(&rdev->same_set, &pending_raid_disks);
9983 i_passed++;
9984 }
9985 mutex_unlock(&detected_devices_mutex);
9986
9987 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9988
9989 autorun_devices(part);
9990 }
9991
9992 #endif /* !MODULE */
9993
md_exit(void)9994 static __exit void md_exit(void)
9995 {
9996 struct mddev *mddev, *n;
9997 int delay = 1;
9998
9999 unregister_blkdev(MD_MAJOR,"md");
10000 unregister_blkdev(mdp_major, "mdp");
10001 unregister_reboot_notifier(&md_notifier);
10002 unregister_sysctl_table(raid_table_header);
10003
10004 /* We cannot unload the modules while some process is
10005 * waiting for us in select() or poll() - wake them up
10006 */
10007 md_unloading = 1;
10008 while (waitqueue_active(&md_event_waiters)) {
10009 /* not safe to leave yet */
10010 wake_up(&md_event_waiters);
10011 msleep(delay);
10012 delay += delay;
10013 }
10014 remove_proc_entry("mdstat", NULL);
10015
10016 spin_lock(&all_mddevs_lock);
10017 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) {
10018 if (!mddev_get(mddev))
10019 continue;
10020 spin_unlock(&all_mddevs_lock);
10021 export_array(mddev);
10022 mddev->ctime = 0;
10023 mddev->hold_active = 0;
10024 /*
10025 * As the mddev is now fully clear, mddev_put will schedule
10026 * the mddev for destruction by a workqueue, and the
10027 * destroy_workqueue() below will wait for that to complete.
10028 */
10029 mddev_put(mddev);
10030 spin_lock(&all_mddevs_lock);
10031 }
10032 spin_unlock(&all_mddevs_lock);
10033
10034 destroy_workqueue(md_rdev_misc_wq);
10035 destroy_workqueue(md_misc_wq);
10036 destroy_workqueue(md_wq);
10037 }
10038
10039 subsys_initcall(md_init);
module_exit(md_exit)10040 module_exit(md_exit)
10041
10042 static int get_ro(char *buffer, const struct kernel_param *kp)
10043 {
10044 return sprintf(buffer, "%d\n", start_readonly);
10045 }
set_ro(const char * val,const struct kernel_param * kp)10046 static int set_ro(const char *val, const struct kernel_param *kp)
10047 {
10048 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
10049 }
10050
10051 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
10052 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
10053 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
10054 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
10055
10056 MODULE_LICENSE("GPL");
10057 MODULE_DESCRIPTION("MD RAID framework");
10058 MODULE_ALIAS("md");
10059 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
10060