• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/mpage.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains functions related to preparing and submitting BIOs which contain
8  * multiple pagecache pages.
9  *
10  * 15May2002	Andrew Morton
11  *		Initial version
12  * 27Jun2002	axboe@suse.de
13  *		use bio_add_page() to build bio's just the right size
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/mm.h>
19 #include <linux/kdev_t.h>
20 #include <linux/gfp.h>
21 #include <linux/bio.h>
22 #include <linux/fs.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/highmem.h>
26 #include <linux/prefetch.h>
27 #include <linux/mpage.h>
28 #include <linux/mm_inline.h>
29 #include <linux/writeback.h>
30 #include <linux/backing-dev.h>
31 #include <linux/pagevec.h>
32 #include <linux/cleancache.h>
33 #include "internal.h"
34 
35 /*
36  * I/O completion handler for multipage BIOs.
37  *
38  * The mpage code never puts partial pages into a BIO (except for end-of-file).
39  * If a page does not map to a contiguous run of blocks then it simply falls
40  * back to block_read_full_folio().
41  *
42  * Why is this?  If a page's completion depends on a number of different BIOs
43  * which can complete in any order (or at the same time) then determining the
44  * status of that page is hard.  See end_buffer_async_read() for the details.
45  * There is no point in duplicating all that complexity.
46  */
mpage_end_io(struct bio * bio)47 static void mpage_end_io(struct bio *bio)
48 {
49 	struct bio_vec *bv;
50 	struct bvec_iter_all iter_all;
51 
52 	bio_for_each_segment_all(bv, bio, iter_all) {
53 		struct page *page = bv->bv_page;
54 		page_endio(page, bio_op(bio),
55 			   blk_status_to_errno(bio->bi_status));
56 	}
57 
58 	bio_put(bio);
59 }
60 
mpage_bio_submit(struct bio * bio)61 static struct bio *mpage_bio_submit(struct bio *bio)
62 {
63 	bio->bi_end_io = mpage_end_io;
64 	guard_bio_eod(bio);
65 	submit_bio(bio);
66 	return NULL;
67 }
68 
69 /*
70  * support function for mpage_readahead.  The fs supplied get_block might
71  * return an up to date buffer.  This is used to map that buffer into
72  * the page, which allows read_folio to avoid triggering a duplicate call
73  * to get_block.
74  *
75  * The idea is to avoid adding buffers to pages that don't already have
76  * them.  So when the buffer is up to date and the page size == block size,
77  * this marks the page up to date instead of adding new buffers.
78  */
map_buffer_to_folio(struct folio * folio,struct buffer_head * bh,int page_block)79 static void map_buffer_to_folio(struct folio *folio, struct buffer_head *bh,
80 		int page_block)
81 {
82 	struct inode *inode = folio->mapping->host;
83 	struct buffer_head *page_bh, *head;
84 	int block = 0;
85 
86 	head = folio_buffers(folio);
87 	if (!head) {
88 		/*
89 		 * don't make any buffers if there is only one buffer on
90 		 * the folio and the folio just needs to be set up to date
91 		 */
92 		if (inode->i_blkbits == PAGE_SHIFT &&
93 		    buffer_uptodate(bh)) {
94 			folio_mark_uptodate(folio);
95 			return;
96 		}
97 		create_empty_buffers(&folio->page, i_blocksize(inode), 0);
98 		head = folio_buffers(folio);
99 	}
100 
101 	page_bh = head;
102 	do {
103 		if (block == page_block) {
104 			page_bh->b_state = bh->b_state;
105 			page_bh->b_bdev = bh->b_bdev;
106 			page_bh->b_blocknr = bh->b_blocknr;
107 			break;
108 		}
109 		page_bh = page_bh->b_this_page;
110 		block++;
111 	} while (page_bh != head);
112 }
113 
114 struct mpage_readpage_args {
115 	struct bio *bio;
116 	struct folio *folio;
117 	unsigned int nr_pages;
118 	bool is_readahead;
119 	sector_t last_block_in_bio;
120 	struct buffer_head map_bh;
121 	unsigned long first_logical_block;
122 	get_block_t *get_block;
123 };
124 
125 /*
126  * This is the worker routine which does all the work of mapping the disk
127  * blocks and constructs largest possible bios, submits them for IO if the
128  * blocks are not contiguous on the disk.
129  *
130  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
131  * represent the validity of its disk mapping and to decide when to do the next
132  * get_block() call.
133  */
do_mpage_readpage(struct mpage_readpage_args * args)134 static struct bio *do_mpage_readpage(struct mpage_readpage_args *args)
135 {
136 	struct folio *folio = args->folio;
137 	struct inode *inode = folio->mapping->host;
138 	const unsigned blkbits = inode->i_blkbits;
139 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
140 	const unsigned blocksize = 1 << blkbits;
141 	struct buffer_head *map_bh = &args->map_bh;
142 	sector_t block_in_file;
143 	sector_t last_block;
144 	sector_t last_block_in_file;
145 	sector_t blocks[MAX_BUF_PER_PAGE];
146 	unsigned page_block;
147 	unsigned first_hole = blocks_per_page;
148 	struct block_device *bdev = NULL;
149 	int length;
150 	int fully_mapped = 1;
151 	blk_opf_t opf = REQ_OP_READ;
152 	unsigned nblocks;
153 	unsigned relative_block;
154 	gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
155 
156 	/* MAX_BUF_PER_PAGE, for example */
157 	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
158 
159 	if (args->is_readahead) {
160 		opf |= REQ_RAHEAD;
161 		gfp |= __GFP_NORETRY | __GFP_NOWARN;
162 	}
163 
164 	if (folio_buffers(folio))
165 		goto confused;
166 
167 	block_in_file = (sector_t)folio->index << (PAGE_SHIFT - blkbits);
168 	last_block = block_in_file + args->nr_pages * blocks_per_page;
169 	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
170 	if (last_block > last_block_in_file)
171 		last_block = last_block_in_file;
172 	page_block = 0;
173 
174 	/*
175 	 * Map blocks using the result from the previous get_blocks call first.
176 	 */
177 	nblocks = map_bh->b_size >> blkbits;
178 	if (buffer_mapped(map_bh) &&
179 			block_in_file > args->first_logical_block &&
180 			block_in_file < (args->first_logical_block + nblocks)) {
181 		unsigned map_offset = block_in_file - args->first_logical_block;
182 		unsigned last = nblocks - map_offset;
183 
184 		for (relative_block = 0; ; relative_block++) {
185 			if (relative_block == last) {
186 				clear_buffer_mapped(map_bh);
187 				break;
188 			}
189 			if (page_block == blocks_per_page)
190 				break;
191 			blocks[page_block] = map_bh->b_blocknr + map_offset +
192 						relative_block;
193 			page_block++;
194 			block_in_file++;
195 		}
196 		bdev = map_bh->b_bdev;
197 	}
198 
199 	/*
200 	 * Then do more get_blocks calls until we are done with this folio.
201 	 */
202 	map_bh->b_page = &folio->page;
203 	while (page_block < blocks_per_page) {
204 		map_bh->b_state = 0;
205 		map_bh->b_size = 0;
206 
207 		if (block_in_file < last_block) {
208 			map_bh->b_size = (last_block-block_in_file) << blkbits;
209 			if (args->get_block(inode, block_in_file, map_bh, 0))
210 				goto confused;
211 			args->first_logical_block = block_in_file;
212 		}
213 
214 		if (!buffer_mapped(map_bh)) {
215 			fully_mapped = 0;
216 			if (first_hole == blocks_per_page)
217 				first_hole = page_block;
218 			page_block++;
219 			block_in_file++;
220 			continue;
221 		}
222 
223 		/* some filesystems will copy data into the page during
224 		 * the get_block call, in which case we don't want to
225 		 * read it again.  map_buffer_to_folio copies the data
226 		 * we just collected from get_block into the folio's buffers
227 		 * so read_folio doesn't have to repeat the get_block call
228 		 */
229 		if (buffer_uptodate(map_bh)) {
230 			map_buffer_to_folio(folio, map_bh, page_block);
231 			goto confused;
232 		}
233 
234 		if (first_hole != blocks_per_page)
235 			goto confused;		/* hole -> non-hole */
236 
237 		/* Contiguous blocks? */
238 		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
239 			goto confused;
240 		nblocks = map_bh->b_size >> blkbits;
241 		for (relative_block = 0; ; relative_block++) {
242 			if (relative_block == nblocks) {
243 				clear_buffer_mapped(map_bh);
244 				break;
245 			} else if (page_block == blocks_per_page)
246 				break;
247 			blocks[page_block] = map_bh->b_blocknr+relative_block;
248 			page_block++;
249 			block_in_file++;
250 		}
251 		bdev = map_bh->b_bdev;
252 	}
253 
254 	if (first_hole != blocks_per_page) {
255 		folio_zero_segment(folio, first_hole << blkbits, PAGE_SIZE);
256 		if (first_hole == 0) {
257 			folio_mark_uptodate(folio);
258 			folio_unlock(folio);
259 			goto out;
260 		}
261 	} else if (fully_mapped) {
262 		folio_set_mappedtodisk(folio);
263 	}
264 
265 	if (fully_mapped && blocks_per_page == 1 && !folio_test_uptodate(folio) &&
266 	    cleancache_get_page(&folio->page) == 0) {
267 		folio_mark_uptodate(folio);
268 		goto confused;
269 	}
270 
271 	/*
272 	 * This folio will go to BIO.  Do we need to send this BIO off first?
273 	 */
274 	if (args->bio && (args->last_block_in_bio != blocks[0] - 1))
275 		args->bio = mpage_bio_submit(args->bio);
276 
277 alloc_new:
278 	if (args->bio == NULL) {
279 		if (first_hole == blocks_per_page) {
280 			if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
281 								&folio->page))
282 				goto out;
283 		}
284 		args->bio = bio_alloc(bdev, bio_max_segs(args->nr_pages), opf,
285 				      gfp);
286 		if (args->bio == NULL)
287 			goto confused;
288 		args->bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
289 	}
290 
291 	length = first_hole << blkbits;
292 	if (!bio_add_folio(args->bio, folio, length, 0)) {
293 		args->bio = mpage_bio_submit(args->bio);
294 		goto alloc_new;
295 	}
296 
297 	relative_block = block_in_file - args->first_logical_block;
298 	nblocks = map_bh->b_size >> blkbits;
299 	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
300 	    (first_hole != blocks_per_page))
301 		args->bio = mpage_bio_submit(args->bio);
302 	else
303 		args->last_block_in_bio = blocks[blocks_per_page - 1];
304 out:
305 	return args->bio;
306 
307 confused:
308 	if (args->bio)
309 		args->bio = mpage_bio_submit(args->bio);
310 	if (!folio_test_uptodate(folio))
311 		block_read_full_folio(folio, args->get_block);
312 	else
313 		folio_unlock(folio);
314 	goto out;
315 }
316 
317 /**
318  * mpage_readahead - start reads against pages
319  * @rac: Describes which pages to read.
320  * @get_block: The filesystem's block mapper function.
321  *
322  * This function walks the pages and the blocks within each page, building and
323  * emitting large BIOs.
324  *
325  * If anything unusual happens, such as:
326  *
327  * - encountering a page which has buffers
328  * - encountering a page which has a non-hole after a hole
329  * - encountering a page with non-contiguous blocks
330  *
331  * then this code just gives up and calls the buffer_head-based read function.
332  * It does handle a page which has holes at the end - that is a common case:
333  * the end-of-file on blocksize < PAGE_SIZE setups.
334  *
335  * BH_Boundary explanation:
336  *
337  * There is a problem.  The mpage read code assembles several pages, gets all
338  * their disk mappings, and then submits them all.  That's fine, but obtaining
339  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
340  *
341  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
342  * submitted in the following order:
343  *
344  * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
345  *
346  * because the indirect block has to be read to get the mappings of blocks
347  * 13,14,15,16.  Obviously, this impacts performance.
348  *
349  * So what we do it to allow the filesystem's get_block() function to set
350  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
351  * after this one will require I/O against a block which is probably close to
352  * this one.  So you should push what I/O you have currently accumulated.
353  *
354  * This all causes the disk requests to be issued in the correct order.
355  */
mpage_readahead(struct readahead_control * rac,get_block_t get_block)356 void mpage_readahead(struct readahead_control *rac, get_block_t get_block)
357 {
358 	struct folio *folio;
359 	struct mpage_readpage_args args = {
360 		.get_block = get_block,
361 		.is_readahead = true,
362 	};
363 
364 	while ((folio = readahead_folio(rac))) {
365 		prefetchw(&folio->flags);
366 		args.folio = folio;
367 		args.nr_pages = readahead_count(rac);
368 		args.bio = do_mpage_readpage(&args);
369 	}
370 	if (args.bio)
371 		mpage_bio_submit(args.bio);
372 }
373 EXPORT_SYMBOL(mpage_readahead);
374 
375 /*
376  * This isn't called much at all
377  */
mpage_read_folio(struct folio * folio,get_block_t get_block)378 int mpage_read_folio(struct folio *folio, get_block_t get_block)
379 {
380 	struct mpage_readpage_args args = {
381 		.folio = folio,
382 		.nr_pages = 1,
383 		.get_block = get_block,
384 	};
385 
386 	args.bio = do_mpage_readpage(&args);
387 	if (args.bio)
388 		mpage_bio_submit(args.bio);
389 	return 0;
390 }
391 EXPORT_SYMBOL(mpage_read_folio);
392 
393 /*
394  * Writing is not so simple.
395  *
396  * If the page has buffers then they will be used for obtaining the disk
397  * mapping.  We only support pages which are fully mapped-and-dirty, with a
398  * special case for pages which are unmapped at the end: end-of-file.
399  *
400  * If the page has no buffers (preferred) then the page is mapped here.
401  *
402  * If all blocks are found to be contiguous then the page can go into the
403  * BIO.  Otherwise fall back to the mapping's writepage().
404  *
405  * FIXME: This code wants an estimate of how many pages are still to be
406  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
407  * just allocate full-size (16-page) BIOs.
408  */
409 
410 struct mpage_data {
411 	struct bio *bio;
412 	sector_t last_block_in_bio;
413 	get_block_t *get_block;
414 };
415 
416 /*
417  * We have our BIO, so we can now mark the buffers clean.  Make
418  * sure to only clean buffers which we know we'll be writing.
419  */
clean_buffers(struct page * page,unsigned first_unmapped)420 static void clean_buffers(struct page *page, unsigned first_unmapped)
421 {
422 	unsigned buffer_counter = 0;
423 	struct buffer_head *bh, *head;
424 	if (!page_has_buffers(page))
425 		return;
426 	head = page_buffers(page);
427 	bh = head;
428 
429 	do {
430 		if (buffer_counter++ == first_unmapped)
431 			break;
432 		clear_buffer_dirty(bh);
433 		bh = bh->b_this_page;
434 	} while (bh != head);
435 
436 	/*
437 	 * we cannot drop the bh if the page is not uptodate or a concurrent
438 	 * read_folio would fail to serialize with the bh and it would read from
439 	 * disk before we reach the platter.
440 	 */
441 	if (buffer_heads_over_limit && PageUptodate(page))
442 		try_to_free_buffers(page_folio(page));
443 }
444 
445 /*
446  * For situations where we want to clean all buffers attached to a page.
447  * We don't need to calculate how many buffers are attached to the page,
448  * we just need to specify a number larger than the maximum number of buffers.
449  */
clean_page_buffers(struct page * page)450 void clean_page_buffers(struct page *page)
451 {
452 	clean_buffers(page, ~0U);
453 }
454 
__mpage_writepage(struct page * page,struct writeback_control * wbc,void * data)455 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
456 		      void *data)
457 {
458 	struct mpage_data *mpd = data;
459 	struct bio *bio = mpd->bio;
460 	struct address_space *mapping = page->mapping;
461 	struct inode *inode = page->mapping->host;
462 	const unsigned blkbits = inode->i_blkbits;
463 	unsigned long end_index;
464 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
465 	sector_t last_block;
466 	sector_t block_in_file;
467 	sector_t blocks[MAX_BUF_PER_PAGE];
468 	unsigned page_block;
469 	unsigned first_unmapped = blocks_per_page;
470 	struct block_device *bdev = NULL;
471 	int boundary = 0;
472 	sector_t boundary_block = 0;
473 	struct block_device *boundary_bdev = NULL;
474 	int length;
475 	struct buffer_head map_bh;
476 	loff_t i_size = i_size_read(inode);
477 	int ret = 0;
478 
479 	if (page_has_buffers(page)) {
480 		struct buffer_head *head = page_buffers(page);
481 		struct buffer_head *bh = head;
482 
483 		/* If they're all mapped and dirty, do it */
484 		page_block = 0;
485 		do {
486 			BUG_ON(buffer_locked(bh));
487 			if (!buffer_mapped(bh)) {
488 				/*
489 				 * unmapped dirty buffers are created by
490 				 * block_dirty_folio -> mmapped data
491 				 */
492 				if (buffer_dirty(bh))
493 					goto confused;
494 				if (first_unmapped == blocks_per_page)
495 					first_unmapped = page_block;
496 				continue;
497 			}
498 
499 			if (first_unmapped != blocks_per_page)
500 				goto confused;	/* hole -> non-hole */
501 
502 			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
503 				goto confused;
504 			if (page_block) {
505 				if (bh->b_blocknr != blocks[page_block-1] + 1)
506 					goto confused;
507 			}
508 			blocks[page_block++] = bh->b_blocknr;
509 			boundary = buffer_boundary(bh);
510 			if (boundary) {
511 				boundary_block = bh->b_blocknr;
512 				boundary_bdev = bh->b_bdev;
513 			}
514 			bdev = bh->b_bdev;
515 		} while ((bh = bh->b_this_page) != head);
516 
517 		if (first_unmapped)
518 			goto page_is_mapped;
519 
520 		/*
521 		 * Page has buffers, but they are all unmapped. The page was
522 		 * created by pagein or read over a hole which was handled by
523 		 * block_read_full_folio().  If this address_space is also
524 		 * using mpage_readahead then this can rarely happen.
525 		 */
526 		goto confused;
527 	}
528 
529 	/*
530 	 * The page has no buffers: map it to disk
531 	 */
532 	BUG_ON(!PageUptodate(page));
533 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
534 	last_block = (i_size - 1) >> blkbits;
535 	map_bh.b_page = page;
536 	for (page_block = 0; page_block < blocks_per_page; ) {
537 
538 		map_bh.b_state = 0;
539 		map_bh.b_size = 1 << blkbits;
540 		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
541 			goto confused;
542 		if (buffer_new(&map_bh))
543 			clean_bdev_bh_alias(&map_bh);
544 		if (buffer_boundary(&map_bh)) {
545 			boundary_block = map_bh.b_blocknr;
546 			boundary_bdev = map_bh.b_bdev;
547 		}
548 		if (page_block) {
549 			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
550 				goto confused;
551 		}
552 		blocks[page_block++] = map_bh.b_blocknr;
553 		boundary = buffer_boundary(&map_bh);
554 		bdev = map_bh.b_bdev;
555 		if (block_in_file == last_block)
556 			break;
557 		block_in_file++;
558 	}
559 	BUG_ON(page_block == 0);
560 
561 	first_unmapped = page_block;
562 
563 page_is_mapped:
564 	end_index = i_size >> PAGE_SHIFT;
565 	if (page->index >= end_index) {
566 		/*
567 		 * The page straddles i_size.  It must be zeroed out on each
568 		 * and every writepage invocation because it may be mmapped.
569 		 * "A file is mapped in multiples of the page size.  For a file
570 		 * that is not a multiple of the page size, the remaining memory
571 		 * is zeroed when mapped, and writes to that region are not
572 		 * written out to the file."
573 		 */
574 		unsigned offset = i_size & (PAGE_SIZE - 1);
575 
576 		if (page->index > end_index || !offset)
577 			goto confused;
578 		zero_user_segment(page, offset, PAGE_SIZE);
579 	}
580 
581 	/*
582 	 * This page will go to BIO.  Do we need to send this BIO off first?
583 	 */
584 	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
585 		bio = mpage_bio_submit(bio);
586 
587 alloc_new:
588 	if (bio == NULL) {
589 		if (first_unmapped == blocks_per_page) {
590 			if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
591 								page, wbc))
592 				goto out;
593 		}
594 		bio = bio_alloc(bdev, BIO_MAX_VECS,
595 				REQ_OP_WRITE | wbc_to_write_flags(wbc),
596 				GFP_NOFS);
597 		bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
598 		wbc_init_bio(wbc, bio);
599 	}
600 
601 	/*
602 	 * Must try to add the page before marking the buffer clean or
603 	 * the confused fail path above (OOM) will be very confused when
604 	 * it finds all bh marked clean (i.e. it will not write anything)
605 	 */
606 	wbc_account_cgroup_owner(wbc, page, PAGE_SIZE);
607 	length = first_unmapped << blkbits;
608 	if (bio_add_page(bio, page, length, 0) < length) {
609 		bio = mpage_bio_submit(bio);
610 		goto alloc_new;
611 	}
612 
613 	clean_buffers(page, first_unmapped);
614 
615 	BUG_ON(PageWriteback(page));
616 	set_page_writeback(page);
617 	unlock_page(page);
618 	if (boundary || (first_unmapped != blocks_per_page)) {
619 		bio = mpage_bio_submit(bio);
620 		if (boundary_block) {
621 			write_boundary_block(boundary_bdev,
622 					boundary_block, 1 << blkbits);
623 		}
624 	} else {
625 		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
626 	}
627 	goto out;
628 
629 confused:
630 	if (bio)
631 		bio = mpage_bio_submit(bio);
632 
633 	/*
634 	 * The caller has a ref on the inode, so *mapping is stable
635 	 */
636 	ret = block_write_full_page(page, mpd->get_block, wbc);
637 	mapping_set_error(mapping, ret);
638 out:
639 	mpd->bio = bio;
640 	return ret;
641 }
642 
643 /**
644  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
645  * @mapping: address space structure to write
646  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
647  * @get_block: the filesystem's block mapper function.
648  *
649  * This is a library function, which implements the writepages()
650  * address_space_operation.
651  *
652  * If a page is already under I/O, generic_writepages() skips it, even
653  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
654  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
655  * and msync() need to guarantee that all the data which was dirty at the time
656  * the call was made get new I/O started against them.  If wbc->sync_mode is
657  * WB_SYNC_ALL then we were called for data integrity and we must wait for
658  * existing IO to complete.
659  */
660 int
mpage_writepages(struct address_space * mapping,struct writeback_control * wbc,get_block_t get_block)661 mpage_writepages(struct address_space *mapping,
662 		struct writeback_control *wbc, get_block_t get_block)
663 {
664 	struct mpage_data mpd = {
665 		.get_block	= get_block,
666 	};
667 	struct blk_plug plug;
668 	int ret;
669 
670 	blk_start_plug(&plug);
671 	ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
672 	if (mpd.bio)
673 		mpage_bio_submit(mpd.bio);
674 	blk_finish_plug(&plug);
675 	return ret;
676 }
677 EXPORT_SYMBOL(mpage_writepages);
678