1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Renesas Clock Pulse Generator / Module Standby and Software Reset
4 *
5 * Copyright (C) 2015 Glider bvba
6 *
7 * Based on clk-mstp.c, clk-rcar-gen2.c, and clk-rcar-gen3.c
8 *
9 * Copyright (C) 2013 Ideas On Board SPRL
10 * Copyright (C) 2015 Renesas Electronics Corp.
11 */
12
13 #include <linux/clk.h>
14 #include <linux/clk-provider.h>
15 #include <linux/clk/renesas.h>
16 #include <linux/delay.h>
17 #include <linux/device.h>
18 #include <linux/init.h>
19 #include <linux/io.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/module.h>
22 #include <linux/of_address.h>
23 #include <linux/of_device.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_clock.h>
26 #include <linux/pm_domain.h>
27 #include <linux/psci.h>
28 #include <linux/reset-controller.h>
29 #include <linux/slab.h>
30
31 #include <dt-bindings/clock/renesas-cpg-mssr.h>
32
33 #include "renesas-cpg-mssr.h"
34 #include "clk-div6.h"
35
36 #ifdef DEBUG
37 #define WARN_DEBUG(x) WARN_ON(x)
38 #else
39 #define WARN_DEBUG(x) do { } while (0)
40 #endif
41
42
43 /*
44 * Module Standby and Software Reset register offets.
45 *
46 * If the registers exist, these are valid for SH-Mobile, R-Mobile,
47 * R-Car Gen2, R-Car Gen3, and RZ/G1.
48 * These are NOT valid for R-Car Gen1 and RZ/A1!
49 */
50
51 /*
52 * Module Stop Status Register offsets
53 */
54
55 static const u16 mstpsr[] = {
56 0x030, 0x038, 0x040, 0x048, 0x04C, 0x03C, 0x1C0, 0x1C4,
57 0x9A0, 0x9A4, 0x9A8, 0x9AC,
58 };
59
60 static const u16 mstpsr_for_gen4[] = {
61 0x2E00, 0x2E04, 0x2E08, 0x2E0C, 0x2E10, 0x2E14, 0x2E18, 0x2E1C,
62 0x2E20, 0x2E24, 0x2E28, 0x2E2C, 0x2E30, 0x2E34, 0x2E38, 0x2E3C,
63 0x2E40, 0x2E44, 0x2E48, 0x2E4C, 0x2E50, 0x2E54, 0x2E58, 0x2E5C,
64 0x2E60, 0x2E64, 0x2E68, 0x2E6C,
65 };
66
67 /*
68 * System Module Stop Control Register offsets
69 */
70
71 static const u16 smstpcr[] = {
72 0x130, 0x134, 0x138, 0x13C, 0x140, 0x144, 0x148, 0x14C,
73 0x990, 0x994, 0x998, 0x99C,
74 };
75
76 static const u16 mstpcr_for_gen4[] = {
77 0x2D00, 0x2D04, 0x2D08, 0x2D0C, 0x2D10, 0x2D14, 0x2D18, 0x2D1C,
78 0x2D20, 0x2D24, 0x2D28, 0x2D2C, 0x2D30, 0x2D34, 0x2D38, 0x2D3C,
79 0x2D40, 0x2D44, 0x2D48, 0x2D4C, 0x2D50, 0x2D54, 0x2D58, 0x2D5C,
80 0x2D60, 0x2D64, 0x2D68, 0x2D6C,
81 };
82
83 /*
84 * Standby Control Register offsets (RZ/A)
85 * Base address is FRQCR register
86 */
87
88 static const u16 stbcr[] = {
89 0xFFFF/*dummy*/, 0x010, 0x014, 0x410, 0x414, 0x418, 0x41C, 0x420,
90 0x424, 0x428, 0x42C,
91 };
92
93 /*
94 * Software Reset Register offsets
95 */
96
97 static const u16 srcr[] = {
98 0x0A0, 0x0A8, 0x0B0, 0x0B8, 0x0BC, 0x0C4, 0x1C8, 0x1CC,
99 0x920, 0x924, 0x928, 0x92C,
100 };
101
102 static const u16 srcr_for_gen4[] = {
103 0x2C00, 0x2C04, 0x2C08, 0x2C0C, 0x2C10, 0x2C14, 0x2C18, 0x2C1C,
104 0x2C20, 0x2C24, 0x2C28, 0x2C2C, 0x2C30, 0x2C34, 0x2C38, 0x2C3C,
105 0x2C40, 0x2C44, 0x2C48, 0x2C4C, 0x2C50, 0x2C54, 0x2C58, 0x2C5C,
106 0x2C60, 0x2C64, 0x2C68, 0x2C6C,
107 };
108
109 /*
110 * Software Reset Clearing Register offsets
111 */
112
113 static const u16 srstclr[] = {
114 0x940, 0x944, 0x948, 0x94C, 0x950, 0x954, 0x958, 0x95C,
115 0x960, 0x964, 0x968, 0x96C,
116 };
117
118 static const u16 srstclr_for_gen4[] = {
119 0x2C80, 0x2C84, 0x2C88, 0x2C8C, 0x2C90, 0x2C94, 0x2C98, 0x2C9C,
120 0x2CA0, 0x2CA4, 0x2CA8, 0x2CAC, 0x2CB0, 0x2CB4, 0x2CB8, 0x2CBC,
121 0x2CC0, 0x2CC4, 0x2CC8, 0x2CCC, 0x2CD0, 0x2CD4, 0x2CD8, 0x2CDC,
122 0x2CE0, 0x2CE4, 0x2CE8, 0x2CEC,
123 };
124
125 /**
126 * struct cpg_mssr_priv - Clock Pulse Generator / Module Standby
127 * and Software Reset Private Data
128 *
129 * @rcdev: Optional reset controller entity
130 * @dev: CPG/MSSR device
131 * @base: CPG/MSSR register block base address
132 * @reg_layout: CPG/MSSR register layout
133 * @rmw_lock: protects RMW register accesses
134 * @np: Device node in DT for this CPG/MSSR module
135 * @num_core_clks: Number of Core Clocks in clks[]
136 * @num_mod_clks: Number of Module Clocks in clks[]
137 * @last_dt_core_clk: ID of the last Core Clock exported to DT
138 * @notifiers: Notifier chain to save/restore clock state for system resume
139 * @status_regs: Pointer to status registers array
140 * @control_regs: Pointer to control registers array
141 * @reset_regs: Pointer to reset registers array
142 * @reset_clear_regs: Pointer to reset clearing registers array
143 * @smstpcr_saved: [].mask: Mask of SMSTPCR[] bits under our control
144 * [].val: Saved values of SMSTPCR[]
145 * @clks: Array containing all Core and Module Clocks
146 */
147 struct cpg_mssr_priv {
148 #ifdef CONFIG_RESET_CONTROLLER
149 struct reset_controller_dev rcdev;
150 #endif
151 struct device *dev;
152 void __iomem *base;
153 enum clk_reg_layout reg_layout;
154 spinlock_t rmw_lock;
155 struct device_node *np;
156
157 unsigned int num_core_clks;
158 unsigned int num_mod_clks;
159 unsigned int last_dt_core_clk;
160
161 struct raw_notifier_head notifiers;
162 const u16 *status_regs;
163 const u16 *control_regs;
164 const u16 *reset_regs;
165 const u16 *reset_clear_regs;
166 struct {
167 u32 mask;
168 u32 val;
169 } smstpcr_saved[ARRAY_SIZE(mstpsr_for_gen4)];
170
171 struct clk *clks[];
172 };
173
174 static struct cpg_mssr_priv *cpg_mssr_priv;
175
176 /**
177 * struct mstp_clock - MSTP gating clock
178 * @hw: handle between common and hardware-specific interfaces
179 * @index: MSTP clock number
180 * @priv: CPG/MSSR private data
181 */
182 struct mstp_clock {
183 struct clk_hw hw;
184 u32 index;
185 struct cpg_mssr_priv *priv;
186 };
187
188 #define to_mstp_clock(_hw) container_of(_hw, struct mstp_clock, hw)
189
cpg_mstp_clock_endisable(struct clk_hw * hw,bool enable)190 static int cpg_mstp_clock_endisable(struct clk_hw *hw, bool enable)
191 {
192 struct mstp_clock *clock = to_mstp_clock(hw);
193 struct cpg_mssr_priv *priv = clock->priv;
194 unsigned int reg = clock->index / 32;
195 unsigned int bit = clock->index % 32;
196 struct device *dev = priv->dev;
197 u32 bitmask = BIT(bit);
198 unsigned long flags;
199 unsigned int i;
200 u32 value;
201
202 dev_dbg(dev, "MSTP %u%02u/%pC %s\n", reg, bit, hw->clk,
203 enable ? "ON" : "OFF");
204 spin_lock_irqsave(&priv->rmw_lock, flags);
205
206 if (priv->reg_layout == CLK_REG_LAYOUT_RZ_A) {
207 value = readb(priv->base + priv->control_regs[reg]);
208 if (enable)
209 value &= ~bitmask;
210 else
211 value |= bitmask;
212 writeb(value, priv->base + priv->control_regs[reg]);
213
214 /* dummy read to ensure write has completed */
215 readb(priv->base + priv->control_regs[reg]);
216 barrier_data(priv->base + priv->control_regs[reg]);
217 } else {
218 value = readl(priv->base + priv->control_regs[reg]);
219 if (enable)
220 value &= ~bitmask;
221 else
222 value |= bitmask;
223 writel(value, priv->base + priv->control_regs[reg]);
224 }
225
226 spin_unlock_irqrestore(&priv->rmw_lock, flags);
227
228 if (!enable || priv->reg_layout == CLK_REG_LAYOUT_RZ_A)
229 return 0;
230
231 for (i = 1000; i > 0; --i) {
232 if (!(readl(priv->base + priv->status_regs[reg]) & bitmask))
233 break;
234 cpu_relax();
235 }
236
237 if (!i) {
238 dev_err(dev, "Failed to enable SMSTP %p[%d]\n",
239 priv->base + priv->control_regs[reg], bit);
240 return -ETIMEDOUT;
241 }
242
243 return 0;
244 }
245
cpg_mstp_clock_enable(struct clk_hw * hw)246 static int cpg_mstp_clock_enable(struct clk_hw *hw)
247 {
248 return cpg_mstp_clock_endisable(hw, true);
249 }
250
cpg_mstp_clock_disable(struct clk_hw * hw)251 static void cpg_mstp_clock_disable(struct clk_hw *hw)
252 {
253 cpg_mstp_clock_endisable(hw, false);
254 }
255
cpg_mstp_clock_is_enabled(struct clk_hw * hw)256 static int cpg_mstp_clock_is_enabled(struct clk_hw *hw)
257 {
258 struct mstp_clock *clock = to_mstp_clock(hw);
259 struct cpg_mssr_priv *priv = clock->priv;
260 u32 value;
261
262 if (priv->reg_layout == CLK_REG_LAYOUT_RZ_A)
263 value = readb(priv->base + priv->control_regs[clock->index / 32]);
264 else
265 value = readl(priv->base + priv->status_regs[clock->index / 32]);
266
267 return !(value & BIT(clock->index % 32));
268 }
269
270 static const struct clk_ops cpg_mstp_clock_ops = {
271 .enable = cpg_mstp_clock_enable,
272 .disable = cpg_mstp_clock_disable,
273 .is_enabled = cpg_mstp_clock_is_enabled,
274 };
275
276 static
cpg_mssr_clk_src_twocell_get(struct of_phandle_args * clkspec,void * data)277 struct clk *cpg_mssr_clk_src_twocell_get(struct of_phandle_args *clkspec,
278 void *data)
279 {
280 unsigned int clkidx = clkspec->args[1];
281 struct cpg_mssr_priv *priv = data;
282 struct device *dev = priv->dev;
283 unsigned int idx;
284 const char *type;
285 struct clk *clk;
286 int range_check;
287
288 switch (clkspec->args[0]) {
289 case CPG_CORE:
290 type = "core";
291 if (clkidx > priv->last_dt_core_clk) {
292 dev_err(dev, "Invalid %s clock index %u\n", type,
293 clkidx);
294 return ERR_PTR(-EINVAL);
295 }
296 clk = priv->clks[clkidx];
297 break;
298
299 case CPG_MOD:
300 type = "module";
301 if (priv->reg_layout == CLK_REG_LAYOUT_RZ_A) {
302 idx = MOD_CLK_PACK_10(clkidx);
303 range_check = 7 - (clkidx % 10);
304 } else {
305 idx = MOD_CLK_PACK(clkidx);
306 range_check = 31 - (clkidx % 100);
307 }
308 if (range_check < 0 || idx >= priv->num_mod_clks) {
309 dev_err(dev, "Invalid %s clock index %u\n", type,
310 clkidx);
311 return ERR_PTR(-EINVAL);
312 }
313 clk = priv->clks[priv->num_core_clks + idx];
314 break;
315
316 default:
317 dev_err(dev, "Invalid CPG clock type %u\n", clkspec->args[0]);
318 return ERR_PTR(-EINVAL);
319 }
320
321 if (IS_ERR(clk))
322 dev_err(dev, "Cannot get %s clock %u: %ld", type, clkidx,
323 PTR_ERR(clk));
324 else
325 dev_dbg(dev, "clock (%u, %u) is %pC at %lu Hz\n",
326 clkspec->args[0], clkspec->args[1], clk,
327 clk_get_rate(clk));
328 return clk;
329 }
330
cpg_mssr_register_core_clk(const struct cpg_core_clk * core,const struct cpg_mssr_info * info,struct cpg_mssr_priv * priv)331 static void __init cpg_mssr_register_core_clk(const struct cpg_core_clk *core,
332 const struct cpg_mssr_info *info,
333 struct cpg_mssr_priv *priv)
334 {
335 struct clk *clk = ERR_PTR(-ENOTSUPP), *parent;
336 struct device *dev = priv->dev;
337 unsigned int id = core->id, div = core->div;
338 const char *parent_name;
339
340 WARN_DEBUG(id >= priv->num_core_clks);
341 WARN_DEBUG(PTR_ERR(priv->clks[id]) != -ENOENT);
342
343 if (!core->name) {
344 /* Skip NULLified clock */
345 return;
346 }
347
348 switch (core->type) {
349 case CLK_TYPE_IN:
350 clk = of_clk_get_by_name(priv->np, core->name);
351 break;
352
353 case CLK_TYPE_FF:
354 case CLK_TYPE_DIV6P1:
355 case CLK_TYPE_DIV6_RO:
356 WARN_DEBUG(core->parent >= priv->num_core_clks);
357 parent = priv->clks[core->parent];
358 if (IS_ERR(parent)) {
359 clk = parent;
360 goto fail;
361 }
362
363 parent_name = __clk_get_name(parent);
364
365 if (core->type == CLK_TYPE_DIV6_RO)
366 /* Multiply with the DIV6 register value */
367 div *= (readl(priv->base + core->offset) & 0x3f) + 1;
368
369 if (core->type == CLK_TYPE_DIV6P1) {
370 clk = cpg_div6_register(core->name, 1, &parent_name,
371 priv->base + core->offset,
372 &priv->notifiers);
373 } else {
374 clk = clk_register_fixed_factor(NULL, core->name,
375 parent_name, 0,
376 core->mult, div);
377 }
378 break;
379
380 case CLK_TYPE_FR:
381 clk = clk_register_fixed_rate(NULL, core->name, NULL, 0,
382 core->mult);
383 break;
384
385 default:
386 if (info->cpg_clk_register)
387 clk = info->cpg_clk_register(dev, core, info,
388 priv->clks, priv->base,
389 &priv->notifiers);
390 else
391 dev_err(dev, "%s has unsupported core clock type %u\n",
392 core->name, core->type);
393 break;
394 }
395
396 if (IS_ERR_OR_NULL(clk))
397 goto fail;
398
399 dev_dbg(dev, "Core clock %pC at %lu Hz\n", clk, clk_get_rate(clk));
400 priv->clks[id] = clk;
401 return;
402
403 fail:
404 dev_err(dev, "Failed to register %s clock %s: %ld\n", "core",
405 core->name, PTR_ERR(clk));
406 }
407
cpg_mssr_register_mod_clk(const struct mssr_mod_clk * mod,const struct cpg_mssr_info * info,struct cpg_mssr_priv * priv)408 static void __init cpg_mssr_register_mod_clk(const struct mssr_mod_clk *mod,
409 const struct cpg_mssr_info *info,
410 struct cpg_mssr_priv *priv)
411 {
412 struct mstp_clock *clock = NULL;
413 struct device *dev = priv->dev;
414 unsigned int id = mod->id;
415 struct clk_init_data init = {};
416 struct clk *parent, *clk;
417 const char *parent_name;
418 unsigned int i;
419
420 WARN_DEBUG(id < priv->num_core_clks);
421 WARN_DEBUG(id >= priv->num_core_clks + priv->num_mod_clks);
422 WARN_DEBUG(mod->parent >= priv->num_core_clks + priv->num_mod_clks);
423 WARN_DEBUG(PTR_ERR(priv->clks[id]) != -ENOENT);
424
425 if (!mod->name) {
426 /* Skip NULLified clock */
427 return;
428 }
429
430 parent = priv->clks[mod->parent];
431 if (IS_ERR(parent)) {
432 clk = parent;
433 goto fail;
434 }
435
436 clock = kzalloc(sizeof(*clock), GFP_KERNEL);
437 if (!clock) {
438 clk = ERR_PTR(-ENOMEM);
439 goto fail;
440 }
441
442 init.name = mod->name;
443 init.ops = &cpg_mstp_clock_ops;
444 init.flags = CLK_SET_RATE_PARENT;
445 parent_name = __clk_get_name(parent);
446 init.parent_names = &parent_name;
447 init.num_parents = 1;
448
449 clock->index = id - priv->num_core_clks;
450 clock->priv = priv;
451 clock->hw.init = &init;
452
453 for (i = 0; i < info->num_crit_mod_clks; i++)
454 if (id == info->crit_mod_clks[i] &&
455 cpg_mstp_clock_is_enabled(&clock->hw)) {
456 dev_dbg(dev, "MSTP %s setting CLK_IS_CRITICAL\n",
457 mod->name);
458 init.flags |= CLK_IS_CRITICAL;
459 break;
460 }
461
462 clk = clk_register(NULL, &clock->hw);
463 if (IS_ERR(clk))
464 goto fail;
465
466 dev_dbg(dev, "Module clock %pC at %lu Hz\n", clk, clk_get_rate(clk));
467 priv->clks[id] = clk;
468 priv->smstpcr_saved[clock->index / 32].mask |= BIT(clock->index % 32);
469 return;
470
471 fail:
472 dev_err(dev, "Failed to register %s clock %s: %ld\n", "module",
473 mod->name, PTR_ERR(clk));
474 kfree(clock);
475 }
476
477 struct cpg_mssr_clk_domain {
478 struct generic_pm_domain genpd;
479 unsigned int num_core_pm_clks;
480 unsigned int core_pm_clks[];
481 };
482
483 static struct cpg_mssr_clk_domain *cpg_mssr_clk_domain;
484
cpg_mssr_is_pm_clk(const struct of_phandle_args * clkspec,struct cpg_mssr_clk_domain * pd)485 static bool cpg_mssr_is_pm_clk(const struct of_phandle_args *clkspec,
486 struct cpg_mssr_clk_domain *pd)
487 {
488 unsigned int i;
489
490 if (clkspec->np != pd->genpd.dev.of_node || clkspec->args_count != 2)
491 return false;
492
493 switch (clkspec->args[0]) {
494 case CPG_CORE:
495 for (i = 0; i < pd->num_core_pm_clks; i++)
496 if (clkspec->args[1] == pd->core_pm_clks[i])
497 return true;
498 return false;
499
500 case CPG_MOD:
501 return true;
502
503 default:
504 return false;
505 }
506 }
507
cpg_mssr_attach_dev(struct generic_pm_domain * unused,struct device * dev)508 int cpg_mssr_attach_dev(struct generic_pm_domain *unused, struct device *dev)
509 {
510 struct cpg_mssr_clk_domain *pd = cpg_mssr_clk_domain;
511 struct device_node *np = dev->of_node;
512 struct of_phandle_args clkspec;
513 struct clk *clk;
514 int i = 0;
515 int error;
516
517 if (!pd) {
518 dev_dbg(dev, "CPG/MSSR clock domain not yet available\n");
519 return -EPROBE_DEFER;
520 }
521
522 while (!of_parse_phandle_with_args(np, "clocks", "#clock-cells", i,
523 &clkspec)) {
524 if (cpg_mssr_is_pm_clk(&clkspec, pd))
525 goto found;
526
527 of_node_put(clkspec.np);
528 i++;
529 }
530
531 return 0;
532
533 found:
534 clk = of_clk_get_from_provider(&clkspec);
535 of_node_put(clkspec.np);
536
537 if (IS_ERR(clk))
538 return PTR_ERR(clk);
539
540 error = pm_clk_create(dev);
541 if (error)
542 goto fail_put;
543
544 error = pm_clk_add_clk(dev, clk);
545 if (error)
546 goto fail_destroy;
547
548 return 0;
549
550 fail_destroy:
551 pm_clk_destroy(dev);
552 fail_put:
553 clk_put(clk);
554 return error;
555 }
556
cpg_mssr_detach_dev(struct generic_pm_domain * unused,struct device * dev)557 void cpg_mssr_detach_dev(struct generic_pm_domain *unused, struct device *dev)
558 {
559 if (!pm_clk_no_clocks(dev))
560 pm_clk_destroy(dev);
561 }
562
cpg_mssr_genpd_remove(void * data)563 static void cpg_mssr_genpd_remove(void *data)
564 {
565 pm_genpd_remove(data);
566 }
567
cpg_mssr_add_clk_domain(struct device * dev,const unsigned int * core_pm_clks,unsigned int num_core_pm_clks)568 static int __init cpg_mssr_add_clk_domain(struct device *dev,
569 const unsigned int *core_pm_clks,
570 unsigned int num_core_pm_clks)
571 {
572 struct device_node *np = dev->of_node;
573 struct generic_pm_domain *genpd;
574 struct cpg_mssr_clk_domain *pd;
575 size_t pm_size = num_core_pm_clks * sizeof(core_pm_clks[0]);
576 int ret;
577
578 pd = devm_kzalloc(dev, sizeof(*pd) + pm_size, GFP_KERNEL);
579 if (!pd)
580 return -ENOMEM;
581
582 pd->num_core_pm_clks = num_core_pm_clks;
583 memcpy(pd->core_pm_clks, core_pm_clks, pm_size);
584
585 genpd = &pd->genpd;
586 genpd->name = np->name;
587 genpd->flags = GENPD_FLAG_PM_CLK | GENPD_FLAG_ALWAYS_ON |
588 GENPD_FLAG_ACTIVE_WAKEUP;
589 genpd->attach_dev = cpg_mssr_attach_dev;
590 genpd->detach_dev = cpg_mssr_detach_dev;
591 ret = pm_genpd_init(genpd, &pm_domain_always_on_gov, false);
592 if (ret)
593 return ret;
594
595 ret = devm_add_action_or_reset(dev, cpg_mssr_genpd_remove, genpd);
596 if (ret)
597 return ret;
598
599 cpg_mssr_clk_domain = pd;
600
601 return of_genpd_add_provider_simple(np, genpd);
602 }
603
604 #ifdef CONFIG_RESET_CONTROLLER
605
606 #define rcdev_to_priv(x) container_of(x, struct cpg_mssr_priv, rcdev)
607
cpg_mssr_reset(struct reset_controller_dev * rcdev,unsigned long id)608 static int cpg_mssr_reset(struct reset_controller_dev *rcdev,
609 unsigned long id)
610 {
611 struct cpg_mssr_priv *priv = rcdev_to_priv(rcdev);
612 unsigned int reg = id / 32;
613 unsigned int bit = id % 32;
614 u32 bitmask = BIT(bit);
615
616 dev_dbg(priv->dev, "reset %u%02u\n", reg, bit);
617
618 /* Reset module */
619 writel(bitmask, priv->base + priv->reset_regs[reg]);
620
621 /* Wait for at least one cycle of the RCLK clock (@ ca. 32 kHz) */
622 udelay(35);
623
624 /* Release module from reset state */
625 writel(bitmask, priv->base + priv->reset_clear_regs[reg]);
626
627 return 0;
628 }
629
cpg_mssr_assert(struct reset_controller_dev * rcdev,unsigned long id)630 static int cpg_mssr_assert(struct reset_controller_dev *rcdev, unsigned long id)
631 {
632 struct cpg_mssr_priv *priv = rcdev_to_priv(rcdev);
633 unsigned int reg = id / 32;
634 unsigned int bit = id % 32;
635 u32 bitmask = BIT(bit);
636
637 dev_dbg(priv->dev, "assert %u%02u\n", reg, bit);
638
639 writel(bitmask, priv->base + priv->reset_regs[reg]);
640 return 0;
641 }
642
cpg_mssr_deassert(struct reset_controller_dev * rcdev,unsigned long id)643 static int cpg_mssr_deassert(struct reset_controller_dev *rcdev,
644 unsigned long id)
645 {
646 struct cpg_mssr_priv *priv = rcdev_to_priv(rcdev);
647 unsigned int reg = id / 32;
648 unsigned int bit = id % 32;
649 u32 bitmask = BIT(bit);
650
651 dev_dbg(priv->dev, "deassert %u%02u\n", reg, bit);
652
653 writel(bitmask, priv->base + priv->reset_clear_regs[reg]);
654 return 0;
655 }
656
cpg_mssr_status(struct reset_controller_dev * rcdev,unsigned long id)657 static int cpg_mssr_status(struct reset_controller_dev *rcdev,
658 unsigned long id)
659 {
660 struct cpg_mssr_priv *priv = rcdev_to_priv(rcdev);
661 unsigned int reg = id / 32;
662 unsigned int bit = id % 32;
663 u32 bitmask = BIT(bit);
664
665 return !!(readl(priv->base + priv->reset_regs[reg]) & bitmask);
666 }
667
668 static const struct reset_control_ops cpg_mssr_reset_ops = {
669 .reset = cpg_mssr_reset,
670 .assert = cpg_mssr_assert,
671 .deassert = cpg_mssr_deassert,
672 .status = cpg_mssr_status,
673 };
674
cpg_mssr_reset_xlate(struct reset_controller_dev * rcdev,const struct of_phandle_args * reset_spec)675 static int cpg_mssr_reset_xlate(struct reset_controller_dev *rcdev,
676 const struct of_phandle_args *reset_spec)
677 {
678 struct cpg_mssr_priv *priv = rcdev_to_priv(rcdev);
679 unsigned int unpacked = reset_spec->args[0];
680 unsigned int idx = MOD_CLK_PACK(unpacked);
681
682 if (unpacked % 100 > 31 || idx >= rcdev->nr_resets) {
683 dev_err(priv->dev, "Invalid reset index %u\n", unpacked);
684 return -EINVAL;
685 }
686
687 return idx;
688 }
689
cpg_mssr_reset_controller_register(struct cpg_mssr_priv * priv)690 static int cpg_mssr_reset_controller_register(struct cpg_mssr_priv *priv)
691 {
692 priv->rcdev.ops = &cpg_mssr_reset_ops;
693 priv->rcdev.of_node = priv->dev->of_node;
694 priv->rcdev.of_reset_n_cells = 1;
695 priv->rcdev.of_xlate = cpg_mssr_reset_xlate;
696 priv->rcdev.nr_resets = priv->num_mod_clks;
697 return devm_reset_controller_register(priv->dev, &priv->rcdev);
698 }
699
700 #else /* !CONFIG_RESET_CONTROLLER */
cpg_mssr_reset_controller_register(struct cpg_mssr_priv * priv)701 static inline int cpg_mssr_reset_controller_register(struct cpg_mssr_priv *priv)
702 {
703 return 0;
704 }
705 #endif /* !CONFIG_RESET_CONTROLLER */
706
707
708 static const struct of_device_id cpg_mssr_match[] = {
709 #ifdef CONFIG_CLK_R7S9210
710 {
711 .compatible = "renesas,r7s9210-cpg-mssr",
712 .data = &r7s9210_cpg_mssr_info,
713 },
714 #endif
715 #ifdef CONFIG_CLK_R8A7742
716 {
717 .compatible = "renesas,r8a7742-cpg-mssr",
718 .data = &r8a7742_cpg_mssr_info,
719 },
720 #endif
721 #ifdef CONFIG_CLK_R8A7743
722 {
723 .compatible = "renesas,r8a7743-cpg-mssr",
724 .data = &r8a7743_cpg_mssr_info,
725 },
726 /* RZ/G1N is (almost) identical to RZ/G1M w.r.t. clocks. */
727 {
728 .compatible = "renesas,r8a7744-cpg-mssr",
729 .data = &r8a7743_cpg_mssr_info,
730 },
731 #endif
732 #ifdef CONFIG_CLK_R8A7745
733 {
734 .compatible = "renesas,r8a7745-cpg-mssr",
735 .data = &r8a7745_cpg_mssr_info,
736 },
737 #endif
738 #ifdef CONFIG_CLK_R8A77470
739 {
740 .compatible = "renesas,r8a77470-cpg-mssr",
741 .data = &r8a77470_cpg_mssr_info,
742 },
743 #endif
744 #ifdef CONFIG_CLK_R8A774A1
745 {
746 .compatible = "renesas,r8a774a1-cpg-mssr",
747 .data = &r8a774a1_cpg_mssr_info,
748 },
749 #endif
750 #ifdef CONFIG_CLK_R8A774B1
751 {
752 .compatible = "renesas,r8a774b1-cpg-mssr",
753 .data = &r8a774b1_cpg_mssr_info,
754 },
755 #endif
756 #ifdef CONFIG_CLK_R8A774C0
757 {
758 .compatible = "renesas,r8a774c0-cpg-mssr",
759 .data = &r8a774c0_cpg_mssr_info,
760 },
761 #endif
762 #ifdef CONFIG_CLK_R8A774E1
763 {
764 .compatible = "renesas,r8a774e1-cpg-mssr",
765 .data = &r8a774e1_cpg_mssr_info,
766 },
767 #endif
768 #ifdef CONFIG_CLK_R8A7790
769 {
770 .compatible = "renesas,r8a7790-cpg-mssr",
771 .data = &r8a7790_cpg_mssr_info,
772 },
773 #endif
774 #ifdef CONFIG_CLK_R8A7791
775 {
776 .compatible = "renesas,r8a7791-cpg-mssr",
777 .data = &r8a7791_cpg_mssr_info,
778 },
779 /* R-Car M2-N is (almost) identical to R-Car M2-W w.r.t. clocks. */
780 {
781 .compatible = "renesas,r8a7793-cpg-mssr",
782 .data = &r8a7791_cpg_mssr_info,
783 },
784 #endif
785 #ifdef CONFIG_CLK_R8A7792
786 {
787 .compatible = "renesas,r8a7792-cpg-mssr",
788 .data = &r8a7792_cpg_mssr_info,
789 },
790 #endif
791 #ifdef CONFIG_CLK_R8A7794
792 {
793 .compatible = "renesas,r8a7794-cpg-mssr",
794 .data = &r8a7794_cpg_mssr_info,
795 },
796 #endif
797 #ifdef CONFIG_CLK_R8A7795
798 {
799 .compatible = "renesas,r8a7795-cpg-mssr",
800 .data = &r8a7795_cpg_mssr_info,
801 },
802 #endif
803 #ifdef CONFIG_CLK_R8A77960
804 {
805 .compatible = "renesas,r8a7796-cpg-mssr",
806 .data = &r8a7796_cpg_mssr_info,
807 },
808 #endif
809 #ifdef CONFIG_CLK_R8A77961
810 {
811 .compatible = "renesas,r8a77961-cpg-mssr",
812 .data = &r8a7796_cpg_mssr_info,
813 },
814 #endif
815 #ifdef CONFIG_CLK_R8A77965
816 {
817 .compatible = "renesas,r8a77965-cpg-mssr",
818 .data = &r8a77965_cpg_mssr_info,
819 },
820 #endif
821 #ifdef CONFIG_CLK_R8A77970
822 {
823 .compatible = "renesas,r8a77970-cpg-mssr",
824 .data = &r8a77970_cpg_mssr_info,
825 },
826 #endif
827 #ifdef CONFIG_CLK_R8A77980
828 {
829 .compatible = "renesas,r8a77980-cpg-mssr",
830 .data = &r8a77980_cpg_mssr_info,
831 },
832 #endif
833 #ifdef CONFIG_CLK_R8A77990
834 {
835 .compatible = "renesas,r8a77990-cpg-mssr",
836 .data = &r8a77990_cpg_mssr_info,
837 },
838 #endif
839 #ifdef CONFIG_CLK_R8A77995
840 {
841 .compatible = "renesas,r8a77995-cpg-mssr",
842 .data = &r8a77995_cpg_mssr_info,
843 },
844 #endif
845 #ifdef CONFIG_CLK_R8A779A0
846 {
847 .compatible = "renesas,r8a779a0-cpg-mssr",
848 .data = &r8a779a0_cpg_mssr_info,
849 },
850 #endif
851 #ifdef CONFIG_CLK_R8A779F0
852 {
853 .compatible = "renesas,r8a779f0-cpg-mssr",
854 .data = &r8a779f0_cpg_mssr_info,
855 },
856 #endif
857 #ifdef CONFIG_CLK_R8A779G0
858 {
859 .compatible = "renesas,r8a779g0-cpg-mssr",
860 .data = &r8a779g0_cpg_mssr_info,
861 },
862 #endif
863 { /* sentinel */ }
864 };
865
cpg_mssr_del_clk_provider(void * data)866 static void cpg_mssr_del_clk_provider(void *data)
867 {
868 of_clk_del_provider(data);
869 }
870
871 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_ARM_PSCI_FW)
cpg_mssr_suspend_noirq(struct device * dev)872 static int cpg_mssr_suspend_noirq(struct device *dev)
873 {
874 struct cpg_mssr_priv *priv = dev_get_drvdata(dev);
875 unsigned int reg;
876
877 /* This is the best we can do to check for the presence of PSCI */
878 if (!psci_ops.cpu_suspend)
879 return 0;
880
881 /* Save module registers with bits under our control */
882 for (reg = 0; reg < ARRAY_SIZE(priv->smstpcr_saved); reg++) {
883 if (priv->smstpcr_saved[reg].mask)
884 priv->smstpcr_saved[reg].val =
885 priv->reg_layout == CLK_REG_LAYOUT_RZ_A ?
886 readb(priv->base + priv->control_regs[reg]) :
887 readl(priv->base + priv->control_regs[reg]);
888 }
889
890 /* Save core clocks */
891 raw_notifier_call_chain(&priv->notifiers, PM_EVENT_SUSPEND, NULL);
892
893 return 0;
894 }
895
cpg_mssr_resume_noirq(struct device * dev)896 static int cpg_mssr_resume_noirq(struct device *dev)
897 {
898 struct cpg_mssr_priv *priv = dev_get_drvdata(dev);
899 unsigned int reg, i;
900 u32 mask, oldval, newval;
901
902 /* This is the best we can do to check for the presence of PSCI */
903 if (!psci_ops.cpu_suspend)
904 return 0;
905
906 /* Restore core clocks */
907 raw_notifier_call_chain(&priv->notifiers, PM_EVENT_RESUME, NULL);
908
909 /* Restore module clocks */
910 for (reg = 0; reg < ARRAY_SIZE(priv->smstpcr_saved); reg++) {
911 mask = priv->smstpcr_saved[reg].mask;
912 if (!mask)
913 continue;
914
915 if (priv->reg_layout == CLK_REG_LAYOUT_RZ_A)
916 oldval = readb(priv->base + priv->control_regs[reg]);
917 else
918 oldval = readl(priv->base + priv->control_regs[reg]);
919 newval = oldval & ~mask;
920 newval |= priv->smstpcr_saved[reg].val & mask;
921 if (newval == oldval)
922 continue;
923
924 if (priv->reg_layout == CLK_REG_LAYOUT_RZ_A) {
925 writeb(newval, priv->base + priv->control_regs[reg]);
926 /* dummy read to ensure write has completed */
927 readb(priv->base + priv->control_regs[reg]);
928 barrier_data(priv->base + priv->control_regs[reg]);
929 continue;
930 } else
931 writel(newval, priv->base + priv->control_regs[reg]);
932
933 /* Wait until enabled clocks are really enabled */
934 mask &= ~priv->smstpcr_saved[reg].val;
935 if (!mask)
936 continue;
937
938 for (i = 1000; i > 0; --i) {
939 oldval = readl(priv->base + priv->status_regs[reg]);
940 if (!(oldval & mask))
941 break;
942 cpu_relax();
943 }
944
945 if (!i)
946 dev_warn(dev, "Failed to enable %s%u[0x%x]\n",
947 priv->reg_layout == CLK_REG_LAYOUT_RZ_A ?
948 "STB" : "SMSTP", reg, oldval & mask);
949 }
950
951 return 0;
952 }
953
954 static const struct dev_pm_ops cpg_mssr_pm = {
955 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(cpg_mssr_suspend_noirq,
956 cpg_mssr_resume_noirq)
957 };
958 #define DEV_PM_OPS &cpg_mssr_pm
959 #else
960 #define DEV_PM_OPS NULL
961 #endif /* CONFIG_PM_SLEEP && CONFIG_ARM_PSCI_FW */
962
cpg_mssr_common_init(struct device * dev,struct device_node * np,const struct cpg_mssr_info * info)963 static int __init cpg_mssr_common_init(struct device *dev,
964 struct device_node *np,
965 const struct cpg_mssr_info *info)
966 {
967 struct cpg_mssr_priv *priv;
968 unsigned int nclks, i;
969 int error;
970
971 if (info->init) {
972 error = info->init(dev);
973 if (error)
974 return error;
975 }
976
977 nclks = info->num_total_core_clks + info->num_hw_mod_clks;
978 priv = kzalloc(struct_size(priv, clks, nclks), GFP_KERNEL);
979 if (!priv)
980 return -ENOMEM;
981
982 priv->np = np;
983 priv->dev = dev;
984 spin_lock_init(&priv->rmw_lock);
985
986 priv->base = of_iomap(np, 0);
987 if (!priv->base) {
988 error = -ENOMEM;
989 goto out_err;
990 }
991
992 cpg_mssr_priv = priv;
993 priv->num_core_clks = info->num_total_core_clks;
994 priv->num_mod_clks = info->num_hw_mod_clks;
995 priv->last_dt_core_clk = info->last_dt_core_clk;
996 RAW_INIT_NOTIFIER_HEAD(&priv->notifiers);
997 priv->reg_layout = info->reg_layout;
998 if (priv->reg_layout == CLK_REG_LAYOUT_RCAR_GEN2_AND_GEN3) {
999 priv->status_regs = mstpsr;
1000 priv->control_regs = smstpcr;
1001 priv->reset_regs = srcr;
1002 priv->reset_clear_regs = srstclr;
1003 } else if (priv->reg_layout == CLK_REG_LAYOUT_RZ_A) {
1004 priv->control_regs = stbcr;
1005 } else if (priv->reg_layout == CLK_REG_LAYOUT_RCAR_GEN4) {
1006 priv->status_regs = mstpsr_for_gen4;
1007 priv->control_regs = mstpcr_for_gen4;
1008 priv->reset_regs = srcr_for_gen4;
1009 priv->reset_clear_regs = srstclr_for_gen4;
1010 } else {
1011 error = -EINVAL;
1012 goto out_err;
1013 }
1014
1015 for (i = 0; i < nclks; i++)
1016 priv->clks[i] = ERR_PTR(-ENOENT);
1017
1018 error = of_clk_add_provider(np, cpg_mssr_clk_src_twocell_get, priv);
1019 if (error)
1020 goto out_err;
1021
1022 return 0;
1023
1024 out_err:
1025 if (priv->base)
1026 iounmap(priv->base);
1027 kfree(priv);
1028
1029 return error;
1030 }
1031
cpg_mssr_early_init(struct device_node * np,const struct cpg_mssr_info * info)1032 void __init cpg_mssr_early_init(struct device_node *np,
1033 const struct cpg_mssr_info *info)
1034 {
1035 int error;
1036 int i;
1037
1038 error = cpg_mssr_common_init(NULL, np, info);
1039 if (error)
1040 return;
1041
1042 for (i = 0; i < info->num_early_core_clks; i++)
1043 cpg_mssr_register_core_clk(&info->early_core_clks[i], info,
1044 cpg_mssr_priv);
1045
1046 for (i = 0; i < info->num_early_mod_clks; i++)
1047 cpg_mssr_register_mod_clk(&info->early_mod_clks[i], info,
1048 cpg_mssr_priv);
1049
1050 }
1051
cpg_mssr_probe(struct platform_device * pdev)1052 static int __init cpg_mssr_probe(struct platform_device *pdev)
1053 {
1054 struct device *dev = &pdev->dev;
1055 struct device_node *np = dev->of_node;
1056 const struct cpg_mssr_info *info;
1057 struct cpg_mssr_priv *priv;
1058 unsigned int i;
1059 int error;
1060
1061 info = of_device_get_match_data(dev);
1062
1063 if (!cpg_mssr_priv) {
1064 error = cpg_mssr_common_init(dev, dev->of_node, info);
1065 if (error)
1066 return error;
1067 }
1068
1069 priv = cpg_mssr_priv;
1070 priv->dev = dev;
1071 dev_set_drvdata(dev, priv);
1072
1073 for (i = 0; i < info->num_core_clks; i++)
1074 cpg_mssr_register_core_clk(&info->core_clks[i], info, priv);
1075
1076 for (i = 0; i < info->num_mod_clks; i++)
1077 cpg_mssr_register_mod_clk(&info->mod_clks[i], info, priv);
1078
1079 error = devm_add_action_or_reset(dev,
1080 cpg_mssr_del_clk_provider,
1081 np);
1082 if (error)
1083 return error;
1084
1085 error = cpg_mssr_add_clk_domain(dev, info->core_pm_clks,
1086 info->num_core_pm_clks);
1087 if (error)
1088 return error;
1089
1090 /* Reset Controller not supported for Standby Control SoCs */
1091 if (priv->reg_layout == CLK_REG_LAYOUT_RZ_A)
1092 return 0;
1093
1094 error = cpg_mssr_reset_controller_register(priv);
1095 if (error)
1096 return error;
1097
1098 return 0;
1099 }
1100
1101 static struct platform_driver cpg_mssr_driver = {
1102 .driver = {
1103 .name = "renesas-cpg-mssr",
1104 .of_match_table = cpg_mssr_match,
1105 .pm = DEV_PM_OPS,
1106 },
1107 };
1108
cpg_mssr_init(void)1109 static int __init cpg_mssr_init(void)
1110 {
1111 return platform_driver_probe(&cpg_mssr_driver, cpg_mssr_probe);
1112 }
1113
1114 subsys_initcall(cpg_mssr_init);
1115
mssr_mod_nullify(struct mssr_mod_clk * mod_clks,unsigned int num_mod_clks,const unsigned int * clks,unsigned int n)1116 void __init mssr_mod_nullify(struct mssr_mod_clk *mod_clks,
1117 unsigned int num_mod_clks,
1118 const unsigned int *clks, unsigned int n)
1119 {
1120 unsigned int i, j;
1121
1122 for (i = 0, j = 0; i < num_mod_clks && j < n; i++)
1123 if (mod_clks[i].id == clks[j]) {
1124 mod_clks[i].name = NULL;
1125 j++;
1126 }
1127 }
1128
1129 MODULE_DESCRIPTION("Renesas CPG/MSSR Driver");
1130 MODULE_LICENSE("GPL v2");
1131