1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
8 */
9
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
31
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/partitions.h>
34
35 #include "mtdcore.h"
36
37 struct backing_dev_info *mtd_bdi;
38
39 #ifdef CONFIG_PM_SLEEP
40
mtd_cls_suspend(struct device * dev)41 static int mtd_cls_suspend(struct device *dev)
42 {
43 struct mtd_info *mtd = dev_get_drvdata(dev);
44
45 return mtd ? mtd_suspend(mtd) : 0;
46 }
47
mtd_cls_resume(struct device * dev)48 static int mtd_cls_resume(struct device *dev)
49 {
50 struct mtd_info *mtd = dev_get_drvdata(dev);
51
52 if (mtd)
53 mtd_resume(mtd);
54 return 0;
55 }
56
57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59 #else
60 #define MTD_CLS_PM_OPS NULL
61 #endif
62
63 static struct class mtd_class = {
64 .name = "mtd",
65 .owner = THIS_MODULE,
66 .pm = MTD_CLS_PM_OPS,
67 };
68
69 static DEFINE_IDR(mtd_idr);
70
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72 should not use them for _anything_ else */
73 DEFINE_MUTEX(mtd_table_mutex);
74 EXPORT_SYMBOL_GPL(mtd_table_mutex);
75
__mtd_next_device(int i)76 struct mtd_info *__mtd_next_device(int i)
77 {
78 return idr_get_next(&mtd_idr, &i);
79 }
80 EXPORT_SYMBOL_GPL(__mtd_next_device);
81
82 static LIST_HEAD(mtd_notifiers);
83
84
85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86
87 /* REVISIT once MTD uses the driver model better, whoever allocates
88 * the mtd_info will probably want to use the release() hook...
89 */
mtd_release(struct device * dev)90 static void mtd_release(struct device *dev)
91 {
92 struct mtd_info *mtd = dev_get_drvdata(dev);
93 dev_t index = MTD_DEVT(mtd->index);
94
95 /* remove /dev/mtdXro node */
96 device_destroy(&mtd_class, index + 1);
97 }
98
99 #define MTD_DEVICE_ATTR_RO(name) \
100 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
101
102 #define MTD_DEVICE_ATTR_RW(name) \
103 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
104
mtd_type_show(struct device * dev,struct device_attribute * attr,char * buf)105 static ssize_t mtd_type_show(struct device *dev,
106 struct device_attribute *attr, char *buf)
107 {
108 struct mtd_info *mtd = dev_get_drvdata(dev);
109 char *type;
110
111 switch (mtd->type) {
112 case MTD_ABSENT:
113 type = "absent";
114 break;
115 case MTD_RAM:
116 type = "ram";
117 break;
118 case MTD_ROM:
119 type = "rom";
120 break;
121 case MTD_NORFLASH:
122 type = "nor";
123 break;
124 case MTD_NANDFLASH:
125 type = "nand";
126 break;
127 case MTD_DATAFLASH:
128 type = "dataflash";
129 break;
130 case MTD_UBIVOLUME:
131 type = "ubi";
132 break;
133 case MTD_MLCNANDFLASH:
134 type = "mlc-nand";
135 break;
136 default:
137 type = "unknown";
138 }
139
140 return sysfs_emit(buf, "%s\n", type);
141 }
142 MTD_DEVICE_ATTR_RO(type);
143
mtd_flags_show(struct device * dev,struct device_attribute * attr,char * buf)144 static ssize_t mtd_flags_show(struct device *dev,
145 struct device_attribute *attr, char *buf)
146 {
147 struct mtd_info *mtd = dev_get_drvdata(dev);
148
149 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
150 }
151 MTD_DEVICE_ATTR_RO(flags);
152
mtd_size_show(struct device * dev,struct device_attribute * attr,char * buf)153 static ssize_t mtd_size_show(struct device *dev,
154 struct device_attribute *attr, char *buf)
155 {
156 struct mtd_info *mtd = dev_get_drvdata(dev);
157
158 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
159 }
160 MTD_DEVICE_ATTR_RO(size);
161
mtd_erasesize_show(struct device * dev,struct device_attribute * attr,char * buf)162 static ssize_t mtd_erasesize_show(struct device *dev,
163 struct device_attribute *attr, char *buf)
164 {
165 struct mtd_info *mtd = dev_get_drvdata(dev);
166
167 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
168 }
169 MTD_DEVICE_ATTR_RO(erasesize);
170
mtd_writesize_show(struct device * dev,struct device_attribute * attr,char * buf)171 static ssize_t mtd_writesize_show(struct device *dev,
172 struct device_attribute *attr, char *buf)
173 {
174 struct mtd_info *mtd = dev_get_drvdata(dev);
175
176 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
177 }
178 MTD_DEVICE_ATTR_RO(writesize);
179
mtd_subpagesize_show(struct device * dev,struct device_attribute * attr,char * buf)180 static ssize_t mtd_subpagesize_show(struct device *dev,
181 struct device_attribute *attr, char *buf)
182 {
183 struct mtd_info *mtd = dev_get_drvdata(dev);
184 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
185
186 return sysfs_emit(buf, "%u\n", subpagesize);
187 }
188 MTD_DEVICE_ATTR_RO(subpagesize);
189
mtd_oobsize_show(struct device * dev,struct device_attribute * attr,char * buf)190 static ssize_t mtd_oobsize_show(struct device *dev,
191 struct device_attribute *attr, char *buf)
192 {
193 struct mtd_info *mtd = dev_get_drvdata(dev);
194
195 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
196 }
197 MTD_DEVICE_ATTR_RO(oobsize);
198
mtd_oobavail_show(struct device * dev,struct device_attribute * attr,char * buf)199 static ssize_t mtd_oobavail_show(struct device *dev,
200 struct device_attribute *attr, char *buf)
201 {
202 struct mtd_info *mtd = dev_get_drvdata(dev);
203
204 return sysfs_emit(buf, "%u\n", mtd->oobavail);
205 }
206 MTD_DEVICE_ATTR_RO(oobavail);
207
mtd_numeraseregions_show(struct device * dev,struct device_attribute * attr,char * buf)208 static ssize_t mtd_numeraseregions_show(struct device *dev,
209 struct device_attribute *attr, char *buf)
210 {
211 struct mtd_info *mtd = dev_get_drvdata(dev);
212
213 return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
214 }
215 MTD_DEVICE_ATTR_RO(numeraseregions);
216
mtd_name_show(struct device * dev,struct device_attribute * attr,char * buf)217 static ssize_t mtd_name_show(struct device *dev,
218 struct device_attribute *attr, char *buf)
219 {
220 struct mtd_info *mtd = dev_get_drvdata(dev);
221
222 return sysfs_emit(buf, "%s\n", mtd->name);
223 }
224 MTD_DEVICE_ATTR_RO(name);
225
mtd_ecc_strength_show(struct device * dev,struct device_attribute * attr,char * buf)226 static ssize_t mtd_ecc_strength_show(struct device *dev,
227 struct device_attribute *attr, char *buf)
228 {
229 struct mtd_info *mtd = dev_get_drvdata(dev);
230
231 return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
232 }
233 MTD_DEVICE_ATTR_RO(ecc_strength);
234
mtd_bitflip_threshold_show(struct device * dev,struct device_attribute * attr,char * buf)235 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
236 struct device_attribute *attr,
237 char *buf)
238 {
239 struct mtd_info *mtd = dev_get_drvdata(dev);
240
241 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
242 }
243
mtd_bitflip_threshold_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)244 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
245 struct device_attribute *attr,
246 const char *buf, size_t count)
247 {
248 struct mtd_info *mtd = dev_get_drvdata(dev);
249 unsigned int bitflip_threshold;
250 int retval;
251
252 retval = kstrtouint(buf, 0, &bitflip_threshold);
253 if (retval)
254 return retval;
255
256 mtd->bitflip_threshold = bitflip_threshold;
257 return count;
258 }
259 MTD_DEVICE_ATTR_RW(bitflip_threshold);
260
mtd_ecc_step_size_show(struct device * dev,struct device_attribute * attr,char * buf)261 static ssize_t mtd_ecc_step_size_show(struct device *dev,
262 struct device_attribute *attr, char *buf)
263 {
264 struct mtd_info *mtd = dev_get_drvdata(dev);
265
266 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
267
268 }
269 MTD_DEVICE_ATTR_RO(ecc_step_size);
270
mtd_corrected_bits_show(struct device * dev,struct device_attribute * attr,char * buf)271 static ssize_t mtd_corrected_bits_show(struct device *dev,
272 struct device_attribute *attr, char *buf)
273 {
274 struct mtd_info *mtd = dev_get_drvdata(dev);
275 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
276
277 return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
278 }
279 MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */
280
mtd_ecc_failures_show(struct device * dev,struct device_attribute * attr,char * buf)281 static ssize_t mtd_ecc_failures_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
283 {
284 struct mtd_info *mtd = dev_get_drvdata(dev);
285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
286
287 return sysfs_emit(buf, "%u\n", ecc_stats->failed);
288 }
289 MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */
290
mtd_bad_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)291 static ssize_t mtd_bad_blocks_show(struct device *dev,
292 struct device_attribute *attr, char *buf)
293 {
294 struct mtd_info *mtd = dev_get_drvdata(dev);
295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296
297 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
298 }
299 MTD_DEVICE_ATTR_RO(bad_blocks);
300
mtd_bbt_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)301 static ssize_t mtd_bbt_blocks_show(struct device *dev,
302 struct device_attribute *attr, char *buf)
303 {
304 struct mtd_info *mtd = dev_get_drvdata(dev);
305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306
307 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
308 }
309 MTD_DEVICE_ATTR_RO(bbt_blocks);
310
311 static struct attribute *mtd_attrs[] = {
312 &dev_attr_type.attr,
313 &dev_attr_flags.attr,
314 &dev_attr_size.attr,
315 &dev_attr_erasesize.attr,
316 &dev_attr_writesize.attr,
317 &dev_attr_subpagesize.attr,
318 &dev_attr_oobsize.attr,
319 &dev_attr_oobavail.attr,
320 &dev_attr_numeraseregions.attr,
321 &dev_attr_name.attr,
322 &dev_attr_ecc_strength.attr,
323 &dev_attr_ecc_step_size.attr,
324 &dev_attr_corrected_bits.attr,
325 &dev_attr_ecc_failures.attr,
326 &dev_attr_bad_blocks.attr,
327 &dev_attr_bbt_blocks.attr,
328 &dev_attr_bitflip_threshold.attr,
329 NULL,
330 };
331 ATTRIBUTE_GROUPS(mtd);
332
333 static const struct device_type mtd_devtype = {
334 .name = "mtd",
335 .groups = mtd_groups,
336 .release = mtd_release,
337 };
338
339 static bool mtd_expert_analysis_mode;
340
341 #ifdef CONFIG_DEBUG_FS
mtd_check_expert_analysis_mode(void)342 bool mtd_check_expert_analysis_mode(void)
343 {
344 const char *mtd_expert_analysis_warning =
345 "Bad block checks have been entirely disabled.\n"
346 "This is only reserved for post-mortem forensics and debug purposes.\n"
347 "Never enable this mode if you do not know what you are doing!\n";
348
349 return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
350 }
351 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
352 #endif
353
354 static struct dentry *dfs_dir_mtd;
355
mtd_debugfs_populate(struct mtd_info * mtd)356 static void mtd_debugfs_populate(struct mtd_info *mtd)
357 {
358 struct device *dev = &mtd->dev;
359
360 if (IS_ERR_OR_NULL(dfs_dir_mtd))
361 return;
362
363 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
364 }
365
366 #ifndef CONFIG_MMU
mtd_mmap_capabilities(struct mtd_info * mtd)367 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
368 {
369 switch (mtd->type) {
370 case MTD_RAM:
371 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
372 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
373 case MTD_ROM:
374 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
375 NOMMU_MAP_READ;
376 default:
377 return NOMMU_MAP_COPY;
378 }
379 }
380 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
381 #endif
382
mtd_reboot_notifier(struct notifier_block * n,unsigned long state,void * cmd)383 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
384 void *cmd)
385 {
386 struct mtd_info *mtd;
387
388 mtd = container_of(n, struct mtd_info, reboot_notifier);
389 mtd->_reboot(mtd);
390
391 return NOTIFY_DONE;
392 }
393
394 /**
395 * mtd_wunit_to_pairing_info - get pairing information of a wunit
396 * @mtd: pointer to new MTD device info structure
397 * @wunit: write unit we are interested in
398 * @info: returned pairing information
399 *
400 * Retrieve pairing information associated to the wunit.
401 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
402 * paired together, and where programming a page may influence the page it is
403 * paired with.
404 * The notion of page is replaced by the term wunit (write-unit) to stay
405 * consistent with the ->writesize field.
406 *
407 * The @wunit argument can be extracted from an absolute offset using
408 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
409 * to @wunit.
410 *
411 * From the pairing info the MTD user can find all the wunits paired with
412 * @wunit using the following loop:
413 *
414 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
415 * info.pair = i;
416 * mtd_pairing_info_to_wunit(mtd, &info);
417 * ...
418 * }
419 */
mtd_wunit_to_pairing_info(struct mtd_info * mtd,int wunit,struct mtd_pairing_info * info)420 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
421 struct mtd_pairing_info *info)
422 {
423 struct mtd_info *master = mtd_get_master(mtd);
424 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
425
426 if (wunit < 0 || wunit >= npairs)
427 return -EINVAL;
428
429 if (master->pairing && master->pairing->get_info)
430 return master->pairing->get_info(master, wunit, info);
431
432 info->group = 0;
433 info->pair = wunit;
434
435 return 0;
436 }
437 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
438
439 /**
440 * mtd_pairing_info_to_wunit - get wunit from pairing information
441 * @mtd: pointer to new MTD device info structure
442 * @info: pairing information struct
443 *
444 * Returns a positive number representing the wunit associated to the info
445 * struct, or a negative error code.
446 *
447 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
448 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
449 * doc).
450 *
451 * It can also be used to only program the first page of each pair (i.e.
452 * page attached to group 0), which allows one to use an MLC NAND in
453 * software-emulated SLC mode:
454 *
455 * info.group = 0;
456 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
457 * for (info.pair = 0; info.pair < npairs; info.pair++) {
458 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
459 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
460 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
461 * }
462 */
mtd_pairing_info_to_wunit(struct mtd_info * mtd,const struct mtd_pairing_info * info)463 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
464 const struct mtd_pairing_info *info)
465 {
466 struct mtd_info *master = mtd_get_master(mtd);
467 int ngroups = mtd_pairing_groups(master);
468 int npairs = mtd_wunit_per_eb(master) / ngroups;
469
470 if (!info || info->pair < 0 || info->pair >= npairs ||
471 info->group < 0 || info->group >= ngroups)
472 return -EINVAL;
473
474 if (master->pairing && master->pairing->get_wunit)
475 return mtd->pairing->get_wunit(master, info);
476
477 return info->pair;
478 }
479 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
480
481 /**
482 * mtd_pairing_groups - get the number of pairing groups
483 * @mtd: pointer to new MTD device info structure
484 *
485 * Returns the number of pairing groups.
486 *
487 * This number is usually equal to the number of bits exposed by a single
488 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
489 * to iterate over all pages of a given pair.
490 */
mtd_pairing_groups(struct mtd_info * mtd)491 int mtd_pairing_groups(struct mtd_info *mtd)
492 {
493 struct mtd_info *master = mtd_get_master(mtd);
494
495 if (!master->pairing || !master->pairing->ngroups)
496 return 1;
497
498 return master->pairing->ngroups;
499 }
500 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
501
mtd_nvmem_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)502 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
503 void *val, size_t bytes)
504 {
505 struct mtd_info *mtd = priv;
506 size_t retlen;
507 int err;
508
509 err = mtd_read(mtd, offset, bytes, &retlen, val);
510 if (err && err != -EUCLEAN)
511 return err;
512
513 return retlen == bytes ? 0 : -EIO;
514 }
515
mtd_nvmem_add(struct mtd_info * mtd)516 static int mtd_nvmem_add(struct mtd_info *mtd)
517 {
518 struct device_node *node = mtd_get_of_node(mtd);
519 struct nvmem_config config = {};
520
521 config.id = -1;
522 config.dev = &mtd->dev;
523 config.name = dev_name(&mtd->dev);
524 config.owner = THIS_MODULE;
525 config.reg_read = mtd_nvmem_reg_read;
526 config.size = mtd->size;
527 config.word_size = 1;
528 config.stride = 1;
529 config.read_only = true;
530 config.root_only = true;
531 config.ignore_wp = true;
532 config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
533 config.priv = mtd;
534
535 mtd->nvmem = nvmem_register(&config);
536 if (IS_ERR(mtd->nvmem)) {
537 /* Just ignore if there is no NVMEM support in the kernel */
538 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
539 mtd->nvmem = NULL;
540 } else {
541 dev_err(&mtd->dev, "Failed to register NVMEM device\n");
542 return PTR_ERR(mtd->nvmem);
543 }
544 }
545
546 return 0;
547 }
548
mtd_check_of_node(struct mtd_info * mtd)549 static void mtd_check_of_node(struct mtd_info *mtd)
550 {
551 struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
552 const char *pname, *prefix = "partition-";
553 int plen, mtd_name_len, offset, prefix_len;
554 struct mtd_info *parent;
555 bool found = false;
556
557 /* Check if MTD already has a device node */
558 if (dev_of_node(&mtd->dev))
559 return;
560
561 /* Check if a partitions node exist */
562 if (!mtd_is_partition(mtd))
563 return;
564 parent = mtd->parent;
565 parent_dn = of_node_get(dev_of_node(&parent->dev));
566 if (!parent_dn)
567 return;
568
569 partitions = of_get_child_by_name(parent_dn, "partitions");
570 if (!partitions)
571 goto exit_parent;
572
573 prefix_len = strlen(prefix);
574 mtd_name_len = strlen(mtd->name);
575
576 /* Search if a partition is defined with the same name */
577 for_each_child_of_node(partitions, mtd_dn) {
578 offset = 0;
579
580 /* Skip partition with no/wrong prefix */
581 if (!of_node_name_prefix(mtd_dn, "partition-"))
582 continue;
583
584 /* Label have priority. Check that first */
585 if (of_property_read_string(mtd_dn, "label", &pname)) {
586 of_property_read_string(mtd_dn, "name", &pname);
587 offset = prefix_len;
588 }
589
590 plen = strlen(pname) - offset;
591 if (plen == mtd_name_len &&
592 !strncmp(mtd->name, pname + offset, plen)) {
593 found = true;
594 break;
595 }
596 }
597
598 if (!found)
599 goto exit_partitions;
600
601 /* Set of_node only for nvmem */
602 if (of_device_is_compatible(mtd_dn, "nvmem-cells"))
603 mtd_set_of_node(mtd, mtd_dn);
604
605 exit_partitions:
606 of_node_put(partitions);
607 exit_parent:
608 of_node_put(parent_dn);
609 }
610
611 /**
612 * add_mtd_device - register an MTD device
613 * @mtd: pointer to new MTD device info structure
614 *
615 * Add a device to the list of MTD devices present in the system, and
616 * notify each currently active MTD 'user' of its arrival. Returns
617 * zero on success or non-zero on failure.
618 */
619
add_mtd_device(struct mtd_info * mtd)620 int add_mtd_device(struct mtd_info *mtd)
621 {
622 struct device_node *np = mtd_get_of_node(mtd);
623 struct mtd_info *master = mtd_get_master(mtd);
624 struct mtd_notifier *not;
625 int i, error, ofidx;
626
627 /*
628 * May occur, for instance, on buggy drivers which call
629 * mtd_device_parse_register() multiple times on the same master MTD,
630 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
631 */
632 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
633 return -EEXIST;
634
635 BUG_ON(mtd->writesize == 0);
636
637 /*
638 * MTD drivers should implement ->_{write,read}() or
639 * ->_{write,read}_oob(), but not both.
640 */
641 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
642 (mtd->_read && mtd->_read_oob)))
643 return -EINVAL;
644
645 if (WARN_ON((!mtd->erasesize || !master->_erase) &&
646 !(mtd->flags & MTD_NO_ERASE)))
647 return -EINVAL;
648
649 /*
650 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
651 * master is an MLC NAND and has a proper pairing scheme defined.
652 * We also reject masters that implement ->_writev() for now, because
653 * NAND controller drivers don't implement this hook, and adding the
654 * SLC -> MLC address/length conversion to this path is useless if we
655 * don't have a user.
656 */
657 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
658 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
659 !master->pairing || master->_writev))
660 return -EINVAL;
661
662 mutex_lock(&mtd_table_mutex);
663
664 ofidx = -1;
665 if (np)
666 ofidx = of_alias_get_id(np, "mtd");
667 if (ofidx >= 0)
668 i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
669 else
670 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
671 if (i < 0) {
672 error = i;
673 goto fail_locked;
674 }
675
676 mtd->index = i;
677 mtd->usecount = 0;
678
679 /* default value if not set by driver */
680 if (mtd->bitflip_threshold == 0)
681 mtd->bitflip_threshold = mtd->ecc_strength;
682
683 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
684 int ngroups = mtd_pairing_groups(master);
685
686 mtd->erasesize /= ngroups;
687 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
688 mtd->erasesize;
689 }
690
691 if (is_power_of_2(mtd->erasesize))
692 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
693 else
694 mtd->erasesize_shift = 0;
695
696 if (is_power_of_2(mtd->writesize))
697 mtd->writesize_shift = ffs(mtd->writesize) - 1;
698 else
699 mtd->writesize_shift = 0;
700
701 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
702 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
703
704 /* Some chips always power up locked. Unlock them now */
705 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
706 error = mtd_unlock(mtd, 0, mtd->size);
707 if (error && error != -EOPNOTSUPP)
708 printk(KERN_WARNING
709 "%s: unlock failed, writes may not work\n",
710 mtd->name);
711 /* Ignore unlock failures? */
712 error = 0;
713 }
714
715 /* Caller should have set dev.parent to match the
716 * physical device, if appropriate.
717 */
718 mtd->dev.type = &mtd_devtype;
719 mtd->dev.class = &mtd_class;
720 mtd->dev.devt = MTD_DEVT(i);
721 dev_set_name(&mtd->dev, "mtd%d", i);
722 dev_set_drvdata(&mtd->dev, mtd);
723 mtd_check_of_node(mtd);
724 of_node_get(mtd_get_of_node(mtd));
725 error = device_register(&mtd->dev);
726 if (error) {
727 put_device(&mtd->dev);
728 goto fail_added;
729 }
730
731 /* Add the nvmem provider */
732 error = mtd_nvmem_add(mtd);
733 if (error)
734 goto fail_nvmem_add;
735
736 mtd_debugfs_populate(mtd);
737
738 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
739 "mtd%dro", i);
740
741 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
742 /* No need to get a refcount on the module containing
743 the notifier, since we hold the mtd_table_mutex */
744 list_for_each_entry(not, &mtd_notifiers, list)
745 not->add(mtd);
746
747 mutex_unlock(&mtd_table_mutex);
748 /* We _know_ we aren't being removed, because
749 our caller is still holding us here. So none
750 of this try_ nonsense, and no bitching about it
751 either. :) */
752 __module_get(THIS_MODULE);
753 return 0;
754
755 fail_nvmem_add:
756 device_unregister(&mtd->dev);
757 fail_added:
758 of_node_put(mtd_get_of_node(mtd));
759 idr_remove(&mtd_idr, i);
760 fail_locked:
761 mutex_unlock(&mtd_table_mutex);
762 return error;
763 }
764
765 /**
766 * del_mtd_device - unregister an MTD device
767 * @mtd: pointer to MTD device info structure
768 *
769 * Remove a device from the list of MTD devices present in the system,
770 * and notify each currently active MTD 'user' of its departure.
771 * Returns zero on success or 1 on failure, which currently will happen
772 * if the requested device does not appear to be present in the list.
773 */
774
del_mtd_device(struct mtd_info * mtd)775 int del_mtd_device(struct mtd_info *mtd)
776 {
777 int ret;
778 struct mtd_notifier *not;
779 struct device_node *mtd_of_node;
780
781 mutex_lock(&mtd_table_mutex);
782
783 if (idr_find(&mtd_idr, mtd->index) != mtd) {
784 ret = -ENODEV;
785 goto out_error;
786 }
787
788 /* No need to get a refcount on the module containing
789 the notifier, since we hold the mtd_table_mutex */
790 list_for_each_entry(not, &mtd_notifiers, list)
791 not->remove(mtd);
792
793 if (mtd->usecount) {
794 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
795 mtd->index, mtd->name, mtd->usecount);
796 ret = -EBUSY;
797 } else {
798 mtd_of_node = mtd_get_of_node(mtd);
799 debugfs_remove_recursive(mtd->dbg.dfs_dir);
800
801 /* Try to remove the NVMEM provider */
802 nvmem_unregister(mtd->nvmem);
803
804 device_unregister(&mtd->dev);
805
806 /* Clear dev so mtd can be safely re-registered later if desired */
807 memset(&mtd->dev, 0, sizeof(mtd->dev));
808
809 idr_remove(&mtd_idr, mtd->index);
810 of_node_put(mtd_of_node);
811
812 module_put(THIS_MODULE);
813 ret = 0;
814 }
815
816 out_error:
817 mutex_unlock(&mtd_table_mutex);
818 return ret;
819 }
820
821 /*
822 * Set a few defaults based on the parent devices, if not provided by the
823 * driver
824 */
mtd_set_dev_defaults(struct mtd_info * mtd)825 static void mtd_set_dev_defaults(struct mtd_info *mtd)
826 {
827 if (mtd->dev.parent) {
828 if (!mtd->owner && mtd->dev.parent->driver)
829 mtd->owner = mtd->dev.parent->driver->owner;
830 if (!mtd->name)
831 mtd->name = dev_name(mtd->dev.parent);
832 } else {
833 pr_debug("mtd device won't show a device symlink in sysfs\n");
834 }
835
836 INIT_LIST_HEAD(&mtd->partitions);
837 mutex_init(&mtd->master.partitions_lock);
838 mutex_init(&mtd->master.chrdev_lock);
839 }
840
mtd_otp_size(struct mtd_info * mtd,bool is_user)841 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
842 {
843 struct otp_info *info;
844 ssize_t size = 0;
845 unsigned int i;
846 size_t retlen;
847 int ret;
848
849 info = kmalloc(PAGE_SIZE, GFP_KERNEL);
850 if (!info)
851 return -ENOMEM;
852
853 if (is_user)
854 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
855 else
856 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
857 if (ret)
858 goto err;
859
860 for (i = 0; i < retlen / sizeof(*info); i++)
861 size += info[i].length;
862
863 kfree(info);
864 return size;
865
866 err:
867 kfree(info);
868
869 /* ENODATA means there is no OTP region. */
870 return ret == -ENODATA ? 0 : ret;
871 }
872
mtd_otp_nvmem_register(struct mtd_info * mtd,const char * compatible,int size,nvmem_reg_read_t reg_read)873 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
874 const char *compatible,
875 int size,
876 nvmem_reg_read_t reg_read)
877 {
878 struct nvmem_device *nvmem = NULL;
879 struct nvmem_config config = {};
880 struct device_node *np;
881
882 /* DT binding is optional */
883 np = of_get_compatible_child(mtd->dev.of_node, compatible);
884
885 /* OTP nvmem will be registered on the physical device */
886 config.dev = mtd->dev.parent;
887 config.name = compatible;
888 config.id = NVMEM_DEVID_AUTO;
889 config.owner = THIS_MODULE;
890 config.type = NVMEM_TYPE_OTP;
891 config.root_only = true;
892 config.ignore_wp = true;
893 config.reg_read = reg_read;
894 config.size = size;
895 config.of_node = np;
896 config.priv = mtd;
897
898 nvmem = nvmem_register(&config);
899 /* Just ignore if there is no NVMEM support in the kernel */
900 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
901 nvmem = NULL;
902
903 of_node_put(np);
904
905 return nvmem;
906 }
907
mtd_nvmem_user_otp_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)908 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
909 void *val, size_t bytes)
910 {
911 struct mtd_info *mtd = priv;
912 size_t retlen;
913 int ret;
914
915 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
916 if (ret)
917 return ret;
918
919 return retlen == bytes ? 0 : -EIO;
920 }
921
mtd_nvmem_fact_otp_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)922 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
923 void *val, size_t bytes)
924 {
925 struct mtd_info *mtd = priv;
926 size_t retlen;
927 int ret;
928
929 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
930 if (ret)
931 return ret;
932
933 return retlen == bytes ? 0 : -EIO;
934 }
935
mtd_otp_nvmem_add(struct mtd_info * mtd)936 static int mtd_otp_nvmem_add(struct mtd_info *mtd)
937 {
938 struct device *dev = mtd->dev.parent;
939 struct nvmem_device *nvmem;
940 ssize_t size;
941 int err;
942
943 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
944 size = mtd_otp_size(mtd, true);
945 if (size < 0)
946 return size;
947
948 if (size > 0) {
949 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
950 mtd_nvmem_user_otp_reg_read);
951 if (IS_ERR(nvmem)) {
952 dev_err(dev, "Failed to register OTP NVMEM device\n");
953 return PTR_ERR(nvmem);
954 }
955 mtd->otp_user_nvmem = nvmem;
956 }
957 }
958
959 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
960 size = mtd_otp_size(mtd, false);
961 if (size < 0) {
962 err = size;
963 goto err;
964 }
965
966 if (size > 0) {
967 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
968 mtd_nvmem_fact_otp_reg_read);
969 if (IS_ERR(nvmem)) {
970 dev_err(dev, "Failed to register OTP NVMEM device\n");
971 err = PTR_ERR(nvmem);
972 goto err;
973 }
974 mtd->otp_factory_nvmem = nvmem;
975 }
976 }
977
978 return 0;
979
980 err:
981 nvmem_unregister(mtd->otp_user_nvmem);
982 return err;
983 }
984
985 /**
986 * mtd_device_parse_register - parse partitions and register an MTD device.
987 *
988 * @mtd: the MTD device to register
989 * @types: the list of MTD partition probes to try, see
990 * 'parse_mtd_partitions()' for more information
991 * @parser_data: MTD partition parser-specific data
992 * @parts: fallback partition information to register, if parsing fails;
993 * only valid if %nr_parts > %0
994 * @nr_parts: the number of partitions in parts, if zero then the full
995 * MTD device is registered if no partition info is found
996 *
997 * This function aggregates MTD partitions parsing (done by
998 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
999 * basically follows the most common pattern found in many MTD drivers:
1000 *
1001 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
1002 * registered first.
1003 * * Then It tries to probe partitions on MTD device @mtd using parsers
1004 * specified in @types (if @types is %NULL, then the default list of parsers
1005 * is used, see 'parse_mtd_partitions()' for more information). If none are
1006 * found this functions tries to fallback to information specified in
1007 * @parts/@nr_parts.
1008 * * If no partitions were found this function just registers the MTD device
1009 * @mtd and exits.
1010 *
1011 * Returns zero in case of success and a negative error code in case of failure.
1012 */
mtd_device_parse_register(struct mtd_info * mtd,const char * const * types,struct mtd_part_parser_data * parser_data,const struct mtd_partition * parts,int nr_parts)1013 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1014 struct mtd_part_parser_data *parser_data,
1015 const struct mtd_partition *parts,
1016 int nr_parts)
1017 {
1018 int ret;
1019
1020 mtd_set_dev_defaults(mtd);
1021
1022 ret = mtd_otp_nvmem_add(mtd);
1023 if (ret)
1024 goto out;
1025
1026 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1027 ret = add_mtd_device(mtd);
1028 if (ret)
1029 goto out;
1030 }
1031
1032 /* Prefer parsed partitions over driver-provided fallback */
1033 ret = parse_mtd_partitions(mtd, types, parser_data);
1034 if (ret == -EPROBE_DEFER)
1035 goto out;
1036
1037 if (ret > 0)
1038 ret = 0;
1039 else if (nr_parts)
1040 ret = add_mtd_partitions(mtd, parts, nr_parts);
1041 else if (!device_is_registered(&mtd->dev))
1042 ret = add_mtd_device(mtd);
1043 else
1044 ret = 0;
1045
1046 if (ret)
1047 goto out;
1048
1049 /*
1050 * FIXME: some drivers unfortunately call this function more than once.
1051 * So we have to check if we've already assigned the reboot notifier.
1052 *
1053 * Generally, we can make multiple calls work for most cases, but it
1054 * does cause problems with parse_mtd_partitions() above (e.g.,
1055 * cmdlineparts will register partitions more than once).
1056 */
1057 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1058 "MTD already registered\n");
1059 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1060 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1061 register_reboot_notifier(&mtd->reboot_notifier);
1062 }
1063
1064 out:
1065 if (ret) {
1066 nvmem_unregister(mtd->otp_user_nvmem);
1067 nvmem_unregister(mtd->otp_factory_nvmem);
1068 }
1069
1070 if (ret && device_is_registered(&mtd->dev))
1071 del_mtd_device(mtd);
1072
1073 return ret;
1074 }
1075 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1076
1077 /**
1078 * mtd_device_unregister - unregister an existing MTD device.
1079 *
1080 * @master: the MTD device to unregister. This will unregister both the master
1081 * and any partitions if registered.
1082 */
mtd_device_unregister(struct mtd_info * master)1083 int mtd_device_unregister(struct mtd_info *master)
1084 {
1085 int err;
1086
1087 if (master->_reboot) {
1088 unregister_reboot_notifier(&master->reboot_notifier);
1089 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1090 }
1091
1092 nvmem_unregister(master->otp_user_nvmem);
1093 nvmem_unregister(master->otp_factory_nvmem);
1094
1095 err = del_mtd_partitions(master);
1096 if (err)
1097 return err;
1098
1099 if (!device_is_registered(&master->dev))
1100 return 0;
1101
1102 return del_mtd_device(master);
1103 }
1104 EXPORT_SYMBOL_GPL(mtd_device_unregister);
1105
1106 /**
1107 * register_mtd_user - register a 'user' of MTD devices.
1108 * @new: pointer to notifier info structure
1109 *
1110 * Registers a pair of callbacks function to be called upon addition
1111 * or removal of MTD devices. Causes the 'add' callback to be immediately
1112 * invoked for each MTD device currently present in the system.
1113 */
register_mtd_user(struct mtd_notifier * new)1114 void register_mtd_user (struct mtd_notifier *new)
1115 {
1116 struct mtd_info *mtd;
1117
1118 mutex_lock(&mtd_table_mutex);
1119
1120 list_add(&new->list, &mtd_notifiers);
1121
1122 __module_get(THIS_MODULE);
1123
1124 mtd_for_each_device(mtd)
1125 new->add(mtd);
1126
1127 mutex_unlock(&mtd_table_mutex);
1128 }
1129 EXPORT_SYMBOL_GPL(register_mtd_user);
1130
1131 /**
1132 * unregister_mtd_user - unregister a 'user' of MTD devices.
1133 * @old: pointer to notifier info structure
1134 *
1135 * Removes a callback function pair from the list of 'users' to be
1136 * notified upon addition or removal of MTD devices. Causes the
1137 * 'remove' callback to be immediately invoked for each MTD device
1138 * currently present in the system.
1139 */
unregister_mtd_user(struct mtd_notifier * old)1140 int unregister_mtd_user (struct mtd_notifier *old)
1141 {
1142 struct mtd_info *mtd;
1143
1144 mutex_lock(&mtd_table_mutex);
1145
1146 module_put(THIS_MODULE);
1147
1148 mtd_for_each_device(mtd)
1149 old->remove(mtd);
1150
1151 list_del(&old->list);
1152 mutex_unlock(&mtd_table_mutex);
1153 return 0;
1154 }
1155 EXPORT_SYMBOL_GPL(unregister_mtd_user);
1156
1157 /**
1158 * get_mtd_device - obtain a validated handle for an MTD device
1159 * @mtd: last known address of the required MTD device
1160 * @num: internal device number of the required MTD device
1161 *
1162 * Given a number and NULL address, return the num'th entry in the device
1163 * table, if any. Given an address and num == -1, search the device table
1164 * for a device with that address and return if it's still present. Given
1165 * both, return the num'th driver only if its address matches. Return
1166 * error code if not.
1167 */
get_mtd_device(struct mtd_info * mtd,int num)1168 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1169 {
1170 struct mtd_info *ret = NULL, *other;
1171 int err = -ENODEV;
1172
1173 mutex_lock(&mtd_table_mutex);
1174
1175 if (num == -1) {
1176 mtd_for_each_device(other) {
1177 if (other == mtd) {
1178 ret = mtd;
1179 break;
1180 }
1181 }
1182 } else if (num >= 0) {
1183 ret = idr_find(&mtd_idr, num);
1184 if (mtd && mtd != ret)
1185 ret = NULL;
1186 }
1187
1188 if (!ret) {
1189 ret = ERR_PTR(err);
1190 goto out;
1191 }
1192
1193 err = __get_mtd_device(ret);
1194 if (err)
1195 ret = ERR_PTR(err);
1196 out:
1197 mutex_unlock(&mtd_table_mutex);
1198 return ret;
1199 }
1200 EXPORT_SYMBOL_GPL(get_mtd_device);
1201
1202
__get_mtd_device(struct mtd_info * mtd)1203 int __get_mtd_device(struct mtd_info *mtd)
1204 {
1205 struct mtd_info *master = mtd_get_master(mtd);
1206 int err;
1207
1208 if (!try_module_get(master->owner))
1209 return -ENODEV;
1210
1211 if (master->_get_device) {
1212 err = master->_get_device(mtd);
1213
1214 if (err) {
1215 module_put(master->owner);
1216 return err;
1217 }
1218 }
1219
1220 master->usecount++;
1221
1222 while (mtd->parent) {
1223 mtd->usecount++;
1224 mtd = mtd->parent;
1225 }
1226
1227 return 0;
1228 }
1229 EXPORT_SYMBOL_GPL(__get_mtd_device);
1230
1231 /**
1232 * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1233 *
1234 * @np: device tree node
1235 */
of_get_mtd_device_by_node(struct device_node * np)1236 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1237 {
1238 struct mtd_info *mtd = NULL;
1239 struct mtd_info *tmp;
1240 int err;
1241
1242 mutex_lock(&mtd_table_mutex);
1243
1244 err = -EPROBE_DEFER;
1245 mtd_for_each_device(tmp) {
1246 if (mtd_get_of_node(tmp) == np) {
1247 mtd = tmp;
1248 err = __get_mtd_device(mtd);
1249 break;
1250 }
1251 }
1252
1253 mutex_unlock(&mtd_table_mutex);
1254
1255 return err ? ERR_PTR(err) : mtd;
1256 }
1257 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1258
1259 /**
1260 * get_mtd_device_nm - obtain a validated handle for an MTD device by
1261 * device name
1262 * @name: MTD device name to open
1263 *
1264 * This function returns MTD device description structure in case of
1265 * success and an error code in case of failure.
1266 */
get_mtd_device_nm(const char * name)1267 struct mtd_info *get_mtd_device_nm(const char *name)
1268 {
1269 int err = -ENODEV;
1270 struct mtd_info *mtd = NULL, *other;
1271
1272 mutex_lock(&mtd_table_mutex);
1273
1274 mtd_for_each_device(other) {
1275 if (!strcmp(name, other->name)) {
1276 mtd = other;
1277 break;
1278 }
1279 }
1280
1281 if (!mtd)
1282 goto out_unlock;
1283
1284 err = __get_mtd_device(mtd);
1285 if (err)
1286 goto out_unlock;
1287
1288 mutex_unlock(&mtd_table_mutex);
1289 return mtd;
1290
1291 out_unlock:
1292 mutex_unlock(&mtd_table_mutex);
1293 return ERR_PTR(err);
1294 }
1295 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1296
put_mtd_device(struct mtd_info * mtd)1297 void put_mtd_device(struct mtd_info *mtd)
1298 {
1299 mutex_lock(&mtd_table_mutex);
1300 __put_mtd_device(mtd);
1301 mutex_unlock(&mtd_table_mutex);
1302
1303 }
1304 EXPORT_SYMBOL_GPL(put_mtd_device);
1305
__put_mtd_device(struct mtd_info * mtd)1306 void __put_mtd_device(struct mtd_info *mtd)
1307 {
1308 struct mtd_info *master = mtd_get_master(mtd);
1309
1310 while (mtd->parent) {
1311 --mtd->usecount;
1312 BUG_ON(mtd->usecount < 0);
1313 mtd = mtd->parent;
1314 }
1315
1316 master->usecount--;
1317
1318 if (master->_put_device)
1319 master->_put_device(master);
1320
1321 module_put(master->owner);
1322 }
1323 EXPORT_SYMBOL_GPL(__put_mtd_device);
1324
1325 /*
1326 * Erase is an synchronous operation. Device drivers are epected to return a
1327 * negative error code if the operation failed and update instr->fail_addr
1328 * to point the portion that was not properly erased.
1329 */
mtd_erase(struct mtd_info * mtd,struct erase_info * instr)1330 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1331 {
1332 struct mtd_info *master = mtd_get_master(mtd);
1333 u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1334 struct erase_info adjinstr;
1335 int ret;
1336
1337 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1338 adjinstr = *instr;
1339
1340 if (!mtd->erasesize || !master->_erase)
1341 return -ENOTSUPP;
1342
1343 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1344 return -EINVAL;
1345 if (!(mtd->flags & MTD_WRITEABLE))
1346 return -EROFS;
1347
1348 if (!instr->len)
1349 return 0;
1350
1351 ledtrig_mtd_activity();
1352
1353 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1354 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1355 master->erasesize;
1356 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1357 master->erasesize) -
1358 adjinstr.addr;
1359 }
1360
1361 adjinstr.addr += mst_ofs;
1362
1363 ret = master->_erase(master, &adjinstr);
1364
1365 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1366 instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1367 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1368 instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1369 master);
1370 instr->fail_addr *= mtd->erasesize;
1371 }
1372 }
1373
1374 return ret;
1375 }
1376 EXPORT_SYMBOL_GPL(mtd_erase);
1377
1378 /*
1379 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1380 */
mtd_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)1381 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1382 void **virt, resource_size_t *phys)
1383 {
1384 struct mtd_info *master = mtd_get_master(mtd);
1385
1386 *retlen = 0;
1387 *virt = NULL;
1388 if (phys)
1389 *phys = 0;
1390 if (!master->_point)
1391 return -EOPNOTSUPP;
1392 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1393 return -EINVAL;
1394 if (!len)
1395 return 0;
1396
1397 from = mtd_get_master_ofs(mtd, from);
1398 return master->_point(master, from, len, retlen, virt, phys);
1399 }
1400 EXPORT_SYMBOL_GPL(mtd_point);
1401
1402 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
mtd_unpoint(struct mtd_info * mtd,loff_t from,size_t len)1403 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1404 {
1405 struct mtd_info *master = mtd_get_master(mtd);
1406
1407 if (!master->_unpoint)
1408 return -EOPNOTSUPP;
1409 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1410 return -EINVAL;
1411 if (!len)
1412 return 0;
1413 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1414 }
1415 EXPORT_SYMBOL_GPL(mtd_unpoint);
1416
1417 /*
1418 * Allow NOMMU mmap() to directly map the device (if not NULL)
1419 * - return the address to which the offset maps
1420 * - return -ENOSYS to indicate refusal to do the mapping
1421 */
mtd_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)1422 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1423 unsigned long offset, unsigned long flags)
1424 {
1425 size_t retlen;
1426 void *virt;
1427 int ret;
1428
1429 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1430 if (ret)
1431 return ret;
1432 if (retlen != len) {
1433 mtd_unpoint(mtd, offset, retlen);
1434 return -ENOSYS;
1435 }
1436 return (unsigned long)virt;
1437 }
1438 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1439
mtd_update_ecc_stats(struct mtd_info * mtd,struct mtd_info * master,const struct mtd_ecc_stats * old_stats)1440 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1441 const struct mtd_ecc_stats *old_stats)
1442 {
1443 struct mtd_ecc_stats diff;
1444
1445 if (master == mtd)
1446 return;
1447
1448 diff = master->ecc_stats;
1449 diff.failed -= old_stats->failed;
1450 diff.corrected -= old_stats->corrected;
1451
1452 while (mtd->parent) {
1453 mtd->ecc_stats.failed += diff.failed;
1454 mtd->ecc_stats.corrected += diff.corrected;
1455 mtd = mtd->parent;
1456 }
1457 }
1458
mtd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1459 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1460 u_char *buf)
1461 {
1462 struct mtd_oob_ops ops = {
1463 .len = len,
1464 .datbuf = buf,
1465 };
1466 int ret;
1467
1468 ret = mtd_read_oob(mtd, from, &ops);
1469 *retlen = ops.retlen;
1470
1471 return ret;
1472 }
1473 EXPORT_SYMBOL_GPL(mtd_read);
1474
mtd_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1475 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1476 const u_char *buf)
1477 {
1478 struct mtd_oob_ops ops = {
1479 .len = len,
1480 .datbuf = (u8 *)buf,
1481 };
1482 int ret;
1483
1484 ret = mtd_write_oob(mtd, to, &ops);
1485 *retlen = ops.retlen;
1486
1487 return ret;
1488 }
1489 EXPORT_SYMBOL_GPL(mtd_write);
1490
1491 /*
1492 * In blackbox flight recorder like scenarios we want to make successful writes
1493 * in interrupt context. panic_write() is only intended to be called when its
1494 * known the kernel is about to panic and we need the write to succeed. Since
1495 * the kernel is not going to be running for much longer, this function can
1496 * break locks and delay to ensure the write succeeds (but not sleep).
1497 */
mtd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1498 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1499 const u_char *buf)
1500 {
1501 struct mtd_info *master = mtd_get_master(mtd);
1502
1503 *retlen = 0;
1504 if (!master->_panic_write)
1505 return -EOPNOTSUPP;
1506 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1507 return -EINVAL;
1508 if (!(mtd->flags & MTD_WRITEABLE))
1509 return -EROFS;
1510 if (!len)
1511 return 0;
1512 if (!master->oops_panic_write)
1513 master->oops_panic_write = true;
1514
1515 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1516 retlen, buf);
1517 }
1518 EXPORT_SYMBOL_GPL(mtd_panic_write);
1519
mtd_check_oob_ops(struct mtd_info * mtd,loff_t offs,struct mtd_oob_ops * ops)1520 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1521 struct mtd_oob_ops *ops)
1522 {
1523 /*
1524 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1525 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1526 * this case.
1527 */
1528 if (!ops->datbuf)
1529 ops->len = 0;
1530
1531 if (!ops->oobbuf)
1532 ops->ooblen = 0;
1533
1534 if (offs < 0 || offs + ops->len > mtd->size)
1535 return -EINVAL;
1536
1537 if (ops->ooblen) {
1538 size_t maxooblen;
1539
1540 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1541 return -EINVAL;
1542
1543 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1544 mtd_div_by_ws(offs, mtd)) *
1545 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1546 if (ops->ooblen > maxooblen)
1547 return -EINVAL;
1548 }
1549
1550 return 0;
1551 }
1552
mtd_read_oob_std(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1553 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1554 struct mtd_oob_ops *ops)
1555 {
1556 struct mtd_info *master = mtd_get_master(mtd);
1557 int ret;
1558
1559 from = mtd_get_master_ofs(mtd, from);
1560 if (master->_read_oob)
1561 ret = master->_read_oob(master, from, ops);
1562 else
1563 ret = master->_read(master, from, ops->len, &ops->retlen,
1564 ops->datbuf);
1565
1566 return ret;
1567 }
1568
mtd_write_oob_std(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1569 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1570 struct mtd_oob_ops *ops)
1571 {
1572 struct mtd_info *master = mtd_get_master(mtd);
1573 int ret;
1574
1575 to = mtd_get_master_ofs(mtd, to);
1576 if (master->_write_oob)
1577 ret = master->_write_oob(master, to, ops);
1578 else
1579 ret = master->_write(master, to, ops->len, &ops->retlen,
1580 ops->datbuf);
1581
1582 return ret;
1583 }
1584
mtd_io_emulated_slc(struct mtd_info * mtd,loff_t start,bool read,struct mtd_oob_ops * ops)1585 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1586 struct mtd_oob_ops *ops)
1587 {
1588 struct mtd_info *master = mtd_get_master(mtd);
1589 int ngroups = mtd_pairing_groups(master);
1590 int npairs = mtd_wunit_per_eb(master) / ngroups;
1591 struct mtd_oob_ops adjops = *ops;
1592 unsigned int wunit, oobavail;
1593 struct mtd_pairing_info info;
1594 int max_bitflips = 0;
1595 u32 ebofs, pageofs;
1596 loff_t base, pos;
1597
1598 ebofs = mtd_mod_by_eb(start, mtd);
1599 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1600 info.group = 0;
1601 info.pair = mtd_div_by_ws(ebofs, mtd);
1602 pageofs = mtd_mod_by_ws(ebofs, mtd);
1603 oobavail = mtd_oobavail(mtd, ops);
1604
1605 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1606 int ret;
1607
1608 if (info.pair >= npairs) {
1609 info.pair = 0;
1610 base += master->erasesize;
1611 }
1612
1613 wunit = mtd_pairing_info_to_wunit(master, &info);
1614 pos = mtd_wunit_to_offset(mtd, base, wunit);
1615
1616 adjops.len = ops->len - ops->retlen;
1617 if (adjops.len > mtd->writesize - pageofs)
1618 adjops.len = mtd->writesize - pageofs;
1619
1620 adjops.ooblen = ops->ooblen - ops->oobretlen;
1621 if (adjops.ooblen > oobavail - adjops.ooboffs)
1622 adjops.ooblen = oobavail - adjops.ooboffs;
1623
1624 if (read) {
1625 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1626 if (ret > 0)
1627 max_bitflips = max(max_bitflips, ret);
1628 } else {
1629 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1630 }
1631
1632 if (ret < 0)
1633 return ret;
1634
1635 max_bitflips = max(max_bitflips, ret);
1636 ops->retlen += adjops.retlen;
1637 ops->oobretlen += adjops.oobretlen;
1638 adjops.datbuf += adjops.retlen;
1639 adjops.oobbuf += adjops.oobretlen;
1640 adjops.ooboffs = 0;
1641 pageofs = 0;
1642 info.pair++;
1643 }
1644
1645 return max_bitflips;
1646 }
1647
mtd_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1648 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1649 {
1650 struct mtd_info *master = mtd_get_master(mtd);
1651 struct mtd_ecc_stats old_stats = master->ecc_stats;
1652 int ret_code;
1653
1654 ops->retlen = ops->oobretlen = 0;
1655
1656 ret_code = mtd_check_oob_ops(mtd, from, ops);
1657 if (ret_code)
1658 return ret_code;
1659
1660 ledtrig_mtd_activity();
1661
1662 /* Check the validity of a potential fallback on mtd->_read */
1663 if (!master->_read_oob && (!master->_read || ops->oobbuf))
1664 return -EOPNOTSUPP;
1665
1666 if (ops->stats)
1667 memset(ops->stats, 0, sizeof(*ops->stats));
1668
1669 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1670 ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1671 else
1672 ret_code = mtd_read_oob_std(mtd, from, ops);
1673
1674 mtd_update_ecc_stats(mtd, master, &old_stats);
1675
1676 /*
1677 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1678 * similar to mtd->_read(), returning a non-negative integer
1679 * representing max bitflips. In other cases, mtd->_read_oob() may
1680 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1681 */
1682 if (unlikely(ret_code < 0))
1683 return ret_code;
1684 if (mtd->ecc_strength == 0)
1685 return 0; /* device lacks ecc */
1686 if (ops->stats)
1687 ops->stats->max_bitflips = ret_code;
1688 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1689 }
1690 EXPORT_SYMBOL_GPL(mtd_read_oob);
1691
mtd_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1692 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1693 struct mtd_oob_ops *ops)
1694 {
1695 struct mtd_info *master = mtd_get_master(mtd);
1696 int ret;
1697
1698 ops->retlen = ops->oobretlen = 0;
1699
1700 if (!(mtd->flags & MTD_WRITEABLE))
1701 return -EROFS;
1702
1703 ret = mtd_check_oob_ops(mtd, to, ops);
1704 if (ret)
1705 return ret;
1706
1707 ledtrig_mtd_activity();
1708
1709 /* Check the validity of a potential fallback on mtd->_write */
1710 if (!master->_write_oob && (!master->_write || ops->oobbuf))
1711 return -EOPNOTSUPP;
1712
1713 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1714 return mtd_io_emulated_slc(mtd, to, false, ops);
1715
1716 return mtd_write_oob_std(mtd, to, ops);
1717 }
1718 EXPORT_SYMBOL_GPL(mtd_write_oob);
1719
1720 /**
1721 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1722 * @mtd: MTD device structure
1723 * @section: ECC section. Depending on the layout you may have all the ECC
1724 * bytes stored in a single contiguous section, or one section
1725 * per ECC chunk (and sometime several sections for a single ECC
1726 * ECC chunk)
1727 * @oobecc: OOB region struct filled with the appropriate ECC position
1728 * information
1729 *
1730 * This function returns ECC section information in the OOB area. If you want
1731 * to get all the ECC bytes information, then you should call
1732 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1733 *
1734 * Returns zero on success, a negative error code otherwise.
1735 */
mtd_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobecc)1736 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1737 struct mtd_oob_region *oobecc)
1738 {
1739 struct mtd_info *master = mtd_get_master(mtd);
1740
1741 memset(oobecc, 0, sizeof(*oobecc));
1742
1743 if (!master || section < 0)
1744 return -EINVAL;
1745
1746 if (!master->ooblayout || !master->ooblayout->ecc)
1747 return -ENOTSUPP;
1748
1749 return master->ooblayout->ecc(master, section, oobecc);
1750 }
1751 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1752
1753 /**
1754 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1755 * section
1756 * @mtd: MTD device structure
1757 * @section: Free section you are interested in. Depending on the layout
1758 * you may have all the free bytes stored in a single contiguous
1759 * section, or one section per ECC chunk plus an extra section
1760 * for the remaining bytes (or other funky layout).
1761 * @oobfree: OOB region struct filled with the appropriate free position
1762 * information
1763 *
1764 * This function returns free bytes position in the OOB area. If you want
1765 * to get all the free bytes information, then you should call
1766 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1767 *
1768 * Returns zero on success, a negative error code otherwise.
1769 */
mtd_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobfree)1770 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1771 struct mtd_oob_region *oobfree)
1772 {
1773 struct mtd_info *master = mtd_get_master(mtd);
1774
1775 memset(oobfree, 0, sizeof(*oobfree));
1776
1777 if (!master || section < 0)
1778 return -EINVAL;
1779
1780 if (!master->ooblayout || !master->ooblayout->free)
1781 return -ENOTSUPP;
1782
1783 return master->ooblayout->free(master, section, oobfree);
1784 }
1785 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1786
1787 /**
1788 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1789 * @mtd: mtd info structure
1790 * @byte: the byte we are searching for
1791 * @sectionp: pointer where the section id will be stored
1792 * @oobregion: used to retrieve the ECC position
1793 * @iter: iterator function. Should be either mtd_ooblayout_free or
1794 * mtd_ooblayout_ecc depending on the region type you're searching for
1795 *
1796 * This function returns the section id and oobregion information of a
1797 * specific byte. For example, say you want to know where the 4th ECC byte is
1798 * stored, you'll use:
1799 *
1800 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1801 *
1802 * Returns zero on success, a negative error code otherwise.
1803 */
mtd_ooblayout_find_region(struct mtd_info * mtd,int byte,int * sectionp,struct mtd_oob_region * oobregion,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1804 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1805 int *sectionp, struct mtd_oob_region *oobregion,
1806 int (*iter)(struct mtd_info *,
1807 int section,
1808 struct mtd_oob_region *oobregion))
1809 {
1810 int pos = 0, ret, section = 0;
1811
1812 memset(oobregion, 0, sizeof(*oobregion));
1813
1814 while (1) {
1815 ret = iter(mtd, section, oobregion);
1816 if (ret)
1817 return ret;
1818
1819 if (pos + oobregion->length > byte)
1820 break;
1821
1822 pos += oobregion->length;
1823 section++;
1824 }
1825
1826 /*
1827 * Adjust region info to make it start at the beginning at the
1828 * 'start' ECC byte.
1829 */
1830 oobregion->offset += byte - pos;
1831 oobregion->length -= byte - pos;
1832 *sectionp = section;
1833
1834 return 0;
1835 }
1836
1837 /**
1838 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1839 * ECC byte
1840 * @mtd: mtd info structure
1841 * @eccbyte: the byte we are searching for
1842 * @section: pointer where the section id will be stored
1843 * @oobregion: OOB region information
1844 *
1845 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1846 * byte.
1847 *
1848 * Returns zero on success, a negative error code otherwise.
1849 */
mtd_ooblayout_find_eccregion(struct mtd_info * mtd,int eccbyte,int * section,struct mtd_oob_region * oobregion)1850 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1851 int *section,
1852 struct mtd_oob_region *oobregion)
1853 {
1854 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1855 mtd_ooblayout_ecc);
1856 }
1857 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1858
1859 /**
1860 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1861 * @mtd: mtd info structure
1862 * @buf: destination buffer to store OOB bytes
1863 * @oobbuf: OOB buffer
1864 * @start: first byte to retrieve
1865 * @nbytes: number of bytes to retrieve
1866 * @iter: section iterator
1867 *
1868 * Extract bytes attached to a specific category (ECC or free)
1869 * from the OOB buffer and copy them into buf.
1870 *
1871 * Returns zero on success, a negative error code otherwise.
1872 */
mtd_ooblayout_get_bytes(struct mtd_info * mtd,u8 * buf,const u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1873 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1874 const u8 *oobbuf, int start, int nbytes,
1875 int (*iter)(struct mtd_info *,
1876 int section,
1877 struct mtd_oob_region *oobregion))
1878 {
1879 struct mtd_oob_region oobregion;
1880 int section, ret;
1881
1882 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1883 &oobregion, iter);
1884
1885 while (!ret) {
1886 int cnt;
1887
1888 cnt = min_t(int, nbytes, oobregion.length);
1889 memcpy(buf, oobbuf + oobregion.offset, cnt);
1890 buf += cnt;
1891 nbytes -= cnt;
1892
1893 if (!nbytes)
1894 break;
1895
1896 ret = iter(mtd, ++section, &oobregion);
1897 }
1898
1899 return ret;
1900 }
1901
1902 /**
1903 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1904 * @mtd: mtd info structure
1905 * @buf: source buffer to get OOB bytes from
1906 * @oobbuf: OOB buffer
1907 * @start: first OOB byte to set
1908 * @nbytes: number of OOB bytes to set
1909 * @iter: section iterator
1910 *
1911 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1912 * is selected by passing the appropriate iterator.
1913 *
1914 * Returns zero on success, a negative error code otherwise.
1915 */
mtd_ooblayout_set_bytes(struct mtd_info * mtd,const u8 * buf,u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1916 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1917 u8 *oobbuf, int start, int nbytes,
1918 int (*iter)(struct mtd_info *,
1919 int section,
1920 struct mtd_oob_region *oobregion))
1921 {
1922 struct mtd_oob_region oobregion;
1923 int section, ret;
1924
1925 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1926 &oobregion, iter);
1927
1928 while (!ret) {
1929 int cnt;
1930
1931 cnt = min_t(int, nbytes, oobregion.length);
1932 memcpy(oobbuf + oobregion.offset, buf, cnt);
1933 buf += cnt;
1934 nbytes -= cnt;
1935
1936 if (!nbytes)
1937 break;
1938
1939 ret = iter(mtd, ++section, &oobregion);
1940 }
1941
1942 return ret;
1943 }
1944
1945 /**
1946 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1947 * @mtd: mtd info structure
1948 * @iter: category iterator
1949 *
1950 * Count the number of bytes in a given category.
1951 *
1952 * Returns a positive value on success, a negative error code otherwise.
1953 */
mtd_ooblayout_count_bytes(struct mtd_info * mtd,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1954 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1955 int (*iter)(struct mtd_info *,
1956 int section,
1957 struct mtd_oob_region *oobregion))
1958 {
1959 struct mtd_oob_region oobregion;
1960 int section = 0, ret, nbytes = 0;
1961
1962 while (1) {
1963 ret = iter(mtd, section++, &oobregion);
1964 if (ret) {
1965 if (ret == -ERANGE)
1966 ret = nbytes;
1967 break;
1968 }
1969
1970 nbytes += oobregion.length;
1971 }
1972
1973 return ret;
1974 }
1975
1976 /**
1977 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1978 * @mtd: mtd info structure
1979 * @eccbuf: destination buffer to store ECC bytes
1980 * @oobbuf: OOB buffer
1981 * @start: first ECC byte to retrieve
1982 * @nbytes: number of ECC bytes to retrieve
1983 *
1984 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1985 *
1986 * Returns zero on success, a negative error code otherwise.
1987 */
mtd_ooblayout_get_eccbytes(struct mtd_info * mtd,u8 * eccbuf,const u8 * oobbuf,int start,int nbytes)1988 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1989 const u8 *oobbuf, int start, int nbytes)
1990 {
1991 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1992 mtd_ooblayout_ecc);
1993 }
1994 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1995
1996 /**
1997 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1998 * @mtd: mtd info structure
1999 * @eccbuf: source buffer to get ECC bytes from
2000 * @oobbuf: OOB buffer
2001 * @start: first ECC byte to set
2002 * @nbytes: number of ECC bytes to set
2003 *
2004 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
2005 *
2006 * Returns zero on success, a negative error code otherwise.
2007 */
mtd_ooblayout_set_eccbytes(struct mtd_info * mtd,const u8 * eccbuf,u8 * oobbuf,int start,int nbytes)2008 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
2009 u8 *oobbuf, int start, int nbytes)
2010 {
2011 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2012 mtd_ooblayout_ecc);
2013 }
2014 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2015
2016 /**
2017 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2018 * @mtd: mtd info structure
2019 * @databuf: destination buffer to store ECC bytes
2020 * @oobbuf: OOB buffer
2021 * @start: first ECC byte to retrieve
2022 * @nbytes: number of ECC bytes to retrieve
2023 *
2024 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2025 *
2026 * Returns zero on success, a negative error code otherwise.
2027 */
mtd_ooblayout_get_databytes(struct mtd_info * mtd,u8 * databuf,const u8 * oobbuf,int start,int nbytes)2028 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2029 const u8 *oobbuf, int start, int nbytes)
2030 {
2031 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2032 mtd_ooblayout_free);
2033 }
2034 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2035
2036 /**
2037 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
2038 * @mtd: mtd info structure
2039 * @databuf: source buffer to get data bytes from
2040 * @oobbuf: OOB buffer
2041 * @start: first ECC byte to set
2042 * @nbytes: number of ECC bytes to set
2043 *
2044 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2045 *
2046 * Returns zero on success, a negative error code otherwise.
2047 */
mtd_ooblayout_set_databytes(struct mtd_info * mtd,const u8 * databuf,u8 * oobbuf,int start,int nbytes)2048 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2049 u8 *oobbuf, int start, int nbytes)
2050 {
2051 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2052 mtd_ooblayout_free);
2053 }
2054 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2055
2056 /**
2057 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2058 * @mtd: mtd info structure
2059 *
2060 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2061 *
2062 * Returns zero on success, a negative error code otherwise.
2063 */
mtd_ooblayout_count_freebytes(struct mtd_info * mtd)2064 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2065 {
2066 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2067 }
2068 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2069
2070 /**
2071 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2072 * @mtd: mtd info structure
2073 *
2074 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2075 *
2076 * Returns zero on success, a negative error code otherwise.
2077 */
mtd_ooblayout_count_eccbytes(struct mtd_info * mtd)2078 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2079 {
2080 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2081 }
2082 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2083
2084 /*
2085 * Method to access the protection register area, present in some flash
2086 * devices. The user data is one time programmable but the factory data is read
2087 * only.
2088 */
mtd_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)2089 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2090 struct otp_info *buf)
2091 {
2092 struct mtd_info *master = mtd_get_master(mtd);
2093
2094 if (!master->_get_fact_prot_info)
2095 return -EOPNOTSUPP;
2096 if (!len)
2097 return 0;
2098 return master->_get_fact_prot_info(master, len, retlen, buf);
2099 }
2100 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2101
mtd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)2102 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2103 size_t *retlen, u_char *buf)
2104 {
2105 struct mtd_info *master = mtd_get_master(mtd);
2106
2107 *retlen = 0;
2108 if (!master->_read_fact_prot_reg)
2109 return -EOPNOTSUPP;
2110 if (!len)
2111 return 0;
2112 return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2113 }
2114 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2115
mtd_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)2116 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2117 struct otp_info *buf)
2118 {
2119 struct mtd_info *master = mtd_get_master(mtd);
2120
2121 if (!master->_get_user_prot_info)
2122 return -EOPNOTSUPP;
2123 if (!len)
2124 return 0;
2125 return master->_get_user_prot_info(master, len, retlen, buf);
2126 }
2127 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2128
mtd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)2129 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2130 size_t *retlen, u_char *buf)
2131 {
2132 struct mtd_info *master = mtd_get_master(mtd);
2133
2134 *retlen = 0;
2135 if (!master->_read_user_prot_reg)
2136 return -EOPNOTSUPP;
2137 if (!len)
2138 return 0;
2139 return master->_read_user_prot_reg(master, from, len, retlen, buf);
2140 }
2141 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2142
mtd_write_user_prot_reg(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2143 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2144 size_t *retlen, const u_char *buf)
2145 {
2146 struct mtd_info *master = mtd_get_master(mtd);
2147 int ret;
2148
2149 *retlen = 0;
2150 if (!master->_write_user_prot_reg)
2151 return -EOPNOTSUPP;
2152 if (!len)
2153 return 0;
2154 ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2155 if (ret)
2156 return ret;
2157
2158 /*
2159 * If no data could be written at all, we are out of memory and
2160 * must return -ENOSPC.
2161 */
2162 return (*retlen) ? 0 : -ENOSPC;
2163 }
2164 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2165
mtd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)2166 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2167 {
2168 struct mtd_info *master = mtd_get_master(mtd);
2169
2170 if (!master->_lock_user_prot_reg)
2171 return -EOPNOTSUPP;
2172 if (!len)
2173 return 0;
2174 return master->_lock_user_prot_reg(master, from, len);
2175 }
2176 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2177
mtd_erase_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)2178 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2179 {
2180 struct mtd_info *master = mtd_get_master(mtd);
2181
2182 if (!master->_erase_user_prot_reg)
2183 return -EOPNOTSUPP;
2184 if (!len)
2185 return 0;
2186 return master->_erase_user_prot_reg(master, from, len);
2187 }
2188 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2189
2190 /* Chip-supported device locking */
mtd_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2191 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2192 {
2193 struct mtd_info *master = mtd_get_master(mtd);
2194
2195 if (!master->_lock)
2196 return -EOPNOTSUPP;
2197 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2198 return -EINVAL;
2199 if (!len)
2200 return 0;
2201
2202 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2203 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2204 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2205 }
2206
2207 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2208 }
2209 EXPORT_SYMBOL_GPL(mtd_lock);
2210
mtd_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2211 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2212 {
2213 struct mtd_info *master = mtd_get_master(mtd);
2214
2215 if (!master->_unlock)
2216 return -EOPNOTSUPP;
2217 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2218 return -EINVAL;
2219 if (!len)
2220 return 0;
2221
2222 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2223 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2224 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2225 }
2226
2227 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2228 }
2229 EXPORT_SYMBOL_GPL(mtd_unlock);
2230
mtd_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)2231 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2232 {
2233 struct mtd_info *master = mtd_get_master(mtd);
2234
2235 if (!master->_is_locked)
2236 return -EOPNOTSUPP;
2237 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2238 return -EINVAL;
2239 if (!len)
2240 return 0;
2241
2242 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2243 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2244 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2245 }
2246
2247 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2248 }
2249 EXPORT_SYMBOL_GPL(mtd_is_locked);
2250
mtd_block_isreserved(struct mtd_info * mtd,loff_t ofs)2251 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2252 {
2253 struct mtd_info *master = mtd_get_master(mtd);
2254
2255 if (ofs < 0 || ofs >= mtd->size)
2256 return -EINVAL;
2257 if (!master->_block_isreserved)
2258 return 0;
2259
2260 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2261 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2262
2263 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2264 }
2265 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2266
mtd_block_isbad(struct mtd_info * mtd,loff_t ofs)2267 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2268 {
2269 struct mtd_info *master = mtd_get_master(mtd);
2270
2271 if (ofs < 0 || ofs >= mtd->size)
2272 return -EINVAL;
2273 if (!master->_block_isbad)
2274 return 0;
2275
2276 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2277 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2278
2279 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2280 }
2281 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2282
mtd_block_markbad(struct mtd_info * mtd,loff_t ofs)2283 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2284 {
2285 struct mtd_info *master = mtd_get_master(mtd);
2286 int ret;
2287
2288 if (!master->_block_markbad)
2289 return -EOPNOTSUPP;
2290 if (ofs < 0 || ofs >= mtd->size)
2291 return -EINVAL;
2292 if (!(mtd->flags & MTD_WRITEABLE))
2293 return -EROFS;
2294
2295 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2296 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2297
2298 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2299 if (ret)
2300 return ret;
2301
2302 while (mtd->parent) {
2303 mtd->ecc_stats.badblocks++;
2304 mtd = mtd->parent;
2305 }
2306
2307 return 0;
2308 }
2309 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2310
2311 /*
2312 * default_mtd_writev - the default writev method
2313 * @mtd: mtd device description object pointer
2314 * @vecs: the vectors to write
2315 * @count: count of vectors in @vecs
2316 * @to: the MTD device offset to write to
2317 * @retlen: on exit contains the count of bytes written to the MTD device.
2318 *
2319 * This function returns zero in case of success and a negative error code in
2320 * case of failure.
2321 */
default_mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)2322 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2323 unsigned long count, loff_t to, size_t *retlen)
2324 {
2325 unsigned long i;
2326 size_t totlen = 0, thislen;
2327 int ret = 0;
2328
2329 for (i = 0; i < count; i++) {
2330 if (!vecs[i].iov_len)
2331 continue;
2332 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2333 vecs[i].iov_base);
2334 totlen += thislen;
2335 if (ret || thislen != vecs[i].iov_len)
2336 break;
2337 to += vecs[i].iov_len;
2338 }
2339 *retlen = totlen;
2340 return ret;
2341 }
2342
2343 /*
2344 * mtd_writev - the vector-based MTD write method
2345 * @mtd: mtd device description object pointer
2346 * @vecs: the vectors to write
2347 * @count: count of vectors in @vecs
2348 * @to: the MTD device offset to write to
2349 * @retlen: on exit contains the count of bytes written to the MTD device.
2350 *
2351 * This function returns zero in case of success and a negative error code in
2352 * case of failure.
2353 */
mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)2354 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2355 unsigned long count, loff_t to, size_t *retlen)
2356 {
2357 struct mtd_info *master = mtd_get_master(mtd);
2358
2359 *retlen = 0;
2360 if (!(mtd->flags & MTD_WRITEABLE))
2361 return -EROFS;
2362
2363 if (!master->_writev)
2364 return default_mtd_writev(mtd, vecs, count, to, retlen);
2365
2366 return master->_writev(master, vecs, count,
2367 mtd_get_master_ofs(mtd, to), retlen);
2368 }
2369 EXPORT_SYMBOL_GPL(mtd_writev);
2370
2371 /**
2372 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2373 * @mtd: mtd device description object pointer
2374 * @size: a pointer to the ideal or maximum size of the allocation, points
2375 * to the actual allocation size on success.
2376 *
2377 * This routine attempts to allocate a contiguous kernel buffer up to
2378 * the specified size, backing off the size of the request exponentially
2379 * until the request succeeds or until the allocation size falls below
2380 * the system page size. This attempts to make sure it does not adversely
2381 * impact system performance, so when allocating more than one page, we
2382 * ask the memory allocator to avoid re-trying, swapping, writing back
2383 * or performing I/O.
2384 *
2385 * Note, this function also makes sure that the allocated buffer is aligned to
2386 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2387 *
2388 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2389 * to handle smaller (i.e. degraded) buffer allocations under low- or
2390 * fragmented-memory situations where such reduced allocations, from a
2391 * requested ideal, are allowed.
2392 *
2393 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2394 */
mtd_kmalloc_up_to(const struct mtd_info * mtd,size_t * size)2395 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2396 {
2397 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2398 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2399 void *kbuf;
2400
2401 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2402
2403 while (*size > min_alloc) {
2404 kbuf = kmalloc(*size, flags);
2405 if (kbuf)
2406 return kbuf;
2407
2408 *size >>= 1;
2409 *size = ALIGN(*size, mtd->writesize);
2410 }
2411
2412 /*
2413 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2414 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2415 */
2416 return kmalloc(*size, GFP_KERNEL);
2417 }
2418 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2419
2420 #ifdef CONFIG_PROC_FS
2421
2422 /*====================================================================*/
2423 /* Support for /proc/mtd */
2424
mtd_proc_show(struct seq_file * m,void * v)2425 static int mtd_proc_show(struct seq_file *m, void *v)
2426 {
2427 struct mtd_info *mtd;
2428
2429 seq_puts(m, "dev: size erasesize name\n");
2430 mutex_lock(&mtd_table_mutex);
2431 mtd_for_each_device(mtd) {
2432 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2433 mtd->index, (unsigned long long)mtd->size,
2434 mtd->erasesize, mtd->name);
2435 }
2436 mutex_unlock(&mtd_table_mutex);
2437 return 0;
2438 }
2439 #endif /* CONFIG_PROC_FS */
2440
2441 /*====================================================================*/
2442 /* Init code */
2443
mtd_bdi_init(const char * name)2444 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2445 {
2446 struct backing_dev_info *bdi;
2447 int ret;
2448
2449 bdi = bdi_alloc(NUMA_NO_NODE);
2450 if (!bdi)
2451 return ERR_PTR(-ENOMEM);
2452 bdi->ra_pages = 0;
2453 bdi->io_pages = 0;
2454
2455 /*
2456 * We put '-0' suffix to the name to get the same name format as we
2457 * used to get. Since this is called only once, we get a unique name.
2458 */
2459 ret = bdi_register(bdi, "%.28s-0", name);
2460 if (ret)
2461 bdi_put(bdi);
2462
2463 return ret ? ERR_PTR(ret) : bdi;
2464 }
2465
2466 static struct proc_dir_entry *proc_mtd;
2467
init_mtd(void)2468 static int __init init_mtd(void)
2469 {
2470 int ret;
2471
2472 ret = class_register(&mtd_class);
2473 if (ret)
2474 goto err_reg;
2475
2476 mtd_bdi = mtd_bdi_init("mtd");
2477 if (IS_ERR(mtd_bdi)) {
2478 ret = PTR_ERR(mtd_bdi);
2479 goto err_bdi;
2480 }
2481
2482 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2483
2484 ret = init_mtdchar();
2485 if (ret)
2486 goto out_procfs;
2487
2488 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2489 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2490 &mtd_expert_analysis_mode);
2491
2492 return 0;
2493
2494 out_procfs:
2495 if (proc_mtd)
2496 remove_proc_entry("mtd", NULL);
2497 bdi_unregister(mtd_bdi);
2498 bdi_put(mtd_bdi);
2499 err_bdi:
2500 class_unregister(&mtd_class);
2501 err_reg:
2502 pr_err("Error registering mtd class or bdi: %d\n", ret);
2503 return ret;
2504 }
2505
cleanup_mtd(void)2506 static void __exit cleanup_mtd(void)
2507 {
2508 debugfs_remove_recursive(dfs_dir_mtd);
2509 cleanup_mtdchar();
2510 if (proc_mtd)
2511 remove_proc_entry("mtd", NULL);
2512 class_unregister(&mtd_class);
2513 bdi_unregister(mtd_bdi);
2514 bdi_put(mtd_bdi);
2515 idr_destroy(&mtd_idr);
2516 }
2517
2518 module_init(init_mtd);
2519 module_exit(cleanup_mtd);
2520
2521 MODULE_LICENSE("GPL");
2522 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2523 MODULE_DESCRIPTION("Core MTD registration and access routines");
2524