1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/locking/mutex.c
4 *
5 * Mutexes: blocking mutual exclusion locks
6 *
7 * Started by Ingo Molnar:
8 *
9 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 *
11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
12 * David Howells for suggestions and improvements.
13 *
14 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
15 * from the -rt tree, where it was originally implemented for rtmutexes
16 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
17 * and Sven Dietrich.
18 *
19 * Also see Documentation/locking/mutex-design.rst.
20 */
21 #include <linux/mutex.h>
22 #include <linux/ww_mutex.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/wake_q.h>
26 #include <linux/sched/debug.h>
27 #include <linux/export.h>
28 #include <linux/spinlock.h>
29 #include <linux/interrupt.h>
30 #include <linux/debug_locks.h>
31 #include <linux/osq_lock.h>
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/lock.h>
35
36 #undef CREATE_TRACE_POINTS
37 #include <trace/hooks/dtask.h>
38
39 #ifndef CONFIG_PREEMPT_RT
40 #include "mutex.h"
41
42 #ifdef CONFIG_DEBUG_MUTEXES
43 # define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond)
44 #else
45 # define MUTEX_WARN_ON(cond)
46 #endif
47
48 void
__mutex_init(struct mutex * lock,const char * name,struct lock_class_key * key)49 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
50 {
51 atomic_long_set(&lock->owner, 0);
52 raw_spin_lock_init(&lock->wait_lock);
53 INIT_LIST_HEAD(&lock->wait_list);
54 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
55 osq_lock_init(&lock->osq);
56 #endif
57
58 trace_android_vh_mutex_init(lock);
59 debug_mutex_init(lock, name, key);
60 }
61 EXPORT_SYMBOL(__mutex_init);
62
63 /*
64 * @owner: contains: 'struct task_struct *' to the current lock owner,
65 * NULL means not owned. Since task_struct pointers are aligned at
66 * at least L1_CACHE_BYTES, we have low bits to store extra state.
67 *
68 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
69 * Bit1 indicates unlock needs to hand the lock to the top-waiter
70 * Bit2 indicates handoff has been done and we're waiting for pickup.
71 */
72 #define MUTEX_FLAG_WAITERS 0x01
73 #define MUTEX_FLAG_HANDOFF 0x02
74 #define MUTEX_FLAG_PICKUP 0x04
75
76 #define MUTEX_FLAGS 0x07
77
78 /*
79 * Internal helper function; C doesn't allow us to hide it :/
80 *
81 * DO NOT USE (outside of mutex code).
82 */
__mutex_owner(struct mutex * lock)83 static inline struct task_struct *__mutex_owner(struct mutex *lock)
84 {
85 return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS);
86 }
87
__owner_task(unsigned long owner)88 static inline struct task_struct *__owner_task(unsigned long owner)
89 {
90 return (struct task_struct *)(owner & ~MUTEX_FLAGS);
91 }
92
mutex_is_locked(struct mutex * lock)93 bool mutex_is_locked(struct mutex *lock)
94 {
95 return __mutex_owner(lock) != NULL;
96 }
97 EXPORT_SYMBOL(mutex_is_locked);
98
__owner_flags(unsigned long owner)99 static inline unsigned long __owner_flags(unsigned long owner)
100 {
101 return owner & MUTEX_FLAGS;
102 }
103
104 /*
105 * Returns: __mutex_owner(lock) on failure or NULL on success.
106 */
__mutex_trylock_common(struct mutex * lock,bool handoff)107 static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff)
108 {
109 unsigned long owner, curr = (unsigned long)current;
110
111 owner = atomic_long_read(&lock->owner);
112 for (;;) { /* must loop, can race against a flag */
113 unsigned long flags = __owner_flags(owner);
114 unsigned long task = owner & ~MUTEX_FLAGS;
115
116 if (task) {
117 if (flags & MUTEX_FLAG_PICKUP) {
118 if (task != curr)
119 break;
120 flags &= ~MUTEX_FLAG_PICKUP;
121 } else if (handoff) {
122 if (flags & MUTEX_FLAG_HANDOFF)
123 break;
124 flags |= MUTEX_FLAG_HANDOFF;
125 } else {
126 break;
127 }
128 } else {
129 MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP));
130 task = curr;
131 }
132
133 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) {
134 if (task == curr)
135 return NULL;
136 break;
137 }
138 }
139
140 return __owner_task(owner);
141 }
142
143 /*
144 * Trylock or set HANDOFF
145 */
__mutex_trylock_or_handoff(struct mutex * lock,bool handoff)146 static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff)
147 {
148 return !__mutex_trylock_common(lock, handoff);
149 }
150
151 /*
152 * Actual trylock that will work on any unlocked state.
153 */
__mutex_trylock(struct mutex * lock)154 static inline bool __mutex_trylock(struct mutex *lock)
155 {
156 return !__mutex_trylock_common(lock, false);
157 }
158
159 #ifndef CONFIG_DEBUG_LOCK_ALLOC
160 /*
161 * Lockdep annotations are contained to the slow paths for simplicity.
162 * There is nothing that would stop spreading the lockdep annotations outwards
163 * except more code.
164 */
165
166 /*
167 * Optimistic trylock that only works in the uncontended case. Make sure to
168 * follow with a __mutex_trylock() before failing.
169 */
__mutex_trylock_fast(struct mutex * lock)170 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
171 {
172 unsigned long curr = (unsigned long)current;
173 unsigned long zero = 0UL;
174
175 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr)) {
176 trace_android_vh_record_mutex_lock_starttime(current, jiffies);
177 return true;
178 }
179
180 return false;
181 }
182
__mutex_unlock_fast(struct mutex * lock)183 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
184 {
185 unsigned long curr = (unsigned long)current;
186
187 return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL);
188 }
189 #endif
190
__mutex_set_flag(struct mutex * lock,unsigned long flag)191 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
192 {
193 atomic_long_or(flag, &lock->owner);
194 }
195
__mutex_clear_flag(struct mutex * lock,unsigned long flag)196 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
197 {
198 atomic_long_andnot(flag, &lock->owner);
199 }
200
__mutex_waiter_is_first(struct mutex * lock,struct mutex_waiter * waiter)201 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
202 {
203 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
204 }
205
206 /*
207 * Add @waiter to a given location in the lock wait_list and set the
208 * FLAG_WAITERS flag if it's the first waiter.
209 */
210 static void
__mutex_add_waiter(struct mutex * lock,struct mutex_waiter * waiter,struct list_head * list)211 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
212 struct list_head *list)
213 {
214 bool already_on_list = false;
215 debug_mutex_add_waiter(lock, waiter, current);
216
217 trace_android_vh_alter_mutex_list_add(lock, waiter, list, &already_on_list);
218 if (!already_on_list)
219 list_add_tail(&waiter->list, list);
220 if (__mutex_waiter_is_first(lock, waiter))
221 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
222 }
223
224 static void
__mutex_remove_waiter(struct mutex * lock,struct mutex_waiter * waiter)225 __mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter)
226 {
227 list_del(&waiter->list);
228 if (likely(list_empty(&lock->wait_list)))
229 __mutex_clear_flag(lock, MUTEX_FLAGS);
230
231 debug_mutex_remove_waiter(lock, waiter, current);
232 }
233
234 /*
235 * Give up ownership to a specific task, when @task = NULL, this is equivalent
236 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves
237 * WAITERS. Provides RELEASE semantics like a regular unlock, the
238 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
239 */
__mutex_handoff(struct mutex * lock,struct task_struct * task)240 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
241 {
242 unsigned long owner = atomic_long_read(&lock->owner);
243
244 for (;;) {
245 unsigned long new;
246
247 MUTEX_WARN_ON(__owner_task(owner) != current);
248 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
249
250 new = (owner & MUTEX_FLAG_WAITERS);
251 new |= (unsigned long)task;
252 if (task)
253 new |= MUTEX_FLAG_PICKUP;
254
255 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new))
256 break;
257 }
258 }
259
260 #ifndef CONFIG_DEBUG_LOCK_ALLOC
261 /*
262 * We split the mutex lock/unlock logic into separate fastpath and
263 * slowpath functions, to reduce the register pressure on the fastpath.
264 * We also put the fastpath first in the kernel image, to make sure the
265 * branch is predicted by the CPU as default-untaken.
266 */
267 static void __sched __mutex_lock_slowpath(struct mutex *lock);
268
269 /**
270 * mutex_lock - acquire the mutex
271 * @lock: the mutex to be acquired
272 *
273 * Lock the mutex exclusively for this task. If the mutex is not
274 * available right now, it will sleep until it can get it.
275 *
276 * The mutex must later on be released by the same task that
277 * acquired it. Recursive locking is not allowed. The task
278 * may not exit without first unlocking the mutex. Also, kernel
279 * memory where the mutex resides must not be freed with
280 * the mutex still locked. The mutex must first be initialized
281 * (or statically defined) before it can be locked. memset()-ing
282 * the mutex to 0 is not allowed.
283 *
284 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
285 * checks that will enforce the restrictions and will also do
286 * deadlock debugging)
287 *
288 * This function is similar to (but not equivalent to) down().
289 */
mutex_lock(struct mutex * lock)290 void __sched mutex_lock(struct mutex *lock)
291 {
292 might_sleep();
293
294 if (!__mutex_trylock_fast(lock))
295 __mutex_lock_slowpath(lock);
296 }
297 EXPORT_SYMBOL(mutex_lock);
298 #endif
299
300 #include "ww_mutex.h"
301
302 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
303
304 /*
305 * Trylock variant that returns the owning task on failure.
306 */
__mutex_trylock_or_owner(struct mutex * lock)307 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
308 {
309 return __mutex_trylock_common(lock, false);
310 }
311
312 static inline
ww_mutex_spin_on_owner(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)313 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
314 struct mutex_waiter *waiter)
315 {
316 struct ww_mutex *ww;
317
318 ww = container_of(lock, struct ww_mutex, base);
319
320 /*
321 * If ww->ctx is set the contents are undefined, only
322 * by acquiring wait_lock there is a guarantee that
323 * they are not invalid when reading.
324 *
325 * As such, when deadlock detection needs to be
326 * performed the optimistic spinning cannot be done.
327 *
328 * Check this in every inner iteration because we may
329 * be racing against another thread's ww_mutex_lock.
330 */
331 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
332 return false;
333
334 /*
335 * If we aren't on the wait list yet, cancel the spin
336 * if there are waiters. We want to avoid stealing the
337 * lock from a waiter with an earlier stamp, since the
338 * other thread may already own a lock that we also
339 * need.
340 */
341 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
342 return false;
343
344 /*
345 * Similarly, stop spinning if we are no longer the
346 * first waiter.
347 */
348 if (waiter && !__mutex_waiter_is_first(lock, waiter))
349 return false;
350
351 return true;
352 }
353
354 /*
355 * Look out! "owner" is an entirely speculative pointer access and not
356 * reliable.
357 *
358 * "noinline" so that this function shows up on perf profiles.
359 */
360 static noinline
mutex_spin_on_owner(struct mutex * lock,struct task_struct * owner,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)361 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
362 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
363 {
364 bool ret = true;
365 int cnt = 0;
366 bool time_out = false;
367
368 lockdep_assert_preemption_disabled();
369
370 while (__mutex_owner(lock) == owner) {
371 trace_android_vh_mutex_opt_spin_start(lock, &time_out, &cnt);
372 if (time_out) {
373 ret = false;
374 break;
375 }
376 /*
377 * Ensure we emit the owner->on_cpu, dereference _after_
378 * checking lock->owner still matches owner. And we already
379 * disabled preemption which is equal to the RCU read-side
380 * crital section in optimistic spinning code. Thus the
381 * task_strcut structure won't go away during the spinning
382 * period
383 */
384 barrier();
385
386 /*
387 * Use vcpu_is_preempted to detect lock holder preemption issue.
388 */
389 if (!owner_on_cpu(owner) || need_resched()) {
390 ret = false;
391 break;
392 }
393
394 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
395 ret = false;
396 break;
397 }
398
399 cpu_relax();
400 }
401
402 return ret;
403 }
404
405 /*
406 * Initial check for entering the mutex spinning loop
407 */
mutex_can_spin_on_owner(struct mutex * lock)408 static inline int mutex_can_spin_on_owner(struct mutex *lock)
409 {
410 struct task_struct *owner;
411 int retval = 1;
412
413 lockdep_assert_preemption_disabled();
414
415 if (need_resched())
416 return 0;
417
418 /*
419 * We already disabled preemption which is equal to the RCU read-side
420 * crital section in optimistic spinning code. Thus the task_strcut
421 * structure won't go away during the spinning period.
422 */
423 owner = __mutex_owner(lock);
424 if (owner)
425 retval = owner_on_cpu(owner);
426 trace_android_vh_mutex_can_spin_on_owner(lock, &retval);
427
428 /*
429 * If lock->owner is not set, the mutex has been released. Return true
430 * such that we'll trylock in the spin path, which is a faster option
431 * than the blocking slow path.
432 */
433 return retval;
434 }
435
436 /*
437 * Optimistic spinning.
438 *
439 * We try to spin for acquisition when we find that the lock owner
440 * is currently running on a (different) CPU and while we don't
441 * need to reschedule. The rationale is that if the lock owner is
442 * running, it is likely to release the lock soon.
443 *
444 * The mutex spinners are queued up using MCS lock so that only one
445 * spinner can compete for the mutex. However, if mutex spinning isn't
446 * going to happen, there is no point in going through the lock/unlock
447 * overhead.
448 *
449 * Returns true when the lock was taken, otherwise false, indicating
450 * that we need to jump to the slowpath and sleep.
451 *
452 * The waiter flag is set to true if the spinner is a waiter in the wait
453 * queue. The waiter-spinner will spin on the lock directly and concurrently
454 * with the spinner at the head of the OSQ, if present, until the owner is
455 * changed to itself.
456 */
457 static __always_inline bool
mutex_optimistic_spin(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)458 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
459 struct mutex_waiter *waiter)
460 {
461 if (!waiter) {
462 /*
463 * The purpose of the mutex_can_spin_on_owner() function is
464 * to eliminate the overhead of osq_lock() and osq_unlock()
465 * in case spinning isn't possible. As a waiter-spinner
466 * is not going to take OSQ lock anyway, there is no need
467 * to call mutex_can_spin_on_owner().
468 */
469 if (!mutex_can_spin_on_owner(lock))
470 goto fail;
471
472 /*
473 * In order to avoid a stampede of mutex spinners trying to
474 * acquire the mutex all at once, the spinners need to take a
475 * MCS (queued) lock first before spinning on the owner field.
476 */
477 if (!osq_lock(&lock->osq))
478 goto fail;
479 }
480
481 for (;;) {
482 struct task_struct *owner;
483
484 /* Try to acquire the mutex... */
485 owner = __mutex_trylock_or_owner(lock);
486 if (!owner)
487 break;
488
489 /*
490 * There's an owner, wait for it to either
491 * release the lock or go to sleep.
492 */
493 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
494 goto fail_unlock;
495
496 /*
497 * The cpu_relax() call is a compiler barrier which forces
498 * everything in this loop to be re-loaded. We don't need
499 * memory barriers as we'll eventually observe the right
500 * values at the cost of a few extra spins.
501 */
502 cpu_relax();
503 }
504
505 if (!waiter)
506 osq_unlock(&lock->osq);
507
508 trace_android_vh_mutex_opt_spin_finish(lock, true);
509 return true;
510
511
512 fail_unlock:
513 if (!waiter)
514 osq_unlock(&lock->osq);
515
516 fail:
517 trace_android_vh_mutex_opt_spin_finish(lock, false);
518 /*
519 * If we fell out of the spin path because of need_resched(),
520 * reschedule now, before we try-lock the mutex. This avoids getting
521 * scheduled out right after we obtained the mutex.
522 */
523 if (need_resched()) {
524 /*
525 * We _should_ have TASK_RUNNING here, but just in case
526 * we do not, make it so, otherwise we might get stuck.
527 */
528 __set_current_state(TASK_RUNNING);
529 schedule_preempt_disabled();
530 }
531
532 return false;
533 }
534 #else
535 static __always_inline bool
mutex_optimistic_spin(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)536 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
537 struct mutex_waiter *waiter)
538 {
539 return false;
540 }
541 #endif
542
543 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
544
545 /**
546 * mutex_unlock - release the mutex
547 * @lock: the mutex to be released
548 *
549 * Unlock a mutex that has been locked by this task previously.
550 *
551 * This function must not be used in interrupt context. Unlocking
552 * of a not locked mutex is not allowed.
553 *
554 * This function is similar to (but not equivalent to) up().
555 */
mutex_unlock(struct mutex * lock)556 void __sched mutex_unlock(struct mutex *lock)
557 {
558 #ifndef CONFIG_DEBUG_LOCK_ALLOC
559 if (__mutex_unlock_fast(lock)) {
560 trace_android_vh_record_mutex_lock_starttime(current, 0);
561 return;
562 }
563 #endif
564 __mutex_unlock_slowpath(lock, _RET_IP_);
565 trace_android_vh_record_mutex_lock_starttime(current, 0);
566 }
567 EXPORT_SYMBOL(mutex_unlock);
568
569 /**
570 * ww_mutex_unlock - release the w/w mutex
571 * @lock: the mutex to be released
572 *
573 * Unlock a mutex that has been locked by this task previously with any of the
574 * ww_mutex_lock* functions (with or without an acquire context). It is
575 * forbidden to release the locks after releasing the acquire context.
576 *
577 * This function must not be used in interrupt context. Unlocking
578 * of a unlocked mutex is not allowed.
579 */
ww_mutex_unlock(struct ww_mutex * lock)580 void __sched ww_mutex_unlock(struct ww_mutex *lock)
581 {
582 __ww_mutex_unlock(lock);
583 mutex_unlock(&lock->base);
584 }
585 EXPORT_SYMBOL(ww_mutex_unlock);
586
587 /*
588 * Lock a mutex (possibly interruptible), slowpath:
589 */
590 static __always_inline int __sched
__mutex_lock_common(struct mutex * lock,unsigned int state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip,struct ww_acquire_ctx * ww_ctx,const bool use_ww_ctx)591 __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass,
592 struct lockdep_map *nest_lock, unsigned long ip,
593 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
594 {
595 struct mutex_waiter waiter;
596 struct ww_mutex *ww;
597 int ret;
598
599 if (!use_ww_ctx)
600 ww_ctx = NULL;
601
602 might_sleep();
603
604 MUTEX_WARN_ON(lock->magic != lock);
605
606 ww = container_of(lock, struct ww_mutex, base);
607 if (ww_ctx) {
608 if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
609 return -EALREADY;
610
611 /*
612 * Reset the wounded flag after a kill. No other process can
613 * race and wound us here since they can't have a valid owner
614 * pointer if we don't have any locks held.
615 */
616 if (ww_ctx->acquired == 0)
617 ww_ctx->wounded = 0;
618
619 #ifdef CONFIG_DEBUG_LOCK_ALLOC
620 nest_lock = &ww_ctx->dep_map;
621 #endif
622 }
623
624 preempt_disable();
625 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
626
627 trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN);
628 if (__mutex_trylock(lock) ||
629 mutex_optimistic_spin(lock, ww_ctx, NULL)) {
630 /* got the lock, yay! */
631 lock_acquired(&lock->dep_map, ip);
632 if (ww_ctx)
633 ww_mutex_set_context_fastpath(ww, ww_ctx);
634 trace_contention_end(lock, 0);
635 trace_android_vh_record_mutex_lock_starttime(current, jiffies);
636 preempt_enable();
637 return 0;
638 }
639
640 raw_spin_lock(&lock->wait_lock);
641 /*
642 * After waiting to acquire the wait_lock, try again.
643 */
644 if (__mutex_trylock(lock)) {
645 if (ww_ctx)
646 __ww_mutex_check_waiters(lock, ww_ctx);
647
648 goto skip_wait;
649 }
650
651 debug_mutex_lock_common(lock, &waiter);
652 waiter.task = current;
653 if (use_ww_ctx)
654 waiter.ww_ctx = ww_ctx;
655
656 lock_contended(&lock->dep_map, ip);
657
658 if (!use_ww_ctx) {
659 /* add waiting tasks to the end of the waitqueue (FIFO): */
660 __mutex_add_waiter(lock, &waiter, &lock->wait_list);
661 } else {
662 /*
663 * Add in stamp order, waking up waiters that must kill
664 * themselves.
665 */
666 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
667 if (ret)
668 goto err_early_kill;
669 }
670
671 trace_android_vh_mutex_wait_start(lock);
672 set_current_state(state);
673 trace_contention_begin(lock, LCB_F_MUTEX);
674 for (;;) {
675 bool first;
676
677 /*
678 * Once we hold wait_lock, we're serialized against
679 * mutex_unlock() handing the lock off to us, do a trylock
680 * before testing the error conditions to make sure we pick up
681 * the handoff.
682 */
683 if (__mutex_trylock(lock))
684 goto acquired;
685
686 /*
687 * Check for signals and kill conditions while holding
688 * wait_lock. This ensures the lock cancellation is ordered
689 * against mutex_unlock() and wake-ups do not go missing.
690 */
691 if (signal_pending_state(state, current)) {
692 ret = -EINTR;
693 goto err;
694 }
695
696 if (ww_ctx) {
697 ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
698 if (ret)
699 goto err;
700 }
701
702 raw_spin_unlock(&lock->wait_lock);
703 schedule_preempt_disabled();
704
705 first = __mutex_waiter_is_first(lock, &waiter);
706
707 set_current_state(state);
708 /*
709 * Here we order against unlock; we must either see it change
710 * state back to RUNNING and fall through the next schedule(),
711 * or we must see its unlock and acquire.
712 */
713 if (__mutex_trylock_or_handoff(lock, first))
714 break;
715
716 if (first) {
717 trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN);
718 if (mutex_optimistic_spin(lock, ww_ctx, &waiter))
719 break;
720 trace_contention_begin(lock, LCB_F_MUTEX);
721 }
722
723 raw_spin_lock(&lock->wait_lock);
724 }
725 raw_spin_lock(&lock->wait_lock);
726 acquired:
727 __set_current_state(TASK_RUNNING);
728 trace_android_vh_mutex_wait_finish(lock);
729
730 if (ww_ctx) {
731 /*
732 * Wound-Wait; we stole the lock (!first_waiter), check the
733 * waiters as anyone might want to wound us.
734 */
735 if (!ww_ctx->is_wait_die &&
736 !__mutex_waiter_is_first(lock, &waiter))
737 __ww_mutex_check_waiters(lock, ww_ctx);
738 }
739
740 __mutex_remove_waiter(lock, &waiter);
741
742 debug_mutex_free_waiter(&waiter);
743
744 skip_wait:
745 /* got the lock - cleanup and rejoice! */
746 lock_acquired(&lock->dep_map, ip);
747 trace_contention_end(lock, 0);
748
749 if (ww_ctx)
750 ww_mutex_lock_acquired(ww, ww_ctx);
751
752 raw_spin_unlock(&lock->wait_lock);
753 preempt_enable();
754 trace_android_vh_record_mutex_lock_starttime(current, jiffies);
755 return 0;
756
757 err:
758 __set_current_state(TASK_RUNNING);
759 trace_android_vh_mutex_wait_finish(lock);
760 __mutex_remove_waiter(lock, &waiter);
761 err_early_kill:
762 trace_contention_end(lock, ret);
763 raw_spin_unlock(&lock->wait_lock);
764 debug_mutex_free_waiter(&waiter);
765 mutex_release(&lock->dep_map, ip);
766 preempt_enable();
767 return ret;
768 }
769
770 static int __sched
__mutex_lock(struct mutex * lock,unsigned int state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip)771 __mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
772 struct lockdep_map *nest_lock, unsigned long ip)
773 {
774 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
775 }
776
777 static int __sched
__ww_mutex_lock(struct mutex * lock,unsigned int state,unsigned int subclass,unsigned long ip,struct ww_acquire_ctx * ww_ctx)778 __ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
779 unsigned long ip, struct ww_acquire_ctx *ww_ctx)
780 {
781 return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true);
782 }
783
784 /**
785 * ww_mutex_trylock - tries to acquire the w/w mutex with optional acquire context
786 * @ww: mutex to lock
787 * @ww_ctx: optional w/w acquire context
788 *
789 * Trylocks a mutex with the optional acquire context; no deadlock detection is
790 * possible. Returns 1 if the mutex has been acquired successfully, 0 otherwise.
791 *
792 * Unlike ww_mutex_lock, no deadlock handling is performed. However, if a @ctx is
793 * specified, -EALREADY handling may happen in calls to ww_mutex_trylock.
794 *
795 * A mutex acquired with this function must be released with ww_mutex_unlock.
796 */
ww_mutex_trylock(struct ww_mutex * ww,struct ww_acquire_ctx * ww_ctx)797 int ww_mutex_trylock(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
798 {
799 if (!ww_ctx)
800 return mutex_trylock(&ww->base);
801
802 MUTEX_WARN_ON(ww->base.magic != &ww->base);
803
804 /*
805 * Reset the wounded flag after a kill. No other process can
806 * race and wound us here, since they can't have a valid owner
807 * pointer if we don't have any locks held.
808 */
809 if (ww_ctx->acquired == 0)
810 ww_ctx->wounded = 0;
811
812 if (__mutex_trylock(&ww->base)) {
813 ww_mutex_set_context_fastpath(ww, ww_ctx);
814 mutex_acquire_nest(&ww->base.dep_map, 0, 1, &ww_ctx->dep_map, _RET_IP_);
815 return 1;
816 }
817
818 return 0;
819 }
820 EXPORT_SYMBOL(ww_mutex_trylock);
821
822 #ifdef CONFIG_DEBUG_LOCK_ALLOC
823 void __sched
mutex_lock_nested(struct mutex * lock,unsigned int subclass)824 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
825 {
826 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
827 }
828
829 EXPORT_SYMBOL_GPL(mutex_lock_nested);
830
831 void __sched
_mutex_lock_nest_lock(struct mutex * lock,struct lockdep_map * nest)832 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
833 {
834 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
835 }
836 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
837
838 int __sched
mutex_lock_killable_nested(struct mutex * lock,unsigned int subclass)839 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
840 {
841 return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
842 }
843 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
844
845 int __sched
mutex_lock_interruptible_nested(struct mutex * lock,unsigned int subclass)846 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
847 {
848 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
849 }
850 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
851
852 void __sched
mutex_lock_io_nested(struct mutex * lock,unsigned int subclass)853 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
854 {
855 int token;
856
857 might_sleep();
858
859 token = io_schedule_prepare();
860 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
861 subclass, NULL, _RET_IP_, NULL, 0);
862 io_schedule_finish(token);
863 }
864 EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
865
866 static inline int
ww_mutex_deadlock_injection(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)867 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
868 {
869 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
870 unsigned tmp;
871
872 if (ctx->deadlock_inject_countdown-- == 0) {
873 tmp = ctx->deadlock_inject_interval;
874 if (tmp > UINT_MAX/4)
875 tmp = UINT_MAX;
876 else
877 tmp = tmp*2 + tmp + tmp/2;
878
879 ctx->deadlock_inject_interval = tmp;
880 ctx->deadlock_inject_countdown = tmp;
881 ctx->contending_lock = lock;
882
883 ww_mutex_unlock(lock);
884
885 return -EDEADLK;
886 }
887 #endif
888
889 return 0;
890 }
891
892 int __sched
ww_mutex_lock(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)893 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
894 {
895 int ret;
896
897 might_sleep();
898 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
899 0, _RET_IP_, ctx);
900 if (!ret && ctx && ctx->acquired > 1)
901 return ww_mutex_deadlock_injection(lock, ctx);
902
903 return ret;
904 }
905 EXPORT_SYMBOL_GPL(ww_mutex_lock);
906
907 int __sched
ww_mutex_lock_interruptible(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)908 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
909 {
910 int ret;
911
912 might_sleep();
913 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
914 0, _RET_IP_, ctx);
915
916 if (!ret && ctx && ctx->acquired > 1)
917 return ww_mutex_deadlock_injection(lock, ctx);
918
919 return ret;
920 }
921 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
922
923 #endif
924
925 /*
926 * Release the lock, slowpath:
927 */
__mutex_unlock_slowpath(struct mutex * lock,unsigned long ip)928 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
929 {
930 struct task_struct *next = NULL;
931 DEFINE_WAKE_Q(wake_q);
932 unsigned long owner;
933
934 mutex_release(&lock->dep_map, ip);
935
936 /*
937 * Release the lock before (potentially) taking the spinlock such that
938 * other contenders can get on with things ASAP.
939 *
940 * Except when HANDOFF, in that case we must not clear the owner field,
941 * but instead set it to the top waiter.
942 */
943 owner = atomic_long_read(&lock->owner);
944 for (;;) {
945 MUTEX_WARN_ON(__owner_task(owner) != current);
946 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
947
948 if (owner & MUTEX_FLAG_HANDOFF)
949 break;
950
951 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) {
952 if (owner & MUTEX_FLAG_WAITERS)
953 break;
954
955 return;
956 }
957 }
958
959 raw_spin_lock(&lock->wait_lock);
960 debug_mutex_unlock(lock);
961 if (!list_empty(&lock->wait_list)) {
962 /* get the first entry from the wait-list: */
963 struct mutex_waiter *waiter =
964 list_first_entry(&lock->wait_list,
965 struct mutex_waiter, list);
966
967 next = waiter->task;
968
969 debug_mutex_wake_waiter(lock, waiter);
970 wake_q_add(&wake_q, next);
971 }
972
973 if (owner & MUTEX_FLAG_HANDOFF)
974 __mutex_handoff(lock, next);
975
976 trace_android_vh_mutex_unlock_slowpath(lock);
977 raw_spin_unlock(&lock->wait_lock);
978
979 wake_up_q(&wake_q);
980 }
981
982 #ifndef CONFIG_DEBUG_LOCK_ALLOC
983 /*
984 * Here come the less common (and hence less performance-critical) APIs:
985 * mutex_lock_interruptible() and mutex_trylock().
986 */
987 static noinline int __sched
988 __mutex_lock_killable_slowpath(struct mutex *lock);
989
990 static noinline int __sched
991 __mutex_lock_interruptible_slowpath(struct mutex *lock);
992
993 /**
994 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
995 * @lock: The mutex to be acquired.
996 *
997 * Lock the mutex like mutex_lock(). If a signal is delivered while the
998 * process is sleeping, this function will return without acquiring the
999 * mutex.
1000 *
1001 * Context: Process context.
1002 * Return: 0 if the lock was successfully acquired or %-EINTR if a
1003 * signal arrived.
1004 */
mutex_lock_interruptible(struct mutex * lock)1005 int __sched mutex_lock_interruptible(struct mutex *lock)
1006 {
1007 might_sleep();
1008
1009 if (__mutex_trylock_fast(lock))
1010 return 0;
1011
1012 return __mutex_lock_interruptible_slowpath(lock);
1013 }
1014
1015 EXPORT_SYMBOL(mutex_lock_interruptible);
1016
1017 /**
1018 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
1019 * @lock: The mutex to be acquired.
1020 *
1021 * Lock the mutex like mutex_lock(). If a signal which will be fatal to
1022 * the current process is delivered while the process is sleeping, this
1023 * function will return without acquiring the mutex.
1024 *
1025 * Context: Process context.
1026 * Return: 0 if the lock was successfully acquired or %-EINTR if a
1027 * fatal signal arrived.
1028 */
mutex_lock_killable(struct mutex * lock)1029 int __sched mutex_lock_killable(struct mutex *lock)
1030 {
1031 might_sleep();
1032
1033 if (__mutex_trylock_fast(lock))
1034 return 0;
1035
1036 return __mutex_lock_killable_slowpath(lock);
1037 }
1038 EXPORT_SYMBOL(mutex_lock_killable);
1039
1040 /**
1041 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1042 * @lock: The mutex to be acquired.
1043 *
1044 * Lock the mutex like mutex_lock(). While the task is waiting for this
1045 * mutex, it will be accounted as being in the IO wait state by the
1046 * scheduler.
1047 *
1048 * Context: Process context.
1049 */
mutex_lock_io(struct mutex * lock)1050 void __sched mutex_lock_io(struct mutex *lock)
1051 {
1052 int token;
1053
1054 token = io_schedule_prepare();
1055 mutex_lock(lock);
1056 io_schedule_finish(token);
1057 }
1058 EXPORT_SYMBOL_GPL(mutex_lock_io);
1059
1060 static noinline void __sched
__mutex_lock_slowpath(struct mutex * lock)1061 __mutex_lock_slowpath(struct mutex *lock)
1062 {
1063 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1064 }
1065
1066 static noinline int __sched
__mutex_lock_killable_slowpath(struct mutex * lock)1067 __mutex_lock_killable_slowpath(struct mutex *lock)
1068 {
1069 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1070 }
1071
1072 static noinline int __sched
__mutex_lock_interruptible_slowpath(struct mutex * lock)1073 __mutex_lock_interruptible_slowpath(struct mutex *lock)
1074 {
1075 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1076 }
1077
1078 static noinline int __sched
__ww_mutex_lock_slowpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1079 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1080 {
1081 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0,
1082 _RET_IP_, ctx);
1083 }
1084
1085 static noinline int __sched
__ww_mutex_lock_interruptible_slowpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1086 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1087 struct ww_acquire_ctx *ctx)
1088 {
1089 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0,
1090 _RET_IP_, ctx);
1091 }
1092
1093 #endif
1094
1095 /**
1096 * mutex_trylock - try to acquire the mutex, without waiting
1097 * @lock: the mutex to be acquired
1098 *
1099 * Try to acquire the mutex atomically. Returns 1 if the mutex
1100 * has been acquired successfully, and 0 on contention.
1101 *
1102 * NOTE: this function follows the spin_trylock() convention, so
1103 * it is negated from the down_trylock() return values! Be careful
1104 * about this when converting semaphore users to mutexes.
1105 *
1106 * This function must not be used in interrupt context. The
1107 * mutex must be released by the same task that acquired it.
1108 */
mutex_trylock(struct mutex * lock)1109 int __sched mutex_trylock(struct mutex *lock)
1110 {
1111 bool locked;
1112
1113 MUTEX_WARN_ON(lock->magic != lock);
1114
1115 locked = __mutex_trylock(lock);
1116 if (locked) {
1117 trace_android_vh_record_mutex_lock_starttime(current, jiffies);
1118 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1119 }
1120
1121 return locked;
1122 }
1123 EXPORT_SYMBOL(mutex_trylock);
1124
1125 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1126 int __sched
ww_mutex_lock(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1127 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1128 {
1129 might_sleep();
1130
1131 if (__mutex_trylock_fast(&lock->base)) {
1132 if (ctx)
1133 ww_mutex_set_context_fastpath(lock, ctx);
1134 return 0;
1135 }
1136
1137 return __ww_mutex_lock_slowpath(lock, ctx);
1138 }
1139 EXPORT_SYMBOL(ww_mutex_lock);
1140
1141 int __sched
ww_mutex_lock_interruptible(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1142 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1143 {
1144 might_sleep();
1145
1146 if (__mutex_trylock_fast(&lock->base)) {
1147 if (ctx)
1148 ww_mutex_set_context_fastpath(lock, ctx);
1149 return 0;
1150 }
1151
1152 return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1153 }
1154 EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1155
1156 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */
1157 #endif /* !CONFIG_PREEMPT_RT */
1158
1159 /**
1160 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1161 * @cnt: the atomic which we are to dec
1162 * @lock: the mutex to return holding if we dec to 0
1163 *
1164 * return true and hold lock if we dec to 0, return false otherwise
1165 */
atomic_dec_and_mutex_lock(atomic_t * cnt,struct mutex * lock)1166 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1167 {
1168 /* dec if we can't possibly hit 0 */
1169 if (atomic_add_unless(cnt, -1, 1))
1170 return 0;
1171 /* we might hit 0, so take the lock */
1172 mutex_lock(lock);
1173 if (!atomic_dec_and_test(cnt)) {
1174 /* when we actually did the dec, we didn't hit 0 */
1175 mutex_unlock(lock);
1176 return 0;
1177 }
1178 /* we hit 0, and we hold the lock */
1179 return 1;
1180 }
1181 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1182