1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/nfs/direct.c
4 *
5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6 *
7 * High-performance uncached I/O for the Linux NFS client
8 *
9 * There are important applications whose performance or correctness
10 * depends on uncached access to file data. Database clusters
11 * (multiple copies of the same instance running on separate hosts)
12 * implement their own cache coherency protocol that subsumes file
13 * system cache protocols. Applications that process datasets
14 * considerably larger than the client's memory do not always benefit
15 * from a local cache. A streaming video server, for instance, has no
16 * need to cache the contents of a file.
17 *
18 * When an application requests uncached I/O, all read and write requests
19 * are made directly to the server; data stored or fetched via these
20 * requests is not cached in the Linux page cache. The client does not
21 * correct unaligned requests from applications. All requested bytes are
22 * held on permanent storage before a direct write system call returns to
23 * an application.
24 *
25 * Solaris implements an uncached I/O facility called directio() that
26 * is used for backups and sequential I/O to very large files. Solaris
27 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
28 * an undocumented mount option.
29 *
30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
31 * help from Andrew Morton.
32 *
33 * 18 Dec 2001 Initial implementation for 2.4 --cel
34 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
35 * 08 Jun 2003 Port to 2.5 APIs --cel
36 * 31 Mar 2004 Handle direct I/O without VFS support --cel
37 * 15 Sep 2004 Parallel async reads --cel
38 * 04 May 2005 support O_DIRECT with aio --cel
39 *
40 */
41
42 #include <linux/errno.h>
43 #include <linux/sched.h>
44 #include <linux/kernel.h>
45 #include <linux/file.h>
46 #include <linux/pagemap.h>
47 #include <linux/kref.h>
48 #include <linux/slab.h>
49 #include <linux/task_io_accounting_ops.h>
50 #include <linux/module.h>
51
52 #include <linux/nfs_fs.h>
53 #include <linux/nfs_page.h>
54 #include <linux/sunrpc/clnt.h>
55
56 #include <linux/uaccess.h>
57 #include <linux/atomic.h>
58
59 #include "internal.h"
60 #include "iostat.h"
61 #include "pnfs.h"
62 #include "fscache.h"
63 #include "nfstrace.h"
64
65 #define NFSDBG_FACILITY NFSDBG_VFS
66
67 static struct kmem_cache *nfs_direct_cachep;
68
69 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
70 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
71 static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
72 static void nfs_direct_write_schedule_work(struct work_struct *work);
73
get_dreq(struct nfs_direct_req * dreq)74 static inline void get_dreq(struct nfs_direct_req *dreq)
75 {
76 atomic_inc(&dreq->io_count);
77 }
78
put_dreq(struct nfs_direct_req * dreq)79 static inline int put_dreq(struct nfs_direct_req *dreq)
80 {
81 return atomic_dec_and_test(&dreq->io_count);
82 }
83
84 static void
nfs_direct_handle_truncated(struct nfs_direct_req * dreq,const struct nfs_pgio_header * hdr,ssize_t dreq_len)85 nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
86 const struct nfs_pgio_header *hdr,
87 ssize_t dreq_len)
88 {
89 if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
90 test_bit(NFS_IOHDR_EOF, &hdr->flags)))
91 return;
92 if (dreq->max_count >= dreq_len) {
93 dreq->max_count = dreq_len;
94 if (dreq->count > dreq_len)
95 dreq->count = dreq_len;
96
97 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags))
98 dreq->error = hdr->error;
99 else /* Clear outstanding error if this is EOF */
100 dreq->error = 0;
101 }
102 }
103
104 static void
nfs_direct_count_bytes(struct nfs_direct_req * dreq,const struct nfs_pgio_header * hdr)105 nfs_direct_count_bytes(struct nfs_direct_req *dreq,
106 const struct nfs_pgio_header *hdr)
107 {
108 loff_t hdr_end = hdr->io_start + hdr->good_bytes;
109 ssize_t dreq_len = 0;
110
111 if (hdr_end > dreq->io_start)
112 dreq_len = hdr_end - dreq->io_start;
113
114 nfs_direct_handle_truncated(dreq, hdr, dreq_len);
115
116 if (dreq_len > dreq->max_count)
117 dreq_len = dreq->max_count;
118
119 if (dreq->count < dreq_len)
120 dreq->count = dreq_len;
121 }
122
123 /**
124 * nfs_swap_rw - NFS address space operation for swap I/O
125 * @iocb: target I/O control block
126 * @iter: I/O buffer
127 *
128 * Perform IO to the swap-file. This is much like direct IO.
129 */
nfs_swap_rw(struct kiocb * iocb,struct iov_iter * iter)130 int nfs_swap_rw(struct kiocb *iocb, struct iov_iter *iter)
131 {
132 ssize_t ret;
133
134 VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
135
136 if (iov_iter_rw(iter) == READ)
137 ret = nfs_file_direct_read(iocb, iter, true);
138 else
139 ret = nfs_file_direct_write(iocb, iter, true);
140 if (ret < 0)
141 return ret;
142 return 0;
143 }
144
nfs_direct_release_pages(struct page ** pages,unsigned int npages)145 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
146 {
147 unsigned int i;
148 for (i = 0; i < npages; i++)
149 put_page(pages[i]);
150 }
151
nfs_init_cinfo_from_dreq(struct nfs_commit_info * cinfo,struct nfs_direct_req * dreq)152 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
153 struct nfs_direct_req *dreq)
154 {
155 cinfo->inode = dreq->inode;
156 cinfo->mds = &dreq->mds_cinfo;
157 cinfo->ds = &dreq->ds_cinfo;
158 cinfo->dreq = dreq;
159 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
160 }
161
nfs_direct_req_alloc(void)162 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
163 {
164 struct nfs_direct_req *dreq;
165
166 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
167 if (!dreq)
168 return NULL;
169
170 kref_init(&dreq->kref);
171 kref_get(&dreq->kref);
172 init_completion(&dreq->completion);
173 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
174 pnfs_init_ds_commit_info(&dreq->ds_cinfo);
175 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
176 spin_lock_init(&dreq->lock);
177
178 return dreq;
179 }
180
nfs_direct_req_free(struct kref * kref)181 static void nfs_direct_req_free(struct kref *kref)
182 {
183 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
184
185 pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode);
186 if (dreq->l_ctx != NULL)
187 nfs_put_lock_context(dreq->l_ctx);
188 if (dreq->ctx != NULL)
189 put_nfs_open_context(dreq->ctx);
190 kmem_cache_free(nfs_direct_cachep, dreq);
191 }
192
nfs_direct_req_release(struct nfs_direct_req * dreq)193 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
194 {
195 kref_put(&dreq->kref, nfs_direct_req_free);
196 }
197
nfs_dreq_bytes_left(struct nfs_direct_req * dreq,loff_t offset)198 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq, loff_t offset)
199 {
200 loff_t start = offset - dreq->io_start;
201 return dreq->max_count - start;
202 }
203 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
204
205 /*
206 * Collects and returns the final error value/byte-count.
207 */
nfs_direct_wait(struct nfs_direct_req * dreq)208 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
209 {
210 ssize_t result = -EIOCBQUEUED;
211
212 /* Async requests don't wait here */
213 if (dreq->iocb)
214 goto out;
215
216 result = wait_for_completion_killable(&dreq->completion);
217
218 if (!result) {
219 result = dreq->count;
220 WARN_ON_ONCE(dreq->count < 0);
221 }
222 if (!result)
223 result = dreq->error;
224
225 out:
226 return (ssize_t) result;
227 }
228
229 /*
230 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
231 * the iocb is still valid here if this is a synchronous request.
232 */
nfs_direct_complete(struct nfs_direct_req * dreq)233 static void nfs_direct_complete(struct nfs_direct_req *dreq)
234 {
235 struct inode *inode = dreq->inode;
236
237 inode_dio_end(inode);
238
239 if (dreq->iocb) {
240 long res = (long) dreq->error;
241 if (dreq->count != 0) {
242 res = (long) dreq->count;
243 WARN_ON_ONCE(dreq->count < 0);
244 }
245 dreq->iocb->ki_complete(dreq->iocb, res);
246 }
247
248 complete(&dreq->completion);
249
250 nfs_direct_req_release(dreq);
251 }
252
nfs_direct_read_completion(struct nfs_pgio_header * hdr)253 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
254 {
255 unsigned long bytes = 0;
256 struct nfs_direct_req *dreq = hdr->dreq;
257
258 spin_lock(&dreq->lock);
259 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
260 spin_unlock(&dreq->lock);
261 goto out_put;
262 }
263
264 nfs_direct_count_bytes(dreq, hdr);
265 spin_unlock(&dreq->lock);
266
267 while (!list_empty(&hdr->pages)) {
268 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
269 struct page *page = req->wb_page;
270
271 if (!PageCompound(page) && bytes < hdr->good_bytes &&
272 (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
273 set_page_dirty(page);
274 bytes += req->wb_bytes;
275 nfs_list_remove_request(req);
276 nfs_release_request(req);
277 }
278 out_put:
279 if (put_dreq(dreq))
280 nfs_direct_complete(dreq);
281 hdr->release(hdr);
282 }
283
nfs_read_sync_pgio_error(struct list_head * head,int error)284 static void nfs_read_sync_pgio_error(struct list_head *head, int error)
285 {
286 struct nfs_page *req;
287
288 while (!list_empty(head)) {
289 req = nfs_list_entry(head->next);
290 nfs_list_remove_request(req);
291 nfs_release_request(req);
292 }
293 }
294
nfs_direct_pgio_init(struct nfs_pgio_header * hdr)295 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
296 {
297 get_dreq(hdr->dreq);
298 }
299
300 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
301 .error_cleanup = nfs_read_sync_pgio_error,
302 .init_hdr = nfs_direct_pgio_init,
303 .completion = nfs_direct_read_completion,
304 };
305
306 /*
307 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
308 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
309 * bail and stop sending more reads. Read length accounting is
310 * handled automatically by nfs_direct_read_result(). Otherwise, if
311 * no requests have been sent, just return an error.
312 */
313
nfs_direct_read_schedule_iovec(struct nfs_direct_req * dreq,struct iov_iter * iter,loff_t pos)314 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
315 struct iov_iter *iter,
316 loff_t pos)
317 {
318 struct nfs_pageio_descriptor desc;
319 struct inode *inode = dreq->inode;
320 ssize_t result = -EINVAL;
321 size_t requested_bytes = 0;
322 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
323
324 nfs_pageio_init_read(&desc, dreq->inode, false,
325 &nfs_direct_read_completion_ops);
326 get_dreq(dreq);
327 desc.pg_dreq = dreq;
328 inode_dio_begin(inode);
329
330 while (iov_iter_count(iter)) {
331 struct page **pagevec;
332 size_t bytes;
333 size_t pgbase;
334 unsigned npages, i;
335
336 result = iov_iter_get_pages_alloc2(iter, &pagevec,
337 rsize, &pgbase);
338 if (result < 0)
339 break;
340
341 bytes = result;
342 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
343 for (i = 0; i < npages; i++) {
344 struct nfs_page *req;
345 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
346 /* XXX do we need to do the eof zeroing found in async_filler? */
347 req = nfs_create_request(dreq->ctx, pagevec[i],
348 pgbase, req_len);
349 if (IS_ERR(req)) {
350 result = PTR_ERR(req);
351 break;
352 }
353 req->wb_index = pos >> PAGE_SHIFT;
354 req->wb_offset = pos & ~PAGE_MASK;
355 if (!nfs_pageio_add_request(&desc, req)) {
356 result = desc.pg_error;
357 nfs_release_request(req);
358 break;
359 }
360 pgbase = 0;
361 bytes -= req_len;
362 requested_bytes += req_len;
363 pos += req_len;
364 dreq->bytes_left -= req_len;
365 }
366 nfs_direct_release_pages(pagevec, npages);
367 kvfree(pagevec);
368 if (result < 0)
369 break;
370 }
371
372 nfs_pageio_complete(&desc);
373
374 /*
375 * If no bytes were started, return the error, and let the
376 * generic layer handle the completion.
377 */
378 if (requested_bytes == 0) {
379 inode_dio_end(inode);
380 nfs_direct_req_release(dreq);
381 return result < 0 ? result : -EIO;
382 }
383
384 if (put_dreq(dreq))
385 nfs_direct_complete(dreq);
386 return requested_bytes;
387 }
388
389 /**
390 * nfs_file_direct_read - file direct read operation for NFS files
391 * @iocb: target I/O control block
392 * @iter: vector of user buffers into which to read data
393 * @swap: flag indicating this is swap IO, not O_DIRECT IO
394 *
395 * We use this function for direct reads instead of calling
396 * generic_file_aio_read() in order to avoid gfar's check to see if
397 * the request starts before the end of the file. For that check
398 * to work, we must generate a GETATTR before each direct read, and
399 * even then there is a window between the GETATTR and the subsequent
400 * READ where the file size could change. Our preference is simply
401 * to do all reads the application wants, and the server will take
402 * care of managing the end of file boundary.
403 *
404 * This function also eliminates unnecessarily updating the file's
405 * atime locally, as the NFS server sets the file's atime, and this
406 * client must read the updated atime from the server back into its
407 * cache.
408 */
nfs_file_direct_read(struct kiocb * iocb,struct iov_iter * iter,bool swap)409 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
410 bool swap)
411 {
412 struct file *file = iocb->ki_filp;
413 struct address_space *mapping = file->f_mapping;
414 struct inode *inode = mapping->host;
415 struct nfs_direct_req *dreq;
416 struct nfs_lock_context *l_ctx;
417 ssize_t result, requested;
418 size_t count = iov_iter_count(iter);
419 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
420
421 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
422 file, count, (long long) iocb->ki_pos);
423
424 result = 0;
425 if (!count)
426 goto out;
427
428 task_io_account_read(count);
429
430 result = -ENOMEM;
431 dreq = nfs_direct_req_alloc();
432 if (dreq == NULL)
433 goto out;
434
435 dreq->inode = inode;
436 dreq->bytes_left = dreq->max_count = count;
437 dreq->io_start = iocb->ki_pos;
438 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
439 l_ctx = nfs_get_lock_context(dreq->ctx);
440 if (IS_ERR(l_ctx)) {
441 result = PTR_ERR(l_ctx);
442 nfs_direct_req_release(dreq);
443 goto out_release;
444 }
445 dreq->l_ctx = l_ctx;
446 if (!is_sync_kiocb(iocb))
447 dreq->iocb = iocb;
448
449 if (user_backed_iter(iter))
450 dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
451
452 if (!swap)
453 nfs_start_io_direct(inode);
454
455 NFS_I(inode)->read_io += count;
456 requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
457
458 if (!swap)
459 nfs_end_io_direct(inode);
460
461 if (requested > 0) {
462 result = nfs_direct_wait(dreq);
463 if (result > 0) {
464 requested -= result;
465 iocb->ki_pos += result;
466 }
467 iov_iter_revert(iter, requested);
468 } else {
469 result = requested;
470 }
471
472 out_release:
473 nfs_direct_req_release(dreq);
474 out:
475 return result;
476 }
477
nfs_direct_add_page_head(struct list_head * list,struct nfs_page * req)478 static void nfs_direct_add_page_head(struct list_head *list,
479 struct nfs_page *req)
480 {
481 struct nfs_page *head = req->wb_head;
482
483 if (!list_empty(&head->wb_list) || !nfs_lock_request(head))
484 return;
485 if (!list_empty(&head->wb_list)) {
486 nfs_unlock_request(head);
487 return;
488 }
489 list_add(&head->wb_list, list);
490 kref_get(&head->wb_kref);
491 kref_get(&head->wb_kref);
492 }
493
nfs_direct_join_group(struct list_head * list,struct inode * inode)494 static void nfs_direct_join_group(struct list_head *list, struct inode *inode)
495 {
496 struct nfs_page *req, *subreq;
497
498 list_for_each_entry(req, list, wb_list) {
499 if (req->wb_head != req) {
500 nfs_direct_add_page_head(&req->wb_list, req);
501 continue;
502 }
503 subreq = req->wb_this_page;
504 if (subreq == req)
505 continue;
506 do {
507 /*
508 * Remove subrequests from this list before freeing
509 * them in the call to nfs_join_page_group().
510 */
511 if (!list_empty(&subreq->wb_list)) {
512 nfs_list_remove_request(subreq);
513 nfs_release_request(subreq);
514 }
515 } while ((subreq = subreq->wb_this_page) != req);
516 nfs_join_page_group(req, inode);
517 }
518 }
519
520 static void
nfs_direct_write_scan_commit_list(struct inode * inode,struct list_head * list,struct nfs_commit_info * cinfo)521 nfs_direct_write_scan_commit_list(struct inode *inode,
522 struct list_head *list,
523 struct nfs_commit_info *cinfo)
524 {
525 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
526 pnfs_recover_commit_reqs(list, cinfo);
527 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
528 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
529 }
530
nfs_direct_write_reschedule(struct nfs_direct_req * dreq)531 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
532 {
533 struct nfs_pageio_descriptor desc;
534 struct nfs_page *req, *tmp;
535 LIST_HEAD(reqs);
536 struct nfs_commit_info cinfo;
537 LIST_HEAD(failed);
538
539 nfs_init_cinfo_from_dreq(&cinfo, dreq);
540 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
541
542 nfs_direct_join_group(&reqs, dreq->inode);
543
544 dreq->count = 0;
545 dreq->max_count = 0;
546 list_for_each_entry(req, &reqs, wb_list)
547 dreq->max_count += req->wb_bytes;
548 nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
549 get_dreq(dreq);
550
551 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
552 &nfs_direct_write_completion_ops);
553 desc.pg_dreq = dreq;
554
555 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
556 /* Bump the transmission count */
557 req->wb_nio++;
558 if (!nfs_pageio_add_request(&desc, req)) {
559 nfs_list_move_request(req, &failed);
560 spin_lock(&cinfo.inode->i_lock);
561 dreq->flags = 0;
562 if (desc.pg_error < 0)
563 dreq->error = desc.pg_error;
564 else
565 dreq->error = -EIO;
566 spin_unlock(&cinfo.inode->i_lock);
567 }
568 nfs_release_request(req);
569 }
570 nfs_pageio_complete(&desc);
571
572 while (!list_empty(&failed)) {
573 req = nfs_list_entry(failed.next);
574 nfs_list_remove_request(req);
575 nfs_unlock_and_release_request(req);
576 }
577
578 if (put_dreq(dreq))
579 nfs_direct_write_complete(dreq);
580 }
581
nfs_direct_commit_complete(struct nfs_commit_data * data)582 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
583 {
584 const struct nfs_writeverf *verf = data->res.verf;
585 struct nfs_direct_req *dreq = data->dreq;
586 struct nfs_commit_info cinfo;
587 struct nfs_page *req;
588 int status = data->task.tk_status;
589
590 trace_nfs_direct_commit_complete(dreq);
591
592 if (status < 0) {
593 /* Errors in commit are fatal */
594 dreq->error = status;
595 dreq->max_count = 0;
596 dreq->count = 0;
597 dreq->flags = NFS_ODIRECT_DONE;
598 } else {
599 status = dreq->error;
600 }
601
602 nfs_init_cinfo_from_dreq(&cinfo, dreq);
603
604 while (!list_empty(&data->pages)) {
605 req = nfs_list_entry(data->pages.next);
606 nfs_list_remove_request(req);
607 if (status >= 0 && !nfs_write_match_verf(verf, req)) {
608 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
609 /*
610 * Despite the reboot, the write was successful,
611 * so reset wb_nio.
612 */
613 req->wb_nio = 0;
614 nfs_mark_request_commit(req, NULL, &cinfo, 0);
615 } else /* Error or match */
616 nfs_release_request(req);
617 nfs_unlock_and_release_request(req);
618 }
619
620 if (nfs_commit_end(cinfo.mds))
621 nfs_direct_write_complete(dreq);
622 }
623
nfs_direct_resched_write(struct nfs_commit_info * cinfo,struct nfs_page * req)624 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
625 struct nfs_page *req)
626 {
627 struct nfs_direct_req *dreq = cinfo->dreq;
628
629 trace_nfs_direct_resched_write(dreq);
630
631 spin_lock(&dreq->lock);
632 if (dreq->flags != NFS_ODIRECT_DONE)
633 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
634 spin_unlock(&dreq->lock);
635 nfs_mark_request_commit(req, NULL, cinfo, 0);
636 }
637
638 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
639 .completion = nfs_direct_commit_complete,
640 .resched_write = nfs_direct_resched_write,
641 };
642
nfs_direct_commit_schedule(struct nfs_direct_req * dreq)643 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
644 {
645 int res;
646 struct nfs_commit_info cinfo;
647 LIST_HEAD(mds_list);
648
649 nfs_init_cinfo_from_dreq(&cinfo, dreq);
650 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
651 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
652 if (res < 0) /* res == -ENOMEM */
653 nfs_direct_write_reschedule(dreq);
654 }
655
nfs_direct_write_clear_reqs(struct nfs_direct_req * dreq)656 static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq)
657 {
658 struct nfs_commit_info cinfo;
659 struct nfs_page *req;
660 LIST_HEAD(reqs);
661
662 nfs_init_cinfo_from_dreq(&cinfo, dreq);
663 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
664
665 while (!list_empty(&reqs)) {
666 req = nfs_list_entry(reqs.next);
667 nfs_list_remove_request(req);
668 nfs_release_request(req);
669 nfs_unlock_and_release_request(req);
670 }
671 }
672
nfs_direct_write_schedule_work(struct work_struct * work)673 static void nfs_direct_write_schedule_work(struct work_struct *work)
674 {
675 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
676 int flags = dreq->flags;
677
678 dreq->flags = 0;
679 switch (flags) {
680 case NFS_ODIRECT_DO_COMMIT:
681 nfs_direct_commit_schedule(dreq);
682 break;
683 case NFS_ODIRECT_RESCHED_WRITES:
684 nfs_direct_write_reschedule(dreq);
685 break;
686 default:
687 nfs_direct_write_clear_reqs(dreq);
688 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
689 nfs_direct_complete(dreq);
690 }
691 }
692
nfs_direct_write_complete(struct nfs_direct_req * dreq)693 static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
694 {
695 trace_nfs_direct_write_complete(dreq);
696 queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
697 }
698
nfs_direct_write_completion(struct nfs_pgio_header * hdr)699 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
700 {
701 struct nfs_direct_req *dreq = hdr->dreq;
702 struct nfs_commit_info cinfo;
703 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
704 int flags = NFS_ODIRECT_DONE;
705
706 trace_nfs_direct_write_completion(dreq);
707
708 nfs_init_cinfo_from_dreq(&cinfo, dreq);
709
710 spin_lock(&dreq->lock);
711 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
712 spin_unlock(&dreq->lock);
713 goto out_put;
714 }
715
716 nfs_direct_count_bytes(dreq, hdr);
717 if (test_bit(NFS_IOHDR_UNSTABLE_WRITES, &hdr->flags)) {
718 if (!dreq->flags)
719 dreq->flags = NFS_ODIRECT_DO_COMMIT;
720 flags = dreq->flags;
721 }
722 spin_unlock(&dreq->lock);
723
724 while (!list_empty(&hdr->pages)) {
725
726 req = nfs_list_entry(hdr->pages.next);
727 nfs_list_remove_request(req);
728 if (flags == NFS_ODIRECT_DO_COMMIT) {
729 kref_get(&req->wb_kref);
730 memcpy(&req->wb_verf, &hdr->verf.verifier,
731 sizeof(req->wb_verf));
732 nfs_mark_request_commit(req, hdr->lseg, &cinfo,
733 hdr->ds_commit_idx);
734 } else if (flags == NFS_ODIRECT_RESCHED_WRITES) {
735 kref_get(&req->wb_kref);
736 nfs_mark_request_commit(req, NULL, &cinfo, 0);
737 }
738 nfs_unlock_and_release_request(req);
739 }
740
741 out_put:
742 if (put_dreq(dreq))
743 nfs_direct_write_complete(dreq);
744 hdr->release(hdr);
745 }
746
nfs_write_sync_pgio_error(struct list_head * head,int error)747 static void nfs_write_sync_pgio_error(struct list_head *head, int error)
748 {
749 struct nfs_page *req;
750
751 while (!list_empty(head)) {
752 req = nfs_list_entry(head->next);
753 nfs_list_remove_request(req);
754 nfs_unlock_and_release_request(req);
755 }
756 }
757
nfs_direct_write_reschedule_io(struct nfs_pgio_header * hdr)758 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
759 {
760 struct nfs_direct_req *dreq = hdr->dreq;
761
762 trace_nfs_direct_write_reschedule_io(dreq);
763
764 spin_lock(&dreq->lock);
765 if (dreq->error == 0) {
766 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
767 /* fake unstable write to let common nfs resend pages */
768 hdr->verf.committed = NFS_UNSTABLE;
769 hdr->good_bytes = hdr->args.offset + hdr->args.count -
770 hdr->io_start;
771 }
772 spin_unlock(&dreq->lock);
773 }
774
775 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
776 .error_cleanup = nfs_write_sync_pgio_error,
777 .init_hdr = nfs_direct_pgio_init,
778 .completion = nfs_direct_write_completion,
779 .reschedule_io = nfs_direct_write_reschedule_io,
780 };
781
782
783 /*
784 * NB: Return the value of the first error return code. Subsequent
785 * errors after the first one are ignored.
786 */
787 /*
788 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
789 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
790 * bail and stop sending more writes. Write length accounting is
791 * handled automatically by nfs_direct_write_result(). Otherwise, if
792 * no requests have been sent, just return an error.
793 */
nfs_direct_write_schedule_iovec(struct nfs_direct_req * dreq,struct iov_iter * iter,loff_t pos,int ioflags)794 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
795 struct iov_iter *iter,
796 loff_t pos, int ioflags)
797 {
798 struct nfs_pageio_descriptor desc;
799 struct inode *inode = dreq->inode;
800 ssize_t result = 0;
801 size_t requested_bytes = 0;
802 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
803
804 trace_nfs_direct_write_schedule_iovec(dreq);
805
806 nfs_pageio_init_write(&desc, inode, ioflags, false,
807 &nfs_direct_write_completion_ops);
808 desc.pg_dreq = dreq;
809 get_dreq(dreq);
810 inode_dio_begin(inode);
811
812 NFS_I(inode)->write_io += iov_iter_count(iter);
813 while (iov_iter_count(iter)) {
814 struct page **pagevec;
815 size_t bytes;
816 size_t pgbase;
817 unsigned npages, i;
818
819 result = iov_iter_get_pages_alloc2(iter, &pagevec,
820 wsize, &pgbase);
821 if (result < 0)
822 break;
823
824 bytes = result;
825 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
826 for (i = 0; i < npages; i++) {
827 struct nfs_page *req;
828 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
829
830 req = nfs_create_request(dreq->ctx, pagevec[i],
831 pgbase, req_len);
832 if (IS_ERR(req)) {
833 result = PTR_ERR(req);
834 break;
835 }
836
837 if (desc.pg_error < 0) {
838 nfs_free_request(req);
839 result = desc.pg_error;
840 break;
841 }
842
843 nfs_lock_request(req);
844 req->wb_index = pos >> PAGE_SHIFT;
845 req->wb_offset = pos & ~PAGE_MASK;
846 if (!nfs_pageio_add_request(&desc, req)) {
847 result = desc.pg_error;
848 nfs_unlock_and_release_request(req);
849 break;
850 }
851 pgbase = 0;
852 bytes -= req_len;
853 requested_bytes += req_len;
854 pos += req_len;
855 dreq->bytes_left -= req_len;
856 }
857 nfs_direct_release_pages(pagevec, npages);
858 kvfree(pagevec);
859 if (result < 0)
860 break;
861 }
862 nfs_pageio_complete(&desc);
863
864 /*
865 * If no bytes were started, return the error, and let the
866 * generic layer handle the completion.
867 */
868 if (requested_bytes == 0) {
869 inode_dio_end(inode);
870 nfs_direct_req_release(dreq);
871 return result < 0 ? result : -EIO;
872 }
873
874 if (put_dreq(dreq))
875 nfs_direct_write_complete(dreq);
876 return requested_bytes;
877 }
878
879 /**
880 * nfs_file_direct_write - file direct write operation for NFS files
881 * @iocb: target I/O control block
882 * @iter: vector of user buffers from which to write data
883 * @swap: flag indicating this is swap IO, not O_DIRECT IO
884 *
885 * We use this function for direct writes instead of calling
886 * generic_file_aio_write() in order to avoid taking the inode
887 * semaphore and updating the i_size. The NFS server will set
888 * the new i_size and this client must read the updated size
889 * back into its cache. We let the server do generic write
890 * parameter checking and report problems.
891 *
892 * We eliminate local atime updates, see direct read above.
893 *
894 * We avoid unnecessary page cache invalidations for normal cached
895 * readers of this file.
896 *
897 * Note that O_APPEND is not supported for NFS direct writes, as there
898 * is no atomic O_APPEND write facility in the NFS protocol.
899 */
nfs_file_direct_write(struct kiocb * iocb,struct iov_iter * iter,bool swap)900 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
901 bool swap)
902 {
903 ssize_t result, requested;
904 size_t count;
905 struct file *file = iocb->ki_filp;
906 struct address_space *mapping = file->f_mapping;
907 struct inode *inode = mapping->host;
908 struct nfs_direct_req *dreq;
909 struct nfs_lock_context *l_ctx;
910 loff_t pos, end;
911
912 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
913 file, iov_iter_count(iter), (long long) iocb->ki_pos);
914
915 if (swap)
916 /* bypass generic checks */
917 result = iov_iter_count(iter);
918 else
919 result = generic_write_checks(iocb, iter);
920 if (result <= 0)
921 return result;
922 count = result;
923 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
924
925 pos = iocb->ki_pos;
926 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
927
928 task_io_account_write(count);
929
930 result = -ENOMEM;
931 dreq = nfs_direct_req_alloc();
932 if (!dreq)
933 goto out;
934
935 dreq->inode = inode;
936 dreq->bytes_left = dreq->max_count = count;
937 dreq->io_start = pos;
938 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
939 l_ctx = nfs_get_lock_context(dreq->ctx);
940 if (IS_ERR(l_ctx)) {
941 result = PTR_ERR(l_ctx);
942 nfs_direct_req_release(dreq);
943 goto out_release;
944 }
945 dreq->l_ctx = l_ctx;
946 if (!is_sync_kiocb(iocb))
947 dreq->iocb = iocb;
948 pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode);
949
950 if (swap) {
951 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
952 FLUSH_STABLE);
953 } else {
954 nfs_start_io_direct(inode);
955
956 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
957 FLUSH_COND_STABLE);
958
959 if (mapping->nrpages) {
960 invalidate_inode_pages2_range(mapping,
961 pos >> PAGE_SHIFT, end);
962 }
963
964 nfs_end_io_direct(inode);
965 }
966
967 if (requested > 0) {
968 result = nfs_direct_wait(dreq);
969 if (result > 0) {
970 requested -= result;
971 iocb->ki_pos = pos + result;
972 /* XXX: should check the generic_write_sync retval */
973 generic_write_sync(iocb, result);
974 }
975 iov_iter_revert(iter, requested);
976 } else {
977 result = requested;
978 }
979 nfs_fscache_invalidate(inode, FSCACHE_INVAL_DIO_WRITE);
980 out_release:
981 nfs_direct_req_release(dreq);
982 out:
983 return result;
984 }
985
986 /**
987 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
988 *
989 */
nfs_init_directcache(void)990 int __init nfs_init_directcache(void)
991 {
992 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
993 sizeof(struct nfs_direct_req),
994 0, (SLAB_RECLAIM_ACCOUNT|
995 SLAB_MEM_SPREAD),
996 NULL);
997 if (nfs_direct_cachep == NULL)
998 return -ENOMEM;
999
1000 return 0;
1001 }
1002
1003 /**
1004 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1005 *
1006 */
nfs_destroy_directcache(void)1007 void nfs_destroy_directcache(void)
1008 {
1009 kmem_cache_destroy(nfs_direct_cachep);
1010 }
1011