• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/fiemap.h>
9 #include <linux/fs.h>
10 #include <linux/minmax.h>
11 #include <linux/vmalloc.h>
12 
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 #ifdef CONFIG_NTFS3_LZX_XPRESS
17 #include "lib/lib.h"
18 #endif
19 
ni_ins_mi(struct ntfs_inode * ni,struct rb_root * tree,CLST ino,struct rb_node * ins)20 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
21 				   CLST ino, struct rb_node *ins)
22 {
23 	struct rb_node **p = &tree->rb_node;
24 	struct rb_node *pr = NULL;
25 
26 	while (*p) {
27 		struct mft_inode *mi;
28 
29 		pr = *p;
30 		mi = rb_entry(pr, struct mft_inode, node);
31 		if (mi->rno > ino)
32 			p = &pr->rb_left;
33 		else if (mi->rno < ino)
34 			p = &pr->rb_right;
35 		else
36 			return mi;
37 	}
38 
39 	if (!ins)
40 		return NULL;
41 
42 	rb_link_node(ins, pr, p);
43 	rb_insert_color(ins, tree);
44 	return rb_entry(ins, struct mft_inode, node);
45 }
46 
47 /*
48  * ni_find_mi - Find mft_inode by record number.
49  */
ni_find_mi(struct ntfs_inode * ni,CLST rno)50 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
51 {
52 	return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
53 }
54 
55 /*
56  * ni_add_mi - Add new mft_inode into ntfs_inode.
57  */
ni_add_mi(struct ntfs_inode * ni,struct mft_inode * mi)58 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
59 {
60 	ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
61 }
62 
63 /*
64  * ni_remove_mi - Remove mft_inode from ntfs_inode.
65  */
ni_remove_mi(struct ntfs_inode * ni,struct mft_inode * mi)66 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
67 {
68 	rb_erase(&mi->node, &ni->mi_tree);
69 }
70 
71 /*
72  * ni_std - Return: Pointer into std_info from primary record.
73  */
ni_std(struct ntfs_inode * ni)74 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
75 {
76 	const struct ATTRIB *attr;
77 
78 	attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
79 	return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO))
80 		    : NULL;
81 }
82 
83 /*
84  * ni_std5
85  *
86  * Return: Pointer into std_info from primary record.
87  */
ni_std5(struct ntfs_inode * ni)88 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
89 {
90 	const struct ATTRIB *attr;
91 
92 	attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
93 
94 	return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5))
95 		    : NULL;
96 }
97 
98 /*
99  * ni_clear - Clear resources allocated by ntfs_inode.
100  */
ni_clear(struct ntfs_inode * ni)101 void ni_clear(struct ntfs_inode *ni)
102 {
103 	struct rb_node *node;
104 
105 	if (!ni->vfs_inode.i_nlink && is_rec_inuse(ni->mi.mrec))
106 		ni_delete_all(ni);
107 
108 	al_destroy(ni);
109 
110 	for (node = rb_first(&ni->mi_tree); node;) {
111 		struct rb_node *next = rb_next(node);
112 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
113 
114 		rb_erase(node, &ni->mi_tree);
115 		mi_put(mi);
116 		node = next;
117 	}
118 
119 	/* Bad inode always has mode == S_IFREG. */
120 	if (ni->ni_flags & NI_FLAG_DIR)
121 		indx_clear(&ni->dir);
122 	else {
123 		run_close(&ni->file.run);
124 #ifdef CONFIG_NTFS3_LZX_XPRESS
125 		if (ni->file.offs_page) {
126 			/* On-demand allocated page for offsets. */
127 			put_page(ni->file.offs_page);
128 			ni->file.offs_page = NULL;
129 		}
130 #endif
131 	}
132 
133 	mi_clear(&ni->mi);
134 }
135 
136 /*
137  * ni_load_mi_ex - Find mft_inode by record number.
138  */
ni_load_mi_ex(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)139 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
140 {
141 	int err;
142 	struct mft_inode *r;
143 
144 	r = ni_find_mi(ni, rno);
145 	if (r)
146 		goto out;
147 
148 	err = mi_get(ni->mi.sbi, rno, &r);
149 	if (err)
150 		return err;
151 
152 	ni_add_mi(ni, r);
153 
154 out:
155 	if (mi)
156 		*mi = r;
157 	return 0;
158 }
159 
160 /*
161  * ni_load_mi - Load mft_inode corresponded list_entry.
162  */
ni_load_mi(struct ntfs_inode * ni,const struct ATTR_LIST_ENTRY * le,struct mft_inode ** mi)163 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le,
164 	       struct mft_inode **mi)
165 {
166 	CLST rno;
167 
168 	if (!le) {
169 		*mi = &ni->mi;
170 		return 0;
171 	}
172 
173 	rno = ino_get(&le->ref);
174 	if (rno == ni->mi.rno) {
175 		*mi = &ni->mi;
176 		return 0;
177 	}
178 	return ni_load_mi_ex(ni, rno, mi);
179 }
180 
181 /*
182  * ni_find_attr
183  *
184  * Return: Attribute and record this attribute belongs to.
185  */
ni_find_attr(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le_o,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const CLST * vcn,struct mft_inode ** mi)186 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
187 			    struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
188 			    const __le16 *name, u8 name_len, const CLST *vcn,
189 			    struct mft_inode **mi)
190 {
191 	struct ATTR_LIST_ENTRY *le;
192 	struct mft_inode *m;
193 
194 	if (!ni->attr_list.size ||
195 	    (!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
196 		if (le_o)
197 			*le_o = NULL;
198 		if (mi)
199 			*mi = &ni->mi;
200 
201 		/* Look for required attribute in primary record. */
202 		return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL);
203 	}
204 
205 	/* First look for list entry of required type. */
206 	le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
207 	if (!le)
208 		return NULL;
209 
210 	if (le_o)
211 		*le_o = le;
212 
213 	/* Load record that contains this attribute. */
214 	if (ni_load_mi(ni, le, &m))
215 		return NULL;
216 
217 	/* Look for required attribute. */
218 	attr = mi_find_attr(m, NULL, type, name, name_len, &le->id);
219 
220 	if (!attr)
221 		goto out;
222 
223 	if (!attr->non_res) {
224 		if (vcn && *vcn)
225 			goto out;
226 	} else if (!vcn) {
227 		if (attr->nres.svcn)
228 			goto out;
229 	} else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
230 		   *vcn > le64_to_cpu(attr->nres.evcn)) {
231 		goto out;
232 	}
233 
234 	if (mi)
235 		*mi = m;
236 	return attr;
237 
238 out:
239 	ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
240 	return NULL;
241 }
242 
243 /*
244  * ni_enum_attr_ex - Enumerates attributes in ntfs_inode.
245  */
ni_enum_attr_ex(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le,struct mft_inode ** mi)246 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
247 			       struct ATTR_LIST_ENTRY **le,
248 			       struct mft_inode **mi)
249 {
250 	struct mft_inode *mi2;
251 	struct ATTR_LIST_ENTRY *le2;
252 
253 	/* Do we have an attribute list? */
254 	if (!ni->attr_list.size) {
255 		*le = NULL;
256 		if (mi)
257 			*mi = &ni->mi;
258 		/* Enum attributes in primary record. */
259 		return mi_enum_attr(&ni->mi, attr);
260 	}
261 
262 	/* Get next list entry. */
263 	le2 = *le = al_enumerate(ni, attr ? *le : NULL);
264 	if (!le2)
265 		return NULL;
266 
267 	/* Load record that contains the required attribute. */
268 	if (ni_load_mi(ni, le2, &mi2))
269 		return NULL;
270 
271 	if (mi)
272 		*mi = mi2;
273 
274 	/* Find attribute in loaded record. */
275 	return rec_find_attr_le(mi2, le2);
276 }
277 
278 /*
279  * ni_load_attr - Load attribute that contains given VCN.
280  */
ni_load_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,CLST vcn,struct mft_inode ** pmi)281 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
282 			    const __le16 *name, u8 name_len, CLST vcn,
283 			    struct mft_inode **pmi)
284 {
285 	struct ATTR_LIST_ENTRY *le;
286 	struct ATTRIB *attr;
287 	struct mft_inode *mi;
288 	struct ATTR_LIST_ENTRY *next;
289 
290 	if (!ni->attr_list.size) {
291 		if (pmi)
292 			*pmi = &ni->mi;
293 		return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL);
294 	}
295 
296 	le = al_find_ex(ni, NULL, type, name, name_len, NULL);
297 	if (!le)
298 		return NULL;
299 
300 	/*
301 	 * Unfortunately ATTR_LIST_ENTRY contains only start VCN.
302 	 * So to find the ATTRIB segment that contains 'vcn' we should
303 	 * enumerate some entries.
304 	 */
305 	if (vcn) {
306 		for (;; le = next) {
307 			next = al_find_ex(ni, le, type, name, name_len, NULL);
308 			if (!next || le64_to_cpu(next->vcn) > vcn)
309 				break;
310 		}
311 	}
312 
313 	if (ni_load_mi(ni, le, &mi))
314 		return NULL;
315 
316 	if (pmi)
317 		*pmi = mi;
318 
319 	attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id);
320 	if (!attr)
321 		return NULL;
322 
323 	if (!attr->non_res)
324 		return attr;
325 
326 	if (le64_to_cpu(attr->nres.svcn) <= vcn &&
327 	    vcn <= le64_to_cpu(attr->nres.evcn))
328 		return attr;
329 
330 	return NULL;
331 }
332 
333 /*
334  * ni_load_all_mi - Load all subrecords.
335  */
ni_load_all_mi(struct ntfs_inode * ni)336 int ni_load_all_mi(struct ntfs_inode *ni)
337 {
338 	int err;
339 	struct ATTR_LIST_ENTRY *le;
340 
341 	if (!ni->attr_list.size)
342 		return 0;
343 
344 	le = NULL;
345 
346 	while ((le = al_enumerate(ni, le))) {
347 		CLST rno = ino_get(&le->ref);
348 
349 		if (rno == ni->mi.rno)
350 			continue;
351 
352 		err = ni_load_mi_ex(ni, rno, NULL);
353 		if (err)
354 			return err;
355 	}
356 
357 	return 0;
358 }
359 
360 /*
361  * ni_add_subrecord - Allocate + format + attach a new subrecord.
362  */
ni_add_subrecord(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)363 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
364 {
365 	struct mft_inode *m;
366 
367 	m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
368 	if (!m)
369 		return false;
370 
371 	if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
372 		mi_put(m);
373 		return false;
374 	}
375 
376 	mi_get_ref(&ni->mi, &m->mrec->parent_ref);
377 
378 	ni_add_mi(ni, m);
379 	*mi = m;
380 	return true;
381 }
382 
383 /*
384  * ni_remove_attr - Remove all attributes for the given type/name/id.
385  */
ni_remove_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,size_t name_len,bool base_only,const __le16 * id)386 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
387 		   const __le16 *name, size_t name_len, bool base_only,
388 		   const __le16 *id)
389 {
390 	int err;
391 	struct ATTRIB *attr;
392 	struct ATTR_LIST_ENTRY *le;
393 	struct mft_inode *mi;
394 	u32 type_in;
395 	int diff;
396 
397 	if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
398 		attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id);
399 		if (!attr)
400 			return -ENOENT;
401 
402 		mi_remove_attr(ni, &ni->mi, attr);
403 		return 0;
404 	}
405 
406 	type_in = le32_to_cpu(type);
407 	le = NULL;
408 
409 	for (;;) {
410 		le = al_enumerate(ni, le);
411 		if (!le)
412 			return 0;
413 
414 next_le2:
415 		diff = le32_to_cpu(le->type) - type_in;
416 		if (diff < 0)
417 			continue;
418 
419 		if (diff > 0)
420 			return 0;
421 
422 		if (le->name_len != name_len)
423 			continue;
424 
425 		if (name_len &&
426 		    memcmp(le_name(le), name, name_len * sizeof(short)))
427 			continue;
428 
429 		if (id && le->id != *id)
430 			continue;
431 		err = ni_load_mi(ni, le, &mi);
432 		if (err)
433 			return err;
434 
435 		al_remove_le(ni, le);
436 
437 		attr = mi_find_attr(mi, NULL, type, name, name_len, id);
438 		if (!attr)
439 			return -ENOENT;
440 
441 		mi_remove_attr(ni, mi, attr);
442 
443 		if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
444 			return 0;
445 		goto next_le2;
446 	}
447 }
448 
449 /*
450  * ni_ins_new_attr - Insert the attribute into record.
451  *
452  * Return: Not full constructed attribute or NULL if not possible to create.
453  */
454 static struct ATTRIB *
ni_ins_new_attr(struct ntfs_inode * ni,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTR_LIST_ENTRY ** ins_le)455 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi,
456 		struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type,
457 		const __le16 *name, u8 name_len, u32 asize, u16 name_off,
458 		CLST svcn, struct ATTR_LIST_ENTRY **ins_le)
459 {
460 	int err;
461 	struct ATTRIB *attr;
462 	bool le_added = false;
463 	struct MFT_REF ref;
464 
465 	mi_get_ref(mi, &ref);
466 
467 	if (type != ATTR_LIST && !le && ni->attr_list.size) {
468 		err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
469 				&ref, &le);
470 		if (err) {
471 			/* No memory or no space. */
472 			return ERR_PTR(err);
473 		}
474 		le_added = true;
475 
476 		/*
477 		 * al_add_le -> attr_set_size (list) -> ni_expand_list
478 		 * which moves some attributes out of primary record
479 		 * this means that name may point into moved memory
480 		 * reinit 'name' from le.
481 		 */
482 		name = le->name;
483 	}
484 
485 	attr = mi_insert_attr(mi, type, name, name_len, asize, name_off);
486 	if (!attr) {
487 		if (le_added)
488 			al_remove_le(ni, le);
489 		return NULL;
490 	}
491 
492 	if (type == ATTR_LIST) {
493 		/* Attr list is not in list entry array. */
494 		goto out;
495 	}
496 
497 	if (!le)
498 		goto out;
499 
500 	/* Update ATTRIB Id and record reference. */
501 	le->id = attr->id;
502 	ni->attr_list.dirty = true;
503 	le->ref = ref;
504 
505 out:
506 	if (ins_le)
507 		*ins_le = le;
508 	return attr;
509 }
510 
511 /*
512  * ni_repack
513  *
514  * Random write access to sparsed or compressed file may result to
515  * not optimized packed runs.
516  * Here is the place to optimize it.
517  */
ni_repack(struct ntfs_inode * ni)518 static int ni_repack(struct ntfs_inode *ni)
519 {
520 	int err = 0;
521 	struct ntfs_sb_info *sbi = ni->mi.sbi;
522 	struct mft_inode *mi, *mi_p = NULL;
523 	struct ATTRIB *attr = NULL, *attr_p;
524 	struct ATTR_LIST_ENTRY *le = NULL, *le_p;
525 	CLST alloc = 0;
526 	u8 cluster_bits = sbi->cluster_bits;
527 	CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
528 	u32 roff, rs = sbi->record_size;
529 	struct runs_tree run;
530 
531 	run_init(&run);
532 
533 	while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
534 		if (!attr->non_res)
535 			continue;
536 
537 		svcn = le64_to_cpu(attr->nres.svcn);
538 		if (svcn != le64_to_cpu(le->vcn)) {
539 			err = -EINVAL;
540 			break;
541 		}
542 
543 		if (!svcn) {
544 			alloc = le64_to_cpu(attr->nres.alloc_size) >>
545 				cluster_bits;
546 			mi_p = NULL;
547 		} else if (svcn != evcn + 1) {
548 			err = -EINVAL;
549 			break;
550 		}
551 
552 		evcn = le64_to_cpu(attr->nres.evcn);
553 
554 		if (svcn > evcn + 1) {
555 			err = -EINVAL;
556 			break;
557 		}
558 
559 		if (!mi_p) {
560 			/* Do not try if not enogh free space. */
561 			if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
562 				continue;
563 
564 			/* Do not try if last attribute segment. */
565 			if (evcn + 1 == alloc)
566 				continue;
567 			run_close(&run);
568 		}
569 
570 		roff = le16_to_cpu(attr->nres.run_off);
571 
572 		if (roff > le32_to_cpu(attr->size)) {
573 			err = -EINVAL;
574 			break;
575 		}
576 
577 		err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
578 				 Add2Ptr(attr, roff),
579 				 le32_to_cpu(attr->size) - roff);
580 		if (err < 0)
581 			break;
582 
583 		if (!mi_p) {
584 			mi_p = mi;
585 			attr_p = attr;
586 			svcn_p = svcn;
587 			evcn_p = evcn;
588 			le_p = le;
589 			err = 0;
590 			continue;
591 		}
592 
593 		/*
594 		 * Run contains data from two records: mi_p and mi
595 		 * Try to pack in one.
596 		 */
597 		err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
598 		if (err)
599 			break;
600 
601 		next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
602 
603 		if (next_svcn >= evcn + 1) {
604 			/* We can remove this attribute segment. */
605 			al_remove_le(ni, le);
606 			mi_remove_attr(NULL, mi, attr);
607 			le = le_p;
608 			continue;
609 		}
610 
611 		attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
612 		mi->dirty = true;
613 		ni->attr_list.dirty = true;
614 
615 		if (evcn + 1 == alloc) {
616 			err = mi_pack_runs(mi, attr, &run,
617 					   evcn + 1 - next_svcn);
618 			if (err)
619 				break;
620 			mi_p = NULL;
621 		} else {
622 			mi_p = mi;
623 			attr_p = attr;
624 			svcn_p = next_svcn;
625 			evcn_p = evcn;
626 			le_p = le;
627 			run_truncate_head(&run, next_svcn);
628 		}
629 	}
630 
631 	if (err) {
632 		ntfs_inode_warn(&ni->vfs_inode, "repack problem");
633 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
634 
635 		/* Pack loaded but not packed runs. */
636 		if (mi_p)
637 			mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
638 	}
639 
640 	run_close(&run);
641 	return err;
642 }
643 
644 /*
645  * ni_try_remove_attr_list
646  *
647  * Can we remove attribute list?
648  * Check the case when primary record contains enough space for all attributes.
649  */
ni_try_remove_attr_list(struct ntfs_inode * ni)650 static int ni_try_remove_attr_list(struct ntfs_inode *ni)
651 {
652 	int err = 0;
653 	struct ntfs_sb_info *sbi = ni->mi.sbi;
654 	struct ATTRIB *attr, *attr_list, *attr_ins;
655 	struct ATTR_LIST_ENTRY *le;
656 	struct mft_inode *mi;
657 	u32 asize, free;
658 	struct MFT_REF ref;
659 	struct MFT_REC *mrec;
660 	__le16 id;
661 
662 	if (!ni->attr_list.dirty)
663 		return 0;
664 
665 	err = ni_repack(ni);
666 	if (err)
667 		return err;
668 
669 	attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
670 	if (!attr_list)
671 		return 0;
672 
673 	asize = le32_to_cpu(attr_list->size);
674 
675 	/* Free space in primary record without attribute list. */
676 	free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
677 	mi_get_ref(&ni->mi, &ref);
678 
679 	le = NULL;
680 	while ((le = al_enumerate(ni, le))) {
681 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
682 			continue;
683 
684 		if (le->vcn)
685 			return 0;
686 
687 		mi = ni_find_mi(ni, ino_get(&le->ref));
688 		if (!mi)
689 			return 0;
690 
691 		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
692 				    le->name_len, &le->id);
693 		if (!attr)
694 			return 0;
695 
696 		asize = le32_to_cpu(attr->size);
697 		if (asize > free)
698 			return 0;
699 
700 		free -= asize;
701 	}
702 
703 	/* Make a copy of primary record to restore if error. */
704 	mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS);
705 	if (!mrec)
706 		return 0; /* Not critical. */
707 
708 	/* It seems that attribute list can be removed from primary record. */
709 	mi_remove_attr(NULL, &ni->mi, attr_list);
710 
711 	/*
712 	 * Repeat the cycle above and copy all attributes to primary record.
713 	 * Do not remove original attributes from subrecords!
714 	 * It should be success!
715 	 */
716 	le = NULL;
717 	while ((le = al_enumerate(ni, le))) {
718 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
719 			continue;
720 
721 		mi = ni_find_mi(ni, ino_get(&le->ref));
722 		if (!mi) {
723 			/* Should never happened, 'cause already checked. */
724 			goto out;
725 		}
726 
727 		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
728 				    le->name_len, &le->id);
729 		if (!attr) {
730 			/* Should never happened, 'cause already checked. */
731 			goto out;
732 		}
733 		asize = le32_to_cpu(attr->size);
734 
735 		/* Insert into primary record. */
736 		attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le),
737 					  le->name_len, asize,
738 					  le16_to_cpu(attr->name_off));
739 		if (!attr_ins) {
740 			/*
741 			 * No space in primary record (already checked).
742 			 */
743 			goto out;
744 		}
745 
746 		/* Copy all except id. */
747 		id = attr_ins->id;
748 		memcpy(attr_ins, attr, asize);
749 		attr_ins->id = id;
750 	}
751 
752 	/*
753 	 * Repeat the cycle above and remove all attributes from subrecords.
754 	 */
755 	le = NULL;
756 	while ((le = al_enumerate(ni, le))) {
757 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
758 			continue;
759 
760 		mi = ni_find_mi(ni, ino_get(&le->ref));
761 		if (!mi)
762 			continue;
763 
764 		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
765 				    le->name_len, &le->id);
766 		if (!attr)
767 			continue;
768 
769 		/* Remove from original record. */
770 		mi_remove_attr(NULL, mi, attr);
771 	}
772 
773 	run_deallocate(sbi, &ni->attr_list.run, true);
774 	run_close(&ni->attr_list.run);
775 	ni->attr_list.size = 0;
776 	kfree(ni->attr_list.le);
777 	ni->attr_list.le = NULL;
778 	ni->attr_list.dirty = false;
779 
780 	kfree(mrec);
781 	return 0;
782 out:
783 	/* Restore primary record. */
784 	swap(mrec, ni->mi.mrec);
785 	kfree(mrec);
786 	return 0;
787 }
788 
789 /*
790  * ni_create_attr_list - Generates an attribute list for this primary record.
791  */
ni_create_attr_list(struct ntfs_inode * ni)792 int ni_create_attr_list(struct ntfs_inode *ni)
793 {
794 	struct ntfs_sb_info *sbi = ni->mi.sbi;
795 	int err;
796 	u32 lsize;
797 	struct ATTRIB *attr;
798 	struct ATTRIB *arr_move[7];
799 	struct ATTR_LIST_ENTRY *le, *le_b[7];
800 	struct MFT_REC *rec;
801 	bool is_mft;
802 	CLST rno = 0;
803 	struct mft_inode *mi;
804 	u32 free_b, nb, to_free, rs;
805 	u16 sz;
806 
807 	is_mft = ni->mi.rno == MFT_REC_MFT;
808 	rec = ni->mi.mrec;
809 	rs = sbi->record_size;
810 
811 	/*
812 	 * Skip estimating exact memory requirement.
813 	 * Looks like one record_size is always enough.
814 	 */
815 	le = kmalloc(al_aligned(rs), GFP_NOFS);
816 	if (!le) {
817 		err = -ENOMEM;
818 		goto out;
819 	}
820 
821 	mi_get_ref(&ni->mi, &le->ref);
822 	ni->attr_list.le = le;
823 
824 	attr = NULL;
825 	nb = 0;
826 	free_b = 0;
827 	attr = NULL;
828 
829 	for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) {
830 		sz = le_size(attr->name_len);
831 		le->type = attr->type;
832 		le->size = cpu_to_le16(sz);
833 		le->name_len = attr->name_len;
834 		le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
835 		le->vcn = 0;
836 		if (le != ni->attr_list.le)
837 			le->ref = ni->attr_list.le->ref;
838 		le->id = attr->id;
839 
840 		if (attr->name_len)
841 			memcpy(le->name, attr_name(attr),
842 			       sizeof(short) * attr->name_len);
843 		else if (attr->type == ATTR_STD)
844 			continue;
845 		else if (attr->type == ATTR_LIST)
846 			continue;
847 		else if (is_mft && attr->type == ATTR_DATA)
848 			continue;
849 
850 		if (!nb || nb < ARRAY_SIZE(arr_move)) {
851 			le_b[nb] = le;
852 			arr_move[nb++] = attr;
853 			free_b += le32_to_cpu(attr->size);
854 		}
855 	}
856 
857 	lsize = PtrOffset(ni->attr_list.le, le);
858 	ni->attr_list.size = lsize;
859 
860 	to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
861 	if (to_free <= rs) {
862 		to_free = 0;
863 	} else {
864 		to_free -= rs;
865 
866 		if (to_free > free_b) {
867 			err = -EINVAL;
868 			goto out1;
869 		}
870 	}
871 
872 	/* Allocate child MFT. */
873 	err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
874 	if (err)
875 		goto out1;
876 
877 	err = -EINVAL;
878 	/* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */
879 	while (to_free > 0) {
880 		struct ATTRIB *b = arr_move[--nb];
881 		u32 asize = le32_to_cpu(b->size);
882 		u16 name_off = le16_to_cpu(b->name_off);
883 
884 		attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off),
885 				      b->name_len, asize, name_off);
886 		if (!attr)
887 			goto out1;
888 
889 		mi_get_ref(mi, &le_b[nb]->ref);
890 		le_b[nb]->id = attr->id;
891 
892 		/* Copy all except id. */
893 		memcpy(attr, b, asize);
894 		attr->id = le_b[nb]->id;
895 
896 		/* Remove from primary record. */
897 		if (!mi_remove_attr(NULL, &ni->mi, b))
898 			goto out1;
899 
900 		if (to_free <= asize)
901 			break;
902 		to_free -= asize;
903 		if (!nb)
904 			goto out1;
905 	}
906 
907 	attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0,
908 			      lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
909 	if (!attr)
910 		goto out1;
911 
912 	attr->non_res = 0;
913 	attr->flags = 0;
914 	attr->res.data_size = cpu_to_le32(lsize);
915 	attr->res.data_off = SIZEOF_RESIDENT_LE;
916 	attr->res.flags = 0;
917 	attr->res.res = 0;
918 
919 	memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
920 
921 	ni->attr_list.dirty = false;
922 
923 	mark_inode_dirty(&ni->vfs_inode);
924 	goto out;
925 
926 out1:
927 	kfree(ni->attr_list.le);
928 	ni->attr_list.le = NULL;
929 	ni->attr_list.size = 0;
930 	return err;
931 
932 out:
933 	return 0;
934 }
935 
936 /*
937  * ni_ins_attr_ext - Add an external attribute to the ntfs_inode.
938  */
ni_ins_attr_ext(struct ntfs_inode * ni,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,CLST svcn,u16 name_off,bool force_ext,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)939 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
940 			   enum ATTR_TYPE type, const __le16 *name, u8 name_len,
941 			   u32 asize, CLST svcn, u16 name_off, bool force_ext,
942 			   struct ATTRIB **ins_attr, struct mft_inode **ins_mi,
943 			   struct ATTR_LIST_ENTRY **ins_le)
944 {
945 	struct ATTRIB *attr;
946 	struct mft_inode *mi;
947 	CLST rno;
948 	u64 vbo;
949 	struct rb_node *node;
950 	int err;
951 	bool is_mft, is_mft_data;
952 	struct ntfs_sb_info *sbi = ni->mi.sbi;
953 
954 	is_mft = ni->mi.rno == MFT_REC_MFT;
955 	is_mft_data = is_mft && type == ATTR_DATA && !name_len;
956 
957 	if (asize > sbi->max_bytes_per_attr) {
958 		err = -EINVAL;
959 		goto out;
960 	}
961 
962 	/*
963 	 * Standard information and attr_list cannot be made external.
964 	 * The Log File cannot have any external attributes.
965 	 */
966 	if (type == ATTR_STD || type == ATTR_LIST ||
967 	    ni->mi.rno == MFT_REC_LOG) {
968 		err = -EINVAL;
969 		goto out;
970 	}
971 
972 	/* Create attribute list if it is not already existed. */
973 	if (!ni->attr_list.size) {
974 		err = ni_create_attr_list(ni);
975 		if (err)
976 			goto out;
977 	}
978 
979 	vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
980 
981 	if (force_ext)
982 		goto insert_ext;
983 
984 	/* Load all subrecords into memory. */
985 	err = ni_load_all_mi(ni);
986 	if (err)
987 		goto out;
988 
989 	/* Check each of loaded subrecord. */
990 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
991 		mi = rb_entry(node, struct mft_inode, node);
992 
993 		if (is_mft_data &&
994 		    (mi_enum_attr(mi, NULL) ||
995 		     vbo <= ((u64)mi->rno << sbi->record_bits))) {
996 			/* We can't accept this record 'cause MFT's bootstrapping. */
997 			continue;
998 		}
999 		if (is_mft &&
1000 		    mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
1001 			/*
1002 			 * This child record already has a ATTR_DATA.
1003 			 * So it can't accept any other records.
1004 			 */
1005 			continue;
1006 		}
1007 
1008 		if ((type != ATTR_NAME || name_len) &&
1009 		    mi_find_attr(mi, NULL, type, name, name_len, NULL)) {
1010 			/* Only indexed attributes can share same record. */
1011 			continue;
1012 		}
1013 
1014 		/*
1015 		 * Do not try to insert this attribute
1016 		 * if there is no room in record.
1017 		 */
1018 		if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size)
1019 			continue;
1020 
1021 		/* Try to insert attribute into this subrecord. */
1022 		attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1023 				       name_off, svcn, ins_le);
1024 		if (!attr)
1025 			continue;
1026 		if (IS_ERR(attr))
1027 			return PTR_ERR(attr);
1028 
1029 		if (ins_attr)
1030 			*ins_attr = attr;
1031 		if (ins_mi)
1032 			*ins_mi = mi;
1033 		return 0;
1034 	}
1035 
1036 insert_ext:
1037 	/* We have to allocate a new child subrecord. */
1038 	err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
1039 	if (err)
1040 		goto out;
1041 
1042 	if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
1043 		err = -EINVAL;
1044 		goto out1;
1045 	}
1046 
1047 	attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1048 			       name_off, svcn, ins_le);
1049 	if (!attr) {
1050 		err = -EINVAL;
1051 		goto out2;
1052 	}
1053 
1054 	if (IS_ERR(attr)) {
1055 		err = PTR_ERR(attr);
1056 		goto out2;
1057 	}
1058 
1059 	if (ins_attr)
1060 		*ins_attr = attr;
1061 	if (ins_mi)
1062 		*ins_mi = mi;
1063 
1064 	return 0;
1065 
1066 out2:
1067 	ni_remove_mi(ni, mi);
1068 	mi_put(mi);
1069 
1070 out1:
1071 	ntfs_mark_rec_free(sbi, rno, is_mft);
1072 
1073 out:
1074 	return err;
1075 }
1076 
1077 /*
1078  * ni_insert_attr - Insert an attribute into the file.
1079  *
1080  * If the primary record has room, it will just insert the attribute.
1081  * If not, it may make the attribute external.
1082  * For $MFT::Data it may make room for the attribute by
1083  * making other attributes external.
1084  *
1085  * NOTE:
1086  * The ATTR_LIST and ATTR_STD cannot be made external.
1087  * This function does not fill new attribute full.
1088  * It only fills 'size'/'type'/'id'/'name_len' fields.
1089  */
ni_insert_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)1090 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
1091 			  const __le16 *name, u8 name_len, u32 asize,
1092 			  u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
1093 			  struct mft_inode **ins_mi,
1094 			  struct ATTR_LIST_ENTRY **ins_le)
1095 {
1096 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1097 	int err;
1098 	struct ATTRIB *attr, *eattr;
1099 	struct MFT_REC *rec;
1100 	bool is_mft;
1101 	struct ATTR_LIST_ENTRY *le;
1102 	u32 list_reserve, max_free, free, used, t32;
1103 	__le16 id;
1104 	u16 t16;
1105 
1106 	is_mft = ni->mi.rno == MFT_REC_MFT;
1107 	rec = ni->mi.mrec;
1108 
1109 	list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
1110 	used = le32_to_cpu(rec->used);
1111 	free = sbi->record_size - used;
1112 
1113 	if (is_mft && type != ATTR_LIST) {
1114 		/* Reserve space for the ATTRIB list. */
1115 		if (free < list_reserve)
1116 			free = 0;
1117 		else
1118 			free -= list_reserve;
1119 	}
1120 
1121 	if (asize <= free) {
1122 		attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
1123 				       asize, name_off, svcn, ins_le);
1124 		if (IS_ERR(attr)) {
1125 			err = PTR_ERR(attr);
1126 			goto out;
1127 		}
1128 
1129 		if (attr) {
1130 			if (ins_attr)
1131 				*ins_attr = attr;
1132 			if (ins_mi)
1133 				*ins_mi = &ni->mi;
1134 			err = 0;
1135 			goto out;
1136 		}
1137 	}
1138 
1139 	if (!is_mft || type != ATTR_DATA || svcn) {
1140 		/* This ATTRIB will be external. */
1141 		err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
1142 				      svcn, name_off, false, ins_attr, ins_mi,
1143 				      ins_le);
1144 		goto out;
1145 	}
1146 
1147 	/*
1148 	 * Here we have: "is_mft && type == ATTR_DATA && !svcn"
1149 	 *
1150 	 * The first chunk of the $MFT::Data ATTRIB must be the base record.
1151 	 * Evict as many other attributes as possible.
1152 	 */
1153 	max_free = free;
1154 
1155 	/* Estimate the result of moving all possible attributes away. */
1156 	attr = NULL;
1157 
1158 	while ((attr = mi_enum_attr(&ni->mi, attr))) {
1159 		if (attr->type == ATTR_STD)
1160 			continue;
1161 		if (attr->type == ATTR_LIST)
1162 			continue;
1163 		max_free += le32_to_cpu(attr->size);
1164 	}
1165 
1166 	if (max_free < asize + list_reserve) {
1167 		/* Impossible to insert this attribute into primary record. */
1168 		err = -EINVAL;
1169 		goto out;
1170 	}
1171 
1172 	/* Start real attribute moving. */
1173 	attr = NULL;
1174 
1175 	for (;;) {
1176 		attr = mi_enum_attr(&ni->mi, attr);
1177 		if (!attr) {
1178 			/* We should never be here 'cause we have already check this case. */
1179 			err = -EINVAL;
1180 			goto out;
1181 		}
1182 
1183 		/* Skip attributes that MUST be primary record. */
1184 		if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
1185 			continue;
1186 
1187 		le = NULL;
1188 		if (ni->attr_list.size) {
1189 			le = al_find_le(ni, NULL, attr);
1190 			if (!le) {
1191 				/* Really this is a serious bug. */
1192 				err = -EINVAL;
1193 				goto out;
1194 			}
1195 		}
1196 
1197 		t32 = le32_to_cpu(attr->size);
1198 		t16 = le16_to_cpu(attr->name_off);
1199 		err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
1200 				      attr->name_len, t32, attr_svcn(attr), t16,
1201 				      false, &eattr, NULL, NULL);
1202 		if (err)
1203 			return err;
1204 
1205 		id = eattr->id;
1206 		memcpy(eattr, attr, t32);
1207 		eattr->id = id;
1208 
1209 		/* Remove from primary record. */
1210 		mi_remove_attr(NULL, &ni->mi, attr);
1211 
1212 		/* attr now points to next attribute. */
1213 		if (attr->type == ATTR_END)
1214 			goto out;
1215 	}
1216 	while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
1217 		;
1218 
1219 	attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
1220 			       name_off, svcn, ins_le);
1221 	if (!attr) {
1222 		err = -EINVAL;
1223 		goto out;
1224 	}
1225 
1226 	if (IS_ERR(attr)) {
1227 		err = PTR_ERR(attr);
1228 		goto out;
1229 	}
1230 
1231 	if (ins_attr)
1232 		*ins_attr = attr;
1233 	if (ins_mi)
1234 		*ins_mi = &ni->mi;
1235 
1236 out:
1237 	return err;
1238 }
1239 
1240 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */
ni_expand_mft_list(struct ntfs_inode * ni)1241 static int ni_expand_mft_list(struct ntfs_inode *ni)
1242 {
1243 	int err = 0;
1244 	struct runs_tree *run = &ni->file.run;
1245 	u32 asize, run_size, done = 0;
1246 	struct ATTRIB *attr;
1247 	struct rb_node *node;
1248 	CLST mft_min, mft_new, svcn, evcn, plen;
1249 	struct mft_inode *mi, *mi_min, *mi_new;
1250 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1251 
1252 	/* Find the nearest MFT. */
1253 	mft_min = 0;
1254 	mft_new = 0;
1255 	mi_min = NULL;
1256 
1257 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
1258 		mi = rb_entry(node, struct mft_inode, node);
1259 
1260 		attr = mi_enum_attr(mi, NULL);
1261 
1262 		if (!attr) {
1263 			mft_min = mi->rno;
1264 			mi_min = mi;
1265 			break;
1266 		}
1267 	}
1268 
1269 	if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
1270 		mft_new = 0;
1271 		/* Really this is not critical. */
1272 	} else if (mft_min > mft_new) {
1273 		mft_min = mft_new;
1274 		mi_min = mi_new;
1275 	} else {
1276 		ntfs_mark_rec_free(sbi, mft_new, true);
1277 		mft_new = 0;
1278 		ni_remove_mi(ni, mi_new);
1279 	}
1280 
1281 	attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
1282 	if (!attr) {
1283 		err = -EINVAL;
1284 		goto out;
1285 	}
1286 
1287 	asize = le32_to_cpu(attr->size);
1288 
1289 	evcn = le64_to_cpu(attr->nres.evcn);
1290 	svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
1291 	if (evcn + 1 >= svcn) {
1292 		err = -EINVAL;
1293 		goto out;
1294 	}
1295 
1296 	/*
1297 	 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn].
1298 	 *
1299 	 * Update first part of ATTR_DATA in 'primary MFT.
1300 	 */
1301 	err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1302 		       asize - SIZEOF_NONRESIDENT, &plen);
1303 	if (err < 0)
1304 		goto out;
1305 
1306 	run_size = ALIGN(err, 8);
1307 	err = 0;
1308 
1309 	if (plen < svcn) {
1310 		err = -EINVAL;
1311 		goto out;
1312 	}
1313 
1314 	attr->nres.evcn = cpu_to_le64(svcn - 1);
1315 	attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
1316 	/* 'done' - How many bytes of primary MFT becomes free. */
1317 	done = asize - run_size - SIZEOF_NONRESIDENT;
1318 	le32_sub_cpu(&ni->mi.mrec->used, done);
1319 
1320 	/* Estimate packed size (run_buf=NULL). */
1321 	err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
1322 		       &plen);
1323 	if (err < 0)
1324 		goto out;
1325 
1326 	run_size = ALIGN(err, 8);
1327 	err = 0;
1328 
1329 	if (plen < evcn + 1 - svcn) {
1330 		err = -EINVAL;
1331 		goto out;
1332 	}
1333 
1334 	/*
1335 	 * This function may implicitly call expand attr_list.
1336 	 * Insert second part of ATTR_DATA in 'mi_min'.
1337 	 */
1338 	attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
1339 			       SIZEOF_NONRESIDENT + run_size,
1340 			       SIZEOF_NONRESIDENT, svcn, NULL);
1341 	if (!attr) {
1342 		err = -EINVAL;
1343 		goto out;
1344 	}
1345 
1346 	if (IS_ERR(attr)) {
1347 		err = PTR_ERR(attr);
1348 		goto out;
1349 	}
1350 
1351 	attr->non_res = 1;
1352 	attr->name_off = SIZEOF_NONRESIDENT_LE;
1353 	attr->flags = 0;
1354 
1355 	/* This function can't fail - cause already checked above. */
1356 	run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1357 		 run_size, &plen);
1358 
1359 	attr->nres.svcn = cpu_to_le64(svcn);
1360 	attr->nres.evcn = cpu_to_le64(evcn);
1361 	attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
1362 
1363 out:
1364 	if (mft_new) {
1365 		ntfs_mark_rec_free(sbi, mft_new, true);
1366 		ni_remove_mi(ni, mi_new);
1367 	}
1368 
1369 	return !err && !done ? -EOPNOTSUPP : err;
1370 }
1371 
1372 /*
1373  * ni_expand_list - Move all possible attributes out of primary record.
1374  */
ni_expand_list(struct ntfs_inode * ni)1375 int ni_expand_list(struct ntfs_inode *ni)
1376 {
1377 	int err = 0;
1378 	u32 asize, done = 0;
1379 	struct ATTRIB *attr, *ins_attr;
1380 	struct ATTR_LIST_ENTRY *le;
1381 	bool is_mft = ni->mi.rno == MFT_REC_MFT;
1382 	struct MFT_REF ref;
1383 
1384 	mi_get_ref(&ni->mi, &ref);
1385 	le = NULL;
1386 
1387 	while ((le = al_enumerate(ni, le))) {
1388 		if (le->type == ATTR_STD)
1389 			continue;
1390 
1391 		if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
1392 			continue;
1393 
1394 		if (is_mft && le->type == ATTR_DATA)
1395 			continue;
1396 
1397 		/* Find attribute in primary record. */
1398 		attr = rec_find_attr_le(&ni->mi, le);
1399 		if (!attr) {
1400 			err = -EINVAL;
1401 			goto out;
1402 		}
1403 
1404 		asize = le32_to_cpu(attr->size);
1405 
1406 		/* Always insert into new record to avoid collisions (deep recursive). */
1407 		err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
1408 				      attr->name_len, asize, attr_svcn(attr),
1409 				      le16_to_cpu(attr->name_off), true,
1410 				      &ins_attr, NULL, NULL);
1411 
1412 		if (err)
1413 			goto out;
1414 
1415 		memcpy(ins_attr, attr, asize);
1416 		ins_attr->id = le->id;
1417 		/* Remove from primary record. */
1418 		mi_remove_attr(NULL, &ni->mi, attr);
1419 
1420 		done += asize;
1421 		goto out;
1422 	}
1423 
1424 	if (!is_mft) {
1425 		err = -EFBIG; /* Attr list is too big(?) */
1426 		goto out;
1427 	}
1428 
1429 	/* Split MFT data as much as possible. */
1430 	err = ni_expand_mft_list(ni);
1431 
1432 out:
1433 	return !err && !done ? -EOPNOTSUPP : err;
1434 }
1435 
1436 /*
1437  * ni_insert_nonresident - Insert new nonresident attribute.
1438  */
ni_insert_nonresident(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const struct runs_tree * run,CLST svcn,CLST len,__le16 flags,struct ATTRIB ** new_attr,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1439 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
1440 			  const __le16 *name, u8 name_len,
1441 			  const struct runs_tree *run, CLST svcn, CLST len,
1442 			  __le16 flags, struct ATTRIB **new_attr,
1443 			  struct mft_inode **mi, struct ATTR_LIST_ENTRY **le)
1444 {
1445 	int err;
1446 	CLST plen;
1447 	struct ATTRIB *attr;
1448 	bool is_ext =
1449 		(flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && !svcn;
1450 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
1451 	u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
1452 	u32 run_off = name_off + name_size;
1453 	u32 run_size, asize;
1454 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1455 
1456 	/* Estimate packed size (run_buf=NULL). */
1457 	err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
1458 		       &plen);
1459 	if (err < 0)
1460 		goto out;
1461 
1462 	run_size = ALIGN(err, 8);
1463 
1464 	if (plen < len) {
1465 		err = -EINVAL;
1466 		goto out;
1467 	}
1468 
1469 	asize = run_off + run_size;
1470 
1471 	if (asize > sbi->max_bytes_per_attr) {
1472 		err = -EINVAL;
1473 		goto out;
1474 	}
1475 
1476 	err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
1477 			     &attr, mi, le);
1478 
1479 	if (err)
1480 		goto out;
1481 
1482 	attr->non_res = 1;
1483 	attr->name_off = cpu_to_le16(name_off);
1484 	attr->flags = flags;
1485 
1486 	/* This function can't fail - cause already checked above. */
1487 	run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
1488 
1489 	attr->nres.svcn = cpu_to_le64(svcn);
1490 	attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
1491 
1492 	if (new_attr)
1493 		*new_attr = attr;
1494 
1495 	*(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
1496 
1497 	attr->nres.alloc_size =
1498 		svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
1499 	attr->nres.data_size = attr->nres.alloc_size;
1500 	attr->nres.valid_size = attr->nres.alloc_size;
1501 
1502 	if (is_ext) {
1503 		if (flags & ATTR_FLAG_COMPRESSED)
1504 			attr->nres.c_unit = COMPRESSION_UNIT;
1505 		attr->nres.total_size = attr->nres.alloc_size;
1506 	}
1507 
1508 out:
1509 	return err;
1510 }
1511 
1512 /*
1513  * ni_insert_resident - Inserts new resident attribute.
1514  */
ni_insert_resident(struct ntfs_inode * ni,u32 data_size,enum ATTR_TYPE type,const __le16 * name,u8 name_len,struct ATTRIB ** new_attr,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1515 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
1516 		       enum ATTR_TYPE type, const __le16 *name, u8 name_len,
1517 		       struct ATTRIB **new_attr, struct mft_inode **mi,
1518 		       struct ATTR_LIST_ENTRY **le)
1519 {
1520 	int err;
1521 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
1522 	u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
1523 	struct ATTRIB *attr;
1524 
1525 	err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
1526 			     0, &attr, mi, le);
1527 	if (err)
1528 		return err;
1529 
1530 	attr->non_res = 0;
1531 	attr->flags = 0;
1532 
1533 	attr->res.data_size = cpu_to_le32(data_size);
1534 	attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
1535 	if (type == ATTR_NAME) {
1536 		attr->res.flags = RESIDENT_FLAG_INDEXED;
1537 
1538 		/* is_attr_indexed(attr)) == true */
1539 		le16_add_cpu(&ni->mi.mrec->hard_links, 1);
1540 		ni->mi.dirty = true;
1541 	}
1542 	attr->res.res = 0;
1543 
1544 	if (new_attr)
1545 		*new_attr = attr;
1546 
1547 	return 0;
1548 }
1549 
1550 /*
1551  * ni_remove_attr_le - Remove attribute from record.
1552  */
ni_remove_attr_le(struct ntfs_inode * ni,struct ATTRIB * attr,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le)1553 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
1554 		       struct mft_inode *mi, struct ATTR_LIST_ENTRY *le)
1555 {
1556 	mi_remove_attr(ni, mi, attr);
1557 
1558 	if (le)
1559 		al_remove_le(ni, le);
1560 }
1561 
1562 /*
1563  * ni_delete_all - Remove all attributes and frees allocates space.
1564  *
1565  * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links).
1566  */
ni_delete_all(struct ntfs_inode * ni)1567 int ni_delete_all(struct ntfs_inode *ni)
1568 {
1569 	int err;
1570 	struct ATTR_LIST_ENTRY *le = NULL;
1571 	struct ATTRIB *attr = NULL;
1572 	struct rb_node *node;
1573 	u16 roff;
1574 	u32 asize;
1575 	CLST svcn, evcn;
1576 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1577 	bool nt3 = is_ntfs3(sbi);
1578 	struct MFT_REF ref;
1579 
1580 	while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
1581 		if (!nt3 || attr->name_len) {
1582 			;
1583 		} else if (attr->type == ATTR_REPARSE) {
1584 			mi_get_ref(&ni->mi, &ref);
1585 			ntfs_remove_reparse(sbi, 0, &ref);
1586 		} else if (attr->type == ATTR_ID && !attr->non_res &&
1587 			   le32_to_cpu(attr->res.data_size) >=
1588 				   sizeof(struct GUID)) {
1589 			ntfs_objid_remove(sbi, resident_data(attr));
1590 		}
1591 
1592 		if (!attr->non_res)
1593 			continue;
1594 
1595 		svcn = le64_to_cpu(attr->nres.svcn);
1596 		evcn = le64_to_cpu(attr->nres.evcn);
1597 
1598 		if (evcn + 1 <= svcn)
1599 			continue;
1600 
1601 		asize = le32_to_cpu(attr->size);
1602 		roff = le16_to_cpu(attr->nres.run_off);
1603 
1604 		if (roff > asize)
1605 			return -EINVAL;
1606 
1607 		/* run==1 means unpack and deallocate. */
1608 		run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
1609 			      Add2Ptr(attr, roff), asize - roff);
1610 	}
1611 
1612 	if (ni->attr_list.size) {
1613 		run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
1614 		al_destroy(ni);
1615 	}
1616 
1617 	/* Free all subrecords. */
1618 	for (node = rb_first(&ni->mi_tree); node;) {
1619 		struct rb_node *next = rb_next(node);
1620 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
1621 
1622 		clear_rec_inuse(mi->mrec);
1623 		mi->dirty = true;
1624 		mi_write(mi, 0);
1625 
1626 		ntfs_mark_rec_free(sbi, mi->rno, false);
1627 		ni_remove_mi(ni, mi);
1628 		mi_put(mi);
1629 		node = next;
1630 	}
1631 
1632 	/* Free base record. */
1633 	clear_rec_inuse(ni->mi.mrec);
1634 	ni->mi.dirty = true;
1635 	err = mi_write(&ni->mi, 0);
1636 
1637 	ntfs_mark_rec_free(sbi, ni->mi.rno, false);
1638 
1639 	return err;
1640 }
1641 
1642 /* ni_fname_name
1643  *
1644  * Return: File name attribute by its value.
1645  */
ni_fname_name(struct ntfs_inode * ni,const struct cpu_str * uni,const struct MFT_REF * home_dir,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1646 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
1647 				     const struct cpu_str *uni,
1648 				     const struct MFT_REF *home_dir,
1649 				     struct mft_inode **mi,
1650 				     struct ATTR_LIST_ENTRY **le)
1651 {
1652 	struct ATTRIB *attr = NULL;
1653 	struct ATTR_FILE_NAME *fname;
1654 
1655 	if (le)
1656 		*le = NULL;
1657 
1658 	/* Enumerate all names. */
1659 next:
1660 	attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1661 	if (!attr)
1662 		return NULL;
1663 
1664 	fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1665 	if (!fname)
1666 		goto next;
1667 
1668 	if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
1669 		goto next;
1670 
1671 	if (!uni)
1672 		return fname;
1673 
1674 	if (uni->len != fname->name_len)
1675 		goto next;
1676 
1677 	if (ntfs_cmp_names_cpu(uni, (struct le_str *)&fname->name_len, NULL,
1678 			       false))
1679 		goto next;
1680 
1681 	return fname;
1682 }
1683 
1684 /*
1685  * ni_fname_type
1686  *
1687  * Return: File name attribute with given type.
1688  */
ni_fname_type(struct ntfs_inode * ni,u8 name_type,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1689 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
1690 				     struct mft_inode **mi,
1691 				     struct ATTR_LIST_ENTRY **le)
1692 {
1693 	struct ATTRIB *attr = NULL;
1694 	struct ATTR_FILE_NAME *fname;
1695 
1696 	*le = NULL;
1697 
1698 	if (name_type == FILE_NAME_POSIX)
1699 		return NULL;
1700 
1701 	/* Enumerate all names. */
1702 	for (;;) {
1703 		attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1704 		if (!attr)
1705 			return NULL;
1706 
1707 		fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1708 		if (fname && name_type == fname->type)
1709 			return fname;
1710 	}
1711 }
1712 
1713 /*
1714  * ni_new_attr_flags
1715  *
1716  * Process compressed/sparsed in special way.
1717  * NOTE: You need to set ni->std_fa = new_fa
1718  * after this function to keep internal structures in consistency.
1719  */
ni_new_attr_flags(struct ntfs_inode * ni,enum FILE_ATTRIBUTE new_fa)1720 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
1721 {
1722 	struct ATTRIB *attr;
1723 	struct mft_inode *mi;
1724 	__le16 new_aflags;
1725 	u32 new_asize;
1726 
1727 	attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
1728 	if (!attr)
1729 		return -EINVAL;
1730 
1731 	new_aflags = attr->flags;
1732 
1733 	if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
1734 		new_aflags |= ATTR_FLAG_SPARSED;
1735 	else
1736 		new_aflags &= ~ATTR_FLAG_SPARSED;
1737 
1738 	if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
1739 		new_aflags |= ATTR_FLAG_COMPRESSED;
1740 	else
1741 		new_aflags &= ~ATTR_FLAG_COMPRESSED;
1742 
1743 	if (new_aflags == attr->flags)
1744 		return 0;
1745 
1746 	if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
1747 	    (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
1748 		ntfs_inode_warn(&ni->vfs_inode,
1749 				"file can't be sparsed and compressed");
1750 		return -EOPNOTSUPP;
1751 	}
1752 
1753 	if (!attr->non_res)
1754 		goto out;
1755 
1756 	if (attr->nres.data_size) {
1757 		ntfs_inode_warn(
1758 			&ni->vfs_inode,
1759 			"one can change sparsed/compressed only for empty files");
1760 		return -EOPNOTSUPP;
1761 	}
1762 
1763 	/* Resize nonresident empty attribute in-place only. */
1764 	new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED))
1765 			    ? (SIZEOF_NONRESIDENT_EX + 8)
1766 			    : (SIZEOF_NONRESIDENT + 8);
1767 
1768 	if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
1769 		return -EOPNOTSUPP;
1770 
1771 	if (new_aflags & ATTR_FLAG_SPARSED) {
1772 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1773 		/* Windows uses 16 clusters per frame but supports one cluster per frame too. */
1774 		attr->nres.c_unit = 0;
1775 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1776 	} else if (new_aflags & ATTR_FLAG_COMPRESSED) {
1777 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1778 		/* The only allowed: 16 clusters per frame. */
1779 		attr->nres.c_unit = NTFS_LZNT_CUNIT;
1780 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
1781 	} else {
1782 		attr->name_off = SIZEOF_NONRESIDENT_LE;
1783 		/* Normal files. */
1784 		attr->nres.c_unit = 0;
1785 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1786 	}
1787 	attr->nres.run_off = attr->name_off;
1788 out:
1789 	attr->flags = new_aflags;
1790 	mi->dirty = true;
1791 
1792 	return 0;
1793 }
1794 
1795 /*
1796  * ni_parse_reparse
1797  *
1798  * buffer - memory for reparse buffer header
1799  */
ni_parse_reparse(struct ntfs_inode * ni,struct ATTRIB * attr,struct REPARSE_DATA_BUFFER * buffer)1800 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
1801 				   struct REPARSE_DATA_BUFFER *buffer)
1802 {
1803 	const struct REPARSE_DATA_BUFFER *rp = NULL;
1804 	u8 bits;
1805 	u16 len;
1806 	typeof(rp->CompressReparseBuffer) *cmpr;
1807 
1808 	/* Try to estimate reparse point. */
1809 	if (!attr->non_res) {
1810 		rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
1811 	} else if (le64_to_cpu(attr->nres.data_size) >=
1812 		   sizeof(struct REPARSE_DATA_BUFFER)) {
1813 		struct runs_tree run;
1814 
1815 		run_init(&run);
1816 
1817 		if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
1818 		    !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
1819 				      sizeof(struct REPARSE_DATA_BUFFER),
1820 				      NULL)) {
1821 			rp = buffer;
1822 		}
1823 
1824 		run_close(&run);
1825 	}
1826 
1827 	if (!rp)
1828 		return REPARSE_NONE;
1829 
1830 	len = le16_to_cpu(rp->ReparseDataLength);
1831 	switch (rp->ReparseTag) {
1832 	case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
1833 		break; /* Symbolic link. */
1834 	case IO_REPARSE_TAG_MOUNT_POINT:
1835 		break; /* Mount points and junctions. */
1836 	case IO_REPARSE_TAG_SYMLINK:
1837 		break;
1838 	case IO_REPARSE_TAG_COMPRESS:
1839 		/*
1840 		 * WOF - Windows Overlay Filter - Used to compress files with
1841 		 * LZX/Xpress.
1842 		 *
1843 		 * Unlike native NTFS file compression, the Windows
1844 		 * Overlay Filter supports only read operations. This means
1845 		 * that it doesn't need to sector-align each compressed chunk,
1846 		 * so the compressed data can be packed more tightly together.
1847 		 * If you open the file for writing, the WOF just decompresses
1848 		 * the entire file, turning it back into a plain file.
1849 		 *
1850 		 * Ntfs3 driver decompresses the entire file only on write or
1851 		 * change size requests.
1852 		 */
1853 
1854 		cmpr = &rp->CompressReparseBuffer;
1855 		if (len < sizeof(*cmpr) ||
1856 		    cmpr->WofVersion != WOF_CURRENT_VERSION ||
1857 		    cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
1858 		    cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
1859 			return REPARSE_NONE;
1860 		}
1861 
1862 		switch (cmpr->CompressionFormat) {
1863 		case WOF_COMPRESSION_XPRESS4K:
1864 			bits = 0xc; // 4k
1865 			break;
1866 		case WOF_COMPRESSION_XPRESS8K:
1867 			bits = 0xd; // 8k
1868 			break;
1869 		case WOF_COMPRESSION_XPRESS16K:
1870 			bits = 0xe; // 16k
1871 			break;
1872 		case WOF_COMPRESSION_LZX32K:
1873 			bits = 0xf; // 32k
1874 			break;
1875 		default:
1876 			bits = 0x10; // 64k
1877 			break;
1878 		}
1879 		ni_set_ext_compress_bits(ni, bits);
1880 		return REPARSE_COMPRESSED;
1881 
1882 	case IO_REPARSE_TAG_DEDUP:
1883 		ni->ni_flags |= NI_FLAG_DEDUPLICATED;
1884 		return REPARSE_DEDUPLICATED;
1885 
1886 	default:
1887 		if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
1888 			break;
1889 
1890 		return REPARSE_NONE;
1891 	}
1892 
1893 	if (buffer != rp)
1894 		memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER));
1895 
1896 	/* Looks like normal symlink. */
1897 	return REPARSE_LINK;
1898 }
1899 
1900 /*
1901  * ni_fiemap - Helper for file_fiemap().
1902  *
1903  * Assumed ni_lock.
1904  * TODO: Less aggressive locks.
1905  */
ni_fiemap(struct ntfs_inode * ni,struct fiemap_extent_info * fieinfo,__u64 vbo,__u64 len)1906 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
1907 	      __u64 vbo, __u64 len)
1908 {
1909 	int err = 0;
1910 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1911 	u8 cluster_bits = sbi->cluster_bits;
1912 	struct runs_tree *run;
1913 	struct rw_semaphore *run_lock;
1914 	struct ATTRIB *attr;
1915 	CLST vcn = vbo >> cluster_bits;
1916 	CLST lcn, clen;
1917 	u64 valid = ni->i_valid;
1918 	u64 lbo, bytes;
1919 	u64 end, alloc_size;
1920 	size_t idx = -1;
1921 	u32 flags;
1922 	bool ok;
1923 
1924 	if (S_ISDIR(ni->vfs_inode.i_mode)) {
1925 		run = &ni->dir.alloc_run;
1926 		attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
1927 				    ARRAY_SIZE(I30_NAME), NULL, NULL);
1928 		run_lock = &ni->dir.run_lock;
1929 	} else {
1930 		run = &ni->file.run;
1931 		attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
1932 				    NULL);
1933 		if (!attr) {
1934 			err = -EINVAL;
1935 			goto out;
1936 		}
1937 		if (is_attr_compressed(attr)) {
1938 			/* Unfortunately cp -r incorrectly treats compressed clusters. */
1939 			err = -EOPNOTSUPP;
1940 			ntfs_inode_warn(
1941 				&ni->vfs_inode,
1942 				"fiemap is not supported for compressed file (cp -r)");
1943 			goto out;
1944 		}
1945 		run_lock = &ni->file.run_lock;
1946 	}
1947 
1948 	if (!attr || !attr->non_res) {
1949 		err = fiemap_fill_next_extent(
1950 			fieinfo, 0, 0,
1951 			attr ? le32_to_cpu(attr->res.data_size) : 0,
1952 			FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
1953 				FIEMAP_EXTENT_MERGED);
1954 		goto out;
1955 	}
1956 
1957 	end = vbo + len;
1958 	alloc_size = le64_to_cpu(attr->nres.alloc_size);
1959 	if (end > alloc_size)
1960 		end = alloc_size;
1961 
1962 	down_read(run_lock);
1963 
1964 	while (vbo < end) {
1965 		if (idx == -1) {
1966 			ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1967 		} else {
1968 			CLST vcn_next = vcn;
1969 
1970 			ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) &&
1971 			     vcn == vcn_next;
1972 			if (!ok)
1973 				vcn = vcn_next;
1974 		}
1975 
1976 		if (!ok) {
1977 			up_read(run_lock);
1978 			down_write(run_lock);
1979 
1980 			err = attr_load_runs_vcn(ni, attr->type,
1981 						 attr_name(attr),
1982 						 attr->name_len, run, vcn);
1983 
1984 			up_write(run_lock);
1985 			down_read(run_lock);
1986 
1987 			if (err)
1988 				break;
1989 
1990 			ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1991 
1992 			if (!ok) {
1993 				err = -EINVAL;
1994 				break;
1995 			}
1996 		}
1997 
1998 		if (!clen) {
1999 			err = -EINVAL; // ?
2000 			break;
2001 		}
2002 
2003 		if (lcn == SPARSE_LCN) {
2004 			vcn += clen;
2005 			vbo = (u64)vcn << cluster_bits;
2006 			continue;
2007 		}
2008 
2009 		flags = FIEMAP_EXTENT_MERGED;
2010 		if (S_ISDIR(ni->vfs_inode.i_mode)) {
2011 			;
2012 		} else if (is_attr_compressed(attr)) {
2013 			CLST clst_data;
2014 
2015 			err = attr_is_frame_compressed(
2016 				ni, attr, vcn >> attr->nres.c_unit, &clst_data);
2017 			if (err)
2018 				break;
2019 			if (clst_data < NTFS_LZNT_CLUSTERS)
2020 				flags |= FIEMAP_EXTENT_ENCODED;
2021 		} else if (is_attr_encrypted(attr)) {
2022 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2023 		}
2024 
2025 		vbo = (u64)vcn << cluster_bits;
2026 		bytes = (u64)clen << cluster_bits;
2027 		lbo = (u64)lcn << cluster_bits;
2028 
2029 		vcn += clen;
2030 
2031 		if (vbo + bytes >= end)
2032 			bytes = end - vbo;
2033 
2034 		if (vbo + bytes <= valid) {
2035 			;
2036 		} else if (vbo >= valid) {
2037 			flags |= FIEMAP_EXTENT_UNWRITTEN;
2038 		} else {
2039 			/* vbo < valid && valid < vbo + bytes */
2040 			u64 dlen = valid - vbo;
2041 
2042 			if (vbo + dlen >= end)
2043 				flags |= FIEMAP_EXTENT_LAST;
2044 
2045 			err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen,
2046 						      flags);
2047 			if (err < 0)
2048 				break;
2049 			if (err == 1) {
2050 				err = 0;
2051 				break;
2052 			}
2053 
2054 			vbo = valid;
2055 			bytes -= dlen;
2056 			if (!bytes)
2057 				continue;
2058 
2059 			lbo += dlen;
2060 			flags |= FIEMAP_EXTENT_UNWRITTEN;
2061 		}
2062 
2063 		if (vbo + bytes >= end)
2064 			flags |= FIEMAP_EXTENT_LAST;
2065 
2066 		err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags);
2067 		if (err < 0)
2068 			break;
2069 		if (err == 1) {
2070 			err = 0;
2071 			break;
2072 		}
2073 
2074 		vbo += bytes;
2075 	}
2076 
2077 	up_read(run_lock);
2078 
2079 out:
2080 	return err;
2081 }
2082 
2083 /*
2084  * ni_readpage_cmpr
2085  *
2086  * When decompressing, we typically obtain more than one page per reference.
2087  * We inject the additional pages into the page cache.
2088  */
ni_readpage_cmpr(struct ntfs_inode * ni,struct page * page)2089 int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page)
2090 {
2091 	int err;
2092 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2093 	struct address_space *mapping = page->mapping;
2094 	pgoff_t index = page->index;
2095 	u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
2096 	struct page **pages = NULL; /* Array of at most 16 pages. stack? */
2097 	u8 frame_bits;
2098 	CLST frame;
2099 	u32 i, idx, frame_size, pages_per_frame;
2100 	gfp_t gfp_mask;
2101 	struct page *pg;
2102 
2103 	if (vbo >= ni->vfs_inode.i_size) {
2104 		SetPageUptodate(page);
2105 		err = 0;
2106 		goto out;
2107 	}
2108 
2109 	if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2110 		/* Xpress or LZX. */
2111 		frame_bits = ni_ext_compress_bits(ni);
2112 	} else {
2113 		/* LZNT compression. */
2114 		frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2115 	}
2116 	frame_size = 1u << frame_bits;
2117 	frame = vbo >> frame_bits;
2118 	frame_vbo = (u64)frame << frame_bits;
2119 	idx = (vbo - frame_vbo) >> PAGE_SHIFT;
2120 
2121 	pages_per_frame = frame_size >> PAGE_SHIFT;
2122 	pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2123 	if (!pages) {
2124 		err = -ENOMEM;
2125 		goto out;
2126 	}
2127 
2128 	pages[idx] = page;
2129 	index = frame_vbo >> PAGE_SHIFT;
2130 	gfp_mask = mapping_gfp_mask(mapping);
2131 
2132 	for (i = 0; i < pages_per_frame; i++, index++) {
2133 		if (i == idx)
2134 			continue;
2135 
2136 		pg = find_or_create_page(mapping, index, gfp_mask);
2137 		if (!pg) {
2138 			err = -ENOMEM;
2139 			goto out1;
2140 		}
2141 		pages[i] = pg;
2142 	}
2143 
2144 	err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
2145 
2146 out1:
2147 	if (err)
2148 		SetPageError(page);
2149 
2150 	for (i = 0; i < pages_per_frame; i++) {
2151 		pg = pages[i];
2152 		if (i == idx || !pg)
2153 			continue;
2154 		unlock_page(pg);
2155 		put_page(pg);
2156 	}
2157 
2158 out:
2159 	/* At this point, err contains 0 or -EIO depending on the "critical" page. */
2160 	kfree(pages);
2161 	unlock_page(page);
2162 
2163 	return err;
2164 }
2165 
2166 #ifdef CONFIG_NTFS3_LZX_XPRESS
2167 /*
2168  * ni_decompress_file - Decompress LZX/Xpress compressed file.
2169  *
2170  * Remove ATTR_DATA::WofCompressedData.
2171  * Remove ATTR_REPARSE.
2172  */
ni_decompress_file(struct ntfs_inode * ni)2173 int ni_decompress_file(struct ntfs_inode *ni)
2174 {
2175 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2176 	struct inode *inode = &ni->vfs_inode;
2177 	loff_t i_size = inode->i_size;
2178 	struct address_space *mapping = inode->i_mapping;
2179 	gfp_t gfp_mask = mapping_gfp_mask(mapping);
2180 	struct page **pages = NULL;
2181 	struct ATTR_LIST_ENTRY *le;
2182 	struct ATTRIB *attr;
2183 	CLST vcn, cend, lcn, clen, end;
2184 	pgoff_t index;
2185 	u64 vbo;
2186 	u8 frame_bits;
2187 	u32 i, frame_size, pages_per_frame, bytes;
2188 	struct mft_inode *mi;
2189 	int err;
2190 
2191 	/* Clusters for decompressed data. */
2192 	cend = bytes_to_cluster(sbi, i_size);
2193 
2194 	if (!i_size)
2195 		goto remove_wof;
2196 
2197 	/* Check in advance. */
2198 	if (cend > wnd_zeroes(&sbi->used.bitmap)) {
2199 		err = -ENOSPC;
2200 		goto out;
2201 	}
2202 
2203 	frame_bits = ni_ext_compress_bits(ni);
2204 	frame_size = 1u << frame_bits;
2205 	pages_per_frame = frame_size >> PAGE_SHIFT;
2206 	pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2207 	if (!pages) {
2208 		err = -ENOMEM;
2209 		goto out;
2210 	}
2211 
2212 	/*
2213 	 * Step 1: Decompress data and copy to new allocated clusters.
2214 	 */
2215 	index = 0;
2216 	for (vbo = 0; vbo < i_size; vbo += bytes) {
2217 		u32 nr_pages;
2218 		bool new;
2219 
2220 		if (vbo + frame_size > i_size) {
2221 			bytes = i_size - vbo;
2222 			nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
2223 		} else {
2224 			nr_pages = pages_per_frame;
2225 			bytes = frame_size;
2226 		}
2227 
2228 		end = bytes_to_cluster(sbi, vbo + bytes);
2229 
2230 		for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
2231 			err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
2232 						  &clen, &new);
2233 			if (err)
2234 				goto out;
2235 		}
2236 
2237 		for (i = 0; i < pages_per_frame; i++, index++) {
2238 			struct page *pg;
2239 
2240 			pg = find_or_create_page(mapping, index, gfp_mask);
2241 			if (!pg) {
2242 				while (i--) {
2243 					unlock_page(pages[i]);
2244 					put_page(pages[i]);
2245 				}
2246 				err = -ENOMEM;
2247 				goto out;
2248 			}
2249 			pages[i] = pg;
2250 		}
2251 
2252 		err = ni_read_frame(ni, vbo, pages, pages_per_frame);
2253 
2254 		if (!err) {
2255 			down_read(&ni->file.run_lock);
2256 			err = ntfs_bio_pages(sbi, &ni->file.run, pages,
2257 					     nr_pages, vbo, bytes,
2258 					     REQ_OP_WRITE);
2259 			up_read(&ni->file.run_lock);
2260 		}
2261 
2262 		for (i = 0; i < pages_per_frame; i++) {
2263 			unlock_page(pages[i]);
2264 			put_page(pages[i]);
2265 		}
2266 
2267 		if (err)
2268 			goto out;
2269 
2270 		cond_resched();
2271 	}
2272 
2273 remove_wof:
2274 	/*
2275 	 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData
2276 	 * and ATTR_REPARSE.
2277 	 */
2278 	attr = NULL;
2279 	le = NULL;
2280 	while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
2281 		CLST svcn, evcn;
2282 		u32 asize, roff;
2283 
2284 		if (attr->type == ATTR_REPARSE) {
2285 			struct MFT_REF ref;
2286 
2287 			mi_get_ref(&ni->mi, &ref);
2288 			ntfs_remove_reparse(sbi, 0, &ref);
2289 		}
2290 
2291 		if (!attr->non_res)
2292 			continue;
2293 
2294 		if (attr->type != ATTR_REPARSE &&
2295 		    (attr->type != ATTR_DATA ||
2296 		     attr->name_len != ARRAY_SIZE(WOF_NAME) ||
2297 		     memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
2298 			continue;
2299 
2300 		svcn = le64_to_cpu(attr->nres.svcn);
2301 		evcn = le64_to_cpu(attr->nres.evcn);
2302 
2303 		if (evcn + 1 <= svcn)
2304 			continue;
2305 
2306 		asize = le32_to_cpu(attr->size);
2307 		roff = le16_to_cpu(attr->nres.run_off);
2308 
2309 		if (roff > asize) {
2310 			err = -EINVAL;
2311 			goto out;
2312 		}
2313 
2314 		/*run==1  Means unpack and deallocate. */
2315 		run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
2316 			      Add2Ptr(attr, roff), asize - roff);
2317 	}
2318 
2319 	/*
2320 	 * Step 3: Remove attribute ATTR_DATA::WofCompressedData.
2321 	 */
2322 	err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
2323 			     false, NULL);
2324 	if (err)
2325 		goto out;
2326 
2327 	/*
2328 	 * Step 4: Remove ATTR_REPARSE.
2329 	 */
2330 	err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
2331 	if (err)
2332 		goto out;
2333 
2334 	/*
2335 	 * Step 5: Remove sparse flag from data attribute.
2336 	 */
2337 	attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
2338 	if (!attr) {
2339 		err = -EINVAL;
2340 		goto out;
2341 	}
2342 
2343 	if (attr->non_res && is_attr_sparsed(attr)) {
2344 		/* Sparsed attribute header is 8 bytes bigger than normal. */
2345 		struct MFT_REC *rec = mi->mrec;
2346 		u32 used = le32_to_cpu(rec->used);
2347 		u32 asize = le32_to_cpu(attr->size);
2348 		u16 roff = le16_to_cpu(attr->nres.run_off);
2349 		char *rbuf = Add2Ptr(attr, roff);
2350 
2351 		memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
2352 		attr->size = cpu_to_le32(asize - 8);
2353 		attr->flags &= ~ATTR_FLAG_SPARSED;
2354 		attr->nres.run_off = cpu_to_le16(roff - 8);
2355 		attr->nres.c_unit = 0;
2356 		rec->used = cpu_to_le32(used - 8);
2357 		mi->dirty = true;
2358 		ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
2359 				FILE_ATTRIBUTE_REPARSE_POINT);
2360 
2361 		mark_inode_dirty(inode);
2362 	}
2363 
2364 	/* Clear cached flag. */
2365 	ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
2366 	if (ni->file.offs_page) {
2367 		put_page(ni->file.offs_page);
2368 		ni->file.offs_page = NULL;
2369 	}
2370 	mapping->a_ops = &ntfs_aops;
2371 
2372 out:
2373 	kfree(pages);
2374 	if (err)
2375 		_ntfs_bad_inode(inode);
2376 
2377 	return err;
2378 }
2379 
2380 /*
2381  * decompress_lzx_xpress - External compression LZX/Xpress.
2382  */
decompress_lzx_xpress(struct ntfs_sb_info * sbi,const char * cmpr,size_t cmpr_size,void * unc,size_t unc_size,u32 frame_size)2383 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
2384 				 size_t cmpr_size, void *unc, size_t unc_size,
2385 				 u32 frame_size)
2386 {
2387 	int err;
2388 	void *ctx;
2389 
2390 	if (cmpr_size == unc_size) {
2391 		/* Frame not compressed. */
2392 		memcpy(unc, cmpr, unc_size);
2393 		return 0;
2394 	}
2395 
2396 	err = 0;
2397 	if (frame_size == 0x8000) {
2398 		mutex_lock(&sbi->compress.mtx_lzx);
2399 		/* LZX: Frame compressed. */
2400 		ctx = sbi->compress.lzx;
2401 		if (!ctx) {
2402 			/* Lazy initialize LZX decompress context. */
2403 			ctx = lzx_allocate_decompressor();
2404 			if (!ctx) {
2405 				err = -ENOMEM;
2406 				goto out1;
2407 			}
2408 
2409 			sbi->compress.lzx = ctx;
2410 		}
2411 
2412 		if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2413 			/* Treat all errors as "invalid argument". */
2414 			err = -EINVAL;
2415 		}
2416 out1:
2417 		mutex_unlock(&sbi->compress.mtx_lzx);
2418 	} else {
2419 		/* XPRESS: Frame compressed. */
2420 		mutex_lock(&sbi->compress.mtx_xpress);
2421 		ctx = sbi->compress.xpress;
2422 		if (!ctx) {
2423 			/* Lazy initialize Xpress decompress context. */
2424 			ctx = xpress_allocate_decompressor();
2425 			if (!ctx) {
2426 				err = -ENOMEM;
2427 				goto out2;
2428 			}
2429 
2430 			sbi->compress.xpress = ctx;
2431 		}
2432 
2433 		if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2434 			/* Treat all errors as "invalid argument". */
2435 			err = -EINVAL;
2436 		}
2437 out2:
2438 		mutex_unlock(&sbi->compress.mtx_xpress);
2439 	}
2440 	return err;
2441 }
2442 #endif
2443 
2444 /*
2445  * ni_read_frame
2446  *
2447  * Pages - Array of locked pages.
2448  */
ni_read_frame(struct ntfs_inode * ni,u64 frame_vbo,struct page ** pages,u32 pages_per_frame)2449 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
2450 		  u32 pages_per_frame)
2451 {
2452 	int err;
2453 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2454 	u8 cluster_bits = sbi->cluster_bits;
2455 	char *frame_ondisk = NULL;
2456 	char *frame_mem = NULL;
2457 	struct page **pages_disk = NULL;
2458 	struct ATTR_LIST_ENTRY *le = NULL;
2459 	struct runs_tree *run = &ni->file.run;
2460 	u64 valid_size = ni->i_valid;
2461 	u64 vbo_disk;
2462 	size_t unc_size;
2463 	u32 frame_size, i, npages_disk, ondisk_size;
2464 	struct page *pg;
2465 	struct ATTRIB *attr;
2466 	CLST frame, clst_data;
2467 
2468 	/*
2469 	 * To simplify decompress algorithm do vmap for source
2470 	 * and target pages.
2471 	 */
2472 	for (i = 0; i < pages_per_frame; i++)
2473 		kmap(pages[i]);
2474 
2475 	frame_size = pages_per_frame << PAGE_SHIFT;
2476 	frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
2477 	if (!frame_mem) {
2478 		err = -ENOMEM;
2479 		goto out;
2480 	}
2481 
2482 	attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
2483 	if (!attr) {
2484 		err = -ENOENT;
2485 		goto out1;
2486 	}
2487 
2488 	if (!attr->non_res) {
2489 		u32 data_size = le32_to_cpu(attr->res.data_size);
2490 
2491 		memset(frame_mem, 0, frame_size);
2492 		if (frame_vbo < data_size) {
2493 			ondisk_size = data_size - frame_vbo;
2494 			memcpy(frame_mem, resident_data(attr) + frame_vbo,
2495 			       min(ondisk_size, frame_size));
2496 		}
2497 		err = 0;
2498 		goto out1;
2499 	}
2500 
2501 	if (frame_vbo >= valid_size) {
2502 		memset(frame_mem, 0, frame_size);
2503 		err = 0;
2504 		goto out1;
2505 	}
2506 
2507 	if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2508 #ifndef CONFIG_NTFS3_LZX_XPRESS
2509 		err = -EOPNOTSUPP;
2510 		goto out1;
2511 #else
2512 		u32 frame_bits = ni_ext_compress_bits(ni);
2513 		u64 frame64 = frame_vbo >> frame_bits;
2514 		u64 frames, vbo_data;
2515 
2516 		if (frame_size != (1u << frame_bits)) {
2517 			err = -EINVAL;
2518 			goto out1;
2519 		}
2520 		switch (frame_size) {
2521 		case 0x1000:
2522 		case 0x2000:
2523 		case 0x4000:
2524 		case 0x8000:
2525 			break;
2526 		default:
2527 			/* Unknown compression. */
2528 			err = -EOPNOTSUPP;
2529 			goto out1;
2530 		}
2531 
2532 		attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
2533 				    ARRAY_SIZE(WOF_NAME), NULL, NULL);
2534 		if (!attr) {
2535 			ntfs_inode_err(
2536 				&ni->vfs_inode,
2537 				"external compressed file should contains data attribute \"WofCompressedData\"");
2538 			err = -EINVAL;
2539 			goto out1;
2540 		}
2541 
2542 		if (!attr->non_res) {
2543 			run = NULL;
2544 		} else {
2545 			run = run_alloc();
2546 			if (!run) {
2547 				err = -ENOMEM;
2548 				goto out1;
2549 			}
2550 		}
2551 
2552 		frames = (ni->vfs_inode.i_size - 1) >> frame_bits;
2553 
2554 		err = attr_wof_frame_info(ni, attr, run, frame64, frames,
2555 					  frame_bits, &ondisk_size, &vbo_data);
2556 		if (err)
2557 			goto out2;
2558 
2559 		if (frame64 == frames) {
2560 			unc_size = 1 + ((ni->vfs_inode.i_size - 1) &
2561 					(frame_size - 1));
2562 			ondisk_size = attr_size(attr) - vbo_data;
2563 		} else {
2564 			unc_size = frame_size;
2565 		}
2566 
2567 		if (ondisk_size > frame_size) {
2568 			err = -EINVAL;
2569 			goto out2;
2570 		}
2571 
2572 		if (!attr->non_res) {
2573 			if (vbo_data + ondisk_size >
2574 			    le32_to_cpu(attr->res.data_size)) {
2575 				err = -EINVAL;
2576 				goto out1;
2577 			}
2578 
2579 			err = decompress_lzx_xpress(
2580 				sbi, Add2Ptr(resident_data(attr), vbo_data),
2581 				ondisk_size, frame_mem, unc_size, frame_size);
2582 			goto out1;
2583 		}
2584 		vbo_disk = vbo_data;
2585 		/* Load all runs to read [vbo_disk-vbo_to). */
2586 		err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
2587 					   ARRAY_SIZE(WOF_NAME), run, vbo_disk,
2588 					   vbo_data + ondisk_size);
2589 		if (err)
2590 			goto out2;
2591 		npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
2592 			       PAGE_SIZE - 1) >>
2593 			      PAGE_SHIFT;
2594 #endif
2595 	} else if (is_attr_compressed(attr)) {
2596 		/* LZNT compression. */
2597 		if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2598 			err = -EOPNOTSUPP;
2599 			goto out1;
2600 		}
2601 
2602 		if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2603 			err = -EOPNOTSUPP;
2604 			goto out1;
2605 		}
2606 
2607 		down_write(&ni->file.run_lock);
2608 		run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
2609 		frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
2610 		err = attr_is_frame_compressed(ni, attr, frame, &clst_data);
2611 		up_write(&ni->file.run_lock);
2612 		if (err)
2613 			goto out1;
2614 
2615 		if (!clst_data) {
2616 			memset(frame_mem, 0, frame_size);
2617 			goto out1;
2618 		}
2619 
2620 		frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2621 		ondisk_size = clst_data << cluster_bits;
2622 
2623 		if (clst_data >= NTFS_LZNT_CLUSTERS) {
2624 			/* Frame is not compressed. */
2625 			down_read(&ni->file.run_lock);
2626 			err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
2627 					     frame_vbo, ondisk_size,
2628 					     REQ_OP_READ);
2629 			up_read(&ni->file.run_lock);
2630 			goto out1;
2631 		}
2632 		vbo_disk = frame_vbo;
2633 		npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2634 	} else {
2635 		__builtin_unreachable();
2636 		err = -EINVAL;
2637 		goto out1;
2638 	}
2639 
2640 	pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS);
2641 	if (!pages_disk) {
2642 		err = -ENOMEM;
2643 		goto out2;
2644 	}
2645 
2646 	for (i = 0; i < npages_disk; i++) {
2647 		pg = alloc_page(GFP_KERNEL);
2648 		if (!pg) {
2649 			err = -ENOMEM;
2650 			goto out3;
2651 		}
2652 		pages_disk[i] = pg;
2653 		lock_page(pg);
2654 		kmap(pg);
2655 	}
2656 
2657 	/* Read 'ondisk_size' bytes from disk. */
2658 	down_read(&ni->file.run_lock);
2659 	err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
2660 			     ondisk_size, REQ_OP_READ);
2661 	up_read(&ni->file.run_lock);
2662 	if (err)
2663 		goto out3;
2664 
2665 	/*
2666 	 * To simplify decompress algorithm do vmap for source and target pages.
2667 	 */
2668 	frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
2669 	if (!frame_ondisk) {
2670 		err = -ENOMEM;
2671 		goto out3;
2672 	}
2673 
2674 	/* Decompress: Frame_ondisk -> frame_mem. */
2675 #ifdef CONFIG_NTFS3_LZX_XPRESS
2676 	if (run != &ni->file.run) {
2677 		/* LZX or XPRESS */
2678 		err = decompress_lzx_xpress(
2679 			sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
2680 			ondisk_size, frame_mem, unc_size, frame_size);
2681 	} else
2682 #endif
2683 	{
2684 		/* LZNT - Native NTFS compression. */
2685 		unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
2686 					   frame_size);
2687 		if ((ssize_t)unc_size < 0)
2688 			err = unc_size;
2689 		else if (!unc_size || unc_size > frame_size)
2690 			err = -EINVAL;
2691 	}
2692 	if (!err && valid_size < frame_vbo + frame_size) {
2693 		size_t ok = valid_size - frame_vbo;
2694 
2695 		memset(frame_mem + ok, 0, frame_size - ok);
2696 	}
2697 
2698 	vunmap(frame_ondisk);
2699 
2700 out3:
2701 	for (i = 0; i < npages_disk; i++) {
2702 		pg = pages_disk[i];
2703 		if (pg) {
2704 			kunmap(pg);
2705 			unlock_page(pg);
2706 			put_page(pg);
2707 		}
2708 	}
2709 	kfree(pages_disk);
2710 
2711 out2:
2712 #ifdef CONFIG_NTFS3_LZX_XPRESS
2713 	if (run != &ni->file.run)
2714 		run_free(run);
2715 #endif
2716 out1:
2717 	vunmap(frame_mem);
2718 out:
2719 	for (i = 0; i < pages_per_frame; i++) {
2720 		pg = pages[i];
2721 		kunmap(pg);
2722 		ClearPageError(pg);
2723 		SetPageUptodate(pg);
2724 	}
2725 
2726 	return err;
2727 }
2728 
2729 /*
2730  * ni_write_frame
2731  *
2732  * Pages - Array of locked pages.
2733  */
ni_write_frame(struct ntfs_inode * ni,struct page ** pages,u32 pages_per_frame)2734 int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
2735 		   u32 pages_per_frame)
2736 {
2737 	int err;
2738 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2739 	u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2740 	u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2741 	u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT;
2742 	CLST frame = frame_vbo >> frame_bits;
2743 	char *frame_ondisk = NULL;
2744 	struct page **pages_disk = NULL;
2745 	struct ATTR_LIST_ENTRY *le = NULL;
2746 	char *frame_mem;
2747 	struct ATTRIB *attr;
2748 	struct mft_inode *mi;
2749 	u32 i;
2750 	struct page *pg;
2751 	size_t compr_size, ondisk_size;
2752 	struct lznt *lznt;
2753 
2754 	attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
2755 	if (!attr) {
2756 		err = -ENOENT;
2757 		goto out;
2758 	}
2759 
2760 	if (WARN_ON(!is_attr_compressed(attr))) {
2761 		err = -EINVAL;
2762 		goto out;
2763 	}
2764 
2765 	if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2766 		err = -EOPNOTSUPP;
2767 		goto out;
2768 	}
2769 
2770 	if (!attr->non_res) {
2771 		down_write(&ni->file.run_lock);
2772 		err = attr_make_nonresident(ni, attr, le, mi,
2773 					    le32_to_cpu(attr->res.data_size),
2774 					    &ni->file.run, &attr, pages[0]);
2775 		up_write(&ni->file.run_lock);
2776 		if (err)
2777 			goto out;
2778 	}
2779 
2780 	if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2781 		err = -EOPNOTSUPP;
2782 		goto out;
2783 	}
2784 
2785 	pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2786 	if (!pages_disk) {
2787 		err = -ENOMEM;
2788 		goto out;
2789 	}
2790 
2791 	for (i = 0; i < pages_per_frame; i++) {
2792 		pg = alloc_page(GFP_KERNEL);
2793 		if (!pg) {
2794 			err = -ENOMEM;
2795 			goto out1;
2796 		}
2797 		pages_disk[i] = pg;
2798 		lock_page(pg);
2799 		kmap(pg);
2800 	}
2801 
2802 	/* To simplify compress algorithm do vmap for source and target pages. */
2803 	frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
2804 	if (!frame_ondisk) {
2805 		err = -ENOMEM;
2806 		goto out1;
2807 	}
2808 
2809 	for (i = 0; i < pages_per_frame; i++)
2810 		kmap(pages[i]);
2811 
2812 	/* Map in-memory frame for read-only. */
2813 	frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
2814 	if (!frame_mem) {
2815 		err = -ENOMEM;
2816 		goto out2;
2817 	}
2818 
2819 	mutex_lock(&sbi->compress.mtx_lznt);
2820 	lznt = NULL;
2821 	if (!sbi->compress.lznt) {
2822 		/*
2823 		 * LZNT implements two levels of compression:
2824 		 * 0 - Standard compression
2825 		 * 1 - Best compression, requires a lot of cpu
2826 		 * use mount option?
2827 		 */
2828 		lznt = get_lznt_ctx(0);
2829 		if (!lznt) {
2830 			mutex_unlock(&sbi->compress.mtx_lznt);
2831 			err = -ENOMEM;
2832 			goto out3;
2833 		}
2834 
2835 		sbi->compress.lznt = lznt;
2836 		lznt = NULL;
2837 	}
2838 
2839 	/* Compress: frame_mem -> frame_ondisk */
2840 	compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
2841 				   frame_size, sbi->compress.lznt);
2842 	mutex_unlock(&sbi->compress.mtx_lznt);
2843 	kfree(lznt);
2844 
2845 	if (compr_size + sbi->cluster_size > frame_size) {
2846 		/* Frame is not compressed. */
2847 		compr_size = frame_size;
2848 		ondisk_size = frame_size;
2849 	} else if (compr_size) {
2850 		/* Frame is compressed. */
2851 		ondisk_size = ntfs_up_cluster(sbi, compr_size);
2852 		memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
2853 	} else {
2854 		/* Frame is sparsed. */
2855 		ondisk_size = 0;
2856 	}
2857 
2858 	down_write(&ni->file.run_lock);
2859 	run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
2860 	err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
2861 	up_write(&ni->file.run_lock);
2862 	if (err)
2863 		goto out2;
2864 
2865 	if (!ondisk_size)
2866 		goto out2;
2867 
2868 	down_read(&ni->file.run_lock);
2869 	err = ntfs_bio_pages(sbi, &ni->file.run,
2870 			     ondisk_size < frame_size ? pages_disk : pages,
2871 			     pages_per_frame, frame_vbo, ondisk_size,
2872 			     REQ_OP_WRITE);
2873 	up_read(&ni->file.run_lock);
2874 
2875 out3:
2876 	vunmap(frame_mem);
2877 
2878 out2:
2879 	for (i = 0; i < pages_per_frame; i++)
2880 		kunmap(pages[i]);
2881 
2882 	vunmap(frame_ondisk);
2883 out1:
2884 	for (i = 0; i < pages_per_frame; i++) {
2885 		pg = pages_disk[i];
2886 		if (pg) {
2887 			kunmap(pg);
2888 			unlock_page(pg);
2889 			put_page(pg);
2890 		}
2891 	}
2892 	kfree(pages_disk);
2893 out:
2894 	return err;
2895 }
2896 
2897 /*
2898  * ni_remove_name - Removes name 'de' from MFT and from directory.
2899  * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs.
2900  */
ni_remove_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE ** de2,int * undo_step)2901 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2902 		   struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step)
2903 {
2904 	int err;
2905 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2906 	struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2907 	struct ATTR_FILE_NAME *fname;
2908 	struct ATTR_LIST_ENTRY *le;
2909 	struct mft_inode *mi;
2910 	u16 de_key_size = le16_to_cpu(de->key_size);
2911 	u8 name_type;
2912 
2913 	*undo_step = 0;
2914 
2915 	/* Find name in record. */
2916 	mi_get_ref(&dir_ni->mi, &de_name->home);
2917 
2918 	fname = ni_fname_name(ni, (struct cpu_str *)&de_name->name_len,
2919 			      &de_name->home, &mi, &le);
2920 	if (!fname)
2921 		return -ENOENT;
2922 
2923 	memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO));
2924 	name_type = paired_name(fname->type);
2925 
2926 	/* Mark ntfs as dirty. It will be cleared at umount. */
2927 	ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
2928 
2929 	/* Step 1: Remove name from directory. */
2930 	err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi);
2931 	if (err)
2932 		return err;
2933 
2934 	/* Step 2: Remove name from MFT. */
2935 	ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2936 
2937 	*undo_step = 2;
2938 
2939 	/* Get paired name. */
2940 	fname = ni_fname_type(ni, name_type, &mi, &le);
2941 	if (fname) {
2942 		u16 de2_key_size = fname_full_size(fname);
2943 
2944 		*de2 = Add2Ptr(de, 1024);
2945 		(*de2)->key_size = cpu_to_le16(de2_key_size);
2946 
2947 		memcpy(*de2 + 1, fname, de2_key_size);
2948 
2949 		/* Step 3: Remove paired name from directory. */
2950 		err = indx_delete_entry(&dir_ni->dir, dir_ni, fname,
2951 					de2_key_size, sbi);
2952 		if (err)
2953 			return err;
2954 
2955 		/* Step 4: Remove paired name from MFT. */
2956 		ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2957 
2958 		*undo_step = 4;
2959 	}
2960 	return 0;
2961 }
2962 
2963 /*
2964  * ni_remove_name_undo - Paired function for ni_remove_name.
2965  *
2966  * Return: True if ok
2967  */
ni_remove_name_undo(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * de2,int undo_step)2968 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2969 			 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step)
2970 {
2971 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2972 	struct ATTRIB *attr;
2973 	u16 de_key_size = de2 ? le16_to_cpu(de2->key_size) : 0;
2974 
2975 	switch (undo_step) {
2976 	case 4:
2977 		if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2978 				       &attr, NULL, NULL)) {
2979 			return false;
2980 		}
2981 		memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size);
2982 
2983 		mi_get_ref(&ni->mi, &de2->ref);
2984 		de2->size = cpu_to_le16(ALIGN(de_key_size, 8) +
2985 					sizeof(struct NTFS_DE));
2986 		de2->flags = 0;
2987 		de2->res = 0;
2988 
2989 		if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL,
2990 				      1)) {
2991 			return false;
2992 		}
2993 		fallthrough;
2994 
2995 	case 2:
2996 		de_key_size = le16_to_cpu(de->key_size);
2997 
2998 		if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2999 				       &attr, NULL, NULL)) {
3000 			return false;
3001 		}
3002 
3003 		memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size);
3004 		mi_get_ref(&ni->mi, &de->ref);
3005 
3006 		if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1))
3007 			return false;
3008 	}
3009 
3010 	return true;
3011 }
3012 
3013 /*
3014  * ni_add_name - Add new name into MFT and into directory.
3015  */
ni_add_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de)3016 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
3017 		struct NTFS_DE *de)
3018 {
3019 	int err;
3020 	struct ATTRIB *attr;
3021 	struct ATTR_LIST_ENTRY *le;
3022 	struct mft_inode *mi;
3023 	struct ATTR_FILE_NAME *fname;
3024 	struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
3025 	u16 de_key_size = le16_to_cpu(de->key_size);
3026 
3027 	mi_get_ref(&ni->mi, &de->ref);
3028 	mi_get_ref(&dir_ni->mi, &de_name->home);
3029 
3030 	/* Fill duplicate from any ATTR_NAME. */
3031 	fname = ni_fname_name(ni, NULL, NULL, NULL, NULL);
3032 	if (fname)
3033 		memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup));
3034 	de_name->dup.fa = ni->std_fa;
3035 
3036 	/* Insert new name into MFT. */
3037 	err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr,
3038 				 &mi, &le);
3039 	if (err)
3040 		return err;
3041 
3042 	memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size);
3043 
3044 	/* Insert new name into directory. */
3045 	err = indx_insert_entry(&dir_ni->dir, dir_ni, de, ni->mi.sbi, NULL, 0);
3046 	if (err)
3047 		ni_remove_attr_le(ni, attr, mi, le);
3048 
3049 	return err;
3050 }
3051 
3052 /*
3053  * ni_rename - Remove one name and insert new name.
3054  */
ni_rename(struct ntfs_inode * dir_ni,struct ntfs_inode * new_dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * new_de,bool * is_bad)3055 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni,
3056 	      struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de,
3057 	      bool *is_bad)
3058 {
3059 	int err;
3060 	struct NTFS_DE *de2 = NULL;
3061 	int undo = 0;
3062 
3063 	/*
3064 	 * There are two possible ways to rename:
3065 	 * 1) Add new name and remove old name.
3066 	 * 2) Remove old name and add new name.
3067 	 *
3068 	 * In most cases (not all!) adding new name into MFT and into directory can
3069 	 * allocate additional cluster(s).
3070 	 * Second way may result to bad inode if we can't add new name
3071 	 * and then can't restore (add) old name.
3072 	 */
3073 
3074 	/*
3075 	 * Way 1 - Add new + remove old.
3076 	 */
3077 	err = ni_add_name(new_dir_ni, ni, new_de);
3078 	if (!err) {
3079 		err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3080 		if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo))
3081 			*is_bad = true;
3082 	}
3083 
3084 	/*
3085 	 * Way 2 - Remove old + add new.
3086 	 */
3087 	/*
3088 	 *	err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3089 	 *	if (!err) {
3090 	 *		err = ni_add_name(new_dir_ni, ni, new_de);
3091 	 *		if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo))
3092 	 *			*is_bad = true;
3093 	 *	}
3094 	 */
3095 
3096 	return err;
3097 }
3098 
3099 /*
3100  * ni_is_dirty - Return: True if 'ni' requires ni_write_inode.
3101  */
ni_is_dirty(struct inode * inode)3102 bool ni_is_dirty(struct inode *inode)
3103 {
3104 	struct ntfs_inode *ni = ntfs_i(inode);
3105 	struct rb_node *node;
3106 
3107 	if (ni->mi.dirty || ni->attr_list.dirty ||
3108 	    (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3109 		return true;
3110 
3111 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
3112 		if (rb_entry(node, struct mft_inode, node)->dirty)
3113 			return true;
3114 	}
3115 
3116 	return false;
3117 }
3118 
3119 /*
3120  * ni_update_parent
3121  *
3122  * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories.
3123  */
ni_update_parent(struct ntfs_inode * ni,struct NTFS_DUP_INFO * dup,int sync)3124 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
3125 			     int sync)
3126 {
3127 	struct ATTRIB *attr;
3128 	struct mft_inode *mi;
3129 	struct ATTR_LIST_ENTRY *le = NULL;
3130 	struct ntfs_sb_info *sbi = ni->mi.sbi;
3131 	struct super_block *sb = sbi->sb;
3132 	bool re_dirty = false;
3133 
3134 	if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
3135 		dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
3136 		attr = NULL;
3137 		dup->alloc_size = 0;
3138 		dup->data_size = 0;
3139 	} else {
3140 		dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
3141 
3142 		attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
3143 				    &mi);
3144 		if (!attr) {
3145 			dup->alloc_size = dup->data_size = 0;
3146 		} else if (!attr->non_res) {
3147 			u32 data_size = le32_to_cpu(attr->res.data_size);
3148 
3149 			dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
3150 			dup->data_size = cpu_to_le64(data_size);
3151 		} else {
3152 			u64 new_valid = ni->i_valid;
3153 			u64 data_size = le64_to_cpu(attr->nres.data_size);
3154 			__le64 valid_le;
3155 
3156 			dup->alloc_size = is_attr_ext(attr)
3157 						  ? attr->nres.total_size
3158 						  : attr->nres.alloc_size;
3159 			dup->data_size = attr->nres.data_size;
3160 
3161 			if (new_valid > data_size)
3162 				new_valid = data_size;
3163 
3164 			valid_le = cpu_to_le64(new_valid);
3165 			if (valid_le != attr->nres.valid_size) {
3166 				attr->nres.valid_size = valid_le;
3167 				mi->dirty = true;
3168 			}
3169 		}
3170 	}
3171 
3172 	/* TODO: Fill reparse info. */
3173 	dup->reparse = 0;
3174 	dup->ea_size = 0;
3175 
3176 	if (ni->ni_flags & NI_FLAG_EA) {
3177 		attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
3178 				    NULL);
3179 		if (attr) {
3180 			const struct EA_INFO *info;
3181 
3182 			info = resident_data_ex(attr, sizeof(struct EA_INFO));
3183 			/* If ATTR_EA_INFO exists 'info' can't be NULL. */
3184 			if (info)
3185 				dup->ea_size = info->size_pack;
3186 		}
3187 	}
3188 
3189 	attr = NULL;
3190 	le = NULL;
3191 
3192 	while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
3193 				    &mi))) {
3194 		struct inode *dir;
3195 		struct ATTR_FILE_NAME *fname;
3196 
3197 		fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
3198 		if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup)))
3199 			continue;
3200 
3201 		/* Check simple case when parent inode equals current inode. */
3202 		if (ino_get(&fname->home) == ni->vfs_inode.i_ino) {
3203 			ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3204 			continue;
3205 		}
3206 
3207 		/* ntfs_iget5 may sleep. */
3208 		dir = ntfs_iget5(sb, &fname->home, NULL);
3209 		if (IS_ERR(dir)) {
3210 			ntfs_inode_warn(
3211 				&ni->vfs_inode,
3212 				"failed to open parent directory r=%lx to update",
3213 				(long)ino_get(&fname->home));
3214 			continue;
3215 		}
3216 
3217 		if (!is_bad_inode(dir)) {
3218 			struct ntfs_inode *dir_ni = ntfs_i(dir);
3219 
3220 			if (!ni_trylock(dir_ni)) {
3221 				re_dirty = true;
3222 			} else {
3223 				indx_update_dup(dir_ni, sbi, fname, dup, sync);
3224 				ni_unlock(dir_ni);
3225 				memcpy(&fname->dup, dup, sizeof(fname->dup));
3226 				mi->dirty = true;
3227 			}
3228 		}
3229 		iput(dir);
3230 	}
3231 
3232 	return re_dirty;
3233 }
3234 
3235 /*
3236  * ni_write_inode - Write MFT base record and all subrecords to disk.
3237  */
ni_write_inode(struct inode * inode,int sync,const char * hint)3238 int ni_write_inode(struct inode *inode, int sync, const char *hint)
3239 {
3240 	int err = 0, err2;
3241 	struct ntfs_inode *ni = ntfs_i(inode);
3242 	struct super_block *sb = inode->i_sb;
3243 	struct ntfs_sb_info *sbi = sb->s_fs_info;
3244 	bool re_dirty = false;
3245 	struct ATTR_STD_INFO *std;
3246 	struct rb_node *node, *next;
3247 	struct NTFS_DUP_INFO dup;
3248 
3249 	if (is_bad_inode(inode) || sb_rdonly(sb))
3250 		return 0;
3251 
3252 	if (!ni_trylock(ni)) {
3253 		/* 'ni' is under modification, skip for now. */
3254 		mark_inode_dirty_sync(inode);
3255 		return 0;
3256 	}
3257 
3258 	if (is_rec_inuse(ni->mi.mrec) &&
3259 	    !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
3260 		bool modified = false;
3261 
3262 		/* Update times in standard attribute. */
3263 		std = ni_std(ni);
3264 		if (!std) {
3265 			err = -EINVAL;
3266 			goto out;
3267 		}
3268 
3269 		/* Update the access times if they have changed. */
3270 		dup.m_time = kernel2nt(&inode->i_mtime);
3271 		if (std->m_time != dup.m_time) {
3272 			std->m_time = dup.m_time;
3273 			modified = true;
3274 		}
3275 
3276 		dup.c_time = kernel2nt(&inode->i_ctime);
3277 		if (std->c_time != dup.c_time) {
3278 			std->c_time = dup.c_time;
3279 			modified = true;
3280 		}
3281 
3282 		dup.a_time = kernel2nt(&inode->i_atime);
3283 		if (std->a_time != dup.a_time) {
3284 			std->a_time = dup.a_time;
3285 			modified = true;
3286 		}
3287 
3288 		dup.fa = ni->std_fa;
3289 		if (std->fa != dup.fa) {
3290 			std->fa = dup.fa;
3291 			modified = true;
3292 		}
3293 
3294 		if (modified)
3295 			ni->mi.dirty = true;
3296 
3297 		if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
3298 		    (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3299 		    /* Avoid __wait_on_freeing_inode(inode). */
3300 		    && (sb->s_flags & SB_ACTIVE)) {
3301 			dup.cr_time = std->cr_time;
3302 			/* Not critical if this function fail. */
3303 			re_dirty = ni_update_parent(ni, &dup, sync);
3304 
3305 			if (re_dirty)
3306 				ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3307 			else
3308 				ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
3309 		}
3310 
3311 		/* Update attribute list. */
3312 		if (ni->attr_list.size && ni->attr_list.dirty) {
3313 			if (inode->i_ino != MFT_REC_MFT || sync) {
3314 				err = ni_try_remove_attr_list(ni);
3315 				if (err)
3316 					goto out;
3317 			}
3318 
3319 			err = al_update(ni, sync);
3320 			if (err)
3321 				goto out;
3322 		}
3323 	}
3324 
3325 	for (node = rb_first(&ni->mi_tree); node; node = next) {
3326 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
3327 		bool is_empty;
3328 
3329 		next = rb_next(node);
3330 
3331 		if (!mi->dirty)
3332 			continue;
3333 
3334 		is_empty = !mi_enum_attr(mi, NULL);
3335 
3336 		if (is_empty)
3337 			clear_rec_inuse(mi->mrec);
3338 
3339 		err2 = mi_write(mi, sync);
3340 		if (!err && err2)
3341 			err = err2;
3342 
3343 		if (is_empty) {
3344 			ntfs_mark_rec_free(sbi, mi->rno, false);
3345 			rb_erase(node, &ni->mi_tree);
3346 			mi_put(mi);
3347 		}
3348 	}
3349 
3350 	if (ni->mi.dirty) {
3351 		err2 = mi_write(&ni->mi, sync);
3352 		if (!err && err2)
3353 			err = err2;
3354 	}
3355 out:
3356 	ni_unlock(ni);
3357 
3358 	if (err) {
3359 		ntfs_err(sb, "%s r=%lx failed, %d.", hint, inode->i_ino, err);
3360 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3361 		return err;
3362 	}
3363 
3364 	if (re_dirty)
3365 		mark_inode_dirty_sync(inode);
3366 
3367 	return 0;
3368 }
3369