1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8 #include <linux/fiemap.h>
9 #include <linux/fs.h>
10 #include <linux/minmax.h>
11 #include <linux/vmalloc.h>
12
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 #ifdef CONFIG_NTFS3_LZX_XPRESS
17 #include "lib/lib.h"
18 #endif
19
ni_ins_mi(struct ntfs_inode * ni,struct rb_root * tree,CLST ino,struct rb_node * ins)20 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
21 CLST ino, struct rb_node *ins)
22 {
23 struct rb_node **p = &tree->rb_node;
24 struct rb_node *pr = NULL;
25
26 while (*p) {
27 struct mft_inode *mi;
28
29 pr = *p;
30 mi = rb_entry(pr, struct mft_inode, node);
31 if (mi->rno > ino)
32 p = &pr->rb_left;
33 else if (mi->rno < ino)
34 p = &pr->rb_right;
35 else
36 return mi;
37 }
38
39 if (!ins)
40 return NULL;
41
42 rb_link_node(ins, pr, p);
43 rb_insert_color(ins, tree);
44 return rb_entry(ins, struct mft_inode, node);
45 }
46
47 /*
48 * ni_find_mi - Find mft_inode by record number.
49 */
ni_find_mi(struct ntfs_inode * ni,CLST rno)50 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
51 {
52 return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
53 }
54
55 /*
56 * ni_add_mi - Add new mft_inode into ntfs_inode.
57 */
ni_add_mi(struct ntfs_inode * ni,struct mft_inode * mi)58 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
59 {
60 ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
61 }
62
63 /*
64 * ni_remove_mi - Remove mft_inode from ntfs_inode.
65 */
ni_remove_mi(struct ntfs_inode * ni,struct mft_inode * mi)66 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
67 {
68 rb_erase(&mi->node, &ni->mi_tree);
69 }
70
71 /*
72 * ni_std - Return: Pointer into std_info from primary record.
73 */
ni_std(struct ntfs_inode * ni)74 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
75 {
76 const struct ATTRIB *attr;
77
78 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
79 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO))
80 : NULL;
81 }
82
83 /*
84 * ni_std5
85 *
86 * Return: Pointer into std_info from primary record.
87 */
ni_std5(struct ntfs_inode * ni)88 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
89 {
90 const struct ATTRIB *attr;
91
92 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
93
94 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5))
95 : NULL;
96 }
97
98 /*
99 * ni_clear - Clear resources allocated by ntfs_inode.
100 */
ni_clear(struct ntfs_inode * ni)101 void ni_clear(struct ntfs_inode *ni)
102 {
103 struct rb_node *node;
104
105 if (!ni->vfs_inode.i_nlink && is_rec_inuse(ni->mi.mrec))
106 ni_delete_all(ni);
107
108 al_destroy(ni);
109
110 for (node = rb_first(&ni->mi_tree); node;) {
111 struct rb_node *next = rb_next(node);
112 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
113
114 rb_erase(node, &ni->mi_tree);
115 mi_put(mi);
116 node = next;
117 }
118
119 /* Bad inode always has mode == S_IFREG. */
120 if (ni->ni_flags & NI_FLAG_DIR)
121 indx_clear(&ni->dir);
122 else {
123 run_close(&ni->file.run);
124 #ifdef CONFIG_NTFS3_LZX_XPRESS
125 if (ni->file.offs_page) {
126 /* On-demand allocated page for offsets. */
127 put_page(ni->file.offs_page);
128 ni->file.offs_page = NULL;
129 }
130 #endif
131 }
132
133 mi_clear(&ni->mi);
134 }
135
136 /*
137 * ni_load_mi_ex - Find mft_inode by record number.
138 */
ni_load_mi_ex(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)139 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
140 {
141 int err;
142 struct mft_inode *r;
143
144 r = ni_find_mi(ni, rno);
145 if (r)
146 goto out;
147
148 err = mi_get(ni->mi.sbi, rno, &r);
149 if (err)
150 return err;
151
152 ni_add_mi(ni, r);
153
154 out:
155 if (mi)
156 *mi = r;
157 return 0;
158 }
159
160 /*
161 * ni_load_mi - Load mft_inode corresponded list_entry.
162 */
ni_load_mi(struct ntfs_inode * ni,const struct ATTR_LIST_ENTRY * le,struct mft_inode ** mi)163 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le,
164 struct mft_inode **mi)
165 {
166 CLST rno;
167
168 if (!le) {
169 *mi = &ni->mi;
170 return 0;
171 }
172
173 rno = ino_get(&le->ref);
174 if (rno == ni->mi.rno) {
175 *mi = &ni->mi;
176 return 0;
177 }
178 return ni_load_mi_ex(ni, rno, mi);
179 }
180
181 /*
182 * ni_find_attr
183 *
184 * Return: Attribute and record this attribute belongs to.
185 */
ni_find_attr(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le_o,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const CLST * vcn,struct mft_inode ** mi)186 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
187 struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
188 const __le16 *name, u8 name_len, const CLST *vcn,
189 struct mft_inode **mi)
190 {
191 struct ATTR_LIST_ENTRY *le;
192 struct mft_inode *m;
193
194 if (!ni->attr_list.size ||
195 (!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
196 if (le_o)
197 *le_o = NULL;
198 if (mi)
199 *mi = &ni->mi;
200
201 /* Look for required attribute in primary record. */
202 return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL);
203 }
204
205 /* First look for list entry of required type. */
206 le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
207 if (!le)
208 return NULL;
209
210 if (le_o)
211 *le_o = le;
212
213 /* Load record that contains this attribute. */
214 if (ni_load_mi(ni, le, &m))
215 return NULL;
216
217 /* Look for required attribute. */
218 attr = mi_find_attr(m, NULL, type, name, name_len, &le->id);
219
220 if (!attr)
221 goto out;
222
223 if (!attr->non_res) {
224 if (vcn && *vcn)
225 goto out;
226 } else if (!vcn) {
227 if (attr->nres.svcn)
228 goto out;
229 } else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
230 *vcn > le64_to_cpu(attr->nres.evcn)) {
231 goto out;
232 }
233
234 if (mi)
235 *mi = m;
236 return attr;
237
238 out:
239 ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
240 return NULL;
241 }
242
243 /*
244 * ni_enum_attr_ex - Enumerates attributes in ntfs_inode.
245 */
ni_enum_attr_ex(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le,struct mft_inode ** mi)246 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
247 struct ATTR_LIST_ENTRY **le,
248 struct mft_inode **mi)
249 {
250 struct mft_inode *mi2;
251 struct ATTR_LIST_ENTRY *le2;
252
253 /* Do we have an attribute list? */
254 if (!ni->attr_list.size) {
255 *le = NULL;
256 if (mi)
257 *mi = &ni->mi;
258 /* Enum attributes in primary record. */
259 return mi_enum_attr(&ni->mi, attr);
260 }
261
262 /* Get next list entry. */
263 le2 = *le = al_enumerate(ni, attr ? *le : NULL);
264 if (!le2)
265 return NULL;
266
267 /* Load record that contains the required attribute. */
268 if (ni_load_mi(ni, le2, &mi2))
269 return NULL;
270
271 if (mi)
272 *mi = mi2;
273
274 /* Find attribute in loaded record. */
275 return rec_find_attr_le(mi2, le2);
276 }
277
278 /*
279 * ni_load_attr - Load attribute that contains given VCN.
280 */
ni_load_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,CLST vcn,struct mft_inode ** pmi)281 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
282 const __le16 *name, u8 name_len, CLST vcn,
283 struct mft_inode **pmi)
284 {
285 struct ATTR_LIST_ENTRY *le;
286 struct ATTRIB *attr;
287 struct mft_inode *mi;
288 struct ATTR_LIST_ENTRY *next;
289
290 if (!ni->attr_list.size) {
291 if (pmi)
292 *pmi = &ni->mi;
293 return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL);
294 }
295
296 le = al_find_ex(ni, NULL, type, name, name_len, NULL);
297 if (!le)
298 return NULL;
299
300 /*
301 * Unfortunately ATTR_LIST_ENTRY contains only start VCN.
302 * So to find the ATTRIB segment that contains 'vcn' we should
303 * enumerate some entries.
304 */
305 if (vcn) {
306 for (;; le = next) {
307 next = al_find_ex(ni, le, type, name, name_len, NULL);
308 if (!next || le64_to_cpu(next->vcn) > vcn)
309 break;
310 }
311 }
312
313 if (ni_load_mi(ni, le, &mi))
314 return NULL;
315
316 if (pmi)
317 *pmi = mi;
318
319 attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id);
320 if (!attr)
321 return NULL;
322
323 if (!attr->non_res)
324 return attr;
325
326 if (le64_to_cpu(attr->nres.svcn) <= vcn &&
327 vcn <= le64_to_cpu(attr->nres.evcn))
328 return attr;
329
330 return NULL;
331 }
332
333 /*
334 * ni_load_all_mi - Load all subrecords.
335 */
ni_load_all_mi(struct ntfs_inode * ni)336 int ni_load_all_mi(struct ntfs_inode *ni)
337 {
338 int err;
339 struct ATTR_LIST_ENTRY *le;
340
341 if (!ni->attr_list.size)
342 return 0;
343
344 le = NULL;
345
346 while ((le = al_enumerate(ni, le))) {
347 CLST rno = ino_get(&le->ref);
348
349 if (rno == ni->mi.rno)
350 continue;
351
352 err = ni_load_mi_ex(ni, rno, NULL);
353 if (err)
354 return err;
355 }
356
357 return 0;
358 }
359
360 /*
361 * ni_add_subrecord - Allocate + format + attach a new subrecord.
362 */
ni_add_subrecord(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)363 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
364 {
365 struct mft_inode *m;
366
367 m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
368 if (!m)
369 return false;
370
371 if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
372 mi_put(m);
373 return false;
374 }
375
376 mi_get_ref(&ni->mi, &m->mrec->parent_ref);
377
378 ni_add_mi(ni, m);
379 *mi = m;
380 return true;
381 }
382
383 /*
384 * ni_remove_attr - Remove all attributes for the given type/name/id.
385 */
ni_remove_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,size_t name_len,bool base_only,const __le16 * id)386 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
387 const __le16 *name, size_t name_len, bool base_only,
388 const __le16 *id)
389 {
390 int err;
391 struct ATTRIB *attr;
392 struct ATTR_LIST_ENTRY *le;
393 struct mft_inode *mi;
394 u32 type_in;
395 int diff;
396
397 if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
398 attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id);
399 if (!attr)
400 return -ENOENT;
401
402 mi_remove_attr(ni, &ni->mi, attr);
403 return 0;
404 }
405
406 type_in = le32_to_cpu(type);
407 le = NULL;
408
409 for (;;) {
410 le = al_enumerate(ni, le);
411 if (!le)
412 return 0;
413
414 next_le2:
415 diff = le32_to_cpu(le->type) - type_in;
416 if (diff < 0)
417 continue;
418
419 if (diff > 0)
420 return 0;
421
422 if (le->name_len != name_len)
423 continue;
424
425 if (name_len &&
426 memcmp(le_name(le), name, name_len * sizeof(short)))
427 continue;
428
429 if (id && le->id != *id)
430 continue;
431 err = ni_load_mi(ni, le, &mi);
432 if (err)
433 return err;
434
435 al_remove_le(ni, le);
436
437 attr = mi_find_attr(mi, NULL, type, name, name_len, id);
438 if (!attr)
439 return -ENOENT;
440
441 mi_remove_attr(ni, mi, attr);
442
443 if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
444 return 0;
445 goto next_le2;
446 }
447 }
448
449 /*
450 * ni_ins_new_attr - Insert the attribute into record.
451 *
452 * Return: Not full constructed attribute or NULL if not possible to create.
453 */
454 static struct ATTRIB *
ni_ins_new_attr(struct ntfs_inode * ni,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTR_LIST_ENTRY ** ins_le)455 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi,
456 struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type,
457 const __le16 *name, u8 name_len, u32 asize, u16 name_off,
458 CLST svcn, struct ATTR_LIST_ENTRY **ins_le)
459 {
460 int err;
461 struct ATTRIB *attr;
462 bool le_added = false;
463 struct MFT_REF ref;
464
465 mi_get_ref(mi, &ref);
466
467 if (type != ATTR_LIST && !le && ni->attr_list.size) {
468 err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
469 &ref, &le);
470 if (err) {
471 /* No memory or no space. */
472 return ERR_PTR(err);
473 }
474 le_added = true;
475
476 /*
477 * al_add_le -> attr_set_size (list) -> ni_expand_list
478 * which moves some attributes out of primary record
479 * this means that name may point into moved memory
480 * reinit 'name' from le.
481 */
482 name = le->name;
483 }
484
485 attr = mi_insert_attr(mi, type, name, name_len, asize, name_off);
486 if (!attr) {
487 if (le_added)
488 al_remove_le(ni, le);
489 return NULL;
490 }
491
492 if (type == ATTR_LIST) {
493 /* Attr list is not in list entry array. */
494 goto out;
495 }
496
497 if (!le)
498 goto out;
499
500 /* Update ATTRIB Id and record reference. */
501 le->id = attr->id;
502 ni->attr_list.dirty = true;
503 le->ref = ref;
504
505 out:
506 if (ins_le)
507 *ins_le = le;
508 return attr;
509 }
510
511 /*
512 * ni_repack
513 *
514 * Random write access to sparsed or compressed file may result to
515 * not optimized packed runs.
516 * Here is the place to optimize it.
517 */
ni_repack(struct ntfs_inode * ni)518 static int ni_repack(struct ntfs_inode *ni)
519 {
520 int err = 0;
521 struct ntfs_sb_info *sbi = ni->mi.sbi;
522 struct mft_inode *mi, *mi_p = NULL;
523 struct ATTRIB *attr = NULL, *attr_p;
524 struct ATTR_LIST_ENTRY *le = NULL, *le_p;
525 CLST alloc = 0;
526 u8 cluster_bits = sbi->cluster_bits;
527 CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
528 u32 roff, rs = sbi->record_size;
529 struct runs_tree run;
530
531 run_init(&run);
532
533 while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
534 if (!attr->non_res)
535 continue;
536
537 svcn = le64_to_cpu(attr->nres.svcn);
538 if (svcn != le64_to_cpu(le->vcn)) {
539 err = -EINVAL;
540 break;
541 }
542
543 if (!svcn) {
544 alloc = le64_to_cpu(attr->nres.alloc_size) >>
545 cluster_bits;
546 mi_p = NULL;
547 } else if (svcn != evcn + 1) {
548 err = -EINVAL;
549 break;
550 }
551
552 evcn = le64_to_cpu(attr->nres.evcn);
553
554 if (svcn > evcn + 1) {
555 err = -EINVAL;
556 break;
557 }
558
559 if (!mi_p) {
560 /* Do not try if not enogh free space. */
561 if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
562 continue;
563
564 /* Do not try if last attribute segment. */
565 if (evcn + 1 == alloc)
566 continue;
567 run_close(&run);
568 }
569
570 roff = le16_to_cpu(attr->nres.run_off);
571
572 if (roff > le32_to_cpu(attr->size)) {
573 err = -EINVAL;
574 break;
575 }
576
577 err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
578 Add2Ptr(attr, roff),
579 le32_to_cpu(attr->size) - roff);
580 if (err < 0)
581 break;
582
583 if (!mi_p) {
584 mi_p = mi;
585 attr_p = attr;
586 svcn_p = svcn;
587 evcn_p = evcn;
588 le_p = le;
589 err = 0;
590 continue;
591 }
592
593 /*
594 * Run contains data from two records: mi_p and mi
595 * Try to pack in one.
596 */
597 err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
598 if (err)
599 break;
600
601 next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
602
603 if (next_svcn >= evcn + 1) {
604 /* We can remove this attribute segment. */
605 al_remove_le(ni, le);
606 mi_remove_attr(NULL, mi, attr);
607 le = le_p;
608 continue;
609 }
610
611 attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
612 mi->dirty = true;
613 ni->attr_list.dirty = true;
614
615 if (evcn + 1 == alloc) {
616 err = mi_pack_runs(mi, attr, &run,
617 evcn + 1 - next_svcn);
618 if (err)
619 break;
620 mi_p = NULL;
621 } else {
622 mi_p = mi;
623 attr_p = attr;
624 svcn_p = next_svcn;
625 evcn_p = evcn;
626 le_p = le;
627 run_truncate_head(&run, next_svcn);
628 }
629 }
630
631 if (err) {
632 ntfs_inode_warn(&ni->vfs_inode, "repack problem");
633 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
634
635 /* Pack loaded but not packed runs. */
636 if (mi_p)
637 mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
638 }
639
640 run_close(&run);
641 return err;
642 }
643
644 /*
645 * ni_try_remove_attr_list
646 *
647 * Can we remove attribute list?
648 * Check the case when primary record contains enough space for all attributes.
649 */
ni_try_remove_attr_list(struct ntfs_inode * ni)650 static int ni_try_remove_attr_list(struct ntfs_inode *ni)
651 {
652 int err = 0;
653 struct ntfs_sb_info *sbi = ni->mi.sbi;
654 struct ATTRIB *attr, *attr_list, *attr_ins;
655 struct ATTR_LIST_ENTRY *le;
656 struct mft_inode *mi;
657 u32 asize, free;
658 struct MFT_REF ref;
659 struct MFT_REC *mrec;
660 __le16 id;
661
662 if (!ni->attr_list.dirty)
663 return 0;
664
665 err = ni_repack(ni);
666 if (err)
667 return err;
668
669 attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
670 if (!attr_list)
671 return 0;
672
673 asize = le32_to_cpu(attr_list->size);
674
675 /* Free space in primary record without attribute list. */
676 free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
677 mi_get_ref(&ni->mi, &ref);
678
679 le = NULL;
680 while ((le = al_enumerate(ni, le))) {
681 if (!memcmp(&le->ref, &ref, sizeof(ref)))
682 continue;
683
684 if (le->vcn)
685 return 0;
686
687 mi = ni_find_mi(ni, ino_get(&le->ref));
688 if (!mi)
689 return 0;
690
691 attr = mi_find_attr(mi, NULL, le->type, le_name(le),
692 le->name_len, &le->id);
693 if (!attr)
694 return 0;
695
696 asize = le32_to_cpu(attr->size);
697 if (asize > free)
698 return 0;
699
700 free -= asize;
701 }
702
703 /* Make a copy of primary record to restore if error. */
704 mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS);
705 if (!mrec)
706 return 0; /* Not critical. */
707
708 /* It seems that attribute list can be removed from primary record. */
709 mi_remove_attr(NULL, &ni->mi, attr_list);
710
711 /*
712 * Repeat the cycle above and copy all attributes to primary record.
713 * Do not remove original attributes from subrecords!
714 * It should be success!
715 */
716 le = NULL;
717 while ((le = al_enumerate(ni, le))) {
718 if (!memcmp(&le->ref, &ref, sizeof(ref)))
719 continue;
720
721 mi = ni_find_mi(ni, ino_get(&le->ref));
722 if (!mi) {
723 /* Should never happened, 'cause already checked. */
724 goto out;
725 }
726
727 attr = mi_find_attr(mi, NULL, le->type, le_name(le),
728 le->name_len, &le->id);
729 if (!attr) {
730 /* Should never happened, 'cause already checked. */
731 goto out;
732 }
733 asize = le32_to_cpu(attr->size);
734
735 /* Insert into primary record. */
736 attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le),
737 le->name_len, asize,
738 le16_to_cpu(attr->name_off));
739 if (!attr_ins) {
740 /*
741 * No space in primary record (already checked).
742 */
743 goto out;
744 }
745
746 /* Copy all except id. */
747 id = attr_ins->id;
748 memcpy(attr_ins, attr, asize);
749 attr_ins->id = id;
750 }
751
752 /*
753 * Repeat the cycle above and remove all attributes from subrecords.
754 */
755 le = NULL;
756 while ((le = al_enumerate(ni, le))) {
757 if (!memcmp(&le->ref, &ref, sizeof(ref)))
758 continue;
759
760 mi = ni_find_mi(ni, ino_get(&le->ref));
761 if (!mi)
762 continue;
763
764 attr = mi_find_attr(mi, NULL, le->type, le_name(le),
765 le->name_len, &le->id);
766 if (!attr)
767 continue;
768
769 /* Remove from original record. */
770 mi_remove_attr(NULL, mi, attr);
771 }
772
773 run_deallocate(sbi, &ni->attr_list.run, true);
774 run_close(&ni->attr_list.run);
775 ni->attr_list.size = 0;
776 kfree(ni->attr_list.le);
777 ni->attr_list.le = NULL;
778 ni->attr_list.dirty = false;
779
780 kfree(mrec);
781 return 0;
782 out:
783 /* Restore primary record. */
784 swap(mrec, ni->mi.mrec);
785 kfree(mrec);
786 return 0;
787 }
788
789 /*
790 * ni_create_attr_list - Generates an attribute list for this primary record.
791 */
ni_create_attr_list(struct ntfs_inode * ni)792 int ni_create_attr_list(struct ntfs_inode *ni)
793 {
794 struct ntfs_sb_info *sbi = ni->mi.sbi;
795 int err;
796 u32 lsize;
797 struct ATTRIB *attr;
798 struct ATTRIB *arr_move[7];
799 struct ATTR_LIST_ENTRY *le, *le_b[7];
800 struct MFT_REC *rec;
801 bool is_mft;
802 CLST rno = 0;
803 struct mft_inode *mi;
804 u32 free_b, nb, to_free, rs;
805 u16 sz;
806
807 is_mft = ni->mi.rno == MFT_REC_MFT;
808 rec = ni->mi.mrec;
809 rs = sbi->record_size;
810
811 /*
812 * Skip estimating exact memory requirement.
813 * Looks like one record_size is always enough.
814 */
815 le = kmalloc(al_aligned(rs), GFP_NOFS);
816 if (!le) {
817 err = -ENOMEM;
818 goto out;
819 }
820
821 mi_get_ref(&ni->mi, &le->ref);
822 ni->attr_list.le = le;
823
824 attr = NULL;
825 nb = 0;
826 free_b = 0;
827 attr = NULL;
828
829 for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) {
830 sz = le_size(attr->name_len);
831 le->type = attr->type;
832 le->size = cpu_to_le16(sz);
833 le->name_len = attr->name_len;
834 le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
835 le->vcn = 0;
836 if (le != ni->attr_list.le)
837 le->ref = ni->attr_list.le->ref;
838 le->id = attr->id;
839
840 if (attr->name_len)
841 memcpy(le->name, attr_name(attr),
842 sizeof(short) * attr->name_len);
843 else if (attr->type == ATTR_STD)
844 continue;
845 else if (attr->type == ATTR_LIST)
846 continue;
847 else if (is_mft && attr->type == ATTR_DATA)
848 continue;
849
850 if (!nb || nb < ARRAY_SIZE(arr_move)) {
851 le_b[nb] = le;
852 arr_move[nb++] = attr;
853 free_b += le32_to_cpu(attr->size);
854 }
855 }
856
857 lsize = PtrOffset(ni->attr_list.le, le);
858 ni->attr_list.size = lsize;
859
860 to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
861 if (to_free <= rs) {
862 to_free = 0;
863 } else {
864 to_free -= rs;
865
866 if (to_free > free_b) {
867 err = -EINVAL;
868 goto out1;
869 }
870 }
871
872 /* Allocate child MFT. */
873 err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
874 if (err)
875 goto out1;
876
877 err = -EINVAL;
878 /* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */
879 while (to_free > 0) {
880 struct ATTRIB *b = arr_move[--nb];
881 u32 asize = le32_to_cpu(b->size);
882 u16 name_off = le16_to_cpu(b->name_off);
883
884 attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off),
885 b->name_len, asize, name_off);
886 if (!attr)
887 goto out1;
888
889 mi_get_ref(mi, &le_b[nb]->ref);
890 le_b[nb]->id = attr->id;
891
892 /* Copy all except id. */
893 memcpy(attr, b, asize);
894 attr->id = le_b[nb]->id;
895
896 /* Remove from primary record. */
897 if (!mi_remove_attr(NULL, &ni->mi, b))
898 goto out1;
899
900 if (to_free <= asize)
901 break;
902 to_free -= asize;
903 if (!nb)
904 goto out1;
905 }
906
907 attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0,
908 lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
909 if (!attr)
910 goto out1;
911
912 attr->non_res = 0;
913 attr->flags = 0;
914 attr->res.data_size = cpu_to_le32(lsize);
915 attr->res.data_off = SIZEOF_RESIDENT_LE;
916 attr->res.flags = 0;
917 attr->res.res = 0;
918
919 memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
920
921 ni->attr_list.dirty = false;
922
923 mark_inode_dirty(&ni->vfs_inode);
924 goto out;
925
926 out1:
927 kfree(ni->attr_list.le);
928 ni->attr_list.le = NULL;
929 ni->attr_list.size = 0;
930 return err;
931
932 out:
933 return 0;
934 }
935
936 /*
937 * ni_ins_attr_ext - Add an external attribute to the ntfs_inode.
938 */
ni_ins_attr_ext(struct ntfs_inode * ni,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,CLST svcn,u16 name_off,bool force_ext,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)939 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
940 enum ATTR_TYPE type, const __le16 *name, u8 name_len,
941 u32 asize, CLST svcn, u16 name_off, bool force_ext,
942 struct ATTRIB **ins_attr, struct mft_inode **ins_mi,
943 struct ATTR_LIST_ENTRY **ins_le)
944 {
945 struct ATTRIB *attr;
946 struct mft_inode *mi;
947 CLST rno;
948 u64 vbo;
949 struct rb_node *node;
950 int err;
951 bool is_mft, is_mft_data;
952 struct ntfs_sb_info *sbi = ni->mi.sbi;
953
954 is_mft = ni->mi.rno == MFT_REC_MFT;
955 is_mft_data = is_mft && type == ATTR_DATA && !name_len;
956
957 if (asize > sbi->max_bytes_per_attr) {
958 err = -EINVAL;
959 goto out;
960 }
961
962 /*
963 * Standard information and attr_list cannot be made external.
964 * The Log File cannot have any external attributes.
965 */
966 if (type == ATTR_STD || type == ATTR_LIST ||
967 ni->mi.rno == MFT_REC_LOG) {
968 err = -EINVAL;
969 goto out;
970 }
971
972 /* Create attribute list if it is not already existed. */
973 if (!ni->attr_list.size) {
974 err = ni_create_attr_list(ni);
975 if (err)
976 goto out;
977 }
978
979 vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
980
981 if (force_ext)
982 goto insert_ext;
983
984 /* Load all subrecords into memory. */
985 err = ni_load_all_mi(ni);
986 if (err)
987 goto out;
988
989 /* Check each of loaded subrecord. */
990 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
991 mi = rb_entry(node, struct mft_inode, node);
992
993 if (is_mft_data &&
994 (mi_enum_attr(mi, NULL) ||
995 vbo <= ((u64)mi->rno << sbi->record_bits))) {
996 /* We can't accept this record 'cause MFT's bootstrapping. */
997 continue;
998 }
999 if (is_mft &&
1000 mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
1001 /*
1002 * This child record already has a ATTR_DATA.
1003 * So it can't accept any other records.
1004 */
1005 continue;
1006 }
1007
1008 if ((type != ATTR_NAME || name_len) &&
1009 mi_find_attr(mi, NULL, type, name, name_len, NULL)) {
1010 /* Only indexed attributes can share same record. */
1011 continue;
1012 }
1013
1014 /*
1015 * Do not try to insert this attribute
1016 * if there is no room in record.
1017 */
1018 if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size)
1019 continue;
1020
1021 /* Try to insert attribute into this subrecord. */
1022 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1023 name_off, svcn, ins_le);
1024 if (!attr)
1025 continue;
1026 if (IS_ERR(attr))
1027 return PTR_ERR(attr);
1028
1029 if (ins_attr)
1030 *ins_attr = attr;
1031 if (ins_mi)
1032 *ins_mi = mi;
1033 return 0;
1034 }
1035
1036 insert_ext:
1037 /* We have to allocate a new child subrecord. */
1038 err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
1039 if (err)
1040 goto out;
1041
1042 if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
1043 err = -EINVAL;
1044 goto out1;
1045 }
1046
1047 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1048 name_off, svcn, ins_le);
1049 if (!attr) {
1050 err = -EINVAL;
1051 goto out2;
1052 }
1053
1054 if (IS_ERR(attr)) {
1055 err = PTR_ERR(attr);
1056 goto out2;
1057 }
1058
1059 if (ins_attr)
1060 *ins_attr = attr;
1061 if (ins_mi)
1062 *ins_mi = mi;
1063
1064 return 0;
1065
1066 out2:
1067 ni_remove_mi(ni, mi);
1068 mi_put(mi);
1069
1070 out1:
1071 ntfs_mark_rec_free(sbi, rno, is_mft);
1072
1073 out:
1074 return err;
1075 }
1076
1077 /*
1078 * ni_insert_attr - Insert an attribute into the file.
1079 *
1080 * If the primary record has room, it will just insert the attribute.
1081 * If not, it may make the attribute external.
1082 * For $MFT::Data it may make room for the attribute by
1083 * making other attributes external.
1084 *
1085 * NOTE:
1086 * The ATTR_LIST and ATTR_STD cannot be made external.
1087 * This function does not fill new attribute full.
1088 * It only fills 'size'/'type'/'id'/'name_len' fields.
1089 */
ni_insert_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)1090 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
1091 const __le16 *name, u8 name_len, u32 asize,
1092 u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
1093 struct mft_inode **ins_mi,
1094 struct ATTR_LIST_ENTRY **ins_le)
1095 {
1096 struct ntfs_sb_info *sbi = ni->mi.sbi;
1097 int err;
1098 struct ATTRIB *attr, *eattr;
1099 struct MFT_REC *rec;
1100 bool is_mft;
1101 struct ATTR_LIST_ENTRY *le;
1102 u32 list_reserve, max_free, free, used, t32;
1103 __le16 id;
1104 u16 t16;
1105
1106 is_mft = ni->mi.rno == MFT_REC_MFT;
1107 rec = ni->mi.mrec;
1108
1109 list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
1110 used = le32_to_cpu(rec->used);
1111 free = sbi->record_size - used;
1112
1113 if (is_mft && type != ATTR_LIST) {
1114 /* Reserve space for the ATTRIB list. */
1115 if (free < list_reserve)
1116 free = 0;
1117 else
1118 free -= list_reserve;
1119 }
1120
1121 if (asize <= free) {
1122 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
1123 asize, name_off, svcn, ins_le);
1124 if (IS_ERR(attr)) {
1125 err = PTR_ERR(attr);
1126 goto out;
1127 }
1128
1129 if (attr) {
1130 if (ins_attr)
1131 *ins_attr = attr;
1132 if (ins_mi)
1133 *ins_mi = &ni->mi;
1134 err = 0;
1135 goto out;
1136 }
1137 }
1138
1139 if (!is_mft || type != ATTR_DATA || svcn) {
1140 /* This ATTRIB will be external. */
1141 err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
1142 svcn, name_off, false, ins_attr, ins_mi,
1143 ins_le);
1144 goto out;
1145 }
1146
1147 /*
1148 * Here we have: "is_mft && type == ATTR_DATA && !svcn"
1149 *
1150 * The first chunk of the $MFT::Data ATTRIB must be the base record.
1151 * Evict as many other attributes as possible.
1152 */
1153 max_free = free;
1154
1155 /* Estimate the result of moving all possible attributes away. */
1156 attr = NULL;
1157
1158 while ((attr = mi_enum_attr(&ni->mi, attr))) {
1159 if (attr->type == ATTR_STD)
1160 continue;
1161 if (attr->type == ATTR_LIST)
1162 continue;
1163 max_free += le32_to_cpu(attr->size);
1164 }
1165
1166 if (max_free < asize + list_reserve) {
1167 /* Impossible to insert this attribute into primary record. */
1168 err = -EINVAL;
1169 goto out;
1170 }
1171
1172 /* Start real attribute moving. */
1173 attr = NULL;
1174
1175 for (;;) {
1176 attr = mi_enum_attr(&ni->mi, attr);
1177 if (!attr) {
1178 /* We should never be here 'cause we have already check this case. */
1179 err = -EINVAL;
1180 goto out;
1181 }
1182
1183 /* Skip attributes that MUST be primary record. */
1184 if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
1185 continue;
1186
1187 le = NULL;
1188 if (ni->attr_list.size) {
1189 le = al_find_le(ni, NULL, attr);
1190 if (!le) {
1191 /* Really this is a serious bug. */
1192 err = -EINVAL;
1193 goto out;
1194 }
1195 }
1196
1197 t32 = le32_to_cpu(attr->size);
1198 t16 = le16_to_cpu(attr->name_off);
1199 err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
1200 attr->name_len, t32, attr_svcn(attr), t16,
1201 false, &eattr, NULL, NULL);
1202 if (err)
1203 return err;
1204
1205 id = eattr->id;
1206 memcpy(eattr, attr, t32);
1207 eattr->id = id;
1208
1209 /* Remove from primary record. */
1210 mi_remove_attr(NULL, &ni->mi, attr);
1211
1212 /* attr now points to next attribute. */
1213 if (attr->type == ATTR_END)
1214 goto out;
1215 }
1216 while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
1217 ;
1218
1219 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
1220 name_off, svcn, ins_le);
1221 if (!attr) {
1222 err = -EINVAL;
1223 goto out;
1224 }
1225
1226 if (IS_ERR(attr)) {
1227 err = PTR_ERR(attr);
1228 goto out;
1229 }
1230
1231 if (ins_attr)
1232 *ins_attr = attr;
1233 if (ins_mi)
1234 *ins_mi = &ni->mi;
1235
1236 out:
1237 return err;
1238 }
1239
1240 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */
ni_expand_mft_list(struct ntfs_inode * ni)1241 static int ni_expand_mft_list(struct ntfs_inode *ni)
1242 {
1243 int err = 0;
1244 struct runs_tree *run = &ni->file.run;
1245 u32 asize, run_size, done = 0;
1246 struct ATTRIB *attr;
1247 struct rb_node *node;
1248 CLST mft_min, mft_new, svcn, evcn, plen;
1249 struct mft_inode *mi, *mi_min, *mi_new;
1250 struct ntfs_sb_info *sbi = ni->mi.sbi;
1251
1252 /* Find the nearest MFT. */
1253 mft_min = 0;
1254 mft_new = 0;
1255 mi_min = NULL;
1256
1257 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
1258 mi = rb_entry(node, struct mft_inode, node);
1259
1260 attr = mi_enum_attr(mi, NULL);
1261
1262 if (!attr) {
1263 mft_min = mi->rno;
1264 mi_min = mi;
1265 break;
1266 }
1267 }
1268
1269 if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
1270 mft_new = 0;
1271 /* Really this is not critical. */
1272 } else if (mft_min > mft_new) {
1273 mft_min = mft_new;
1274 mi_min = mi_new;
1275 } else {
1276 ntfs_mark_rec_free(sbi, mft_new, true);
1277 mft_new = 0;
1278 ni_remove_mi(ni, mi_new);
1279 }
1280
1281 attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
1282 if (!attr) {
1283 err = -EINVAL;
1284 goto out;
1285 }
1286
1287 asize = le32_to_cpu(attr->size);
1288
1289 evcn = le64_to_cpu(attr->nres.evcn);
1290 svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
1291 if (evcn + 1 >= svcn) {
1292 err = -EINVAL;
1293 goto out;
1294 }
1295
1296 /*
1297 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn].
1298 *
1299 * Update first part of ATTR_DATA in 'primary MFT.
1300 */
1301 err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1302 asize - SIZEOF_NONRESIDENT, &plen);
1303 if (err < 0)
1304 goto out;
1305
1306 run_size = ALIGN(err, 8);
1307 err = 0;
1308
1309 if (plen < svcn) {
1310 err = -EINVAL;
1311 goto out;
1312 }
1313
1314 attr->nres.evcn = cpu_to_le64(svcn - 1);
1315 attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
1316 /* 'done' - How many bytes of primary MFT becomes free. */
1317 done = asize - run_size - SIZEOF_NONRESIDENT;
1318 le32_sub_cpu(&ni->mi.mrec->used, done);
1319
1320 /* Estimate packed size (run_buf=NULL). */
1321 err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
1322 &plen);
1323 if (err < 0)
1324 goto out;
1325
1326 run_size = ALIGN(err, 8);
1327 err = 0;
1328
1329 if (plen < evcn + 1 - svcn) {
1330 err = -EINVAL;
1331 goto out;
1332 }
1333
1334 /*
1335 * This function may implicitly call expand attr_list.
1336 * Insert second part of ATTR_DATA in 'mi_min'.
1337 */
1338 attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
1339 SIZEOF_NONRESIDENT + run_size,
1340 SIZEOF_NONRESIDENT, svcn, NULL);
1341 if (!attr) {
1342 err = -EINVAL;
1343 goto out;
1344 }
1345
1346 if (IS_ERR(attr)) {
1347 err = PTR_ERR(attr);
1348 goto out;
1349 }
1350
1351 attr->non_res = 1;
1352 attr->name_off = SIZEOF_NONRESIDENT_LE;
1353 attr->flags = 0;
1354
1355 /* This function can't fail - cause already checked above. */
1356 run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1357 run_size, &plen);
1358
1359 attr->nres.svcn = cpu_to_le64(svcn);
1360 attr->nres.evcn = cpu_to_le64(evcn);
1361 attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
1362
1363 out:
1364 if (mft_new) {
1365 ntfs_mark_rec_free(sbi, mft_new, true);
1366 ni_remove_mi(ni, mi_new);
1367 }
1368
1369 return !err && !done ? -EOPNOTSUPP : err;
1370 }
1371
1372 /*
1373 * ni_expand_list - Move all possible attributes out of primary record.
1374 */
ni_expand_list(struct ntfs_inode * ni)1375 int ni_expand_list(struct ntfs_inode *ni)
1376 {
1377 int err = 0;
1378 u32 asize, done = 0;
1379 struct ATTRIB *attr, *ins_attr;
1380 struct ATTR_LIST_ENTRY *le;
1381 bool is_mft = ni->mi.rno == MFT_REC_MFT;
1382 struct MFT_REF ref;
1383
1384 mi_get_ref(&ni->mi, &ref);
1385 le = NULL;
1386
1387 while ((le = al_enumerate(ni, le))) {
1388 if (le->type == ATTR_STD)
1389 continue;
1390
1391 if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
1392 continue;
1393
1394 if (is_mft && le->type == ATTR_DATA)
1395 continue;
1396
1397 /* Find attribute in primary record. */
1398 attr = rec_find_attr_le(&ni->mi, le);
1399 if (!attr) {
1400 err = -EINVAL;
1401 goto out;
1402 }
1403
1404 asize = le32_to_cpu(attr->size);
1405
1406 /* Always insert into new record to avoid collisions (deep recursive). */
1407 err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
1408 attr->name_len, asize, attr_svcn(attr),
1409 le16_to_cpu(attr->name_off), true,
1410 &ins_attr, NULL, NULL);
1411
1412 if (err)
1413 goto out;
1414
1415 memcpy(ins_attr, attr, asize);
1416 ins_attr->id = le->id;
1417 /* Remove from primary record. */
1418 mi_remove_attr(NULL, &ni->mi, attr);
1419
1420 done += asize;
1421 goto out;
1422 }
1423
1424 if (!is_mft) {
1425 err = -EFBIG; /* Attr list is too big(?) */
1426 goto out;
1427 }
1428
1429 /* Split MFT data as much as possible. */
1430 err = ni_expand_mft_list(ni);
1431
1432 out:
1433 return !err && !done ? -EOPNOTSUPP : err;
1434 }
1435
1436 /*
1437 * ni_insert_nonresident - Insert new nonresident attribute.
1438 */
ni_insert_nonresident(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const struct runs_tree * run,CLST svcn,CLST len,__le16 flags,struct ATTRIB ** new_attr,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1439 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
1440 const __le16 *name, u8 name_len,
1441 const struct runs_tree *run, CLST svcn, CLST len,
1442 __le16 flags, struct ATTRIB **new_attr,
1443 struct mft_inode **mi, struct ATTR_LIST_ENTRY **le)
1444 {
1445 int err;
1446 CLST plen;
1447 struct ATTRIB *attr;
1448 bool is_ext =
1449 (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && !svcn;
1450 u32 name_size = ALIGN(name_len * sizeof(short), 8);
1451 u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
1452 u32 run_off = name_off + name_size;
1453 u32 run_size, asize;
1454 struct ntfs_sb_info *sbi = ni->mi.sbi;
1455
1456 /* Estimate packed size (run_buf=NULL). */
1457 err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
1458 &plen);
1459 if (err < 0)
1460 goto out;
1461
1462 run_size = ALIGN(err, 8);
1463
1464 if (plen < len) {
1465 err = -EINVAL;
1466 goto out;
1467 }
1468
1469 asize = run_off + run_size;
1470
1471 if (asize > sbi->max_bytes_per_attr) {
1472 err = -EINVAL;
1473 goto out;
1474 }
1475
1476 err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
1477 &attr, mi, le);
1478
1479 if (err)
1480 goto out;
1481
1482 attr->non_res = 1;
1483 attr->name_off = cpu_to_le16(name_off);
1484 attr->flags = flags;
1485
1486 /* This function can't fail - cause already checked above. */
1487 run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
1488
1489 attr->nres.svcn = cpu_to_le64(svcn);
1490 attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
1491
1492 if (new_attr)
1493 *new_attr = attr;
1494
1495 *(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
1496
1497 attr->nres.alloc_size =
1498 svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
1499 attr->nres.data_size = attr->nres.alloc_size;
1500 attr->nres.valid_size = attr->nres.alloc_size;
1501
1502 if (is_ext) {
1503 if (flags & ATTR_FLAG_COMPRESSED)
1504 attr->nres.c_unit = COMPRESSION_UNIT;
1505 attr->nres.total_size = attr->nres.alloc_size;
1506 }
1507
1508 out:
1509 return err;
1510 }
1511
1512 /*
1513 * ni_insert_resident - Inserts new resident attribute.
1514 */
ni_insert_resident(struct ntfs_inode * ni,u32 data_size,enum ATTR_TYPE type,const __le16 * name,u8 name_len,struct ATTRIB ** new_attr,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1515 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
1516 enum ATTR_TYPE type, const __le16 *name, u8 name_len,
1517 struct ATTRIB **new_attr, struct mft_inode **mi,
1518 struct ATTR_LIST_ENTRY **le)
1519 {
1520 int err;
1521 u32 name_size = ALIGN(name_len * sizeof(short), 8);
1522 u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
1523 struct ATTRIB *attr;
1524
1525 err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
1526 0, &attr, mi, le);
1527 if (err)
1528 return err;
1529
1530 attr->non_res = 0;
1531 attr->flags = 0;
1532
1533 attr->res.data_size = cpu_to_le32(data_size);
1534 attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
1535 if (type == ATTR_NAME) {
1536 attr->res.flags = RESIDENT_FLAG_INDEXED;
1537
1538 /* is_attr_indexed(attr)) == true */
1539 le16_add_cpu(&ni->mi.mrec->hard_links, 1);
1540 ni->mi.dirty = true;
1541 }
1542 attr->res.res = 0;
1543
1544 if (new_attr)
1545 *new_attr = attr;
1546
1547 return 0;
1548 }
1549
1550 /*
1551 * ni_remove_attr_le - Remove attribute from record.
1552 */
ni_remove_attr_le(struct ntfs_inode * ni,struct ATTRIB * attr,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le)1553 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
1554 struct mft_inode *mi, struct ATTR_LIST_ENTRY *le)
1555 {
1556 mi_remove_attr(ni, mi, attr);
1557
1558 if (le)
1559 al_remove_le(ni, le);
1560 }
1561
1562 /*
1563 * ni_delete_all - Remove all attributes and frees allocates space.
1564 *
1565 * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links).
1566 */
ni_delete_all(struct ntfs_inode * ni)1567 int ni_delete_all(struct ntfs_inode *ni)
1568 {
1569 int err;
1570 struct ATTR_LIST_ENTRY *le = NULL;
1571 struct ATTRIB *attr = NULL;
1572 struct rb_node *node;
1573 u16 roff;
1574 u32 asize;
1575 CLST svcn, evcn;
1576 struct ntfs_sb_info *sbi = ni->mi.sbi;
1577 bool nt3 = is_ntfs3(sbi);
1578 struct MFT_REF ref;
1579
1580 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
1581 if (!nt3 || attr->name_len) {
1582 ;
1583 } else if (attr->type == ATTR_REPARSE) {
1584 mi_get_ref(&ni->mi, &ref);
1585 ntfs_remove_reparse(sbi, 0, &ref);
1586 } else if (attr->type == ATTR_ID && !attr->non_res &&
1587 le32_to_cpu(attr->res.data_size) >=
1588 sizeof(struct GUID)) {
1589 ntfs_objid_remove(sbi, resident_data(attr));
1590 }
1591
1592 if (!attr->non_res)
1593 continue;
1594
1595 svcn = le64_to_cpu(attr->nres.svcn);
1596 evcn = le64_to_cpu(attr->nres.evcn);
1597
1598 if (evcn + 1 <= svcn)
1599 continue;
1600
1601 asize = le32_to_cpu(attr->size);
1602 roff = le16_to_cpu(attr->nres.run_off);
1603
1604 if (roff > asize)
1605 return -EINVAL;
1606
1607 /* run==1 means unpack and deallocate. */
1608 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
1609 Add2Ptr(attr, roff), asize - roff);
1610 }
1611
1612 if (ni->attr_list.size) {
1613 run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
1614 al_destroy(ni);
1615 }
1616
1617 /* Free all subrecords. */
1618 for (node = rb_first(&ni->mi_tree); node;) {
1619 struct rb_node *next = rb_next(node);
1620 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
1621
1622 clear_rec_inuse(mi->mrec);
1623 mi->dirty = true;
1624 mi_write(mi, 0);
1625
1626 ntfs_mark_rec_free(sbi, mi->rno, false);
1627 ni_remove_mi(ni, mi);
1628 mi_put(mi);
1629 node = next;
1630 }
1631
1632 /* Free base record. */
1633 clear_rec_inuse(ni->mi.mrec);
1634 ni->mi.dirty = true;
1635 err = mi_write(&ni->mi, 0);
1636
1637 ntfs_mark_rec_free(sbi, ni->mi.rno, false);
1638
1639 return err;
1640 }
1641
1642 /* ni_fname_name
1643 *
1644 * Return: File name attribute by its value.
1645 */
ni_fname_name(struct ntfs_inode * ni,const struct cpu_str * uni,const struct MFT_REF * home_dir,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1646 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
1647 const struct cpu_str *uni,
1648 const struct MFT_REF *home_dir,
1649 struct mft_inode **mi,
1650 struct ATTR_LIST_ENTRY **le)
1651 {
1652 struct ATTRIB *attr = NULL;
1653 struct ATTR_FILE_NAME *fname;
1654
1655 if (le)
1656 *le = NULL;
1657
1658 /* Enumerate all names. */
1659 next:
1660 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1661 if (!attr)
1662 return NULL;
1663
1664 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1665 if (!fname)
1666 goto next;
1667
1668 if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
1669 goto next;
1670
1671 if (!uni)
1672 return fname;
1673
1674 if (uni->len != fname->name_len)
1675 goto next;
1676
1677 if (ntfs_cmp_names_cpu(uni, (struct le_str *)&fname->name_len, NULL,
1678 false))
1679 goto next;
1680
1681 return fname;
1682 }
1683
1684 /*
1685 * ni_fname_type
1686 *
1687 * Return: File name attribute with given type.
1688 */
ni_fname_type(struct ntfs_inode * ni,u8 name_type,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1689 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
1690 struct mft_inode **mi,
1691 struct ATTR_LIST_ENTRY **le)
1692 {
1693 struct ATTRIB *attr = NULL;
1694 struct ATTR_FILE_NAME *fname;
1695
1696 *le = NULL;
1697
1698 if (name_type == FILE_NAME_POSIX)
1699 return NULL;
1700
1701 /* Enumerate all names. */
1702 for (;;) {
1703 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1704 if (!attr)
1705 return NULL;
1706
1707 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1708 if (fname && name_type == fname->type)
1709 return fname;
1710 }
1711 }
1712
1713 /*
1714 * ni_new_attr_flags
1715 *
1716 * Process compressed/sparsed in special way.
1717 * NOTE: You need to set ni->std_fa = new_fa
1718 * after this function to keep internal structures in consistency.
1719 */
ni_new_attr_flags(struct ntfs_inode * ni,enum FILE_ATTRIBUTE new_fa)1720 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
1721 {
1722 struct ATTRIB *attr;
1723 struct mft_inode *mi;
1724 __le16 new_aflags;
1725 u32 new_asize;
1726
1727 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
1728 if (!attr)
1729 return -EINVAL;
1730
1731 new_aflags = attr->flags;
1732
1733 if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
1734 new_aflags |= ATTR_FLAG_SPARSED;
1735 else
1736 new_aflags &= ~ATTR_FLAG_SPARSED;
1737
1738 if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
1739 new_aflags |= ATTR_FLAG_COMPRESSED;
1740 else
1741 new_aflags &= ~ATTR_FLAG_COMPRESSED;
1742
1743 if (new_aflags == attr->flags)
1744 return 0;
1745
1746 if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
1747 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
1748 ntfs_inode_warn(&ni->vfs_inode,
1749 "file can't be sparsed and compressed");
1750 return -EOPNOTSUPP;
1751 }
1752
1753 if (!attr->non_res)
1754 goto out;
1755
1756 if (attr->nres.data_size) {
1757 ntfs_inode_warn(
1758 &ni->vfs_inode,
1759 "one can change sparsed/compressed only for empty files");
1760 return -EOPNOTSUPP;
1761 }
1762
1763 /* Resize nonresident empty attribute in-place only. */
1764 new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED))
1765 ? (SIZEOF_NONRESIDENT_EX + 8)
1766 : (SIZEOF_NONRESIDENT + 8);
1767
1768 if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
1769 return -EOPNOTSUPP;
1770
1771 if (new_aflags & ATTR_FLAG_SPARSED) {
1772 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1773 /* Windows uses 16 clusters per frame but supports one cluster per frame too. */
1774 attr->nres.c_unit = 0;
1775 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1776 } else if (new_aflags & ATTR_FLAG_COMPRESSED) {
1777 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1778 /* The only allowed: 16 clusters per frame. */
1779 attr->nres.c_unit = NTFS_LZNT_CUNIT;
1780 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
1781 } else {
1782 attr->name_off = SIZEOF_NONRESIDENT_LE;
1783 /* Normal files. */
1784 attr->nres.c_unit = 0;
1785 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1786 }
1787 attr->nres.run_off = attr->name_off;
1788 out:
1789 attr->flags = new_aflags;
1790 mi->dirty = true;
1791
1792 return 0;
1793 }
1794
1795 /*
1796 * ni_parse_reparse
1797 *
1798 * buffer - memory for reparse buffer header
1799 */
ni_parse_reparse(struct ntfs_inode * ni,struct ATTRIB * attr,struct REPARSE_DATA_BUFFER * buffer)1800 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
1801 struct REPARSE_DATA_BUFFER *buffer)
1802 {
1803 const struct REPARSE_DATA_BUFFER *rp = NULL;
1804 u8 bits;
1805 u16 len;
1806 typeof(rp->CompressReparseBuffer) *cmpr;
1807
1808 /* Try to estimate reparse point. */
1809 if (!attr->non_res) {
1810 rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
1811 } else if (le64_to_cpu(attr->nres.data_size) >=
1812 sizeof(struct REPARSE_DATA_BUFFER)) {
1813 struct runs_tree run;
1814
1815 run_init(&run);
1816
1817 if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
1818 !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
1819 sizeof(struct REPARSE_DATA_BUFFER),
1820 NULL)) {
1821 rp = buffer;
1822 }
1823
1824 run_close(&run);
1825 }
1826
1827 if (!rp)
1828 return REPARSE_NONE;
1829
1830 len = le16_to_cpu(rp->ReparseDataLength);
1831 switch (rp->ReparseTag) {
1832 case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
1833 break; /* Symbolic link. */
1834 case IO_REPARSE_TAG_MOUNT_POINT:
1835 break; /* Mount points and junctions. */
1836 case IO_REPARSE_TAG_SYMLINK:
1837 break;
1838 case IO_REPARSE_TAG_COMPRESS:
1839 /*
1840 * WOF - Windows Overlay Filter - Used to compress files with
1841 * LZX/Xpress.
1842 *
1843 * Unlike native NTFS file compression, the Windows
1844 * Overlay Filter supports only read operations. This means
1845 * that it doesn't need to sector-align each compressed chunk,
1846 * so the compressed data can be packed more tightly together.
1847 * If you open the file for writing, the WOF just decompresses
1848 * the entire file, turning it back into a plain file.
1849 *
1850 * Ntfs3 driver decompresses the entire file only on write or
1851 * change size requests.
1852 */
1853
1854 cmpr = &rp->CompressReparseBuffer;
1855 if (len < sizeof(*cmpr) ||
1856 cmpr->WofVersion != WOF_CURRENT_VERSION ||
1857 cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
1858 cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
1859 return REPARSE_NONE;
1860 }
1861
1862 switch (cmpr->CompressionFormat) {
1863 case WOF_COMPRESSION_XPRESS4K:
1864 bits = 0xc; // 4k
1865 break;
1866 case WOF_COMPRESSION_XPRESS8K:
1867 bits = 0xd; // 8k
1868 break;
1869 case WOF_COMPRESSION_XPRESS16K:
1870 bits = 0xe; // 16k
1871 break;
1872 case WOF_COMPRESSION_LZX32K:
1873 bits = 0xf; // 32k
1874 break;
1875 default:
1876 bits = 0x10; // 64k
1877 break;
1878 }
1879 ni_set_ext_compress_bits(ni, bits);
1880 return REPARSE_COMPRESSED;
1881
1882 case IO_REPARSE_TAG_DEDUP:
1883 ni->ni_flags |= NI_FLAG_DEDUPLICATED;
1884 return REPARSE_DEDUPLICATED;
1885
1886 default:
1887 if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
1888 break;
1889
1890 return REPARSE_NONE;
1891 }
1892
1893 if (buffer != rp)
1894 memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER));
1895
1896 /* Looks like normal symlink. */
1897 return REPARSE_LINK;
1898 }
1899
1900 /*
1901 * ni_fiemap - Helper for file_fiemap().
1902 *
1903 * Assumed ni_lock.
1904 * TODO: Less aggressive locks.
1905 */
ni_fiemap(struct ntfs_inode * ni,struct fiemap_extent_info * fieinfo,__u64 vbo,__u64 len)1906 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
1907 __u64 vbo, __u64 len)
1908 {
1909 int err = 0;
1910 struct ntfs_sb_info *sbi = ni->mi.sbi;
1911 u8 cluster_bits = sbi->cluster_bits;
1912 struct runs_tree *run;
1913 struct rw_semaphore *run_lock;
1914 struct ATTRIB *attr;
1915 CLST vcn = vbo >> cluster_bits;
1916 CLST lcn, clen;
1917 u64 valid = ni->i_valid;
1918 u64 lbo, bytes;
1919 u64 end, alloc_size;
1920 size_t idx = -1;
1921 u32 flags;
1922 bool ok;
1923
1924 if (S_ISDIR(ni->vfs_inode.i_mode)) {
1925 run = &ni->dir.alloc_run;
1926 attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
1927 ARRAY_SIZE(I30_NAME), NULL, NULL);
1928 run_lock = &ni->dir.run_lock;
1929 } else {
1930 run = &ni->file.run;
1931 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
1932 NULL);
1933 if (!attr) {
1934 err = -EINVAL;
1935 goto out;
1936 }
1937 if (is_attr_compressed(attr)) {
1938 /* Unfortunately cp -r incorrectly treats compressed clusters. */
1939 err = -EOPNOTSUPP;
1940 ntfs_inode_warn(
1941 &ni->vfs_inode,
1942 "fiemap is not supported for compressed file (cp -r)");
1943 goto out;
1944 }
1945 run_lock = &ni->file.run_lock;
1946 }
1947
1948 if (!attr || !attr->non_res) {
1949 err = fiemap_fill_next_extent(
1950 fieinfo, 0, 0,
1951 attr ? le32_to_cpu(attr->res.data_size) : 0,
1952 FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
1953 FIEMAP_EXTENT_MERGED);
1954 goto out;
1955 }
1956
1957 end = vbo + len;
1958 alloc_size = le64_to_cpu(attr->nres.alloc_size);
1959 if (end > alloc_size)
1960 end = alloc_size;
1961
1962 down_read(run_lock);
1963
1964 while (vbo < end) {
1965 if (idx == -1) {
1966 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1967 } else {
1968 CLST vcn_next = vcn;
1969
1970 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) &&
1971 vcn == vcn_next;
1972 if (!ok)
1973 vcn = vcn_next;
1974 }
1975
1976 if (!ok) {
1977 up_read(run_lock);
1978 down_write(run_lock);
1979
1980 err = attr_load_runs_vcn(ni, attr->type,
1981 attr_name(attr),
1982 attr->name_len, run, vcn);
1983
1984 up_write(run_lock);
1985 down_read(run_lock);
1986
1987 if (err)
1988 break;
1989
1990 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1991
1992 if (!ok) {
1993 err = -EINVAL;
1994 break;
1995 }
1996 }
1997
1998 if (!clen) {
1999 err = -EINVAL; // ?
2000 break;
2001 }
2002
2003 if (lcn == SPARSE_LCN) {
2004 vcn += clen;
2005 vbo = (u64)vcn << cluster_bits;
2006 continue;
2007 }
2008
2009 flags = FIEMAP_EXTENT_MERGED;
2010 if (S_ISDIR(ni->vfs_inode.i_mode)) {
2011 ;
2012 } else if (is_attr_compressed(attr)) {
2013 CLST clst_data;
2014
2015 err = attr_is_frame_compressed(
2016 ni, attr, vcn >> attr->nres.c_unit, &clst_data);
2017 if (err)
2018 break;
2019 if (clst_data < NTFS_LZNT_CLUSTERS)
2020 flags |= FIEMAP_EXTENT_ENCODED;
2021 } else if (is_attr_encrypted(attr)) {
2022 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2023 }
2024
2025 vbo = (u64)vcn << cluster_bits;
2026 bytes = (u64)clen << cluster_bits;
2027 lbo = (u64)lcn << cluster_bits;
2028
2029 vcn += clen;
2030
2031 if (vbo + bytes >= end)
2032 bytes = end - vbo;
2033
2034 if (vbo + bytes <= valid) {
2035 ;
2036 } else if (vbo >= valid) {
2037 flags |= FIEMAP_EXTENT_UNWRITTEN;
2038 } else {
2039 /* vbo < valid && valid < vbo + bytes */
2040 u64 dlen = valid - vbo;
2041
2042 if (vbo + dlen >= end)
2043 flags |= FIEMAP_EXTENT_LAST;
2044
2045 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen,
2046 flags);
2047 if (err < 0)
2048 break;
2049 if (err == 1) {
2050 err = 0;
2051 break;
2052 }
2053
2054 vbo = valid;
2055 bytes -= dlen;
2056 if (!bytes)
2057 continue;
2058
2059 lbo += dlen;
2060 flags |= FIEMAP_EXTENT_UNWRITTEN;
2061 }
2062
2063 if (vbo + bytes >= end)
2064 flags |= FIEMAP_EXTENT_LAST;
2065
2066 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags);
2067 if (err < 0)
2068 break;
2069 if (err == 1) {
2070 err = 0;
2071 break;
2072 }
2073
2074 vbo += bytes;
2075 }
2076
2077 up_read(run_lock);
2078
2079 out:
2080 return err;
2081 }
2082
2083 /*
2084 * ni_readpage_cmpr
2085 *
2086 * When decompressing, we typically obtain more than one page per reference.
2087 * We inject the additional pages into the page cache.
2088 */
ni_readpage_cmpr(struct ntfs_inode * ni,struct page * page)2089 int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page)
2090 {
2091 int err;
2092 struct ntfs_sb_info *sbi = ni->mi.sbi;
2093 struct address_space *mapping = page->mapping;
2094 pgoff_t index = page->index;
2095 u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
2096 struct page **pages = NULL; /* Array of at most 16 pages. stack? */
2097 u8 frame_bits;
2098 CLST frame;
2099 u32 i, idx, frame_size, pages_per_frame;
2100 gfp_t gfp_mask;
2101 struct page *pg;
2102
2103 if (vbo >= ni->vfs_inode.i_size) {
2104 SetPageUptodate(page);
2105 err = 0;
2106 goto out;
2107 }
2108
2109 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2110 /* Xpress or LZX. */
2111 frame_bits = ni_ext_compress_bits(ni);
2112 } else {
2113 /* LZNT compression. */
2114 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2115 }
2116 frame_size = 1u << frame_bits;
2117 frame = vbo >> frame_bits;
2118 frame_vbo = (u64)frame << frame_bits;
2119 idx = (vbo - frame_vbo) >> PAGE_SHIFT;
2120
2121 pages_per_frame = frame_size >> PAGE_SHIFT;
2122 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2123 if (!pages) {
2124 err = -ENOMEM;
2125 goto out;
2126 }
2127
2128 pages[idx] = page;
2129 index = frame_vbo >> PAGE_SHIFT;
2130 gfp_mask = mapping_gfp_mask(mapping);
2131
2132 for (i = 0; i < pages_per_frame; i++, index++) {
2133 if (i == idx)
2134 continue;
2135
2136 pg = find_or_create_page(mapping, index, gfp_mask);
2137 if (!pg) {
2138 err = -ENOMEM;
2139 goto out1;
2140 }
2141 pages[i] = pg;
2142 }
2143
2144 err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
2145
2146 out1:
2147 if (err)
2148 SetPageError(page);
2149
2150 for (i = 0; i < pages_per_frame; i++) {
2151 pg = pages[i];
2152 if (i == idx || !pg)
2153 continue;
2154 unlock_page(pg);
2155 put_page(pg);
2156 }
2157
2158 out:
2159 /* At this point, err contains 0 or -EIO depending on the "critical" page. */
2160 kfree(pages);
2161 unlock_page(page);
2162
2163 return err;
2164 }
2165
2166 #ifdef CONFIG_NTFS3_LZX_XPRESS
2167 /*
2168 * ni_decompress_file - Decompress LZX/Xpress compressed file.
2169 *
2170 * Remove ATTR_DATA::WofCompressedData.
2171 * Remove ATTR_REPARSE.
2172 */
ni_decompress_file(struct ntfs_inode * ni)2173 int ni_decompress_file(struct ntfs_inode *ni)
2174 {
2175 struct ntfs_sb_info *sbi = ni->mi.sbi;
2176 struct inode *inode = &ni->vfs_inode;
2177 loff_t i_size = inode->i_size;
2178 struct address_space *mapping = inode->i_mapping;
2179 gfp_t gfp_mask = mapping_gfp_mask(mapping);
2180 struct page **pages = NULL;
2181 struct ATTR_LIST_ENTRY *le;
2182 struct ATTRIB *attr;
2183 CLST vcn, cend, lcn, clen, end;
2184 pgoff_t index;
2185 u64 vbo;
2186 u8 frame_bits;
2187 u32 i, frame_size, pages_per_frame, bytes;
2188 struct mft_inode *mi;
2189 int err;
2190
2191 /* Clusters for decompressed data. */
2192 cend = bytes_to_cluster(sbi, i_size);
2193
2194 if (!i_size)
2195 goto remove_wof;
2196
2197 /* Check in advance. */
2198 if (cend > wnd_zeroes(&sbi->used.bitmap)) {
2199 err = -ENOSPC;
2200 goto out;
2201 }
2202
2203 frame_bits = ni_ext_compress_bits(ni);
2204 frame_size = 1u << frame_bits;
2205 pages_per_frame = frame_size >> PAGE_SHIFT;
2206 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2207 if (!pages) {
2208 err = -ENOMEM;
2209 goto out;
2210 }
2211
2212 /*
2213 * Step 1: Decompress data and copy to new allocated clusters.
2214 */
2215 index = 0;
2216 for (vbo = 0; vbo < i_size; vbo += bytes) {
2217 u32 nr_pages;
2218 bool new;
2219
2220 if (vbo + frame_size > i_size) {
2221 bytes = i_size - vbo;
2222 nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
2223 } else {
2224 nr_pages = pages_per_frame;
2225 bytes = frame_size;
2226 }
2227
2228 end = bytes_to_cluster(sbi, vbo + bytes);
2229
2230 for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
2231 err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
2232 &clen, &new);
2233 if (err)
2234 goto out;
2235 }
2236
2237 for (i = 0; i < pages_per_frame; i++, index++) {
2238 struct page *pg;
2239
2240 pg = find_or_create_page(mapping, index, gfp_mask);
2241 if (!pg) {
2242 while (i--) {
2243 unlock_page(pages[i]);
2244 put_page(pages[i]);
2245 }
2246 err = -ENOMEM;
2247 goto out;
2248 }
2249 pages[i] = pg;
2250 }
2251
2252 err = ni_read_frame(ni, vbo, pages, pages_per_frame);
2253
2254 if (!err) {
2255 down_read(&ni->file.run_lock);
2256 err = ntfs_bio_pages(sbi, &ni->file.run, pages,
2257 nr_pages, vbo, bytes,
2258 REQ_OP_WRITE);
2259 up_read(&ni->file.run_lock);
2260 }
2261
2262 for (i = 0; i < pages_per_frame; i++) {
2263 unlock_page(pages[i]);
2264 put_page(pages[i]);
2265 }
2266
2267 if (err)
2268 goto out;
2269
2270 cond_resched();
2271 }
2272
2273 remove_wof:
2274 /*
2275 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData
2276 * and ATTR_REPARSE.
2277 */
2278 attr = NULL;
2279 le = NULL;
2280 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
2281 CLST svcn, evcn;
2282 u32 asize, roff;
2283
2284 if (attr->type == ATTR_REPARSE) {
2285 struct MFT_REF ref;
2286
2287 mi_get_ref(&ni->mi, &ref);
2288 ntfs_remove_reparse(sbi, 0, &ref);
2289 }
2290
2291 if (!attr->non_res)
2292 continue;
2293
2294 if (attr->type != ATTR_REPARSE &&
2295 (attr->type != ATTR_DATA ||
2296 attr->name_len != ARRAY_SIZE(WOF_NAME) ||
2297 memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
2298 continue;
2299
2300 svcn = le64_to_cpu(attr->nres.svcn);
2301 evcn = le64_to_cpu(attr->nres.evcn);
2302
2303 if (evcn + 1 <= svcn)
2304 continue;
2305
2306 asize = le32_to_cpu(attr->size);
2307 roff = le16_to_cpu(attr->nres.run_off);
2308
2309 if (roff > asize) {
2310 err = -EINVAL;
2311 goto out;
2312 }
2313
2314 /*run==1 Means unpack and deallocate. */
2315 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
2316 Add2Ptr(attr, roff), asize - roff);
2317 }
2318
2319 /*
2320 * Step 3: Remove attribute ATTR_DATA::WofCompressedData.
2321 */
2322 err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
2323 false, NULL);
2324 if (err)
2325 goto out;
2326
2327 /*
2328 * Step 4: Remove ATTR_REPARSE.
2329 */
2330 err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
2331 if (err)
2332 goto out;
2333
2334 /*
2335 * Step 5: Remove sparse flag from data attribute.
2336 */
2337 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
2338 if (!attr) {
2339 err = -EINVAL;
2340 goto out;
2341 }
2342
2343 if (attr->non_res && is_attr_sparsed(attr)) {
2344 /* Sparsed attribute header is 8 bytes bigger than normal. */
2345 struct MFT_REC *rec = mi->mrec;
2346 u32 used = le32_to_cpu(rec->used);
2347 u32 asize = le32_to_cpu(attr->size);
2348 u16 roff = le16_to_cpu(attr->nres.run_off);
2349 char *rbuf = Add2Ptr(attr, roff);
2350
2351 memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
2352 attr->size = cpu_to_le32(asize - 8);
2353 attr->flags &= ~ATTR_FLAG_SPARSED;
2354 attr->nres.run_off = cpu_to_le16(roff - 8);
2355 attr->nres.c_unit = 0;
2356 rec->used = cpu_to_le32(used - 8);
2357 mi->dirty = true;
2358 ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
2359 FILE_ATTRIBUTE_REPARSE_POINT);
2360
2361 mark_inode_dirty(inode);
2362 }
2363
2364 /* Clear cached flag. */
2365 ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
2366 if (ni->file.offs_page) {
2367 put_page(ni->file.offs_page);
2368 ni->file.offs_page = NULL;
2369 }
2370 mapping->a_ops = &ntfs_aops;
2371
2372 out:
2373 kfree(pages);
2374 if (err)
2375 _ntfs_bad_inode(inode);
2376
2377 return err;
2378 }
2379
2380 /*
2381 * decompress_lzx_xpress - External compression LZX/Xpress.
2382 */
decompress_lzx_xpress(struct ntfs_sb_info * sbi,const char * cmpr,size_t cmpr_size,void * unc,size_t unc_size,u32 frame_size)2383 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
2384 size_t cmpr_size, void *unc, size_t unc_size,
2385 u32 frame_size)
2386 {
2387 int err;
2388 void *ctx;
2389
2390 if (cmpr_size == unc_size) {
2391 /* Frame not compressed. */
2392 memcpy(unc, cmpr, unc_size);
2393 return 0;
2394 }
2395
2396 err = 0;
2397 if (frame_size == 0x8000) {
2398 mutex_lock(&sbi->compress.mtx_lzx);
2399 /* LZX: Frame compressed. */
2400 ctx = sbi->compress.lzx;
2401 if (!ctx) {
2402 /* Lazy initialize LZX decompress context. */
2403 ctx = lzx_allocate_decompressor();
2404 if (!ctx) {
2405 err = -ENOMEM;
2406 goto out1;
2407 }
2408
2409 sbi->compress.lzx = ctx;
2410 }
2411
2412 if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2413 /* Treat all errors as "invalid argument". */
2414 err = -EINVAL;
2415 }
2416 out1:
2417 mutex_unlock(&sbi->compress.mtx_lzx);
2418 } else {
2419 /* XPRESS: Frame compressed. */
2420 mutex_lock(&sbi->compress.mtx_xpress);
2421 ctx = sbi->compress.xpress;
2422 if (!ctx) {
2423 /* Lazy initialize Xpress decompress context. */
2424 ctx = xpress_allocate_decompressor();
2425 if (!ctx) {
2426 err = -ENOMEM;
2427 goto out2;
2428 }
2429
2430 sbi->compress.xpress = ctx;
2431 }
2432
2433 if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2434 /* Treat all errors as "invalid argument". */
2435 err = -EINVAL;
2436 }
2437 out2:
2438 mutex_unlock(&sbi->compress.mtx_xpress);
2439 }
2440 return err;
2441 }
2442 #endif
2443
2444 /*
2445 * ni_read_frame
2446 *
2447 * Pages - Array of locked pages.
2448 */
ni_read_frame(struct ntfs_inode * ni,u64 frame_vbo,struct page ** pages,u32 pages_per_frame)2449 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
2450 u32 pages_per_frame)
2451 {
2452 int err;
2453 struct ntfs_sb_info *sbi = ni->mi.sbi;
2454 u8 cluster_bits = sbi->cluster_bits;
2455 char *frame_ondisk = NULL;
2456 char *frame_mem = NULL;
2457 struct page **pages_disk = NULL;
2458 struct ATTR_LIST_ENTRY *le = NULL;
2459 struct runs_tree *run = &ni->file.run;
2460 u64 valid_size = ni->i_valid;
2461 u64 vbo_disk;
2462 size_t unc_size;
2463 u32 frame_size, i, npages_disk, ondisk_size;
2464 struct page *pg;
2465 struct ATTRIB *attr;
2466 CLST frame, clst_data;
2467
2468 /*
2469 * To simplify decompress algorithm do vmap for source
2470 * and target pages.
2471 */
2472 for (i = 0; i < pages_per_frame; i++)
2473 kmap(pages[i]);
2474
2475 frame_size = pages_per_frame << PAGE_SHIFT;
2476 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
2477 if (!frame_mem) {
2478 err = -ENOMEM;
2479 goto out;
2480 }
2481
2482 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
2483 if (!attr) {
2484 err = -ENOENT;
2485 goto out1;
2486 }
2487
2488 if (!attr->non_res) {
2489 u32 data_size = le32_to_cpu(attr->res.data_size);
2490
2491 memset(frame_mem, 0, frame_size);
2492 if (frame_vbo < data_size) {
2493 ondisk_size = data_size - frame_vbo;
2494 memcpy(frame_mem, resident_data(attr) + frame_vbo,
2495 min(ondisk_size, frame_size));
2496 }
2497 err = 0;
2498 goto out1;
2499 }
2500
2501 if (frame_vbo >= valid_size) {
2502 memset(frame_mem, 0, frame_size);
2503 err = 0;
2504 goto out1;
2505 }
2506
2507 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2508 #ifndef CONFIG_NTFS3_LZX_XPRESS
2509 err = -EOPNOTSUPP;
2510 goto out1;
2511 #else
2512 u32 frame_bits = ni_ext_compress_bits(ni);
2513 u64 frame64 = frame_vbo >> frame_bits;
2514 u64 frames, vbo_data;
2515
2516 if (frame_size != (1u << frame_bits)) {
2517 err = -EINVAL;
2518 goto out1;
2519 }
2520 switch (frame_size) {
2521 case 0x1000:
2522 case 0x2000:
2523 case 0x4000:
2524 case 0x8000:
2525 break;
2526 default:
2527 /* Unknown compression. */
2528 err = -EOPNOTSUPP;
2529 goto out1;
2530 }
2531
2532 attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
2533 ARRAY_SIZE(WOF_NAME), NULL, NULL);
2534 if (!attr) {
2535 ntfs_inode_err(
2536 &ni->vfs_inode,
2537 "external compressed file should contains data attribute \"WofCompressedData\"");
2538 err = -EINVAL;
2539 goto out1;
2540 }
2541
2542 if (!attr->non_res) {
2543 run = NULL;
2544 } else {
2545 run = run_alloc();
2546 if (!run) {
2547 err = -ENOMEM;
2548 goto out1;
2549 }
2550 }
2551
2552 frames = (ni->vfs_inode.i_size - 1) >> frame_bits;
2553
2554 err = attr_wof_frame_info(ni, attr, run, frame64, frames,
2555 frame_bits, &ondisk_size, &vbo_data);
2556 if (err)
2557 goto out2;
2558
2559 if (frame64 == frames) {
2560 unc_size = 1 + ((ni->vfs_inode.i_size - 1) &
2561 (frame_size - 1));
2562 ondisk_size = attr_size(attr) - vbo_data;
2563 } else {
2564 unc_size = frame_size;
2565 }
2566
2567 if (ondisk_size > frame_size) {
2568 err = -EINVAL;
2569 goto out2;
2570 }
2571
2572 if (!attr->non_res) {
2573 if (vbo_data + ondisk_size >
2574 le32_to_cpu(attr->res.data_size)) {
2575 err = -EINVAL;
2576 goto out1;
2577 }
2578
2579 err = decompress_lzx_xpress(
2580 sbi, Add2Ptr(resident_data(attr), vbo_data),
2581 ondisk_size, frame_mem, unc_size, frame_size);
2582 goto out1;
2583 }
2584 vbo_disk = vbo_data;
2585 /* Load all runs to read [vbo_disk-vbo_to). */
2586 err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
2587 ARRAY_SIZE(WOF_NAME), run, vbo_disk,
2588 vbo_data + ondisk_size);
2589 if (err)
2590 goto out2;
2591 npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
2592 PAGE_SIZE - 1) >>
2593 PAGE_SHIFT;
2594 #endif
2595 } else if (is_attr_compressed(attr)) {
2596 /* LZNT compression. */
2597 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2598 err = -EOPNOTSUPP;
2599 goto out1;
2600 }
2601
2602 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2603 err = -EOPNOTSUPP;
2604 goto out1;
2605 }
2606
2607 down_write(&ni->file.run_lock);
2608 run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
2609 frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
2610 err = attr_is_frame_compressed(ni, attr, frame, &clst_data);
2611 up_write(&ni->file.run_lock);
2612 if (err)
2613 goto out1;
2614
2615 if (!clst_data) {
2616 memset(frame_mem, 0, frame_size);
2617 goto out1;
2618 }
2619
2620 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2621 ondisk_size = clst_data << cluster_bits;
2622
2623 if (clst_data >= NTFS_LZNT_CLUSTERS) {
2624 /* Frame is not compressed. */
2625 down_read(&ni->file.run_lock);
2626 err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
2627 frame_vbo, ondisk_size,
2628 REQ_OP_READ);
2629 up_read(&ni->file.run_lock);
2630 goto out1;
2631 }
2632 vbo_disk = frame_vbo;
2633 npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2634 } else {
2635 __builtin_unreachable();
2636 err = -EINVAL;
2637 goto out1;
2638 }
2639
2640 pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS);
2641 if (!pages_disk) {
2642 err = -ENOMEM;
2643 goto out2;
2644 }
2645
2646 for (i = 0; i < npages_disk; i++) {
2647 pg = alloc_page(GFP_KERNEL);
2648 if (!pg) {
2649 err = -ENOMEM;
2650 goto out3;
2651 }
2652 pages_disk[i] = pg;
2653 lock_page(pg);
2654 kmap(pg);
2655 }
2656
2657 /* Read 'ondisk_size' bytes from disk. */
2658 down_read(&ni->file.run_lock);
2659 err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
2660 ondisk_size, REQ_OP_READ);
2661 up_read(&ni->file.run_lock);
2662 if (err)
2663 goto out3;
2664
2665 /*
2666 * To simplify decompress algorithm do vmap for source and target pages.
2667 */
2668 frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
2669 if (!frame_ondisk) {
2670 err = -ENOMEM;
2671 goto out3;
2672 }
2673
2674 /* Decompress: Frame_ondisk -> frame_mem. */
2675 #ifdef CONFIG_NTFS3_LZX_XPRESS
2676 if (run != &ni->file.run) {
2677 /* LZX or XPRESS */
2678 err = decompress_lzx_xpress(
2679 sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
2680 ondisk_size, frame_mem, unc_size, frame_size);
2681 } else
2682 #endif
2683 {
2684 /* LZNT - Native NTFS compression. */
2685 unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
2686 frame_size);
2687 if ((ssize_t)unc_size < 0)
2688 err = unc_size;
2689 else if (!unc_size || unc_size > frame_size)
2690 err = -EINVAL;
2691 }
2692 if (!err && valid_size < frame_vbo + frame_size) {
2693 size_t ok = valid_size - frame_vbo;
2694
2695 memset(frame_mem + ok, 0, frame_size - ok);
2696 }
2697
2698 vunmap(frame_ondisk);
2699
2700 out3:
2701 for (i = 0; i < npages_disk; i++) {
2702 pg = pages_disk[i];
2703 if (pg) {
2704 kunmap(pg);
2705 unlock_page(pg);
2706 put_page(pg);
2707 }
2708 }
2709 kfree(pages_disk);
2710
2711 out2:
2712 #ifdef CONFIG_NTFS3_LZX_XPRESS
2713 if (run != &ni->file.run)
2714 run_free(run);
2715 #endif
2716 out1:
2717 vunmap(frame_mem);
2718 out:
2719 for (i = 0; i < pages_per_frame; i++) {
2720 pg = pages[i];
2721 kunmap(pg);
2722 ClearPageError(pg);
2723 SetPageUptodate(pg);
2724 }
2725
2726 return err;
2727 }
2728
2729 /*
2730 * ni_write_frame
2731 *
2732 * Pages - Array of locked pages.
2733 */
ni_write_frame(struct ntfs_inode * ni,struct page ** pages,u32 pages_per_frame)2734 int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
2735 u32 pages_per_frame)
2736 {
2737 int err;
2738 struct ntfs_sb_info *sbi = ni->mi.sbi;
2739 u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2740 u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2741 u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT;
2742 CLST frame = frame_vbo >> frame_bits;
2743 char *frame_ondisk = NULL;
2744 struct page **pages_disk = NULL;
2745 struct ATTR_LIST_ENTRY *le = NULL;
2746 char *frame_mem;
2747 struct ATTRIB *attr;
2748 struct mft_inode *mi;
2749 u32 i;
2750 struct page *pg;
2751 size_t compr_size, ondisk_size;
2752 struct lznt *lznt;
2753
2754 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
2755 if (!attr) {
2756 err = -ENOENT;
2757 goto out;
2758 }
2759
2760 if (WARN_ON(!is_attr_compressed(attr))) {
2761 err = -EINVAL;
2762 goto out;
2763 }
2764
2765 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2766 err = -EOPNOTSUPP;
2767 goto out;
2768 }
2769
2770 if (!attr->non_res) {
2771 down_write(&ni->file.run_lock);
2772 err = attr_make_nonresident(ni, attr, le, mi,
2773 le32_to_cpu(attr->res.data_size),
2774 &ni->file.run, &attr, pages[0]);
2775 up_write(&ni->file.run_lock);
2776 if (err)
2777 goto out;
2778 }
2779
2780 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2781 err = -EOPNOTSUPP;
2782 goto out;
2783 }
2784
2785 pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2786 if (!pages_disk) {
2787 err = -ENOMEM;
2788 goto out;
2789 }
2790
2791 for (i = 0; i < pages_per_frame; i++) {
2792 pg = alloc_page(GFP_KERNEL);
2793 if (!pg) {
2794 err = -ENOMEM;
2795 goto out1;
2796 }
2797 pages_disk[i] = pg;
2798 lock_page(pg);
2799 kmap(pg);
2800 }
2801
2802 /* To simplify compress algorithm do vmap for source and target pages. */
2803 frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
2804 if (!frame_ondisk) {
2805 err = -ENOMEM;
2806 goto out1;
2807 }
2808
2809 for (i = 0; i < pages_per_frame; i++)
2810 kmap(pages[i]);
2811
2812 /* Map in-memory frame for read-only. */
2813 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
2814 if (!frame_mem) {
2815 err = -ENOMEM;
2816 goto out2;
2817 }
2818
2819 mutex_lock(&sbi->compress.mtx_lznt);
2820 lznt = NULL;
2821 if (!sbi->compress.lznt) {
2822 /*
2823 * LZNT implements two levels of compression:
2824 * 0 - Standard compression
2825 * 1 - Best compression, requires a lot of cpu
2826 * use mount option?
2827 */
2828 lznt = get_lznt_ctx(0);
2829 if (!lznt) {
2830 mutex_unlock(&sbi->compress.mtx_lznt);
2831 err = -ENOMEM;
2832 goto out3;
2833 }
2834
2835 sbi->compress.lznt = lznt;
2836 lznt = NULL;
2837 }
2838
2839 /* Compress: frame_mem -> frame_ondisk */
2840 compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
2841 frame_size, sbi->compress.lznt);
2842 mutex_unlock(&sbi->compress.mtx_lznt);
2843 kfree(lznt);
2844
2845 if (compr_size + sbi->cluster_size > frame_size) {
2846 /* Frame is not compressed. */
2847 compr_size = frame_size;
2848 ondisk_size = frame_size;
2849 } else if (compr_size) {
2850 /* Frame is compressed. */
2851 ondisk_size = ntfs_up_cluster(sbi, compr_size);
2852 memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
2853 } else {
2854 /* Frame is sparsed. */
2855 ondisk_size = 0;
2856 }
2857
2858 down_write(&ni->file.run_lock);
2859 run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
2860 err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
2861 up_write(&ni->file.run_lock);
2862 if (err)
2863 goto out2;
2864
2865 if (!ondisk_size)
2866 goto out2;
2867
2868 down_read(&ni->file.run_lock);
2869 err = ntfs_bio_pages(sbi, &ni->file.run,
2870 ondisk_size < frame_size ? pages_disk : pages,
2871 pages_per_frame, frame_vbo, ondisk_size,
2872 REQ_OP_WRITE);
2873 up_read(&ni->file.run_lock);
2874
2875 out3:
2876 vunmap(frame_mem);
2877
2878 out2:
2879 for (i = 0; i < pages_per_frame; i++)
2880 kunmap(pages[i]);
2881
2882 vunmap(frame_ondisk);
2883 out1:
2884 for (i = 0; i < pages_per_frame; i++) {
2885 pg = pages_disk[i];
2886 if (pg) {
2887 kunmap(pg);
2888 unlock_page(pg);
2889 put_page(pg);
2890 }
2891 }
2892 kfree(pages_disk);
2893 out:
2894 return err;
2895 }
2896
2897 /*
2898 * ni_remove_name - Removes name 'de' from MFT and from directory.
2899 * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs.
2900 */
ni_remove_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE ** de2,int * undo_step)2901 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2902 struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step)
2903 {
2904 int err;
2905 struct ntfs_sb_info *sbi = ni->mi.sbi;
2906 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2907 struct ATTR_FILE_NAME *fname;
2908 struct ATTR_LIST_ENTRY *le;
2909 struct mft_inode *mi;
2910 u16 de_key_size = le16_to_cpu(de->key_size);
2911 u8 name_type;
2912
2913 *undo_step = 0;
2914
2915 /* Find name in record. */
2916 mi_get_ref(&dir_ni->mi, &de_name->home);
2917
2918 fname = ni_fname_name(ni, (struct cpu_str *)&de_name->name_len,
2919 &de_name->home, &mi, &le);
2920 if (!fname)
2921 return -ENOENT;
2922
2923 memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO));
2924 name_type = paired_name(fname->type);
2925
2926 /* Mark ntfs as dirty. It will be cleared at umount. */
2927 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
2928
2929 /* Step 1: Remove name from directory. */
2930 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi);
2931 if (err)
2932 return err;
2933
2934 /* Step 2: Remove name from MFT. */
2935 ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2936
2937 *undo_step = 2;
2938
2939 /* Get paired name. */
2940 fname = ni_fname_type(ni, name_type, &mi, &le);
2941 if (fname) {
2942 u16 de2_key_size = fname_full_size(fname);
2943
2944 *de2 = Add2Ptr(de, 1024);
2945 (*de2)->key_size = cpu_to_le16(de2_key_size);
2946
2947 memcpy(*de2 + 1, fname, de2_key_size);
2948
2949 /* Step 3: Remove paired name from directory. */
2950 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname,
2951 de2_key_size, sbi);
2952 if (err)
2953 return err;
2954
2955 /* Step 4: Remove paired name from MFT. */
2956 ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2957
2958 *undo_step = 4;
2959 }
2960 return 0;
2961 }
2962
2963 /*
2964 * ni_remove_name_undo - Paired function for ni_remove_name.
2965 *
2966 * Return: True if ok
2967 */
ni_remove_name_undo(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * de2,int undo_step)2968 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2969 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step)
2970 {
2971 struct ntfs_sb_info *sbi = ni->mi.sbi;
2972 struct ATTRIB *attr;
2973 u16 de_key_size = de2 ? le16_to_cpu(de2->key_size) : 0;
2974
2975 switch (undo_step) {
2976 case 4:
2977 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2978 &attr, NULL, NULL)) {
2979 return false;
2980 }
2981 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size);
2982
2983 mi_get_ref(&ni->mi, &de2->ref);
2984 de2->size = cpu_to_le16(ALIGN(de_key_size, 8) +
2985 sizeof(struct NTFS_DE));
2986 de2->flags = 0;
2987 de2->res = 0;
2988
2989 if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL,
2990 1)) {
2991 return false;
2992 }
2993 fallthrough;
2994
2995 case 2:
2996 de_key_size = le16_to_cpu(de->key_size);
2997
2998 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2999 &attr, NULL, NULL)) {
3000 return false;
3001 }
3002
3003 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size);
3004 mi_get_ref(&ni->mi, &de->ref);
3005
3006 if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1))
3007 return false;
3008 }
3009
3010 return true;
3011 }
3012
3013 /*
3014 * ni_add_name - Add new name into MFT and into directory.
3015 */
ni_add_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de)3016 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
3017 struct NTFS_DE *de)
3018 {
3019 int err;
3020 struct ATTRIB *attr;
3021 struct ATTR_LIST_ENTRY *le;
3022 struct mft_inode *mi;
3023 struct ATTR_FILE_NAME *fname;
3024 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
3025 u16 de_key_size = le16_to_cpu(de->key_size);
3026
3027 mi_get_ref(&ni->mi, &de->ref);
3028 mi_get_ref(&dir_ni->mi, &de_name->home);
3029
3030 /* Fill duplicate from any ATTR_NAME. */
3031 fname = ni_fname_name(ni, NULL, NULL, NULL, NULL);
3032 if (fname)
3033 memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup));
3034 de_name->dup.fa = ni->std_fa;
3035
3036 /* Insert new name into MFT. */
3037 err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr,
3038 &mi, &le);
3039 if (err)
3040 return err;
3041
3042 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size);
3043
3044 /* Insert new name into directory. */
3045 err = indx_insert_entry(&dir_ni->dir, dir_ni, de, ni->mi.sbi, NULL, 0);
3046 if (err)
3047 ni_remove_attr_le(ni, attr, mi, le);
3048
3049 return err;
3050 }
3051
3052 /*
3053 * ni_rename - Remove one name and insert new name.
3054 */
ni_rename(struct ntfs_inode * dir_ni,struct ntfs_inode * new_dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * new_de,bool * is_bad)3055 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni,
3056 struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de,
3057 bool *is_bad)
3058 {
3059 int err;
3060 struct NTFS_DE *de2 = NULL;
3061 int undo = 0;
3062
3063 /*
3064 * There are two possible ways to rename:
3065 * 1) Add new name and remove old name.
3066 * 2) Remove old name and add new name.
3067 *
3068 * In most cases (not all!) adding new name into MFT and into directory can
3069 * allocate additional cluster(s).
3070 * Second way may result to bad inode if we can't add new name
3071 * and then can't restore (add) old name.
3072 */
3073
3074 /*
3075 * Way 1 - Add new + remove old.
3076 */
3077 err = ni_add_name(new_dir_ni, ni, new_de);
3078 if (!err) {
3079 err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3080 if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo))
3081 *is_bad = true;
3082 }
3083
3084 /*
3085 * Way 2 - Remove old + add new.
3086 */
3087 /*
3088 * err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3089 * if (!err) {
3090 * err = ni_add_name(new_dir_ni, ni, new_de);
3091 * if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo))
3092 * *is_bad = true;
3093 * }
3094 */
3095
3096 return err;
3097 }
3098
3099 /*
3100 * ni_is_dirty - Return: True if 'ni' requires ni_write_inode.
3101 */
ni_is_dirty(struct inode * inode)3102 bool ni_is_dirty(struct inode *inode)
3103 {
3104 struct ntfs_inode *ni = ntfs_i(inode);
3105 struct rb_node *node;
3106
3107 if (ni->mi.dirty || ni->attr_list.dirty ||
3108 (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3109 return true;
3110
3111 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
3112 if (rb_entry(node, struct mft_inode, node)->dirty)
3113 return true;
3114 }
3115
3116 return false;
3117 }
3118
3119 /*
3120 * ni_update_parent
3121 *
3122 * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories.
3123 */
ni_update_parent(struct ntfs_inode * ni,struct NTFS_DUP_INFO * dup,int sync)3124 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
3125 int sync)
3126 {
3127 struct ATTRIB *attr;
3128 struct mft_inode *mi;
3129 struct ATTR_LIST_ENTRY *le = NULL;
3130 struct ntfs_sb_info *sbi = ni->mi.sbi;
3131 struct super_block *sb = sbi->sb;
3132 bool re_dirty = false;
3133
3134 if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
3135 dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
3136 attr = NULL;
3137 dup->alloc_size = 0;
3138 dup->data_size = 0;
3139 } else {
3140 dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
3141
3142 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
3143 &mi);
3144 if (!attr) {
3145 dup->alloc_size = dup->data_size = 0;
3146 } else if (!attr->non_res) {
3147 u32 data_size = le32_to_cpu(attr->res.data_size);
3148
3149 dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
3150 dup->data_size = cpu_to_le64(data_size);
3151 } else {
3152 u64 new_valid = ni->i_valid;
3153 u64 data_size = le64_to_cpu(attr->nres.data_size);
3154 __le64 valid_le;
3155
3156 dup->alloc_size = is_attr_ext(attr)
3157 ? attr->nres.total_size
3158 : attr->nres.alloc_size;
3159 dup->data_size = attr->nres.data_size;
3160
3161 if (new_valid > data_size)
3162 new_valid = data_size;
3163
3164 valid_le = cpu_to_le64(new_valid);
3165 if (valid_le != attr->nres.valid_size) {
3166 attr->nres.valid_size = valid_le;
3167 mi->dirty = true;
3168 }
3169 }
3170 }
3171
3172 /* TODO: Fill reparse info. */
3173 dup->reparse = 0;
3174 dup->ea_size = 0;
3175
3176 if (ni->ni_flags & NI_FLAG_EA) {
3177 attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
3178 NULL);
3179 if (attr) {
3180 const struct EA_INFO *info;
3181
3182 info = resident_data_ex(attr, sizeof(struct EA_INFO));
3183 /* If ATTR_EA_INFO exists 'info' can't be NULL. */
3184 if (info)
3185 dup->ea_size = info->size_pack;
3186 }
3187 }
3188
3189 attr = NULL;
3190 le = NULL;
3191
3192 while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
3193 &mi))) {
3194 struct inode *dir;
3195 struct ATTR_FILE_NAME *fname;
3196
3197 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
3198 if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup)))
3199 continue;
3200
3201 /* Check simple case when parent inode equals current inode. */
3202 if (ino_get(&fname->home) == ni->vfs_inode.i_ino) {
3203 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3204 continue;
3205 }
3206
3207 /* ntfs_iget5 may sleep. */
3208 dir = ntfs_iget5(sb, &fname->home, NULL);
3209 if (IS_ERR(dir)) {
3210 ntfs_inode_warn(
3211 &ni->vfs_inode,
3212 "failed to open parent directory r=%lx to update",
3213 (long)ino_get(&fname->home));
3214 continue;
3215 }
3216
3217 if (!is_bad_inode(dir)) {
3218 struct ntfs_inode *dir_ni = ntfs_i(dir);
3219
3220 if (!ni_trylock(dir_ni)) {
3221 re_dirty = true;
3222 } else {
3223 indx_update_dup(dir_ni, sbi, fname, dup, sync);
3224 ni_unlock(dir_ni);
3225 memcpy(&fname->dup, dup, sizeof(fname->dup));
3226 mi->dirty = true;
3227 }
3228 }
3229 iput(dir);
3230 }
3231
3232 return re_dirty;
3233 }
3234
3235 /*
3236 * ni_write_inode - Write MFT base record and all subrecords to disk.
3237 */
ni_write_inode(struct inode * inode,int sync,const char * hint)3238 int ni_write_inode(struct inode *inode, int sync, const char *hint)
3239 {
3240 int err = 0, err2;
3241 struct ntfs_inode *ni = ntfs_i(inode);
3242 struct super_block *sb = inode->i_sb;
3243 struct ntfs_sb_info *sbi = sb->s_fs_info;
3244 bool re_dirty = false;
3245 struct ATTR_STD_INFO *std;
3246 struct rb_node *node, *next;
3247 struct NTFS_DUP_INFO dup;
3248
3249 if (is_bad_inode(inode) || sb_rdonly(sb))
3250 return 0;
3251
3252 if (!ni_trylock(ni)) {
3253 /* 'ni' is under modification, skip for now. */
3254 mark_inode_dirty_sync(inode);
3255 return 0;
3256 }
3257
3258 if (is_rec_inuse(ni->mi.mrec) &&
3259 !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
3260 bool modified = false;
3261
3262 /* Update times in standard attribute. */
3263 std = ni_std(ni);
3264 if (!std) {
3265 err = -EINVAL;
3266 goto out;
3267 }
3268
3269 /* Update the access times if they have changed. */
3270 dup.m_time = kernel2nt(&inode->i_mtime);
3271 if (std->m_time != dup.m_time) {
3272 std->m_time = dup.m_time;
3273 modified = true;
3274 }
3275
3276 dup.c_time = kernel2nt(&inode->i_ctime);
3277 if (std->c_time != dup.c_time) {
3278 std->c_time = dup.c_time;
3279 modified = true;
3280 }
3281
3282 dup.a_time = kernel2nt(&inode->i_atime);
3283 if (std->a_time != dup.a_time) {
3284 std->a_time = dup.a_time;
3285 modified = true;
3286 }
3287
3288 dup.fa = ni->std_fa;
3289 if (std->fa != dup.fa) {
3290 std->fa = dup.fa;
3291 modified = true;
3292 }
3293
3294 if (modified)
3295 ni->mi.dirty = true;
3296
3297 if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
3298 (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3299 /* Avoid __wait_on_freeing_inode(inode). */
3300 && (sb->s_flags & SB_ACTIVE)) {
3301 dup.cr_time = std->cr_time;
3302 /* Not critical if this function fail. */
3303 re_dirty = ni_update_parent(ni, &dup, sync);
3304
3305 if (re_dirty)
3306 ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3307 else
3308 ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
3309 }
3310
3311 /* Update attribute list. */
3312 if (ni->attr_list.size && ni->attr_list.dirty) {
3313 if (inode->i_ino != MFT_REC_MFT || sync) {
3314 err = ni_try_remove_attr_list(ni);
3315 if (err)
3316 goto out;
3317 }
3318
3319 err = al_update(ni, sync);
3320 if (err)
3321 goto out;
3322 }
3323 }
3324
3325 for (node = rb_first(&ni->mi_tree); node; node = next) {
3326 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
3327 bool is_empty;
3328
3329 next = rb_next(node);
3330
3331 if (!mi->dirty)
3332 continue;
3333
3334 is_empty = !mi_enum_attr(mi, NULL);
3335
3336 if (is_empty)
3337 clear_rec_inuse(mi->mrec);
3338
3339 err2 = mi_write(mi, sync);
3340 if (!err && err2)
3341 err = err2;
3342
3343 if (is_empty) {
3344 ntfs_mark_rec_free(sbi, mi->rno, false);
3345 rb_erase(node, &ni->mi_tree);
3346 mi_put(mi);
3347 }
3348 }
3349
3350 if (ni->mi.dirty) {
3351 err2 = mi_write(&ni->mi, sync);
3352 if (!err && err2)
3353 err = err2;
3354 }
3355 out:
3356 ni_unlock(ni);
3357
3358 if (err) {
3359 ntfs_err(sb, "%s r=%lx failed, %d.", hint, inode->i_ino, err);
3360 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3361 return err;
3362 }
3363
3364 if (re_dirty)
3365 mark_inode_dirty_sync(inode);
3366
3367 return 0;
3368 }
3369