1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * NILFS segment constructor.
4 *
5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 *
7 * Written by Ryusuke Konishi.
8 *
9 */
10
11 #include <linux/pagemap.h>
12 #include <linux/buffer_head.h>
13 #include <linux/writeback.h>
14 #include <linux/bitops.h>
15 #include <linux/bio.h>
16 #include <linux/completion.h>
17 #include <linux/blkdev.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <linux/kthread.h>
21 #include <linux/crc32.h>
22 #include <linux/pagevec.h>
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25
26 #include "nilfs.h"
27 #include "btnode.h"
28 #include "page.h"
29 #include "segment.h"
30 #include "sufile.h"
31 #include "cpfile.h"
32 #include "ifile.h"
33 #include "segbuf.h"
34
35
36 /*
37 * Segment constructor
38 */
39 #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
40
41 #define SC_MAX_SEGDELTA 64 /*
42 * Upper limit of the number of segments
43 * appended in collection retry loop
44 */
45
46 /* Construction mode */
47 enum {
48 SC_LSEG_SR = 1, /* Make a logical segment having a super root */
49 SC_LSEG_DSYNC, /*
50 * Flush data blocks of a given file and make
51 * a logical segment without a super root.
52 */
53 SC_FLUSH_FILE, /*
54 * Flush data files, leads to segment writes without
55 * creating a checkpoint.
56 */
57 SC_FLUSH_DAT, /*
58 * Flush DAT file. This also creates segments
59 * without a checkpoint.
60 */
61 };
62
63 /* Stage numbers of dirty block collection */
64 enum {
65 NILFS_ST_INIT = 0,
66 NILFS_ST_GC, /* Collecting dirty blocks for GC */
67 NILFS_ST_FILE,
68 NILFS_ST_IFILE,
69 NILFS_ST_CPFILE,
70 NILFS_ST_SUFILE,
71 NILFS_ST_DAT,
72 NILFS_ST_SR, /* Super root */
73 NILFS_ST_DSYNC, /* Data sync blocks */
74 NILFS_ST_DONE,
75 };
76
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/nilfs2.h>
79
80 /*
81 * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are
82 * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of
83 * the variable must use them because transition of stage count must involve
84 * trace events (trace_nilfs2_collection_stage_transition).
85 *
86 * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't
87 * produce tracepoint events. It is provided just for making the intention
88 * clear.
89 */
nilfs_sc_cstage_inc(struct nilfs_sc_info * sci)90 static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info *sci)
91 {
92 sci->sc_stage.scnt++;
93 trace_nilfs2_collection_stage_transition(sci);
94 }
95
nilfs_sc_cstage_set(struct nilfs_sc_info * sci,int next_scnt)96 static inline void nilfs_sc_cstage_set(struct nilfs_sc_info *sci, int next_scnt)
97 {
98 sci->sc_stage.scnt = next_scnt;
99 trace_nilfs2_collection_stage_transition(sci);
100 }
101
nilfs_sc_cstage_get(struct nilfs_sc_info * sci)102 static inline int nilfs_sc_cstage_get(struct nilfs_sc_info *sci)
103 {
104 return sci->sc_stage.scnt;
105 }
106
107 /* State flags of collection */
108 #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
109 #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
110 #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
111 #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
112
113 /* Operations depending on the construction mode and file type */
114 struct nilfs_sc_operations {
115 int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
116 struct inode *);
117 int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
118 struct inode *);
119 int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
120 struct inode *);
121 void (*write_data_binfo)(struct nilfs_sc_info *,
122 struct nilfs_segsum_pointer *,
123 union nilfs_binfo *);
124 void (*write_node_binfo)(struct nilfs_sc_info *,
125 struct nilfs_segsum_pointer *,
126 union nilfs_binfo *);
127 };
128
129 /*
130 * Other definitions
131 */
132 static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
133 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
134 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
135 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
136
137 #define nilfs_cnt32_ge(a, b) \
138 (typecheck(__u32, a) && typecheck(__u32, b) && \
139 ((__s32)(a) - (__s32)(b) >= 0))
140
nilfs_prepare_segment_lock(struct super_block * sb,struct nilfs_transaction_info * ti)141 static int nilfs_prepare_segment_lock(struct super_block *sb,
142 struct nilfs_transaction_info *ti)
143 {
144 struct nilfs_transaction_info *cur_ti = current->journal_info;
145 void *save = NULL;
146
147 if (cur_ti) {
148 if (cur_ti->ti_magic == NILFS_TI_MAGIC)
149 return ++cur_ti->ti_count;
150
151 /*
152 * If journal_info field is occupied by other FS,
153 * it is saved and will be restored on
154 * nilfs_transaction_commit().
155 */
156 nilfs_warn(sb, "journal info from a different FS");
157 save = current->journal_info;
158 }
159 if (!ti) {
160 ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
161 if (!ti)
162 return -ENOMEM;
163 ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
164 } else {
165 ti->ti_flags = 0;
166 }
167 ti->ti_count = 0;
168 ti->ti_save = save;
169 ti->ti_magic = NILFS_TI_MAGIC;
170 current->journal_info = ti;
171 return 0;
172 }
173
174 /**
175 * nilfs_transaction_begin - start indivisible file operations.
176 * @sb: super block
177 * @ti: nilfs_transaction_info
178 * @vacancy_check: flags for vacancy rate checks
179 *
180 * nilfs_transaction_begin() acquires a reader/writer semaphore, called
181 * the segment semaphore, to make a segment construction and write tasks
182 * exclusive. The function is used with nilfs_transaction_commit() in pairs.
183 * The region enclosed by these two functions can be nested. To avoid a
184 * deadlock, the semaphore is only acquired or released in the outermost call.
185 *
186 * This function allocates a nilfs_transaction_info struct to keep context
187 * information on it. It is initialized and hooked onto the current task in
188 * the outermost call. If a pre-allocated struct is given to @ti, it is used
189 * instead; otherwise a new struct is assigned from a slab.
190 *
191 * When @vacancy_check flag is set, this function will check the amount of
192 * free space, and will wait for the GC to reclaim disk space if low capacity.
193 *
194 * Return Value: On success, 0 is returned. On error, one of the following
195 * negative error code is returned.
196 *
197 * %-ENOMEM - Insufficient memory available.
198 *
199 * %-ENOSPC - No space left on device
200 */
nilfs_transaction_begin(struct super_block * sb,struct nilfs_transaction_info * ti,int vacancy_check)201 int nilfs_transaction_begin(struct super_block *sb,
202 struct nilfs_transaction_info *ti,
203 int vacancy_check)
204 {
205 struct the_nilfs *nilfs;
206 int ret = nilfs_prepare_segment_lock(sb, ti);
207 struct nilfs_transaction_info *trace_ti;
208
209 if (unlikely(ret < 0))
210 return ret;
211 if (ret > 0) {
212 trace_ti = current->journal_info;
213
214 trace_nilfs2_transaction_transition(sb, trace_ti,
215 trace_ti->ti_count, trace_ti->ti_flags,
216 TRACE_NILFS2_TRANSACTION_BEGIN);
217 return 0;
218 }
219
220 sb_start_intwrite(sb);
221
222 nilfs = sb->s_fs_info;
223 down_read(&nilfs->ns_segctor_sem);
224 if (vacancy_check && nilfs_near_disk_full(nilfs)) {
225 up_read(&nilfs->ns_segctor_sem);
226 ret = -ENOSPC;
227 goto failed;
228 }
229
230 trace_ti = current->journal_info;
231 trace_nilfs2_transaction_transition(sb, trace_ti, trace_ti->ti_count,
232 trace_ti->ti_flags,
233 TRACE_NILFS2_TRANSACTION_BEGIN);
234 return 0;
235
236 failed:
237 ti = current->journal_info;
238 current->journal_info = ti->ti_save;
239 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
240 kmem_cache_free(nilfs_transaction_cachep, ti);
241 sb_end_intwrite(sb);
242 return ret;
243 }
244
245 /**
246 * nilfs_transaction_commit - commit indivisible file operations.
247 * @sb: super block
248 *
249 * nilfs_transaction_commit() releases the read semaphore which is
250 * acquired by nilfs_transaction_begin(). This is only performed
251 * in outermost call of this function. If a commit flag is set,
252 * nilfs_transaction_commit() sets a timer to start the segment
253 * constructor. If a sync flag is set, it starts construction
254 * directly.
255 */
nilfs_transaction_commit(struct super_block * sb)256 int nilfs_transaction_commit(struct super_block *sb)
257 {
258 struct nilfs_transaction_info *ti = current->journal_info;
259 struct the_nilfs *nilfs = sb->s_fs_info;
260 int err = 0;
261
262 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
263 ti->ti_flags |= NILFS_TI_COMMIT;
264 if (ti->ti_count > 0) {
265 ti->ti_count--;
266 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
267 ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
268 return 0;
269 }
270 if (nilfs->ns_writer) {
271 struct nilfs_sc_info *sci = nilfs->ns_writer;
272
273 if (ti->ti_flags & NILFS_TI_COMMIT)
274 nilfs_segctor_start_timer(sci);
275 if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark)
276 nilfs_segctor_do_flush(sci, 0);
277 }
278 up_read(&nilfs->ns_segctor_sem);
279 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
280 ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
281
282 current->journal_info = ti->ti_save;
283
284 if (ti->ti_flags & NILFS_TI_SYNC)
285 err = nilfs_construct_segment(sb);
286 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
287 kmem_cache_free(nilfs_transaction_cachep, ti);
288 sb_end_intwrite(sb);
289 return err;
290 }
291
nilfs_transaction_abort(struct super_block * sb)292 void nilfs_transaction_abort(struct super_block *sb)
293 {
294 struct nilfs_transaction_info *ti = current->journal_info;
295 struct the_nilfs *nilfs = sb->s_fs_info;
296
297 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
298 if (ti->ti_count > 0) {
299 ti->ti_count--;
300 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
301 ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
302 return;
303 }
304 up_read(&nilfs->ns_segctor_sem);
305
306 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
307 ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
308
309 current->journal_info = ti->ti_save;
310 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
311 kmem_cache_free(nilfs_transaction_cachep, ti);
312 sb_end_intwrite(sb);
313 }
314
nilfs_relax_pressure_in_lock(struct super_block * sb)315 void nilfs_relax_pressure_in_lock(struct super_block *sb)
316 {
317 struct the_nilfs *nilfs = sb->s_fs_info;
318 struct nilfs_sc_info *sci = nilfs->ns_writer;
319
320 if (sb_rdonly(sb) || unlikely(!sci) || !sci->sc_flush_request)
321 return;
322
323 set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
324 up_read(&nilfs->ns_segctor_sem);
325
326 down_write(&nilfs->ns_segctor_sem);
327 if (sci->sc_flush_request &&
328 test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
329 struct nilfs_transaction_info *ti = current->journal_info;
330
331 ti->ti_flags |= NILFS_TI_WRITER;
332 nilfs_segctor_do_immediate_flush(sci);
333 ti->ti_flags &= ~NILFS_TI_WRITER;
334 }
335 downgrade_write(&nilfs->ns_segctor_sem);
336 }
337
nilfs_transaction_lock(struct super_block * sb,struct nilfs_transaction_info * ti,int gcflag)338 static void nilfs_transaction_lock(struct super_block *sb,
339 struct nilfs_transaction_info *ti,
340 int gcflag)
341 {
342 struct nilfs_transaction_info *cur_ti = current->journal_info;
343 struct the_nilfs *nilfs = sb->s_fs_info;
344 struct nilfs_sc_info *sci = nilfs->ns_writer;
345
346 WARN_ON(cur_ti);
347 ti->ti_flags = NILFS_TI_WRITER;
348 ti->ti_count = 0;
349 ti->ti_save = cur_ti;
350 ti->ti_magic = NILFS_TI_MAGIC;
351 current->journal_info = ti;
352
353 for (;;) {
354 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
355 ti->ti_flags, TRACE_NILFS2_TRANSACTION_TRYLOCK);
356
357 down_write(&nilfs->ns_segctor_sem);
358 if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags))
359 break;
360
361 nilfs_segctor_do_immediate_flush(sci);
362
363 up_write(&nilfs->ns_segctor_sem);
364 cond_resched();
365 }
366 if (gcflag)
367 ti->ti_flags |= NILFS_TI_GC;
368
369 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
370 ti->ti_flags, TRACE_NILFS2_TRANSACTION_LOCK);
371 }
372
nilfs_transaction_unlock(struct super_block * sb)373 static void nilfs_transaction_unlock(struct super_block *sb)
374 {
375 struct nilfs_transaction_info *ti = current->journal_info;
376 struct the_nilfs *nilfs = sb->s_fs_info;
377
378 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
379 BUG_ON(ti->ti_count > 0);
380
381 up_write(&nilfs->ns_segctor_sem);
382 current->journal_info = ti->ti_save;
383
384 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
385 ti->ti_flags, TRACE_NILFS2_TRANSACTION_UNLOCK);
386 }
387
nilfs_segctor_map_segsum_entry(struct nilfs_sc_info * sci,struct nilfs_segsum_pointer * ssp,unsigned int bytes)388 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
389 struct nilfs_segsum_pointer *ssp,
390 unsigned int bytes)
391 {
392 struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
393 unsigned int blocksize = sci->sc_super->s_blocksize;
394 void *p;
395
396 if (unlikely(ssp->offset + bytes > blocksize)) {
397 ssp->offset = 0;
398 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
399 &segbuf->sb_segsum_buffers));
400 ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
401 }
402 p = ssp->bh->b_data + ssp->offset;
403 ssp->offset += bytes;
404 return p;
405 }
406
407 /**
408 * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
409 * @sci: nilfs_sc_info
410 */
nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info * sci)411 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
412 {
413 struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
414 struct buffer_head *sumbh;
415 unsigned int sumbytes;
416 unsigned int flags = 0;
417 int err;
418
419 if (nilfs_doing_gc())
420 flags = NILFS_SS_GC;
421 err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
422 if (unlikely(err))
423 return err;
424
425 sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
426 sumbytes = segbuf->sb_sum.sumbytes;
427 sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes;
428 sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes;
429 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
430 return 0;
431 }
432
433 /**
434 * nilfs_segctor_zeropad_segsum - zero pad the rest of the segment summary area
435 * @sci: segment constructor object
436 *
437 * nilfs_segctor_zeropad_segsum() zero-fills unallocated space at the end of
438 * the current segment summary block.
439 */
nilfs_segctor_zeropad_segsum(struct nilfs_sc_info * sci)440 static void nilfs_segctor_zeropad_segsum(struct nilfs_sc_info *sci)
441 {
442 struct nilfs_segsum_pointer *ssp;
443
444 ssp = sci->sc_blk_cnt > 0 ? &sci->sc_binfo_ptr : &sci->sc_finfo_ptr;
445 if (ssp->offset < ssp->bh->b_size)
446 memset(ssp->bh->b_data + ssp->offset, 0,
447 ssp->bh->b_size - ssp->offset);
448 }
449
nilfs_segctor_feed_segment(struct nilfs_sc_info * sci)450 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
451 {
452 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
453 if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
454 return -E2BIG; /*
455 * The current segment is filled up
456 * (internal code)
457 */
458 nilfs_segctor_zeropad_segsum(sci);
459 sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
460 return nilfs_segctor_reset_segment_buffer(sci);
461 }
462
nilfs_segctor_add_super_root(struct nilfs_sc_info * sci)463 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
464 {
465 struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
466 int err;
467
468 if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
469 err = nilfs_segctor_feed_segment(sci);
470 if (err)
471 return err;
472 segbuf = sci->sc_curseg;
473 }
474 err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
475 if (likely(!err))
476 segbuf->sb_sum.flags |= NILFS_SS_SR;
477 return err;
478 }
479
480 /*
481 * Functions for making segment summary and payloads
482 */
nilfs_segctor_segsum_block_required(struct nilfs_sc_info * sci,const struct nilfs_segsum_pointer * ssp,unsigned int binfo_size)483 static int nilfs_segctor_segsum_block_required(
484 struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
485 unsigned int binfo_size)
486 {
487 unsigned int blocksize = sci->sc_super->s_blocksize;
488 /* Size of finfo and binfo is enough small against blocksize */
489
490 return ssp->offset + binfo_size +
491 (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
492 blocksize;
493 }
494
nilfs_segctor_begin_finfo(struct nilfs_sc_info * sci,struct inode * inode)495 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
496 struct inode *inode)
497 {
498 sci->sc_curseg->sb_sum.nfinfo++;
499 sci->sc_binfo_ptr = sci->sc_finfo_ptr;
500 nilfs_segctor_map_segsum_entry(
501 sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
502
503 if (NILFS_I(inode)->i_root &&
504 !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
505 set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
506 /* skip finfo */
507 }
508
nilfs_segctor_end_finfo(struct nilfs_sc_info * sci,struct inode * inode)509 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
510 struct inode *inode)
511 {
512 struct nilfs_finfo *finfo;
513 struct nilfs_inode_info *ii;
514 struct nilfs_segment_buffer *segbuf;
515 __u64 cno;
516
517 if (sci->sc_blk_cnt == 0)
518 return;
519
520 ii = NILFS_I(inode);
521
522 if (test_bit(NILFS_I_GCINODE, &ii->i_state))
523 cno = ii->i_cno;
524 else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
525 cno = 0;
526 else
527 cno = sci->sc_cno;
528
529 finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
530 sizeof(*finfo));
531 finfo->fi_ino = cpu_to_le64(inode->i_ino);
532 finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
533 finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
534 finfo->fi_cno = cpu_to_le64(cno);
535
536 segbuf = sci->sc_curseg;
537 segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
538 sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
539 sci->sc_finfo_ptr = sci->sc_binfo_ptr;
540 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
541 }
542
nilfs_segctor_add_file_block(struct nilfs_sc_info * sci,struct buffer_head * bh,struct inode * inode,unsigned int binfo_size)543 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
544 struct buffer_head *bh,
545 struct inode *inode,
546 unsigned int binfo_size)
547 {
548 struct nilfs_segment_buffer *segbuf;
549 int required, err = 0;
550
551 retry:
552 segbuf = sci->sc_curseg;
553 required = nilfs_segctor_segsum_block_required(
554 sci, &sci->sc_binfo_ptr, binfo_size);
555 if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
556 nilfs_segctor_end_finfo(sci, inode);
557 err = nilfs_segctor_feed_segment(sci);
558 if (err)
559 return err;
560 goto retry;
561 }
562 if (unlikely(required)) {
563 nilfs_segctor_zeropad_segsum(sci);
564 err = nilfs_segbuf_extend_segsum(segbuf);
565 if (unlikely(err))
566 goto failed;
567 }
568 if (sci->sc_blk_cnt == 0)
569 nilfs_segctor_begin_finfo(sci, inode);
570
571 nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
572 /* Substitution to vblocknr is delayed until update_blocknr() */
573 nilfs_segbuf_add_file_buffer(segbuf, bh);
574 sci->sc_blk_cnt++;
575 failed:
576 return err;
577 }
578
579 /*
580 * Callback functions that enumerate, mark, and collect dirty blocks
581 */
nilfs_collect_file_data(struct nilfs_sc_info * sci,struct buffer_head * bh,struct inode * inode)582 static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
583 struct buffer_head *bh, struct inode *inode)
584 {
585 int err;
586
587 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
588 if (err < 0)
589 return err;
590
591 err = nilfs_segctor_add_file_block(sci, bh, inode,
592 sizeof(struct nilfs_binfo_v));
593 if (!err)
594 sci->sc_datablk_cnt++;
595 return err;
596 }
597
nilfs_collect_file_node(struct nilfs_sc_info * sci,struct buffer_head * bh,struct inode * inode)598 static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
599 struct buffer_head *bh,
600 struct inode *inode)
601 {
602 return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
603 }
604
nilfs_collect_file_bmap(struct nilfs_sc_info * sci,struct buffer_head * bh,struct inode * inode)605 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
606 struct buffer_head *bh,
607 struct inode *inode)
608 {
609 WARN_ON(!buffer_dirty(bh));
610 return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
611 }
612
nilfs_write_file_data_binfo(struct nilfs_sc_info * sci,struct nilfs_segsum_pointer * ssp,union nilfs_binfo * binfo)613 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
614 struct nilfs_segsum_pointer *ssp,
615 union nilfs_binfo *binfo)
616 {
617 struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
618 sci, ssp, sizeof(*binfo_v));
619 *binfo_v = binfo->bi_v;
620 }
621
nilfs_write_file_node_binfo(struct nilfs_sc_info * sci,struct nilfs_segsum_pointer * ssp,union nilfs_binfo * binfo)622 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
623 struct nilfs_segsum_pointer *ssp,
624 union nilfs_binfo *binfo)
625 {
626 __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
627 sci, ssp, sizeof(*vblocknr));
628 *vblocknr = binfo->bi_v.bi_vblocknr;
629 }
630
631 static const struct nilfs_sc_operations nilfs_sc_file_ops = {
632 .collect_data = nilfs_collect_file_data,
633 .collect_node = nilfs_collect_file_node,
634 .collect_bmap = nilfs_collect_file_bmap,
635 .write_data_binfo = nilfs_write_file_data_binfo,
636 .write_node_binfo = nilfs_write_file_node_binfo,
637 };
638
nilfs_collect_dat_data(struct nilfs_sc_info * sci,struct buffer_head * bh,struct inode * inode)639 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
640 struct buffer_head *bh, struct inode *inode)
641 {
642 int err;
643
644 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
645 if (err < 0)
646 return err;
647
648 err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
649 if (!err)
650 sci->sc_datablk_cnt++;
651 return err;
652 }
653
nilfs_collect_dat_bmap(struct nilfs_sc_info * sci,struct buffer_head * bh,struct inode * inode)654 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
655 struct buffer_head *bh, struct inode *inode)
656 {
657 WARN_ON(!buffer_dirty(bh));
658 return nilfs_segctor_add_file_block(sci, bh, inode,
659 sizeof(struct nilfs_binfo_dat));
660 }
661
nilfs_write_dat_data_binfo(struct nilfs_sc_info * sci,struct nilfs_segsum_pointer * ssp,union nilfs_binfo * binfo)662 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
663 struct nilfs_segsum_pointer *ssp,
664 union nilfs_binfo *binfo)
665 {
666 __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
667 sizeof(*blkoff));
668 *blkoff = binfo->bi_dat.bi_blkoff;
669 }
670
nilfs_write_dat_node_binfo(struct nilfs_sc_info * sci,struct nilfs_segsum_pointer * ssp,union nilfs_binfo * binfo)671 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
672 struct nilfs_segsum_pointer *ssp,
673 union nilfs_binfo *binfo)
674 {
675 struct nilfs_binfo_dat *binfo_dat =
676 nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
677 *binfo_dat = binfo->bi_dat;
678 }
679
680 static const struct nilfs_sc_operations nilfs_sc_dat_ops = {
681 .collect_data = nilfs_collect_dat_data,
682 .collect_node = nilfs_collect_file_node,
683 .collect_bmap = nilfs_collect_dat_bmap,
684 .write_data_binfo = nilfs_write_dat_data_binfo,
685 .write_node_binfo = nilfs_write_dat_node_binfo,
686 };
687
688 static const struct nilfs_sc_operations nilfs_sc_dsync_ops = {
689 .collect_data = nilfs_collect_file_data,
690 .collect_node = NULL,
691 .collect_bmap = NULL,
692 .write_data_binfo = nilfs_write_file_data_binfo,
693 .write_node_binfo = NULL,
694 };
695
nilfs_lookup_dirty_data_buffers(struct inode * inode,struct list_head * listp,size_t nlimit,loff_t start,loff_t end)696 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
697 struct list_head *listp,
698 size_t nlimit,
699 loff_t start, loff_t end)
700 {
701 struct address_space *mapping = inode->i_mapping;
702 struct pagevec pvec;
703 pgoff_t index = 0, last = ULONG_MAX;
704 size_t ndirties = 0;
705 int i;
706
707 if (unlikely(start != 0 || end != LLONG_MAX)) {
708 /*
709 * A valid range is given for sync-ing data pages. The
710 * range is rounded to per-page; extra dirty buffers
711 * may be included if blocksize < pagesize.
712 */
713 index = start >> PAGE_SHIFT;
714 last = end >> PAGE_SHIFT;
715 }
716 pagevec_init(&pvec);
717 repeat:
718 if (unlikely(index > last) ||
719 !pagevec_lookup_range_tag(&pvec, mapping, &index, last,
720 PAGECACHE_TAG_DIRTY))
721 return ndirties;
722
723 for (i = 0; i < pagevec_count(&pvec); i++) {
724 struct buffer_head *bh, *head;
725 struct page *page = pvec.pages[i];
726
727 lock_page(page);
728 if (unlikely(page->mapping != mapping)) {
729 /* Exclude pages removed from the address space */
730 unlock_page(page);
731 continue;
732 }
733 if (!page_has_buffers(page))
734 create_empty_buffers(page, i_blocksize(inode), 0);
735 unlock_page(page);
736
737 bh = head = page_buffers(page);
738 do {
739 if (!buffer_dirty(bh) || buffer_async_write(bh))
740 continue;
741 get_bh(bh);
742 list_add_tail(&bh->b_assoc_buffers, listp);
743 ndirties++;
744 if (unlikely(ndirties >= nlimit)) {
745 pagevec_release(&pvec);
746 cond_resched();
747 return ndirties;
748 }
749 } while (bh = bh->b_this_page, bh != head);
750 }
751 pagevec_release(&pvec);
752 cond_resched();
753 goto repeat;
754 }
755
nilfs_lookup_dirty_node_buffers(struct inode * inode,struct list_head * listp)756 static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
757 struct list_head *listp)
758 {
759 struct nilfs_inode_info *ii = NILFS_I(inode);
760 struct inode *btnc_inode = ii->i_assoc_inode;
761 struct pagevec pvec;
762 struct buffer_head *bh, *head;
763 unsigned int i;
764 pgoff_t index = 0;
765
766 if (!btnc_inode)
767 return;
768
769 pagevec_init(&pvec);
770
771 while (pagevec_lookup_tag(&pvec, btnc_inode->i_mapping, &index,
772 PAGECACHE_TAG_DIRTY)) {
773 for (i = 0; i < pagevec_count(&pvec); i++) {
774 bh = head = page_buffers(pvec.pages[i]);
775 do {
776 if (buffer_dirty(bh) &&
777 !buffer_async_write(bh)) {
778 get_bh(bh);
779 list_add_tail(&bh->b_assoc_buffers,
780 listp);
781 }
782 bh = bh->b_this_page;
783 } while (bh != head);
784 }
785 pagevec_release(&pvec);
786 cond_resched();
787 }
788 }
789
nilfs_dispose_list(struct the_nilfs * nilfs,struct list_head * head,int force)790 static void nilfs_dispose_list(struct the_nilfs *nilfs,
791 struct list_head *head, int force)
792 {
793 struct nilfs_inode_info *ii, *n;
794 struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
795 unsigned int nv = 0;
796
797 while (!list_empty(head)) {
798 spin_lock(&nilfs->ns_inode_lock);
799 list_for_each_entry_safe(ii, n, head, i_dirty) {
800 list_del_init(&ii->i_dirty);
801 if (force) {
802 if (unlikely(ii->i_bh)) {
803 brelse(ii->i_bh);
804 ii->i_bh = NULL;
805 }
806 } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
807 set_bit(NILFS_I_QUEUED, &ii->i_state);
808 list_add_tail(&ii->i_dirty,
809 &nilfs->ns_dirty_files);
810 continue;
811 }
812 ivec[nv++] = ii;
813 if (nv == SC_N_INODEVEC)
814 break;
815 }
816 spin_unlock(&nilfs->ns_inode_lock);
817
818 for (pii = ivec; nv > 0; pii++, nv--)
819 iput(&(*pii)->vfs_inode);
820 }
821 }
822
nilfs_iput_work_func(struct work_struct * work)823 static void nilfs_iput_work_func(struct work_struct *work)
824 {
825 struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info,
826 sc_iput_work);
827 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
828
829 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0);
830 }
831
nilfs_test_metadata_dirty(struct the_nilfs * nilfs,struct nilfs_root * root)832 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
833 struct nilfs_root *root)
834 {
835 int ret = 0;
836
837 if (nilfs_mdt_fetch_dirty(root->ifile))
838 ret++;
839 if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
840 ret++;
841 if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
842 ret++;
843 if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
844 ret++;
845 return ret;
846 }
847
nilfs_segctor_clean(struct nilfs_sc_info * sci)848 static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
849 {
850 return list_empty(&sci->sc_dirty_files) &&
851 !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
852 sci->sc_nfreesegs == 0 &&
853 (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
854 }
855
nilfs_segctor_confirm(struct nilfs_sc_info * sci)856 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
857 {
858 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
859 int ret = 0;
860
861 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
862 set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
863
864 spin_lock(&nilfs->ns_inode_lock);
865 if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci))
866 ret++;
867
868 spin_unlock(&nilfs->ns_inode_lock);
869 return ret;
870 }
871
nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info * sci)872 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
873 {
874 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
875
876 nilfs_mdt_clear_dirty(sci->sc_root->ifile);
877 nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
878 nilfs_mdt_clear_dirty(nilfs->ns_sufile);
879 nilfs_mdt_clear_dirty(nilfs->ns_dat);
880 }
881
nilfs_segctor_create_checkpoint(struct nilfs_sc_info * sci)882 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
883 {
884 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
885 struct buffer_head *bh_cp;
886 struct nilfs_checkpoint *raw_cp;
887 int err;
888
889 /* XXX: this interface will be changed */
890 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
891 &raw_cp, &bh_cp);
892 if (likely(!err)) {
893 /*
894 * The following code is duplicated with cpfile. But, it is
895 * needed to collect the checkpoint even if it was not newly
896 * created.
897 */
898 mark_buffer_dirty(bh_cp);
899 nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
900 nilfs_cpfile_put_checkpoint(
901 nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
902 } else if (err == -EINVAL || err == -ENOENT) {
903 nilfs_error(sci->sc_super,
904 "checkpoint creation failed due to metadata corruption.");
905 err = -EIO;
906 }
907 return err;
908 }
909
nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info * sci)910 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
911 {
912 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
913 struct buffer_head *bh_cp;
914 struct nilfs_checkpoint *raw_cp;
915 int err;
916
917 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
918 &raw_cp, &bh_cp);
919 if (unlikely(err)) {
920 if (err == -EINVAL || err == -ENOENT) {
921 nilfs_error(sci->sc_super,
922 "checkpoint finalization failed due to metadata corruption.");
923 err = -EIO;
924 }
925 goto failed_ibh;
926 }
927 raw_cp->cp_snapshot_list.ssl_next = 0;
928 raw_cp->cp_snapshot_list.ssl_prev = 0;
929 raw_cp->cp_inodes_count =
930 cpu_to_le64(atomic64_read(&sci->sc_root->inodes_count));
931 raw_cp->cp_blocks_count =
932 cpu_to_le64(atomic64_read(&sci->sc_root->blocks_count));
933 raw_cp->cp_nblk_inc =
934 cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
935 raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
936 raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
937
938 if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
939 nilfs_checkpoint_clear_minor(raw_cp);
940 else
941 nilfs_checkpoint_set_minor(raw_cp);
942
943 nilfs_write_inode_common(sci->sc_root->ifile,
944 &raw_cp->cp_ifile_inode, 1);
945 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
946 return 0;
947
948 failed_ibh:
949 return err;
950 }
951
nilfs_fill_in_file_bmap(struct inode * ifile,struct nilfs_inode_info * ii)952 static void nilfs_fill_in_file_bmap(struct inode *ifile,
953 struct nilfs_inode_info *ii)
954
955 {
956 struct buffer_head *ibh;
957 struct nilfs_inode *raw_inode;
958
959 if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
960 ibh = ii->i_bh;
961 BUG_ON(!ibh);
962 raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
963 ibh);
964 nilfs_bmap_write(ii->i_bmap, raw_inode);
965 nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
966 }
967 }
968
nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info * sci)969 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
970 {
971 struct nilfs_inode_info *ii;
972
973 list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
974 nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
975 set_bit(NILFS_I_COLLECTED, &ii->i_state);
976 }
977 }
978
nilfs_segctor_fill_in_super_root(struct nilfs_sc_info * sci,struct the_nilfs * nilfs)979 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
980 struct the_nilfs *nilfs)
981 {
982 struct buffer_head *bh_sr;
983 struct nilfs_super_root *raw_sr;
984 unsigned int isz, srsz;
985
986 bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
987
988 lock_buffer(bh_sr);
989 raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
990 isz = nilfs->ns_inode_size;
991 srsz = NILFS_SR_BYTES(isz);
992
993 raw_sr->sr_sum = 0; /* Ensure initialization within this update */
994 raw_sr->sr_bytes = cpu_to_le16(srsz);
995 raw_sr->sr_nongc_ctime
996 = cpu_to_le64(nilfs_doing_gc() ?
997 nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
998 raw_sr->sr_flags = 0;
999
1000 nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr +
1001 NILFS_SR_DAT_OFFSET(isz), 1);
1002 nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
1003 NILFS_SR_CPFILE_OFFSET(isz), 1);
1004 nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
1005 NILFS_SR_SUFILE_OFFSET(isz), 1);
1006 memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz);
1007 set_buffer_uptodate(bh_sr);
1008 unlock_buffer(bh_sr);
1009 }
1010
nilfs_redirty_inodes(struct list_head * head)1011 static void nilfs_redirty_inodes(struct list_head *head)
1012 {
1013 struct nilfs_inode_info *ii;
1014
1015 list_for_each_entry(ii, head, i_dirty) {
1016 if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
1017 clear_bit(NILFS_I_COLLECTED, &ii->i_state);
1018 }
1019 }
1020
nilfs_drop_collected_inodes(struct list_head * head)1021 static void nilfs_drop_collected_inodes(struct list_head *head)
1022 {
1023 struct nilfs_inode_info *ii;
1024
1025 list_for_each_entry(ii, head, i_dirty) {
1026 if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
1027 continue;
1028
1029 clear_bit(NILFS_I_INODE_SYNC, &ii->i_state);
1030 set_bit(NILFS_I_UPDATED, &ii->i_state);
1031 }
1032 }
1033
nilfs_segctor_apply_buffers(struct nilfs_sc_info * sci,struct inode * inode,struct list_head * listp,int (* collect)(struct nilfs_sc_info *,struct buffer_head *,struct inode *))1034 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
1035 struct inode *inode,
1036 struct list_head *listp,
1037 int (*collect)(struct nilfs_sc_info *,
1038 struct buffer_head *,
1039 struct inode *))
1040 {
1041 struct buffer_head *bh, *n;
1042 int err = 0;
1043
1044 if (collect) {
1045 list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
1046 list_del_init(&bh->b_assoc_buffers);
1047 err = collect(sci, bh, inode);
1048 brelse(bh);
1049 if (unlikely(err))
1050 goto dispose_buffers;
1051 }
1052 return 0;
1053 }
1054
1055 dispose_buffers:
1056 while (!list_empty(listp)) {
1057 bh = list_first_entry(listp, struct buffer_head,
1058 b_assoc_buffers);
1059 list_del_init(&bh->b_assoc_buffers);
1060 brelse(bh);
1061 }
1062 return err;
1063 }
1064
nilfs_segctor_buffer_rest(struct nilfs_sc_info * sci)1065 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
1066 {
1067 /* Remaining number of blocks within segment buffer */
1068 return sci->sc_segbuf_nblocks -
1069 (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
1070 }
1071
nilfs_segctor_scan_file(struct nilfs_sc_info * sci,struct inode * inode,const struct nilfs_sc_operations * sc_ops)1072 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
1073 struct inode *inode,
1074 const struct nilfs_sc_operations *sc_ops)
1075 {
1076 LIST_HEAD(data_buffers);
1077 LIST_HEAD(node_buffers);
1078 int err;
1079
1080 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1081 size_t n, rest = nilfs_segctor_buffer_rest(sci);
1082
1083 n = nilfs_lookup_dirty_data_buffers(
1084 inode, &data_buffers, rest + 1, 0, LLONG_MAX);
1085 if (n > rest) {
1086 err = nilfs_segctor_apply_buffers(
1087 sci, inode, &data_buffers,
1088 sc_ops->collect_data);
1089 BUG_ON(!err); /* always receive -E2BIG or true error */
1090 goto break_or_fail;
1091 }
1092 }
1093 nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
1094
1095 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1096 err = nilfs_segctor_apply_buffers(
1097 sci, inode, &data_buffers, sc_ops->collect_data);
1098 if (unlikely(err)) {
1099 /* dispose node list */
1100 nilfs_segctor_apply_buffers(
1101 sci, inode, &node_buffers, NULL);
1102 goto break_or_fail;
1103 }
1104 sci->sc_stage.flags |= NILFS_CF_NODE;
1105 }
1106 /* Collect node */
1107 err = nilfs_segctor_apply_buffers(
1108 sci, inode, &node_buffers, sc_ops->collect_node);
1109 if (unlikely(err))
1110 goto break_or_fail;
1111
1112 nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
1113 err = nilfs_segctor_apply_buffers(
1114 sci, inode, &node_buffers, sc_ops->collect_bmap);
1115 if (unlikely(err))
1116 goto break_or_fail;
1117
1118 nilfs_segctor_end_finfo(sci, inode);
1119 sci->sc_stage.flags &= ~NILFS_CF_NODE;
1120
1121 break_or_fail:
1122 return err;
1123 }
1124
nilfs_segctor_scan_file_dsync(struct nilfs_sc_info * sci,struct inode * inode)1125 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
1126 struct inode *inode)
1127 {
1128 LIST_HEAD(data_buffers);
1129 size_t n, rest = nilfs_segctor_buffer_rest(sci);
1130 int err;
1131
1132 n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
1133 sci->sc_dsync_start,
1134 sci->sc_dsync_end);
1135
1136 err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
1137 nilfs_collect_file_data);
1138 if (!err) {
1139 nilfs_segctor_end_finfo(sci, inode);
1140 BUG_ON(n > rest);
1141 /* always receive -E2BIG or true error if n > rest */
1142 }
1143 return err;
1144 }
1145
nilfs_segctor_collect_blocks(struct nilfs_sc_info * sci,int mode)1146 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
1147 {
1148 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1149 struct list_head *head;
1150 struct nilfs_inode_info *ii;
1151 size_t ndone;
1152 int err = 0;
1153
1154 switch (nilfs_sc_cstage_get(sci)) {
1155 case NILFS_ST_INIT:
1156 /* Pre-processes */
1157 sci->sc_stage.flags = 0;
1158
1159 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
1160 sci->sc_nblk_inc = 0;
1161 sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
1162 if (mode == SC_LSEG_DSYNC) {
1163 nilfs_sc_cstage_set(sci, NILFS_ST_DSYNC);
1164 goto dsync_mode;
1165 }
1166 }
1167
1168 sci->sc_stage.dirty_file_ptr = NULL;
1169 sci->sc_stage.gc_inode_ptr = NULL;
1170 if (mode == SC_FLUSH_DAT) {
1171 nilfs_sc_cstage_set(sci, NILFS_ST_DAT);
1172 goto dat_stage;
1173 }
1174 nilfs_sc_cstage_inc(sci);
1175 fallthrough;
1176 case NILFS_ST_GC:
1177 if (nilfs_doing_gc()) {
1178 head = &sci->sc_gc_inodes;
1179 ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
1180 head, i_dirty);
1181 list_for_each_entry_continue(ii, head, i_dirty) {
1182 err = nilfs_segctor_scan_file(
1183 sci, &ii->vfs_inode,
1184 &nilfs_sc_file_ops);
1185 if (unlikely(err)) {
1186 sci->sc_stage.gc_inode_ptr = list_entry(
1187 ii->i_dirty.prev,
1188 struct nilfs_inode_info,
1189 i_dirty);
1190 goto break_or_fail;
1191 }
1192 set_bit(NILFS_I_COLLECTED, &ii->i_state);
1193 }
1194 sci->sc_stage.gc_inode_ptr = NULL;
1195 }
1196 nilfs_sc_cstage_inc(sci);
1197 fallthrough;
1198 case NILFS_ST_FILE:
1199 head = &sci->sc_dirty_files;
1200 ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
1201 i_dirty);
1202 list_for_each_entry_continue(ii, head, i_dirty) {
1203 clear_bit(NILFS_I_DIRTY, &ii->i_state);
1204
1205 err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
1206 &nilfs_sc_file_ops);
1207 if (unlikely(err)) {
1208 sci->sc_stage.dirty_file_ptr =
1209 list_entry(ii->i_dirty.prev,
1210 struct nilfs_inode_info,
1211 i_dirty);
1212 goto break_or_fail;
1213 }
1214 /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1215 /* XXX: required ? */
1216 }
1217 sci->sc_stage.dirty_file_ptr = NULL;
1218 if (mode == SC_FLUSH_FILE) {
1219 nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1220 return 0;
1221 }
1222 nilfs_sc_cstage_inc(sci);
1223 sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
1224 fallthrough;
1225 case NILFS_ST_IFILE:
1226 err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
1227 &nilfs_sc_file_ops);
1228 if (unlikely(err))
1229 break;
1230 nilfs_sc_cstage_inc(sci);
1231 /* Creating a checkpoint */
1232 err = nilfs_segctor_create_checkpoint(sci);
1233 if (unlikely(err))
1234 break;
1235 fallthrough;
1236 case NILFS_ST_CPFILE:
1237 err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
1238 &nilfs_sc_file_ops);
1239 if (unlikely(err))
1240 break;
1241 nilfs_sc_cstage_inc(sci);
1242 fallthrough;
1243 case NILFS_ST_SUFILE:
1244 err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
1245 sci->sc_nfreesegs, &ndone);
1246 if (unlikely(err)) {
1247 nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1248 sci->sc_freesegs, ndone,
1249 NULL);
1250 break;
1251 }
1252 sci->sc_stage.flags |= NILFS_CF_SUFREED;
1253
1254 err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
1255 &nilfs_sc_file_ops);
1256 if (unlikely(err))
1257 break;
1258 nilfs_sc_cstage_inc(sci);
1259 fallthrough;
1260 case NILFS_ST_DAT:
1261 dat_stage:
1262 err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
1263 &nilfs_sc_dat_ops);
1264 if (unlikely(err))
1265 break;
1266 if (mode == SC_FLUSH_DAT) {
1267 nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1268 return 0;
1269 }
1270 nilfs_sc_cstage_inc(sci);
1271 fallthrough;
1272 case NILFS_ST_SR:
1273 if (mode == SC_LSEG_SR) {
1274 /* Appending a super root */
1275 err = nilfs_segctor_add_super_root(sci);
1276 if (unlikely(err))
1277 break;
1278 }
1279 /* End of a logical segment */
1280 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1281 nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1282 return 0;
1283 case NILFS_ST_DSYNC:
1284 dsync_mode:
1285 sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
1286 ii = sci->sc_dsync_inode;
1287 if (!test_bit(NILFS_I_BUSY, &ii->i_state))
1288 break;
1289
1290 err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
1291 if (unlikely(err))
1292 break;
1293 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1294 nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1295 return 0;
1296 case NILFS_ST_DONE:
1297 return 0;
1298 default:
1299 BUG();
1300 }
1301
1302 break_or_fail:
1303 return err;
1304 }
1305
1306 /**
1307 * nilfs_segctor_begin_construction - setup segment buffer to make a new log
1308 * @sci: nilfs_sc_info
1309 * @nilfs: nilfs object
1310 */
nilfs_segctor_begin_construction(struct nilfs_sc_info * sci,struct the_nilfs * nilfs)1311 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
1312 struct the_nilfs *nilfs)
1313 {
1314 struct nilfs_segment_buffer *segbuf, *prev;
1315 __u64 nextnum;
1316 int err, alloc = 0;
1317
1318 segbuf = nilfs_segbuf_new(sci->sc_super);
1319 if (unlikely(!segbuf))
1320 return -ENOMEM;
1321
1322 if (list_empty(&sci->sc_write_logs)) {
1323 nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
1324 nilfs->ns_pseg_offset, nilfs);
1325 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1326 nilfs_shift_to_next_segment(nilfs);
1327 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
1328 }
1329
1330 segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
1331 nextnum = nilfs->ns_nextnum;
1332
1333 if (nilfs->ns_segnum == nilfs->ns_nextnum)
1334 /* Start from the head of a new full segment */
1335 alloc++;
1336 } else {
1337 /* Continue logs */
1338 prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1339 nilfs_segbuf_map_cont(segbuf, prev);
1340 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
1341 nextnum = prev->sb_nextnum;
1342
1343 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1344 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1345 segbuf->sb_sum.seg_seq++;
1346 alloc++;
1347 }
1348 }
1349
1350 err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
1351 if (err)
1352 goto failed;
1353
1354 if (alloc) {
1355 err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
1356 if (err)
1357 goto failed;
1358 }
1359 nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
1360
1361 BUG_ON(!list_empty(&sci->sc_segbufs));
1362 list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
1363 sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
1364 return 0;
1365
1366 failed:
1367 nilfs_segbuf_free(segbuf);
1368 return err;
1369 }
1370
nilfs_segctor_extend_segments(struct nilfs_sc_info * sci,struct the_nilfs * nilfs,int nadd)1371 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
1372 struct the_nilfs *nilfs, int nadd)
1373 {
1374 struct nilfs_segment_buffer *segbuf, *prev;
1375 struct inode *sufile = nilfs->ns_sufile;
1376 __u64 nextnextnum;
1377 LIST_HEAD(list);
1378 int err, ret, i;
1379
1380 prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
1381 /*
1382 * Since the segment specified with nextnum might be allocated during
1383 * the previous construction, the buffer including its segusage may
1384 * not be dirty. The following call ensures that the buffer is dirty
1385 * and will pin the buffer on memory until the sufile is written.
1386 */
1387 err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
1388 if (unlikely(err))
1389 return err;
1390
1391 for (i = 0; i < nadd; i++) {
1392 /* extend segment info */
1393 err = -ENOMEM;
1394 segbuf = nilfs_segbuf_new(sci->sc_super);
1395 if (unlikely(!segbuf))
1396 goto failed;
1397
1398 /* map this buffer to region of segment on-disk */
1399 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1400 sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
1401
1402 /* allocate the next next full segment */
1403 err = nilfs_sufile_alloc(sufile, &nextnextnum);
1404 if (unlikely(err))
1405 goto failed_segbuf;
1406
1407 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
1408 nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
1409
1410 list_add_tail(&segbuf->sb_list, &list);
1411 prev = segbuf;
1412 }
1413 list_splice_tail(&list, &sci->sc_segbufs);
1414 return 0;
1415
1416 failed_segbuf:
1417 nilfs_segbuf_free(segbuf);
1418 failed:
1419 list_for_each_entry(segbuf, &list, sb_list) {
1420 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1421 WARN_ON(ret); /* never fails */
1422 }
1423 nilfs_destroy_logs(&list);
1424 return err;
1425 }
1426
nilfs_free_incomplete_logs(struct list_head * logs,struct the_nilfs * nilfs)1427 static void nilfs_free_incomplete_logs(struct list_head *logs,
1428 struct the_nilfs *nilfs)
1429 {
1430 struct nilfs_segment_buffer *segbuf, *prev;
1431 struct inode *sufile = nilfs->ns_sufile;
1432 int ret;
1433
1434 segbuf = NILFS_FIRST_SEGBUF(logs);
1435 if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
1436 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1437 WARN_ON(ret); /* never fails */
1438 }
1439 if (atomic_read(&segbuf->sb_err)) {
1440 /* Case 1: The first segment failed */
1441 if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
1442 /*
1443 * Case 1a: Partial segment appended into an existing
1444 * segment
1445 */
1446 nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
1447 segbuf->sb_fseg_end);
1448 else /* Case 1b: New full segment */
1449 set_nilfs_discontinued(nilfs);
1450 }
1451
1452 prev = segbuf;
1453 list_for_each_entry_continue(segbuf, logs, sb_list) {
1454 if (prev->sb_nextnum != segbuf->sb_nextnum) {
1455 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1456 WARN_ON(ret); /* never fails */
1457 }
1458 if (atomic_read(&segbuf->sb_err) &&
1459 segbuf->sb_segnum != nilfs->ns_nextnum)
1460 /* Case 2: extended segment (!= next) failed */
1461 nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
1462 prev = segbuf;
1463 }
1464 }
1465
nilfs_segctor_update_segusage(struct nilfs_sc_info * sci,struct inode * sufile)1466 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
1467 struct inode *sufile)
1468 {
1469 struct nilfs_segment_buffer *segbuf;
1470 unsigned long live_blocks;
1471 int ret;
1472
1473 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1474 live_blocks = segbuf->sb_sum.nblocks +
1475 (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
1476 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1477 live_blocks,
1478 sci->sc_seg_ctime);
1479 WARN_ON(ret); /* always succeed because the segusage is dirty */
1480 }
1481 }
1482
nilfs_cancel_segusage(struct list_head * logs,struct inode * sufile)1483 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
1484 {
1485 struct nilfs_segment_buffer *segbuf;
1486 int ret;
1487
1488 segbuf = NILFS_FIRST_SEGBUF(logs);
1489 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1490 segbuf->sb_pseg_start -
1491 segbuf->sb_fseg_start, 0);
1492 WARN_ON(ret); /* always succeed because the segusage is dirty */
1493
1494 list_for_each_entry_continue(segbuf, logs, sb_list) {
1495 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1496 0, 0);
1497 WARN_ON(ret); /* always succeed */
1498 }
1499 }
1500
nilfs_segctor_truncate_segments(struct nilfs_sc_info * sci,struct nilfs_segment_buffer * last,struct inode * sufile)1501 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
1502 struct nilfs_segment_buffer *last,
1503 struct inode *sufile)
1504 {
1505 struct nilfs_segment_buffer *segbuf = last;
1506 int ret;
1507
1508 list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
1509 sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
1510 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1511 WARN_ON(ret);
1512 }
1513 nilfs_truncate_logs(&sci->sc_segbufs, last);
1514 }
1515
1516
nilfs_segctor_collect(struct nilfs_sc_info * sci,struct the_nilfs * nilfs,int mode)1517 static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
1518 struct the_nilfs *nilfs, int mode)
1519 {
1520 struct nilfs_cstage prev_stage = sci->sc_stage;
1521 int err, nadd = 1;
1522
1523 /* Collection retry loop */
1524 for (;;) {
1525 sci->sc_nblk_this_inc = 0;
1526 sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1527
1528 err = nilfs_segctor_reset_segment_buffer(sci);
1529 if (unlikely(err))
1530 goto failed;
1531
1532 err = nilfs_segctor_collect_blocks(sci, mode);
1533 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
1534 if (!err)
1535 break;
1536
1537 if (unlikely(err != -E2BIG))
1538 goto failed;
1539
1540 /* The current segment is filled up */
1541 if (mode != SC_LSEG_SR ||
1542 nilfs_sc_cstage_get(sci) < NILFS_ST_CPFILE)
1543 break;
1544
1545 nilfs_clear_logs(&sci->sc_segbufs);
1546
1547 if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1548 err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1549 sci->sc_freesegs,
1550 sci->sc_nfreesegs,
1551 NULL);
1552 WARN_ON(err); /* do not happen */
1553 sci->sc_stage.flags &= ~NILFS_CF_SUFREED;
1554 }
1555
1556 err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
1557 if (unlikely(err))
1558 return err;
1559
1560 nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
1561 sci->sc_stage = prev_stage;
1562 }
1563 nilfs_segctor_zeropad_segsum(sci);
1564 nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
1565 return 0;
1566
1567 failed:
1568 return err;
1569 }
1570
nilfs_list_replace_buffer(struct buffer_head * old_bh,struct buffer_head * new_bh)1571 static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
1572 struct buffer_head *new_bh)
1573 {
1574 BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
1575
1576 list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
1577 /* The caller must release old_bh */
1578 }
1579
1580 static int
nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info * sci,struct nilfs_segment_buffer * segbuf,int mode)1581 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
1582 struct nilfs_segment_buffer *segbuf,
1583 int mode)
1584 {
1585 struct inode *inode = NULL;
1586 sector_t blocknr;
1587 unsigned long nfinfo = segbuf->sb_sum.nfinfo;
1588 unsigned long nblocks = 0, ndatablk = 0;
1589 const struct nilfs_sc_operations *sc_op = NULL;
1590 struct nilfs_segsum_pointer ssp;
1591 struct nilfs_finfo *finfo = NULL;
1592 union nilfs_binfo binfo;
1593 struct buffer_head *bh, *bh_org;
1594 ino_t ino = 0;
1595 int err = 0;
1596
1597 if (!nfinfo)
1598 goto out;
1599
1600 blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
1601 ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
1602 ssp.offset = sizeof(struct nilfs_segment_summary);
1603
1604 list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
1605 if (bh == segbuf->sb_super_root)
1606 break;
1607 if (!finfo) {
1608 finfo = nilfs_segctor_map_segsum_entry(
1609 sci, &ssp, sizeof(*finfo));
1610 ino = le64_to_cpu(finfo->fi_ino);
1611 nblocks = le32_to_cpu(finfo->fi_nblocks);
1612 ndatablk = le32_to_cpu(finfo->fi_ndatablk);
1613
1614 inode = bh->b_page->mapping->host;
1615
1616 if (mode == SC_LSEG_DSYNC)
1617 sc_op = &nilfs_sc_dsync_ops;
1618 else if (ino == NILFS_DAT_INO)
1619 sc_op = &nilfs_sc_dat_ops;
1620 else /* file blocks */
1621 sc_op = &nilfs_sc_file_ops;
1622 }
1623 bh_org = bh;
1624 get_bh(bh_org);
1625 err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
1626 &binfo);
1627 if (bh != bh_org)
1628 nilfs_list_replace_buffer(bh_org, bh);
1629 brelse(bh_org);
1630 if (unlikely(err))
1631 goto failed_bmap;
1632
1633 if (ndatablk > 0)
1634 sc_op->write_data_binfo(sci, &ssp, &binfo);
1635 else
1636 sc_op->write_node_binfo(sci, &ssp, &binfo);
1637
1638 blocknr++;
1639 if (--nblocks == 0) {
1640 finfo = NULL;
1641 if (--nfinfo == 0)
1642 break;
1643 } else if (ndatablk > 0)
1644 ndatablk--;
1645 }
1646 out:
1647 return 0;
1648
1649 failed_bmap:
1650 return err;
1651 }
1652
nilfs_segctor_assign(struct nilfs_sc_info * sci,int mode)1653 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
1654 {
1655 struct nilfs_segment_buffer *segbuf;
1656 int err;
1657
1658 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1659 err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
1660 if (unlikely(err))
1661 return err;
1662 nilfs_segbuf_fill_in_segsum(segbuf);
1663 }
1664 return 0;
1665 }
1666
nilfs_begin_page_io(struct page * page)1667 static void nilfs_begin_page_io(struct page *page)
1668 {
1669 if (!page || PageWriteback(page))
1670 /*
1671 * For split b-tree node pages, this function may be called
1672 * twice. We ignore the 2nd or later calls by this check.
1673 */
1674 return;
1675
1676 lock_page(page);
1677 clear_page_dirty_for_io(page);
1678 set_page_writeback(page);
1679 unlock_page(page);
1680 }
1681
nilfs_segctor_prepare_write(struct nilfs_sc_info * sci)1682 static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci)
1683 {
1684 struct nilfs_segment_buffer *segbuf;
1685 struct page *bd_page = NULL, *fs_page = NULL;
1686
1687 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1688 struct buffer_head *bh;
1689
1690 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1691 b_assoc_buffers) {
1692 if (bh->b_page != bd_page) {
1693 if (bd_page) {
1694 lock_page(bd_page);
1695 clear_page_dirty_for_io(bd_page);
1696 set_page_writeback(bd_page);
1697 unlock_page(bd_page);
1698 }
1699 bd_page = bh->b_page;
1700 }
1701 }
1702
1703 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1704 b_assoc_buffers) {
1705 if (bh == segbuf->sb_super_root) {
1706 if (bh->b_page != bd_page) {
1707 lock_page(bd_page);
1708 clear_page_dirty_for_io(bd_page);
1709 set_page_writeback(bd_page);
1710 unlock_page(bd_page);
1711 bd_page = bh->b_page;
1712 }
1713 break;
1714 }
1715 set_buffer_async_write(bh);
1716 if (bh->b_page != fs_page) {
1717 nilfs_begin_page_io(fs_page);
1718 fs_page = bh->b_page;
1719 }
1720 }
1721 }
1722 if (bd_page) {
1723 lock_page(bd_page);
1724 clear_page_dirty_for_io(bd_page);
1725 set_page_writeback(bd_page);
1726 unlock_page(bd_page);
1727 }
1728 nilfs_begin_page_io(fs_page);
1729 }
1730
nilfs_segctor_write(struct nilfs_sc_info * sci,struct the_nilfs * nilfs)1731 static int nilfs_segctor_write(struct nilfs_sc_info *sci,
1732 struct the_nilfs *nilfs)
1733 {
1734 int ret;
1735
1736 ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
1737 list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
1738 return ret;
1739 }
1740
nilfs_end_page_io(struct page * page,int err)1741 static void nilfs_end_page_io(struct page *page, int err)
1742 {
1743 if (!page)
1744 return;
1745
1746 if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
1747 /*
1748 * For b-tree node pages, this function may be called twice
1749 * or more because they might be split in a segment.
1750 */
1751 if (PageDirty(page)) {
1752 /*
1753 * For pages holding split b-tree node buffers, dirty
1754 * flag on the buffers may be cleared discretely.
1755 * In that case, the page is once redirtied for
1756 * remaining buffers, and it must be cancelled if
1757 * all the buffers get cleaned later.
1758 */
1759 lock_page(page);
1760 if (nilfs_page_buffers_clean(page))
1761 __nilfs_clear_page_dirty(page);
1762 unlock_page(page);
1763 }
1764 return;
1765 }
1766
1767 if (!err) {
1768 if (!nilfs_page_buffers_clean(page))
1769 __set_page_dirty_nobuffers(page);
1770 ClearPageError(page);
1771 } else {
1772 __set_page_dirty_nobuffers(page);
1773 SetPageError(page);
1774 }
1775
1776 end_page_writeback(page);
1777 }
1778
nilfs_abort_logs(struct list_head * logs,int err)1779 static void nilfs_abort_logs(struct list_head *logs, int err)
1780 {
1781 struct nilfs_segment_buffer *segbuf;
1782 struct page *bd_page = NULL, *fs_page = NULL;
1783 struct buffer_head *bh;
1784
1785 if (list_empty(logs))
1786 return;
1787
1788 list_for_each_entry(segbuf, logs, sb_list) {
1789 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1790 b_assoc_buffers) {
1791 clear_buffer_uptodate(bh);
1792 if (bh->b_page != bd_page) {
1793 if (bd_page)
1794 end_page_writeback(bd_page);
1795 bd_page = bh->b_page;
1796 }
1797 }
1798
1799 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1800 b_assoc_buffers) {
1801 if (bh == segbuf->sb_super_root) {
1802 clear_buffer_uptodate(bh);
1803 if (bh->b_page != bd_page) {
1804 end_page_writeback(bd_page);
1805 bd_page = bh->b_page;
1806 }
1807 break;
1808 }
1809 clear_buffer_async_write(bh);
1810 if (bh->b_page != fs_page) {
1811 nilfs_end_page_io(fs_page, err);
1812 fs_page = bh->b_page;
1813 }
1814 }
1815 }
1816 if (bd_page)
1817 end_page_writeback(bd_page);
1818
1819 nilfs_end_page_io(fs_page, err);
1820 }
1821
nilfs_segctor_abort_construction(struct nilfs_sc_info * sci,struct the_nilfs * nilfs,int err)1822 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
1823 struct the_nilfs *nilfs, int err)
1824 {
1825 LIST_HEAD(logs);
1826 int ret;
1827
1828 list_splice_tail_init(&sci->sc_write_logs, &logs);
1829 ret = nilfs_wait_on_logs(&logs);
1830 nilfs_abort_logs(&logs, ret ? : err);
1831
1832 list_splice_tail_init(&sci->sc_segbufs, &logs);
1833 nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
1834 nilfs_free_incomplete_logs(&logs, nilfs);
1835
1836 if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1837 ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1838 sci->sc_freesegs,
1839 sci->sc_nfreesegs,
1840 NULL);
1841 WARN_ON(ret); /* do not happen */
1842 }
1843
1844 nilfs_destroy_logs(&logs);
1845 }
1846
nilfs_set_next_segment(struct the_nilfs * nilfs,struct nilfs_segment_buffer * segbuf)1847 static void nilfs_set_next_segment(struct the_nilfs *nilfs,
1848 struct nilfs_segment_buffer *segbuf)
1849 {
1850 nilfs->ns_segnum = segbuf->sb_segnum;
1851 nilfs->ns_nextnum = segbuf->sb_nextnum;
1852 nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
1853 + segbuf->sb_sum.nblocks;
1854 nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
1855 nilfs->ns_ctime = segbuf->sb_sum.ctime;
1856 }
1857
nilfs_segctor_complete_write(struct nilfs_sc_info * sci)1858 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
1859 {
1860 struct nilfs_segment_buffer *segbuf;
1861 struct page *bd_page = NULL, *fs_page = NULL;
1862 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1863 int update_sr = false;
1864
1865 list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
1866 struct buffer_head *bh;
1867
1868 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1869 b_assoc_buffers) {
1870 set_buffer_uptodate(bh);
1871 clear_buffer_dirty(bh);
1872 if (bh->b_page != bd_page) {
1873 if (bd_page)
1874 end_page_writeback(bd_page);
1875 bd_page = bh->b_page;
1876 }
1877 }
1878 /*
1879 * We assume that the buffers which belong to the same page
1880 * continue over the buffer list.
1881 * Under this assumption, the last BHs of pages is
1882 * identifiable by the discontinuity of bh->b_page
1883 * (page != fs_page).
1884 *
1885 * For B-tree node blocks, however, this assumption is not
1886 * guaranteed. The cleanup code of B-tree node pages needs
1887 * special care.
1888 */
1889 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1890 b_assoc_buffers) {
1891 const unsigned long set_bits = BIT(BH_Uptodate);
1892 const unsigned long clear_bits =
1893 (BIT(BH_Dirty) | BIT(BH_Async_Write) |
1894 BIT(BH_Delay) | BIT(BH_NILFS_Volatile) |
1895 BIT(BH_NILFS_Redirected));
1896
1897 if (bh == segbuf->sb_super_root) {
1898 set_buffer_uptodate(bh);
1899 clear_buffer_dirty(bh);
1900 if (bh->b_page != bd_page) {
1901 end_page_writeback(bd_page);
1902 bd_page = bh->b_page;
1903 }
1904 update_sr = true;
1905 break;
1906 }
1907 set_mask_bits(&bh->b_state, clear_bits, set_bits);
1908 if (bh->b_page != fs_page) {
1909 nilfs_end_page_io(fs_page, 0);
1910 fs_page = bh->b_page;
1911 }
1912 }
1913
1914 if (!nilfs_segbuf_simplex(segbuf)) {
1915 if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
1916 set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1917 sci->sc_lseg_stime = jiffies;
1918 }
1919 if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
1920 clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1921 }
1922 }
1923 /*
1924 * Since pages may continue over multiple segment buffers,
1925 * end of the last page must be checked outside of the loop.
1926 */
1927 if (bd_page)
1928 end_page_writeback(bd_page);
1929
1930 nilfs_end_page_io(fs_page, 0);
1931
1932 nilfs_drop_collected_inodes(&sci->sc_dirty_files);
1933
1934 if (nilfs_doing_gc())
1935 nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
1936 else
1937 nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
1938
1939 sci->sc_nblk_inc += sci->sc_nblk_this_inc;
1940
1941 segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1942 nilfs_set_next_segment(nilfs, segbuf);
1943
1944 if (update_sr) {
1945 nilfs->ns_flushed_device = 0;
1946 nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
1947 segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
1948
1949 clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
1950 clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
1951 set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1952 nilfs_segctor_clear_metadata_dirty(sci);
1953 } else
1954 clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1955 }
1956
nilfs_segctor_wait(struct nilfs_sc_info * sci)1957 static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
1958 {
1959 int ret;
1960
1961 ret = nilfs_wait_on_logs(&sci->sc_write_logs);
1962 if (!ret) {
1963 nilfs_segctor_complete_write(sci);
1964 nilfs_destroy_logs(&sci->sc_write_logs);
1965 }
1966 return ret;
1967 }
1968
nilfs_segctor_collect_dirty_files(struct nilfs_sc_info * sci,struct the_nilfs * nilfs)1969 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci,
1970 struct the_nilfs *nilfs)
1971 {
1972 struct nilfs_inode_info *ii, *n;
1973 struct inode *ifile = sci->sc_root->ifile;
1974
1975 spin_lock(&nilfs->ns_inode_lock);
1976 retry:
1977 list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) {
1978 if (!ii->i_bh) {
1979 struct buffer_head *ibh;
1980 int err;
1981
1982 spin_unlock(&nilfs->ns_inode_lock);
1983 err = nilfs_ifile_get_inode_block(
1984 ifile, ii->vfs_inode.i_ino, &ibh);
1985 if (unlikely(err)) {
1986 nilfs_warn(sci->sc_super,
1987 "log writer: error %d getting inode block (ino=%lu)",
1988 err, ii->vfs_inode.i_ino);
1989 return err;
1990 }
1991 spin_lock(&nilfs->ns_inode_lock);
1992 if (likely(!ii->i_bh))
1993 ii->i_bh = ibh;
1994 else
1995 brelse(ibh);
1996 goto retry;
1997 }
1998
1999 // Always redirty the buffer to avoid race condition
2000 mark_buffer_dirty(ii->i_bh);
2001 nilfs_mdt_mark_dirty(ifile);
2002
2003 clear_bit(NILFS_I_QUEUED, &ii->i_state);
2004 set_bit(NILFS_I_BUSY, &ii->i_state);
2005 list_move_tail(&ii->i_dirty, &sci->sc_dirty_files);
2006 }
2007 spin_unlock(&nilfs->ns_inode_lock);
2008
2009 return 0;
2010 }
2011
nilfs_segctor_drop_written_files(struct nilfs_sc_info * sci,struct the_nilfs * nilfs)2012 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci,
2013 struct the_nilfs *nilfs)
2014 {
2015 struct nilfs_inode_info *ii, *n;
2016 int during_mount = !(sci->sc_super->s_flags & SB_ACTIVE);
2017 int defer_iput = false;
2018
2019 spin_lock(&nilfs->ns_inode_lock);
2020 list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
2021 if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
2022 test_bit(NILFS_I_DIRTY, &ii->i_state))
2023 continue;
2024
2025 clear_bit(NILFS_I_BUSY, &ii->i_state);
2026 brelse(ii->i_bh);
2027 ii->i_bh = NULL;
2028 list_del_init(&ii->i_dirty);
2029 if (!ii->vfs_inode.i_nlink || during_mount) {
2030 /*
2031 * Defer calling iput() to avoid deadlocks if
2032 * i_nlink == 0 or mount is not yet finished.
2033 */
2034 list_add_tail(&ii->i_dirty, &sci->sc_iput_queue);
2035 defer_iput = true;
2036 } else {
2037 spin_unlock(&nilfs->ns_inode_lock);
2038 iput(&ii->vfs_inode);
2039 spin_lock(&nilfs->ns_inode_lock);
2040 }
2041 }
2042 spin_unlock(&nilfs->ns_inode_lock);
2043
2044 if (defer_iput)
2045 schedule_work(&sci->sc_iput_work);
2046 }
2047
2048 /*
2049 * Main procedure of segment constructor
2050 */
nilfs_segctor_do_construct(struct nilfs_sc_info * sci,int mode)2051 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
2052 {
2053 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2054 int err;
2055
2056 if (sb_rdonly(sci->sc_super))
2057 return -EROFS;
2058
2059 nilfs_sc_cstage_set(sci, NILFS_ST_INIT);
2060 sci->sc_cno = nilfs->ns_cno;
2061
2062 err = nilfs_segctor_collect_dirty_files(sci, nilfs);
2063 if (unlikely(err))
2064 goto out;
2065
2066 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
2067 set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
2068
2069 if (nilfs_segctor_clean(sci))
2070 goto out;
2071
2072 do {
2073 sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
2074
2075 err = nilfs_segctor_begin_construction(sci, nilfs);
2076 if (unlikely(err))
2077 goto out;
2078
2079 /* Update time stamp */
2080 sci->sc_seg_ctime = ktime_get_real_seconds();
2081
2082 err = nilfs_segctor_collect(sci, nilfs, mode);
2083 if (unlikely(err))
2084 goto failed;
2085
2086 /* Avoid empty segment */
2087 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE &&
2088 nilfs_segbuf_empty(sci->sc_curseg)) {
2089 nilfs_segctor_abort_construction(sci, nilfs, 1);
2090 goto out;
2091 }
2092
2093 err = nilfs_segctor_assign(sci, mode);
2094 if (unlikely(err))
2095 goto failed;
2096
2097 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2098 nilfs_segctor_fill_in_file_bmap(sci);
2099
2100 if (mode == SC_LSEG_SR &&
2101 nilfs_sc_cstage_get(sci) >= NILFS_ST_CPFILE) {
2102 err = nilfs_segctor_fill_in_checkpoint(sci);
2103 if (unlikely(err))
2104 goto failed_to_write;
2105
2106 nilfs_segctor_fill_in_super_root(sci, nilfs);
2107 }
2108 nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
2109
2110 /* Write partial segments */
2111 nilfs_segctor_prepare_write(sci);
2112
2113 nilfs_add_checksums_on_logs(&sci->sc_segbufs,
2114 nilfs->ns_crc_seed);
2115
2116 err = nilfs_segctor_write(sci, nilfs);
2117 if (unlikely(err))
2118 goto failed_to_write;
2119
2120 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE ||
2121 nilfs->ns_blocksize_bits != PAGE_SHIFT) {
2122 /*
2123 * At this point, we avoid double buffering
2124 * for blocksize < pagesize because page dirty
2125 * flag is turned off during write and dirty
2126 * buffers are not properly collected for
2127 * pages crossing over segments.
2128 */
2129 err = nilfs_segctor_wait(sci);
2130 if (err)
2131 goto failed_to_write;
2132 }
2133 } while (nilfs_sc_cstage_get(sci) != NILFS_ST_DONE);
2134
2135 out:
2136 nilfs_segctor_drop_written_files(sci, nilfs);
2137 return err;
2138
2139 failed_to_write:
2140 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2141 nilfs_redirty_inodes(&sci->sc_dirty_files);
2142
2143 failed:
2144 if (nilfs_doing_gc())
2145 nilfs_redirty_inodes(&sci->sc_gc_inodes);
2146 nilfs_segctor_abort_construction(sci, nilfs, err);
2147 goto out;
2148 }
2149
2150 /**
2151 * nilfs_segctor_start_timer - set timer of background write
2152 * @sci: nilfs_sc_info
2153 *
2154 * If the timer has already been set, it ignores the new request.
2155 * This function MUST be called within a section locking the segment
2156 * semaphore.
2157 */
nilfs_segctor_start_timer(struct nilfs_sc_info * sci)2158 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
2159 {
2160 spin_lock(&sci->sc_state_lock);
2161 if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
2162 sci->sc_timer.expires = jiffies + sci->sc_interval;
2163 add_timer(&sci->sc_timer);
2164 sci->sc_state |= NILFS_SEGCTOR_COMMIT;
2165 }
2166 spin_unlock(&sci->sc_state_lock);
2167 }
2168
nilfs_segctor_do_flush(struct nilfs_sc_info * sci,int bn)2169 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
2170 {
2171 spin_lock(&sci->sc_state_lock);
2172 if (!(sci->sc_flush_request & BIT(bn))) {
2173 unsigned long prev_req = sci->sc_flush_request;
2174
2175 sci->sc_flush_request |= BIT(bn);
2176 if (!prev_req)
2177 wake_up(&sci->sc_wait_daemon);
2178 }
2179 spin_unlock(&sci->sc_state_lock);
2180 }
2181
2182 /**
2183 * nilfs_flush_segment - trigger a segment construction for resource control
2184 * @sb: super block
2185 * @ino: inode number of the file to be flushed out.
2186 */
nilfs_flush_segment(struct super_block * sb,ino_t ino)2187 void nilfs_flush_segment(struct super_block *sb, ino_t ino)
2188 {
2189 struct the_nilfs *nilfs = sb->s_fs_info;
2190 struct nilfs_sc_info *sci = nilfs->ns_writer;
2191
2192 if (!sci || nilfs_doing_construction())
2193 return;
2194 nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
2195 /* assign bit 0 to data files */
2196 }
2197
2198 struct nilfs_segctor_wait_request {
2199 wait_queue_entry_t wq;
2200 __u32 seq;
2201 int err;
2202 atomic_t done;
2203 };
2204
nilfs_segctor_sync(struct nilfs_sc_info * sci)2205 static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
2206 {
2207 struct nilfs_segctor_wait_request wait_req;
2208 int err = 0;
2209
2210 spin_lock(&sci->sc_state_lock);
2211 init_wait(&wait_req.wq);
2212 wait_req.err = 0;
2213 atomic_set(&wait_req.done, 0);
2214 wait_req.seq = ++sci->sc_seq_request;
2215 spin_unlock(&sci->sc_state_lock);
2216
2217 init_waitqueue_entry(&wait_req.wq, current);
2218 add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
2219 set_current_state(TASK_INTERRUPTIBLE);
2220 wake_up(&sci->sc_wait_daemon);
2221
2222 for (;;) {
2223 if (atomic_read(&wait_req.done)) {
2224 err = wait_req.err;
2225 break;
2226 }
2227 if (!signal_pending(current)) {
2228 schedule();
2229 continue;
2230 }
2231 err = -ERESTARTSYS;
2232 break;
2233 }
2234 finish_wait(&sci->sc_wait_request, &wait_req.wq);
2235 return err;
2236 }
2237
nilfs_segctor_wakeup(struct nilfs_sc_info * sci,int err)2238 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
2239 {
2240 struct nilfs_segctor_wait_request *wrq, *n;
2241 unsigned long flags;
2242
2243 spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
2244 list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.head, wq.entry) {
2245 if (!atomic_read(&wrq->done) &&
2246 nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
2247 wrq->err = err;
2248 atomic_set(&wrq->done, 1);
2249 }
2250 if (atomic_read(&wrq->done)) {
2251 wrq->wq.func(&wrq->wq,
2252 TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2253 0, NULL);
2254 }
2255 }
2256 spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
2257 }
2258
2259 /**
2260 * nilfs_construct_segment - construct a logical segment
2261 * @sb: super block
2262 *
2263 * Return Value: On success, 0 is returned. On errors, one of the following
2264 * negative error code is returned.
2265 *
2266 * %-EROFS - Read only filesystem.
2267 *
2268 * %-EIO - I/O error
2269 *
2270 * %-ENOSPC - No space left on device (only in a panic state).
2271 *
2272 * %-ERESTARTSYS - Interrupted.
2273 *
2274 * %-ENOMEM - Insufficient memory available.
2275 */
nilfs_construct_segment(struct super_block * sb)2276 int nilfs_construct_segment(struct super_block *sb)
2277 {
2278 struct the_nilfs *nilfs = sb->s_fs_info;
2279 struct nilfs_sc_info *sci = nilfs->ns_writer;
2280 struct nilfs_transaction_info *ti;
2281
2282 if (sb_rdonly(sb) || unlikely(!sci))
2283 return -EROFS;
2284
2285 /* A call inside transactions causes a deadlock. */
2286 BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
2287
2288 return nilfs_segctor_sync(sci);
2289 }
2290
2291 /**
2292 * nilfs_construct_dsync_segment - construct a data-only logical segment
2293 * @sb: super block
2294 * @inode: inode whose data blocks should be written out
2295 * @start: start byte offset
2296 * @end: end byte offset (inclusive)
2297 *
2298 * Return Value: On success, 0 is returned. On errors, one of the following
2299 * negative error code is returned.
2300 *
2301 * %-EROFS - Read only filesystem.
2302 *
2303 * %-EIO - I/O error
2304 *
2305 * %-ENOSPC - No space left on device (only in a panic state).
2306 *
2307 * %-ERESTARTSYS - Interrupted.
2308 *
2309 * %-ENOMEM - Insufficient memory available.
2310 */
nilfs_construct_dsync_segment(struct super_block * sb,struct inode * inode,loff_t start,loff_t end)2311 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
2312 loff_t start, loff_t end)
2313 {
2314 struct the_nilfs *nilfs = sb->s_fs_info;
2315 struct nilfs_sc_info *sci = nilfs->ns_writer;
2316 struct nilfs_inode_info *ii;
2317 struct nilfs_transaction_info ti;
2318 int err = 0;
2319
2320 if (sb_rdonly(sb) || unlikely(!sci))
2321 return -EROFS;
2322
2323 nilfs_transaction_lock(sb, &ti, 0);
2324
2325 ii = NILFS_I(inode);
2326 if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) ||
2327 nilfs_test_opt(nilfs, STRICT_ORDER) ||
2328 test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2329 nilfs_discontinued(nilfs)) {
2330 nilfs_transaction_unlock(sb);
2331 err = nilfs_segctor_sync(sci);
2332 return err;
2333 }
2334
2335 spin_lock(&nilfs->ns_inode_lock);
2336 if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
2337 !test_bit(NILFS_I_BUSY, &ii->i_state)) {
2338 spin_unlock(&nilfs->ns_inode_lock);
2339 nilfs_transaction_unlock(sb);
2340 return 0;
2341 }
2342 spin_unlock(&nilfs->ns_inode_lock);
2343 sci->sc_dsync_inode = ii;
2344 sci->sc_dsync_start = start;
2345 sci->sc_dsync_end = end;
2346
2347 err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
2348 if (!err)
2349 nilfs->ns_flushed_device = 0;
2350
2351 nilfs_transaction_unlock(sb);
2352 return err;
2353 }
2354
2355 #define FLUSH_FILE_BIT (0x1) /* data file only */
2356 #define FLUSH_DAT_BIT BIT(NILFS_DAT_INO) /* DAT only */
2357
2358 /**
2359 * nilfs_segctor_accept - record accepted sequence count of log-write requests
2360 * @sci: segment constructor object
2361 */
nilfs_segctor_accept(struct nilfs_sc_info * sci)2362 static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
2363 {
2364 spin_lock(&sci->sc_state_lock);
2365 sci->sc_seq_accepted = sci->sc_seq_request;
2366 spin_unlock(&sci->sc_state_lock);
2367 del_timer_sync(&sci->sc_timer);
2368 }
2369
2370 /**
2371 * nilfs_segctor_notify - notify the result of request to caller threads
2372 * @sci: segment constructor object
2373 * @mode: mode of log forming
2374 * @err: error code to be notified
2375 */
nilfs_segctor_notify(struct nilfs_sc_info * sci,int mode,int err)2376 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
2377 {
2378 /* Clear requests (even when the construction failed) */
2379 spin_lock(&sci->sc_state_lock);
2380
2381 if (mode == SC_LSEG_SR) {
2382 sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
2383 sci->sc_seq_done = sci->sc_seq_accepted;
2384 nilfs_segctor_wakeup(sci, err);
2385 sci->sc_flush_request = 0;
2386 } else {
2387 if (mode == SC_FLUSH_FILE)
2388 sci->sc_flush_request &= ~FLUSH_FILE_BIT;
2389 else if (mode == SC_FLUSH_DAT)
2390 sci->sc_flush_request &= ~FLUSH_DAT_BIT;
2391
2392 /* re-enable timer if checkpoint creation was not done */
2393 if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2394 time_before(jiffies, sci->sc_timer.expires))
2395 add_timer(&sci->sc_timer);
2396 }
2397 spin_unlock(&sci->sc_state_lock);
2398 }
2399
2400 /**
2401 * nilfs_segctor_construct - form logs and write them to disk
2402 * @sci: segment constructor object
2403 * @mode: mode of log forming
2404 */
nilfs_segctor_construct(struct nilfs_sc_info * sci,int mode)2405 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
2406 {
2407 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2408 struct nilfs_super_block **sbp;
2409 int err = 0;
2410
2411 nilfs_segctor_accept(sci);
2412
2413 if (nilfs_discontinued(nilfs))
2414 mode = SC_LSEG_SR;
2415 if (!nilfs_segctor_confirm(sci))
2416 err = nilfs_segctor_do_construct(sci, mode);
2417
2418 if (likely(!err)) {
2419 if (mode != SC_FLUSH_DAT)
2420 atomic_set(&nilfs->ns_ndirtyblks, 0);
2421 if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
2422 nilfs_discontinued(nilfs)) {
2423 down_write(&nilfs->ns_sem);
2424 err = -EIO;
2425 sbp = nilfs_prepare_super(sci->sc_super,
2426 nilfs_sb_will_flip(nilfs));
2427 if (likely(sbp)) {
2428 nilfs_set_log_cursor(sbp[0], nilfs);
2429 err = nilfs_commit_super(sci->sc_super,
2430 NILFS_SB_COMMIT);
2431 }
2432 up_write(&nilfs->ns_sem);
2433 }
2434 }
2435
2436 nilfs_segctor_notify(sci, mode, err);
2437 return err;
2438 }
2439
nilfs_construction_timeout(struct timer_list * t)2440 static void nilfs_construction_timeout(struct timer_list *t)
2441 {
2442 struct nilfs_sc_info *sci = from_timer(sci, t, sc_timer);
2443
2444 wake_up_process(sci->sc_timer_task);
2445 }
2446
2447 static void
nilfs_remove_written_gcinodes(struct the_nilfs * nilfs,struct list_head * head)2448 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
2449 {
2450 struct nilfs_inode_info *ii, *n;
2451
2452 list_for_each_entry_safe(ii, n, head, i_dirty) {
2453 if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
2454 continue;
2455 list_del_init(&ii->i_dirty);
2456 truncate_inode_pages(&ii->vfs_inode.i_data, 0);
2457 nilfs_btnode_cache_clear(ii->i_assoc_inode->i_mapping);
2458 iput(&ii->vfs_inode);
2459 }
2460 }
2461
nilfs_clean_segments(struct super_block * sb,struct nilfs_argv * argv,void ** kbufs)2462 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
2463 void **kbufs)
2464 {
2465 struct the_nilfs *nilfs = sb->s_fs_info;
2466 struct nilfs_sc_info *sci = nilfs->ns_writer;
2467 struct nilfs_transaction_info ti;
2468 int err;
2469
2470 if (unlikely(!sci))
2471 return -EROFS;
2472
2473 nilfs_transaction_lock(sb, &ti, 1);
2474
2475 err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
2476 if (unlikely(err))
2477 goto out_unlock;
2478
2479 err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
2480 if (unlikely(err)) {
2481 nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
2482 goto out_unlock;
2483 }
2484
2485 sci->sc_freesegs = kbufs[4];
2486 sci->sc_nfreesegs = argv[4].v_nmembs;
2487 list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
2488
2489 for (;;) {
2490 err = nilfs_segctor_construct(sci, SC_LSEG_SR);
2491 nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
2492
2493 if (likely(!err))
2494 break;
2495
2496 nilfs_warn(sb, "error %d cleaning segments", err);
2497 set_current_state(TASK_INTERRUPTIBLE);
2498 schedule_timeout(sci->sc_interval);
2499 }
2500 if (nilfs_test_opt(nilfs, DISCARD)) {
2501 int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
2502 sci->sc_nfreesegs);
2503 if (ret) {
2504 nilfs_warn(sb,
2505 "error %d on discard request, turning discards off for the device",
2506 ret);
2507 nilfs_clear_opt(nilfs, DISCARD);
2508 }
2509 }
2510
2511 out_unlock:
2512 sci->sc_freesegs = NULL;
2513 sci->sc_nfreesegs = 0;
2514 nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
2515 nilfs_transaction_unlock(sb);
2516 return err;
2517 }
2518
nilfs_segctor_thread_construct(struct nilfs_sc_info * sci,int mode)2519 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
2520 {
2521 struct nilfs_transaction_info ti;
2522
2523 nilfs_transaction_lock(sci->sc_super, &ti, 0);
2524 nilfs_segctor_construct(sci, mode);
2525
2526 /*
2527 * Unclosed segment should be retried. We do this using sc_timer.
2528 * Timeout of sc_timer will invoke complete construction which leads
2529 * to close the current logical segment.
2530 */
2531 if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
2532 nilfs_segctor_start_timer(sci);
2533
2534 nilfs_transaction_unlock(sci->sc_super);
2535 }
2536
nilfs_segctor_do_immediate_flush(struct nilfs_sc_info * sci)2537 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
2538 {
2539 int mode = 0;
2540
2541 spin_lock(&sci->sc_state_lock);
2542 mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
2543 SC_FLUSH_DAT : SC_FLUSH_FILE;
2544 spin_unlock(&sci->sc_state_lock);
2545
2546 if (mode) {
2547 nilfs_segctor_do_construct(sci, mode);
2548
2549 spin_lock(&sci->sc_state_lock);
2550 sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
2551 ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
2552 spin_unlock(&sci->sc_state_lock);
2553 }
2554 clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
2555 }
2556
nilfs_segctor_flush_mode(struct nilfs_sc_info * sci)2557 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
2558 {
2559 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2560 time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
2561 if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
2562 return SC_FLUSH_FILE;
2563 else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
2564 return SC_FLUSH_DAT;
2565 }
2566 return SC_LSEG_SR;
2567 }
2568
2569 /**
2570 * nilfs_segctor_thread - main loop of the segment constructor thread.
2571 * @arg: pointer to a struct nilfs_sc_info.
2572 *
2573 * nilfs_segctor_thread() initializes a timer and serves as a daemon
2574 * to execute segment constructions.
2575 */
nilfs_segctor_thread(void * arg)2576 static int nilfs_segctor_thread(void *arg)
2577 {
2578 struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
2579 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2580 int timeout = 0;
2581
2582 sci->sc_timer_task = current;
2583
2584 /* start sync. */
2585 sci->sc_task = current;
2586 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
2587 nilfs_info(sci->sc_super,
2588 "segctord starting. Construction interval = %lu seconds, CP frequency < %lu seconds",
2589 sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
2590
2591 spin_lock(&sci->sc_state_lock);
2592 loop:
2593 for (;;) {
2594 int mode;
2595
2596 if (sci->sc_state & NILFS_SEGCTOR_QUIT)
2597 goto end_thread;
2598
2599 if (timeout || sci->sc_seq_request != sci->sc_seq_done)
2600 mode = SC_LSEG_SR;
2601 else if (sci->sc_flush_request)
2602 mode = nilfs_segctor_flush_mode(sci);
2603 else
2604 break;
2605
2606 spin_unlock(&sci->sc_state_lock);
2607 nilfs_segctor_thread_construct(sci, mode);
2608 spin_lock(&sci->sc_state_lock);
2609 timeout = 0;
2610 }
2611
2612
2613 if (freezing(current)) {
2614 spin_unlock(&sci->sc_state_lock);
2615 try_to_freeze();
2616 spin_lock(&sci->sc_state_lock);
2617 } else {
2618 DEFINE_WAIT(wait);
2619 int should_sleep = 1;
2620
2621 prepare_to_wait(&sci->sc_wait_daemon, &wait,
2622 TASK_INTERRUPTIBLE);
2623
2624 if (sci->sc_seq_request != sci->sc_seq_done)
2625 should_sleep = 0;
2626 else if (sci->sc_flush_request)
2627 should_sleep = 0;
2628 else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
2629 should_sleep = time_before(jiffies,
2630 sci->sc_timer.expires);
2631
2632 if (should_sleep) {
2633 spin_unlock(&sci->sc_state_lock);
2634 schedule();
2635 spin_lock(&sci->sc_state_lock);
2636 }
2637 finish_wait(&sci->sc_wait_daemon, &wait);
2638 timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2639 time_after_eq(jiffies, sci->sc_timer.expires));
2640
2641 if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
2642 set_nilfs_discontinued(nilfs);
2643 }
2644 goto loop;
2645
2646 end_thread:
2647 /* end sync. */
2648 sci->sc_task = NULL;
2649 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
2650 spin_unlock(&sci->sc_state_lock);
2651 return 0;
2652 }
2653
nilfs_segctor_start_thread(struct nilfs_sc_info * sci)2654 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
2655 {
2656 struct task_struct *t;
2657
2658 t = kthread_run(nilfs_segctor_thread, sci, "segctord");
2659 if (IS_ERR(t)) {
2660 int err = PTR_ERR(t);
2661
2662 nilfs_err(sci->sc_super, "error %d creating segctord thread",
2663 err);
2664 return err;
2665 }
2666 wait_event(sci->sc_wait_task, sci->sc_task != NULL);
2667 return 0;
2668 }
2669
nilfs_segctor_kill_thread(struct nilfs_sc_info * sci)2670 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
2671 __acquires(&sci->sc_state_lock)
2672 __releases(&sci->sc_state_lock)
2673 {
2674 sci->sc_state |= NILFS_SEGCTOR_QUIT;
2675
2676 while (sci->sc_task) {
2677 wake_up(&sci->sc_wait_daemon);
2678 spin_unlock(&sci->sc_state_lock);
2679 wait_event(sci->sc_wait_task, sci->sc_task == NULL);
2680 spin_lock(&sci->sc_state_lock);
2681 }
2682 }
2683
2684 /*
2685 * Setup & clean-up functions
2686 */
nilfs_segctor_new(struct super_block * sb,struct nilfs_root * root)2687 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb,
2688 struct nilfs_root *root)
2689 {
2690 struct the_nilfs *nilfs = sb->s_fs_info;
2691 struct nilfs_sc_info *sci;
2692
2693 sci = kzalloc(sizeof(*sci), GFP_KERNEL);
2694 if (!sci)
2695 return NULL;
2696
2697 sci->sc_super = sb;
2698
2699 nilfs_get_root(root);
2700 sci->sc_root = root;
2701
2702 init_waitqueue_head(&sci->sc_wait_request);
2703 init_waitqueue_head(&sci->sc_wait_daemon);
2704 init_waitqueue_head(&sci->sc_wait_task);
2705 spin_lock_init(&sci->sc_state_lock);
2706 INIT_LIST_HEAD(&sci->sc_dirty_files);
2707 INIT_LIST_HEAD(&sci->sc_segbufs);
2708 INIT_LIST_HEAD(&sci->sc_write_logs);
2709 INIT_LIST_HEAD(&sci->sc_gc_inodes);
2710 INIT_LIST_HEAD(&sci->sc_iput_queue);
2711 INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func);
2712 timer_setup(&sci->sc_timer, nilfs_construction_timeout, 0);
2713
2714 sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
2715 sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
2716 sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
2717
2718 if (nilfs->ns_interval)
2719 sci->sc_interval = HZ * nilfs->ns_interval;
2720 if (nilfs->ns_watermark)
2721 sci->sc_watermark = nilfs->ns_watermark;
2722 return sci;
2723 }
2724
nilfs_segctor_write_out(struct nilfs_sc_info * sci)2725 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
2726 {
2727 int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
2728
2729 /*
2730 * The segctord thread was stopped and its timer was removed.
2731 * But some tasks remain.
2732 */
2733 do {
2734 struct nilfs_transaction_info ti;
2735
2736 nilfs_transaction_lock(sci->sc_super, &ti, 0);
2737 ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
2738 nilfs_transaction_unlock(sci->sc_super);
2739
2740 flush_work(&sci->sc_iput_work);
2741
2742 } while (ret && ret != -EROFS && retrycount-- > 0);
2743 }
2744
2745 /**
2746 * nilfs_segctor_destroy - destroy the segment constructor.
2747 * @sci: nilfs_sc_info
2748 *
2749 * nilfs_segctor_destroy() kills the segctord thread and frees
2750 * the nilfs_sc_info struct.
2751 * Caller must hold the segment semaphore.
2752 */
nilfs_segctor_destroy(struct nilfs_sc_info * sci)2753 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
2754 {
2755 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2756 int flag;
2757
2758 up_write(&nilfs->ns_segctor_sem);
2759
2760 spin_lock(&sci->sc_state_lock);
2761 nilfs_segctor_kill_thread(sci);
2762 flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
2763 || sci->sc_seq_request != sci->sc_seq_done);
2764 spin_unlock(&sci->sc_state_lock);
2765
2766 if (flush_work(&sci->sc_iput_work))
2767 flag = true;
2768
2769 if (flag || !nilfs_segctor_confirm(sci))
2770 nilfs_segctor_write_out(sci);
2771
2772 if (!list_empty(&sci->sc_dirty_files)) {
2773 nilfs_warn(sci->sc_super,
2774 "disposed unprocessed dirty file(s) when stopping log writer");
2775 nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1);
2776 }
2777
2778 if (!list_empty(&sci->sc_iput_queue)) {
2779 nilfs_warn(sci->sc_super,
2780 "disposed unprocessed inode(s) in iput queue when stopping log writer");
2781 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1);
2782 }
2783
2784 WARN_ON(!list_empty(&sci->sc_segbufs));
2785 WARN_ON(!list_empty(&sci->sc_write_logs));
2786
2787 nilfs_put_root(sci->sc_root);
2788
2789 down_write(&nilfs->ns_segctor_sem);
2790
2791 del_timer_sync(&sci->sc_timer);
2792 kfree(sci);
2793 }
2794
2795 /**
2796 * nilfs_attach_log_writer - attach log writer
2797 * @sb: super block instance
2798 * @root: root object of the current filesystem tree
2799 *
2800 * This allocates a log writer object, initializes it, and starts the
2801 * log writer.
2802 *
2803 * Return Value: On success, 0 is returned. On error, one of the following
2804 * negative error code is returned.
2805 *
2806 * %-ENOMEM - Insufficient memory available.
2807 */
nilfs_attach_log_writer(struct super_block * sb,struct nilfs_root * root)2808 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root)
2809 {
2810 struct the_nilfs *nilfs = sb->s_fs_info;
2811 int err;
2812
2813 if (nilfs->ns_writer) {
2814 /*
2815 * This happens if the filesystem is made read-only by
2816 * __nilfs_error or nilfs_remount and then remounted
2817 * read/write. In these cases, reuse the existing
2818 * writer.
2819 */
2820 return 0;
2821 }
2822
2823 nilfs->ns_writer = nilfs_segctor_new(sb, root);
2824 if (!nilfs->ns_writer)
2825 return -ENOMEM;
2826
2827 inode_attach_wb(nilfs->ns_bdev->bd_inode, NULL);
2828
2829 err = nilfs_segctor_start_thread(nilfs->ns_writer);
2830 if (unlikely(err))
2831 nilfs_detach_log_writer(sb);
2832
2833 return err;
2834 }
2835
2836 /**
2837 * nilfs_detach_log_writer - destroy log writer
2838 * @sb: super block instance
2839 *
2840 * This kills log writer daemon, frees the log writer object, and
2841 * destroys list of dirty files.
2842 */
nilfs_detach_log_writer(struct super_block * sb)2843 void nilfs_detach_log_writer(struct super_block *sb)
2844 {
2845 struct the_nilfs *nilfs = sb->s_fs_info;
2846 LIST_HEAD(garbage_list);
2847
2848 down_write(&nilfs->ns_segctor_sem);
2849 if (nilfs->ns_writer) {
2850 nilfs_segctor_destroy(nilfs->ns_writer);
2851 nilfs->ns_writer = NULL;
2852 }
2853 set_nilfs_purging(nilfs);
2854
2855 /* Force to free the list of dirty files */
2856 spin_lock(&nilfs->ns_inode_lock);
2857 if (!list_empty(&nilfs->ns_dirty_files)) {
2858 list_splice_init(&nilfs->ns_dirty_files, &garbage_list);
2859 nilfs_warn(sb,
2860 "disposed unprocessed dirty file(s) when detaching log writer");
2861 }
2862 spin_unlock(&nilfs->ns_inode_lock);
2863 up_write(&nilfs->ns_segctor_sem);
2864
2865 nilfs_dispose_list(nilfs, &garbage_list, 1);
2866 clear_nilfs_purging(nilfs);
2867 }
2868