1 /*
2 * Copyright 2011 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24 #include "disp.h"
25 #include "atom.h"
26 #include "core.h"
27 #include "head.h"
28 #include "wndw.h"
29 #include "handles.h"
30
31 #include <linux/dma-mapping.h>
32 #include <linux/hdmi.h>
33 #include <linux/component.h>
34 #include <linux/iopoll.h>
35
36 #include <drm/display/drm_dp_helper.h>
37 #include <drm/display/drm_scdc_helper.h>
38 #include <drm/drm_atomic.h>
39 #include <drm/drm_atomic_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_fb_helper.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_vblank.h>
44
45 #include <nvif/push507c.h>
46
47 #include <nvif/class.h>
48 #include <nvif/cl0002.h>
49 #include <nvif/cl5070.h>
50 #include <nvif/event.h>
51 #include <nvif/if0014.h>
52 #include <nvif/timer.h>
53
54 #include <nvhw/class/cl507c.h>
55 #include <nvhw/class/cl507d.h>
56 #include <nvhw/class/cl837d.h>
57 #include <nvhw/class/cl887d.h>
58 #include <nvhw/class/cl907d.h>
59 #include <nvhw/class/cl917d.h>
60
61 #include "nouveau_drv.h"
62 #include "nouveau_dma.h"
63 #include "nouveau_gem.h"
64 #include "nouveau_connector.h"
65 #include "nouveau_encoder.h"
66 #include "nouveau_fence.h"
67 #include "nouveau_fbcon.h"
68
69 #include <subdev/bios/dp.h>
70
71 /******************************************************************************
72 * EVO channel
73 *****************************************************************************/
74
75 static int
nv50_chan_create(struct nvif_device * device,struct nvif_object * disp,const s32 * oclass,u8 head,void * data,u32 size,struct nv50_chan * chan)76 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp,
77 const s32 *oclass, u8 head, void *data, u32 size,
78 struct nv50_chan *chan)
79 {
80 struct nvif_sclass *sclass;
81 int ret, i, n;
82
83 chan->device = device;
84
85 ret = n = nvif_object_sclass_get(disp, &sclass);
86 if (ret < 0)
87 return ret;
88
89 while (oclass[0]) {
90 for (i = 0; i < n; i++) {
91 if (sclass[i].oclass == oclass[0]) {
92 ret = nvif_object_ctor(disp, "kmsChan", 0,
93 oclass[0], data, size,
94 &chan->user);
95 if (ret == 0)
96 nvif_object_map(&chan->user, NULL, 0);
97 nvif_object_sclass_put(&sclass);
98 return ret;
99 }
100 }
101 oclass++;
102 }
103
104 nvif_object_sclass_put(&sclass);
105 return -ENOSYS;
106 }
107
108 static void
nv50_chan_destroy(struct nv50_chan * chan)109 nv50_chan_destroy(struct nv50_chan *chan)
110 {
111 nvif_object_dtor(&chan->user);
112 }
113
114 /******************************************************************************
115 * DMA EVO channel
116 *****************************************************************************/
117
118 void
nv50_dmac_destroy(struct nv50_dmac * dmac)119 nv50_dmac_destroy(struct nv50_dmac *dmac)
120 {
121 nvif_object_dtor(&dmac->vram);
122 nvif_object_dtor(&dmac->sync);
123
124 nv50_chan_destroy(&dmac->base);
125
126 nvif_mem_dtor(&dmac->_push.mem);
127 }
128
129 static void
nv50_dmac_kick(struct nvif_push * push)130 nv50_dmac_kick(struct nvif_push *push)
131 {
132 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
133
134 dmac->cur = push->cur - (u32 *)dmac->_push.mem.object.map.ptr;
135 if (dmac->put != dmac->cur) {
136 /* Push buffer fetches are not coherent with BAR1, we need to ensure
137 * writes have been flushed right through to VRAM before writing PUT.
138 */
139 if (dmac->push->mem.type & NVIF_MEM_VRAM) {
140 struct nvif_device *device = dmac->base.device;
141 nvif_wr32(&device->object, 0x070000, 0x00000001);
142 nvif_msec(device, 2000,
143 if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002))
144 break;
145 );
146 }
147
148 NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur);
149 dmac->put = dmac->cur;
150 }
151
152 push->bgn = push->cur;
153 }
154
155 static int
nv50_dmac_free(struct nv50_dmac * dmac)156 nv50_dmac_free(struct nv50_dmac *dmac)
157 {
158 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
159 if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */
160 return get - dmac->cur - 5;
161 return dmac->max - dmac->cur;
162 }
163
164 static int
nv50_dmac_wind(struct nv50_dmac * dmac)165 nv50_dmac_wind(struct nv50_dmac *dmac)
166 {
167 /* Wait for GET to depart from the beginning of the push buffer to
168 * prevent writing PUT == GET, which would be ignored by HW.
169 */
170 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
171 if (get == 0) {
172 /* Corner-case, HW idle, but non-committed work pending. */
173 if (dmac->put == 0)
174 nv50_dmac_kick(dmac->push);
175
176 if (nvif_msec(dmac->base.device, 2000,
177 if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0))
178 break;
179 ) < 0)
180 return -ETIMEDOUT;
181 }
182
183 PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0));
184 dmac->cur = 0;
185 return 0;
186 }
187
188 static int
nv50_dmac_wait(struct nvif_push * push,u32 size)189 nv50_dmac_wait(struct nvif_push *push, u32 size)
190 {
191 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
192 int free;
193
194 if (WARN_ON(size > dmac->max))
195 return -EINVAL;
196
197 dmac->cur = push->cur - (u32 *)dmac->_push.mem.object.map.ptr;
198 if (dmac->cur + size >= dmac->max) {
199 int ret = nv50_dmac_wind(dmac);
200 if (ret)
201 return ret;
202
203 push->cur = dmac->_push.mem.object.map.ptr;
204 push->cur = push->cur + dmac->cur;
205 nv50_dmac_kick(push);
206 }
207
208 if (nvif_msec(dmac->base.device, 2000,
209 if ((free = nv50_dmac_free(dmac)) >= size)
210 break;
211 ) < 0) {
212 WARN_ON(1);
213 return -ETIMEDOUT;
214 }
215
216 push->bgn = dmac->_push.mem.object.map.ptr;
217 push->bgn = push->bgn + dmac->cur;
218 push->cur = push->bgn;
219 push->end = push->cur + free;
220 return 0;
221 }
222
223 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)");
224 static int nv50_dmac_vram_pushbuf = -1;
225 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400);
226
227 int
nv50_dmac_create(struct nvif_device * device,struct nvif_object * disp,const s32 * oclass,u8 head,void * data,u32 size,s64 syncbuf,struct nv50_dmac * dmac)228 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp,
229 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf,
230 struct nv50_dmac *dmac)
231 {
232 struct nouveau_cli *cli = (void *)device->object.client;
233 struct nvif_disp_chan_v0 *args = data;
234 u8 type = NVIF_MEM_COHERENT;
235 int ret;
236
237 mutex_init(&dmac->lock);
238
239 /* Pascal added support for 47-bit physical addresses, but some
240 * parts of EVO still only accept 40-bit PAs.
241 *
242 * To avoid issues on systems with large amounts of RAM, and on
243 * systems where an IOMMU maps pages at a high address, we need
244 * to allocate push buffers in VRAM instead.
245 *
246 * This appears to match NVIDIA's behaviour on Pascal.
247 */
248 if ((nv50_dmac_vram_pushbuf > 0) ||
249 (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL))
250 type |= NVIF_MEM_VRAM;
251
252 ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000,
253 &dmac->_push.mem);
254 if (ret)
255 return ret;
256
257 dmac->ptr = dmac->_push.mem.object.map.ptr;
258 dmac->_push.wait = nv50_dmac_wait;
259 dmac->_push.kick = nv50_dmac_kick;
260 dmac->push = &dmac->_push;
261 dmac->push->bgn = dmac->_push.mem.object.map.ptr;
262 dmac->push->cur = dmac->push->bgn;
263 dmac->push->end = dmac->push->bgn;
264 dmac->max = 0x1000/4 - 1;
265
266 /* EVO channels are affected by a HW bug where the last 12 DWORDs
267 * of the push buffer aren't able to be used safely.
268 */
269 if (disp->oclass < GV100_DISP)
270 dmac->max -= 12;
271
272 args->pushbuf = nvif_handle(&dmac->_push.mem.object);
273
274 ret = nv50_chan_create(device, disp, oclass, head, data, size,
275 &dmac->base);
276 if (ret)
277 return ret;
278
279 if (syncbuf < 0)
280 return 0;
281
282 ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF,
283 NV_DMA_IN_MEMORY,
284 &(struct nv_dma_v0) {
285 .target = NV_DMA_V0_TARGET_VRAM,
286 .access = NV_DMA_V0_ACCESS_RDWR,
287 .start = syncbuf + 0x0000,
288 .limit = syncbuf + 0x0fff,
289 }, sizeof(struct nv_dma_v0),
290 &dmac->sync);
291 if (ret)
292 return ret;
293
294 ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM,
295 NV_DMA_IN_MEMORY,
296 &(struct nv_dma_v0) {
297 .target = NV_DMA_V0_TARGET_VRAM,
298 .access = NV_DMA_V0_ACCESS_RDWR,
299 .start = 0,
300 .limit = device->info.ram_user - 1,
301 }, sizeof(struct nv_dma_v0),
302 &dmac->vram);
303 if (ret)
304 return ret;
305
306 return ret;
307 }
308
309 /******************************************************************************
310 * Output path helpers
311 *****************************************************************************/
312 static void
nv50_outp_dump_caps(struct nouveau_drm * drm,struct nouveau_encoder * outp)313 nv50_outp_dump_caps(struct nouveau_drm *drm,
314 struct nouveau_encoder *outp)
315 {
316 NV_DEBUG(drm, "%s caps: dp_interlace=%d\n",
317 outp->base.base.name, outp->caps.dp_interlace);
318 }
319
320 static void
nv50_outp_release(struct nouveau_encoder * nv_encoder)321 nv50_outp_release(struct nouveau_encoder *nv_encoder)
322 {
323 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
324 struct {
325 struct nv50_disp_mthd_v1 base;
326 } args = {
327 .base.version = 1,
328 .base.method = NV50_DISP_MTHD_V1_RELEASE,
329 .base.hasht = nv_encoder->dcb->hasht,
330 .base.hashm = nv_encoder->dcb->hashm,
331 };
332
333 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
334 nv_encoder->or = -1;
335 nv_encoder->link = 0;
336 }
337
338 static int
nv50_outp_acquire(struct nouveau_encoder * nv_encoder,bool hda)339 nv50_outp_acquire(struct nouveau_encoder *nv_encoder, bool hda)
340 {
341 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
342 struct nv50_disp *disp = nv50_disp(drm->dev);
343 struct {
344 struct nv50_disp_mthd_v1 base;
345 struct nv50_disp_acquire_v0 info;
346 } args = {
347 .base.version = 1,
348 .base.method = NV50_DISP_MTHD_V1_ACQUIRE,
349 .base.hasht = nv_encoder->dcb->hasht,
350 .base.hashm = nv_encoder->dcb->hashm,
351 .info.hda = hda,
352 };
353 int ret;
354
355 ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
356 if (ret) {
357 NV_ERROR(drm, "error acquiring output path: %d\n", ret);
358 return ret;
359 }
360
361 nv_encoder->or = args.info.or;
362 nv_encoder->link = args.info.link;
363 return 0;
364 }
365
366 static int
nv50_outp_atomic_check_view(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state,struct drm_display_mode * native_mode)367 nv50_outp_atomic_check_view(struct drm_encoder *encoder,
368 struct drm_crtc_state *crtc_state,
369 struct drm_connector_state *conn_state,
370 struct drm_display_mode *native_mode)
371 {
372 struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
373 struct drm_display_mode *mode = &crtc_state->mode;
374 struct drm_connector *connector = conn_state->connector;
375 struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state);
376 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
377
378 NV_ATOMIC(drm, "%s atomic_check\n", encoder->name);
379 asyc->scaler.full = false;
380 if (!native_mode)
381 return 0;
382
383 if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) {
384 switch (connector->connector_type) {
385 case DRM_MODE_CONNECTOR_LVDS:
386 case DRM_MODE_CONNECTOR_eDP:
387 /* Don't force scaler for EDID modes with
388 * same size as the native one (e.g. different
389 * refresh rate)
390 */
391 if (mode->hdisplay == native_mode->hdisplay &&
392 mode->vdisplay == native_mode->vdisplay &&
393 mode->type & DRM_MODE_TYPE_DRIVER)
394 break;
395 mode = native_mode;
396 asyc->scaler.full = true;
397 break;
398 default:
399 break;
400 }
401 } else {
402 mode = native_mode;
403 }
404
405 if (!drm_mode_equal(adjusted_mode, mode)) {
406 drm_mode_copy(adjusted_mode, mode);
407 crtc_state->mode_changed = true;
408 }
409
410 return 0;
411 }
412
413 static void
nv50_outp_atomic_fix_depth(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state)414 nv50_outp_atomic_fix_depth(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state)
415 {
416 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
417 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
418 struct drm_display_mode *mode = &asyh->state.adjusted_mode;
419 unsigned int max_rate, mode_rate;
420
421 switch (nv_encoder->dcb->type) {
422 case DCB_OUTPUT_DP:
423 max_rate = nv_encoder->dp.link_nr * nv_encoder->dp.link_bw;
424
425 /* we don't support more than 10 anyway */
426 asyh->or.bpc = min_t(u8, asyh->or.bpc, 10);
427
428 /* reduce the bpc until it works out */
429 while (asyh->or.bpc > 6) {
430 mode_rate = DIV_ROUND_UP(mode->clock * asyh->or.bpc * 3, 8);
431 if (mode_rate <= max_rate)
432 break;
433
434 asyh->or.bpc -= 2;
435 }
436 break;
437 default:
438 break;
439 }
440 }
441
442 static int
nv50_outp_atomic_check(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)443 nv50_outp_atomic_check(struct drm_encoder *encoder,
444 struct drm_crtc_state *crtc_state,
445 struct drm_connector_state *conn_state)
446 {
447 struct drm_connector *connector = conn_state->connector;
448 struct nouveau_connector *nv_connector = nouveau_connector(connector);
449 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
450 int ret;
451
452 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
453 nv_connector->native_mode);
454 if (ret)
455 return ret;
456
457 if (crtc_state->mode_changed || crtc_state->connectors_changed)
458 asyh->or.bpc = connector->display_info.bpc;
459
460 /* We might have to reduce the bpc */
461 nv50_outp_atomic_fix_depth(encoder, crtc_state);
462
463 return 0;
464 }
465
466 struct nouveau_connector *
nv50_outp_get_new_connector(struct drm_atomic_state * state,struct nouveau_encoder * outp)467 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
468 {
469 struct drm_connector *connector;
470 struct drm_connector_state *connector_state;
471 struct drm_encoder *encoder = to_drm_encoder(outp);
472 int i;
473
474 for_each_new_connector_in_state(state, connector, connector_state, i) {
475 if (connector_state->best_encoder == encoder)
476 return nouveau_connector(connector);
477 }
478
479 return NULL;
480 }
481
482 struct nouveau_connector *
nv50_outp_get_old_connector(struct drm_atomic_state * state,struct nouveau_encoder * outp)483 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
484 {
485 struct drm_connector *connector;
486 struct drm_connector_state *connector_state;
487 struct drm_encoder *encoder = to_drm_encoder(outp);
488 int i;
489
490 for_each_old_connector_in_state(state, connector, connector_state, i) {
491 if (connector_state->best_encoder == encoder)
492 return nouveau_connector(connector);
493 }
494
495 return NULL;
496 }
497
498 static struct nouveau_crtc *
nv50_outp_get_new_crtc(const struct drm_atomic_state * state,const struct nouveau_encoder * outp)499 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp)
500 {
501 struct drm_crtc *crtc;
502 struct drm_crtc_state *crtc_state;
503 const u32 mask = drm_encoder_mask(&outp->base.base);
504 int i;
505
506 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
507 if (crtc_state->encoder_mask & mask)
508 return nouveau_crtc(crtc);
509 }
510
511 return NULL;
512 }
513
514 /******************************************************************************
515 * DAC
516 *****************************************************************************/
517 static void
nv50_dac_atomic_disable(struct drm_encoder * encoder,struct drm_atomic_state * state)518 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
519 {
520 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
521 struct nv50_core *core = nv50_disp(encoder->dev)->core;
522 const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE);
523
524 core->func->dac->ctrl(core, nv_encoder->or, ctrl, NULL);
525 nv_encoder->crtc = NULL;
526 nv50_outp_release(nv_encoder);
527 }
528
529 static void
nv50_dac_atomic_enable(struct drm_encoder * encoder,struct drm_atomic_state * state)530 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
531 {
532 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
533 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
534 struct nv50_head_atom *asyh =
535 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
536 struct nv50_core *core = nv50_disp(encoder->dev)->core;
537 u32 ctrl = 0;
538
539 switch (nv_crtc->index) {
540 case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break;
541 case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break;
542 case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break;
543 case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break;
544 default:
545 WARN_ON(1);
546 break;
547 }
548
549 ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT);
550
551 nv50_outp_acquire(nv_encoder, false);
552
553 core->func->dac->ctrl(core, nv_encoder->or, ctrl, asyh);
554 asyh->or.depth = 0;
555
556 nv_encoder->crtc = &nv_crtc->base;
557 }
558
559 static enum drm_connector_status
nv50_dac_detect(struct drm_encoder * encoder,struct drm_connector * connector)560 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
561 {
562 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
563 u32 loadval;
564 int ret;
565
566 loadval = nouveau_drm(encoder->dev)->vbios.dactestval;
567 if (loadval == 0)
568 loadval = 340;
569
570 ret = nvif_outp_load_detect(&nv_encoder->outp, loadval);
571 if (ret <= 0)
572 return connector_status_disconnected;
573
574 return connector_status_connected;
575 }
576
577 static const struct drm_encoder_helper_funcs
578 nv50_dac_help = {
579 .atomic_check = nv50_outp_atomic_check,
580 .atomic_enable = nv50_dac_atomic_enable,
581 .atomic_disable = nv50_dac_atomic_disable,
582 .detect = nv50_dac_detect
583 };
584
585 static void
nv50_dac_destroy(struct drm_encoder * encoder)586 nv50_dac_destroy(struct drm_encoder *encoder)
587 {
588 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
589
590 nvif_outp_dtor(&nv_encoder->outp);
591
592 drm_encoder_cleanup(encoder);
593 kfree(encoder);
594 }
595
596 static const struct drm_encoder_funcs
597 nv50_dac_func = {
598 .destroy = nv50_dac_destroy,
599 };
600
601 static int
nv50_dac_create(struct drm_connector * connector,struct dcb_output * dcbe)602 nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
603 {
604 struct nouveau_drm *drm = nouveau_drm(connector->dev);
605 struct nv50_disp *disp = nv50_disp(connector->dev);
606 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
607 struct nvkm_i2c_bus *bus;
608 struct nouveau_encoder *nv_encoder;
609 struct drm_encoder *encoder;
610 int type = DRM_MODE_ENCODER_DAC;
611
612 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
613 if (!nv_encoder)
614 return -ENOMEM;
615 nv_encoder->dcb = dcbe;
616
617 bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
618 if (bus)
619 nv_encoder->i2c = &bus->i2c;
620
621 encoder = to_drm_encoder(nv_encoder);
622 encoder->possible_crtcs = dcbe->heads;
623 encoder->possible_clones = 0;
624 drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type,
625 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm);
626 drm_encoder_helper_add(encoder, &nv50_dac_help);
627
628 drm_connector_attach_encoder(connector, encoder);
629 return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
630 }
631
632 /*
633 * audio component binding for ELD notification
634 */
635 static void
nv50_audio_component_eld_notify(struct drm_audio_component * acomp,int port,int dev_id)636 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port,
637 int dev_id)
638 {
639 if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify)
640 acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr,
641 port, dev_id);
642 }
643
644 static int
nv50_audio_component_get_eld(struct device * kdev,int port,int dev_id,bool * enabled,unsigned char * buf,int max_bytes)645 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id,
646 bool *enabled, unsigned char *buf, int max_bytes)
647 {
648 struct drm_device *drm_dev = dev_get_drvdata(kdev);
649 struct nouveau_drm *drm = nouveau_drm(drm_dev);
650 struct drm_encoder *encoder;
651 struct nouveau_encoder *nv_encoder;
652 struct nouveau_crtc *nv_crtc;
653 int ret = 0;
654
655 *enabled = false;
656
657 mutex_lock(&drm->audio.lock);
658
659 drm_for_each_encoder(encoder, drm->dev) {
660 struct nouveau_connector *nv_connector = NULL;
661
662 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST)
663 continue; /* TODO */
664
665 nv_encoder = nouveau_encoder(encoder);
666 nv_connector = nouveau_connector(nv_encoder->audio.connector);
667 nv_crtc = nouveau_crtc(nv_encoder->crtc);
668
669 if (!nv_crtc || nv_encoder->or != port || nv_crtc->index != dev_id)
670 continue;
671
672 *enabled = nv_encoder->audio.enabled;
673 if (*enabled) {
674 ret = drm_eld_size(nv_connector->base.eld);
675 memcpy(buf, nv_connector->base.eld,
676 min(max_bytes, ret));
677 }
678 break;
679 }
680
681 mutex_unlock(&drm->audio.lock);
682
683 return ret;
684 }
685
686 static const struct drm_audio_component_ops nv50_audio_component_ops = {
687 .get_eld = nv50_audio_component_get_eld,
688 };
689
690 static int
nv50_audio_component_bind(struct device * kdev,struct device * hda_kdev,void * data)691 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev,
692 void *data)
693 {
694 struct drm_device *drm_dev = dev_get_drvdata(kdev);
695 struct nouveau_drm *drm = nouveau_drm(drm_dev);
696 struct drm_audio_component *acomp = data;
697
698 if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS)))
699 return -ENOMEM;
700
701 drm_modeset_lock_all(drm_dev);
702 acomp->ops = &nv50_audio_component_ops;
703 acomp->dev = kdev;
704 drm->audio.component = acomp;
705 drm_modeset_unlock_all(drm_dev);
706 return 0;
707 }
708
709 static void
nv50_audio_component_unbind(struct device * kdev,struct device * hda_kdev,void * data)710 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev,
711 void *data)
712 {
713 struct drm_device *drm_dev = dev_get_drvdata(kdev);
714 struct nouveau_drm *drm = nouveau_drm(drm_dev);
715 struct drm_audio_component *acomp = data;
716
717 drm_modeset_lock_all(drm_dev);
718 drm->audio.component = NULL;
719 acomp->ops = NULL;
720 acomp->dev = NULL;
721 drm_modeset_unlock_all(drm_dev);
722 }
723
724 static const struct component_ops nv50_audio_component_bind_ops = {
725 .bind = nv50_audio_component_bind,
726 .unbind = nv50_audio_component_unbind,
727 };
728
729 static void
nv50_audio_component_init(struct nouveau_drm * drm)730 nv50_audio_component_init(struct nouveau_drm *drm)
731 {
732 if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops))
733 return;
734
735 drm->audio.component_registered = true;
736 mutex_init(&drm->audio.lock);
737 }
738
739 static void
nv50_audio_component_fini(struct nouveau_drm * drm)740 nv50_audio_component_fini(struct nouveau_drm *drm)
741 {
742 if (!drm->audio.component_registered)
743 return;
744
745 component_del(drm->dev->dev, &nv50_audio_component_bind_ops);
746 drm->audio.component_registered = false;
747 mutex_destroy(&drm->audio.lock);
748 }
749
750 /******************************************************************************
751 * Audio
752 *****************************************************************************/
753 static void
nv50_audio_disable(struct drm_encoder * encoder,struct nouveau_crtc * nv_crtc)754 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
755 {
756 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
757 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
758 struct nv50_disp *disp = nv50_disp(encoder->dev);
759 struct {
760 struct nv50_disp_mthd_v1 base;
761 struct nv50_disp_sor_hda_eld_v0 eld;
762 } args = {
763 .base.version = 1,
764 .base.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
765 .base.hasht = nv_encoder->dcb->hasht,
766 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
767 (0x0100 << nv_crtc->index),
768 };
769
770 mutex_lock(&drm->audio.lock);
771 if (nv_encoder->audio.enabled) {
772 nv_encoder->audio.enabled = false;
773 nv_encoder->audio.connector = NULL;
774 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
775 }
776 mutex_unlock(&drm->audio.lock);
777
778 nv50_audio_component_eld_notify(drm->audio.component, nv_encoder->or,
779 nv_crtc->index);
780 }
781
782 static void
nv50_audio_enable(struct drm_encoder * encoder,struct nouveau_crtc * nv_crtc,struct nouveau_connector * nv_connector,struct drm_atomic_state * state,struct drm_display_mode * mode)783 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
784 struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
785 struct drm_display_mode *mode)
786 {
787 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
788 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
789 struct nv50_disp *disp = nv50_disp(encoder->dev);
790 struct __packed {
791 struct {
792 struct nv50_disp_mthd_v1 mthd;
793 struct nv50_disp_sor_hda_eld_v0 eld;
794 } base;
795 u8 data[sizeof(nv_connector->base.eld)];
796 } args = {
797 .base.mthd.version = 1,
798 .base.mthd.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
799 .base.mthd.hasht = nv_encoder->dcb->hasht,
800 .base.mthd.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
801 (0x0100 << nv_crtc->index),
802 };
803
804 if (!drm_detect_monitor_audio(nv_connector->edid))
805 return;
806
807 mutex_lock(&drm->audio.lock);
808
809 memcpy(args.data, nv_connector->base.eld, sizeof(args.data));
810
811 nvif_mthd(&disp->disp->object, 0, &args,
812 sizeof(args.base) + drm_eld_size(args.data));
813 nv_encoder->audio.enabled = true;
814 nv_encoder->audio.connector = &nv_connector->base;
815
816 mutex_unlock(&drm->audio.lock);
817
818 nv50_audio_component_eld_notify(drm->audio.component, nv_encoder->or,
819 nv_crtc->index);
820 }
821
822 /******************************************************************************
823 * HDMI
824 *****************************************************************************/
825 static void
nv50_hdmi_disable(struct drm_encoder * encoder,struct nouveau_crtc * nv_crtc)826 nv50_hdmi_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
827 {
828 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
829 struct nv50_disp *disp = nv50_disp(encoder->dev);
830 struct {
831 struct nv50_disp_mthd_v1 base;
832 struct nv50_disp_sor_hdmi_pwr_v0 pwr;
833 } args = {
834 .base.version = 1,
835 .base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
836 .base.hasht = nv_encoder->dcb->hasht,
837 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
838 (0x0100 << nv_crtc->index),
839 };
840
841 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
842 }
843
844 static void
nv50_hdmi_enable(struct drm_encoder * encoder,struct nouveau_crtc * nv_crtc,struct nouveau_connector * nv_connector,struct drm_atomic_state * state,struct drm_display_mode * mode)845 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
846 struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
847 struct drm_display_mode *mode)
848 {
849 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
850 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
851 struct nv50_disp *disp = nv50_disp(encoder->dev);
852 struct {
853 struct nv50_disp_mthd_v1 base;
854 struct nv50_disp_sor_hdmi_pwr_v0 pwr;
855 u8 infoframes[2 * 17]; /* two frames, up to 17 bytes each */
856 } args = {
857 .base.version = 1,
858 .base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
859 .base.hasht = nv_encoder->dcb->hasht,
860 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
861 (0x0100 << nv_crtc->index),
862 .pwr.state = 1,
863 .pwr.rekey = 56, /* binary driver, and tegra, constant */
864 };
865 struct drm_hdmi_info *hdmi;
866 u32 max_ac_packet;
867 union hdmi_infoframe avi_frame;
868 union hdmi_infoframe vendor_frame;
869 bool high_tmds_clock_ratio = false, scrambling = false;
870 u8 config;
871 int ret;
872 int size;
873
874 if (!drm_detect_hdmi_monitor(nv_connector->edid))
875 return;
876
877 hdmi = &nv_connector->base.display_info.hdmi;
878
879 ret = drm_hdmi_avi_infoframe_from_display_mode(&avi_frame.avi,
880 &nv_connector->base, mode);
881 if (!ret) {
882 drm_hdmi_avi_infoframe_quant_range(&avi_frame.avi,
883 &nv_connector->base, mode,
884 HDMI_QUANTIZATION_RANGE_FULL);
885 /* We have an AVI InfoFrame, populate it to the display */
886 args.pwr.avi_infoframe_length
887 = hdmi_infoframe_pack(&avi_frame, args.infoframes, 17);
888 }
889
890 ret = drm_hdmi_vendor_infoframe_from_display_mode(&vendor_frame.vendor.hdmi,
891 &nv_connector->base, mode);
892 if (!ret) {
893 /* We have a Vendor InfoFrame, populate it to the display */
894 args.pwr.vendor_infoframe_length
895 = hdmi_infoframe_pack(&vendor_frame,
896 args.infoframes
897 + args.pwr.avi_infoframe_length,
898 17);
899 }
900
901 max_ac_packet = mode->htotal - mode->hdisplay;
902 max_ac_packet -= args.pwr.rekey;
903 max_ac_packet -= 18; /* constant from tegra */
904 args.pwr.max_ac_packet = max_ac_packet / 32;
905
906 if (hdmi->scdc.scrambling.supported) {
907 high_tmds_clock_ratio = mode->clock > 340000;
908 scrambling = high_tmds_clock_ratio ||
909 hdmi->scdc.scrambling.low_rates;
910 }
911
912 args.pwr.scdc =
913 NV50_DISP_SOR_HDMI_PWR_V0_SCDC_SCRAMBLE * scrambling |
914 NV50_DISP_SOR_HDMI_PWR_V0_SCDC_DIV_BY_4 * high_tmds_clock_ratio;
915
916 size = sizeof(args.base)
917 + sizeof(args.pwr)
918 + args.pwr.avi_infoframe_length
919 + args.pwr.vendor_infoframe_length;
920 nvif_mthd(&disp->disp->object, 0, &args, size);
921
922 nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode);
923
924 /* If SCDC is supported by the downstream monitor, update
925 * divider / scrambling settings to what we programmed above.
926 */
927 if (!hdmi->scdc.scrambling.supported)
928 return;
929
930 ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &config);
931 if (ret < 0) {
932 NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret);
933 return;
934 }
935 config &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE);
936 config |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 * high_tmds_clock_ratio;
937 config |= SCDC_SCRAMBLING_ENABLE * scrambling;
938 ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, config);
939 if (ret < 0)
940 NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n",
941 config, ret);
942 }
943
944 /******************************************************************************
945 * MST
946 *****************************************************************************/
947 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr)
948 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector)
949 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder)
950
951 struct nv50_mstc {
952 struct nv50_mstm *mstm;
953 struct drm_dp_mst_port *port;
954 struct drm_connector connector;
955
956 struct drm_display_mode *native;
957 struct edid *edid;
958 };
959
960 struct nv50_msto {
961 struct drm_encoder encoder;
962
963 /* head is statically assigned on msto creation */
964 struct nv50_head *head;
965 struct nv50_mstc *mstc;
966 bool disabled;
967 bool enabled;
968 };
969
nv50_real_outp(struct drm_encoder * encoder)970 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder)
971 {
972 struct nv50_msto *msto;
973
974 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
975 return nouveau_encoder(encoder);
976
977 msto = nv50_msto(encoder);
978 if (!msto->mstc)
979 return NULL;
980 return msto->mstc->mstm->outp;
981 }
982
983 static void
nv50_msto_cleanup(struct drm_atomic_state * state,struct drm_dp_mst_topology_state * mst_state,struct drm_dp_mst_topology_mgr * mgr,struct nv50_msto * msto)984 nv50_msto_cleanup(struct drm_atomic_state *state,
985 struct drm_dp_mst_topology_state *mst_state,
986 struct drm_dp_mst_topology_mgr *mgr,
987 struct nv50_msto *msto)
988 {
989 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
990 struct drm_dp_mst_atomic_payload *payload =
991 drm_atomic_get_mst_payload_state(mst_state, msto->mstc->port);
992
993 NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name);
994
995 if (msto->disabled) {
996 msto->mstc = NULL;
997 msto->disabled = false;
998 } else if (msto->enabled) {
999 drm_dp_add_payload_part2(mgr, state, payload);
1000 msto->enabled = false;
1001 }
1002 }
1003
1004 static void
nv50_msto_prepare(struct drm_atomic_state * state,struct drm_dp_mst_topology_state * mst_state,struct drm_dp_mst_topology_mgr * mgr,struct nv50_msto * msto)1005 nv50_msto_prepare(struct drm_atomic_state *state,
1006 struct drm_dp_mst_topology_state *mst_state,
1007 struct drm_dp_mst_topology_mgr *mgr,
1008 struct nv50_msto *msto)
1009 {
1010 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
1011 struct nv50_mstc *mstc = msto->mstc;
1012 struct nv50_mstm *mstm = mstc->mstm;
1013 struct drm_dp_mst_atomic_payload *payload;
1014 struct {
1015 struct nv50_disp_mthd_v1 base;
1016 struct nv50_disp_sor_dp_mst_vcpi_v0 vcpi;
1017 } args = {
1018 .base.version = 1,
1019 .base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_VCPI,
1020 .base.hasht = mstm->outp->dcb->hasht,
1021 .base.hashm = (0xf0ff & mstm->outp->dcb->hashm) |
1022 (0x0100 << msto->head->base.index),
1023 };
1024
1025 NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name);
1026
1027 payload = drm_atomic_get_mst_payload_state(mst_state, mstc->port);
1028
1029 // TODO: Figure out if we want to do a better job of handling VCPI allocation failures here?
1030 if (msto->disabled) {
1031 drm_dp_remove_payload(mgr, mst_state, payload, payload);
1032 } else {
1033 if (msto->enabled)
1034 drm_dp_add_payload_part1(mgr, mst_state, payload);
1035
1036 args.vcpi.start_slot = payload->vc_start_slot;
1037 args.vcpi.num_slots = payload->time_slots;
1038 args.vcpi.pbn = payload->pbn;
1039 args.vcpi.aligned_pbn = payload->time_slots * mst_state->pbn_div;
1040 }
1041
1042 NV_ATOMIC(drm, "%s: %s: %02x %02x %04x %04x\n",
1043 msto->encoder.name, msto->head->base.base.name,
1044 args.vcpi.start_slot, args.vcpi.num_slots,
1045 args.vcpi.pbn, args.vcpi.aligned_pbn);
1046
1047 nvif_mthd(&drm->display->disp.object, 0, &args, sizeof(args));
1048 }
1049
1050 static int
nv50_msto_atomic_check(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)1051 nv50_msto_atomic_check(struct drm_encoder *encoder,
1052 struct drm_crtc_state *crtc_state,
1053 struct drm_connector_state *conn_state)
1054 {
1055 struct drm_atomic_state *state = crtc_state->state;
1056 struct drm_connector *connector = conn_state->connector;
1057 struct drm_dp_mst_topology_state *mst_state;
1058 struct nv50_mstc *mstc = nv50_mstc(connector);
1059 struct nv50_mstm *mstm = mstc->mstm;
1060 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
1061 int slots;
1062 int ret;
1063
1064 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
1065 mstc->native);
1066 if (ret)
1067 return ret;
1068
1069 if (!drm_atomic_crtc_needs_modeset(crtc_state))
1070 return 0;
1071
1072 /*
1073 * When restoring duplicated states, we need to make sure that the bw
1074 * remains the same and avoid recalculating it, as the connector's bpc
1075 * may have changed after the state was duplicated
1076 */
1077 if (!state->duplicated) {
1078 const int clock = crtc_state->adjusted_mode.clock;
1079
1080 asyh->or.bpc = connector->display_info.bpc;
1081 asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3,
1082 false);
1083 }
1084
1085 mst_state = drm_atomic_get_mst_topology_state(state, &mstm->mgr);
1086 if (IS_ERR(mst_state))
1087 return PTR_ERR(mst_state);
1088
1089 if (!mst_state->pbn_div) {
1090 struct nouveau_encoder *outp = mstc->mstm->outp;
1091
1092 mst_state->pbn_div = drm_dp_get_vc_payload_bw(&mstm->mgr,
1093 outp->dp.link_bw, outp->dp.link_nr);
1094 }
1095
1096 slots = drm_dp_atomic_find_time_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn);
1097 if (slots < 0)
1098 return slots;
1099
1100 asyh->dp.tu = slots;
1101
1102 return 0;
1103 }
1104
1105 static u8
nv50_dp_bpc_to_depth(unsigned int bpc)1106 nv50_dp_bpc_to_depth(unsigned int bpc)
1107 {
1108 switch (bpc) {
1109 case 6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444;
1110 case 8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444;
1111 case 10:
1112 default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444;
1113 }
1114 }
1115
1116 static void
nv50_msto_atomic_enable(struct drm_encoder * encoder,struct drm_atomic_state * state)1117 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1118 {
1119 struct nv50_msto *msto = nv50_msto(encoder);
1120 struct nv50_head *head = msto->head;
1121 struct nv50_head_atom *asyh =
1122 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base));
1123 struct nv50_mstc *mstc = NULL;
1124 struct nv50_mstm *mstm = NULL;
1125 struct drm_connector *connector;
1126 struct drm_connector_list_iter conn_iter;
1127 u8 proto;
1128
1129 drm_connector_list_iter_begin(encoder->dev, &conn_iter);
1130 drm_for_each_connector_iter(connector, &conn_iter) {
1131 if (connector->state->best_encoder == &msto->encoder) {
1132 mstc = nv50_mstc(connector);
1133 mstm = mstc->mstm;
1134 break;
1135 }
1136 }
1137 drm_connector_list_iter_end(&conn_iter);
1138
1139 if (WARN_ON(!mstc))
1140 return;
1141
1142 if (!mstm->links++)
1143 nv50_outp_acquire(mstm->outp, false /*XXX: MST audio.*/);
1144
1145 if (mstm->outp->link & 1)
1146 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1147 else
1148 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1149
1150 mstm->outp->update(mstm->outp, head->base.index, asyh, proto,
1151 nv50_dp_bpc_to_depth(asyh->or.bpc));
1152
1153 msto->mstc = mstc;
1154 msto->enabled = true;
1155 mstm->modified = true;
1156 }
1157
1158 static void
nv50_msto_atomic_disable(struct drm_encoder * encoder,struct drm_atomic_state * state)1159 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1160 {
1161 struct nv50_msto *msto = nv50_msto(encoder);
1162 struct nv50_mstc *mstc = msto->mstc;
1163 struct nv50_mstm *mstm = mstc->mstm;
1164
1165 mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0);
1166 mstm->modified = true;
1167 if (!--mstm->links)
1168 mstm->disabled = true;
1169 msto->disabled = true;
1170 }
1171
1172 static const struct drm_encoder_helper_funcs
1173 nv50_msto_help = {
1174 .atomic_disable = nv50_msto_atomic_disable,
1175 .atomic_enable = nv50_msto_atomic_enable,
1176 .atomic_check = nv50_msto_atomic_check,
1177 };
1178
1179 static void
nv50_msto_destroy(struct drm_encoder * encoder)1180 nv50_msto_destroy(struct drm_encoder *encoder)
1181 {
1182 struct nv50_msto *msto = nv50_msto(encoder);
1183 drm_encoder_cleanup(&msto->encoder);
1184 kfree(msto);
1185 }
1186
1187 static const struct drm_encoder_funcs
1188 nv50_msto = {
1189 .destroy = nv50_msto_destroy,
1190 };
1191
1192 static struct nv50_msto *
nv50_msto_new(struct drm_device * dev,struct nv50_head * head,int id)1193 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id)
1194 {
1195 struct nv50_msto *msto;
1196 int ret;
1197
1198 msto = kzalloc(sizeof(*msto), GFP_KERNEL);
1199 if (!msto)
1200 return ERR_PTR(-ENOMEM);
1201
1202 ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto,
1203 DRM_MODE_ENCODER_DPMST, "mst-%d", id);
1204 if (ret) {
1205 kfree(msto);
1206 return ERR_PTR(ret);
1207 }
1208
1209 drm_encoder_helper_add(&msto->encoder, &nv50_msto_help);
1210 msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base);
1211 msto->head = head;
1212 return msto;
1213 }
1214
1215 static struct drm_encoder *
nv50_mstc_atomic_best_encoder(struct drm_connector * connector,struct drm_atomic_state * state)1216 nv50_mstc_atomic_best_encoder(struct drm_connector *connector,
1217 struct drm_atomic_state *state)
1218 {
1219 struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state,
1220 connector);
1221 struct nv50_mstc *mstc = nv50_mstc(connector);
1222 struct drm_crtc *crtc = connector_state->crtc;
1223
1224 if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1225 return NULL;
1226
1227 return &nv50_head(crtc)->msto->encoder;
1228 }
1229
1230 static enum drm_mode_status
nv50_mstc_mode_valid(struct drm_connector * connector,struct drm_display_mode * mode)1231 nv50_mstc_mode_valid(struct drm_connector *connector,
1232 struct drm_display_mode *mode)
1233 {
1234 struct nv50_mstc *mstc = nv50_mstc(connector);
1235 struct nouveau_encoder *outp = mstc->mstm->outp;
1236
1237 /* TODO: calculate the PBN from the dotclock and validate against the
1238 * MSTB's max possible PBN
1239 */
1240
1241 return nv50_dp_mode_valid(connector, outp, mode, NULL);
1242 }
1243
1244 static int
nv50_mstc_get_modes(struct drm_connector * connector)1245 nv50_mstc_get_modes(struct drm_connector *connector)
1246 {
1247 struct nv50_mstc *mstc = nv50_mstc(connector);
1248 int ret = 0;
1249
1250 mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port);
1251 drm_connector_update_edid_property(&mstc->connector, mstc->edid);
1252 if (mstc->edid)
1253 ret = drm_add_edid_modes(&mstc->connector, mstc->edid);
1254
1255 /*
1256 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc
1257 * to 8 to save bandwidth on the topology. In the future, we'll want
1258 * to properly fix this by dynamically selecting the highest possible
1259 * bpc that would fit in the topology
1260 */
1261 if (connector->display_info.bpc)
1262 connector->display_info.bpc =
1263 clamp(connector->display_info.bpc, 6U, 8U);
1264 else
1265 connector->display_info.bpc = 8;
1266
1267 if (mstc->native)
1268 drm_mode_destroy(mstc->connector.dev, mstc->native);
1269 mstc->native = nouveau_conn_native_mode(&mstc->connector);
1270 return ret;
1271 }
1272
1273 static int
nv50_mstc_atomic_check(struct drm_connector * connector,struct drm_atomic_state * state)1274 nv50_mstc_atomic_check(struct drm_connector *connector,
1275 struct drm_atomic_state *state)
1276 {
1277 struct nv50_mstc *mstc = nv50_mstc(connector);
1278 struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr;
1279
1280 return drm_dp_atomic_release_time_slots(state, mgr, mstc->port);
1281 }
1282
1283 static int
nv50_mstc_detect(struct drm_connector * connector,struct drm_modeset_acquire_ctx * ctx,bool force)1284 nv50_mstc_detect(struct drm_connector *connector,
1285 struct drm_modeset_acquire_ctx *ctx, bool force)
1286 {
1287 struct nv50_mstc *mstc = nv50_mstc(connector);
1288 int ret;
1289
1290 if (drm_connector_is_unregistered(connector))
1291 return connector_status_disconnected;
1292
1293 ret = pm_runtime_get_sync(connector->dev->dev);
1294 if (ret < 0 && ret != -EACCES) {
1295 pm_runtime_put_autosuspend(connector->dev->dev);
1296 return connector_status_disconnected;
1297 }
1298
1299 ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr,
1300 mstc->port);
1301 if (ret != connector_status_connected)
1302 goto out;
1303
1304 out:
1305 pm_runtime_mark_last_busy(connector->dev->dev);
1306 pm_runtime_put_autosuspend(connector->dev->dev);
1307 return ret;
1308 }
1309
1310 static const struct drm_connector_helper_funcs
1311 nv50_mstc_help = {
1312 .get_modes = nv50_mstc_get_modes,
1313 .mode_valid = nv50_mstc_mode_valid,
1314 .atomic_best_encoder = nv50_mstc_atomic_best_encoder,
1315 .atomic_check = nv50_mstc_atomic_check,
1316 .detect_ctx = nv50_mstc_detect,
1317 };
1318
1319 static void
nv50_mstc_destroy(struct drm_connector * connector)1320 nv50_mstc_destroy(struct drm_connector *connector)
1321 {
1322 struct nv50_mstc *mstc = nv50_mstc(connector);
1323
1324 drm_connector_cleanup(&mstc->connector);
1325 drm_dp_mst_put_port_malloc(mstc->port);
1326
1327 kfree(mstc);
1328 }
1329
1330 static const struct drm_connector_funcs
1331 nv50_mstc = {
1332 .reset = nouveau_conn_reset,
1333 .fill_modes = drm_helper_probe_single_connector_modes,
1334 .destroy = nv50_mstc_destroy,
1335 .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
1336 .atomic_destroy_state = nouveau_conn_atomic_destroy_state,
1337 .atomic_set_property = nouveau_conn_atomic_set_property,
1338 .atomic_get_property = nouveau_conn_atomic_get_property,
1339 };
1340
1341 static int
nv50_mstc_new(struct nv50_mstm * mstm,struct drm_dp_mst_port * port,const char * path,struct nv50_mstc ** pmstc)1342 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port,
1343 const char *path, struct nv50_mstc **pmstc)
1344 {
1345 struct drm_device *dev = mstm->outp->base.base.dev;
1346 struct drm_crtc *crtc;
1347 struct nv50_mstc *mstc;
1348 int ret;
1349
1350 if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL)))
1351 return -ENOMEM;
1352 mstc->mstm = mstm;
1353 mstc->port = port;
1354
1355 ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc,
1356 DRM_MODE_CONNECTOR_DisplayPort);
1357 if (ret) {
1358 kfree(*pmstc);
1359 *pmstc = NULL;
1360 return ret;
1361 }
1362
1363 drm_connector_helper_add(&mstc->connector, &nv50_mstc_help);
1364
1365 mstc->connector.funcs->reset(&mstc->connector);
1366 nouveau_conn_attach_properties(&mstc->connector);
1367
1368 drm_for_each_crtc(crtc, dev) {
1369 if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1370 continue;
1371
1372 drm_connector_attach_encoder(&mstc->connector,
1373 &nv50_head(crtc)->msto->encoder);
1374 }
1375
1376 drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0);
1377 drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0);
1378 drm_connector_set_path_property(&mstc->connector, path);
1379 drm_dp_mst_get_port_malloc(port);
1380 return 0;
1381 }
1382
1383 static void
nv50_mstm_cleanup(struct drm_atomic_state * state,struct drm_dp_mst_topology_state * mst_state,struct nv50_mstm * mstm)1384 nv50_mstm_cleanup(struct drm_atomic_state *state,
1385 struct drm_dp_mst_topology_state *mst_state,
1386 struct nv50_mstm *mstm)
1387 {
1388 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1389 struct drm_encoder *encoder;
1390
1391 NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name);
1392 drm_dp_check_act_status(&mstm->mgr);
1393
1394 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1395 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1396 struct nv50_msto *msto = nv50_msto(encoder);
1397 struct nv50_mstc *mstc = msto->mstc;
1398 if (mstc && mstc->mstm == mstm)
1399 nv50_msto_cleanup(state, mst_state, &mstm->mgr, msto);
1400 }
1401 }
1402
1403 mstm->modified = false;
1404 }
1405
1406 static void
nv50_mstm_prepare(struct drm_atomic_state * state,struct drm_dp_mst_topology_state * mst_state,struct nv50_mstm * mstm)1407 nv50_mstm_prepare(struct drm_atomic_state *state,
1408 struct drm_dp_mst_topology_state *mst_state,
1409 struct nv50_mstm *mstm)
1410 {
1411 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1412 struct drm_encoder *encoder;
1413
1414 NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name);
1415
1416 /* Disable payloads first */
1417 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1418 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1419 struct nv50_msto *msto = nv50_msto(encoder);
1420 struct nv50_mstc *mstc = msto->mstc;
1421 if (mstc && mstc->mstm == mstm && msto->disabled)
1422 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto);
1423 }
1424 }
1425
1426 /* Add payloads for new heads, while also updating the start slots of any unmodified (but
1427 * active) heads that may have had their VC slots shifted left after the previous step
1428 */
1429 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1430 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1431 struct nv50_msto *msto = nv50_msto(encoder);
1432 struct nv50_mstc *mstc = msto->mstc;
1433 if (mstc && mstc->mstm == mstm && !msto->disabled)
1434 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto);
1435 }
1436 }
1437
1438 if (mstm->disabled) {
1439 if (!mstm->links)
1440 nv50_outp_release(mstm->outp);
1441 mstm->disabled = false;
1442 }
1443 }
1444
1445 static struct drm_connector *
nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr * mgr,struct drm_dp_mst_port * port,const char * path)1446 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr,
1447 struct drm_dp_mst_port *port, const char *path)
1448 {
1449 struct nv50_mstm *mstm = nv50_mstm(mgr);
1450 struct nv50_mstc *mstc;
1451 int ret;
1452
1453 ret = nv50_mstc_new(mstm, port, path, &mstc);
1454 if (ret)
1455 return NULL;
1456
1457 return &mstc->connector;
1458 }
1459
1460 static const struct drm_dp_mst_topology_cbs
1461 nv50_mstm = {
1462 .add_connector = nv50_mstm_add_connector,
1463 };
1464
1465 bool
nv50_mstm_service(struct nouveau_drm * drm,struct nouveau_connector * nv_connector,struct nv50_mstm * mstm)1466 nv50_mstm_service(struct nouveau_drm *drm,
1467 struct nouveau_connector *nv_connector,
1468 struct nv50_mstm *mstm)
1469 {
1470 struct drm_dp_aux *aux = &nv_connector->aux;
1471 bool handled = true, ret = true;
1472 int rc;
1473 u8 esi[8] = {};
1474
1475 while (handled) {
1476 u8 ack[8] = {};
1477
1478 rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8);
1479 if (rc != 8) {
1480 ret = false;
1481 break;
1482 }
1483
1484 drm_dp_mst_hpd_irq_handle_event(&mstm->mgr, esi, ack, &handled);
1485 if (!handled)
1486 break;
1487
1488 rc = drm_dp_dpcd_writeb(aux, DP_SINK_COUNT_ESI + 1, ack[1]);
1489
1490 if (rc != 1) {
1491 ret = false;
1492 break;
1493 }
1494
1495 drm_dp_mst_hpd_irq_send_new_request(&mstm->mgr);
1496 }
1497
1498 if (!ret)
1499 NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n",
1500 nv_connector->base.name, rc);
1501
1502 return ret;
1503 }
1504
1505 void
nv50_mstm_remove(struct nv50_mstm * mstm)1506 nv50_mstm_remove(struct nv50_mstm *mstm)
1507 {
1508 mstm->is_mst = false;
1509 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1510 }
1511
1512 static int
nv50_mstm_enable(struct nv50_mstm * mstm,int state)1513 nv50_mstm_enable(struct nv50_mstm *mstm, int state)
1514 {
1515 struct nouveau_encoder *outp = mstm->outp;
1516 struct {
1517 struct nv50_disp_mthd_v1 base;
1518 struct nv50_disp_sor_dp_mst_link_v0 mst;
1519 } args = {
1520 .base.version = 1,
1521 .base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_LINK,
1522 .base.hasht = outp->dcb->hasht,
1523 .base.hashm = outp->dcb->hashm,
1524 .mst.state = state,
1525 };
1526 struct nouveau_drm *drm = nouveau_drm(outp->base.base.dev);
1527 struct nvif_object *disp = &drm->display->disp.object;
1528
1529 return nvif_mthd(disp, 0, &args, sizeof(args));
1530 }
1531
1532 int
nv50_mstm_detect(struct nouveau_encoder * outp)1533 nv50_mstm_detect(struct nouveau_encoder *outp)
1534 {
1535 struct nv50_mstm *mstm = outp->dp.mstm;
1536 struct drm_dp_aux *aux;
1537 int ret;
1538
1539 if (!mstm || !mstm->can_mst)
1540 return 0;
1541
1542 aux = mstm->mgr.aux;
1543
1544 /* Clear any leftover MST state we didn't set ourselves by first
1545 * disabling MST if it was already enabled
1546 */
1547 ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0);
1548 if (ret < 0)
1549 return ret;
1550
1551 /* And start enabling */
1552 ret = nv50_mstm_enable(mstm, true);
1553 if (ret)
1554 return ret;
1555
1556 ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true);
1557 if (ret) {
1558 nv50_mstm_enable(mstm, false);
1559 return ret;
1560 }
1561
1562 mstm->is_mst = true;
1563 return 1;
1564 }
1565
1566 static void
nv50_mstm_fini(struct nouveau_encoder * outp)1567 nv50_mstm_fini(struct nouveau_encoder *outp)
1568 {
1569 struct nv50_mstm *mstm = outp->dp.mstm;
1570
1571 if (!mstm)
1572 return;
1573
1574 /* Don't change the MST state of this connector until we've finished
1575 * resuming, since we can't safely grab hpd_irq_lock in our resume
1576 * path to protect mstm->is_mst without potentially deadlocking
1577 */
1578 mutex_lock(&outp->dp.hpd_irq_lock);
1579 mstm->suspended = true;
1580 mutex_unlock(&outp->dp.hpd_irq_lock);
1581
1582 if (mstm->is_mst)
1583 drm_dp_mst_topology_mgr_suspend(&mstm->mgr);
1584 }
1585
1586 static void
nv50_mstm_init(struct nouveau_encoder * outp,bool runtime)1587 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime)
1588 {
1589 struct nv50_mstm *mstm = outp->dp.mstm;
1590 int ret = 0;
1591
1592 if (!mstm)
1593 return;
1594
1595 if (mstm->is_mst) {
1596 ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime);
1597 if (ret == -1)
1598 nv50_mstm_remove(mstm);
1599 }
1600
1601 mutex_lock(&outp->dp.hpd_irq_lock);
1602 mstm->suspended = false;
1603 mutex_unlock(&outp->dp.hpd_irq_lock);
1604
1605 if (ret == -1)
1606 drm_kms_helper_hotplug_event(mstm->mgr.dev);
1607 }
1608
1609 static void
nv50_mstm_del(struct nv50_mstm ** pmstm)1610 nv50_mstm_del(struct nv50_mstm **pmstm)
1611 {
1612 struct nv50_mstm *mstm = *pmstm;
1613 if (mstm) {
1614 drm_dp_mst_topology_mgr_destroy(&mstm->mgr);
1615 kfree(*pmstm);
1616 *pmstm = NULL;
1617 }
1618 }
1619
1620 static int
nv50_mstm_new(struct nouveau_encoder * outp,struct drm_dp_aux * aux,int aux_max,int conn_base_id,struct nv50_mstm ** pmstm)1621 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max,
1622 int conn_base_id, struct nv50_mstm **pmstm)
1623 {
1624 const int max_payloads = hweight8(outp->dcb->heads);
1625 struct drm_device *dev = outp->base.base.dev;
1626 struct nv50_mstm *mstm;
1627 int ret;
1628
1629 if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL)))
1630 return -ENOMEM;
1631 mstm->outp = outp;
1632 mstm->mgr.cbs = &nv50_mstm;
1633
1634 ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max,
1635 max_payloads, conn_base_id);
1636 if (ret)
1637 return ret;
1638
1639 return 0;
1640 }
1641
1642 /******************************************************************************
1643 * SOR
1644 *****************************************************************************/
1645 static void
nv50_sor_update(struct nouveau_encoder * nv_encoder,u8 head,struct nv50_head_atom * asyh,u8 proto,u8 depth)1646 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head,
1647 struct nv50_head_atom *asyh, u8 proto, u8 depth)
1648 {
1649 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
1650 struct nv50_core *core = disp->core;
1651
1652 if (!asyh) {
1653 nv_encoder->ctrl &= ~BIT(head);
1654 if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE))
1655 nv_encoder->ctrl = 0;
1656 } else {
1657 nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto);
1658 nv_encoder->ctrl |= BIT(head);
1659 asyh->or.depth = depth;
1660 }
1661
1662 core->func->sor->ctrl(core, nv_encoder->or, nv_encoder->ctrl, asyh);
1663 }
1664
1665 /* TODO: Should we extend this to PWM-only backlights?
1666 * As well, should we add a DRM helper for waiting for the backlight to acknowledge
1667 * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a
1668 * fixed time delay from the vbios…
1669 */
1670 static void
nv50_sor_atomic_disable(struct drm_encoder * encoder,struct drm_atomic_state * state)1671 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1672 {
1673 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1674 struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1675 struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder);
1676 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1677 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
1678 struct nouveau_backlight *backlight = nv_connector->backlight;
1679 #endif
1680 struct drm_dp_aux *aux = &nv_connector->aux;
1681 int ret;
1682 u8 pwr;
1683
1684 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1685 if (backlight && backlight->uses_dpcd) {
1686 ret = drm_edp_backlight_disable(aux, &backlight->edp_info);
1687 if (ret < 0)
1688 NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n",
1689 nv_connector->base.base.id, nv_connector->base.name, ret);
1690 }
1691 #endif
1692
1693 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) {
1694 ret = drm_dp_dpcd_readb(aux, DP_SET_POWER, &pwr);
1695
1696 if (ret == 0) {
1697 pwr &= ~DP_SET_POWER_MASK;
1698 pwr |= DP_SET_POWER_D3;
1699 drm_dp_dpcd_writeb(aux, DP_SET_POWER, pwr);
1700 }
1701 }
1702
1703 nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0);
1704 nv50_audio_disable(encoder, nv_crtc);
1705 nv50_hdmi_disable(&nv_encoder->base.base, nv_crtc);
1706 nv50_outp_release(nv_encoder);
1707 nv_encoder->crtc = NULL;
1708 }
1709
1710 static void
nv50_sor_atomic_enable(struct drm_encoder * encoder,struct drm_atomic_state * state)1711 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1712 {
1713 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1714 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1715 struct nv50_head_atom *asyh =
1716 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1717 struct drm_display_mode *mode = &asyh->state.adjusted_mode;
1718 struct {
1719 struct nv50_disp_mthd_v1 base;
1720 struct nv50_disp_sor_lvds_script_v0 lvds;
1721 } lvds = {
1722 .base.version = 1,
1723 .base.method = NV50_DISP_MTHD_V1_SOR_LVDS_SCRIPT,
1724 .base.hasht = nv_encoder->dcb->hasht,
1725 .base.hashm = nv_encoder->dcb->hashm,
1726 };
1727 struct nv50_disp *disp = nv50_disp(encoder->dev);
1728 struct drm_device *dev = encoder->dev;
1729 struct nouveau_drm *drm = nouveau_drm(dev);
1730 struct nouveau_connector *nv_connector;
1731 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1732 struct nouveau_backlight *backlight;
1733 #endif
1734 struct nvbios *bios = &drm->vbios;
1735 bool hda = false;
1736 u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM;
1737 u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT;
1738
1739 nv_connector = nv50_outp_get_new_connector(state, nv_encoder);
1740 nv_encoder->crtc = &nv_crtc->base;
1741
1742 if ((disp->disp->object.oclass == GT214_DISP ||
1743 disp->disp->object.oclass >= GF110_DISP) &&
1744 drm_detect_monitor_audio(nv_connector->edid))
1745 hda = true;
1746 nv50_outp_acquire(nv_encoder, hda);
1747
1748 switch (nv_encoder->dcb->type) {
1749 case DCB_OUTPUT_TMDS:
1750 if (nv_encoder->link & 1) {
1751 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A;
1752 /* Only enable dual-link if:
1753 * - Need to (i.e. rate > 165MHz)
1754 * - DCB says we can
1755 * - Not an HDMI monitor, since there's no dual-link
1756 * on HDMI.
1757 */
1758 if (mode->clock >= 165000 &&
1759 nv_encoder->dcb->duallink_possible &&
1760 !drm_detect_hdmi_monitor(nv_connector->edid))
1761 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS;
1762 } else {
1763 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B;
1764 }
1765
1766 nv50_hdmi_enable(&nv_encoder->base.base, nv_crtc, nv_connector, state, mode);
1767 break;
1768 case DCB_OUTPUT_LVDS:
1769 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM;
1770
1771 if (bios->fp_no_ddc) {
1772 if (bios->fp.dual_link)
1773 lvds.lvds.script |= 0x0100;
1774 if (bios->fp.if_is_24bit)
1775 lvds.lvds.script |= 0x0200;
1776 } else {
1777 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1778 if (((u8 *)nv_connector->edid)[121] == 2)
1779 lvds.lvds.script |= 0x0100;
1780 } else
1781 if (mode->clock >= bios->fp.duallink_transition_clk) {
1782 lvds.lvds.script |= 0x0100;
1783 }
1784
1785 if (lvds.lvds.script & 0x0100) {
1786 if (bios->fp.strapless_is_24bit & 2)
1787 lvds.lvds.script |= 0x0200;
1788 } else {
1789 if (bios->fp.strapless_is_24bit & 1)
1790 lvds.lvds.script |= 0x0200;
1791 }
1792
1793 if (asyh->or.bpc == 8)
1794 lvds.lvds.script |= 0x0200;
1795 }
1796
1797 nvif_mthd(&disp->disp->object, 0, &lvds, sizeof(lvds));
1798 break;
1799 case DCB_OUTPUT_DP:
1800 depth = nv50_dp_bpc_to_depth(asyh->or.bpc);
1801
1802 if (nv_encoder->link & 1)
1803 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1804 else
1805 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1806
1807 nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode);
1808
1809 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1810 backlight = nv_connector->backlight;
1811 if (backlight && backlight->uses_dpcd)
1812 drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info,
1813 (u16)backlight->dev->props.brightness);
1814 #endif
1815
1816 break;
1817 default:
1818 BUG();
1819 break;
1820 }
1821
1822 nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth);
1823 }
1824
1825 static const struct drm_encoder_helper_funcs
1826 nv50_sor_help = {
1827 .atomic_check = nv50_outp_atomic_check,
1828 .atomic_enable = nv50_sor_atomic_enable,
1829 .atomic_disable = nv50_sor_atomic_disable,
1830 };
1831
1832 static void
nv50_sor_destroy(struct drm_encoder * encoder)1833 nv50_sor_destroy(struct drm_encoder *encoder)
1834 {
1835 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1836
1837 nvif_outp_dtor(&nv_encoder->outp);
1838
1839 nv50_mstm_del(&nv_encoder->dp.mstm);
1840 drm_encoder_cleanup(encoder);
1841
1842 if (nv_encoder->dcb->type == DCB_OUTPUT_DP)
1843 mutex_destroy(&nv_encoder->dp.hpd_irq_lock);
1844
1845 kfree(encoder);
1846 }
1847
1848 static const struct drm_encoder_funcs
1849 nv50_sor_func = {
1850 .destroy = nv50_sor_destroy,
1851 };
1852
nv50_has_mst(struct nouveau_drm * drm)1853 bool nv50_has_mst(struct nouveau_drm *drm)
1854 {
1855 struct nvkm_bios *bios = nvxx_bios(&drm->client.device);
1856 u32 data;
1857 u8 ver, hdr, cnt, len;
1858
1859 data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len);
1860 return data && ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04);
1861 }
1862
1863 static int
nv50_sor_create(struct drm_connector * connector,struct dcb_output * dcbe)1864 nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
1865 {
1866 struct nouveau_connector *nv_connector = nouveau_connector(connector);
1867 struct nouveau_drm *drm = nouveau_drm(connector->dev);
1868 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1869 struct nouveau_encoder *nv_encoder;
1870 struct drm_encoder *encoder;
1871 struct nv50_disp *disp = nv50_disp(connector->dev);
1872 int type, ret;
1873
1874 switch (dcbe->type) {
1875 case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
1876 case DCB_OUTPUT_TMDS:
1877 case DCB_OUTPUT_DP:
1878 default:
1879 type = DRM_MODE_ENCODER_TMDS;
1880 break;
1881 }
1882
1883 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1884 if (!nv_encoder)
1885 return -ENOMEM;
1886 nv_encoder->dcb = dcbe;
1887 nv_encoder->update = nv50_sor_update;
1888
1889 encoder = to_drm_encoder(nv_encoder);
1890 encoder->possible_crtcs = dcbe->heads;
1891 encoder->possible_clones = 0;
1892 drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type,
1893 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm);
1894 drm_encoder_helper_add(encoder, &nv50_sor_help);
1895
1896 drm_connector_attach_encoder(connector, encoder);
1897
1898 disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1899 nv50_outp_dump_caps(drm, nv_encoder);
1900
1901 if (dcbe->type == DCB_OUTPUT_DP) {
1902 struct nvkm_i2c_aux *aux =
1903 nvkm_i2c_aux_find(i2c, dcbe->i2c_index);
1904
1905 mutex_init(&nv_encoder->dp.hpd_irq_lock);
1906
1907 if (aux) {
1908 if (disp->disp->object.oclass < GF110_DISP) {
1909 /* HW has no support for address-only
1910 * transactions, so we're required to
1911 * use custom I2C-over-AUX code.
1912 */
1913 nv_encoder->i2c = &aux->i2c;
1914 } else {
1915 nv_encoder->i2c = &nv_connector->aux.ddc;
1916 }
1917 nv_encoder->aux = aux;
1918 }
1919
1920 if (nv_connector->type != DCB_CONNECTOR_eDP &&
1921 nv50_has_mst(drm)) {
1922 ret = nv50_mstm_new(nv_encoder, &nv_connector->aux,
1923 16, nv_connector->base.base.id,
1924 &nv_encoder->dp.mstm);
1925 if (ret)
1926 return ret;
1927 }
1928 } else {
1929 struct nvkm_i2c_bus *bus =
1930 nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
1931 if (bus)
1932 nv_encoder->i2c = &bus->i2c;
1933 }
1934
1935 return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
1936 }
1937
1938 /******************************************************************************
1939 * PIOR
1940 *****************************************************************************/
1941 static int
nv50_pior_atomic_check(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)1942 nv50_pior_atomic_check(struct drm_encoder *encoder,
1943 struct drm_crtc_state *crtc_state,
1944 struct drm_connector_state *conn_state)
1945 {
1946 int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state);
1947 if (ret)
1948 return ret;
1949 crtc_state->adjusted_mode.clock *= 2;
1950 return 0;
1951 }
1952
1953 static void
nv50_pior_atomic_disable(struct drm_encoder * encoder,struct drm_atomic_state * state)1954 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1955 {
1956 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1957 struct nv50_core *core = nv50_disp(encoder->dev)->core;
1958 const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE);
1959
1960 core->func->pior->ctrl(core, nv_encoder->or, ctrl, NULL);
1961 nv_encoder->crtc = NULL;
1962 nv50_outp_release(nv_encoder);
1963 }
1964
1965 static void
nv50_pior_atomic_enable(struct drm_encoder * encoder,struct drm_atomic_state * state)1966 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1967 {
1968 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1969 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1970 struct nv50_head_atom *asyh =
1971 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1972 struct nv50_core *core = nv50_disp(encoder->dev)->core;
1973 u32 ctrl = 0;
1974
1975 switch (nv_crtc->index) {
1976 case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break;
1977 case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break;
1978 default:
1979 WARN_ON(1);
1980 break;
1981 }
1982
1983 nv50_outp_acquire(nv_encoder, false);
1984
1985 switch (asyh->or.bpc) {
1986 case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break;
1987 case 8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break;
1988 case 6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break;
1989 default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break;
1990 }
1991
1992 switch (nv_encoder->dcb->type) {
1993 case DCB_OUTPUT_TMDS:
1994 case DCB_OUTPUT_DP:
1995 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
1996 break;
1997 default:
1998 BUG();
1999 break;
2000 }
2001
2002 core->func->pior->ctrl(core, nv_encoder->or, ctrl, asyh);
2003 nv_encoder->crtc = &nv_crtc->base;
2004 }
2005
2006 static const struct drm_encoder_helper_funcs
2007 nv50_pior_help = {
2008 .atomic_check = nv50_pior_atomic_check,
2009 .atomic_enable = nv50_pior_atomic_enable,
2010 .atomic_disable = nv50_pior_atomic_disable,
2011 };
2012
2013 static void
nv50_pior_destroy(struct drm_encoder * encoder)2014 nv50_pior_destroy(struct drm_encoder *encoder)
2015 {
2016 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
2017
2018 nvif_outp_dtor(&nv_encoder->outp);
2019
2020 drm_encoder_cleanup(encoder);
2021 kfree(encoder);
2022 }
2023
2024 static const struct drm_encoder_funcs
2025 nv50_pior_func = {
2026 .destroy = nv50_pior_destroy,
2027 };
2028
2029 static int
nv50_pior_create(struct drm_connector * connector,struct dcb_output * dcbe)2030 nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
2031 {
2032 struct drm_device *dev = connector->dev;
2033 struct nouveau_drm *drm = nouveau_drm(dev);
2034 struct nv50_disp *disp = nv50_disp(dev);
2035 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
2036 struct nvkm_i2c_bus *bus = NULL;
2037 struct nvkm_i2c_aux *aux = NULL;
2038 struct i2c_adapter *ddc;
2039 struct nouveau_encoder *nv_encoder;
2040 struct drm_encoder *encoder;
2041 int type;
2042
2043 switch (dcbe->type) {
2044 case DCB_OUTPUT_TMDS:
2045 bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev));
2046 ddc = bus ? &bus->i2c : NULL;
2047 type = DRM_MODE_ENCODER_TMDS;
2048 break;
2049 case DCB_OUTPUT_DP:
2050 aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev));
2051 ddc = aux ? &aux->i2c : NULL;
2052 type = DRM_MODE_ENCODER_TMDS;
2053 break;
2054 default:
2055 return -ENODEV;
2056 }
2057
2058 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
2059 if (!nv_encoder)
2060 return -ENOMEM;
2061 nv_encoder->dcb = dcbe;
2062 nv_encoder->i2c = ddc;
2063 nv_encoder->aux = aux;
2064
2065 encoder = to_drm_encoder(nv_encoder);
2066 encoder->possible_crtcs = dcbe->heads;
2067 encoder->possible_clones = 0;
2068 drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type,
2069 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm);
2070 drm_encoder_helper_add(encoder, &nv50_pior_help);
2071
2072 drm_connector_attach_encoder(connector, encoder);
2073
2074 disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
2075 nv50_outp_dump_caps(drm, nv_encoder);
2076
2077 return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
2078 }
2079
2080 /******************************************************************************
2081 * Atomic
2082 *****************************************************************************/
2083
2084 static void
nv50_disp_atomic_commit_core(struct drm_atomic_state * state,u32 * interlock)2085 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock)
2086 {
2087 struct drm_dp_mst_topology_mgr *mgr;
2088 struct drm_dp_mst_topology_state *mst_state;
2089 struct nouveau_drm *drm = nouveau_drm(state->dev);
2090 struct nv50_disp *disp = nv50_disp(drm->dev);
2091 struct nv50_core *core = disp->core;
2092 struct nv50_mstm *mstm;
2093 int i;
2094
2095 NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]);
2096
2097 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
2098 mstm = nv50_mstm(mgr);
2099 if (mstm->modified)
2100 nv50_mstm_prepare(state, mst_state, mstm);
2101 }
2102
2103 core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY);
2104 core->func->update(core, interlock, true);
2105 if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY,
2106 disp->core->chan.base.device))
2107 NV_ERROR(drm, "core notifier timeout\n");
2108
2109 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
2110 mstm = nv50_mstm(mgr);
2111 if (mstm->modified)
2112 nv50_mstm_cleanup(state, mst_state, mstm);
2113 }
2114 }
2115
2116 static void
nv50_disp_atomic_commit_wndw(struct drm_atomic_state * state,u32 * interlock)2117 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock)
2118 {
2119 struct drm_plane_state *new_plane_state;
2120 struct drm_plane *plane;
2121 int i;
2122
2123 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2124 struct nv50_wndw *wndw = nv50_wndw(plane);
2125 if (interlock[wndw->interlock.type] & wndw->interlock.data) {
2126 if (wndw->func->update)
2127 wndw->func->update(wndw, interlock);
2128 }
2129 }
2130 }
2131
2132 static void
nv50_disp_atomic_commit_tail(struct drm_atomic_state * state)2133 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state)
2134 {
2135 struct drm_device *dev = state->dev;
2136 struct drm_crtc_state *new_crtc_state, *old_crtc_state;
2137 struct drm_crtc *crtc;
2138 struct drm_plane_state *new_plane_state;
2139 struct drm_plane *plane;
2140 struct nouveau_drm *drm = nouveau_drm(dev);
2141 struct nv50_disp *disp = nv50_disp(dev);
2142 struct nv50_atom *atom = nv50_atom(state);
2143 struct nv50_core *core = disp->core;
2144 struct nv50_outp_atom *outp, *outt;
2145 u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {};
2146 int i;
2147 bool flushed = false;
2148
2149 NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable);
2150 nv50_crc_atomic_stop_reporting(state);
2151 drm_atomic_helper_wait_for_fences(dev, state, false);
2152 drm_atomic_helper_wait_for_dependencies(state);
2153 drm_dp_mst_atomic_wait_for_dependencies(state);
2154 drm_atomic_helper_update_legacy_modeset_state(dev, state);
2155 drm_atomic_helper_calc_timestamping_constants(state);
2156
2157 if (atom->lock_core)
2158 mutex_lock(&disp->mutex);
2159
2160 /* Disable head(s). */
2161 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2162 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2163 struct nv50_head *head = nv50_head(crtc);
2164
2165 NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name,
2166 asyh->clr.mask, asyh->set.mask);
2167
2168 if (old_crtc_state->active && !new_crtc_state->active) {
2169 pm_runtime_put_noidle(dev->dev);
2170 drm_crtc_vblank_off(crtc);
2171 }
2172
2173 if (asyh->clr.mask) {
2174 nv50_head_flush_clr(head, asyh, atom->flush_disable);
2175 interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2176 }
2177 }
2178
2179 /* Disable plane(s). */
2180 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2181 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2182 struct nv50_wndw *wndw = nv50_wndw(plane);
2183
2184 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name,
2185 asyw->clr.mask, asyw->set.mask);
2186 if (!asyw->clr.mask)
2187 continue;
2188
2189 nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw);
2190 }
2191
2192 /* Disable output path(s). */
2193 list_for_each_entry(outp, &atom->outp, head) {
2194 const struct drm_encoder_helper_funcs *help;
2195 struct drm_encoder *encoder;
2196
2197 encoder = outp->encoder;
2198 help = encoder->helper_private;
2199
2200 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name,
2201 outp->clr.mask, outp->set.mask);
2202
2203 if (outp->clr.mask) {
2204 help->atomic_disable(encoder, state);
2205 interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2206 if (outp->flush_disable) {
2207 nv50_disp_atomic_commit_wndw(state, interlock);
2208 nv50_disp_atomic_commit_core(state, interlock);
2209 memset(interlock, 0x00, sizeof(interlock));
2210
2211 flushed = true;
2212 }
2213 }
2214 }
2215
2216 /* Flush disable. */
2217 if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2218 if (atom->flush_disable) {
2219 nv50_disp_atomic_commit_wndw(state, interlock);
2220 nv50_disp_atomic_commit_core(state, interlock);
2221 memset(interlock, 0x00, sizeof(interlock));
2222
2223 flushed = true;
2224 }
2225 }
2226
2227 if (flushed)
2228 nv50_crc_atomic_release_notifier_contexts(state);
2229 nv50_crc_atomic_init_notifier_contexts(state);
2230
2231 /* Update output path(s). */
2232 list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2233 const struct drm_encoder_helper_funcs *help;
2234 struct drm_encoder *encoder;
2235
2236 encoder = outp->encoder;
2237 help = encoder->helper_private;
2238
2239 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name,
2240 outp->set.mask, outp->clr.mask);
2241
2242 if (outp->set.mask) {
2243 help->atomic_enable(encoder, state);
2244 interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2245 }
2246
2247 list_del(&outp->head);
2248 kfree(outp);
2249 }
2250
2251 /* Update head(s). */
2252 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2253 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2254 struct nv50_head *head = nv50_head(crtc);
2255
2256 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2257 asyh->set.mask, asyh->clr.mask);
2258
2259 if (asyh->set.mask) {
2260 nv50_head_flush_set(head, asyh);
2261 interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2262 }
2263
2264 if (new_crtc_state->active) {
2265 if (!old_crtc_state->active) {
2266 drm_crtc_vblank_on(crtc);
2267 pm_runtime_get_noresume(dev->dev);
2268 }
2269 if (new_crtc_state->event)
2270 drm_crtc_vblank_get(crtc);
2271 }
2272 }
2273
2274 /* Update window->head assignment.
2275 *
2276 * This has to happen in an update that's not interlocked with
2277 * any window channels to avoid hitting HW error checks.
2278 *
2279 *TODO: Proper handling of window ownership (Turing apparently
2280 * supports non-fixed mappings).
2281 */
2282 if (core->assign_windows) {
2283 core->func->wndw.owner(core);
2284 nv50_disp_atomic_commit_core(state, interlock);
2285 core->assign_windows = false;
2286 interlock[NV50_DISP_INTERLOCK_CORE] = 0;
2287 }
2288
2289 /* Finish updating head(s)...
2290 *
2291 * NVD is rather picky about both where window assignments can change,
2292 * *and* about certain core and window channel states matching.
2293 *
2294 * The EFI GOP driver on newer GPUs configures window channels with a
2295 * different output format to what we do, and the core channel update
2296 * in the assign_windows case above would result in a state mismatch.
2297 *
2298 * Delay some of the head update until after that point to workaround
2299 * the issue. This only affects the initial modeset.
2300 *
2301 * TODO: handle this better when adding flexible window mapping
2302 */
2303 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2304 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2305 struct nv50_head *head = nv50_head(crtc);
2306
2307 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2308 asyh->set.mask, asyh->clr.mask);
2309
2310 if (asyh->set.mask) {
2311 nv50_head_flush_set_wndw(head, asyh);
2312 interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2313 }
2314 }
2315
2316 /* Update plane(s). */
2317 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2318 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2319 struct nv50_wndw *wndw = nv50_wndw(plane);
2320
2321 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name,
2322 asyw->set.mask, asyw->clr.mask);
2323 if ( !asyw->set.mask &&
2324 (!asyw->clr.mask || atom->flush_disable))
2325 continue;
2326
2327 nv50_wndw_flush_set(wndw, interlock, asyw);
2328 }
2329
2330 /* Flush update. */
2331 nv50_disp_atomic_commit_wndw(state, interlock);
2332
2333 if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2334 if (interlock[NV50_DISP_INTERLOCK_BASE] ||
2335 interlock[NV50_DISP_INTERLOCK_OVLY] ||
2336 interlock[NV50_DISP_INTERLOCK_WNDW] ||
2337 !atom->state.legacy_cursor_update)
2338 nv50_disp_atomic_commit_core(state, interlock);
2339 else
2340 disp->core->func->update(disp->core, interlock, false);
2341 }
2342
2343 if (atom->lock_core)
2344 mutex_unlock(&disp->mutex);
2345
2346 /* Wait for HW to signal completion. */
2347 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2348 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2349 struct nv50_wndw *wndw = nv50_wndw(plane);
2350 int ret = nv50_wndw_wait_armed(wndw, asyw);
2351 if (ret)
2352 NV_ERROR(drm, "%s: timeout\n", plane->name);
2353 }
2354
2355 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2356 if (new_crtc_state->event) {
2357 unsigned long flags;
2358 /* Get correct count/ts if racing with vblank irq */
2359 if (new_crtc_state->active)
2360 drm_crtc_accurate_vblank_count(crtc);
2361 spin_lock_irqsave(&crtc->dev->event_lock, flags);
2362 drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
2363 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2364
2365 new_crtc_state->event = NULL;
2366 if (new_crtc_state->active)
2367 drm_crtc_vblank_put(crtc);
2368 }
2369 }
2370
2371 nv50_crc_atomic_start_reporting(state);
2372 if (!flushed)
2373 nv50_crc_atomic_release_notifier_contexts(state);
2374
2375 drm_atomic_helper_commit_hw_done(state);
2376 drm_atomic_helper_cleanup_planes(dev, state);
2377 drm_atomic_helper_commit_cleanup_done(state);
2378 drm_atomic_state_put(state);
2379
2380 /* Drop the RPM ref we got from nv50_disp_atomic_commit() */
2381 pm_runtime_mark_last_busy(dev->dev);
2382 pm_runtime_put_autosuspend(dev->dev);
2383 }
2384
2385 static void
nv50_disp_atomic_commit_work(struct work_struct * work)2386 nv50_disp_atomic_commit_work(struct work_struct *work)
2387 {
2388 struct drm_atomic_state *state =
2389 container_of(work, typeof(*state), commit_work);
2390 nv50_disp_atomic_commit_tail(state);
2391 }
2392
2393 static int
nv50_disp_atomic_commit(struct drm_device * dev,struct drm_atomic_state * state,bool nonblock)2394 nv50_disp_atomic_commit(struct drm_device *dev,
2395 struct drm_atomic_state *state, bool nonblock)
2396 {
2397 struct drm_plane_state *new_plane_state;
2398 struct drm_plane *plane;
2399 int ret, i;
2400
2401 ret = pm_runtime_get_sync(dev->dev);
2402 if (ret < 0 && ret != -EACCES) {
2403 pm_runtime_put_autosuspend(dev->dev);
2404 return ret;
2405 }
2406
2407 ret = drm_atomic_helper_setup_commit(state, nonblock);
2408 if (ret)
2409 goto done;
2410
2411 INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work);
2412
2413 ret = drm_atomic_helper_prepare_planes(dev, state);
2414 if (ret)
2415 goto done;
2416
2417 if (!nonblock) {
2418 ret = drm_atomic_helper_wait_for_fences(dev, state, true);
2419 if (ret)
2420 goto err_cleanup;
2421 }
2422
2423 ret = drm_atomic_helper_swap_state(state, true);
2424 if (ret)
2425 goto err_cleanup;
2426
2427 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2428 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2429 struct nv50_wndw *wndw = nv50_wndw(plane);
2430
2431 if (asyw->set.image)
2432 nv50_wndw_ntfy_enable(wndw, asyw);
2433 }
2434
2435 drm_atomic_state_get(state);
2436
2437 /*
2438 * Grab another RPM ref for the commit tail, which will release the
2439 * ref when it's finished
2440 */
2441 pm_runtime_get_noresume(dev->dev);
2442
2443 if (nonblock)
2444 queue_work(system_unbound_wq, &state->commit_work);
2445 else
2446 nv50_disp_atomic_commit_tail(state);
2447
2448 err_cleanup:
2449 if (ret)
2450 drm_atomic_helper_cleanup_planes(dev, state);
2451 done:
2452 pm_runtime_put_autosuspend(dev->dev);
2453 return ret;
2454 }
2455
2456 static struct nv50_outp_atom *
nv50_disp_outp_atomic_add(struct nv50_atom * atom,struct drm_encoder * encoder)2457 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder)
2458 {
2459 struct nv50_outp_atom *outp;
2460
2461 list_for_each_entry(outp, &atom->outp, head) {
2462 if (outp->encoder == encoder)
2463 return outp;
2464 }
2465
2466 outp = kzalloc(sizeof(*outp), GFP_KERNEL);
2467 if (!outp)
2468 return ERR_PTR(-ENOMEM);
2469
2470 list_add(&outp->head, &atom->outp);
2471 outp->encoder = encoder;
2472 return outp;
2473 }
2474
2475 static int
nv50_disp_outp_atomic_check_clr(struct nv50_atom * atom,struct drm_connector_state * old_connector_state)2476 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom,
2477 struct drm_connector_state *old_connector_state)
2478 {
2479 struct drm_encoder *encoder = old_connector_state->best_encoder;
2480 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
2481 struct drm_crtc *crtc;
2482 struct nv50_outp_atom *outp;
2483
2484 if (!(crtc = old_connector_state->crtc))
2485 return 0;
2486
2487 old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc);
2488 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2489 if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2490 outp = nv50_disp_outp_atomic_add(atom, encoder);
2491 if (IS_ERR(outp))
2492 return PTR_ERR(outp);
2493
2494 if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
2495 outp->flush_disable = true;
2496 atom->flush_disable = true;
2497 }
2498 outp->clr.ctrl = true;
2499 atom->lock_core = true;
2500 }
2501
2502 return 0;
2503 }
2504
2505 static int
nv50_disp_outp_atomic_check_set(struct nv50_atom * atom,struct drm_connector_state * connector_state)2506 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom,
2507 struct drm_connector_state *connector_state)
2508 {
2509 struct drm_encoder *encoder = connector_state->best_encoder;
2510 struct drm_crtc_state *new_crtc_state;
2511 struct drm_crtc *crtc;
2512 struct nv50_outp_atom *outp;
2513
2514 if (!(crtc = connector_state->crtc))
2515 return 0;
2516
2517 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2518 if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2519 outp = nv50_disp_outp_atomic_add(atom, encoder);
2520 if (IS_ERR(outp))
2521 return PTR_ERR(outp);
2522
2523 outp->set.ctrl = true;
2524 atom->lock_core = true;
2525 }
2526
2527 return 0;
2528 }
2529
2530 static int
nv50_disp_atomic_check(struct drm_device * dev,struct drm_atomic_state * state)2531 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
2532 {
2533 struct nv50_atom *atom = nv50_atom(state);
2534 struct nv50_core *core = nv50_disp(dev)->core;
2535 struct drm_connector_state *old_connector_state, *new_connector_state;
2536 struct drm_connector *connector;
2537 struct drm_crtc_state *new_crtc_state;
2538 struct drm_crtc *crtc;
2539 struct nv50_head *head;
2540 struct nv50_head_atom *asyh;
2541 int ret, i;
2542
2543 if (core->assign_windows && core->func->head->static_wndw_map) {
2544 drm_for_each_crtc(crtc, dev) {
2545 new_crtc_state = drm_atomic_get_crtc_state(state,
2546 crtc);
2547 if (IS_ERR(new_crtc_state))
2548 return PTR_ERR(new_crtc_state);
2549
2550 head = nv50_head(crtc);
2551 asyh = nv50_head_atom(new_crtc_state);
2552 core->func->head->static_wndw_map(head, asyh);
2553 }
2554 }
2555
2556 /* We need to handle colour management on a per-plane basis. */
2557 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2558 if (new_crtc_state->color_mgmt_changed) {
2559 ret = drm_atomic_add_affected_planes(state, crtc);
2560 if (ret)
2561 return ret;
2562 }
2563 }
2564
2565 ret = drm_atomic_helper_check(dev, state);
2566 if (ret)
2567 return ret;
2568
2569 for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) {
2570 ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state);
2571 if (ret)
2572 return ret;
2573
2574 ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state);
2575 if (ret)
2576 return ret;
2577 }
2578
2579 ret = drm_dp_mst_atomic_check(state);
2580 if (ret)
2581 return ret;
2582
2583 nv50_crc_atomic_check_outp(atom);
2584
2585 return 0;
2586 }
2587
2588 static void
nv50_disp_atomic_state_clear(struct drm_atomic_state * state)2589 nv50_disp_atomic_state_clear(struct drm_atomic_state *state)
2590 {
2591 struct nv50_atom *atom = nv50_atom(state);
2592 struct nv50_outp_atom *outp, *outt;
2593
2594 list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2595 list_del(&outp->head);
2596 kfree(outp);
2597 }
2598
2599 drm_atomic_state_default_clear(state);
2600 }
2601
2602 static void
nv50_disp_atomic_state_free(struct drm_atomic_state * state)2603 nv50_disp_atomic_state_free(struct drm_atomic_state *state)
2604 {
2605 struct nv50_atom *atom = nv50_atom(state);
2606 drm_atomic_state_default_release(&atom->state);
2607 kfree(atom);
2608 }
2609
2610 static struct drm_atomic_state *
nv50_disp_atomic_state_alloc(struct drm_device * dev)2611 nv50_disp_atomic_state_alloc(struct drm_device *dev)
2612 {
2613 struct nv50_atom *atom;
2614 if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) ||
2615 drm_atomic_state_init(dev, &atom->state) < 0) {
2616 kfree(atom);
2617 return NULL;
2618 }
2619 INIT_LIST_HEAD(&atom->outp);
2620 return &atom->state;
2621 }
2622
2623 static const struct drm_mode_config_funcs
2624 nv50_disp_func = {
2625 .fb_create = nouveau_user_framebuffer_create,
2626 .output_poll_changed = nouveau_fbcon_output_poll_changed,
2627 .atomic_check = nv50_disp_atomic_check,
2628 .atomic_commit = nv50_disp_atomic_commit,
2629 .atomic_state_alloc = nv50_disp_atomic_state_alloc,
2630 .atomic_state_clear = nv50_disp_atomic_state_clear,
2631 .atomic_state_free = nv50_disp_atomic_state_free,
2632 };
2633
2634 static const struct drm_mode_config_helper_funcs
2635 nv50_disp_helper_func = {
2636 .atomic_commit_setup = drm_dp_mst_atomic_setup_commit,
2637 };
2638
2639 /******************************************************************************
2640 * Init
2641 *****************************************************************************/
2642
2643 static void
nv50_display_fini(struct drm_device * dev,bool runtime,bool suspend)2644 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend)
2645 {
2646 struct nouveau_drm *drm = nouveau_drm(dev);
2647 struct drm_encoder *encoder;
2648
2649 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2650 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
2651 nv50_mstm_fini(nouveau_encoder(encoder));
2652 }
2653
2654 if (!runtime)
2655 cancel_work_sync(&drm->hpd_work);
2656 }
2657
2658 static int
nv50_display_init(struct drm_device * dev,bool resume,bool runtime)2659 nv50_display_init(struct drm_device *dev, bool resume, bool runtime)
2660 {
2661 struct nv50_core *core = nv50_disp(dev)->core;
2662 struct drm_encoder *encoder;
2663
2664 if (resume || runtime)
2665 core->func->init(core);
2666
2667 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2668 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2669 struct nouveau_encoder *nv_encoder =
2670 nouveau_encoder(encoder);
2671 nv50_mstm_init(nv_encoder, runtime);
2672 }
2673 }
2674
2675 return 0;
2676 }
2677
2678 static void
nv50_display_destroy(struct drm_device * dev)2679 nv50_display_destroy(struct drm_device *dev)
2680 {
2681 struct nv50_disp *disp = nv50_disp(dev);
2682
2683 nv50_audio_component_fini(nouveau_drm(dev));
2684
2685 nvif_object_unmap(&disp->caps);
2686 nvif_object_dtor(&disp->caps);
2687 nv50_core_del(&disp->core);
2688
2689 nouveau_bo_unmap(disp->sync);
2690 if (disp->sync)
2691 nouveau_bo_unpin(disp->sync);
2692 nouveau_bo_ref(NULL, &disp->sync);
2693
2694 nouveau_display(dev)->priv = NULL;
2695 kfree(disp);
2696 }
2697
2698 int
nv50_display_create(struct drm_device * dev)2699 nv50_display_create(struct drm_device *dev)
2700 {
2701 struct nvif_device *device = &nouveau_drm(dev)->client.device;
2702 struct nouveau_drm *drm = nouveau_drm(dev);
2703 struct dcb_table *dcb = &drm->vbios.dcb;
2704 struct drm_connector *connector, *tmp;
2705 struct nv50_disp *disp;
2706 struct dcb_output *dcbe;
2707 int crtcs, ret, i;
2708 bool has_mst = nv50_has_mst(drm);
2709
2710 disp = kzalloc(sizeof(*disp), GFP_KERNEL);
2711 if (!disp)
2712 return -ENOMEM;
2713
2714 mutex_init(&disp->mutex);
2715
2716 nouveau_display(dev)->priv = disp;
2717 nouveau_display(dev)->dtor = nv50_display_destroy;
2718 nouveau_display(dev)->init = nv50_display_init;
2719 nouveau_display(dev)->fini = nv50_display_fini;
2720 disp->disp = &nouveau_display(dev)->disp;
2721 dev->mode_config.funcs = &nv50_disp_func;
2722 dev->mode_config.helper_private = &nv50_disp_helper_func;
2723 dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true;
2724 dev->mode_config.normalize_zpos = true;
2725
2726 /* small shared memory area we use for notifiers and semaphores */
2727 ret = nouveau_bo_new(&drm->client, 4096, 0x1000,
2728 NOUVEAU_GEM_DOMAIN_VRAM,
2729 0, 0x0000, NULL, NULL, &disp->sync);
2730 if (!ret) {
2731 ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true);
2732 if (!ret) {
2733 ret = nouveau_bo_map(disp->sync);
2734 if (ret)
2735 nouveau_bo_unpin(disp->sync);
2736 }
2737 if (ret)
2738 nouveau_bo_ref(NULL, &disp->sync);
2739 }
2740
2741 if (ret)
2742 goto out;
2743
2744 /* allocate master evo channel */
2745 ret = nv50_core_new(drm, &disp->core);
2746 if (ret)
2747 goto out;
2748
2749 disp->core->func->init(disp->core);
2750 if (disp->core->func->caps_init) {
2751 ret = disp->core->func->caps_init(drm, disp);
2752 if (ret)
2753 goto out;
2754 }
2755
2756 /* Assign the correct format modifiers */
2757 if (disp->disp->object.oclass >= TU102_DISP)
2758 nouveau_display(dev)->format_modifiers = wndwc57e_modifiers;
2759 else
2760 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI)
2761 nouveau_display(dev)->format_modifiers = disp90xx_modifiers;
2762 else
2763 nouveau_display(dev)->format_modifiers = disp50xx_modifiers;
2764
2765 /* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later
2766 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The
2767 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to
2768 * small page allocations in prepare_fb(). When this is implemented, we should also force
2769 * large pages (128K) for ovly fbs in order to fix Kepler ovlys.
2770 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using
2771 * large pages.
2772 */
2773 if (disp->disp->object.oclass >= GM107_DISP) {
2774 dev->mode_config.cursor_width = 256;
2775 dev->mode_config.cursor_height = 256;
2776 } else if (disp->disp->object.oclass >= GK104_DISP) {
2777 dev->mode_config.cursor_width = 128;
2778 dev->mode_config.cursor_height = 128;
2779 } else {
2780 dev->mode_config.cursor_width = 64;
2781 dev->mode_config.cursor_height = 64;
2782 }
2783
2784 /* create crtc objects to represent the hw heads */
2785 if (disp->disp->object.oclass >= GV100_DISP)
2786 crtcs = nvif_rd32(&device->object, 0x610060) & 0xff;
2787 else
2788 if (disp->disp->object.oclass >= GF110_DISP)
2789 crtcs = nvif_rd32(&device->object, 0x612004) & 0xf;
2790 else
2791 crtcs = 0x3;
2792
2793 for (i = 0; i < fls(crtcs); i++) {
2794 struct nv50_head *head;
2795
2796 if (!(crtcs & (1 << i)))
2797 continue;
2798
2799 head = nv50_head_create(dev, i);
2800 if (IS_ERR(head)) {
2801 ret = PTR_ERR(head);
2802 goto out;
2803 }
2804
2805 if (has_mst) {
2806 head->msto = nv50_msto_new(dev, head, i);
2807 if (IS_ERR(head->msto)) {
2808 ret = PTR_ERR(head->msto);
2809 head->msto = NULL;
2810 goto out;
2811 }
2812
2813 /*
2814 * FIXME: This is a hack to workaround the following
2815 * issues:
2816 *
2817 * https://gitlab.gnome.org/GNOME/mutter/issues/759
2818 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277
2819 *
2820 * Once these issues are closed, this should be
2821 * removed
2822 */
2823 head->msto->encoder.possible_crtcs = crtcs;
2824 }
2825 }
2826
2827 /* create encoder/connector objects based on VBIOS DCB table */
2828 for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
2829 connector = nouveau_connector_create(dev, dcbe);
2830 if (IS_ERR(connector))
2831 continue;
2832
2833 if (dcbe->location == DCB_LOC_ON_CHIP) {
2834 switch (dcbe->type) {
2835 case DCB_OUTPUT_TMDS:
2836 case DCB_OUTPUT_LVDS:
2837 case DCB_OUTPUT_DP:
2838 ret = nv50_sor_create(connector, dcbe);
2839 break;
2840 case DCB_OUTPUT_ANALOG:
2841 ret = nv50_dac_create(connector, dcbe);
2842 break;
2843 default:
2844 ret = -ENODEV;
2845 break;
2846 }
2847 } else {
2848 ret = nv50_pior_create(connector, dcbe);
2849 }
2850
2851 if (ret) {
2852 NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
2853 dcbe->location, dcbe->type,
2854 ffs(dcbe->or) - 1, ret);
2855 ret = 0;
2856 }
2857 }
2858
2859 /* cull any connectors we created that don't have an encoder */
2860 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2861 if (connector->possible_encoders)
2862 continue;
2863
2864 NV_WARN(drm, "%s has no encoders, removing\n",
2865 connector->name);
2866 connector->funcs->destroy(connector);
2867 }
2868
2869 /* Disable vblank irqs aggressively for power-saving, safe on nv50+ */
2870 dev->vblank_disable_immediate = true;
2871
2872 nv50_audio_component_init(drm);
2873
2874 out:
2875 if (ret)
2876 nv50_display_destroy(dev);
2877 return ret;
2878 }
2879
2880 /******************************************************************************
2881 * Format modifiers
2882 *****************************************************************************/
2883
2884 /****************************************************************
2885 * Log2(block height) ----------------------------+ *
2886 * Page Kind ----------------------------------+ | *
2887 * Gob Height/Page Kind Generation ------+ | | *
2888 * Sector layout -------+ | | | *
2889 * Compression ------+ | | | | */
2890 const u64 disp50xx_modifiers[] = { /* | | | | | */
2891 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0),
2892 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1),
2893 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2),
2894 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3),
2895 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4),
2896 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5),
2897 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0),
2898 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1),
2899 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2),
2900 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3),
2901 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4),
2902 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5),
2903 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0),
2904 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1),
2905 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2),
2906 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3),
2907 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4),
2908 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5),
2909 DRM_FORMAT_MOD_LINEAR,
2910 DRM_FORMAT_MOD_INVALID
2911 };
2912
2913 /****************************************************************
2914 * Log2(block height) ----------------------------+ *
2915 * Page Kind ----------------------------------+ | *
2916 * Gob Height/Page Kind Generation ------+ | | *
2917 * Sector layout -------+ | | | *
2918 * Compression ------+ | | | | */
2919 const u64 disp90xx_modifiers[] = { /* | | | | | */
2920 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0),
2921 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1),
2922 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2),
2923 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3),
2924 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4),
2925 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5),
2926 DRM_FORMAT_MOD_LINEAR,
2927 DRM_FORMAT_MOD_INVALID
2928 };
2929