1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 *
11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 *
13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14 * Grant Likely.
15 */
16
17 #define pr_fmt(fmt) "OF: " fmt
18
19 #include <linux/console.h>
20 #include <linux/ctype.h>
21 #include <linux/cpu.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30
31 #include "of_private.h"
32
33 LIST_HEAD(aliases_lookup);
34
35 struct device_node *of_root;
36 EXPORT_SYMBOL(of_root);
37 struct device_node *of_chosen;
38 EXPORT_SYMBOL(of_chosen);
39 struct device_node *of_aliases;
40 struct device_node *of_stdout;
41 static const char *of_stdout_options;
42
43 struct kset *of_kset;
44
45 /*
46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
47 * This mutex must be held whenever modifications are being made to the
48 * device tree. The of_{attach,detach}_node() and
49 * of_{add,remove,update}_property() helpers make sure this happens.
50 */
51 DEFINE_MUTEX(of_mutex);
52
53 /* use when traversing tree through the child, sibling,
54 * or parent members of struct device_node.
55 */
56 DEFINE_RAW_SPINLOCK(devtree_lock);
57
of_node_name_eq(const struct device_node * np,const char * name)58 bool of_node_name_eq(const struct device_node *np, const char *name)
59 {
60 const char *node_name;
61 size_t len;
62
63 if (!np)
64 return false;
65
66 node_name = kbasename(np->full_name);
67 len = strchrnul(node_name, '@') - node_name;
68
69 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
70 }
71 EXPORT_SYMBOL(of_node_name_eq);
72
of_node_name_prefix(const struct device_node * np,const char * prefix)73 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
74 {
75 if (!np)
76 return false;
77
78 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
79 }
80 EXPORT_SYMBOL(of_node_name_prefix);
81
__of_node_is_type(const struct device_node * np,const char * type)82 static bool __of_node_is_type(const struct device_node *np, const char *type)
83 {
84 const char *match = __of_get_property(np, "device_type", NULL);
85
86 return np && match && type && !strcmp(match, type);
87 }
88
of_bus_n_addr_cells(struct device_node * np)89 int of_bus_n_addr_cells(struct device_node *np)
90 {
91 u32 cells;
92
93 for (; np; np = np->parent)
94 if (!of_property_read_u32(np, "#address-cells", &cells))
95 return cells;
96
97 /* No #address-cells property for the root node */
98 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
99 }
100
of_n_addr_cells(struct device_node * np)101 int of_n_addr_cells(struct device_node *np)
102 {
103 if (np->parent)
104 np = np->parent;
105
106 return of_bus_n_addr_cells(np);
107 }
108 EXPORT_SYMBOL(of_n_addr_cells);
109
of_bus_n_size_cells(struct device_node * np)110 int of_bus_n_size_cells(struct device_node *np)
111 {
112 u32 cells;
113
114 for (; np; np = np->parent)
115 if (!of_property_read_u32(np, "#size-cells", &cells))
116 return cells;
117
118 /* No #size-cells property for the root node */
119 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
120 }
121
of_n_size_cells(struct device_node * np)122 int of_n_size_cells(struct device_node *np)
123 {
124 if (np->parent)
125 np = np->parent;
126
127 return of_bus_n_size_cells(np);
128 }
129 EXPORT_SYMBOL(of_n_size_cells);
130
131 #ifdef CONFIG_NUMA
of_node_to_nid(struct device_node * np)132 int __weak of_node_to_nid(struct device_node *np)
133 {
134 return NUMA_NO_NODE;
135 }
136 #endif
137
138 #define OF_PHANDLE_CACHE_BITS 7
139 #define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS)
140
141 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
142
of_phandle_cache_hash(phandle handle)143 static u32 of_phandle_cache_hash(phandle handle)
144 {
145 return hash_32(handle, OF_PHANDLE_CACHE_BITS);
146 }
147
148 /*
149 * Caller must hold devtree_lock.
150 */
__of_phandle_cache_inv_entry(phandle handle)151 void __of_phandle_cache_inv_entry(phandle handle)
152 {
153 u32 handle_hash;
154 struct device_node *np;
155
156 if (!handle)
157 return;
158
159 handle_hash = of_phandle_cache_hash(handle);
160
161 np = phandle_cache[handle_hash];
162 if (np && handle == np->phandle)
163 phandle_cache[handle_hash] = NULL;
164 }
165
of_core_init(void)166 void __init of_core_init(void)
167 {
168 struct device_node *np;
169
170
171 /* Create the kset, and register existing nodes */
172 mutex_lock(&of_mutex);
173 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
174 if (!of_kset) {
175 mutex_unlock(&of_mutex);
176 pr_err("failed to register existing nodes\n");
177 return;
178 }
179 for_each_of_allnodes(np) {
180 __of_attach_node_sysfs(np);
181 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
182 phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
183 }
184 mutex_unlock(&of_mutex);
185
186 /* Symlink in /proc as required by userspace ABI */
187 if (of_root)
188 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
189 }
190
__of_find_property(const struct device_node * np,const char * name,int * lenp)191 static struct property *__of_find_property(const struct device_node *np,
192 const char *name, int *lenp)
193 {
194 struct property *pp;
195
196 if (!np)
197 return NULL;
198
199 for (pp = np->properties; pp; pp = pp->next) {
200 if (of_prop_cmp(pp->name, name) == 0) {
201 if (lenp)
202 *lenp = pp->length;
203 break;
204 }
205 }
206
207 return pp;
208 }
209
of_find_property(const struct device_node * np,const char * name,int * lenp)210 struct property *of_find_property(const struct device_node *np,
211 const char *name,
212 int *lenp)
213 {
214 struct property *pp;
215 unsigned long flags;
216
217 raw_spin_lock_irqsave(&devtree_lock, flags);
218 pp = __of_find_property(np, name, lenp);
219 raw_spin_unlock_irqrestore(&devtree_lock, flags);
220
221 return pp;
222 }
223 EXPORT_SYMBOL(of_find_property);
224
__of_find_all_nodes(struct device_node * prev)225 struct device_node *__of_find_all_nodes(struct device_node *prev)
226 {
227 struct device_node *np;
228 if (!prev) {
229 np = of_root;
230 } else if (prev->child) {
231 np = prev->child;
232 } else {
233 /* Walk back up looking for a sibling, or the end of the structure */
234 np = prev;
235 while (np->parent && !np->sibling)
236 np = np->parent;
237 np = np->sibling; /* Might be null at the end of the tree */
238 }
239 return np;
240 }
241
242 /**
243 * of_find_all_nodes - Get next node in global list
244 * @prev: Previous node or NULL to start iteration
245 * of_node_put() will be called on it
246 *
247 * Return: A node pointer with refcount incremented, use
248 * of_node_put() on it when done.
249 */
of_find_all_nodes(struct device_node * prev)250 struct device_node *of_find_all_nodes(struct device_node *prev)
251 {
252 struct device_node *np;
253 unsigned long flags;
254
255 raw_spin_lock_irqsave(&devtree_lock, flags);
256 np = __of_find_all_nodes(prev);
257 of_node_get(np);
258 of_node_put(prev);
259 raw_spin_unlock_irqrestore(&devtree_lock, flags);
260 return np;
261 }
262 EXPORT_SYMBOL(of_find_all_nodes);
263
264 /*
265 * Find a property with a given name for a given node
266 * and return the value.
267 */
__of_get_property(const struct device_node * np,const char * name,int * lenp)268 const void *__of_get_property(const struct device_node *np,
269 const char *name, int *lenp)
270 {
271 struct property *pp = __of_find_property(np, name, lenp);
272
273 return pp ? pp->value : NULL;
274 }
275
276 /*
277 * Find a property with a given name for a given node
278 * and return the value.
279 */
of_get_property(const struct device_node * np,const char * name,int * lenp)280 const void *of_get_property(const struct device_node *np, const char *name,
281 int *lenp)
282 {
283 struct property *pp = of_find_property(np, name, lenp);
284
285 return pp ? pp->value : NULL;
286 }
287 EXPORT_SYMBOL(of_get_property);
288
289 /**
290 * of_get_cpu_hwid - Get the hardware ID from a CPU device node
291 *
292 * @cpun: CPU number(logical index) for which device node is required
293 * @thread: The local thread number to get the hardware ID for.
294 *
295 * Return: The hardware ID for the CPU node or ~0ULL if not found.
296 */
of_get_cpu_hwid(struct device_node * cpun,unsigned int thread)297 u64 of_get_cpu_hwid(struct device_node *cpun, unsigned int thread)
298 {
299 const __be32 *cell;
300 int ac, len;
301
302 ac = of_n_addr_cells(cpun);
303 cell = of_get_property(cpun, "reg", &len);
304 if (!cell || !ac || ((sizeof(*cell) * ac * (thread + 1)) > len))
305 return ~0ULL;
306
307 cell += ac * thread;
308 return of_read_number(cell, ac);
309 }
310
311 /*
312 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
313 *
314 * @cpu: logical cpu index of a core/thread
315 * @phys_id: physical identifier of a core/thread
316 *
317 * CPU logical to physical index mapping is architecture specific.
318 * However this __weak function provides a default match of physical
319 * id to logical cpu index. phys_id provided here is usually values read
320 * from the device tree which must match the hardware internal registers.
321 *
322 * Returns true if the physical identifier and the logical cpu index
323 * correspond to the same core/thread, false otherwise.
324 */
arch_match_cpu_phys_id(int cpu,u64 phys_id)325 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
326 {
327 return (u32)phys_id == cpu;
328 }
329
330 /*
331 * Checks if the given "prop_name" property holds the physical id of the
332 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
333 * NULL, local thread number within the core is returned in it.
334 */
__of_find_n_match_cpu_property(struct device_node * cpun,const char * prop_name,int cpu,unsigned int * thread)335 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
336 const char *prop_name, int cpu, unsigned int *thread)
337 {
338 const __be32 *cell;
339 int ac, prop_len, tid;
340 u64 hwid;
341
342 ac = of_n_addr_cells(cpun);
343 cell = of_get_property(cpun, prop_name, &prop_len);
344 if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
345 return true;
346 if (!cell || !ac)
347 return false;
348 prop_len /= sizeof(*cell) * ac;
349 for (tid = 0; tid < prop_len; tid++) {
350 hwid = of_read_number(cell, ac);
351 if (arch_match_cpu_phys_id(cpu, hwid)) {
352 if (thread)
353 *thread = tid;
354 return true;
355 }
356 cell += ac;
357 }
358 return false;
359 }
360
361 /*
362 * arch_find_n_match_cpu_physical_id - See if the given device node is
363 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
364 * else false. If 'thread' is non-NULL, the local thread number within the
365 * core is returned in it.
366 */
arch_find_n_match_cpu_physical_id(struct device_node * cpun,int cpu,unsigned int * thread)367 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
368 int cpu, unsigned int *thread)
369 {
370 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
371 * for thread ids on PowerPC. If it doesn't exist fallback to
372 * standard "reg" property.
373 */
374 if (IS_ENABLED(CONFIG_PPC) &&
375 __of_find_n_match_cpu_property(cpun,
376 "ibm,ppc-interrupt-server#s",
377 cpu, thread))
378 return true;
379
380 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
381 }
382
383 /**
384 * of_get_cpu_node - Get device node associated with the given logical CPU
385 *
386 * @cpu: CPU number(logical index) for which device node is required
387 * @thread: if not NULL, local thread number within the physical core is
388 * returned
389 *
390 * The main purpose of this function is to retrieve the device node for the
391 * given logical CPU index. It should be used to initialize the of_node in
392 * cpu device. Once of_node in cpu device is populated, all the further
393 * references can use that instead.
394 *
395 * CPU logical to physical index mapping is architecture specific and is built
396 * before booting secondary cores. This function uses arch_match_cpu_phys_id
397 * which can be overridden by architecture specific implementation.
398 *
399 * Return: A node pointer for the logical cpu with refcount incremented, use
400 * of_node_put() on it when done. Returns NULL if not found.
401 */
of_get_cpu_node(int cpu,unsigned int * thread)402 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
403 {
404 struct device_node *cpun;
405
406 for_each_of_cpu_node(cpun) {
407 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
408 return cpun;
409 }
410 return NULL;
411 }
412 EXPORT_SYMBOL(of_get_cpu_node);
413
414 /**
415 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
416 *
417 * @cpu_node: Pointer to the device_node for CPU.
418 *
419 * Return: The logical CPU number of the given CPU device_node or -ENODEV if the
420 * CPU is not found.
421 */
of_cpu_node_to_id(struct device_node * cpu_node)422 int of_cpu_node_to_id(struct device_node *cpu_node)
423 {
424 int cpu;
425 bool found = false;
426 struct device_node *np;
427
428 for_each_possible_cpu(cpu) {
429 np = of_cpu_device_node_get(cpu);
430 found = (cpu_node == np);
431 of_node_put(np);
432 if (found)
433 return cpu;
434 }
435
436 return -ENODEV;
437 }
438 EXPORT_SYMBOL(of_cpu_node_to_id);
439
440 /**
441 * of_get_cpu_state_node - Get CPU's idle state node at the given index
442 *
443 * @cpu_node: The device node for the CPU
444 * @index: The index in the list of the idle states
445 *
446 * Two generic methods can be used to describe a CPU's idle states, either via
447 * a flattened description through the "cpu-idle-states" binding or via the
448 * hierarchical layout, using the "power-domains" and the "domain-idle-states"
449 * bindings. This function check for both and returns the idle state node for
450 * the requested index.
451 *
452 * Return: An idle state node if found at @index. The refcount is incremented
453 * for it, so call of_node_put() on it when done. Returns NULL if not found.
454 */
of_get_cpu_state_node(struct device_node * cpu_node,int index)455 struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
456 int index)
457 {
458 struct of_phandle_args args;
459 int err;
460
461 err = of_parse_phandle_with_args(cpu_node, "power-domains",
462 "#power-domain-cells", 0, &args);
463 if (!err) {
464 struct device_node *state_node =
465 of_parse_phandle(args.np, "domain-idle-states", index);
466
467 of_node_put(args.np);
468 if (state_node)
469 return state_node;
470 }
471
472 return of_parse_phandle(cpu_node, "cpu-idle-states", index);
473 }
474 EXPORT_SYMBOL(of_get_cpu_state_node);
475
476 /**
477 * __of_device_is_compatible() - Check if the node matches given constraints
478 * @device: pointer to node
479 * @compat: required compatible string, NULL or "" for any match
480 * @type: required device_type value, NULL or "" for any match
481 * @name: required node name, NULL or "" for any match
482 *
483 * Checks if the given @compat, @type and @name strings match the
484 * properties of the given @device. A constraints can be skipped by
485 * passing NULL or an empty string as the constraint.
486 *
487 * Returns 0 for no match, and a positive integer on match. The return
488 * value is a relative score with larger values indicating better
489 * matches. The score is weighted for the most specific compatible value
490 * to get the highest score. Matching type is next, followed by matching
491 * name. Practically speaking, this results in the following priority
492 * order for matches:
493 *
494 * 1. specific compatible && type && name
495 * 2. specific compatible && type
496 * 3. specific compatible && name
497 * 4. specific compatible
498 * 5. general compatible && type && name
499 * 6. general compatible && type
500 * 7. general compatible && name
501 * 8. general compatible
502 * 9. type && name
503 * 10. type
504 * 11. name
505 */
__of_device_is_compatible(const struct device_node * device,const char * compat,const char * type,const char * name)506 static int __of_device_is_compatible(const struct device_node *device,
507 const char *compat, const char *type, const char *name)
508 {
509 struct property *prop;
510 const char *cp;
511 int index = 0, score = 0;
512
513 /* Compatible match has highest priority */
514 if (compat && compat[0]) {
515 prop = __of_find_property(device, "compatible", NULL);
516 for (cp = of_prop_next_string(prop, NULL); cp;
517 cp = of_prop_next_string(prop, cp), index++) {
518 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
519 score = INT_MAX/2 - (index << 2);
520 break;
521 }
522 }
523 if (!score)
524 return 0;
525 }
526
527 /* Matching type is better than matching name */
528 if (type && type[0]) {
529 if (!__of_node_is_type(device, type))
530 return 0;
531 score += 2;
532 }
533
534 /* Matching name is a bit better than not */
535 if (name && name[0]) {
536 if (!of_node_name_eq(device, name))
537 return 0;
538 score++;
539 }
540
541 return score;
542 }
543
544 /** Checks if the given "compat" string matches one of the strings in
545 * the device's "compatible" property
546 */
of_device_is_compatible(const struct device_node * device,const char * compat)547 int of_device_is_compatible(const struct device_node *device,
548 const char *compat)
549 {
550 unsigned long flags;
551 int res;
552
553 raw_spin_lock_irqsave(&devtree_lock, flags);
554 res = __of_device_is_compatible(device, compat, NULL, NULL);
555 raw_spin_unlock_irqrestore(&devtree_lock, flags);
556 return res;
557 }
558 EXPORT_SYMBOL(of_device_is_compatible);
559
560 /** Checks if the device is compatible with any of the entries in
561 * a NULL terminated array of strings. Returns the best match
562 * score or 0.
563 */
of_device_compatible_match(const struct device_node * device,const char * const * compat)564 int of_device_compatible_match(const struct device_node *device,
565 const char *const *compat)
566 {
567 unsigned int tmp, score = 0;
568
569 if (!compat)
570 return 0;
571
572 while (*compat) {
573 tmp = of_device_is_compatible(device, *compat);
574 if (tmp > score)
575 score = tmp;
576 compat++;
577 }
578
579 return score;
580 }
581 EXPORT_SYMBOL_GPL(of_device_compatible_match);
582
583 /**
584 * of_machine_is_compatible - Test root of device tree for a given compatible value
585 * @compat: compatible string to look for in root node's compatible property.
586 *
587 * Return: A positive integer if the root node has the given value in its
588 * compatible property.
589 */
of_machine_is_compatible(const char * compat)590 int of_machine_is_compatible(const char *compat)
591 {
592 struct device_node *root;
593 int rc = 0;
594
595 root = of_find_node_by_path("/");
596 if (root) {
597 rc = of_device_is_compatible(root, compat);
598 of_node_put(root);
599 }
600 return rc;
601 }
602 EXPORT_SYMBOL(of_machine_is_compatible);
603
604 /**
605 * __of_device_is_available - check if a device is available for use
606 *
607 * @device: Node to check for availability, with locks already held
608 *
609 * Return: True if the status property is absent or set to "okay" or "ok",
610 * false otherwise
611 */
__of_device_is_available(const struct device_node * device)612 static bool __of_device_is_available(const struct device_node *device)
613 {
614 const char *status;
615 int statlen;
616
617 if (!device)
618 return false;
619
620 status = __of_get_property(device, "status", &statlen);
621 if (status == NULL)
622 return true;
623
624 if (statlen > 0) {
625 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
626 return true;
627 }
628
629 return false;
630 }
631
632 /**
633 * of_device_is_available - check if a device is available for use
634 *
635 * @device: Node to check for availability
636 *
637 * Return: True if the status property is absent or set to "okay" or "ok",
638 * false otherwise
639 */
of_device_is_available(const struct device_node * device)640 bool of_device_is_available(const struct device_node *device)
641 {
642 unsigned long flags;
643 bool res;
644
645 raw_spin_lock_irqsave(&devtree_lock, flags);
646 res = __of_device_is_available(device);
647 raw_spin_unlock_irqrestore(&devtree_lock, flags);
648 return res;
649
650 }
651 EXPORT_SYMBOL(of_device_is_available);
652
653 /**
654 * __of_device_is_fail - check if a device has status "fail" or "fail-..."
655 *
656 * @device: Node to check status for, with locks already held
657 *
658 * Return: True if the status property is set to "fail" or "fail-..." (for any
659 * error code suffix), false otherwise
660 */
__of_device_is_fail(const struct device_node * device)661 static bool __of_device_is_fail(const struct device_node *device)
662 {
663 const char *status;
664
665 if (!device)
666 return false;
667
668 status = __of_get_property(device, "status", NULL);
669 if (status == NULL)
670 return false;
671
672 return !strcmp(status, "fail") || !strncmp(status, "fail-", 5);
673 }
674
675 /**
676 * of_device_is_big_endian - check if a device has BE registers
677 *
678 * @device: Node to check for endianness
679 *
680 * Return: True if the device has a "big-endian" property, or if the kernel
681 * was compiled for BE *and* the device has a "native-endian" property.
682 * Returns false otherwise.
683 *
684 * Callers would nominally use ioread32be/iowrite32be if
685 * of_device_is_big_endian() == true, or readl/writel otherwise.
686 */
of_device_is_big_endian(const struct device_node * device)687 bool of_device_is_big_endian(const struct device_node *device)
688 {
689 if (of_property_read_bool(device, "big-endian"))
690 return true;
691 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
692 of_property_read_bool(device, "native-endian"))
693 return true;
694 return false;
695 }
696 EXPORT_SYMBOL(of_device_is_big_endian);
697
698 /**
699 * of_get_parent - Get a node's parent if any
700 * @node: Node to get parent
701 *
702 * Return: A node pointer with refcount incremented, use
703 * of_node_put() on it when done.
704 */
of_get_parent(const struct device_node * node)705 struct device_node *of_get_parent(const struct device_node *node)
706 {
707 struct device_node *np;
708 unsigned long flags;
709
710 if (!node)
711 return NULL;
712
713 raw_spin_lock_irqsave(&devtree_lock, flags);
714 np = of_node_get(node->parent);
715 raw_spin_unlock_irqrestore(&devtree_lock, flags);
716 return np;
717 }
718 EXPORT_SYMBOL(of_get_parent);
719
720 /**
721 * of_get_next_parent - Iterate to a node's parent
722 * @node: Node to get parent of
723 *
724 * This is like of_get_parent() except that it drops the
725 * refcount on the passed node, making it suitable for iterating
726 * through a node's parents.
727 *
728 * Return: A node pointer with refcount incremented, use
729 * of_node_put() on it when done.
730 */
of_get_next_parent(struct device_node * node)731 struct device_node *of_get_next_parent(struct device_node *node)
732 {
733 struct device_node *parent;
734 unsigned long flags;
735
736 if (!node)
737 return NULL;
738
739 raw_spin_lock_irqsave(&devtree_lock, flags);
740 parent = of_node_get(node->parent);
741 of_node_put(node);
742 raw_spin_unlock_irqrestore(&devtree_lock, flags);
743 return parent;
744 }
745 EXPORT_SYMBOL(of_get_next_parent);
746
__of_get_next_child(const struct device_node * node,struct device_node * prev)747 static struct device_node *__of_get_next_child(const struct device_node *node,
748 struct device_node *prev)
749 {
750 struct device_node *next;
751
752 if (!node)
753 return NULL;
754
755 next = prev ? prev->sibling : node->child;
756 of_node_get(next);
757 of_node_put(prev);
758 return next;
759 }
760 #define __for_each_child_of_node(parent, child) \
761 for (child = __of_get_next_child(parent, NULL); child != NULL; \
762 child = __of_get_next_child(parent, child))
763
764 /**
765 * of_get_next_child - Iterate a node childs
766 * @node: parent node
767 * @prev: previous child of the parent node, or NULL to get first
768 *
769 * Return: A node pointer with refcount incremented, use of_node_put() on
770 * it when done. Returns NULL when prev is the last child. Decrements the
771 * refcount of prev.
772 */
of_get_next_child(const struct device_node * node,struct device_node * prev)773 struct device_node *of_get_next_child(const struct device_node *node,
774 struct device_node *prev)
775 {
776 struct device_node *next;
777 unsigned long flags;
778
779 raw_spin_lock_irqsave(&devtree_lock, flags);
780 next = __of_get_next_child(node, prev);
781 raw_spin_unlock_irqrestore(&devtree_lock, flags);
782 return next;
783 }
784 EXPORT_SYMBOL(of_get_next_child);
785
786 /**
787 * of_get_next_available_child - Find the next available child node
788 * @node: parent node
789 * @prev: previous child of the parent node, or NULL to get first
790 *
791 * This function is like of_get_next_child(), except that it
792 * automatically skips any disabled nodes (i.e. status = "disabled").
793 */
of_get_next_available_child(const struct device_node * node,struct device_node * prev)794 struct device_node *of_get_next_available_child(const struct device_node *node,
795 struct device_node *prev)
796 {
797 struct device_node *next;
798 unsigned long flags;
799
800 if (!node)
801 return NULL;
802
803 raw_spin_lock_irqsave(&devtree_lock, flags);
804 next = prev ? prev->sibling : node->child;
805 for (; next; next = next->sibling) {
806 if (!__of_device_is_available(next))
807 continue;
808 if (of_node_get(next))
809 break;
810 }
811 of_node_put(prev);
812 raw_spin_unlock_irqrestore(&devtree_lock, flags);
813 return next;
814 }
815 EXPORT_SYMBOL(of_get_next_available_child);
816
817 /**
818 * of_get_next_cpu_node - Iterate on cpu nodes
819 * @prev: previous child of the /cpus node, or NULL to get first
820 *
821 * Unusable CPUs (those with the status property set to "fail" or "fail-...")
822 * will be skipped.
823 *
824 * Return: A cpu node pointer with refcount incremented, use of_node_put()
825 * on it when done. Returns NULL when prev is the last child. Decrements
826 * the refcount of prev.
827 */
of_get_next_cpu_node(struct device_node * prev)828 struct device_node *of_get_next_cpu_node(struct device_node *prev)
829 {
830 struct device_node *next = NULL;
831 unsigned long flags;
832 struct device_node *node;
833
834 if (!prev)
835 node = of_find_node_by_path("/cpus");
836
837 raw_spin_lock_irqsave(&devtree_lock, flags);
838 if (prev)
839 next = prev->sibling;
840 else if (node) {
841 next = node->child;
842 of_node_put(node);
843 }
844 for (; next; next = next->sibling) {
845 if (__of_device_is_fail(next))
846 continue;
847 if (!(of_node_name_eq(next, "cpu") ||
848 __of_node_is_type(next, "cpu")))
849 continue;
850 if (of_node_get(next))
851 break;
852 }
853 of_node_put(prev);
854 raw_spin_unlock_irqrestore(&devtree_lock, flags);
855 return next;
856 }
857 EXPORT_SYMBOL(of_get_next_cpu_node);
858
859 /**
860 * of_get_compatible_child - Find compatible child node
861 * @parent: parent node
862 * @compatible: compatible string
863 *
864 * Lookup child node whose compatible property contains the given compatible
865 * string.
866 *
867 * Return: a node pointer with refcount incremented, use of_node_put() on it
868 * when done; or NULL if not found.
869 */
of_get_compatible_child(const struct device_node * parent,const char * compatible)870 struct device_node *of_get_compatible_child(const struct device_node *parent,
871 const char *compatible)
872 {
873 struct device_node *child;
874
875 for_each_child_of_node(parent, child) {
876 if (of_device_is_compatible(child, compatible))
877 break;
878 }
879
880 return child;
881 }
882 EXPORT_SYMBOL(of_get_compatible_child);
883
884 /**
885 * of_get_child_by_name - Find the child node by name for a given parent
886 * @node: parent node
887 * @name: child name to look for.
888 *
889 * This function looks for child node for given matching name
890 *
891 * Return: A node pointer if found, with refcount incremented, use
892 * of_node_put() on it when done.
893 * Returns NULL if node is not found.
894 */
of_get_child_by_name(const struct device_node * node,const char * name)895 struct device_node *of_get_child_by_name(const struct device_node *node,
896 const char *name)
897 {
898 struct device_node *child;
899
900 for_each_child_of_node(node, child)
901 if (of_node_name_eq(child, name))
902 break;
903 return child;
904 }
905 EXPORT_SYMBOL(of_get_child_by_name);
906
__of_find_node_by_path(struct device_node * parent,const char * path)907 struct device_node *__of_find_node_by_path(struct device_node *parent,
908 const char *path)
909 {
910 struct device_node *child;
911 int len;
912
913 len = strcspn(path, "/:");
914 if (!len)
915 return NULL;
916
917 __for_each_child_of_node(parent, child) {
918 const char *name = kbasename(child->full_name);
919 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
920 return child;
921 }
922 return NULL;
923 }
924
__of_find_node_by_full_path(struct device_node * node,const char * path)925 struct device_node *__of_find_node_by_full_path(struct device_node *node,
926 const char *path)
927 {
928 const char *separator = strchr(path, ':');
929
930 while (node && *path == '/') {
931 struct device_node *tmp = node;
932
933 path++; /* Increment past '/' delimiter */
934 node = __of_find_node_by_path(node, path);
935 of_node_put(tmp);
936 path = strchrnul(path, '/');
937 if (separator && separator < path)
938 break;
939 }
940 return node;
941 }
942
943 /**
944 * of_find_node_opts_by_path - Find a node matching a full OF path
945 * @path: Either the full path to match, or if the path does not
946 * start with '/', the name of a property of the /aliases
947 * node (an alias). In the case of an alias, the node
948 * matching the alias' value will be returned.
949 * @opts: Address of a pointer into which to store the start of
950 * an options string appended to the end of the path with
951 * a ':' separator.
952 *
953 * Valid paths:
954 * * /foo/bar Full path
955 * * foo Valid alias
956 * * foo/bar Valid alias + relative path
957 *
958 * Return: A node pointer with refcount incremented, use
959 * of_node_put() on it when done.
960 */
of_find_node_opts_by_path(const char * path,const char ** opts)961 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
962 {
963 struct device_node *np = NULL;
964 struct property *pp;
965 unsigned long flags;
966 const char *separator = strchr(path, ':');
967
968 if (opts)
969 *opts = separator ? separator + 1 : NULL;
970
971 if (strcmp(path, "/") == 0)
972 return of_node_get(of_root);
973
974 /* The path could begin with an alias */
975 if (*path != '/') {
976 int len;
977 const char *p = separator;
978
979 if (!p)
980 p = strchrnul(path, '/');
981 len = p - path;
982
983 /* of_aliases must not be NULL */
984 if (!of_aliases)
985 return NULL;
986
987 for_each_property_of_node(of_aliases, pp) {
988 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
989 np = of_find_node_by_path(pp->value);
990 break;
991 }
992 }
993 if (!np)
994 return NULL;
995 path = p;
996 }
997
998 /* Step down the tree matching path components */
999 raw_spin_lock_irqsave(&devtree_lock, flags);
1000 if (!np)
1001 np = of_node_get(of_root);
1002 np = __of_find_node_by_full_path(np, path);
1003 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1004 return np;
1005 }
1006 EXPORT_SYMBOL(of_find_node_opts_by_path);
1007
1008 /**
1009 * of_find_node_by_name - Find a node by its "name" property
1010 * @from: The node to start searching from or NULL; the node
1011 * you pass will not be searched, only the next one
1012 * will. Typically, you pass what the previous call
1013 * returned. of_node_put() will be called on @from.
1014 * @name: The name string to match against
1015 *
1016 * Return: A node pointer with refcount incremented, use
1017 * of_node_put() on it when done.
1018 */
of_find_node_by_name(struct device_node * from,const char * name)1019 struct device_node *of_find_node_by_name(struct device_node *from,
1020 const char *name)
1021 {
1022 struct device_node *np;
1023 unsigned long flags;
1024
1025 raw_spin_lock_irqsave(&devtree_lock, flags);
1026 for_each_of_allnodes_from(from, np)
1027 if (of_node_name_eq(np, name) && of_node_get(np))
1028 break;
1029 of_node_put(from);
1030 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1031 return np;
1032 }
1033 EXPORT_SYMBOL(of_find_node_by_name);
1034
1035 /**
1036 * of_find_node_by_type - Find a node by its "device_type" property
1037 * @from: The node to start searching from, or NULL to start searching
1038 * the entire device tree. The node you pass will not be
1039 * searched, only the next one will; typically, you pass
1040 * what the previous call returned. of_node_put() will be
1041 * called on from for you.
1042 * @type: The type string to match against
1043 *
1044 * Return: A node pointer with refcount incremented, use
1045 * of_node_put() on it when done.
1046 */
of_find_node_by_type(struct device_node * from,const char * type)1047 struct device_node *of_find_node_by_type(struct device_node *from,
1048 const char *type)
1049 {
1050 struct device_node *np;
1051 unsigned long flags;
1052
1053 raw_spin_lock_irqsave(&devtree_lock, flags);
1054 for_each_of_allnodes_from(from, np)
1055 if (__of_node_is_type(np, type) && of_node_get(np))
1056 break;
1057 of_node_put(from);
1058 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1059 return np;
1060 }
1061 EXPORT_SYMBOL(of_find_node_by_type);
1062
1063 /**
1064 * of_find_compatible_node - Find a node based on type and one of the
1065 * tokens in its "compatible" property
1066 * @from: The node to start searching from or NULL, the node
1067 * you pass will not be searched, only the next one
1068 * will; typically, you pass what the previous call
1069 * returned. of_node_put() will be called on it
1070 * @type: The type string to match "device_type" or NULL to ignore
1071 * @compatible: The string to match to one of the tokens in the device
1072 * "compatible" list.
1073 *
1074 * Return: A node pointer with refcount incremented, use
1075 * of_node_put() on it when done.
1076 */
of_find_compatible_node(struct device_node * from,const char * type,const char * compatible)1077 struct device_node *of_find_compatible_node(struct device_node *from,
1078 const char *type, const char *compatible)
1079 {
1080 struct device_node *np;
1081 unsigned long flags;
1082
1083 raw_spin_lock_irqsave(&devtree_lock, flags);
1084 for_each_of_allnodes_from(from, np)
1085 if (__of_device_is_compatible(np, compatible, type, NULL) &&
1086 of_node_get(np))
1087 break;
1088 of_node_put(from);
1089 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1090 return np;
1091 }
1092 EXPORT_SYMBOL(of_find_compatible_node);
1093
1094 /**
1095 * of_find_node_with_property - Find a node which has a property with
1096 * the given name.
1097 * @from: The node to start searching from or NULL, the node
1098 * you pass will not be searched, only the next one
1099 * will; typically, you pass what the previous call
1100 * returned. of_node_put() will be called on it
1101 * @prop_name: The name of the property to look for.
1102 *
1103 * Return: A node pointer with refcount incremented, use
1104 * of_node_put() on it when done.
1105 */
of_find_node_with_property(struct device_node * from,const char * prop_name)1106 struct device_node *of_find_node_with_property(struct device_node *from,
1107 const char *prop_name)
1108 {
1109 struct device_node *np;
1110 struct property *pp;
1111 unsigned long flags;
1112
1113 raw_spin_lock_irqsave(&devtree_lock, flags);
1114 for_each_of_allnodes_from(from, np) {
1115 for (pp = np->properties; pp; pp = pp->next) {
1116 if (of_prop_cmp(pp->name, prop_name) == 0) {
1117 of_node_get(np);
1118 goto out;
1119 }
1120 }
1121 }
1122 out:
1123 of_node_put(from);
1124 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1125 return np;
1126 }
1127 EXPORT_SYMBOL(of_find_node_with_property);
1128
1129 static
__of_match_node(const struct of_device_id * matches,const struct device_node * node)1130 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1131 const struct device_node *node)
1132 {
1133 const struct of_device_id *best_match = NULL;
1134 int score, best_score = 0;
1135
1136 if (!matches)
1137 return NULL;
1138
1139 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1140 score = __of_device_is_compatible(node, matches->compatible,
1141 matches->type, matches->name);
1142 if (score > best_score) {
1143 best_match = matches;
1144 best_score = score;
1145 }
1146 }
1147
1148 return best_match;
1149 }
1150
1151 /**
1152 * of_match_node - Tell if a device_node has a matching of_match structure
1153 * @matches: array of of device match structures to search in
1154 * @node: the of device structure to match against
1155 *
1156 * Low level utility function used by device matching.
1157 */
of_match_node(const struct of_device_id * matches,const struct device_node * node)1158 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1159 const struct device_node *node)
1160 {
1161 const struct of_device_id *match;
1162 unsigned long flags;
1163
1164 raw_spin_lock_irqsave(&devtree_lock, flags);
1165 match = __of_match_node(matches, node);
1166 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1167 return match;
1168 }
1169 EXPORT_SYMBOL(of_match_node);
1170
1171 /**
1172 * of_find_matching_node_and_match - Find a node based on an of_device_id
1173 * match table.
1174 * @from: The node to start searching from or NULL, the node
1175 * you pass will not be searched, only the next one
1176 * will; typically, you pass what the previous call
1177 * returned. of_node_put() will be called on it
1178 * @matches: array of of device match structures to search in
1179 * @match: Updated to point at the matches entry which matched
1180 *
1181 * Return: A node pointer with refcount incremented, use
1182 * of_node_put() on it when done.
1183 */
of_find_matching_node_and_match(struct device_node * from,const struct of_device_id * matches,const struct of_device_id ** match)1184 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1185 const struct of_device_id *matches,
1186 const struct of_device_id **match)
1187 {
1188 struct device_node *np;
1189 const struct of_device_id *m;
1190 unsigned long flags;
1191
1192 if (match)
1193 *match = NULL;
1194
1195 raw_spin_lock_irqsave(&devtree_lock, flags);
1196 for_each_of_allnodes_from(from, np) {
1197 m = __of_match_node(matches, np);
1198 if (m && of_node_get(np)) {
1199 if (match)
1200 *match = m;
1201 break;
1202 }
1203 }
1204 of_node_put(from);
1205 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1206 return np;
1207 }
1208 EXPORT_SYMBOL(of_find_matching_node_and_match);
1209
1210 /**
1211 * of_modalias_node - Lookup appropriate modalias for a device node
1212 * @node: pointer to a device tree node
1213 * @modalias: Pointer to buffer that modalias value will be copied into
1214 * @len: Length of modalias value
1215 *
1216 * Based on the value of the compatible property, this routine will attempt
1217 * to choose an appropriate modalias value for a particular device tree node.
1218 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1219 * from the first entry in the compatible list property.
1220 *
1221 * Return: This routine returns 0 on success, <0 on failure.
1222 */
of_modalias_node(struct device_node * node,char * modalias,int len)1223 int of_modalias_node(struct device_node *node, char *modalias, int len)
1224 {
1225 const char *compatible, *p;
1226 int cplen;
1227
1228 compatible = of_get_property(node, "compatible", &cplen);
1229 if (!compatible || strlen(compatible) > cplen)
1230 return -ENODEV;
1231 p = strchr(compatible, ',');
1232 strscpy(modalias, p ? p + 1 : compatible, len);
1233 return 0;
1234 }
1235 EXPORT_SYMBOL_GPL(of_modalias_node);
1236
1237 /**
1238 * of_find_node_by_phandle - Find a node given a phandle
1239 * @handle: phandle of the node to find
1240 *
1241 * Return: A node pointer with refcount incremented, use
1242 * of_node_put() on it when done.
1243 */
of_find_node_by_phandle(phandle handle)1244 struct device_node *of_find_node_by_phandle(phandle handle)
1245 {
1246 struct device_node *np = NULL;
1247 unsigned long flags;
1248 u32 handle_hash;
1249
1250 if (!handle)
1251 return NULL;
1252
1253 handle_hash = of_phandle_cache_hash(handle);
1254
1255 raw_spin_lock_irqsave(&devtree_lock, flags);
1256
1257 if (phandle_cache[handle_hash] &&
1258 handle == phandle_cache[handle_hash]->phandle)
1259 np = phandle_cache[handle_hash];
1260
1261 if (!np) {
1262 for_each_of_allnodes(np)
1263 if (np->phandle == handle &&
1264 !of_node_check_flag(np, OF_DETACHED)) {
1265 phandle_cache[handle_hash] = np;
1266 break;
1267 }
1268 }
1269
1270 of_node_get(np);
1271 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1272 return np;
1273 }
1274 EXPORT_SYMBOL(of_find_node_by_phandle);
1275
of_print_phandle_args(const char * msg,const struct of_phandle_args * args)1276 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1277 {
1278 int i;
1279 printk("%s %pOF", msg, args->np);
1280 for (i = 0; i < args->args_count; i++) {
1281 const char delim = i ? ',' : ':';
1282
1283 pr_cont("%c%08x", delim, args->args[i]);
1284 }
1285 pr_cont("\n");
1286 }
1287
of_phandle_iterator_init(struct of_phandle_iterator * it,const struct device_node * np,const char * list_name,const char * cells_name,int cell_count)1288 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1289 const struct device_node *np,
1290 const char *list_name,
1291 const char *cells_name,
1292 int cell_count)
1293 {
1294 const __be32 *list;
1295 int size;
1296
1297 memset(it, 0, sizeof(*it));
1298
1299 /*
1300 * one of cell_count or cells_name must be provided to determine the
1301 * argument length.
1302 */
1303 if (cell_count < 0 && !cells_name)
1304 return -EINVAL;
1305
1306 list = of_get_property(np, list_name, &size);
1307 if (!list)
1308 return -ENOENT;
1309
1310 it->cells_name = cells_name;
1311 it->cell_count = cell_count;
1312 it->parent = np;
1313 it->list_end = list + size / sizeof(*list);
1314 it->phandle_end = list;
1315 it->cur = list;
1316
1317 return 0;
1318 }
1319 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1320
of_phandle_iterator_next(struct of_phandle_iterator * it)1321 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1322 {
1323 uint32_t count = 0;
1324
1325 if (it->node) {
1326 of_node_put(it->node);
1327 it->node = NULL;
1328 }
1329
1330 if (!it->cur || it->phandle_end >= it->list_end)
1331 return -ENOENT;
1332
1333 it->cur = it->phandle_end;
1334
1335 /* If phandle is 0, then it is an empty entry with no arguments. */
1336 it->phandle = be32_to_cpup(it->cur++);
1337
1338 if (it->phandle) {
1339
1340 /*
1341 * Find the provider node and parse the #*-cells property to
1342 * determine the argument length.
1343 */
1344 it->node = of_find_node_by_phandle(it->phandle);
1345
1346 if (it->cells_name) {
1347 if (!it->node) {
1348 pr_err("%pOF: could not find phandle %d\n",
1349 it->parent, it->phandle);
1350 goto err;
1351 }
1352
1353 if (of_property_read_u32(it->node, it->cells_name,
1354 &count)) {
1355 /*
1356 * If both cell_count and cells_name is given,
1357 * fall back to cell_count in absence
1358 * of the cells_name property
1359 */
1360 if (it->cell_count >= 0) {
1361 count = it->cell_count;
1362 } else {
1363 pr_err("%pOF: could not get %s for %pOF\n",
1364 it->parent,
1365 it->cells_name,
1366 it->node);
1367 goto err;
1368 }
1369 }
1370 } else {
1371 count = it->cell_count;
1372 }
1373
1374 /*
1375 * Make sure that the arguments actually fit in the remaining
1376 * property data length
1377 */
1378 if (it->cur + count > it->list_end) {
1379 if (it->cells_name)
1380 pr_err("%pOF: %s = %d found %td\n",
1381 it->parent, it->cells_name,
1382 count, it->list_end - it->cur);
1383 else
1384 pr_err("%pOF: phandle %s needs %d, found %td\n",
1385 it->parent, of_node_full_name(it->node),
1386 count, it->list_end - it->cur);
1387 goto err;
1388 }
1389 }
1390
1391 it->phandle_end = it->cur + count;
1392 it->cur_count = count;
1393
1394 return 0;
1395
1396 err:
1397 if (it->node) {
1398 of_node_put(it->node);
1399 it->node = NULL;
1400 }
1401
1402 return -EINVAL;
1403 }
1404 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1405
of_phandle_iterator_args(struct of_phandle_iterator * it,uint32_t * args,int size)1406 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1407 uint32_t *args,
1408 int size)
1409 {
1410 int i, count;
1411
1412 count = it->cur_count;
1413
1414 if (WARN_ON(size < count))
1415 count = size;
1416
1417 for (i = 0; i < count; i++)
1418 args[i] = be32_to_cpup(it->cur++);
1419
1420 return count;
1421 }
1422
__of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int cell_count,int index,struct of_phandle_args * out_args)1423 int __of_parse_phandle_with_args(const struct device_node *np,
1424 const char *list_name,
1425 const char *cells_name,
1426 int cell_count, int index,
1427 struct of_phandle_args *out_args)
1428 {
1429 struct of_phandle_iterator it;
1430 int rc, cur_index = 0;
1431
1432 if (index < 0)
1433 return -EINVAL;
1434
1435 /* Loop over the phandles until all the requested entry is found */
1436 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1437 /*
1438 * All of the error cases bail out of the loop, so at
1439 * this point, the parsing is successful. If the requested
1440 * index matches, then fill the out_args structure and return,
1441 * or return -ENOENT for an empty entry.
1442 */
1443 rc = -ENOENT;
1444 if (cur_index == index) {
1445 if (!it.phandle)
1446 goto err;
1447
1448 if (out_args) {
1449 int c;
1450
1451 c = of_phandle_iterator_args(&it,
1452 out_args->args,
1453 MAX_PHANDLE_ARGS);
1454 out_args->np = it.node;
1455 out_args->args_count = c;
1456 } else {
1457 of_node_put(it.node);
1458 }
1459
1460 /* Found it! return success */
1461 return 0;
1462 }
1463
1464 cur_index++;
1465 }
1466
1467 /*
1468 * Unlock node before returning result; will be one of:
1469 * -ENOENT : index is for empty phandle
1470 * -EINVAL : parsing error on data
1471 */
1472
1473 err:
1474 of_node_put(it.node);
1475 return rc;
1476 }
1477 EXPORT_SYMBOL(__of_parse_phandle_with_args);
1478
1479 /**
1480 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1481 * @np: pointer to a device tree node containing a list
1482 * @list_name: property name that contains a list
1483 * @stem_name: stem of property names that specify phandles' arguments count
1484 * @index: index of a phandle to parse out
1485 * @out_args: optional pointer to output arguments structure (will be filled)
1486 *
1487 * This function is useful to parse lists of phandles and their arguments.
1488 * Returns 0 on success and fills out_args, on error returns appropriate errno
1489 * value. The difference between this function and of_parse_phandle_with_args()
1490 * is that this API remaps a phandle if the node the phandle points to has
1491 * a <@stem_name>-map property.
1492 *
1493 * Caller is responsible to call of_node_put() on the returned out_args->np
1494 * pointer.
1495 *
1496 * Example::
1497 *
1498 * phandle1: node1 {
1499 * #list-cells = <2>;
1500 * };
1501 *
1502 * phandle2: node2 {
1503 * #list-cells = <1>;
1504 * };
1505 *
1506 * phandle3: node3 {
1507 * #list-cells = <1>;
1508 * list-map = <0 &phandle2 3>,
1509 * <1 &phandle2 2>,
1510 * <2 &phandle1 5 1>;
1511 * list-map-mask = <0x3>;
1512 * };
1513 *
1514 * node4 {
1515 * list = <&phandle1 1 2 &phandle3 0>;
1516 * };
1517 *
1518 * To get a device_node of the ``node2`` node you may call this:
1519 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1520 */
of_parse_phandle_with_args_map(const struct device_node * np,const char * list_name,const char * stem_name,int index,struct of_phandle_args * out_args)1521 int of_parse_phandle_with_args_map(const struct device_node *np,
1522 const char *list_name,
1523 const char *stem_name,
1524 int index, struct of_phandle_args *out_args)
1525 {
1526 char *cells_name, *map_name = NULL, *mask_name = NULL;
1527 char *pass_name = NULL;
1528 struct device_node *cur, *new = NULL;
1529 const __be32 *map, *mask, *pass;
1530 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1531 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1532 __be32 initial_match_array[MAX_PHANDLE_ARGS];
1533 const __be32 *match_array = initial_match_array;
1534 int i, ret, map_len, match;
1535 u32 list_size, new_size;
1536
1537 if (index < 0)
1538 return -EINVAL;
1539
1540 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1541 if (!cells_name)
1542 return -ENOMEM;
1543
1544 ret = -ENOMEM;
1545 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1546 if (!map_name)
1547 goto free;
1548
1549 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1550 if (!mask_name)
1551 goto free;
1552
1553 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1554 if (!pass_name)
1555 goto free;
1556
1557 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1558 out_args);
1559 if (ret)
1560 goto free;
1561
1562 /* Get the #<list>-cells property */
1563 cur = out_args->np;
1564 ret = of_property_read_u32(cur, cells_name, &list_size);
1565 if (ret < 0)
1566 goto put;
1567
1568 /* Precalculate the match array - this simplifies match loop */
1569 for (i = 0; i < list_size; i++)
1570 initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1571
1572 ret = -EINVAL;
1573 while (cur) {
1574 /* Get the <list>-map property */
1575 map = of_get_property(cur, map_name, &map_len);
1576 if (!map) {
1577 ret = 0;
1578 goto free;
1579 }
1580 map_len /= sizeof(u32);
1581
1582 /* Get the <list>-map-mask property (optional) */
1583 mask = of_get_property(cur, mask_name, NULL);
1584 if (!mask)
1585 mask = dummy_mask;
1586 /* Iterate through <list>-map property */
1587 match = 0;
1588 while (map_len > (list_size + 1) && !match) {
1589 /* Compare specifiers */
1590 match = 1;
1591 for (i = 0; i < list_size; i++, map_len--)
1592 match &= !((match_array[i] ^ *map++) & mask[i]);
1593
1594 of_node_put(new);
1595 new = of_find_node_by_phandle(be32_to_cpup(map));
1596 map++;
1597 map_len--;
1598
1599 /* Check if not found */
1600 if (!new)
1601 goto put;
1602
1603 if (!of_device_is_available(new))
1604 match = 0;
1605
1606 ret = of_property_read_u32(new, cells_name, &new_size);
1607 if (ret)
1608 goto put;
1609
1610 /* Check for malformed properties */
1611 if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1612 goto put;
1613 if (map_len < new_size)
1614 goto put;
1615
1616 /* Move forward by new node's #<list>-cells amount */
1617 map += new_size;
1618 map_len -= new_size;
1619 }
1620 if (!match)
1621 goto put;
1622
1623 /* Get the <list>-map-pass-thru property (optional) */
1624 pass = of_get_property(cur, pass_name, NULL);
1625 if (!pass)
1626 pass = dummy_pass;
1627
1628 /*
1629 * Successfully parsed a <list>-map translation; copy new
1630 * specifier into the out_args structure, keeping the
1631 * bits specified in <list>-map-pass-thru.
1632 */
1633 match_array = map - new_size;
1634 for (i = 0; i < new_size; i++) {
1635 __be32 val = *(map - new_size + i);
1636
1637 if (i < list_size) {
1638 val &= ~pass[i];
1639 val |= cpu_to_be32(out_args->args[i]) & pass[i];
1640 }
1641
1642 out_args->args[i] = be32_to_cpu(val);
1643 }
1644 out_args->args_count = list_size = new_size;
1645 /* Iterate again with new provider */
1646 out_args->np = new;
1647 of_node_put(cur);
1648 cur = new;
1649 new = NULL;
1650 }
1651 put:
1652 of_node_put(cur);
1653 of_node_put(new);
1654 free:
1655 kfree(mask_name);
1656 kfree(map_name);
1657 kfree(cells_name);
1658 kfree(pass_name);
1659
1660 return ret;
1661 }
1662 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1663
1664 /**
1665 * of_count_phandle_with_args() - Find the number of phandles references in a property
1666 * @np: pointer to a device tree node containing a list
1667 * @list_name: property name that contains a list
1668 * @cells_name: property name that specifies phandles' arguments count
1669 *
1670 * Return: The number of phandle + argument tuples within a property. It
1671 * is a typical pattern to encode a list of phandle and variable
1672 * arguments into a single property. The number of arguments is encoded
1673 * by a property in the phandle-target node. For example, a gpios
1674 * property would contain a list of GPIO specifies consisting of a
1675 * phandle and 1 or more arguments. The number of arguments are
1676 * determined by the #gpio-cells property in the node pointed to by the
1677 * phandle.
1678 */
of_count_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name)1679 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1680 const char *cells_name)
1681 {
1682 struct of_phandle_iterator it;
1683 int rc, cur_index = 0;
1684
1685 /*
1686 * If cells_name is NULL we assume a cell count of 0. This makes
1687 * counting the phandles trivial as each 32bit word in the list is a
1688 * phandle and no arguments are to consider. So we don't iterate through
1689 * the list but just use the length to determine the phandle count.
1690 */
1691 if (!cells_name) {
1692 const __be32 *list;
1693 int size;
1694
1695 list = of_get_property(np, list_name, &size);
1696 if (!list)
1697 return -ENOENT;
1698
1699 return size / sizeof(*list);
1700 }
1701
1702 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1703 if (rc)
1704 return rc;
1705
1706 while ((rc = of_phandle_iterator_next(&it)) == 0)
1707 cur_index += 1;
1708
1709 if (rc != -ENOENT)
1710 return rc;
1711
1712 return cur_index;
1713 }
1714 EXPORT_SYMBOL(of_count_phandle_with_args);
1715
1716 /**
1717 * __of_add_property - Add a property to a node without lock operations
1718 * @np: Caller's Device Node
1719 * @prop: Property to add
1720 */
__of_add_property(struct device_node * np,struct property * prop)1721 int __of_add_property(struct device_node *np, struct property *prop)
1722 {
1723 struct property **next;
1724
1725 prop->next = NULL;
1726 next = &np->properties;
1727 while (*next) {
1728 if (strcmp(prop->name, (*next)->name) == 0)
1729 /* duplicate ! don't insert it */
1730 return -EEXIST;
1731
1732 next = &(*next)->next;
1733 }
1734 *next = prop;
1735
1736 return 0;
1737 }
1738
1739 /**
1740 * of_add_property - Add a property to a node
1741 * @np: Caller's Device Node
1742 * @prop: Property to add
1743 */
of_add_property(struct device_node * np,struct property * prop)1744 int of_add_property(struct device_node *np, struct property *prop)
1745 {
1746 unsigned long flags;
1747 int rc;
1748
1749 mutex_lock(&of_mutex);
1750
1751 raw_spin_lock_irqsave(&devtree_lock, flags);
1752 rc = __of_add_property(np, prop);
1753 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1754
1755 if (!rc)
1756 __of_add_property_sysfs(np, prop);
1757
1758 mutex_unlock(&of_mutex);
1759
1760 if (!rc)
1761 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1762
1763 return rc;
1764 }
1765 EXPORT_SYMBOL_GPL(of_add_property);
1766
__of_remove_property(struct device_node * np,struct property * prop)1767 int __of_remove_property(struct device_node *np, struct property *prop)
1768 {
1769 struct property **next;
1770
1771 for (next = &np->properties; *next; next = &(*next)->next) {
1772 if (*next == prop)
1773 break;
1774 }
1775 if (*next == NULL)
1776 return -ENODEV;
1777
1778 /* found the node */
1779 *next = prop->next;
1780 prop->next = np->deadprops;
1781 np->deadprops = prop;
1782
1783 return 0;
1784 }
1785
1786 /**
1787 * of_remove_property - Remove a property from a node.
1788 * @np: Caller's Device Node
1789 * @prop: Property to remove
1790 *
1791 * Note that we don't actually remove it, since we have given out
1792 * who-knows-how-many pointers to the data using get-property.
1793 * Instead we just move the property to the "dead properties"
1794 * list, so it won't be found any more.
1795 */
of_remove_property(struct device_node * np,struct property * prop)1796 int of_remove_property(struct device_node *np, struct property *prop)
1797 {
1798 unsigned long flags;
1799 int rc;
1800
1801 if (!prop)
1802 return -ENODEV;
1803
1804 mutex_lock(&of_mutex);
1805
1806 raw_spin_lock_irqsave(&devtree_lock, flags);
1807 rc = __of_remove_property(np, prop);
1808 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1809
1810 if (!rc)
1811 __of_remove_property_sysfs(np, prop);
1812
1813 mutex_unlock(&of_mutex);
1814
1815 if (!rc)
1816 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1817
1818 return rc;
1819 }
1820 EXPORT_SYMBOL_GPL(of_remove_property);
1821
__of_update_property(struct device_node * np,struct property * newprop,struct property ** oldpropp)1822 int __of_update_property(struct device_node *np, struct property *newprop,
1823 struct property **oldpropp)
1824 {
1825 struct property **next, *oldprop;
1826
1827 for (next = &np->properties; *next; next = &(*next)->next) {
1828 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1829 break;
1830 }
1831 *oldpropp = oldprop = *next;
1832
1833 if (oldprop) {
1834 /* replace the node */
1835 newprop->next = oldprop->next;
1836 *next = newprop;
1837 oldprop->next = np->deadprops;
1838 np->deadprops = oldprop;
1839 } else {
1840 /* new node */
1841 newprop->next = NULL;
1842 *next = newprop;
1843 }
1844
1845 return 0;
1846 }
1847
1848 /*
1849 * of_update_property - Update a property in a node, if the property does
1850 * not exist, add it.
1851 *
1852 * Note that we don't actually remove it, since we have given out
1853 * who-knows-how-many pointers to the data using get-property.
1854 * Instead we just move the property to the "dead properties" list,
1855 * and add the new property to the property list
1856 */
of_update_property(struct device_node * np,struct property * newprop)1857 int of_update_property(struct device_node *np, struct property *newprop)
1858 {
1859 struct property *oldprop;
1860 unsigned long flags;
1861 int rc;
1862
1863 if (!newprop->name)
1864 return -EINVAL;
1865
1866 mutex_lock(&of_mutex);
1867
1868 raw_spin_lock_irqsave(&devtree_lock, flags);
1869 rc = __of_update_property(np, newprop, &oldprop);
1870 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1871
1872 if (!rc)
1873 __of_update_property_sysfs(np, newprop, oldprop);
1874
1875 mutex_unlock(&of_mutex);
1876
1877 if (!rc)
1878 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1879
1880 return rc;
1881 }
1882
of_alias_add(struct alias_prop * ap,struct device_node * np,int id,const char * stem,int stem_len)1883 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1884 int id, const char *stem, int stem_len)
1885 {
1886 ap->np = np;
1887 ap->id = id;
1888 strncpy(ap->stem, stem, stem_len);
1889 ap->stem[stem_len] = 0;
1890 list_add_tail(&ap->link, &aliases_lookup);
1891 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1892 ap->alias, ap->stem, ap->id, np);
1893 }
1894
1895 /**
1896 * of_alias_scan - Scan all properties of the 'aliases' node
1897 * @dt_alloc: An allocator that provides a virtual address to memory
1898 * for storing the resulting tree
1899 *
1900 * The function scans all the properties of the 'aliases' node and populates
1901 * the global lookup table with the properties. It returns the
1902 * number of alias properties found, or an error code in case of failure.
1903 */
of_alias_scan(void * (* dt_alloc)(u64 size,u64 align))1904 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1905 {
1906 struct property *pp;
1907
1908 of_aliases = of_find_node_by_path("/aliases");
1909 of_chosen = of_find_node_by_path("/chosen");
1910 if (of_chosen == NULL)
1911 of_chosen = of_find_node_by_path("/chosen@0");
1912
1913 if (of_chosen) {
1914 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1915 const char *name = NULL;
1916
1917 if (of_property_read_string(of_chosen, "stdout-path", &name))
1918 of_property_read_string(of_chosen, "linux,stdout-path",
1919 &name);
1920 if (IS_ENABLED(CONFIG_PPC) && !name)
1921 of_property_read_string(of_aliases, "stdout", &name);
1922 if (name)
1923 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1924 if (of_stdout)
1925 of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT;
1926 }
1927
1928 if (!of_aliases)
1929 return;
1930
1931 for_each_property_of_node(of_aliases, pp) {
1932 const char *start = pp->name;
1933 const char *end = start + strlen(start);
1934 struct device_node *np;
1935 struct alias_prop *ap;
1936 int id, len;
1937
1938 /* Skip those we do not want to proceed */
1939 if (!strcmp(pp->name, "name") ||
1940 !strcmp(pp->name, "phandle") ||
1941 !strcmp(pp->name, "linux,phandle"))
1942 continue;
1943
1944 np = of_find_node_by_path(pp->value);
1945 if (!np)
1946 continue;
1947
1948 /* walk the alias backwards to extract the id and work out
1949 * the 'stem' string */
1950 while (isdigit(*(end-1)) && end > start)
1951 end--;
1952 len = end - start;
1953
1954 if (kstrtoint(end, 10, &id) < 0)
1955 continue;
1956
1957 /* Allocate an alias_prop with enough space for the stem */
1958 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1959 if (!ap)
1960 continue;
1961 memset(ap, 0, sizeof(*ap) + len + 1);
1962 ap->alias = start;
1963 of_alias_add(ap, np, id, start, len);
1964 }
1965 }
1966
1967 /**
1968 * of_alias_get_id - Get alias id for the given device_node
1969 * @np: Pointer to the given device_node
1970 * @stem: Alias stem of the given device_node
1971 *
1972 * The function travels the lookup table to get the alias id for the given
1973 * device_node and alias stem.
1974 *
1975 * Return: The alias id if found.
1976 */
of_alias_get_id(struct device_node * np,const char * stem)1977 int of_alias_get_id(struct device_node *np, const char *stem)
1978 {
1979 struct alias_prop *app;
1980 int id = -ENODEV;
1981
1982 mutex_lock(&of_mutex);
1983 list_for_each_entry(app, &aliases_lookup, link) {
1984 if (strcmp(app->stem, stem) != 0)
1985 continue;
1986
1987 if (np == app->np) {
1988 id = app->id;
1989 break;
1990 }
1991 }
1992 mutex_unlock(&of_mutex);
1993
1994 return id;
1995 }
1996 EXPORT_SYMBOL_GPL(of_alias_get_id);
1997
1998 /**
1999 * of_alias_get_highest_id - Get highest alias id for the given stem
2000 * @stem: Alias stem to be examined
2001 *
2002 * The function travels the lookup table to get the highest alias id for the
2003 * given alias stem. It returns the alias id if found.
2004 */
of_alias_get_highest_id(const char * stem)2005 int of_alias_get_highest_id(const char *stem)
2006 {
2007 struct alias_prop *app;
2008 int id = -ENODEV;
2009
2010 mutex_lock(&of_mutex);
2011 list_for_each_entry(app, &aliases_lookup, link) {
2012 if (strcmp(app->stem, stem) != 0)
2013 continue;
2014
2015 if (app->id > id)
2016 id = app->id;
2017 }
2018 mutex_unlock(&of_mutex);
2019
2020 return id;
2021 }
2022 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2023
2024 /**
2025 * of_console_check() - Test and setup console for DT setup
2026 * @dn: Pointer to device node
2027 * @name: Name to use for preferred console without index. ex. "ttyS"
2028 * @index: Index to use for preferred console.
2029 *
2030 * Check if the given device node matches the stdout-path property in the
2031 * /chosen node. If it does then register it as the preferred console.
2032 *
2033 * Return: TRUE if console successfully setup. Otherwise return FALSE.
2034 */
of_console_check(struct device_node * dn,char * name,int index)2035 bool of_console_check(struct device_node *dn, char *name, int index)
2036 {
2037 if (!dn || dn != of_stdout || console_set_on_cmdline)
2038 return false;
2039
2040 /*
2041 * XXX: cast `options' to char pointer to suppress complication
2042 * warnings: printk, UART and console drivers expect char pointer.
2043 */
2044 return !add_preferred_console(name, index, (char *)of_stdout_options);
2045 }
2046 EXPORT_SYMBOL_GPL(of_console_check);
2047
2048 /**
2049 * of_find_next_cache_node - Find a node's subsidiary cache
2050 * @np: node of type "cpu" or "cache"
2051 *
2052 * Return: A node pointer with refcount incremented, use
2053 * of_node_put() on it when done. Caller should hold a reference
2054 * to np.
2055 */
of_find_next_cache_node(const struct device_node * np)2056 struct device_node *of_find_next_cache_node(const struct device_node *np)
2057 {
2058 struct device_node *child, *cache_node;
2059
2060 cache_node = of_parse_phandle(np, "l2-cache", 0);
2061 if (!cache_node)
2062 cache_node = of_parse_phandle(np, "next-level-cache", 0);
2063
2064 if (cache_node)
2065 return cache_node;
2066
2067 /* OF on pmac has nodes instead of properties named "l2-cache"
2068 * beneath CPU nodes.
2069 */
2070 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2071 for_each_child_of_node(np, child)
2072 if (of_node_is_type(child, "cache"))
2073 return child;
2074
2075 return NULL;
2076 }
2077
2078 /**
2079 * of_find_last_cache_level - Find the level at which the last cache is
2080 * present for the given logical cpu
2081 *
2082 * @cpu: cpu number(logical index) for which the last cache level is needed
2083 *
2084 * Return: The level at which the last cache is present. It is exactly
2085 * same as the total number of cache levels for the given logical cpu.
2086 */
of_find_last_cache_level(unsigned int cpu)2087 int of_find_last_cache_level(unsigned int cpu)
2088 {
2089 u32 cache_level = 0;
2090 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2091
2092 while (np) {
2093 of_node_put(prev);
2094 prev = np;
2095 np = of_find_next_cache_node(np);
2096 }
2097
2098 of_property_read_u32(prev, "cache-level", &cache_level);
2099 of_node_put(prev);
2100
2101 return cache_level;
2102 }
2103
2104 /**
2105 * of_map_id - Translate an ID through a downstream mapping.
2106 * @np: root complex device node.
2107 * @id: device ID to map.
2108 * @map_name: property name of the map to use.
2109 * @map_mask_name: optional property name of the mask to use.
2110 * @target: optional pointer to a target device node.
2111 * @id_out: optional pointer to receive the translated ID.
2112 *
2113 * Given a device ID, look up the appropriate implementation-defined
2114 * platform ID and/or the target device which receives transactions on that
2115 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2116 * @id_out may be NULL if only the other is required. If @target points to
2117 * a non-NULL device node pointer, only entries targeting that node will be
2118 * matched; if it points to a NULL value, it will receive the device node of
2119 * the first matching target phandle, with a reference held.
2120 *
2121 * Return: 0 on success or a standard error code on failure.
2122 */
of_map_id(struct device_node * np,u32 id,const char * map_name,const char * map_mask_name,struct device_node ** target,u32 * id_out)2123 int of_map_id(struct device_node *np, u32 id,
2124 const char *map_name, const char *map_mask_name,
2125 struct device_node **target, u32 *id_out)
2126 {
2127 u32 map_mask, masked_id;
2128 int map_len;
2129 const __be32 *map = NULL;
2130
2131 if (!np || !map_name || (!target && !id_out))
2132 return -EINVAL;
2133
2134 map = of_get_property(np, map_name, &map_len);
2135 if (!map) {
2136 if (target)
2137 return -ENODEV;
2138 /* Otherwise, no map implies no translation */
2139 *id_out = id;
2140 return 0;
2141 }
2142
2143 if (!map_len || map_len % (4 * sizeof(*map))) {
2144 pr_err("%pOF: Error: Bad %s length: %d\n", np,
2145 map_name, map_len);
2146 return -EINVAL;
2147 }
2148
2149 /* The default is to select all bits. */
2150 map_mask = 0xffffffff;
2151
2152 /*
2153 * Can be overridden by "{iommu,msi}-map-mask" property.
2154 * If of_property_read_u32() fails, the default is used.
2155 */
2156 if (map_mask_name)
2157 of_property_read_u32(np, map_mask_name, &map_mask);
2158
2159 masked_id = map_mask & id;
2160 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2161 struct device_node *phandle_node;
2162 u32 id_base = be32_to_cpup(map + 0);
2163 u32 phandle = be32_to_cpup(map + 1);
2164 u32 out_base = be32_to_cpup(map + 2);
2165 u32 id_len = be32_to_cpup(map + 3);
2166
2167 if (id_base & ~map_mask) {
2168 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2169 np, map_name, map_name,
2170 map_mask, id_base);
2171 return -EFAULT;
2172 }
2173
2174 if (masked_id < id_base || masked_id >= id_base + id_len)
2175 continue;
2176
2177 phandle_node = of_find_node_by_phandle(phandle);
2178 if (!phandle_node)
2179 return -ENODEV;
2180
2181 if (target) {
2182 if (*target)
2183 of_node_put(phandle_node);
2184 else
2185 *target = phandle_node;
2186
2187 if (*target != phandle_node)
2188 continue;
2189 }
2190
2191 if (id_out)
2192 *id_out = masked_id - id_base + out_base;
2193
2194 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2195 np, map_name, map_mask, id_base, out_base,
2196 id_len, id, masked_id - id_base + out_base);
2197 return 0;
2198 }
2199
2200 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2201 id, target && *target ? *target : NULL);
2202
2203 /* Bypasses translation */
2204 if (id_out)
2205 *id_out = id;
2206 return 0;
2207 }
2208 EXPORT_SYMBOL_GPL(of_map_id);
2209