1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions for working with the Flattened Device Tree data format
4 *
5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6 * benh@kernel.crashing.org
7 */
8
9 #define pr_fmt(fmt) "OF: fdt: " fmt
10
11 #include <linux/crash_dump.h>
12 #include <linux/crc32.h>
13 #include <linux/kernel.h>
14 #include <linux/initrd.h>
15 #include <linux/memblock.h>
16 #include <linux/mutex.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_reserved_mem.h>
20 #include <linux/sizes.h>
21 #include <linux/string.h>
22 #include <linux/errno.h>
23 #include <linux/slab.h>
24 #include <linux/libfdt.h>
25 #include <linux/debugfs.h>
26 #include <linux/serial_core.h>
27 #include <linux/sysfs.h>
28 #include <linux/random.h>
29
30 #include <asm/setup.h> /* for COMMAND_LINE_SIZE */
31 #include <asm/page.h>
32
33 #include "of_private.h"
34
35 /*
36 * of_fdt_limit_memory - limit the number of regions in the /memory node
37 * @limit: maximum entries
38 *
39 * Adjust the flattened device tree to have at most 'limit' number of
40 * memory entries in the /memory node. This function may be called
41 * any time after initial_boot_param is set.
42 */
of_fdt_limit_memory(int limit)43 void __init of_fdt_limit_memory(int limit)
44 {
45 int memory;
46 int len;
47 const void *val;
48 int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
49 int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
50 const __be32 *addr_prop;
51 const __be32 *size_prop;
52 int root_offset;
53 int cell_size;
54
55 root_offset = fdt_path_offset(initial_boot_params, "/");
56 if (root_offset < 0)
57 return;
58
59 addr_prop = fdt_getprop(initial_boot_params, root_offset,
60 "#address-cells", NULL);
61 if (addr_prop)
62 nr_address_cells = fdt32_to_cpu(*addr_prop);
63
64 size_prop = fdt_getprop(initial_boot_params, root_offset,
65 "#size-cells", NULL);
66 if (size_prop)
67 nr_size_cells = fdt32_to_cpu(*size_prop);
68
69 cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
70
71 memory = fdt_path_offset(initial_boot_params, "/memory");
72 if (memory > 0) {
73 val = fdt_getprop(initial_boot_params, memory, "reg", &len);
74 if (len > limit*cell_size) {
75 len = limit*cell_size;
76 pr_debug("Limiting number of entries to %d\n", limit);
77 fdt_setprop(initial_boot_params, memory, "reg", val,
78 len);
79 }
80 }
81 }
82
of_fdt_device_is_available(const void * blob,unsigned long node)83 static bool of_fdt_device_is_available(const void *blob, unsigned long node)
84 {
85 const char *status = fdt_getprop(blob, node, "status", NULL);
86
87 if (!status)
88 return true;
89
90 if (!strcmp(status, "ok") || !strcmp(status, "okay"))
91 return true;
92
93 return false;
94 }
95
unflatten_dt_alloc(void ** mem,unsigned long size,unsigned long align)96 static void *unflatten_dt_alloc(void **mem, unsigned long size,
97 unsigned long align)
98 {
99 void *res;
100
101 *mem = PTR_ALIGN(*mem, align);
102 res = *mem;
103 *mem += size;
104
105 return res;
106 }
107
populate_properties(const void * blob,int offset,void ** mem,struct device_node * np,const char * nodename,bool dryrun)108 static void populate_properties(const void *blob,
109 int offset,
110 void **mem,
111 struct device_node *np,
112 const char *nodename,
113 bool dryrun)
114 {
115 struct property *pp, **pprev = NULL;
116 int cur;
117 bool has_name = false;
118
119 pprev = &np->properties;
120 for (cur = fdt_first_property_offset(blob, offset);
121 cur >= 0;
122 cur = fdt_next_property_offset(blob, cur)) {
123 const __be32 *val;
124 const char *pname;
125 u32 sz;
126
127 val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
128 if (!val) {
129 pr_warn("Cannot locate property at 0x%x\n", cur);
130 continue;
131 }
132
133 if (!pname) {
134 pr_warn("Cannot find property name at 0x%x\n", cur);
135 continue;
136 }
137
138 if (!strcmp(pname, "name"))
139 has_name = true;
140
141 pp = unflatten_dt_alloc(mem, sizeof(struct property),
142 __alignof__(struct property));
143 if (dryrun)
144 continue;
145
146 /* We accept flattened tree phandles either in
147 * ePAPR-style "phandle" properties, or the
148 * legacy "linux,phandle" properties. If both
149 * appear and have different values, things
150 * will get weird. Don't do that.
151 */
152 if (!strcmp(pname, "phandle") ||
153 !strcmp(pname, "linux,phandle")) {
154 if (!np->phandle)
155 np->phandle = be32_to_cpup(val);
156 }
157
158 /* And we process the "ibm,phandle" property
159 * used in pSeries dynamic device tree
160 * stuff
161 */
162 if (!strcmp(pname, "ibm,phandle"))
163 np->phandle = be32_to_cpup(val);
164
165 pp->name = (char *)pname;
166 pp->length = sz;
167 pp->value = (__be32 *)val;
168 *pprev = pp;
169 pprev = &pp->next;
170 }
171
172 /* With version 0x10 we may not have the name property,
173 * recreate it here from the unit name if absent
174 */
175 if (!has_name) {
176 const char *p = nodename, *ps = p, *pa = NULL;
177 int len;
178
179 while (*p) {
180 if ((*p) == '@')
181 pa = p;
182 else if ((*p) == '/')
183 ps = p + 1;
184 p++;
185 }
186
187 if (pa < ps)
188 pa = p;
189 len = (pa - ps) + 1;
190 pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
191 __alignof__(struct property));
192 if (!dryrun) {
193 pp->name = "name";
194 pp->length = len;
195 pp->value = pp + 1;
196 *pprev = pp;
197 memcpy(pp->value, ps, len - 1);
198 ((char *)pp->value)[len - 1] = 0;
199 pr_debug("fixed up name for %s -> %s\n",
200 nodename, (char *)pp->value);
201 }
202 }
203 }
204
populate_node(const void * blob,int offset,void ** mem,struct device_node * dad,struct device_node ** pnp,bool dryrun)205 static int populate_node(const void *blob,
206 int offset,
207 void **mem,
208 struct device_node *dad,
209 struct device_node **pnp,
210 bool dryrun)
211 {
212 struct device_node *np;
213 const char *pathp;
214 int len;
215
216 pathp = fdt_get_name(blob, offset, &len);
217 if (!pathp) {
218 *pnp = NULL;
219 return len;
220 }
221
222 len++;
223
224 np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len,
225 __alignof__(struct device_node));
226 if (!dryrun) {
227 char *fn;
228 of_node_init(np);
229 np->full_name = fn = ((char *)np) + sizeof(*np);
230
231 memcpy(fn, pathp, len);
232
233 if (dad != NULL) {
234 np->parent = dad;
235 np->sibling = dad->child;
236 dad->child = np;
237 }
238 }
239
240 populate_properties(blob, offset, mem, np, pathp, dryrun);
241 if (!dryrun) {
242 np->name = of_get_property(np, "name", NULL);
243 if (!np->name)
244 np->name = "<NULL>";
245 }
246
247 *pnp = np;
248 return 0;
249 }
250
reverse_nodes(struct device_node * parent)251 static void reverse_nodes(struct device_node *parent)
252 {
253 struct device_node *child, *next;
254
255 /* In-depth first */
256 child = parent->child;
257 while (child) {
258 reverse_nodes(child);
259
260 child = child->sibling;
261 }
262
263 /* Reverse the nodes in the child list */
264 child = parent->child;
265 parent->child = NULL;
266 while (child) {
267 next = child->sibling;
268
269 child->sibling = parent->child;
270 parent->child = child;
271 child = next;
272 }
273 }
274
275 /**
276 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
277 * @blob: The parent device tree blob
278 * @mem: Memory chunk to use for allocating device nodes and properties
279 * @dad: Parent struct device_node
280 * @nodepp: The device_node tree created by the call
281 *
282 * Return: The size of unflattened device tree or error code
283 */
unflatten_dt_nodes(const void * blob,void * mem,struct device_node * dad,struct device_node ** nodepp)284 static int unflatten_dt_nodes(const void *blob,
285 void *mem,
286 struct device_node *dad,
287 struct device_node **nodepp)
288 {
289 struct device_node *root;
290 int offset = 0, depth = 0, initial_depth = 0;
291 #define FDT_MAX_DEPTH 64
292 struct device_node *nps[FDT_MAX_DEPTH];
293 void *base = mem;
294 bool dryrun = !base;
295 int ret;
296
297 if (nodepp)
298 *nodepp = NULL;
299
300 /*
301 * We're unflattening device sub-tree if @dad is valid. There are
302 * possibly multiple nodes in the first level of depth. We need
303 * set @depth to 1 to make fdt_next_node() happy as it bails
304 * immediately when negative @depth is found. Otherwise, the device
305 * nodes except the first one won't be unflattened successfully.
306 */
307 if (dad)
308 depth = initial_depth = 1;
309
310 root = dad;
311 nps[depth] = dad;
312
313 for (offset = 0;
314 offset >= 0 && depth >= initial_depth;
315 offset = fdt_next_node(blob, offset, &depth)) {
316 if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1))
317 continue;
318
319 if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
320 !of_fdt_device_is_available(blob, offset))
321 continue;
322
323 ret = populate_node(blob, offset, &mem, nps[depth],
324 &nps[depth+1], dryrun);
325 if (ret < 0)
326 return ret;
327
328 if (!dryrun && nodepp && !*nodepp)
329 *nodepp = nps[depth+1];
330 if (!dryrun && !root)
331 root = nps[depth+1];
332 }
333
334 if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
335 pr_err("Error %d processing FDT\n", offset);
336 return -EINVAL;
337 }
338
339 /*
340 * Reverse the child list. Some drivers assumes node order matches .dts
341 * node order
342 */
343 if (!dryrun)
344 reverse_nodes(root);
345
346 return mem - base;
347 }
348
349 /**
350 * __unflatten_device_tree - create tree of device_nodes from flat blob
351 * @blob: The blob to expand
352 * @dad: Parent device node
353 * @mynodes: The device_node tree created by the call
354 * @dt_alloc: An allocator that provides a virtual address to memory
355 * for the resulting tree
356 * @detached: if true set OF_DETACHED on @mynodes
357 *
358 * unflattens a device-tree, creating the tree of struct device_node. It also
359 * fills the "name" and "type" pointers of the nodes so the normal device-tree
360 * walking functions can be used.
361 *
362 * Return: NULL on failure or the memory chunk containing the unflattened
363 * device tree on success.
364 */
__unflatten_device_tree(const void * blob,struct device_node * dad,struct device_node ** mynodes,void * (* dt_alloc)(u64 size,u64 align),bool detached)365 void *__unflatten_device_tree(const void *blob,
366 struct device_node *dad,
367 struct device_node **mynodes,
368 void *(*dt_alloc)(u64 size, u64 align),
369 bool detached)
370 {
371 int size;
372 void *mem;
373 int ret;
374
375 if (mynodes)
376 *mynodes = NULL;
377
378 pr_debug(" -> unflatten_device_tree()\n");
379
380 if (!blob) {
381 pr_debug("No device tree pointer\n");
382 return NULL;
383 }
384
385 pr_debug("Unflattening device tree:\n");
386 pr_debug("magic: %08x\n", fdt_magic(blob));
387 pr_debug("size: %08x\n", fdt_totalsize(blob));
388 pr_debug("version: %08x\n", fdt_version(blob));
389
390 if (fdt_check_header(blob)) {
391 pr_err("Invalid device tree blob header\n");
392 return NULL;
393 }
394
395 /* First pass, scan for size */
396 size = unflatten_dt_nodes(blob, NULL, dad, NULL);
397 if (size <= 0)
398 return NULL;
399
400 size = ALIGN(size, 4);
401 pr_debug(" size is %d, allocating...\n", size);
402
403 /* Allocate memory for the expanded device tree */
404 mem = dt_alloc(size + 4, __alignof__(struct device_node));
405 if (!mem)
406 return NULL;
407
408 memset(mem, 0, size);
409
410 *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
411
412 pr_debug(" unflattening %p...\n", mem);
413
414 /* Second pass, do actual unflattening */
415 ret = unflatten_dt_nodes(blob, mem, dad, mynodes);
416
417 if (be32_to_cpup(mem + size) != 0xdeadbeef)
418 pr_warn("End of tree marker overwritten: %08x\n",
419 be32_to_cpup(mem + size));
420
421 if (ret <= 0)
422 return NULL;
423
424 if (detached && mynodes && *mynodes) {
425 of_node_set_flag(*mynodes, OF_DETACHED);
426 pr_debug("unflattened tree is detached\n");
427 }
428
429 pr_debug(" <- unflatten_device_tree()\n");
430 return mem;
431 }
432
kernel_tree_alloc(u64 size,u64 align)433 static void *kernel_tree_alloc(u64 size, u64 align)
434 {
435 return kzalloc(size, GFP_KERNEL);
436 }
437
438 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
439
440 /**
441 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
442 * @blob: Flat device tree blob
443 * @dad: Parent device node
444 * @mynodes: The device tree created by the call
445 *
446 * unflattens the device-tree passed by the firmware, creating the
447 * tree of struct device_node. It also fills the "name" and "type"
448 * pointers of the nodes so the normal device-tree walking functions
449 * can be used.
450 *
451 * Return: NULL on failure or the memory chunk containing the unflattened
452 * device tree on success.
453 */
of_fdt_unflatten_tree(const unsigned long * blob,struct device_node * dad,struct device_node ** mynodes)454 void *of_fdt_unflatten_tree(const unsigned long *blob,
455 struct device_node *dad,
456 struct device_node **mynodes)
457 {
458 void *mem;
459
460 mutex_lock(&of_fdt_unflatten_mutex);
461 mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
462 true);
463 mutex_unlock(&of_fdt_unflatten_mutex);
464
465 return mem;
466 }
467 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
468
469 /* Everything below here references initial_boot_params directly. */
470 int __initdata dt_root_addr_cells;
471 int __initdata dt_root_size_cells;
472
473 void *initial_boot_params __ro_after_init;
474
475 #ifdef CONFIG_OF_EARLY_FLATTREE
476
477 static u32 of_fdt_crc32;
478
early_init_dt_reserve_memory(phys_addr_t base,phys_addr_t size,bool nomap)479 static int __init early_init_dt_reserve_memory(phys_addr_t base,
480 phys_addr_t size, bool nomap)
481 {
482 if (nomap) {
483 /*
484 * If the memory is already reserved (by another region), we
485 * should not allow it to be marked nomap, but don't worry
486 * if the region isn't memory as it won't be mapped.
487 */
488 if (memblock_overlaps_region(&memblock.memory, base, size) &&
489 memblock_is_region_reserved(base, size))
490 return -EBUSY;
491
492 return memblock_mark_nomap(base, size);
493 }
494 return memblock_reserve(base, size);
495 }
496
497 /*
498 * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
499 */
__reserved_mem_reserve_reg(unsigned long node,const char * uname)500 static int __init __reserved_mem_reserve_reg(unsigned long node,
501 const char *uname)
502 {
503 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
504 phys_addr_t base, size;
505 int len;
506 const __be32 *prop;
507 int first = 1;
508 bool nomap;
509
510 prop = of_get_flat_dt_prop(node, "reg", &len);
511 if (!prop)
512 return -ENOENT;
513
514 if (len && len % t_len != 0) {
515 pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
516 uname);
517 return -EINVAL;
518 }
519
520 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
521
522 while (len >= t_len) {
523 base = dt_mem_next_cell(dt_root_addr_cells, &prop);
524 size = dt_mem_next_cell(dt_root_size_cells, &prop);
525
526 if (size &&
527 early_init_dt_reserve_memory(base, size, nomap) == 0)
528 pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
529 uname, &base, (unsigned long)(size / SZ_1M));
530 else
531 pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
532 uname, &base, (unsigned long)(size / SZ_1M));
533
534 len -= t_len;
535 if (first) {
536 fdt_reserved_mem_save_node(node, uname, base, size);
537 first = 0;
538 }
539 }
540 return 0;
541 }
542
543 /*
544 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
545 * in /reserved-memory matches the values supported by the current implementation,
546 * also check if ranges property has been provided
547 */
__reserved_mem_check_root(unsigned long node)548 static int __init __reserved_mem_check_root(unsigned long node)
549 {
550 const __be32 *prop;
551
552 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
553 if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
554 return -EINVAL;
555
556 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
557 if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
558 return -EINVAL;
559
560 prop = of_get_flat_dt_prop(node, "ranges", NULL);
561 if (!prop)
562 return -EINVAL;
563 return 0;
564 }
565
566 /*
567 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
568 */
fdt_scan_reserved_mem(void)569 static int __init fdt_scan_reserved_mem(void)
570 {
571 int node, child;
572 const void *fdt = initial_boot_params;
573
574 node = fdt_path_offset(fdt, "/reserved-memory");
575 if (node < 0)
576 return -ENODEV;
577
578 if (__reserved_mem_check_root(node) != 0) {
579 pr_err("Reserved memory: unsupported node format, ignoring\n");
580 return -EINVAL;
581 }
582
583 fdt_for_each_subnode(child, fdt, node) {
584 const char *uname;
585 int err;
586
587 if (!of_fdt_device_is_available(fdt, child))
588 continue;
589
590 uname = fdt_get_name(fdt, child, NULL);
591
592 err = __reserved_mem_reserve_reg(child, uname);
593 if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL))
594 fdt_reserved_mem_save_node(child, uname, 0, 0);
595 }
596 return 0;
597 }
598
599 /*
600 * fdt_reserve_elfcorehdr() - reserves memory for elf core header
601 *
602 * This function reserves the memory occupied by an elf core header
603 * described in the device tree. This region contains all the
604 * information about primary kernel's core image and is used by a dump
605 * capture kernel to access the system memory on primary kernel.
606 */
fdt_reserve_elfcorehdr(void)607 static void __init fdt_reserve_elfcorehdr(void)
608 {
609 if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size)
610 return;
611
612 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
613 pr_warn("elfcorehdr is overlapped\n");
614 return;
615 }
616
617 memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
618
619 pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
620 elfcorehdr_size >> 10, elfcorehdr_addr);
621 }
622
623 /**
624 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
625 *
626 * This function grabs memory from early allocator for device exclusive use
627 * defined in device tree structures. It should be called by arch specific code
628 * once the early allocator (i.e. memblock) has been fully activated.
629 */
early_init_fdt_scan_reserved_mem(void)630 void __init early_init_fdt_scan_reserved_mem(void)
631 {
632 int n;
633 u64 base, size;
634
635 if (!initial_boot_params)
636 return;
637
638 /* Process header /memreserve/ fields */
639 for (n = 0; ; n++) {
640 fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
641 if (!size)
642 break;
643 memblock_reserve(base, size);
644 }
645
646 fdt_scan_reserved_mem();
647 fdt_reserve_elfcorehdr();
648 fdt_init_reserved_mem();
649 }
650
651 /**
652 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
653 */
early_init_fdt_reserve_self(void)654 void __init early_init_fdt_reserve_self(void)
655 {
656 if (!initial_boot_params)
657 return;
658
659 /* Reserve the dtb region */
660 memblock_reserve(__pa(initial_boot_params),
661 fdt_totalsize(initial_boot_params));
662 }
663
664 /**
665 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
666 * @it: callback function
667 * @data: context data pointer
668 *
669 * This function is used to scan the flattened device-tree, it is
670 * used to extract the memory information at boot before we can
671 * unflatten the tree
672 */
of_scan_flat_dt(int (* it)(unsigned long node,const char * uname,int depth,void * data),void * data)673 int __init of_scan_flat_dt(int (*it)(unsigned long node,
674 const char *uname, int depth,
675 void *data),
676 void *data)
677 {
678 const void *blob = initial_boot_params;
679 const char *pathp;
680 int offset, rc = 0, depth = -1;
681
682 if (!blob)
683 return 0;
684
685 for (offset = fdt_next_node(blob, -1, &depth);
686 offset >= 0 && depth >= 0 && !rc;
687 offset = fdt_next_node(blob, offset, &depth)) {
688
689 pathp = fdt_get_name(blob, offset, NULL);
690 rc = it(offset, pathp, depth, data);
691 }
692 return rc;
693 }
694
695 /**
696 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
697 * @parent: parent node
698 * @it: callback function
699 * @data: context data pointer
700 *
701 * This function is used to scan sub-nodes of a node.
702 */
of_scan_flat_dt_subnodes(unsigned long parent,int (* it)(unsigned long node,const char * uname,void * data),void * data)703 int __init of_scan_flat_dt_subnodes(unsigned long parent,
704 int (*it)(unsigned long node,
705 const char *uname,
706 void *data),
707 void *data)
708 {
709 const void *blob = initial_boot_params;
710 int node;
711
712 fdt_for_each_subnode(node, blob, parent) {
713 const char *pathp;
714 int rc;
715
716 pathp = fdt_get_name(blob, node, NULL);
717 rc = it(node, pathp, data);
718 if (rc)
719 return rc;
720 }
721 return 0;
722 }
723
724 /**
725 * of_get_flat_dt_subnode_by_name - get the subnode by given name
726 *
727 * @node: the parent node
728 * @uname: the name of subnode
729 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
730 */
731
of_get_flat_dt_subnode_by_name(unsigned long node,const char * uname)732 int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
733 {
734 return fdt_subnode_offset(initial_boot_params, node, uname);
735 }
736
737 /*
738 * of_get_flat_dt_root - find the root node in the flat blob
739 */
of_get_flat_dt_root(void)740 unsigned long __init of_get_flat_dt_root(void)
741 {
742 return 0;
743 }
744
745 /*
746 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
747 *
748 * This function can be used within scan_flattened_dt callback to get
749 * access to properties
750 */
of_get_flat_dt_prop(unsigned long node,const char * name,int * size)751 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
752 int *size)
753 {
754 return fdt_getprop(initial_boot_params, node, name, size);
755 }
756
757 /**
758 * of_fdt_is_compatible - Return true if given node from the given blob has
759 * compat in its compatible list
760 * @blob: A device tree blob
761 * @node: node to test
762 * @compat: compatible string to compare with compatible list.
763 *
764 * Return: a non-zero value on match with smaller values returned for more
765 * specific compatible values.
766 */
of_fdt_is_compatible(const void * blob,unsigned long node,const char * compat)767 static int of_fdt_is_compatible(const void *blob,
768 unsigned long node, const char *compat)
769 {
770 const char *cp;
771 int cplen;
772 unsigned long l, score = 0;
773
774 cp = fdt_getprop(blob, node, "compatible", &cplen);
775 if (cp == NULL)
776 return 0;
777 while (cplen > 0) {
778 score++;
779 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
780 return score;
781 l = strlen(cp) + 1;
782 cp += l;
783 cplen -= l;
784 }
785
786 return 0;
787 }
788
789 /**
790 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
791 * @node: node to test
792 * @compat: compatible string to compare with compatible list.
793 */
of_flat_dt_is_compatible(unsigned long node,const char * compat)794 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
795 {
796 return of_fdt_is_compatible(initial_boot_params, node, compat);
797 }
798
799 /*
800 * of_flat_dt_match - Return true if node matches a list of compatible values
801 */
of_flat_dt_match(unsigned long node,const char * const * compat)802 static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
803 {
804 unsigned int tmp, score = 0;
805
806 if (!compat)
807 return 0;
808
809 while (*compat) {
810 tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
811 if (tmp && (score == 0 || (tmp < score)))
812 score = tmp;
813 compat++;
814 }
815
816 return score;
817 }
818
819 /*
820 * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle
821 */
of_get_flat_dt_phandle(unsigned long node)822 uint32_t __init of_get_flat_dt_phandle(unsigned long node)
823 {
824 return fdt_get_phandle(initial_boot_params, node);
825 }
826
of_flat_dt_get_machine_name(void)827 const char * __init of_flat_dt_get_machine_name(void)
828 {
829 const char *name;
830 unsigned long dt_root = of_get_flat_dt_root();
831
832 name = of_get_flat_dt_prop(dt_root, "model", NULL);
833 if (!name)
834 name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
835 return name;
836 }
837
838 /**
839 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
840 *
841 * @default_match: A machine specific ptr to return in case of no match.
842 * @get_next_compat: callback function to return next compatible match table.
843 *
844 * Iterate through machine match tables to find the best match for the machine
845 * compatible string in the FDT.
846 */
of_flat_dt_match_machine(const void * default_match,const void * (* get_next_compat)(const char * const **))847 const void * __init of_flat_dt_match_machine(const void *default_match,
848 const void * (*get_next_compat)(const char * const**))
849 {
850 const void *data = NULL;
851 const void *best_data = default_match;
852 const char *const *compat;
853 unsigned long dt_root;
854 unsigned int best_score = ~1, score = 0;
855
856 dt_root = of_get_flat_dt_root();
857 while ((data = get_next_compat(&compat))) {
858 score = of_flat_dt_match(dt_root, compat);
859 if (score > 0 && score < best_score) {
860 best_data = data;
861 best_score = score;
862 }
863 }
864 if (!best_data) {
865 const char *prop;
866 int size;
867
868 pr_err("\n unrecognized device tree list:\n[ ");
869
870 prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
871 if (prop) {
872 while (size > 0) {
873 printk("'%s' ", prop);
874 size -= strlen(prop) + 1;
875 prop += strlen(prop) + 1;
876 }
877 }
878 printk("]\n\n");
879 return NULL;
880 }
881
882 pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
883
884 return best_data;
885 }
886
__early_init_dt_declare_initrd(unsigned long start,unsigned long end)887 static void __early_init_dt_declare_initrd(unsigned long start,
888 unsigned long end)
889 {
890 /* ARM64 would cause a BUG to occur here when CONFIG_DEBUG_VM is
891 * enabled since __va() is called too early. ARM64 does make use
892 * of phys_initrd_start/phys_initrd_size so we can skip this
893 * conversion.
894 */
895 if (!IS_ENABLED(CONFIG_ARM64)) {
896 initrd_start = (unsigned long)__va(start);
897 initrd_end = (unsigned long)__va(end);
898 initrd_below_start_ok = 1;
899 }
900 }
901
902 /**
903 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
904 * @node: reference to node containing initrd location ('chosen')
905 */
early_init_dt_check_for_initrd(unsigned long node)906 static void __init early_init_dt_check_for_initrd(unsigned long node)
907 {
908 u64 start, end;
909 int len;
910 const __be32 *prop;
911
912 if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD))
913 return;
914
915 pr_debug("Looking for initrd properties... ");
916
917 prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
918 if (!prop)
919 return;
920 start = of_read_number(prop, len/4);
921
922 prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
923 if (!prop)
924 return;
925 end = of_read_number(prop, len/4);
926 if (start > end)
927 return;
928
929 __early_init_dt_declare_initrd(start, end);
930 phys_initrd_start = start;
931 phys_initrd_size = end - start;
932
933 pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n", start, end);
934 }
935
936 /**
937 * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat
938 * tree
939 * @node: reference to node containing elfcorehdr location ('chosen')
940 */
early_init_dt_check_for_elfcorehdr(unsigned long node)941 static void __init early_init_dt_check_for_elfcorehdr(unsigned long node)
942 {
943 const __be32 *prop;
944 int len;
945
946 if (!IS_ENABLED(CONFIG_CRASH_DUMP))
947 return;
948
949 pr_debug("Looking for elfcorehdr property... ");
950
951 prop = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
952 if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
953 return;
954
955 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
956 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &prop);
957
958 pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n",
959 elfcorehdr_addr, elfcorehdr_size);
960 }
961
962 static unsigned long chosen_node_offset = -FDT_ERR_NOTFOUND;
963
964 /*
965 * The main usage of linux,usable-memory-range is for crash dump kernel.
966 * Originally, the number of usable-memory regions is one. Now there may
967 * be two regions, low region and high region.
968 * To make compatibility with existing user-space and older kdump, the low
969 * region is always the last range of linux,usable-memory-range if exist.
970 */
971 #define MAX_USABLE_RANGES 2
972
973 /**
974 * early_init_dt_check_for_usable_mem_range - Decode usable memory range
975 * location from flat tree
976 */
early_init_dt_check_for_usable_mem_range(void)977 void __init early_init_dt_check_for_usable_mem_range(void)
978 {
979 struct memblock_region rgn[MAX_USABLE_RANGES] = {0};
980 const __be32 *prop, *endp;
981 int len, i;
982 unsigned long node = chosen_node_offset;
983
984 if ((long)node < 0)
985 return;
986
987 pr_debug("Looking for usable-memory-range property... ");
988
989 prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
990 if (!prop || (len % (dt_root_addr_cells + dt_root_size_cells)))
991 return;
992
993 endp = prop + (len / sizeof(__be32));
994 for (i = 0; i < MAX_USABLE_RANGES && prop < endp; i++) {
995 rgn[i].base = dt_mem_next_cell(dt_root_addr_cells, &prop);
996 rgn[i].size = dt_mem_next_cell(dt_root_size_cells, &prop);
997
998 pr_debug("cap_mem_regions[%d]: base=%pa, size=%pa\n",
999 i, &rgn[i].base, &rgn[i].size);
1000 }
1001
1002 memblock_cap_memory_range(rgn[0].base, rgn[0].size);
1003 for (i = 1; i < MAX_USABLE_RANGES && rgn[i].size; i++)
1004 memblock_add(rgn[i].base, rgn[i].size);
1005 }
1006
1007 #ifdef CONFIG_SERIAL_EARLYCON
1008
early_init_dt_scan_chosen_stdout(void)1009 int __init early_init_dt_scan_chosen_stdout(void)
1010 {
1011 int offset;
1012 const char *p, *q, *options = NULL;
1013 int l;
1014 const struct earlycon_id *match;
1015 const void *fdt = initial_boot_params;
1016 int ret;
1017
1018 offset = fdt_path_offset(fdt, "/chosen");
1019 if (offset < 0)
1020 offset = fdt_path_offset(fdt, "/chosen@0");
1021 if (offset < 0)
1022 return -ENOENT;
1023
1024 p = fdt_getprop(fdt, offset, "stdout-path", &l);
1025 if (!p)
1026 p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
1027 if (!p || !l)
1028 return -ENOENT;
1029
1030 q = strchrnul(p, ':');
1031 if (*q != '\0')
1032 options = q + 1;
1033 l = q - p;
1034
1035 /* Get the node specified by stdout-path */
1036 offset = fdt_path_offset_namelen(fdt, p, l);
1037 if (offset < 0) {
1038 pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
1039 return 0;
1040 }
1041
1042 for (match = __earlycon_table; match < __earlycon_table_end; match++) {
1043 if (!match->compatible[0])
1044 continue;
1045
1046 if (fdt_node_check_compatible(fdt, offset, match->compatible))
1047 continue;
1048
1049 ret = of_setup_earlycon(match, offset, options);
1050 if (!ret || ret == -EALREADY)
1051 return 0;
1052 }
1053 return -ENODEV;
1054 }
1055 #endif
1056
1057 /*
1058 * early_init_dt_scan_root - fetch the top level address and size cells
1059 */
early_init_dt_scan_root(void)1060 int __init early_init_dt_scan_root(void)
1061 {
1062 const __be32 *prop;
1063 const void *fdt = initial_boot_params;
1064 int node = fdt_path_offset(fdt, "/");
1065
1066 if (node < 0)
1067 return -ENODEV;
1068
1069 dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
1070 dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
1071
1072 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1073 if (prop)
1074 dt_root_size_cells = be32_to_cpup(prop);
1075 pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1076
1077 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1078 if (prop)
1079 dt_root_addr_cells = be32_to_cpup(prop);
1080 pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1081
1082 return 0;
1083 }
1084
dt_mem_next_cell(int s,const __be32 ** cellp)1085 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1086 {
1087 const __be32 *p = *cellp;
1088
1089 *cellp = p + s;
1090 return of_read_number(p, s);
1091 }
1092
1093 /*
1094 * early_init_dt_scan_memory - Look for and parse memory nodes
1095 */
early_init_dt_scan_memory(void)1096 int __init early_init_dt_scan_memory(void)
1097 {
1098 int node, found_memory = 0;
1099 const void *fdt = initial_boot_params;
1100
1101 fdt_for_each_subnode(node, fdt, 0) {
1102 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1103 const __be32 *reg, *endp;
1104 int l;
1105 bool hotpluggable;
1106
1107 /* We are scanning "memory" nodes only */
1108 if (type == NULL || strcmp(type, "memory") != 0)
1109 continue;
1110
1111 if (!of_fdt_device_is_available(fdt, node))
1112 continue;
1113
1114 reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1115 if (reg == NULL)
1116 reg = of_get_flat_dt_prop(node, "reg", &l);
1117 if (reg == NULL)
1118 continue;
1119
1120 endp = reg + (l / sizeof(__be32));
1121 hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1122
1123 pr_debug("memory scan node %s, reg size %d,\n",
1124 fdt_get_name(fdt, node, NULL), l);
1125
1126 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1127 u64 base, size;
1128
1129 base = dt_mem_next_cell(dt_root_addr_cells, ®);
1130 size = dt_mem_next_cell(dt_root_size_cells, ®);
1131
1132 if (size == 0)
1133 continue;
1134 pr_debug(" - %llx, %llx\n", base, size);
1135
1136 early_init_dt_add_memory_arch(base, size);
1137
1138 found_memory = 1;
1139
1140 if (!hotpluggable)
1141 continue;
1142
1143 if (memblock_mark_hotplug(base, size))
1144 pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1145 base, base + size);
1146 }
1147 }
1148 return found_memory;
1149 }
1150
1151 /*
1152 * Convert configs to something easy to use in C code
1153 */
1154 #if defined(CONFIG_CMDLINE_FORCE)
1155 static const int overwrite_incoming_cmdline = 1;
1156 static const int read_dt_cmdline;
1157 static const int concat_cmdline;
1158 #elif defined(CONFIG_CMDLINE_EXTEND)
1159 static const int overwrite_incoming_cmdline;
1160 static const int read_dt_cmdline = 1;
1161 static const int concat_cmdline = 1;
1162 #else /* CMDLINE_FROM_BOOTLOADER */
1163 static const int overwrite_incoming_cmdline;
1164 static const int read_dt_cmdline = 1;
1165 static const int concat_cmdline;
1166 #endif
1167 #ifdef CONFIG_CMDLINE
1168 static const char *config_cmdline = CONFIG_CMDLINE;
1169 #else
1170 static const char *config_cmdline = "";
1171 #endif
1172
early_init_dt_scan_chosen(char * cmdline)1173 int __init early_init_dt_scan_chosen(char *cmdline)
1174 {
1175 int l = 0, node;
1176 const char *p = NULL;
1177 const void *rng_seed;
1178 const void *fdt = initial_boot_params;
1179
1180 node = fdt_path_offset(fdt, "/chosen");
1181 if (node < 0)
1182 node = fdt_path_offset(fdt, "/chosen@0");
1183 if (node < 0)
1184 /* Handle the cmdline config options even if no /chosen node */
1185 goto handle_cmdline;
1186
1187 chosen_node_offset = node;
1188
1189 early_init_dt_check_for_initrd(node);
1190 early_init_dt_check_for_elfcorehdr(node);
1191
1192 rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1193 if (rng_seed && l > 0) {
1194 add_bootloader_randomness(rng_seed, l);
1195
1196 /* try to clear seed so it won't be found. */
1197 fdt_nop_property(initial_boot_params, node, "rng-seed");
1198
1199 /* update CRC check value */
1200 of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1201 fdt_totalsize(initial_boot_params));
1202 }
1203
1204 /* Put CONFIG_CMDLINE in if forced or if data had nothing in it to start */
1205 if (overwrite_incoming_cmdline || !cmdline[0])
1206 strscpy(cmdline, config_cmdline, COMMAND_LINE_SIZE);
1207
1208 /* Retrieve command line unless forcing */
1209 if (read_dt_cmdline)
1210 p = of_get_flat_dt_prop(node, "bootargs", &l);
1211 if (p != NULL && l > 0) {
1212 if (concat_cmdline) {
1213 int cmdline_len;
1214 int copy_len;
1215 strlcat(cmdline, " ", COMMAND_LINE_SIZE);
1216 cmdline_len = strlen(cmdline);
1217 copy_len = COMMAND_LINE_SIZE - cmdline_len - 1;
1218 copy_len = min((int)l, copy_len);
1219 strncpy(cmdline + cmdline_len, p, copy_len);
1220 cmdline[cmdline_len + copy_len] = '\0';
1221 } else {
1222 strscpy(cmdline, p, min(l, COMMAND_LINE_SIZE));
1223 }
1224 }
1225
1226 handle_cmdline:
1227 pr_debug("Command line is: %s\n", (char *)cmdline);
1228
1229 return 0;
1230 }
1231
1232 #ifndef MIN_MEMBLOCK_ADDR
1233 #define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET)
1234 #endif
1235 #ifndef MAX_MEMBLOCK_ADDR
1236 #define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0)
1237 #endif
1238
early_init_dt_add_memory_arch(u64 base,u64 size)1239 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1240 {
1241 const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1242
1243 if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1244 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1245 base, base + size);
1246 return;
1247 }
1248
1249 if (!PAGE_ALIGNED(base)) {
1250 size -= PAGE_SIZE - (base & ~PAGE_MASK);
1251 base = PAGE_ALIGN(base);
1252 }
1253 size &= PAGE_MASK;
1254
1255 if (base > MAX_MEMBLOCK_ADDR) {
1256 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1257 base, base + size);
1258 return;
1259 }
1260
1261 if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1262 pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1263 ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1264 size = MAX_MEMBLOCK_ADDR - base + 1;
1265 }
1266
1267 if (base + size < phys_offset) {
1268 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1269 base, base + size);
1270 return;
1271 }
1272 if (base < phys_offset) {
1273 pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1274 base, phys_offset);
1275 size -= phys_offset - base;
1276 base = phys_offset;
1277 }
1278 memblock_add(base, size);
1279 }
1280
early_init_dt_alloc_memory_arch(u64 size,u64 align)1281 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1282 {
1283 void *ptr = memblock_alloc(size, align);
1284
1285 if (!ptr)
1286 panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1287 __func__, size, align);
1288
1289 return ptr;
1290 }
1291
early_init_dt_verify(void * params)1292 bool __init early_init_dt_verify(void *params)
1293 {
1294 if (!params)
1295 return false;
1296
1297 /* check device tree validity */
1298 if (fdt_check_header(params))
1299 return false;
1300
1301 /* Setup flat device-tree pointer */
1302 initial_boot_params = params;
1303 of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1304 fdt_totalsize(initial_boot_params));
1305 return true;
1306 }
1307
1308
early_init_dt_scan_nodes(void)1309 void __init early_init_dt_scan_nodes(void)
1310 {
1311 int rc;
1312
1313 /* Initialize {size,address}-cells info */
1314 early_init_dt_scan_root();
1315
1316 /* Retrieve various information from the /chosen node */
1317 rc = early_init_dt_scan_chosen(boot_command_line);
1318 if (rc)
1319 pr_warn("No chosen node found, continuing without\n");
1320
1321 /* Setup memory, calling early_init_dt_add_memory_arch */
1322 early_init_dt_scan_memory();
1323
1324 /* Handle linux,usable-memory-range property */
1325 early_init_dt_check_for_usable_mem_range();
1326 }
1327
early_init_dt_scan(void * params)1328 bool __init early_init_dt_scan(void *params)
1329 {
1330 bool status;
1331
1332 status = early_init_dt_verify(params);
1333 if (!status)
1334 return false;
1335
1336 early_init_dt_scan_nodes();
1337 return true;
1338 }
1339
1340 /**
1341 * unflatten_device_tree - create tree of device_nodes from flat blob
1342 *
1343 * unflattens the device-tree passed by the firmware, creating the
1344 * tree of struct device_node. It also fills the "name" and "type"
1345 * pointers of the nodes so the normal device-tree walking functions
1346 * can be used.
1347 */
unflatten_device_tree(void)1348 void __init unflatten_device_tree(void)
1349 {
1350 __unflatten_device_tree(initial_boot_params, NULL, &of_root,
1351 early_init_dt_alloc_memory_arch, false);
1352
1353 /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1354 of_alias_scan(early_init_dt_alloc_memory_arch);
1355
1356 unittest_unflatten_overlay_base();
1357 }
1358
1359 /**
1360 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1361 *
1362 * Copies and unflattens the device-tree passed by the firmware, creating the
1363 * tree of struct device_node. It also fills the "name" and "type"
1364 * pointers of the nodes so the normal device-tree walking functions
1365 * can be used. This should only be used when the FDT memory has not been
1366 * reserved such is the case when the FDT is built-in to the kernel init
1367 * section. If the FDT memory is reserved already then unflatten_device_tree
1368 * should be used instead.
1369 */
unflatten_and_copy_device_tree(void)1370 void __init unflatten_and_copy_device_tree(void)
1371 {
1372 int size;
1373 void *dt;
1374
1375 if (!initial_boot_params) {
1376 pr_warn("No valid device tree found, continuing without\n");
1377 return;
1378 }
1379
1380 size = fdt_totalsize(initial_boot_params);
1381 dt = early_init_dt_alloc_memory_arch(size,
1382 roundup_pow_of_two(FDT_V17_SIZE));
1383
1384 if (dt) {
1385 memcpy(dt, initial_boot_params, size);
1386 initial_boot_params = dt;
1387 }
1388 unflatten_device_tree();
1389 }
1390
1391 #ifdef CONFIG_SYSFS
of_fdt_raw_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)1392 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1393 struct bin_attribute *bin_attr,
1394 char *buf, loff_t off, size_t count)
1395 {
1396 memcpy(buf, initial_boot_params + off, count);
1397 return count;
1398 }
1399
of_fdt_raw_init(void)1400 static int __init of_fdt_raw_init(void)
1401 {
1402 static struct bin_attribute of_fdt_raw_attr =
1403 __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1404
1405 if (!initial_boot_params)
1406 return 0;
1407
1408 if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1409 fdt_totalsize(initial_boot_params))) {
1410 pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1411 return 0;
1412 }
1413 of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1414 return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1415 }
1416 late_initcall(of_fdt_raw_init);
1417 #endif
1418
1419 #endif /* CONFIG_OF_EARLY_FLATTREE */
1420