1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * drivers/of/property.c - Procedures for accessing and interpreting
4 * Devicetree properties and graphs.
5 *
6 * Initially created by copying procedures from drivers/of/base.c. This
7 * file contains the OF property as well as the OF graph interface
8 * functions.
9 *
10 * Paul Mackerras August 1996.
11 * Copyright (C) 1996-2005 Paul Mackerras.
12 *
13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14 * {engebret|bergner}@us.ibm.com
15 *
16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17 *
18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19 * Grant Likely.
20 */
21
22 #define pr_fmt(fmt) "OF: " fmt
23
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/of_graph.h>
28 #include <linux/of_irq.h>
29 #include <linux/string.h>
30 #include <linux/moduleparam.h>
31
32 #include "of_private.h"
33
34 /**
35 * of_graph_is_present() - check graph's presence
36 * @node: pointer to device_node containing graph port
37 *
38 * Return: True if @node has a port or ports (with a port) sub-node,
39 * false otherwise.
40 */
of_graph_is_present(const struct device_node * node)41 bool of_graph_is_present(const struct device_node *node)
42 {
43 struct device_node *ports, *port;
44
45 ports = of_get_child_by_name(node, "ports");
46 if (ports)
47 node = ports;
48
49 port = of_get_child_by_name(node, "port");
50 of_node_put(ports);
51 of_node_put(port);
52
53 return !!port;
54 }
55 EXPORT_SYMBOL(of_graph_is_present);
56
57 /**
58 * of_property_count_elems_of_size - Count the number of elements in a property
59 *
60 * @np: device node from which the property value is to be read.
61 * @propname: name of the property to be searched.
62 * @elem_size: size of the individual element
63 *
64 * Search for a property in a device node and count the number of elements of
65 * size elem_size in it.
66 *
67 * Return: The number of elements on sucess, -EINVAL if the property does not
68 * exist or its length does not match a multiple of elem_size and -ENODATA if
69 * the property does not have a value.
70 */
of_property_count_elems_of_size(const struct device_node * np,const char * propname,int elem_size)71 int of_property_count_elems_of_size(const struct device_node *np,
72 const char *propname, int elem_size)
73 {
74 struct property *prop = of_find_property(np, propname, NULL);
75
76 if (!prop)
77 return -EINVAL;
78 if (!prop->value)
79 return -ENODATA;
80
81 if (prop->length % elem_size != 0) {
82 pr_err("size of %s in node %pOF is not a multiple of %d\n",
83 propname, np, elem_size);
84 return -EINVAL;
85 }
86
87 return prop->length / elem_size;
88 }
89 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
90
91 /**
92 * of_find_property_value_of_size
93 *
94 * @np: device node from which the property value is to be read.
95 * @propname: name of the property to be searched.
96 * @min: minimum allowed length of property value
97 * @max: maximum allowed length of property value (0 means unlimited)
98 * @len: if !=NULL, actual length is written to here
99 *
100 * Search for a property in a device node and valid the requested size.
101 *
102 * Return: The property value on success, -EINVAL if the property does not
103 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
104 * property data is too small or too large.
105 *
106 */
of_find_property_value_of_size(const struct device_node * np,const char * propname,u32 min,u32 max,size_t * len)107 static void *of_find_property_value_of_size(const struct device_node *np,
108 const char *propname, u32 min, u32 max, size_t *len)
109 {
110 struct property *prop = of_find_property(np, propname, NULL);
111
112 if (!prop)
113 return ERR_PTR(-EINVAL);
114 if (!prop->value)
115 return ERR_PTR(-ENODATA);
116 if (prop->length < min)
117 return ERR_PTR(-EOVERFLOW);
118 if (max && prop->length > max)
119 return ERR_PTR(-EOVERFLOW);
120
121 if (len)
122 *len = prop->length;
123
124 return prop->value;
125 }
126
127 /**
128 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
129 *
130 * @np: device node from which the property value is to be read.
131 * @propname: name of the property to be searched.
132 * @index: index of the u32 in the list of values
133 * @out_value: pointer to return value, modified only if no error.
134 *
135 * Search for a property in a device node and read nth 32-bit value from
136 * it.
137 *
138 * Return: 0 on success, -EINVAL if the property does not exist,
139 * -ENODATA if property does not have a value, and -EOVERFLOW if the
140 * property data isn't large enough.
141 *
142 * The out_value is modified only if a valid u32 value can be decoded.
143 */
of_property_read_u32_index(const struct device_node * np,const char * propname,u32 index,u32 * out_value)144 int of_property_read_u32_index(const struct device_node *np,
145 const char *propname,
146 u32 index, u32 *out_value)
147 {
148 const u32 *val = of_find_property_value_of_size(np, propname,
149 ((index + 1) * sizeof(*out_value)),
150 0,
151 NULL);
152
153 if (IS_ERR(val))
154 return PTR_ERR(val);
155
156 *out_value = be32_to_cpup(((__be32 *)val) + index);
157 return 0;
158 }
159 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
160
161 /**
162 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
163 *
164 * @np: device node from which the property value is to be read.
165 * @propname: name of the property to be searched.
166 * @index: index of the u64 in the list of values
167 * @out_value: pointer to return value, modified only if no error.
168 *
169 * Search for a property in a device node and read nth 64-bit value from
170 * it.
171 *
172 * Return: 0 on success, -EINVAL if the property does not exist,
173 * -ENODATA if property does not have a value, and -EOVERFLOW if the
174 * property data isn't large enough.
175 *
176 * The out_value is modified only if a valid u64 value can be decoded.
177 */
of_property_read_u64_index(const struct device_node * np,const char * propname,u32 index,u64 * out_value)178 int of_property_read_u64_index(const struct device_node *np,
179 const char *propname,
180 u32 index, u64 *out_value)
181 {
182 const u64 *val = of_find_property_value_of_size(np, propname,
183 ((index + 1) * sizeof(*out_value)),
184 0, NULL);
185
186 if (IS_ERR(val))
187 return PTR_ERR(val);
188
189 *out_value = be64_to_cpup(((__be64 *)val) + index);
190 return 0;
191 }
192 EXPORT_SYMBOL_GPL(of_property_read_u64_index);
193
194 /**
195 * of_property_read_variable_u8_array - Find and read an array of u8 from a
196 * property, with bounds on the minimum and maximum array size.
197 *
198 * @np: device node from which the property value is to be read.
199 * @propname: name of the property to be searched.
200 * @out_values: pointer to found values.
201 * @sz_min: minimum number of array elements to read
202 * @sz_max: maximum number of array elements to read, if zero there is no
203 * upper limit on the number of elements in the dts entry but only
204 * sz_min will be read.
205 *
206 * Search for a property in a device node and read 8-bit value(s) from
207 * it.
208 *
209 * dts entry of array should be like:
210 * ``property = /bits/ 8 <0x50 0x60 0x70>;``
211 *
212 * Return: The number of elements read on success, -EINVAL if the property
213 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
214 * if the property data is smaller than sz_min or longer than sz_max.
215 *
216 * The out_values is modified only if a valid u8 value can be decoded.
217 */
of_property_read_variable_u8_array(const struct device_node * np,const char * propname,u8 * out_values,size_t sz_min,size_t sz_max)218 int of_property_read_variable_u8_array(const struct device_node *np,
219 const char *propname, u8 *out_values,
220 size_t sz_min, size_t sz_max)
221 {
222 size_t sz, count;
223 const u8 *val = of_find_property_value_of_size(np, propname,
224 (sz_min * sizeof(*out_values)),
225 (sz_max * sizeof(*out_values)),
226 &sz);
227
228 if (IS_ERR(val))
229 return PTR_ERR(val);
230
231 if (!sz_max)
232 sz = sz_min;
233 else
234 sz /= sizeof(*out_values);
235
236 count = sz;
237 while (count--)
238 *out_values++ = *val++;
239
240 return sz;
241 }
242 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
243
244 /**
245 * of_property_read_variable_u16_array - Find and read an array of u16 from a
246 * property, with bounds on the minimum and maximum array size.
247 *
248 * @np: device node from which the property value is to be read.
249 * @propname: name of the property to be searched.
250 * @out_values: pointer to found values.
251 * @sz_min: minimum number of array elements to read
252 * @sz_max: maximum number of array elements to read, if zero there is no
253 * upper limit on the number of elements in the dts entry but only
254 * sz_min will be read.
255 *
256 * Search for a property in a device node and read 16-bit value(s) from
257 * it.
258 *
259 * dts entry of array should be like:
260 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
261 *
262 * Return: The number of elements read on success, -EINVAL if the property
263 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
264 * if the property data is smaller than sz_min or longer than sz_max.
265 *
266 * The out_values is modified only if a valid u16 value can be decoded.
267 */
of_property_read_variable_u16_array(const struct device_node * np,const char * propname,u16 * out_values,size_t sz_min,size_t sz_max)268 int of_property_read_variable_u16_array(const struct device_node *np,
269 const char *propname, u16 *out_values,
270 size_t sz_min, size_t sz_max)
271 {
272 size_t sz, count;
273 const __be16 *val = of_find_property_value_of_size(np, propname,
274 (sz_min * sizeof(*out_values)),
275 (sz_max * sizeof(*out_values)),
276 &sz);
277
278 if (IS_ERR(val))
279 return PTR_ERR(val);
280
281 if (!sz_max)
282 sz = sz_min;
283 else
284 sz /= sizeof(*out_values);
285
286 count = sz;
287 while (count--)
288 *out_values++ = be16_to_cpup(val++);
289
290 return sz;
291 }
292 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
293
294 /**
295 * of_property_read_variable_u32_array - Find and read an array of 32 bit
296 * integers from a property, with bounds on the minimum and maximum array size.
297 *
298 * @np: device node from which the property value is to be read.
299 * @propname: name of the property to be searched.
300 * @out_values: pointer to return found values.
301 * @sz_min: minimum number of array elements to read
302 * @sz_max: maximum number of array elements to read, if zero there is no
303 * upper limit on the number of elements in the dts entry but only
304 * sz_min will be read.
305 *
306 * Search for a property in a device node and read 32-bit value(s) from
307 * it.
308 *
309 * Return: The number of elements read on success, -EINVAL if the property
310 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
311 * if the property data is smaller than sz_min or longer than sz_max.
312 *
313 * The out_values is modified only if a valid u32 value can be decoded.
314 */
of_property_read_variable_u32_array(const struct device_node * np,const char * propname,u32 * out_values,size_t sz_min,size_t sz_max)315 int of_property_read_variable_u32_array(const struct device_node *np,
316 const char *propname, u32 *out_values,
317 size_t sz_min, size_t sz_max)
318 {
319 size_t sz, count;
320 const __be32 *val = of_find_property_value_of_size(np, propname,
321 (sz_min * sizeof(*out_values)),
322 (sz_max * sizeof(*out_values)),
323 &sz);
324
325 if (IS_ERR(val))
326 return PTR_ERR(val);
327
328 if (!sz_max)
329 sz = sz_min;
330 else
331 sz /= sizeof(*out_values);
332
333 count = sz;
334 while (count--)
335 *out_values++ = be32_to_cpup(val++);
336
337 return sz;
338 }
339 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
340
341 /**
342 * of_property_read_u64 - Find and read a 64 bit integer from a property
343 * @np: device node from which the property value is to be read.
344 * @propname: name of the property to be searched.
345 * @out_value: pointer to return value, modified only if return value is 0.
346 *
347 * Search for a property in a device node and read a 64-bit value from
348 * it.
349 *
350 * Return: 0 on success, -EINVAL if the property does not exist,
351 * -ENODATA if property does not have a value, and -EOVERFLOW if the
352 * property data isn't large enough.
353 *
354 * The out_value is modified only if a valid u64 value can be decoded.
355 */
of_property_read_u64(const struct device_node * np,const char * propname,u64 * out_value)356 int of_property_read_u64(const struct device_node *np, const char *propname,
357 u64 *out_value)
358 {
359 const __be32 *val = of_find_property_value_of_size(np, propname,
360 sizeof(*out_value),
361 0,
362 NULL);
363
364 if (IS_ERR(val))
365 return PTR_ERR(val);
366
367 *out_value = of_read_number(val, 2);
368 return 0;
369 }
370 EXPORT_SYMBOL_GPL(of_property_read_u64);
371
372 /**
373 * of_property_read_variable_u64_array - Find and read an array of 64 bit
374 * integers from a property, with bounds on the minimum and maximum array size.
375 *
376 * @np: device node from which the property value is to be read.
377 * @propname: name of the property to be searched.
378 * @out_values: pointer to found values.
379 * @sz_min: minimum number of array elements to read
380 * @sz_max: maximum number of array elements to read, if zero there is no
381 * upper limit on the number of elements in the dts entry but only
382 * sz_min will be read.
383 *
384 * Search for a property in a device node and read 64-bit value(s) from
385 * it.
386 *
387 * Return: The number of elements read on success, -EINVAL if the property
388 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
389 * if the property data is smaller than sz_min or longer than sz_max.
390 *
391 * The out_values is modified only if a valid u64 value can be decoded.
392 */
of_property_read_variable_u64_array(const struct device_node * np,const char * propname,u64 * out_values,size_t sz_min,size_t sz_max)393 int of_property_read_variable_u64_array(const struct device_node *np,
394 const char *propname, u64 *out_values,
395 size_t sz_min, size_t sz_max)
396 {
397 size_t sz, count;
398 const __be32 *val = of_find_property_value_of_size(np, propname,
399 (sz_min * sizeof(*out_values)),
400 (sz_max * sizeof(*out_values)),
401 &sz);
402
403 if (IS_ERR(val))
404 return PTR_ERR(val);
405
406 if (!sz_max)
407 sz = sz_min;
408 else
409 sz /= sizeof(*out_values);
410
411 count = sz;
412 while (count--) {
413 *out_values++ = of_read_number(val, 2);
414 val += 2;
415 }
416
417 return sz;
418 }
419 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
420
421 /**
422 * of_property_read_string - Find and read a string from a property
423 * @np: device node from which the property value is to be read.
424 * @propname: name of the property to be searched.
425 * @out_string: pointer to null terminated return string, modified only if
426 * return value is 0.
427 *
428 * Search for a property in a device tree node and retrieve a null
429 * terminated string value (pointer to data, not a copy).
430 *
431 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
432 * property does not have a value, and -EILSEQ if the string is not
433 * null-terminated within the length of the property data.
434 *
435 * Note that the empty string "" has length of 1, thus -ENODATA cannot
436 * be interpreted as an empty string.
437 *
438 * The out_string pointer is modified only if a valid string can be decoded.
439 */
of_property_read_string(const struct device_node * np,const char * propname,const char ** out_string)440 int of_property_read_string(const struct device_node *np, const char *propname,
441 const char **out_string)
442 {
443 const struct property *prop = of_find_property(np, propname, NULL);
444 if (!prop)
445 return -EINVAL;
446 if (!prop->length)
447 return -ENODATA;
448 if (strnlen(prop->value, prop->length) >= prop->length)
449 return -EILSEQ;
450 *out_string = prop->value;
451 return 0;
452 }
453 EXPORT_SYMBOL_GPL(of_property_read_string);
454
455 /**
456 * of_property_match_string() - Find string in a list and return index
457 * @np: pointer to node containing string list property
458 * @propname: string list property name
459 * @string: pointer to string to search for in string list
460 *
461 * This function searches a string list property and returns the index
462 * of a specific string value.
463 */
of_property_match_string(const struct device_node * np,const char * propname,const char * string)464 int of_property_match_string(const struct device_node *np, const char *propname,
465 const char *string)
466 {
467 const struct property *prop = of_find_property(np, propname, NULL);
468 size_t l;
469 int i;
470 const char *p, *end;
471
472 if (!prop)
473 return -EINVAL;
474 if (!prop->value)
475 return -ENODATA;
476
477 p = prop->value;
478 end = p + prop->length;
479
480 for (i = 0; p < end; i++, p += l) {
481 l = strnlen(p, end - p) + 1;
482 if (p + l > end)
483 return -EILSEQ;
484 pr_debug("comparing %s with %s\n", string, p);
485 if (strcmp(string, p) == 0)
486 return i; /* Found it; return index */
487 }
488 return -ENODATA;
489 }
490 EXPORT_SYMBOL_GPL(of_property_match_string);
491
492 /**
493 * of_property_read_string_helper() - Utility helper for parsing string properties
494 * @np: device node from which the property value is to be read.
495 * @propname: name of the property to be searched.
496 * @out_strs: output array of string pointers.
497 * @sz: number of array elements to read.
498 * @skip: Number of strings to skip over at beginning of list.
499 *
500 * Don't call this function directly. It is a utility helper for the
501 * of_property_read_string*() family of functions.
502 */
of_property_read_string_helper(const struct device_node * np,const char * propname,const char ** out_strs,size_t sz,int skip)503 int of_property_read_string_helper(const struct device_node *np,
504 const char *propname, const char **out_strs,
505 size_t sz, int skip)
506 {
507 const struct property *prop = of_find_property(np, propname, NULL);
508 int l = 0, i = 0;
509 const char *p, *end;
510
511 if (!prop)
512 return -EINVAL;
513 if (!prop->value)
514 return -ENODATA;
515 p = prop->value;
516 end = p + prop->length;
517
518 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
519 l = strnlen(p, end - p) + 1;
520 if (p + l > end)
521 return -EILSEQ;
522 if (out_strs && i >= skip)
523 *out_strs++ = p;
524 }
525 i -= skip;
526 return i <= 0 ? -ENODATA : i;
527 }
528 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
529
of_prop_next_u32(struct property * prop,const __be32 * cur,u32 * pu)530 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
531 u32 *pu)
532 {
533 const void *curv = cur;
534
535 if (!prop)
536 return NULL;
537
538 if (!cur) {
539 curv = prop->value;
540 goto out_val;
541 }
542
543 curv += sizeof(*cur);
544 if (curv >= prop->value + prop->length)
545 return NULL;
546
547 out_val:
548 *pu = be32_to_cpup(curv);
549 return curv;
550 }
551 EXPORT_SYMBOL_GPL(of_prop_next_u32);
552
of_prop_next_string(struct property * prop,const char * cur)553 const char *of_prop_next_string(struct property *prop, const char *cur)
554 {
555 const void *curv = cur;
556
557 if (!prop)
558 return NULL;
559
560 if (!cur)
561 return prop->value;
562
563 curv += strlen(cur) + 1;
564 if (curv >= prop->value + prop->length)
565 return NULL;
566
567 return curv;
568 }
569 EXPORT_SYMBOL_GPL(of_prop_next_string);
570
571 /**
572 * of_graph_parse_endpoint() - parse common endpoint node properties
573 * @node: pointer to endpoint device_node
574 * @endpoint: pointer to the OF endpoint data structure
575 *
576 * The caller should hold a reference to @node.
577 */
of_graph_parse_endpoint(const struct device_node * node,struct of_endpoint * endpoint)578 int of_graph_parse_endpoint(const struct device_node *node,
579 struct of_endpoint *endpoint)
580 {
581 struct device_node *port_node = of_get_parent(node);
582
583 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
584 __func__, node);
585
586 memset(endpoint, 0, sizeof(*endpoint));
587
588 endpoint->local_node = node;
589 /*
590 * It doesn't matter whether the two calls below succeed.
591 * If they don't then the default value 0 is used.
592 */
593 of_property_read_u32(port_node, "reg", &endpoint->port);
594 of_property_read_u32(node, "reg", &endpoint->id);
595
596 of_node_put(port_node);
597
598 return 0;
599 }
600 EXPORT_SYMBOL(of_graph_parse_endpoint);
601
602 /**
603 * of_graph_get_port_by_id() - get the port matching a given id
604 * @parent: pointer to the parent device node
605 * @id: id of the port
606 *
607 * Return: A 'port' node pointer with refcount incremented. The caller
608 * has to use of_node_put() on it when done.
609 */
of_graph_get_port_by_id(struct device_node * parent,u32 id)610 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
611 {
612 struct device_node *node, *port;
613
614 node = of_get_child_by_name(parent, "ports");
615 if (node)
616 parent = node;
617
618 for_each_child_of_node(parent, port) {
619 u32 port_id = 0;
620
621 if (!of_node_name_eq(port, "port"))
622 continue;
623 of_property_read_u32(port, "reg", &port_id);
624 if (id == port_id)
625 break;
626 }
627
628 of_node_put(node);
629
630 return port;
631 }
632 EXPORT_SYMBOL(of_graph_get_port_by_id);
633
634 /**
635 * of_graph_get_next_endpoint() - get next endpoint node
636 * @parent: pointer to the parent device node
637 * @prev: previous endpoint node, or NULL to get first
638 *
639 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
640 * of the passed @prev node is decremented.
641 */
of_graph_get_next_endpoint(const struct device_node * parent,struct device_node * prev)642 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
643 struct device_node *prev)
644 {
645 struct device_node *endpoint;
646 struct device_node *port;
647
648 if (!parent)
649 return NULL;
650
651 /*
652 * Start by locating the port node. If no previous endpoint is specified
653 * search for the first port node, otherwise get the previous endpoint
654 * parent port node.
655 */
656 if (!prev) {
657 struct device_node *node;
658
659 node = of_get_child_by_name(parent, "ports");
660 if (node)
661 parent = node;
662
663 port = of_get_child_by_name(parent, "port");
664 of_node_put(node);
665
666 if (!port) {
667 pr_err("graph: no port node found in %pOF\n", parent);
668 return NULL;
669 }
670 } else {
671 port = of_get_parent(prev);
672 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
673 __func__, prev))
674 return NULL;
675 }
676
677 while (1) {
678 /*
679 * Now that we have a port node, get the next endpoint by
680 * getting the next child. If the previous endpoint is NULL this
681 * will return the first child.
682 */
683 endpoint = of_get_next_child(port, prev);
684 if (endpoint) {
685 of_node_put(port);
686 return endpoint;
687 }
688
689 /* No more endpoints under this port, try the next one. */
690 prev = NULL;
691
692 do {
693 port = of_get_next_child(parent, port);
694 if (!port)
695 return NULL;
696 } while (!of_node_name_eq(port, "port"));
697 }
698 }
699 EXPORT_SYMBOL(of_graph_get_next_endpoint);
700
701 /**
702 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
703 * @parent: pointer to the parent device node
704 * @port_reg: identifier (value of reg property) of the parent port node
705 * @reg: identifier (value of reg property) of the endpoint node
706 *
707 * Return: An 'endpoint' node pointer which is identified by reg and at the same
708 * is the child of a port node identified by port_reg. reg and port_reg are
709 * ignored when they are -1. Use of_node_put() on the pointer when done.
710 */
of_graph_get_endpoint_by_regs(const struct device_node * parent,int port_reg,int reg)711 struct device_node *of_graph_get_endpoint_by_regs(
712 const struct device_node *parent, int port_reg, int reg)
713 {
714 struct of_endpoint endpoint;
715 struct device_node *node = NULL;
716
717 for_each_endpoint_of_node(parent, node) {
718 of_graph_parse_endpoint(node, &endpoint);
719 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
720 ((reg == -1) || (endpoint.id == reg)))
721 return node;
722 }
723
724 return NULL;
725 }
726 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
727
728 /**
729 * of_graph_get_remote_endpoint() - get remote endpoint node
730 * @node: pointer to a local endpoint device_node
731 *
732 * Return: Remote endpoint node associated with remote endpoint node linked
733 * to @node. Use of_node_put() on it when done.
734 */
of_graph_get_remote_endpoint(const struct device_node * node)735 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
736 {
737 /* Get remote endpoint node. */
738 return of_parse_phandle(node, "remote-endpoint", 0);
739 }
740 EXPORT_SYMBOL(of_graph_get_remote_endpoint);
741
742 /**
743 * of_graph_get_port_parent() - get port's parent node
744 * @node: pointer to a local endpoint device_node
745 *
746 * Return: device node associated with endpoint node linked
747 * to @node. Use of_node_put() on it when done.
748 */
of_graph_get_port_parent(struct device_node * node)749 struct device_node *of_graph_get_port_parent(struct device_node *node)
750 {
751 unsigned int depth;
752
753 if (!node)
754 return NULL;
755
756 /*
757 * Preserve usecount for passed in node as of_get_next_parent()
758 * will do of_node_put() on it.
759 */
760 of_node_get(node);
761
762 /* Walk 3 levels up only if there is 'ports' node. */
763 for (depth = 3; depth && node; depth--) {
764 node = of_get_next_parent(node);
765 if (depth == 2 && !of_node_name_eq(node, "ports") &&
766 !of_node_name_eq(node, "in-ports") &&
767 !of_node_name_eq(node, "out-ports"))
768 break;
769 }
770 return node;
771 }
772 EXPORT_SYMBOL(of_graph_get_port_parent);
773
774 /**
775 * of_graph_get_remote_port_parent() - get remote port's parent node
776 * @node: pointer to a local endpoint device_node
777 *
778 * Return: Remote device node associated with remote endpoint node linked
779 * to @node. Use of_node_put() on it when done.
780 */
of_graph_get_remote_port_parent(const struct device_node * node)781 struct device_node *of_graph_get_remote_port_parent(
782 const struct device_node *node)
783 {
784 struct device_node *np, *pp;
785
786 /* Get remote endpoint node. */
787 np = of_graph_get_remote_endpoint(node);
788
789 pp = of_graph_get_port_parent(np);
790
791 of_node_put(np);
792
793 return pp;
794 }
795 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
796
797 /**
798 * of_graph_get_remote_port() - get remote port node
799 * @node: pointer to a local endpoint device_node
800 *
801 * Return: Remote port node associated with remote endpoint node linked
802 * to @node. Use of_node_put() on it when done.
803 */
of_graph_get_remote_port(const struct device_node * node)804 struct device_node *of_graph_get_remote_port(const struct device_node *node)
805 {
806 struct device_node *np;
807
808 /* Get remote endpoint node. */
809 np = of_graph_get_remote_endpoint(node);
810 if (!np)
811 return NULL;
812 return of_get_next_parent(np);
813 }
814 EXPORT_SYMBOL(of_graph_get_remote_port);
815
of_graph_get_endpoint_count(const struct device_node * np)816 int of_graph_get_endpoint_count(const struct device_node *np)
817 {
818 struct device_node *endpoint;
819 int num = 0;
820
821 for_each_endpoint_of_node(np, endpoint)
822 num++;
823
824 return num;
825 }
826 EXPORT_SYMBOL(of_graph_get_endpoint_count);
827
828 /**
829 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
830 * @node: pointer to parent device_node containing graph port/endpoint
831 * @port: identifier (value of reg property) of the parent port node
832 * @endpoint: identifier (value of reg property) of the endpoint node
833 *
834 * Return: Remote device node associated with remote endpoint node linked
835 * to @node. Use of_node_put() on it when done.
836 */
of_graph_get_remote_node(const struct device_node * node,u32 port,u32 endpoint)837 struct device_node *of_graph_get_remote_node(const struct device_node *node,
838 u32 port, u32 endpoint)
839 {
840 struct device_node *endpoint_node, *remote;
841
842 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
843 if (!endpoint_node) {
844 pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
845 port, endpoint, node);
846 return NULL;
847 }
848
849 remote = of_graph_get_remote_port_parent(endpoint_node);
850 of_node_put(endpoint_node);
851 if (!remote) {
852 pr_debug("no valid remote node\n");
853 return NULL;
854 }
855
856 if (!of_device_is_available(remote)) {
857 pr_debug("not available for remote node\n");
858 of_node_put(remote);
859 return NULL;
860 }
861
862 return remote;
863 }
864 EXPORT_SYMBOL(of_graph_get_remote_node);
865
of_fwnode_get(struct fwnode_handle * fwnode)866 static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
867 {
868 return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
869 }
870
of_fwnode_put(struct fwnode_handle * fwnode)871 static void of_fwnode_put(struct fwnode_handle *fwnode)
872 {
873 of_node_put(to_of_node(fwnode));
874 }
875
of_fwnode_device_is_available(const struct fwnode_handle * fwnode)876 static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
877 {
878 return of_device_is_available(to_of_node(fwnode));
879 }
880
of_fwnode_device_dma_supported(const struct fwnode_handle * fwnode)881 static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode)
882 {
883 return true;
884 }
885
886 static enum dev_dma_attr
of_fwnode_device_get_dma_attr(const struct fwnode_handle * fwnode)887 of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode)
888 {
889 if (of_dma_is_coherent(to_of_node(fwnode)))
890 return DEV_DMA_COHERENT;
891 else
892 return DEV_DMA_NON_COHERENT;
893 }
894
of_fwnode_property_present(const struct fwnode_handle * fwnode,const char * propname)895 static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
896 const char *propname)
897 {
898 return of_property_read_bool(to_of_node(fwnode), propname);
899 }
900
of_fwnode_property_read_int_array(const struct fwnode_handle * fwnode,const char * propname,unsigned int elem_size,void * val,size_t nval)901 static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
902 const char *propname,
903 unsigned int elem_size, void *val,
904 size_t nval)
905 {
906 const struct device_node *node = to_of_node(fwnode);
907
908 if (!val)
909 return of_property_count_elems_of_size(node, propname,
910 elem_size);
911
912 switch (elem_size) {
913 case sizeof(u8):
914 return of_property_read_u8_array(node, propname, val, nval);
915 case sizeof(u16):
916 return of_property_read_u16_array(node, propname, val, nval);
917 case sizeof(u32):
918 return of_property_read_u32_array(node, propname, val, nval);
919 case sizeof(u64):
920 return of_property_read_u64_array(node, propname, val, nval);
921 }
922
923 return -ENXIO;
924 }
925
926 static int
of_fwnode_property_read_string_array(const struct fwnode_handle * fwnode,const char * propname,const char ** val,size_t nval)927 of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
928 const char *propname, const char **val,
929 size_t nval)
930 {
931 const struct device_node *node = to_of_node(fwnode);
932
933 return val ?
934 of_property_read_string_array(node, propname, val, nval) :
935 of_property_count_strings(node, propname);
936 }
937
of_fwnode_get_name(const struct fwnode_handle * fwnode)938 static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
939 {
940 return kbasename(to_of_node(fwnode)->full_name);
941 }
942
of_fwnode_get_name_prefix(const struct fwnode_handle * fwnode)943 static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
944 {
945 /* Root needs no prefix here (its name is "/"). */
946 if (!to_of_node(fwnode)->parent)
947 return "";
948
949 return "/";
950 }
951
952 static struct fwnode_handle *
of_fwnode_get_parent(const struct fwnode_handle * fwnode)953 of_fwnode_get_parent(const struct fwnode_handle *fwnode)
954 {
955 return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
956 }
957
958 static struct fwnode_handle *
of_fwnode_get_next_child_node(const struct fwnode_handle * fwnode,struct fwnode_handle * child)959 of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
960 struct fwnode_handle *child)
961 {
962 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
963 to_of_node(child)));
964 }
965
966 static struct fwnode_handle *
of_fwnode_get_named_child_node(const struct fwnode_handle * fwnode,const char * childname)967 of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
968 const char *childname)
969 {
970 const struct device_node *node = to_of_node(fwnode);
971 struct device_node *child;
972
973 for_each_available_child_of_node(node, child)
974 if (of_node_name_eq(child, childname))
975 return of_fwnode_handle(child);
976
977 return NULL;
978 }
979
980 static int
of_fwnode_get_reference_args(const struct fwnode_handle * fwnode,const char * prop,const char * nargs_prop,unsigned int nargs,unsigned int index,struct fwnode_reference_args * args)981 of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
982 const char *prop, const char *nargs_prop,
983 unsigned int nargs, unsigned int index,
984 struct fwnode_reference_args *args)
985 {
986 struct of_phandle_args of_args;
987 unsigned int i;
988 int ret;
989
990 if (nargs_prop)
991 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
992 nargs_prop, index, &of_args);
993 else
994 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
995 nargs, index, &of_args);
996 if (ret < 0)
997 return ret;
998 if (!args) {
999 of_node_put(of_args.np);
1000 return 0;
1001 }
1002
1003 args->nargs = of_args.args_count;
1004 args->fwnode = of_fwnode_handle(of_args.np);
1005
1006 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
1007 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
1008
1009 return 0;
1010 }
1011
1012 static struct fwnode_handle *
of_fwnode_graph_get_next_endpoint(const struct fwnode_handle * fwnode,struct fwnode_handle * prev)1013 of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1014 struct fwnode_handle *prev)
1015 {
1016 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
1017 to_of_node(prev)));
1018 }
1019
1020 static struct fwnode_handle *
of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle * fwnode)1021 of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1022 {
1023 return of_fwnode_handle(
1024 of_graph_get_remote_endpoint(to_of_node(fwnode)));
1025 }
1026
1027 static struct fwnode_handle *
of_fwnode_graph_get_port_parent(struct fwnode_handle * fwnode)1028 of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1029 {
1030 struct device_node *np;
1031
1032 /* Get the parent of the port */
1033 np = of_get_parent(to_of_node(fwnode));
1034 if (!np)
1035 return NULL;
1036
1037 /* Is this the "ports" node? If not, it's the port parent. */
1038 if (!of_node_name_eq(np, "ports"))
1039 return of_fwnode_handle(np);
1040
1041 return of_fwnode_handle(of_get_next_parent(np));
1042 }
1043
of_fwnode_graph_parse_endpoint(const struct fwnode_handle * fwnode,struct fwnode_endpoint * endpoint)1044 static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1045 struct fwnode_endpoint *endpoint)
1046 {
1047 const struct device_node *node = to_of_node(fwnode);
1048 struct device_node *port_node = of_get_parent(node);
1049
1050 endpoint->local_fwnode = fwnode;
1051
1052 of_property_read_u32(port_node, "reg", &endpoint->port);
1053 of_property_read_u32(node, "reg", &endpoint->id);
1054
1055 of_node_put(port_node);
1056
1057 return 0;
1058 }
1059
1060 static const void *
of_fwnode_device_get_match_data(const struct fwnode_handle * fwnode,const struct device * dev)1061 of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1062 const struct device *dev)
1063 {
1064 return of_device_get_match_data(dev);
1065 }
1066
of_get_compat_node(struct device_node * np)1067 static struct device_node *of_get_compat_node(struct device_node *np)
1068 {
1069 of_node_get(np);
1070
1071 while (np) {
1072 if (!of_device_is_available(np)) {
1073 of_node_put(np);
1074 np = NULL;
1075 }
1076
1077 if (of_find_property(np, "compatible", NULL))
1078 break;
1079
1080 np = of_get_next_parent(np);
1081 }
1082
1083 return np;
1084 }
1085
of_get_compat_node_parent(struct device_node * np)1086 static struct device_node *of_get_compat_node_parent(struct device_node *np)
1087 {
1088 struct device_node *parent, *node;
1089
1090 parent = of_get_parent(np);
1091 node = of_get_compat_node(parent);
1092 of_node_put(parent);
1093
1094 return node;
1095 }
1096
of_link_to_phandle(struct device_node * con_np,struct device_node * sup_np)1097 static void of_link_to_phandle(struct device_node *con_np,
1098 struct device_node *sup_np)
1099 {
1100 struct device_node *tmp_np = of_node_get(sup_np);
1101
1102 /* Check that sup_np and its ancestors are available. */
1103 while (tmp_np) {
1104 if (of_fwnode_handle(tmp_np)->dev) {
1105 of_node_put(tmp_np);
1106 break;
1107 }
1108
1109 if (!of_device_is_available(tmp_np)) {
1110 of_node_put(tmp_np);
1111 return;
1112 }
1113
1114 tmp_np = of_get_next_parent(tmp_np);
1115 }
1116
1117 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np));
1118 }
1119
1120 /**
1121 * parse_prop_cells - Property parsing function for suppliers
1122 *
1123 * @np: Pointer to device tree node containing a list
1124 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1125 * @index: For properties holding a list of phandles, this is the index
1126 * into the list.
1127 * @list_name: Property name that is known to contain list of phandle(s) to
1128 * supplier(s)
1129 * @cells_name: property name that specifies phandles' arguments count
1130 *
1131 * This is a helper function to parse properties that have a known fixed name
1132 * and are a list of phandles and phandle arguments.
1133 *
1134 * Returns:
1135 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1136 * on it when done.
1137 * - NULL if no phandle found at index
1138 */
parse_prop_cells(struct device_node * np,const char * prop_name,int index,const char * list_name,const char * cells_name)1139 static struct device_node *parse_prop_cells(struct device_node *np,
1140 const char *prop_name, int index,
1141 const char *list_name,
1142 const char *cells_name)
1143 {
1144 struct of_phandle_args sup_args;
1145
1146 if (strcmp(prop_name, list_name))
1147 return NULL;
1148
1149 if (of_parse_phandle_with_args(np, list_name, cells_name, index,
1150 &sup_args))
1151 return NULL;
1152
1153 return sup_args.np;
1154 }
1155
1156 #define DEFINE_SIMPLE_PROP(fname, name, cells) \
1157 static struct device_node *parse_##fname(struct device_node *np, \
1158 const char *prop_name, int index) \
1159 { \
1160 return parse_prop_cells(np, prop_name, index, name, cells); \
1161 }
1162
strcmp_suffix(const char * str,const char * suffix)1163 static int strcmp_suffix(const char *str, const char *suffix)
1164 {
1165 unsigned int len, suffix_len;
1166
1167 len = strlen(str);
1168 suffix_len = strlen(suffix);
1169 if (len <= suffix_len)
1170 return -1;
1171 return strcmp(str + len - suffix_len, suffix);
1172 }
1173
1174 /**
1175 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1176 *
1177 * @np: Pointer to device tree node containing a list
1178 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1179 * @index: For properties holding a list of phandles, this is the index
1180 * into the list.
1181 * @suffix: Property suffix that is known to contain list of phandle(s) to
1182 * supplier(s)
1183 * @cells_name: property name that specifies phandles' arguments count
1184 *
1185 * This is a helper function to parse properties that have a known fixed suffix
1186 * and are a list of phandles and phandle arguments.
1187 *
1188 * Returns:
1189 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1190 * on it when done.
1191 * - NULL if no phandle found at index
1192 */
parse_suffix_prop_cells(struct device_node * np,const char * prop_name,int index,const char * suffix,const char * cells_name)1193 static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1194 const char *prop_name, int index,
1195 const char *suffix,
1196 const char *cells_name)
1197 {
1198 struct of_phandle_args sup_args;
1199
1200 if (strcmp_suffix(prop_name, suffix))
1201 return NULL;
1202
1203 if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1204 &sup_args))
1205 return NULL;
1206
1207 return sup_args.np;
1208 }
1209
1210 #define DEFINE_SUFFIX_PROP(fname, suffix, cells) \
1211 static struct device_node *parse_##fname(struct device_node *np, \
1212 const char *prop_name, int index) \
1213 { \
1214 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1215 }
1216
1217 /**
1218 * struct supplier_bindings - Property parsing functions for suppliers
1219 *
1220 * @parse_prop: function name
1221 * parse_prop() finds the node corresponding to a supplier phandle
1222 * @parse_prop.np: Pointer to device node holding supplier phandle property
1223 * @parse_prop.prop_name: Name of property holding a phandle value
1224 * @parse_prop.index: For properties holding a list of phandles, this is the
1225 * index into the list
1226 * @optional: Describes whether a supplier is mandatory or not
1227 * @node_not_dev: The consumer node containing the property is never converted
1228 * to a struct device. Instead, parse ancestor nodes for the
1229 * compatible property to find a node corresponding to a device.
1230 *
1231 * Returns:
1232 * parse_prop() return values are
1233 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1234 * on it when done.
1235 * - NULL if no phandle found at index
1236 */
1237 struct supplier_bindings {
1238 struct device_node *(*parse_prop)(struct device_node *np,
1239 const char *prop_name, int index);
1240 bool optional;
1241 bool node_not_dev;
1242 };
1243
1244 DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1245 DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1246 DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1247 DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1248 DEFINE_SIMPLE_PROP(io_channels, "io-channels", "#io-channel-cells")
1249 DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1250 DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1251 DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1252 DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1253 DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1254 DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", NULL)
1255 DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1256 DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1257 DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1258 DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1259 DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1260 DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1261 DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1262 DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1263 DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1264 DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1265 DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1266 DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells")
1267 DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells")
1268 DEFINE_SIMPLE_PROP(leds, "leds", NULL)
1269 DEFINE_SIMPLE_PROP(backlight, "backlight", NULL)
1270 DEFINE_SIMPLE_PROP(panel, "panel", NULL)
1271 DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1272 DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1273
parse_gpios(struct device_node * np,const char * prop_name,int index)1274 static struct device_node *parse_gpios(struct device_node *np,
1275 const char *prop_name, int index)
1276 {
1277 if (!strcmp_suffix(prop_name, ",nr-gpios"))
1278 return NULL;
1279
1280 return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1281 "#gpio-cells");
1282 }
1283
parse_iommu_maps(struct device_node * np,const char * prop_name,int index)1284 static struct device_node *parse_iommu_maps(struct device_node *np,
1285 const char *prop_name, int index)
1286 {
1287 if (strcmp(prop_name, "iommu-map"))
1288 return NULL;
1289
1290 return of_parse_phandle(np, prop_name, (index * 4) + 1);
1291 }
1292
parse_gpio_compat(struct device_node * np,const char * prop_name,int index)1293 static struct device_node *parse_gpio_compat(struct device_node *np,
1294 const char *prop_name, int index)
1295 {
1296 struct of_phandle_args sup_args;
1297
1298 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
1299 return NULL;
1300
1301 /*
1302 * Ignore node with gpio-hog property since its gpios are all provided
1303 * by its parent.
1304 */
1305 if (of_find_property(np, "gpio-hog", NULL))
1306 return NULL;
1307
1308 if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index,
1309 &sup_args))
1310 return NULL;
1311
1312 return sup_args.np;
1313 }
1314
parse_interrupts(struct device_node * np,const char * prop_name,int index)1315 static struct device_node *parse_interrupts(struct device_node *np,
1316 const char *prop_name, int index)
1317 {
1318 struct of_phandle_args sup_args;
1319
1320 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC))
1321 return NULL;
1322
1323 if (strcmp(prop_name, "interrupts") &&
1324 strcmp(prop_name, "interrupts-extended"))
1325 return NULL;
1326
1327 return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np;
1328 }
1329
parse_remote_endpoint(struct device_node * np,const char * prop_name,int index)1330 static struct device_node *parse_remote_endpoint(struct device_node *np,
1331 const char *prop_name,
1332 int index)
1333 {
1334 /* Return NULL for index > 0 to signify end of remote-endpoints. */
1335 if (!index || strcmp(prop_name, "remote-endpoint"))
1336 return NULL;
1337
1338 return of_graph_get_remote_port_parent(np);
1339 }
1340
1341 static const struct supplier_bindings of_supplier_bindings[] = {
1342 { .parse_prop = parse_clocks, },
1343 { .parse_prop = parse_interconnects, },
1344 { .parse_prop = parse_iommus, .optional = true, },
1345 { .parse_prop = parse_iommu_maps, .optional = true, },
1346 { .parse_prop = parse_mboxes, },
1347 { .parse_prop = parse_io_channels, },
1348 { .parse_prop = parse_interrupt_parent, },
1349 { .parse_prop = parse_dmas, .optional = true, },
1350 { .parse_prop = parse_power_domains, },
1351 { .parse_prop = parse_hwlocks, },
1352 { .parse_prop = parse_extcon, },
1353 { .parse_prop = parse_nvmem_cells, },
1354 { .parse_prop = parse_phys, },
1355 { .parse_prop = parse_wakeup_parent, },
1356 { .parse_prop = parse_pinctrl0, },
1357 { .parse_prop = parse_pinctrl1, },
1358 { .parse_prop = parse_pinctrl2, },
1359 { .parse_prop = parse_pinctrl3, },
1360 { .parse_prop = parse_pinctrl4, },
1361 { .parse_prop = parse_pinctrl5, },
1362 { .parse_prop = parse_pinctrl6, },
1363 { .parse_prop = parse_pinctrl7, },
1364 { .parse_prop = parse_pinctrl8, },
1365 { .parse_prop = parse_remote_endpoint, .node_not_dev = true, },
1366 { .parse_prop = parse_pwms, },
1367 { .parse_prop = parse_resets, },
1368 { .parse_prop = parse_leds, },
1369 { .parse_prop = parse_backlight, },
1370 { .parse_prop = parse_panel, },
1371 { .parse_prop = parse_gpio_compat, },
1372 { .parse_prop = parse_interrupts, },
1373 { .parse_prop = parse_regulators, },
1374 { .parse_prop = parse_gpio, },
1375 { .parse_prop = parse_gpios, },
1376 {}
1377 };
1378
1379 /**
1380 * of_link_property - Create device links to suppliers listed in a property
1381 * @con_np: The consumer device tree node which contains the property
1382 * @prop_name: Name of property to be parsed
1383 *
1384 * This function checks if the property @prop_name that is present in the
1385 * @con_np device tree node is one of the known common device tree bindings
1386 * that list phandles to suppliers. If @prop_name isn't one, this function
1387 * doesn't do anything.
1388 *
1389 * If @prop_name is one, this function attempts to create fwnode links from the
1390 * consumer device tree node @con_np to all the suppliers device tree nodes
1391 * listed in @prop_name.
1392 *
1393 * Any failed attempt to create a fwnode link will NOT result in an immediate
1394 * return. of_link_property() must create links to all the available supplier
1395 * device tree nodes even when attempts to create a link to one or more
1396 * suppliers fail.
1397 */
of_link_property(struct device_node * con_np,const char * prop_name)1398 static int of_link_property(struct device_node *con_np, const char *prop_name)
1399 {
1400 struct device_node *phandle;
1401 const struct supplier_bindings *s = of_supplier_bindings;
1402 unsigned int i = 0;
1403 bool matched = false;
1404
1405 /* Do not stop at first failed link, link all available suppliers. */
1406 while (!matched && s->parse_prop) {
1407 if (s->optional && !fw_devlink_is_strict()) {
1408 s++;
1409 continue;
1410 }
1411
1412 while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1413 struct device_node *con_dev_np;
1414
1415 con_dev_np = s->node_not_dev
1416 ? of_get_compat_node_parent(con_np)
1417 : of_node_get(con_np);
1418 matched = true;
1419 i++;
1420 of_link_to_phandle(con_dev_np, phandle);
1421 of_node_put(phandle);
1422 of_node_put(con_dev_np);
1423 }
1424 s++;
1425 }
1426 return 0;
1427 }
1428
of_fwnode_iomap(struct fwnode_handle * fwnode,int index)1429 static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index)
1430 {
1431 #ifdef CONFIG_OF_ADDRESS
1432 return of_iomap(to_of_node(fwnode), index);
1433 #else
1434 return NULL;
1435 #endif
1436 }
1437
of_fwnode_irq_get(const struct fwnode_handle * fwnode,unsigned int index)1438 static int of_fwnode_irq_get(const struct fwnode_handle *fwnode,
1439 unsigned int index)
1440 {
1441 return of_irq_get(to_of_node(fwnode), index);
1442 }
1443
of_fwnode_add_links(struct fwnode_handle * fwnode)1444 static int of_fwnode_add_links(struct fwnode_handle *fwnode)
1445 {
1446 struct property *p;
1447 struct device_node *con_np = to_of_node(fwnode);
1448
1449 if (IS_ENABLED(CONFIG_X86))
1450 return 0;
1451
1452 if (!con_np)
1453 return -EINVAL;
1454
1455 for_each_property_of_node(con_np, p)
1456 of_link_property(con_np, p->name);
1457
1458 return 0;
1459 }
1460
1461 const struct fwnode_operations of_fwnode_ops = {
1462 .get = of_fwnode_get,
1463 .put = of_fwnode_put,
1464 .device_is_available = of_fwnode_device_is_available,
1465 .device_get_match_data = of_fwnode_device_get_match_data,
1466 .device_dma_supported = of_fwnode_device_dma_supported,
1467 .device_get_dma_attr = of_fwnode_device_get_dma_attr,
1468 .property_present = of_fwnode_property_present,
1469 .property_read_int_array = of_fwnode_property_read_int_array,
1470 .property_read_string_array = of_fwnode_property_read_string_array,
1471 .get_name = of_fwnode_get_name,
1472 .get_name_prefix = of_fwnode_get_name_prefix,
1473 .get_parent = of_fwnode_get_parent,
1474 .get_next_child_node = of_fwnode_get_next_child_node,
1475 .get_named_child_node = of_fwnode_get_named_child_node,
1476 .get_reference_args = of_fwnode_get_reference_args,
1477 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1478 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1479 .graph_get_port_parent = of_fwnode_graph_get_port_parent,
1480 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1481 .iomap = of_fwnode_iomap,
1482 .irq_get = of_fwnode_irq_get,
1483 .add_links = of_fwnode_add_links,
1484 };
1485 EXPORT_SYMBOL_GPL(of_fwnode_ops);
1486