1 /*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26
27 #include "reg_helper.h"
28 #include "dcn10_optc.h"
29 #include "dc.h"
30
31 #define REG(reg)\
32 optc1->tg_regs->reg
33
34 #define CTX \
35 optc1->base.ctx
36
37 #undef FN
38 #define FN(reg_name, field_name) \
39 optc1->tg_shift->field_name, optc1->tg_mask->field_name
40
41 #define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100
42
43 /**
44 * apply_front_porch_workaround TODO FPGA still need?
45 *
46 * This is a workaround for a bug that has existed since R5xx and has not been
47 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
48 */
apply_front_porch_workaround(struct dc_crtc_timing * timing)49 static void apply_front_porch_workaround(struct dc_crtc_timing *timing)
50 {
51 if (timing->flags.INTERLACE == 1) {
52 if (timing->v_front_porch < 2)
53 timing->v_front_porch = 2;
54 } else {
55 if (timing->v_front_porch < 1)
56 timing->v_front_porch = 1;
57 }
58 }
59
optc1_program_global_sync(struct timing_generator * optc,int vready_offset,int vstartup_start,int vupdate_offset,int vupdate_width)60 void optc1_program_global_sync(
61 struct timing_generator *optc,
62 int vready_offset,
63 int vstartup_start,
64 int vupdate_offset,
65 int vupdate_width)
66 {
67 struct optc *optc1 = DCN10TG_FROM_TG(optc);
68
69 optc1->vready_offset = vready_offset;
70 optc1->vstartup_start = vstartup_start;
71 optc1->vupdate_offset = vupdate_offset;
72 optc1->vupdate_width = vupdate_width;
73
74 if (optc1->vstartup_start == 0) {
75 BREAK_TO_DEBUGGER();
76 return;
77 }
78
79 REG_SET(OTG_VSTARTUP_PARAM, 0,
80 VSTARTUP_START, optc1->vstartup_start);
81
82 REG_SET_2(OTG_VUPDATE_PARAM, 0,
83 VUPDATE_OFFSET, optc1->vupdate_offset,
84 VUPDATE_WIDTH, optc1->vupdate_width);
85
86 REG_SET(OTG_VREADY_PARAM, 0,
87 VREADY_OFFSET, optc1->vready_offset);
88 }
89
optc1_disable_stereo(struct timing_generator * optc)90 static void optc1_disable_stereo(struct timing_generator *optc)
91 {
92 struct optc *optc1 = DCN10TG_FROM_TG(optc);
93
94 REG_SET(OTG_STEREO_CONTROL, 0,
95 OTG_STEREO_EN, 0);
96
97 REG_SET_2(OTG_3D_STRUCTURE_CONTROL, 0,
98 OTG_3D_STRUCTURE_EN, 0,
99 OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0);
100 }
101
optc1_setup_vertical_interrupt0(struct timing_generator * optc,uint32_t start_line,uint32_t end_line)102 void optc1_setup_vertical_interrupt0(
103 struct timing_generator *optc,
104 uint32_t start_line,
105 uint32_t end_line)
106 {
107 struct optc *optc1 = DCN10TG_FROM_TG(optc);
108
109 REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0,
110 OTG_VERTICAL_INTERRUPT0_LINE_START, start_line,
111 OTG_VERTICAL_INTERRUPT0_LINE_END, end_line);
112 }
113
optc1_setup_vertical_interrupt1(struct timing_generator * optc,uint32_t start_line)114 void optc1_setup_vertical_interrupt1(
115 struct timing_generator *optc,
116 uint32_t start_line)
117 {
118 struct optc *optc1 = DCN10TG_FROM_TG(optc);
119
120 REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION, 0,
121 OTG_VERTICAL_INTERRUPT1_LINE_START, start_line);
122 }
123
optc1_setup_vertical_interrupt2(struct timing_generator * optc,uint32_t start_line)124 void optc1_setup_vertical_interrupt2(
125 struct timing_generator *optc,
126 uint32_t start_line)
127 {
128 struct optc *optc1 = DCN10TG_FROM_TG(optc);
129
130 REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0,
131 OTG_VERTICAL_INTERRUPT2_LINE_START, start_line);
132 }
133
134 /**
135 * program_timing_generator used by mode timing set
136 * Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition.
137 * Including SYNC. Call BIOS command table to program Timings.
138 */
optc1_program_timing(struct timing_generator * optc,const struct dc_crtc_timing * dc_crtc_timing,int vready_offset,int vstartup_start,int vupdate_offset,int vupdate_width,const enum signal_type signal,bool use_vbios)139 void optc1_program_timing(
140 struct timing_generator *optc,
141 const struct dc_crtc_timing *dc_crtc_timing,
142 int vready_offset,
143 int vstartup_start,
144 int vupdate_offset,
145 int vupdate_width,
146 const enum signal_type signal,
147 bool use_vbios)
148 {
149 struct dc_crtc_timing patched_crtc_timing;
150 uint32_t asic_blank_end;
151 uint32_t asic_blank_start;
152 uint32_t v_total;
153 uint32_t v_sync_end;
154 uint32_t h_sync_polarity, v_sync_polarity;
155 uint32_t start_point = 0;
156 uint32_t field_num = 0;
157 enum h_timing_div_mode h_div = H_TIMING_NO_DIV;
158
159 struct optc *optc1 = DCN10TG_FROM_TG(optc);
160
161 optc1->signal = signal;
162 optc1->vready_offset = vready_offset;
163 optc1->vstartup_start = vstartup_start;
164 optc1->vupdate_offset = vupdate_offset;
165 optc1->vupdate_width = vupdate_width;
166 patched_crtc_timing = *dc_crtc_timing;
167 apply_front_porch_workaround(&patched_crtc_timing);
168 optc1->orginal_patched_timing = patched_crtc_timing;
169
170 /* Load horizontal timing */
171
172 /* CRTC_H_TOTAL = vesa.h_total - 1 */
173 REG_SET(OTG_H_TOTAL, 0,
174 OTG_H_TOTAL, patched_crtc_timing.h_total - 1);
175
176 /* h_sync_start = 0, h_sync_end = vesa.h_sync_width */
177 REG_UPDATE_2(OTG_H_SYNC_A,
178 OTG_H_SYNC_A_START, 0,
179 OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width);
180
181 /* blank_start = line end - front porch */
182 asic_blank_start = patched_crtc_timing.h_total -
183 patched_crtc_timing.h_front_porch;
184
185 /* blank_end = blank_start - active */
186 asic_blank_end = asic_blank_start -
187 patched_crtc_timing.h_border_right -
188 patched_crtc_timing.h_addressable -
189 patched_crtc_timing.h_border_left;
190
191 REG_UPDATE_2(OTG_H_BLANK_START_END,
192 OTG_H_BLANK_START, asic_blank_start,
193 OTG_H_BLANK_END, asic_blank_end);
194
195 /* h_sync polarity */
196 h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ?
197 0 : 1;
198
199 REG_UPDATE(OTG_H_SYNC_A_CNTL,
200 OTG_H_SYNC_A_POL, h_sync_polarity);
201
202 v_total = patched_crtc_timing.v_total - 1;
203
204 REG_SET(OTG_V_TOTAL, 0,
205 OTG_V_TOTAL, v_total);
206
207 /* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and
208 * OTG_V_TOTAL_MIN are equal to V_TOTAL.
209 */
210 optc->funcs->set_vtotal_min_max(optc, v_total, v_total);
211
212 /* v_sync_start = 0, v_sync_end = v_sync_width */
213 v_sync_end = patched_crtc_timing.v_sync_width;
214
215 REG_UPDATE_2(OTG_V_SYNC_A,
216 OTG_V_SYNC_A_START, 0,
217 OTG_V_SYNC_A_END, v_sync_end);
218
219 /* blank_start = frame end - front porch */
220 asic_blank_start = patched_crtc_timing.v_total -
221 patched_crtc_timing.v_front_porch;
222
223 /* blank_end = blank_start - active */
224 asic_blank_end = asic_blank_start -
225 patched_crtc_timing.v_border_bottom -
226 patched_crtc_timing.v_addressable -
227 patched_crtc_timing.v_border_top;
228
229 REG_UPDATE_2(OTG_V_BLANK_START_END,
230 OTG_V_BLANK_START, asic_blank_start,
231 OTG_V_BLANK_END, asic_blank_end);
232
233 /* v_sync polarity */
234 v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ?
235 0 : 1;
236
237 REG_UPDATE(OTG_V_SYNC_A_CNTL,
238 OTG_V_SYNC_A_POL, v_sync_polarity);
239
240 if (optc1->signal == SIGNAL_TYPE_DISPLAY_PORT ||
241 optc1->signal == SIGNAL_TYPE_DISPLAY_PORT_MST ||
242 optc1->signal == SIGNAL_TYPE_EDP) {
243 start_point = 1;
244 if (patched_crtc_timing.flags.INTERLACE == 1)
245 field_num = 1;
246 }
247
248 /* Interlace */
249 if (REG(OTG_INTERLACE_CONTROL)) {
250 if (patched_crtc_timing.flags.INTERLACE == 1)
251 REG_UPDATE(OTG_INTERLACE_CONTROL,
252 OTG_INTERLACE_ENABLE, 1);
253 else
254 REG_UPDATE(OTG_INTERLACE_CONTROL,
255 OTG_INTERLACE_ENABLE, 0);
256 }
257
258 /* VTG enable set to 0 first VInit */
259 REG_UPDATE(CONTROL,
260 VTG0_ENABLE, 0);
261
262 /* original code is using VTG offset to address OTG reg, seems wrong */
263 REG_UPDATE_2(OTG_CONTROL,
264 OTG_START_POINT_CNTL, start_point,
265 OTG_FIELD_NUMBER_CNTL, field_num);
266
267 optc->funcs->program_global_sync(optc,
268 vready_offset,
269 vstartup_start,
270 vupdate_offset,
271 vupdate_width);
272
273 optc->funcs->set_vtg_params(optc, dc_crtc_timing, true);
274
275 /* TODO
276 * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1
277 * program_horz_count_by_2
278 * for DVI 30bpp mode, 0 otherwise
279 * program_horz_count_by_2(optc, &patched_crtc_timing);
280 */
281
282 /* Enable stereo - only when we need to pack 3D frame. Other types
283 * of stereo handled in explicit call
284 */
285
286 if (optc1_is_two_pixels_per_containter(&patched_crtc_timing) || optc1->opp_count == 2)
287 h_div = H_TIMING_DIV_BY2;
288
289 if (REG(OPTC_DATA_FORMAT_CONTROL) && optc1->tg_mask->OPTC_DATA_FORMAT != 0) {
290 uint32_t data_fmt = 0;
291
292 if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
293 data_fmt = 1;
294 else if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
295 data_fmt = 2;
296
297 REG_UPDATE(OPTC_DATA_FORMAT_CONTROL, OPTC_DATA_FORMAT, data_fmt);
298 }
299
300 if (optc1->tg_mask->OTG_H_TIMING_DIV_MODE != 0) {
301 if (optc1->opp_count == 4)
302 h_div = H_TIMING_DIV_BY4;
303
304 REG_UPDATE(OTG_H_TIMING_CNTL,
305 OTG_H_TIMING_DIV_MODE, h_div);
306 } else {
307 REG_UPDATE(OTG_H_TIMING_CNTL,
308 OTG_H_TIMING_DIV_BY2, h_div);
309 }
310 }
311
312 /**
313 * optc1_set_vtg_params - Set Vertical Timing Generator (VTG) parameters
314 *
315 * @optc: timing_generator struct used to extract the optc parameters
316 * @dc_crtc_timing: Timing parameters configured
317 * @program_fp2: Boolean value indicating if FP2 will be programmed or not
318 *
319 * OTG is responsible for generating the global sync signals, including
320 * vertical timing information for each HUBP in the dcfclk domain. Each VTG is
321 * associated with one OTG that provides HUBP with vertical timing information
322 * (i.e., there is 1:1 correspondence between OTG and VTG). This function is
323 * responsible for setting the OTG parameters to the VTG during the pipe
324 * programming.
325 */
optc1_set_vtg_params(struct timing_generator * optc,const struct dc_crtc_timing * dc_crtc_timing,bool program_fp2)326 void optc1_set_vtg_params(struct timing_generator *optc,
327 const struct dc_crtc_timing *dc_crtc_timing, bool program_fp2)
328 {
329 struct dc_crtc_timing patched_crtc_timing;
330 uint32_t asic_blank_end;
331 uint32_t v_init;
332 uint32_t v_fp2 = 0;
333 int32_t vertical_line_start;
334
335 struct optc *optc1 = DCN10TG_FROM_TG(optc);
336
337 patched_crtc_timing = *dc_crtc_timing;
338 apply_front_porch_workaround(&patched_crtc_timing);
339
340 /* VCOUNT_INIT is the start of blank */
341 v_init = patched_crtc_timing.v_total - patched_crtc_timing.v_front_porch;
342
343 /* end of blank = v_init - active */
344 asic_blank_end = v_init -
345 patched_crtc_timing.v_border_bottom -
346 patched_crtc_timing.v_addressable -
347 patched_crtc_timing.v_border_top;
348
349 /* if VSTARTUP is before VSYNC, FP2 is the offset, otherwise 0 */
350 vertical_line_start = asic_blank_end - optc1->vstartup_start + 1;
351 if (vertical_line_start < 0)
352 v_fp2 = -vertical_line_start;
353
354 /* Interlace */
355 if (REG(OTG_INTERLACE_CONTROL)) {
356 if (patched_crtc_timing.flags.INTERLACE == 1) {
357 v_init = v_init / 2;
358 if ((optc1->vstartup_start/2)*2 > asic_blank_end)
359 v_fp2 = v_fp2 / 2;
360 }
361 }
362
363 if (program_fp2)
364 REG_UPDATE_2(CONTROL,
365 VTG0_FP2, v_fp2,
366 VTG0_VCOUNT_INIT, v_init);
367 else
368 REG_UPDATE(CONTROL, VTG0_VCOUNT_INIT, v_init);
369 }
370
optc1_set_blank_data_double_buffer(struct timing_generator * optc,bool enable)371 void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable)
372 {
373 struct optc *optc1 = DCN10TG_FROM_TG(optc);
374
375 uint32_t blank_data_double_buffer_enable = enable ? 1 : 0;
376
377 REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
378 OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable);
379 }
380
381 /**
382 * optc1_set_timing_double_buffer() - DRR double buffering control
383 *
384 * Sets double buffer point for V_TOTAL, H_TOTAL, VTOTAL_MIN,
385 * VTOTAL_MAX, VTOTAL_MIN_SEL and VTOTAL_MAX_SEL registers.
386 *
387 * Options: any time, start of frame, dp start of frame (range timing)
388 */
optc1_set_timing_double_buffer(struct timing_generator * optc,bool enable)389 void optc1_set_timing_double_buffer(struct timing_generator *optc, bool enable)
390 {
391 struct optc *optc1 = DCN10TG_FROM_TG(optc);
392 uint32_t mode = enable ? 2 : 0;
393
394 REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
395 OTG_RANGE_TIMING_DBUF_UPDATE_MODE, mode);
396 }
397
398 /**
399 * unblank_crtc
400 * Call ASIC Control Object to UnBlank CRTC.
401 */
optc1_unblank_crtc(struct timing_generator * optc)402 static void optc1_unblank_crtc(struct timing_generator *optc)
403 {
404 struct optc *optc1 = DCN10TG_FROM_TG(optc);
405
406 REG_UPDATE_2(OTG_BLANK_CONTROL,
407 OTG_BLANK_DATA_EN, 0,
408 OTG_BLANK_DE_MODE, 0);
409
410 /* W/A for automated testing
411 * Automated testing will fail underflow test as there
412 * sporadic underflows which occur during the optc blank
413 * sequence. As a w/a, clear underflow on unblank.
414 * This prevents the failure, but will not mask actual
415 * underflow that affect real use cases.
416 */
417 optc1_clear_optc_underflow(optc);
418 }
419
420 /**
421 * blank_crtc
422 * Call ASIC Control Object to Blank CRTC.
423 */
424
optc1_blank_crtc(struct timing_generator * optc)425 static void optc1_blank_crtc(struct timing_generator *optc)
426 {
427 struct optc *optc1 = DCN10TG_FROM_TG(optc);
428
429 REG_UPDATE_2(OTG_BLANK_CONTROL,
430 OTG_BLANK_DATA_EN, 1,
431 OTG_BLANK_DE_MODE, 0);
432
433 optc1_set_blank_data_double_buffer(optc, false);
434 }
435
optc1_set_blank(struct timing_generator * optc,bool enable_blanking)436 void optc1_set_blank(struct timing_generator *optc,
437 bool enable_blanking)
438 {
439 if (enable_blanking)
440 optc1_blank_crtc(optc);
441 else
442 optc1_unblank_crtc(optc);
443 }
444
optc1_is_blanked(struct timing_generator * optc)445 bool optc1_is_blanked(struct timing_generator *optc)
446 {
447 struct optc *optc1 = DCN10TG_FROM_TG(optc);
448 uint32_t blank_en;
449 uint32_t blank_state;
450
451 REG_GET_2(OTG_BLANK_CONTROL,
452 OTG_BLANK_DATA_EN, &blank_en,
453 OTG_CURRENT_BLANK_STATE, &blank_state);
454
455 return blank_en && blank_state;
456 }
457
optc1_enable_optc_clock(struct timing_generator * optc,bool enable)458 void optc1_enable_optc_clock(struct timing_generator *optc, bool enable)
459 {
460 struct optc *optc1 = DCN10TG_FROM_TG(optc);
461
462 if (enable) {
463 REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
464 OPTC_INPUT_CLK_EN, 1,
465 OPTC_INPUT_CLK_GATE_DIS, 1);
466
467 REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
468 OPTC_INPUT_CLK_ON, 1,
469 1, 1000);
470
471 /* Enable clock */
472 REG_UPDATE_2(OTG_CLOCK_CONTROL,
473 OTG_CLOCK_EN, 1,
474 OTG_CLOCK_GATE_DIS, 1);
475 REG_WAIT(OTG_CLOCK_CONTROL,
476 OTG_CLOCK_ON, 1,
477 1, 1000);
478 } else {
479
480 //last chance to clear underflow, otherwise, it will always there due to clock is off.
481 if (optc->funcs->is_optc_underflow_occurred(optc) == true)
482 optc->funcs->clear_optc_underflow(optc);
483
484 REG_UPDATE_2(OTG_CLOCK_CONTROL,
485 OTG_CLOCK_GATE_DIS, 0,
486 OTG_CLOCK_EN, 0);
487
488 REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
489 OPTC_INPUT_CLK_GATE_DIS, 0,
490 OPTC_INPUT_CLK_EN, 0);
491 }
492 }
493
494 /**
495 * Enable CRTC
496 * Enable CRTC - call ASIC Control Object to enable Timing generator.
497 */
optc1_enable_crtc(struct timing_generator * optc)498 static bool optc1_enable_crtc(struct timing_generator *optc)
499 {
500 /* TODO FPGA wait for answer
501 * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
502 * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
503 */
504 struct optc *optc1 = DCN10TG_FROM_TG(optc);
505
506 /* opp instance for OTG. For DCN1.0, ODM is remoed.
507 * OPP and OPTC should 1:1 mapping
508 */
509 REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
510 OPTC_SRC_SEL, optc->inst);
511
512 /* VTG enable first is for HW workaround */
513 REG_UPDATE(CONTROL,
514 VTG0_ENABLE, 1);
515
516 REG_SEQ_START();
517
518 /* Enable CRTC */
519 REG_UPDATE_2(OTG_CONTROL,
520 OTG_DISABLE_POINT_CNTL, 3,
521 OTG_MASTER_EN, 1);
522
523 REG_SEQ_SUBMIT();
524 REG_SEQ_WAIT_DONE();
525
526 return true;
527 }
528
529 /* disable_crtc - call ASIC Control Object to disable Timing generator. */
optc1_disable_crtc(struct timing_generator * optc)530 bool optc1_disable_crtc(struct timing_generator *optc)
531 {
532 struct optc *optc1 = DCN10TG_FROM_TG(optc);
533
534 /* disable otg request until end of the first line
535 * in the vertical blank region
536 */
537 REG_UPDATE_2(OTG_CONTROL,
538 OTG_DISABLE_POINT_CNTL, 3,
539 OTG_MASTER_EN, 0);
540
541 REG_UPDATE(CONTROL,
542 VTG0_ENABLE, 0);
543
544 /* CRTC disabled, so disable clock. */
545 REG_WAIT(OTG_CLOCK_CONTROL,
546 OTG_BUSY, 0,
547 1, 100000);
548
549 return true;
550 }
551
552
optc1_program_blank_color(struct timing_generator * optc,const struct tg_color * black_color)553 void optc1_program_blank_color(
554 struct timing_generator *optc,
555 const struct tg_color *black_color)
556 {
557 struct optc *optc1 = DCN10TG_FROM_TG(optc);
558
559 REG_SET_3(OTG_BLACK_COLOR, 0,
560 OTG_BLACK_COLOR_B_CB, black_color->color_b_cb,
561 OTG_BLACK_COLOR_G_Y, black_color->color_g_y,
562 OTG_BLACK_COLOR_R_CR, black_color->color_r_cr);
563 }
564
optc1_validate_timing(struct timing_generator * optc,const struct dc_crtc_timing * timing)565 bool optc1_validate_timing(
566 struct timing_generator *optc,
567 const struct dc_crtc_timing *timing)
568 {
569 uint32_t v_blank;
570 uint32_t h_blank;
571 uint32_t min_v_blank;
572 struct optc *optc1 = DCN10TG_FROM_TG(optc);
573
574 ASSERT(timing != NULL);
575
576 v_blank = (timing->v_total - timing->v_addressable -
577 timing->v_border_top - timing->v_border_bottom);
578
579 h_blank = (timing->h_total - timing->h_addressable -
580 timing->h_border_right -
581 timing->h_border_left);
582
583 if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE &&
584 timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING &&
585 timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM &&
586 timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE &&
587 timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE &&
588 timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA)
589 return false;
590
591 /* Temporarily blocking interlacing mode until it's supported */
592 if (timing->flags.INTERLACE == 1)
593 return false;
594
595 /* Check maximum number of pixels supported by Timing Generator
596 * (Currently will never fail, in order to fail needs display which
597 * needs more than 8192 horizontal and
598 * more than 8192 vertical total pixels)
599 */
600 if (timing->h_total > optc1->max_h_total ||
601 timing->v_total > optc1->max_v_total)
602 return false;
603
604
605 if (h_blank < optc1->min_h_blank)
606 return false;
607
608 if (timing->h_sync_width < optc1->min_h_sync_width ||
609 timing->v_sync_width < optc1->min_v_sync_width)
610 return false;
611
612 min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank;
613
614 if (v_blank < min_v_blank)
615 return false;
616
617 return true;
618
619 }
620
621 /*
622 * get_vblank_counter
623 *
624 * @brief
625 * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
626 * holds the counter of frames.
627 *
628 * @param
629 * struct timing_generator *optc - [in] timing generator which controls the
630 * desired CRTC
631 *
632 * @return
633 * Counter of frames, which should equal to number of vblanks.
634 */
optc1_get_vblank_counter(struct timing_generator * optc)635 uint32_t optc1_get_vblank_counter(struct timing_generator *optc)
636 {
637 struct optc *optc1 = DCN10TG_FROM_TG(optc);
638 uint32_t frame_count;
639
640 REG_GET(OTG_STATUS_FRAME_COUNT,
641 OTG_FRAME_COUNT, &frame_count);
642
643 return frame_count;
644 }
645
optc1_lock(struct timing_generator * optc)646 void optc1_lock(struct timing_generator *optc)
647 {
648 struct optc *optc1 = DCN10TG_FROM_TG(optc);
649
650 REG_SET(OTG_GLOBAL_CONTROL0, 0,
651 OTG_MASTER_UPDATE_LOCK_SEL, optc->inst);
652 REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
653 OTG_MASTER_UPDATE_LOCK, 1);
654
655 /* Should be fast, status does not update on maximus */
656 if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS)
657 REG_WAIT(OTG_MASTER_UPDATE_LOCK,
658 UPDATE_LOCK_STATUS, 1,
659 1, 10);
660 }
661
optc1_unlock(struct timing_generator * optc)662 void optc1_unlock(struct timing_generator *optc)
663 {
664 struct optc *optc1 = DCN10TG_FROM_TG(optc);
665
666 REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
667 OTG_MASTER_UPDATE_LOCK, 0);
668 }
669
optc1_get_position(struct timing_generator * optc,struct crtc_position * position)670 void optc1_get_position(struct timing_generator *optc,
671 struct crtc_position *position)
672 {
673 struct optc *optc1 = DCN10TG_FROM_TG(optc);
674
675 REG_GET_2(OTG_STATUS_POSITION,
676 OTG_HORZ_COUNT, &position->horizontal_count,
677 OTG_VERT_COUNT, &position->vertical_count);
678
679 REG_GET(OTG_NOM_VERT_POSITION,
680 OTG_VERT_COUNT_NOM, &position->nominal_vcount);
681 }
682
optc1_is_counter_moving(struct timing_generator * optc)683 bool optc1_is_counter_moving(struct timing_generator *optc)
684 {
685 struct crtc_position position1, position2;
686
687 optc->funcs->get_position(optc, &position1);
688 optc->funcs->get_position(optc, &position2);
689
690 if (position1.horizontal_count == position2.horizontal_count &&
691 position1.vertical_count == position2.vertical_count)
692 return false;
693 else
694 return true;
695 }
696
optc1_did_triggered_reset_occur(struct timing_generator * optc)697 bool optc1_did_triggered_reset_occur(
698 struct timing_generator *optc)
699 {
700 struct optc *optc1 = DCN10TG_FROM_TG(optc);
701 uint32_t occurred_force, occurred_vsync;
702
703 REG_GET(OTG_FORCE_COUNT_NOW_CNTL,
704 OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force);
705
706 REG_GET(OTG_VERT_SYNC_CONTROL,
707 OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync);
708
709 return occurred_vsync != 0 || occurred_force != 0;
710 }
711
optc1_disable_reset_trigger(struct timing_generator * optc)712 void optc1_disable_reset_trigger(struct timing_generator *optc)
713 {
714 struct optc *optc1 = DCN10TG_FROM_TG(optc);
715
716 REG_WRITE(OTG_TRIGA_CNTL, 0);
717
718 REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
719 OTG_FORCE_COUNT_NOW_CLEAR, 1);
720
721 REG_SET(OTG_VERT_SYNC_CONTROL, 0,
722 OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1);
723 }
724
optc1_enable_reset_trigger(struct timing_generator * optc,int source_tg_inst)725 void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst)
726 {
727 struct optc *optc1 = DCN10TG_FROM_TG(optc);
728 uint32_t falling_edge;
729
730 REG_GET(OTG_V_SYNC_A_CNTL,
731 OTG_V_SYNC_A_POL, &falling_edge);
732
733 if (falling_edge)
734 REG_SET_3(OTG_TRIGA_CNTL, 0,
735 /* vsync signal from selected OTG pipe based
736 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
737 */
738 OTG_TRIGA_SOURCE_SELECT, 20,
739 OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
740 /* always detect falling edge */
741 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1);
742 else
743 REG_SET_3(OTG_TRIGA_CNTL, 0,
744 /* vsync signal from selected OTG pipe based
745 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
746 */
747 OTG_TRIGA_SOURCE_SELECT, 20,
748 OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
749 /* always detect rising edge */
750 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1);
751
752 REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
753 /* force H count to H_TOTAL and V count to V_TOTAL in
754 * progressive mode and V_TOTAL-1 in interlaced mode
755 */
756 OTG_FORCE_COUNT_NOW_MODE, 2);
757 }
758
optc1_enable_crtc_reset(struct timing_generator * optc,int source_tg_inst,struct crtc_trigger_info * crtc_tp)759 void optc1_enable_crtc_reset(
760 struct timing_generator *optc,
761 int source_tg_inst,
762 struct crtc_trigger_info *crtc_tp)
763 {
764 struct optc *optc1 = DCN10TG_FROM_TG(optc);
765 uint32_t falling_edge = 0;
766 uint32_t rising_edge = 0;
767
768 switch (crtc_tp->event) {
769
770 case CRTC_EVENT_VSYNC_RISING:
771 rising_edge = 1;
772 break;
773
774 case CRTC_EVENT_VSYNC_FALLING:
775 falling_edge = 1;
776 break;
777 }
778
779 REG_SET_4(OTG_TRIGA_CNTL, 0,
780 /* vsync signal from selected OTG pipe based
781 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
782 */
783 OTG_TRIGA_SOURCE_SELECT, 20,
784 OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
785 /* always detect falling edge */
786 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge,
787 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge);
788
789 switch (crtc_tp->delay) {
790 case TRIGGER_DELAY_NEXT_LINE:
791 REG_SET(OTG_VERT_SYNC_CONTROL, 0,
792 OTG_AUTO_FORCE_VSYNC_MODE, 1);
793 break;
794 case TRIGGER_DELAY_NEXT_PIXEL:
795 REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
796 /* force H count to H_TOTAL and V count to V_TOTAL in
797 * progressive mode and V_TOTAL-1 in interlaced mode
798 */
799 OTG_FORCE_COUNT_NOW_MODE, 2);
800 break;
801 }
802 }
803
optc1_wait_for_state(struct timing_generator * optc,enum crtc_state state)804 void optc1_wait_for_state(struct timing_generator *optc,
805 enum crtc_state state)
806 {
807 struct optc *optc1 = DCN10TG_FROM_TG(optc);
808
809 switch (state) {
810 case CRTC_STATE_VBLANK:
811 REG_WAIT(OTG_STATUS,
812 OTG_V_BLANK, 1,
813 1, 100000); /* 1 vupdate at 10hz */
814 break;
815
816 case CRTC_STATE_VACTIVE:
817 REG_WAIT(OTG_STATUS,
818 OTG_V_ACTIVE_DISP, 1,
819 1, 100000); /* 1 vupdate at 10hz */
820 break;
821
822 default:
823 break;
824 }
825 }
826
optc1_set_early_control(struct timing_generator * optc,uint32_t early_cntl)827 void optc1_set_early_control(
828 struct timing_generator *optc,
829 uint32_t early_cntl)
830 {
831 /* asic design change, do not need this control
832 * empty for share caller logic
833 */
834 }
835
836
optc1_set_static_screen_control(struct timing_generator * optc,uint32_t event_triggers,uint32_t num_frames)837 void optc1_set_static_screen_control(
838 struct timing_generator *optc,
839 uint32_t event_triggers,
840 uint32_t num_frames)
841 {
842 struct optc *optc1 = DCN10TG_FROM_TG(optc);
843
844 // By register spec, it only takes 8 bit value
845 if (num_frames > 0xFF)
846 num_frames = 0xFF;
847
848 /* Bit 8 is no longer applicable in RV for PSR case,
849 * set bit 8 to 0 if given
850 */
851 if ((event_triggers & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN)
852 != 0)
853 event_triggers = event_triggers &
854 ~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN;
855
856 REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0,
857 OTG_STATIC_SCREEN_EVENT_MASK, event_triggers,
858 OTG_STATIC_SCREEN_FRAME_COUNT, num_frames);
859 }
860
optc1_setup_manual_trigger(struct timing_generator * optc)861 static void optc1_setup_manual_trigger(struct timing_generator *optc)
862 {
863 struct optc *optc1 = DCN10TG_FROM_TG(optc);
864
865 REG_SET(OTG_GLOBAL_CONTROL2, 0,
866 MANUAL_FLOW_CONTROL_SEL, optc->inst);
867
868 REG_SET_8(OTG_TRIGA_CNTL, 0,
869 OTG_TRIGA_SOURCE_SELECT, 22,
870 OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst,
871 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1,
872 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0,
873 OTG_TRIGA_POLARITY_SELECT, 0,
874 OTG_TRIGA_FREQUENCY_SELECT, 0,
875 OTG_TRIGA_DELAY, 0,
876 OTG_TRIGA_CLEAR, 1);
877 }
878
optc1_program_manual_trigger(struct timing_generator * optc)879 static void optc1_program_manual_trigger(struct timing_generator *optc)
880 {
881 struct optc *optc1 = DCN10TG_FROM_TG(optc);
882
883 REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
884 MANUAL_FLOW_CONTROL, 1);
885
886 REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
887 MANUAL_FLOW_CONTROL, 0);
888 }
889
890
891 /**
892 *****************************************************************************
893 * Function: set_drr
894 *
895 * @brief
896 * Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
897 *
898 *****************************************************************************
899 */
optc1_set_drr(struct timing_generator * optc,const struct drr_params * params)900 void optc1_set_drr(
901 struct timing_generator *optc,
902 const struct drr_params *params)
903 {
904 struct optc *optc1 = DCN10TG_FROM_TG(optc);
905
906 if (params != NULL &&
907 params->vertical_total_max > 0 &&
908 params->vertical_total_min > 0) {
909
910 if (params->vertical_total_mid != 0) {
911
912 REG_SET(OTG_V_TOTAL_MID, 0,
913 OTG_V_TOTAL_MID, params->vertical_total_mid - 1);
914
915 REG_UPDATE_2(OTG_V_TOTAL_CONTROL,
916 OTG_VTOTAL_MID_REPLACING_MAX_EN, 1,
917 OTG_VTOTAL_MID_FRAME_NUM,
918 (uint8_t)params->vertical_total_mid_frame_num);
919
920 }
921
922 optc->funcs->set_vtotal_min_max(optc, params->vertical_total_min - 1, params->vertical_total_max - 1);
923
924 REG_UPDATE_5(OTG_V_TOTAL_CONTROL,
925 OTG_V_TOTAL_MIN_SEL, 1,
926 OTG_V_TOTAL_MAX_SEL, 1,
927 OTG_FORCE_LOCK_ON_EVENT, 0,
928 OTG_SET_V_TOTAL_MIN_MASK_EN, 0,
929 OTG_SET_V_TOTAL_MIN_MASK, 0);
930
931 // Setup manual flow control for EOF via TRIG_A
932 optc->funcs->setup_manual_trigger(optc);
933
934 } else {
935 REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
936 OTG_SET_V_TOTAL_MIN_MASK, 0,
937 OTG_V_TOTAL_MIN_SEL, 0,
938 OTG_V_TOTAL_MAX_SEL, 0,
939 OTG_FORCE_LOCK_ON_EVENT, 0);
940
941 optc->funcs->set_vtotal_min_max(optc, 0, 0);
942 }
943 }
944
optc1_set_vtotal_min_max(struct timing_generator * optc,int vtotal_min,int vtotal_max)945 void optc1_set_vtotal_min_max(struct timing_generator *optc, int vtotal_min, int vtotal_max)
946 {
947 struct optc *optc1 = DCN10TG_FROM_TG(optc);
948
949 REG_SET(OTG_V_TOTAL_MAX, 0,
950 OTG_V_TOTAL_MAX, vtotal_max);
951
952 REG_SET(OTG_V_TOTAL_MIN, 0,
953 OTG_V_TOTAL_MIN, vtotal_min);
954 }
955
optc1_set_test_pattern(struct timing_generator * optc,enum controller_dp_test_pattern test_pattern,enum dc_color_depth color_depth)956 static void optc1_set_test_pattern(
957 struct timing_generator *optc,
958 /* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
959 * because this is not DP-specific (which is probably somewhere in DP
960 * encoder) */
961 enum controller_dp_test_pattern test_pattern,
962 enum dc_color_depth color_depth)
963 {
964 struct optc *optc1 = DCN10TG_FROM_TG(optc);
965 enum test_pattern_color_format bit_depth;
966 enum test_pattern_dyn_range dyn_range;
967 enum test_pattern_mode mode;
968 uint32_t pattern_mask;
969 uint32_t pattern_data;
970 /* color ramp generator mixes 16-bits color */
971 uint32_t src_bpc = 16;
972 /* requested bpc */
973 uint32_t dst_bpc;
974 uint32_t index;
975 /* RGB values of the color bars.
976 * Produce two RGB colors: RGB0 - white (all Fs)
977 * and RGB1 - black (all 0s)
978 * (three RGB components for two colors)
979 */
980 uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
981 0x0000, 0x0000};
982 /* dest color (converted to the specified color format) */
983 uint16_t dst_color[6];
984 uint32_t inc_base;
985
986 /* translate to bit depth */
987 switch (color_depth) {
988 case COLOR_DEPTH_666:
989 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
990 break;
991 case COLOR_DEPTH_888:
992 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
993 break;
994 case COLOR_DEPTH_101010:
995 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
996 break;
997 case COLOR_DEPTH_121212:
998 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
999 break;
1000 default:
1001 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
1002 break;
1003 }
1004
1005 switch (test_pattern) {
1006 case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
1007 case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
1008 {
1009 dyn_range = (test_pattern ==
1010 CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
1011 TEST_PATTERN_DYN_RANGE_CEA :
1012 TEST_PATTERN_DYN_RANGE_VESA);
1013 mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
1014
1015 REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS,
1016 OTG_TEST_PATTERN_VRES, 6,
1017 OTG_TEST_PATTERN_HRES, 6);
1018
1019 REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1020 OTG_TEST_PATTERN_EN, 1,
1021 OTG_TEST_PATTERN_MODE, mode,
1022 OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
1023 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1024 }
1025 break;
1026
1027 case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
1028 case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
1029 {
1030 mode = (test_pattern ==
1031 CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
1032 TEST_PATTERN_MODE_VERTICALBARS :
1033 TEST_PATTERN_MODE_HORIZONTALBARS);
1034
1035 switch (bit_depth) {
1036 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1037 dst_bpc = 6;
1038 break;
1039 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1040 dst_bpc = 8;
1041 break;
1042 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1043 dst_bpc = 10;
1044 break;
1045 default:
1046 dst_bpc = 8;
1047 break;
1048 }
1049
1050 /* adjust color to the required colorFormat */
1051 for (index = 0; index < 6; index++) {
1052 /* dst = 2^dstBpc * src / 2^srcBpc = src >>
1053 * (srcBpc - dstBpc);
1054 */
1055 dst_color[index] =
1056 src_color[index] >> (src_bpc - dst_bpc);
1057 /* CRTC_TEST_PATTERN_DATA has 16 bits,
1058 * lowest 6 are hardwired to ZERO
1059 * color bits should be left aligned to MSB
1060 * XXXXXXXXXX000000 for 10 bit,
1061 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
1062 */
1063 dst_color[index] <<= (16 - dst_bpc);
1064 }
1065
1066 REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1067
1068 /* We have to write the mask before data, similar to pipeline.
1069 * For example, for 8 bpc, if we want RGB0 to be magenta,
1070 * and RGB1 to be cyan,
1071 * we need to make 7 writes:
1072 * MASK DATA
1073 * 000001 00000000 00000000 set mask to R0
1074 * 000010 11111111 00000000 R0 255, 0xFF00, set mask to G0
1075 * 000100 00000000 00000000 G0 0, 0x0000, set mask to B0
1076 * 001000 11111111 00000000 B0 255, 0xFF00, set mask to R1
1077 * 010000 00000000 00000000 R1 0, 0x0000, set mask to G1
1078 * 100000 11111111 00000000 G1 255, 0xFF00, set mask to B1
1079 * 100000 11111111 00000000 B1 255, 0xFF00
1080 *
1081 * we will make a loop of 6 in which we prepare the mask,
1082 * then write, then prepare the color for next write.
1083 * first iteration will write mask only,
1084 * but each next iteration color prepared in
1085 * previous iteration will be written within new mask,
1086 * the last component will written separately,
1087 * mask is not changing between 6th and 7th write
1088 * and color will be prepared by last iteration
1089 */
1090
1091 /* write color, color values mask in CRTC_TEST_PATTERN_MASK
1092 * is B1, G1, R1, B0, G0, R0
1093 */
1094 pattern_data = 0;
1095 for (index = 0; index < 6; index++) {
1096 /* prepare color mask, first write PATTERN_DATA
1097 * will have all zeros
1098 */
1099 pattern_mask = (1 << index);
1100
1101 /* write color component */
1102 REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1103 OTG_TEST_PATTERN_MASK, pattern_mask,
1104 OTG_TEST_PATTERN_DATA, pattern_data);
1105
1106 /* prepare next color component,
1107 * will be written in the next iteration
1108 */
1109 pattern_data = dst_color[index];
1110 }
1111 /* write last color component,
1112 * it's been already prepared in the loop
1113 */
1114 REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1115 OTG_TEST_PATTERN_MASK, pattern_mask,
1116 OTG_TEST_PATTERN_DATA, pattern_data);
1117
1118 /* enable test pattern */
1119 REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1120 OTG_TEST_PATTERN_EN, 1,
1121 OTG_TEST_PATTERN_MODE, mode,
1122 OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1123 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1124 }
1125 break;
1126
1127 case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
1128 {
1129 mode = (bit_depth ==
1130 TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
1131 TEST_PATTERN_MODE_DUALRAMP_RGB :
1132 TEST_PATTERN_MODE_SINGLERAMP_RGB);
1133
1134 switch (bit_depth) {
1135 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1136 dst_bpc = 6;
1137 break;
1138 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1139 dst_bpc = 8;
1140 break;
1141 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1142 dst_bpc = 10;
1143 break;
1144 default:
1145 dst_bpc = 8;
1146 break;
1147 }
1148
1149 /* increment for the first ramp for one color gradation
1150 * 1 gradation for 6-bit color is 2^10
1151 * gradations in 16-bit color
1152 */
1153 inc_base = (src_bpc - dst_bpc);
1154
1155 switch (bit_depth) {
1156 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1157 {
1158 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1159 OTG_TEST_PATTERN_INC0, inc_base,
1160 OTG_TEST_PATTERN_INC1, 0,
1161 OTG_TEST_PATTERN_HRES, 6,
1162 OTG_TEST_PATTERN_VRES, 6,
1163 OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1164 }
1165 break;
1166 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1167 {
1168 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1169 OTG_TEST_PATTERN_INC0, inc_base,
1170 OTG_TEST_PATTERN_INC1, 0,
1171 OTG_TEST_PATTERN_HRES, 8,
1172 OTG_TEST_PATTERN_VRES, 6,
1173 OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1174 }
1175 break;
1176 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1177 {
1178 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1179 OTG_TEST_PATTERN_INC0, inc_base,
1180 OTG_TEST_PATTERN_INC1, inc_base + 2,
1181 OTG_TEST_PATTERN_HRES, 8,
1182 OTG_TEST_PATTERN_VRES, 5,
1183 OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
1184 }
1185 break;
1186 default:
1187 break;
1188 }
1189
1190 REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1191
1192 /* enable test pattern */
1193 REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1194
1195 REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0,
1196 OTG_TEST_PATTERN_EN, 1,
1197 OTG_TEST_PATTERN_MODE, mode,
1198 OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1199 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1200 }
1201 break;
1202 case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1203 {
1204 REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1205 REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1206 REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1207 }
1208 break;
1209 default:
1210 break;
1211
1212 }
1213 }
1214
optc1_get_crtc_scanoutpos(struct timing_generator * optc,uint32_t * v_blank_start,uint32_t * v_blank_end,uint32_t * h_position,uint32_t * v_position)1215 void optc1_get_crtc_scanoutpos(
1216 struct timing_generator *optc,
1217 uint32_t *v_blank_start,
1218 uint32_t *v_blank_end,
1219 uint32_t *h_position,
1220 uint32_t *v_position)
1221 {
1222 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1223 struct crtc_position position;
1224
1225 REG_GET_2(OTG_V_BLANK_START_END,
1226 OTG_V_BLANK_START, v_blank_start,
1227 OTG_V_BLANK_END, v_blank_end);
1228
1229 optc1_get_position(optc, &position);
1230
1231 *h_position = position.horizontal_count;
1232 *v_position = position.vertical_count;
1233 }
1234
optc1_enable_stereo(struct timing_generator * optc,const struct dc_crtc_timing * timing,struct crtc_stereo_flags * flags)1235 static void optc1_enable_stereo(struct timing_generator *optc,
1236 const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1237 {
1238 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1239
1240 if (flags) {
1241 uint32_t stereo_en;
1242 stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0;
1243
1244 if (flags->PROGRAM_STEREO)
1245 REG_UPDATE_3(OTG_STEREO_CONTROL,
1246 OTG_STEREO_EN, stereo_en,
1247 OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0,
1248 OTG_STEREO_SYNC_OUTPUT_POLARITY, flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1249
1250 if (flags->PROGRAM_POLARITY)
1251 REG_UPDATE(OTG_STEREO_CONTROL,
1252 OTG_STEREO_EYE_FLAG_POLARITY,
1253 flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1254
1255 if (flags->DISABLE_STEREO_DP_SYNC)
1256 REG_UPDATE(OTG_STEREO_CONTROL,
1257 OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1);
1258
1259 if (flags->PROGRAM_STEREO)
1260 REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL,
1261 OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED,
1262 OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED);
1263
1264 }
1265 }
1266
optc1_program_stereo(struct timing_generator * optc,const struct dc_crtc_timing * timing,struct crtc_stereo_flags * flags)1267 void optc1_program_stereo(struct timing_generator *optc,
1268 const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1269 {
1270 if (flags->PROGRAM_STEREO)
1271 optc1_enable_stereo(optc, timing, flags);
1272 else
1273 optc1_disable_stereo(optc);
1274 }
1275
1276
optc1_is_stereo_left_eye(struct timing_generator * optc)1277 bool optc1_is_stereo_left_eye(struct timing_generator *optc)
1278 {
1279 bool ret = false;
1280 uint32_t left_eye = 0;
1281 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1282
1283 REG_GET(OTG_STEREO_STATUS,
1284 OTG_STEREO_CURRENT_EYE, &left_eye);
1285 if (left_eye == 1)
1286 ret = true;
1287 else
1288 ret = false;
1289
1290 return ret;
1291 }
1292
optc1_get_hw_timing(struct timing_generator * tg,struct dc_crtc_timing * hw_crtc_timing)1293 bool optc1_get_hw_timing(struct timing_generator *tg,
1294 struct dc_crtc_timing *hw_crtc_timing)
1295 {
1296 struct dcn_otg_state s = {0};
1297
1298 if (tg == NULL || hw_crtc_timing == NULL)
1299 return false;
1300
1301 optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s);
1302
1303 hw_crtc_timing->h_total = s.h_total + 1;
1304 hw_crtc_timing->h_addressable = s.h_total - ((s.h_total - s.h_blank_start) + s.h_blank_end);
1305 hw_crtc_timing->h_front_porch = s.h_total + 1 - s.h_blank_start;
1306 hw_crtc_timing->h_sync_width = s.h_sync_a_end - s.h_sync_a_start;
1307
1308 hw_crtc_timing->v_total = s.v_total + 1;
1309 hw_crtc_timing->v_addressable = s.v_total - ((s.v_total - s.v_blank_start) + s.v_blank_end);
1310 hw_crtc_timing->v_front_porch = s.v_total + 1 - s.v_blank_start;
1311 hw_crtc_timing->v_sync_width = s.v_sync_a_end - s.v_sync_a_start;
1312
1313 return true;
1314 }
1315
1316
optc1_read_otg_state(struct optc * optc1,struct dcn_otg_state * s)1317 void optc1_read_otg_state(struct optc *optc1,
1318 struct dcn_otg_state *s)
1319 {
1320 REG_GET(OTG_CONTROL,
1321 OTG_MASTER_EN, &s->otg_enabled);
1322
1323 REG_GET_2(OTG_V_BLANK_START_END,
1324 OTG_V_BLANK_START, &s->v_blank_start,
1325 OTG_V_BLANK_END, &s->v_blank_end);
1326
1327 REG_GET(OTG_V_SYNC_A_CNTL,
1328 OTG_V_SYNC_A_POL, &s->v_sync_a_pol);
1329
1330 REG_GET(OTG_V_TOTAL,
1331 OTG_V_TOTAL, &s->v_total);
1332
1333 REG_GET(OTG_V_TOTAL_MAX,
1334 OTG_V_TOTAL_MAX, &s->v_total_max);
1335
1336 REG_GET(OTG_V_TOTAL_MIN,
1337 OTG_V_TOTAL_MIN, &s->v_total_min);
1338
1339 REG_GET(OTG_V_TOTAL_CONTROL,
1340 OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel);
1341
1342 REG_GET(OTG_V_TOTAL_CONTROL,
1343 OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel);
1344
1345 REG_GET_2(OTG_V_SYNC_A,
1346 OTG_V_SYNC_A_START, &s->v_sync_a_start,
1347 OTG_V_SYNC_A_END, &s->v_sync_a_end);
1348
1349 REG_GET_2(OTG_H_BLANK_START_END,
1350 OTG_H_BLANK_START, &s->h_blank_start,
1351 OTG_H_BLANK_END, &s->h_blank_end);
1352
1353 REG_GET_2(OTG_H_SYNC_A,
1354 OTG_H_SYNC_A_START, &s->h_sync_a_start,
1355 OTG_H_SYNC_A_END, &s->h_sync_a_end);
1356
1357 REG_GET(OTG_H_SYNC_A_CNTL,
1358 OTG_H_SYNC_A_POL, &s->h_sync_a_pol);
1359
1360 REG_GET(OTG_H_TOTAL,
1361 OTG_H_TOTAL, &s->h_total);
1362
1363 REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1364 OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status);
1365
1366 REG_GET(OTG_VERTICAL_INTERRUPT1_CONTROL,
1367 OTG_VERTICAL_INTERRUPT1_INT_ENABLE, &s->vertical_interrupt1_en);
1368
1369 REG_GET(OTG_VERTICAL_INTERRUPT1_POSITION,
1370 OTG_VERTICAL_INTERRUPT1_LINE_START, &s->vertical_interrupt1_line);
1371
1372 REG_GET(OTG_VERTICAL_INTERRUPT2_CONTROL,
1373 OTG_VERTICAL_INTERRUPT2_INT_ENABLE, &s->vertical_interrupt2_en);
1374
1375 REG_GET(OTG_VERTICAL_INTERRUPT2_POSITION,
1376 OTG_VERTICAL_INTERRUPT2_LINE_START, &s->vertical_interrupt2_line);
1377 }
1378
optc1_get_otg_active_size(struct timing_generator * optc,uint32_t * otg_active_width,uint32_t * otg_active_height)1379 bool optc1_get_otg_active_size(struct timing_generator *optc,
1380 uint32_t *otg_active_width,
1381 uint32_t *otg_active_height)
1382 {
1383 uint32_t otg_enabled;
1384 uint32_t v_blank_start;
1385 uint32_t v_blank_end;
1386 uint32_t h_blank_start;
1387 uint32_t h_blank_end;
1388 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1389
1390
1391 REG_GET(OTG_CONTROL,
1392 OTG_MASTER_EN, &otg_enabled);
1393
1394 if (otg_enabled == 0)
1395 return false;
1396
1397 REG_GET_2(OTG_V_BLANK_START_END,
1398 OTG_V_BLANK_START, &v_blank_start,
1399 OTG_V_BLANK_END, &v_blank_end);
1400
1401 REG_GET_2(OTG_H_BLANK_START_END,
1402 OTG_H_BLANK_START, &h_blank_start,
1403 OTG_H_BLANK_END, &h_blank_end);
1404
1405 *otg_active_width = v_blank_start - v_blank_end;
1406 *otg_active_height = h_blank_start - h_blank_end;
1407 return true;
1408 }
1409
optc1_clear_optc_underflow(struct timing_generator * optc)1410 void optc1_clear_optc_underflow(struct timing_generator *optc)
1411 {
1412 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1413
1414 REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1);
1415 }
1416
optc1_tg_init(struct timing_generator * optc)1417 void optc1_tg_init(struct timing_generator *optc)
1418 {
1419 optc1_set_blank_data_double_buffer(optc, true);
1420 optc1_set_timing_double_buffer(optc, true);
1421 optc1_clear_optc_underflow(optc);
1422 }
1423
optc1_is_tg_enabled(struct timing_generator * optc)1424 bool optc1_is_tg_enabled(struct timing_generator *optc)
1425 {
1426 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1427 uint32_t otg_enabled = 0;
1428
1429 REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled);
1430
1431 return (otg_enabled != 0);
1432
1433 }
1434
optc1_is_optc_underflow_occurred(struct timing_generator * optc)1435 bool optc1_is_optc_underflow_occurred(struct timing_generator *optc)
1436 {
1437 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1438 uint32_t underflow_occurred = 0;
1439
1440 REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1441 OPTC_UNDERFLOW_OCCURRED_STATUS,
1442 &underflow_occurred);
1443
1444 return (underflow_occurred == 1);
1445 }
1446
optc1_configure_crc(struct timing_generator * optc,const struct crc_params * params)1447 bool optc1_configure_crc(struct timing_generator *optc,
1448 const struct crc_params *params)
1449 {
1450 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1451
1452 /* Cannot configure crc on a CRTC that is disabled */
1453 if (!optc1_is_tg_enabled(optc))
1454 return false;
1455
1456 REG_WRITE(OTG_CRC_CNTL, 0);
1457
1458 if (!params->enable)
1459 return true;
1460
1461 /* Program frame boundaries */
1462 /* Window A x axis start and end. */
1463 REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL,
1464 OTG_CRC0_WINDOWA_X_START, params->windowa_x_start,
1465 OTG_CRC0_WINDOWA_X_END, params->windowa_x_end);
1466
1467 /* Window A y axis start and end. */
1468 REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL,
1469 OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start,
1470 OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end);
1471
1472 /* Window B x axis start and end. */
1473 REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL,
1474 OTG_CRC0_WINDOWB_X_START, params->windowb_x_start,
1475 OTG_CRC0_WINDOWB_X_END, params->windowb_x_end);
1476
1477 /* Window B y axis start and end. */
1478 REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL,
1479 OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start,
1480 OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end);
1481
1482 /* Set crc mode and selection, and enable. Only using CRC0*/
1483 REG_UPDATE_3(OTG_CRC_CNTL,
1484 OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0,
1485 OTG_CRC0_SELECT, params->selection,
1486 OTG_CRC_EN, 1);
1487
1488 return true;
1489 }
1490
1491 /**
1492 * optc1_get_crc - Capture CRC result per component
1493 *
1494 * @optc: timing_generator instance.
1495 * @r_cr: 16-bit primary CRC signature for red data.
1496 * @g_y: 16-bit primary CRC signature for green data.
1497 * @b_cb: 16-bit primary CRC signature for blue data.
1498 *
1499 * This function reads the CRC signature from the OPTC registers. Notice that
1500 * we have three registers to keep the CRC result per color component (RGB).
1501 *
1502 * Returns:
1503 * If CRC is disabled, return false; otherwise, return true, and the CRC
1504 * results in the parameters.
1505 */
optc1_get_crc(struct timing_generator * optc,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)1506 bool optc1_get_crc(struct timing_generator *optc,
1507 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
1508 {
1509 uint32_t field = 0;
1510 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1511
1512 REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field);
1513
1514 /* Early return if CRC is not enabled for this CRTC */
1515 if (!field)
1516 return false;
1517
1518 /* OTG_CRC0_DATA_RG has the CRC16 results for the red and green component */
1519 REG_GET_2(OTG_CRC0_DATA_RG,
1520 CRC0_R_CR, r_cr,
1521 CRC0_G_Y, g_y);
1522
1523 /* OTG_CRC0_DATA_B has the CRC16 results for the blue component */
1524 REG_GET(OTG_CRC0_DATA_B,
1525 CRC0_B_CB, b_cb);
1526
1527 return true;
1528 }
1529
1530 static const struct timing_generator_funcs dcn10_tg_funcs = {
1531 .validate_timing = optc1_validate_timing,
1532 .program_timing = optc1_program_timing,
1533 .setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
1534 .setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
1535 .setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
1536 .program_global_sync = optc1_program_global_sync,
1537 .enable_crtc = optc1_enable_crtc,
1538 .disable_crtc = optc1_disable_crtc,
1539 /* used by enable_timing_synchronization. Not need for FPGA */
1540 .is_counter_moving = optc1_is_counter_moving,
1541 .get_position = optc1_get_position,
1542 .get_frame_count = optc1_get_vblank_counter,
1543 .get_scanoutpos = optc1_get_crtc_scanoutpos,
1544 .get_otg_active_size = optc1_get_otg_active_size,
1545 .set_early_control = optc1_set_early_control,
1546 /* used by enable_timing_synchronization. Not need for FPGA */
1547 .wait_for_state = optc1_wait_for_state,
1548 .set_blank = optc1_set_blank,
1549 .is_blanked = optc1_is_blanked,
1550 .set_blank_color = optc1_program_blank_color,
1551 .did_triggered_reset_occur = optc1_did_triggered_reset_occur,
1552 .enable_reset_trigger = optc1_enable_reset_trigger,
1553 .enable_crtc_reset = optc1_enable_crtc_reset,
1554 .disable_reset_trigger = optc1_disable_reset_trigger,
1555 .lock = optc1_lock,
1556 .unlock = optc1_unlock,
1557 .enable_optc_clock = optc1_enable_optc_clock,
1558 .set_drr = optc1_set_drr,
1559 .get_last_used_drr_vtotal = NULL,
1560 .set_vtotal_min_max = optc1_set_vtotal_min_max,
1561 .set_static_screen_control = optc1_set_static_screen_control,
1562 .set_test_pattern = optc1_set_test_pattern,
1563 .program_stereo = optc1_program_stereo,
1564 .is_stereo_left_eye = optc1_is_stereo_left_eye,
1565 .set_blank_data_double_buffer = optc1_set_blank_data_double_buffer,
1566 .tg_init = optc1_tg_init,
1567 .is_tg_enabled = optc1_is_tg_enabled,
1568 .is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
1569 .clear_optc_underflow = optc1_clear_optc_underflow,
1570 .get_crc = optc1_get_crc,
1571 .configure_crc = optc1_configure_crc,
1572 .set_vtg_params = optc1_set_vtg_params,
1573 .program_manual_trigger = optc1_program_manual_trigger,
1574 .setup_manual_trigger = optc1_setup_manual_trigger,
1575 .get_hw_timing = optc1_get_hw_timing,
1576 };
1577
dcn10_timing_generator_init(struct optc * optc1)1578 void dcn10_timing_generator_init(struct optc *optc1)
1579 {
1580 optc1->base.funcs = &dcn10_tg_funcs;
1581
1582 optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
1583 optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
1584
1585 optc1->min_h_blank = 32;
1586 optc1->min_v_blank = 3;
1587 optc1->min_v_blank_interlace = 5;
1588 optc1->min_h_sync_width = 4;
1589 optc1->min_v_sync_width = 1;
1590 }
1591
1592 /* "Containter" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this:
1593 *
1594 * - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as
1595 * containter rate.
1596 *
1597 * - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be
1598 * halved to maintain the correct pixel rate.
1599 *
1600 * - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied
1601 * to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well.
1602 *
1603 */
optc1_is_two_pixels_per_containter(const struct dc_crtc_timing * timing)1604 bool optc1_is_two_pixels_per_containter(const struct dc_crtc_timing *timing)
1605 {
1606 bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420;
1607
1608 two_pix = two_pix || (timing->flags.DSC && timing->pixel_encoding == PIXEL_ENCODING_YCBCR422
1609 && !timing->dsc_cfg.ycbcr422_simple);
1610 return two_pix;
1611 }
1612
1613