1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3 /*
4 * Common eBPF ELF object loading operations.
5 *
6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8 * Copyright (C) 2015 Huawei Inc.
9 * Copyright (C) 2017 Nicira, Inc.
10 * Copyright (C) 2019 Isovalent, Inc.
11 */
12
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/ring_buffer.h>
37 #include <linux/version.h>
38 #include <sys/epoll.h>
39 #include <sys/ioctl.h>
40 #include <sys/mman.h>
41 #include <sys/stat.h>
42 #include <sys/types.h>
43 #include <sys/vfs.h>
44 #include <sys/utsname.h>
45 #include <sys/resource.h>
46 #include <libelf.h>
47 #include <gelf.h>
48 #include <zlib.h>
49
50 #include "libbpf.h"
51 #include "bpf.h"
52 #include "btf.h"
53 #include "str_error.h"
54 #include "libbpf_internal.h"
55 #include "hashmap.h"
56 #include "bpf_gen_internal.h"
57
58 #ifndef BPF_FS_MAGIC
59 #define BPF_FS_MAGIC 0xcafe4a11
60 #endif
61
62 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
63
64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
65 * compilation if user enables corresponding warning. Disable it explicitly.
66 */
67 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
68
69 #define __printf(a, b) __attribute__((format(printf, a, b)))
70
71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
73
74 static const char * const attach_type_name[] = {
75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress",
76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress",
77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create",
78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release",
79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops",
80 [BPF_CGROUP_DEVICE] = "cgroup_device",
81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind",
82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind",
83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect",
84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect",
85 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind",
86 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind",
87 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername",
88 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername",
89 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname",
90 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname",
91 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg",
92 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg",
93 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl",
94 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg",
95 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg",
96 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt",
97 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt",
98 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser",
99 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict",
100 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict",
101 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict",
102 [BPF_LIRC_MODE2] = "lirc_mode2",
103 [BPF_FLOW_DISSECTOR] = "flow_dissector",
104 [BPF_TRACE_RAW_TP] = "trace_raw_tp",
105 [BPF_TRACE_FENTRY] = "trace_fentry",
106 [BPF_TRACE_FEXIT] = "trace_fexit",
107 [BPF_MODIFY_RETURN] = "modify_return",
108 [BPF_LSM_MAC] = "lsm_mac",
109 [BPF_LSM_CGROUP] = "lsm_cgroup",
110 [BPF_SK_LOOKUP] = "sk_lookup",
111 [BPF_TRACE_ITER] = "trace_iter",
112 [BPF_XDP_DEVMAP] = "xdp_devmap",
113 [BPF_XDP_CPUMAP] = "xdp_cpumap",
114 [BPF_XDP] = "xdp",
115 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select",
116 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate",
117 [BPF_PERF_EVENT] = "perf_event",
118 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi",
119 };
120
121 static const char * const link_type_name[] = {
122 [BPF_LINK_TYPE_UNSPEC] = "unspec",
123 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
124 [BPF_LINK_TYPE_TRACING] = "tracing",
125 [BPF_LINK_TYPE_CGROUP] = "cgroup",
126 [BPF_LINK_TYPE_ITER] = "iter",
127 [BPF_LINK_TYPE_NETNS] = "netns",
128 [BPF_LINK_TYPE_XDP] = "xdp",
129 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event",
130 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi",
131 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops",
132 };
133
134 static const char * const map_type_name[] = {
135 [BPF_MAP_TYPE_UNSPEC] = "unspec",
136 [BPF_MAP_TYPE_HASH] = "hash",
137 [BPF_MAP_TYPE_ARRAY] = "array",
138 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array",
139 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array",
140 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash",
141 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array",
142 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace",
143 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array",
144 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash",
145 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash",
146 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie",
147 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps",
148 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps",
149 [BPF_MAP_TYPE_DEVMAP] = "devmap",
150 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash",
151 [BPF_MAP_TYPE_SOCKMAP] = "sockmap",
152 [BPF_MAP_TYPE_CPUMAP] = "cpumap",
153 [BPF_MAP_TYPE_XSKMAP] = "xskmap",
154 [BPF_MAP_TYPE_SOCKHASH] = "sockhash",
155 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage",
156 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray",
157 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage",
158 [BPF_MAP_TYPE_QUEUE] = "queue",
159 [BPF_MAP_TYPE_STACK] = "stack",
160 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage",
161 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops",
162 [BPF_MAP_TYPE_RINGBUF] = "ringbuf",
163 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage",
164 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage",
165 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter",
166 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf",
167 };
168
169 static const char * const prog_type_name[] = {
170 [BPF_PROG_TYPE_UNSPEC] = "unspec",
171 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter",
172 [BPF_PROG_TYPE_KPROBE] = "kprobe",
173 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls",
174 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act",
175 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint",
176 [BPF_PROG_TYPE_XDP] = "xdp",
177 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event",
178 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb",
179 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock",
180 [BPF_PROG_TYPE_LWT_IN] = "lwt_in",
181 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out",
182 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit",
183 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops",
184 [BPF_PROG_TYPE_SK_SKB] = "sk_skb",
185 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device",
186 [BPF_PROG_TYPE_SK_MSG] = "sk_msg",
187 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
188 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr",
189 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local",
190 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2",
191 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport",
192 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector",
193 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl",
194 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable",
195 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt",
196 [BPF_PROG_TYPE_TRACING] = "tracing",
197 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops",
198 [BPF_PROG_TYPE_EXT] = "ext",
199 [BPF_PROG_TYPE_LSM] = "lsm",
200 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup",
201 [BPF_PROG_TYPE_SYSCALL] = "syscall",
202 };
203
__base_pr(enum libbpf_print_level level,const char * format,va_list args)204 static int __base_pr(enum libbpf_print_level level, const char *format,
205 va_list args)
206 {
207 if (level == LIBBPF_DEBUG)
208 return 0;
209
210 return vfprintf(stderr, format, args);
211 }
212
213 static libbpf_print_fn_t __libbpf_pr = __base_pr;
214
libbpf_set_print(libbpf_print_fn_t fn)215 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
216 {
217 libbpf_print_fn_t old_print_fn = __libbpf_pr;
218
219 __libbpf_pr = fn;
220 return old_print_fn;
221 }
222
223 __printf(2, 3)
libbpf_print(enum libbpf_print_level level,const char * format,...)224 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
225 {
226 va_list args;
227 int old_errno;
228
229 if (!__libbpf_pr)
230 return;
231
232 old_errno = errno;
233
234 va_start(args, format);
235 __libbpf_pr(level, format, args);
236 va_end(args);
237
238 errno = old_errno;
239 }
240
pr_perm_msg(int err)241 static void pr_perm_msg(int err)
242 {
243 struct rlimit limit;
244 char buf[100];
245
246 if (err != -EPERM || geteuid() != 0)
247 return;
248
249 err = getrlimit(RLIMIT_MEMLOCK, &limit);
250 if (err)
251 return;
252
253 if (limit.rlim_cur == RLIM_INFINITY)
254 return;
255
256 if (limit.rlim_cur < 1024)
257 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
258 else if (limit.rlim_cur < 1024*1024)
259 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
260 else
261 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
262
263 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
264 buf);
265 }
266
267 #define STRERR_BUFSIZE 128
268
269 /* Copied from tools/perf/util/util.h */
270 #ifndef zfree
271 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
272 #endif
273
274 #ifndef zclose
275 # define zclose(fd) ({ \
276 int ___err = 0; \
277 if ((fd) >= 0) \
278 ___err = close((fd)); \
279 fd = -1; \
280 ___err; })
281 #endif
282
ptr_to_u64(const void * ptr)283 static inline __u64 ptr_to_u64(const void *ptr)
284 {
285 return (__u64) (unsigned long) ptr;
286 }
287
libbpf_set_strict_mode(enum libbpf_strict_mode mode)288 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
289 {
290 /* as of v1.0 libbpf_set_strict_mode() is a no-op */
291 return 0;
292 }
293
libbpf_major_version(void)294 __u32 libbpf_major_version(void)
295 {
296 return LIBBPF_MAJOR_VERSION;
297 }
298
libbpf_minor_version(void)299 __u32 libbpf_minor_version(void)
300 {
301 return LIBBPF_MINOR_VERSION;
302 }
303
libbpf_version_string(void)304 const char *libbpf_version_string(void)
305 {
306 #define __S(X) #X
307 #define _S(X) __S(X)
308 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
309 #undef _S
310 #undef __S
311 }
312
313 enum reloc_type {
314 RELO_LD64,
315 RELO_CALL,
316 RELO_DATA,
317 RELO_EXTERN_VAR,
318 RELO_EXTERN_FUNC,
319 RELO_SUBPROG_ADDR,
320 RELO_CORE,
321 };
322
323 struct reloc_desc {
324 enum reloc_type type;
325 int insn_idx;
326 union {
327 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
328 struct {
329 int map_idx;
330 int sym_off;
331 };
332 };
333 };
334
335 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
336 enum sec_def_flags {
337 SEC_NONE = 0,
338 /* expected_attach_type is optional, if kernel doesn't support that */
339 SEC_EXP_ATTACH_OPT = 1,
340 /* legacy, only used by libbpf_get_type_names() and
341 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
342 * This used to be associated with cgroup (and few other) BPF programs
343 * that were attachable through BPF_PROG_ATTACH command. Pretty
344 * meaningless nowadays, though.
345 */
346 SEC_ATTACHABLE = 2,
347 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
348 /* attachment target is specified through BTF ID in either kernel or
349 * other BPF program's BTF object */
350 SEC_ATTACH_BTF = 4,
351 /* BPF program type allows sleeping/blocking in kernel */
352 SEC_SLEEPABLE = 8,
353 /* BPF program support non-linear XDP buffer */
354 SEC_XDP_FRAGS = 16,
355 };
356
357 struct bpf_sec_def {
358 char *sec;
359 enum bpf_prog_type prog_type;
360 enum bpf_attach_type expected_attach_type;
361 long cookie;
362 int handler_id;
363
364 libbpf_prog_setup_fn_t prog_setup_fn;
365 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
366 libbpf_prog_attach_fn_t prog_attach_fn;
367 };
368
369 /*
370 * bpf_prog should be a better name but it has been used in
371 * linux/filter.h.
372 */
373 struct bpf_program {
374 char *name;
375 char *sec_name;
376 size_t sec_idx;
377 const struct bpf_sec_def *sec_def;
378 /* this program's instruction offset (in number of instructions)
379 * within its containing ELF section
380 */
381 size_t sec_insn_off;
382 /* number of original instructions in ELF section belonging to this
383 * program, not taking into account subprogram instructions possible
384 * appended later during relocation
385 */
386 size_t sec_insn_cnt;
387 /* Offset (in number of instructions) of the start of instruction
388 * belonging to this BPF program within its containing main BPF
389 * program. For the entry-point (main) BPF program, this is always
390 * zero. For a sub-program, this gets reset before each of main BPF
391 * programs are processed and relocated and is used to determined
392 * whether sub-program was already appended to the main program, and
393 * if yes, at which instruction offset.
394 */
395 size_t sub_insn_off;
396
397 /* instructions that belong to BPF program; insns[0] is located at
398 * sec_insn_off instruction within its ELF section in ELF file, so
399 * when mapping ELF file instruction index to the local instruction,
400 * one needs to subtract sec_insn_off; and vice versa.
401 */
402 struct bpf_insn *insns;
403 /* actual number of instruction in this BPF program's image; for
404 * entry-point BPF programs this includes the size of main program
405 * itself plus all the used sub-programs, appended at the end
406 */
407 size_t insns_cnt;
408
409 struct reloc_desc *reloc_desc;
410 int nr_reloc;
411
412 /* BPF verifier log settings */
413 char *log_buf;
414 size_t log_size;
415 __u32 log_level;
416
417 struct bpf_object *obj;
418
419 int fd;
420 bool autoload;
421 bool autoattach;
422 bool mark_btf_static;
423 enum bpf_prog_type type;
424 enum bpf_attach_type expected_attach_type;
425
426 int prog_ifindex;
427 __u32 attach_btf_obj_fd;
428 __u32 attach_btf_id;
429 __u32 attach_prog_fd;
430
431 void *func_info;
432 __u32 func_info_rec_size;
433 __u32 func_info_cnt;
434
435 void *line_info;
436 __u32 line_info_rec_size;
437 __u32 line_info_cnt;
438 __u32 prog_flags;
439 };
440
441 struct bpf_struct_ops {
442 const char *tname;
443 const struct btf_type *type;
444 struct bpf_program **progs;
445 __u32 *kern_func_off;
446 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
447 void *data;
448 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
449 * btf_vmlinux's format.
450 * struct bpf_struct_ops_tcp_congestion_ops {
451 * [... some other kernel fields ...]
452 * struct tcp_congestion_ops data;
453 * }
454 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
455 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
456 * from "data".
457 */
458 void *kern_vdata;
459 __u32 type_id;
460 };
461
462 #define DATA_SEC ".data"
463 #define BSS_SEC ".bss"
464 #define RODATA_SEC ".rodata"
465 #define KCONFIG_SEC ".kconfig"
466 #define KSYMS_SEC ".ksyms"
467 #define STRUCT_OPS_SEC ".struct_ops"
468
469 enum libbpf_map_type {
470 LIBBPF_MAP_UNSPEC,
471 LIBBPF_MAP_DATA,
472 LIBBPF_MAP_BSS,
473 LIBBPF_MAP_RODATA,
474 LIBBPF_MAP_KCONFIG,
475 };
476
477 struct bpf_map_def {
478 unsigned int type;
479 unsigned int key_size;
480 unsigned int value_size;
481 unsigned int max_entries;
482 unsigned int map_flags;
483 };
484
485 struct bpf_map {
486 struct bpf_object *obj;
487 char *name;
488 /* real_name is defined for special internal maps (.rodata*,
489 * .data*, .bss, .kconfig) and preserves their original ELF section
490 * name. This is important to be be able to find corresponding BTF
491 * DATASEC information.
492 */
493 char *real_name;
494 int fd;
495 int sec_idx;
496 size_t sec_offset;
497 int map_ifindex;
498 int inner_map_fd;
499 struct bpf_map_def def;
500 __u32 numa_node;
501 __u32 btf_var_idx;
502 __u32 btf_key_type_id;
503 __u32 btf_value_type_id;
504 __u32 btf_vmlinux_value_type_id;
505 enum libbpf_map_type libbpf_type;
506 void *mmaped;
507 struct bpf_struct_ops *st_ops;
508 struct bpf_map *inner_map;
509 void **init_slots;
510 int init_slots_sz;
511 char *pin_path;
512 bool pinned;
513 bool reused;
514 bool autocreate;
515 __u64 map_extra;
516 };
517
518 enum extern_type {
519 EXT_UNKNOWN,
520 EXT_KCFG,
521 EXT_KSYM,
522 };
523
524 enum kcfg_type {
525 KCFG_UNKNOWN,
526 KCFG_CHAR,
527 KCFG_BOOL,
528 KCFG_INT,
529 KCFG_TRISTATE,
530 KCFG_CHAR_ARR,
531 };
532
533 struct extern_desc {
534 enum extern_type type;
535 int sym_idx;
536 int btf_id;
537 int sec_btf_id;
538 const char *name;
539 bool is_set;
540 bool is_weak;
541 union {
542 struct {
543 enum kcfg_type type;
544 int sz;
545 int align;
546 int data_off;
547 bool is_signed;
548 } kcfg;
549 struct {
550 unsigned long long addr;
551
552 /* target btf_id of the corresponding kernel var. */
553 int kernel_btf_obj_fd;
554 int kernel_btf_id;
555
556 /* local btf_id of the ksym extern's type. */
557 __u32 type_id;
558 /* BTF fd index to be patched in for insn->off, this is
559 * 0 for vmlinux BTF, index in obj->fd_array for module
560 * BTF
561 */
562 __s16 btf_fd_idx;
563 } ksym;
564 };
565 };
566
567 struct module_btf {
568 struct btf *btf;
569 char *name;
570 __u32 id;
571 int fd;
572 int fd_array_idx;
573 };
574
575 enum sec_type {
576 SEC_UNUSED = 0,
577 SEC_RELO,
578 SEC_BSS,
579 SEC_DATA,
580 SEC_RODATA,
581 };
582
583 struct elf_sec_desc {
584 enum sec_type sec_type;
585 Elf64_Shdr *shdr;
586 Elf_Data *data;
587 };
588
589 struct elf_state {
590 int fd;
591 const void *obj_buf;
592 size_t obj_buf_sz;
593 Elf *elf;
594 Elf64_Ehdr *ehdr;
595 Elf_Data *symbols;
596 Elf_Data *st_ops_data;
597 size_t shstrndx; /* section index for section name strings */
598 size_t strtabidx;
599 struct elf_sec_desc *secs;
600 size_t sec_cnt;
601 int btf_maps_shndx;
602 __u32 btf_maps_sec_btf_id;
603 int text_shndx;
604 int symbols_shndx;
605 int st_ops_shndx;
606 };
607
608 struct usdt_manager;
609
610 struct bpf_object {
611 char name[BPF_OBJ_NAME_LEN];
612 char license[64];
613 __u32 kern_version;
614
615 struct bpf_program *programs;
616 size_t nr_programs;
617 struct bpf_map *maps;
618 size_t nr_maps;
619 size_t maps_cap;
620
621 char *kconfig;
622 struct extern_desc *externs;
623 int nr_extern;
624 int kconfig_map_idx;
625
626 bool loaded;
627 bool has_subcalls;
628 bool has_rodata;
629
630 struct bpf_gen *gen_loader;
631
632 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */
633 struct elf_state efile;
634
635 struct btf *btf;
636 struct btf_ext *btf_ext;
637
638 /* Parse and load BTF vmlinux if any of the programs in the object need
639 * it at load time.
640 */
641 struct btf *btf_vmlinux;
642 /* Path to the custom BTF to be used for BPF CO-RE relocations as an
643 * override for vmlinux BTF.
644 */
645 char *btf_custom_path;
646 /* vmlinux BTF override for CO-RE relocations */
647 struct btf *btf_vmlinux_override;
648 /* Lazily initialized kernel module BTFs */
649 struct module_btf *btf_modules;
650 bool btf_modules_loaded;
651 size_t btf_module_cnt;
652 size_t btf_module_cap;
653
654 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
655 char *log_buf;
656 size_t log_size;
657 __u32 log_level;
658
659 int *fd_array;
660 size_t fd_array_cap;
661 size_t fd_array_cnt;
662
663 struct usdt_manager *usdt_man;
664
665 char path[];
666 };
667
668 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
669 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
670 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
671 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
672 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
673 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
674 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
675 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
676 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
677
bpf_program__unload(struct bpf_program * prog)678 void bpf_program__unload(struct bpf_program *prog)
679 {
680 if (!prog)
681 return;
682
683 zclose(prog->fd);
684
685 zfree(&prog->func_info);
686 zfree(&prog->line_info);
687 }
688
bpf_program__exit(struct bpf_program * prog)689 static void bpf_program__exit(struct bpf_program *prog)
690 {
691 if (!prog)
692 return;
693
694 bpf_program__unload(prog);
695 zfree(&prog->name);
696 zfree(&prog->sec_name);
697 zfree(&prog->insns);
698 zfree(&prog->reloc_desc);
699
700 prog->nr_reloc = 0;
701 prog->insns_cnt = 0;
702 prog->sec_idx = -1;
703 }
704
insn_is_subprog_call(const struct bpf_insn * insn)705 static bool insn_is_subprog_call(const struct bpf_insn *insn)
706 {
707 return BPF_CLASS(insn->code) == BPF_JMP &&
708 BPF_OP(insn->code) == BPF_CALL &&
709 BPF_SRC(insn->code) == BPF_K &&
710 insn->src_reg == BPF_PSEUDO_CALL &&
711 insn->dst_reg == 0 &&
712 insn->off == 0;
713 }
714
is_call_insn(const struct bpf_insn * insn)715 static bool is_call_insn(const struct bpf_insn *insn)
716 {
717 return insn->code == (BPF_JMP | BPF_CALL);
718 }
719
insn_is_pseudo_func(struct bpf_insn * insn)720 static bool insn_is_pseudo_func(struct bpf_insn *insn)
721 {
722 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
723 }
724
725 static int
bpf_object__init_prog(struct bpf_object * obj,struct bpf_program * prog,const char * name,size_t sec_idx,const char * sec_name,size_t sec_off,void * insn_data,size_t insn_data_sz)726 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
727 const char *name, size_t sec_idx, const char *sec_name,
728 size_t sec_off, void *insn_data, size_t insn_data_sz)
729 {
730 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
731 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
732 sec_name, name, sec_off, insn_data_sz);
733 return -EINVAL;
734 }
735
736 memset(prog, 0, sizeof(*prog));
737 prog->obj = obj;
738
739 prog->sec_idx = sec_idx;
740 prog->sec_insn_off = sec_off / BPF_INSN_SZ;
741 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
742 /* insns_cnt can later be increased by appending used subprograms */
743 prog->insns_cnt = prog->sec_insn_cnt;
744
745 prog->type = BPF_PROG_TYPE_UNSPEC;
746 prog->fd = -1;
747
748 /* libbpf's convention for SEC("?abc...") is that it's just like
749 * SEC("abc...") but the corresponding bpf_program starts out with
750 * autoload set to false.
751 */
752 if (sec_name[0] == '?') {
753 prog->autoload = false;
754 /* from now on forget there was ? in section name */
755 sec_name++;
756 } else {
757 prog->autoload = true;
758 }
759
760 prog->autoattach = true;
761
762 /* inherit object's log_level */
763 prog->log_level = obj->log_level;
764
765 prog->sec_name = strdup(sec_name);
766 if (!prog->sec_name)
767 goto errout;
768
769 prog->name = strdup(name);
770 if (!prog->name)
771 goto errout;
772
773 prog->insns = malloc(insn_data_sz);
774 if (!prog->insns)
775 goto errout;
776 memcpy(prog->insns, insn_data, insn_data_sz);
777
778 return 0;
779 errout:
780 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
781 bpf_program__exit(prog);
782 return -ENOMEM;
783 }
784
785 static int
bpf_object__add_programs(struct bpf_object * obj,Elf_Data * sec_data,const char * sec_name,int sec_idx)786 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
787 const char *sec_name, int sec_idx)
788 {
789 Elf_Data *symbols = obj->efile.symbols;
790 struct bpf_program *prog, *progs;
791 void *data = sec_data->d_buf;
792 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
793 int nr_progs, err, i;
794 const char *name;
795 Elf64_Sym *sym;
796
797 progs = obj->programs;
798 nr_progs = obj->nr_programs;
799 nr_syms = symbols->d_size / sizeof(Elf64_Sym);
800 sec_off = 0;
801
802 for (i = 0; i < nr_syms; i++) {
803 sym = elf_sym_by_idx(obj, i);
804
805 if (sym->st_shndx != sec_idx)
806 continue;
807 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
808 continue;
809
810 prog_sz = sym->st_size;
811 sec_off = sym->st_value;
812
813 name = elf_sym_str(obj, sym->st_name);
814 if (!name) {
815 pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
816 sec_name, sec_off);
817 return -LIBBPF_ERRNO__FORMAT;
818 }
819
820 if (sec_off + prog_sz > sec_sz) {
821 pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
822 sec_name, sec_off);
823 return -LIBBPF_ERRNO__FORMAT;
824 }
825
826 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
827 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
828 return -ENOTSUP;
829 }
830
831 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
832 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
833
834 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
835 if (!progs) {
836 /*
837 * In this case the original obj->programs
838 * is still valid, so don't need special treat for
839 * bpf_close_object().
840 */
841 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
842 sec_name, name);
843 return -ENOMEM;
844 }
845 obj->programs = progs;
846
847 prog = &progs[nr_progs];
848
849 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
850 sec_off, data + sec_off, prog_sz);
851 if (err)
852 return err;
853
854 /* if function is a global/weak symbol, but has restricted
855 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
856 * as static to enable more permissive BPF verification mode
857 * with more outside context available to BPF verifier
858 */
859 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
860 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
861 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
862 prog->mark_btf_static = true;
863
864 nr_progs++;
865 obj->nr_programs = nr_progs;
866 }
867
868 return 0;
869 }
870
get_kernel_version(void)871 __u32 get_kernel_version(void)
872 {
873 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release,
874 * but Ubuntu provides /proc/version_signature file, as described at
875 * https://ubuntu.com/kernel, with an example contents below, which we
876 * can use to get a proper LINUX_VERSION_CODE.
877 *
878 * Ubuntu 5.4.0-12.15-generic 5.4.8
879 *
880 * In the above, 5.4.8 is what kernel is actually expecting, while
881 * uname() call will return 5.4.0 in info.release.
882 */
883 const char *ubuntu_kver_file = "/proc/version_signature";
884 __u32 major, minor, patch;
885 struct utsname info;
886
887 if (faccessat(AT_FDCWD, ubuntu_kver_file, R_OK, AT_EACCESS) == 0) {
888 FILE *f;
889
890 f = fopen(ubuntu_kver_file, "r");
891 if (f) {
892 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) {
893 fclose(f);
894 return KERNEL_VERSION(major, minor, patch);
895 }
896 fclose(f);
897 }
898 /* something went wrong, fall back to uname() approach */
899 }
900
901 uname(&info);
902 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
903 return 0;
904 return KERNEL_VERSION(major, minor, patch);
905 }
906
907 static const struct btf_member *
find_member_by_offset(const struct btf_type * t,__u32 bit_offset)908 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
909 {
910 struct btf_member *m;
911 int i;
912
913 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
914 if (btf_member_bit_offset(t, i) == bit_offset)
915 return m;
916 }
917
918 return NULL;
919 }
920
921 static const struct btf_member *
find_member_by_name(const struct btf * btf,const struct btf_type * t,const char * name)922 find_member_by_name(const struct btf *btf, const struct btf_type *t,
923 const char *name)
924 {
925 struct btf_member *m;
926 int i;
927
928 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
929 if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
930 return m;
931 }
932
933 return NULL;
934 }
935
936 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
937 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
938 const char *name, __u32 kind);
939
940 static int
find_struct_ops_kern_types(const struct btf * btf,const char * tname,const struct btf_type ** type,__u32 * type_id,const struct btf_type ** vtype,__u32 * vtype_id,const struct btf_member ** data_member)941 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
942 const struct btf_type **type, __u32 *type_id,
943 const struct btf_type **vtype, __u32 *vtype_id,
944 const struct btf_member **data_member)
945 {
946 const struct btf_type *kern_type, *kern_vtype;
947 const struct btf_member *kern_data_member;
948 __s32 kern_vtype_id, kern_type_id;
949 __u32 i;
950
951 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
952 if (kern_type_id < 0) {
953 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
954 tname);
955 return kern_type_id;
956 }
957 kern_type = btf__type_by_id(btf, kern_type_id);
958
959 /* Find the corresponding "map_value" type that will be used
960 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example,
961 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
962 * btf_vmlinux.
963 */
964 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
965 tname, BTF_KIND_STRUCT);
966 if (kern_vtype_id < 0) {
967 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
968 STRUCT_OPS_VALUE_PREFIX, tname);
969 return kern_vtype_id;
970 }
971 kern_vtype = btf__type_by_id(btf, kern_vtype_id);
972
973 /* Find "struct tcp_congestion_ops" from
974 * struct bpf_struct_ops_tcp_congestion_ops {
975 * [ ... ]
976 * struct tcp_congestion_ops data;
977 * }
978 */
979 kern_data_member = btf_members(kern_vtype);
980 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
981 if (kern_data_member->type == kern_type_id)
982 break;
983 }
984 if (i == btf_vlen(kern_vtype)) {
985 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
986 tname, STRUCT_OPS_VALUE_PREFIX, tname);
987 return -EINVAL;
988 }
989
990 *type = kern_type;
991 *type_id = kern_type_id;
992 *vtype = kern_vtype;
993 *vtype_id = kern_vtype_id;
994 *data_member = kern_data_member;
995
996 return 0;
997 }
998
bpf_map__is_struct_ops(const struct bpf_map * map)999 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
1000 {
1001 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
1002 }
1003
1004 /* Init the map's fields that depend on kern_btf */
bpf_map__init_kern_struct_ops(struct bpf_map * map,const struct btf * btf,const struct btf * kern_btf)1005 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
1006 const struct btf *btf,
1007 const struct btf *kern_btf)
1008 {
1009 const struct btf_member *member, *kern_member, *kern_data_member;
1010 const struct btf_type *type, *kern_type, *kern_vtype;
1011 __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1012 struct bpf_struct_ops *st_ops;
1013 void *data, *kern_data;
1014 const char *tname;
1015 int err;
1016
1017 st_ops = map->st_ops;
1018 type = st_ops->type;
1019 tname = st_ops->tname;
1020 err = find_struct_ops_kern_types(kern_btf, tname,
1021 &kern_type, &kern_type_id,
1022 &kern_vtype, &kern_vtype_id,
1023 &kern_data_member);
1024 if (err)
1025 return err;
1026
1027 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1028 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1029
1030 map->def.value_size = kern_vtype->size;
1031 map->btf_vmlinux_value_type_id = kern_vtype_id;
1032
1033 st_ops->kern_vdata = calloc(1, kern_vtype->size);
1034 if (!st_ops->kern_vdata)
1035 return -ENOMEM;
1036
1037 data = st_ops->data;
1038 kern_data_off = kern_data_member->offset / 8;
1039 kern_data = st_ops->kern_vdata + kern_data_off;
1040
1041 member = btf_members(type);
1042 for (i = 0; i < btf_vlen(type); i++, member++) {
1043 const struct btf_type *mtype, *kern_mtype;
1044 __u32 mtype_id, kern_mtype_id;
1045 void *mdata, *kern_mdata;
1046 __s64 msize, kern_msize;
1047 __u32 moff, kern_moff;
1048 __u32 kern_member_idx;
1049 const char *mname;
1050
1051 mname = btf__name_by_offset(btf, member->name_off);
1052 kern_member = find_member_by_name(kern_btf, kern_type, mname);
1053 if (!kern_member) {
1054 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1055 map->name, mname);
1056 return -ENOTSUP;
1057 }
1058
1059 kern_member_idx = kern_member - btf_members(kern_type);
1060 if (btf_member_bitfield_size(type, i) ||
1061 btf_member_bitfield_size(kern_type, kern_member_idx)) {
1062 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1063 map->name, mname);
1064 return -ENOTSUP;
1065 }
1066
1067 moff = member->offset / 8;
1068 kern_moff = kern_member->offset / 8;
1069
1070 mdata = data + moff;
1071 kern_mdata = kern_data + kern_moff;
1072
1073 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1074 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1075 &kern_mtype_id);
1076 if (BTF_INFO_KIND(mtype->info) !=
1077 BTF_INFO_KIND(kern_mtype->info)) {
1078 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1079 map->name, mname, BTF_INFO_KIND(mtype->info),
1080 BTF_INFO_KIND(kern_mtype->info));
1081 return -ENOTSUP;
1082 }
1083
1084 if (btf_is_ptr(mtype)) {
1085 struct bpf_program *prog;
1086
1087 prog = st_ops->progs[i];
1088 if (!prog)
1089 continue;
1090
1091 kern_mtype = skip_mods_and_typedefs(kern_btf,
1092 kern_mtype->type,
1093 &kern_mtype_id);
1094
1095 /* mtype->type must be a func_proto which was
1096 * guaranteed in bpf_object__collect_st_ops_relos(),
1097 * so only check kern_mtype for func_proto here.
1098 */
1099 if (!btf_is_func_proto(kern_mtype)) {
1100 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1101 map->name, mname);
1102 return -ENOTSUP;
1103 }
1104
1105 prog->attach_btf_id = kern_type_id;
1106 prog->expected_attach_type = kern_member_idx;
1107
1108 st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1109
1110 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1111 map->name, mname, prog->name, moff,
1112 kern_moff);
1113
1114 continue;
1115 }
1116
1117 msize = btf__resolve_size(btf, mtype_id);
1118 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1119 if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1120 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1121 map->name, mname, (ssize_t)msize,
1122 (ssize_t)kern_msize);
1123 return -ENOTSUP;
1124 }
1125
1126 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1127 map->name, mname, (unsigned int)msize,
1128 moff, kern_moff);
1129 memcpy(kern_mdata, mdata, msize);
1130 }
1131
1132 return 0;
1133 }
1134
bpf_object__init_kern_struct_ops_maps(struct bpf_object * obj)1135 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1136 {
1137 struct bpf_map *map;
1138 size_t i;
1139 int err;
1140
1141 for (i = 0; i < obj->nr_maps; i++) {
1142 map = &obj->maps[i];
1143
1144 if (!bpf_map__is_struct_ops(map))
1145 continue;
1146
1147 err = bpf_map__init_kern_struct_ops(map, obj->btf,
1148 obj->btf_vmlinux);
1149 if (err)
1150 return err;
1151 }
1152
1153 return 0;
1154 }
1155
bpf_object__init_struct_ops_maps(struct bpf_object * obj)1156 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
1157 {
1158 const struct btf_type *type, *datasec;
1159 const struct btf_var_secinfo *vsi;
1160 struct bpf_struct_ops *st_ops;
1161 const char *tname, *var_name;
1162 __s32 type_id, datasec_id;
1163 const struct btf *btf;
1164 struct bpf_map *map;
1165 __u32 i;
1166
1167 if (obj->efile.st_ops_shndx == -1)
1168 return 0;
1169
1170 btf = obj->btf;
1171 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
1172 BTF_KIND_DATASEC);
1173 if (datasec_id < 0) {
1174 pr_warn("struct_ops init: DATASEC %s not found\n",
1175 STRUCT_OPS_SEC);
1176 return -EINVAL;
1177 }
1178
1179 datasec = btf__type_by_id(btf, datasec_id);
1180 vsi = btf_var_secinfos(datasec);
1181 for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1182 type = btf__type_by_id(obj->btf, vsi->type);
1183 var_name = btf__name_by_offset(obj->btf, type->name_off);
1184
1185 type_id = btf__resolve_type(obj->btf, vsi->type);
1186 if (type_id < 0) {
1187 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1188 vsi->type, STRUCT_OPS_SEC);
1189 return -EINVAL;
1190 }
1191
1192 type = btf__type_by_id(obj->btf, type_id);
1193 tname = btf__name_by_offset(obj->btf, type->name_off);
1194 if (!tname[0]) {
1195 pr_warn("struct_ops init: anonymous type is not supported\n");
1196 return -ENOTSUP;
1197 }
1198 if (!btf_is_struct(type)) {
1199 pr_warn("struct_ops init: %s is not a struct\n", tname);
1200 return -EINVAL;
1201 }
1202
1203 map = bpf_object__add_map(obj);
1204 if (IS_ERR(map))
1205 return PTR_ERR(map);
1206
1207 map->sec_idx = obj->efile.st_ops_shndx;
1208 map->sec_offset = vsi->offset;
1209 map->name = strdup(var_name);
1210 if (!map->name)
1211 return -ENOMEM;
1212
1213 map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1214 map->def.key_size = sizeof(int);
1215 map->def.value_size = type->size;
1216 map->def.max_entries = 1;
1217
1218 map->st_ops = calloc(1, sizeof(*map->st_ops));
1219 if (!map->st_ops)
1220 return -ENOMEM;
1221 st_ops = map->st_ops;
1222 st_ops->data = malloc(type->size);
1223 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1224 st_ops->kern_func_off = malloc(btf_vlen(type) *
1225 sizeof(*st_ops->kern_func_off));
1226 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1227 return -ENOMEM;
1228
1229 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1230 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1231 var_name, STRUCT_OPS_SEC);
1232 return -EINVAL;
1233 }
1234
1235 memcpy(st_ops->data,
1236 obj->efile.st_ops_data->d_buf + vsi->offset,
1237 type->size);
1238 st_ops->tname = tname;
1239 st_ops->type = type;
1240 st_ops->type_id = type_id;
1241
1242 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1243 tname, type_id, var_name, vsi->offset);
1244 }
1245
1246 return 0;
1247 }
1248
bpf_object__new(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name)1249 static struct bpf_object *bpf_object__new(const char *path,
1250 const void *obj_buf,
1251 size_t obj_buf_sz,
1252 const char *obj_name)
1253 {
1254 struct bpf_object *obj;
1255 char *end;
1256
1257 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1258 if (!obj) {
1259 pr_warn("alloc memory failed for %s\n", path);
1260 return ERR_PTR(-ENOMEM);
1261 }
1262
1263 strcpy(obj->path, path);
1264 if (obj_name) {
1265 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1266 } else {
1267 /* Using basename() GNU version which doesn't modify arg. */
1268 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1269 end = strchr(obj->name, '.');
1270 if (end)
1271 *end = 0;
1272 }
1273
1274 obj->efile.fd = -1;
1275 /*
1276 * Caller of this function should also call
1277 * bpf_object__elf_finish() after data collection to return
1278 * obj_buf to user. If not, we should duplicate the buffer to
1279 * avoid user freeing them before elf finish.
1280 */
1281 obj->efile.obj_buf = obj_buf;
1282 obj->efile.obj_buf_sz = obj_buf_sz;
1283 obj->efile.btf_maps_shndx = -1;
1284 obj->efile.st_ops_shndx = -1;
1285 obj->kconfig_map_idx = -1;
1286
1287 obj->kern_version = get_kernel_version();
1288 obj->loaded = false;
1289
1290 return obj;
1291 }
1292
bpf_object__elf_finish(struct bpf_object * obj)1293 static void bpf_object__elf_finish(struct bpf_object *obj)
1294 {
1295 if (!obj->efile.elf)
1296 return;
1297
1298 elf_end(obj->efile.elf);
1299 obj->efile.elf = NULL;
1300 obj->efile.symbols = NULL;
1301 obj->efile.st_ops_data = NULL;
1302
1303 zfree(&obj->efile.secs);
1304 obj->efile.sec_cnt = 0;
1305 zclose(obj->efile.fd);
1306 obj->efile.obj_buf = NULL;
1307 obj->efile.obj_buf_sz = 0;
1308 }
1309
bpf_object__elf_init(struct bpf_object * obj)1310 static int bpf_object__elf_init(struct bpf_object *obj)
1311 {
1312 Elf64_Ehdr *ehdr;
1313 int err = 0;
1314 Elf *elf;
1315
1316 if (obj->efile.elf) {
1317 pr_warn("elf: init internal error\n");
1318 return -LIBBPF_ERRNO__LIBELF;
1319 }
1320
1321 if (obj->efile.obj_buf_sz > 0) {
1322 /* obj_buf should have been validated by bpf_object__open_mem(). */
1323 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1324 } else {
1325 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1326 if (obj->efile.fd < 0) {
1327 char errmsg[STRERR_BUFSIZE], *cp;
1328
1329 err = -errno;
1330 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1331 pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1332 return err;
1333 }
1334
1335 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1336 }
1337
1338 if (!elf) {
1339 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1340 err = -LIBBPF_ERRNO__LIBELF;
1341 goto errout;
1342 }
1343
1344 obj->efile.elf = elf;
1345
1346 if (elf_kind(elf) != ELF_K_ELF) {
1347 err = -LIBBPF_ERRNO__FORMAT;
1348 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1349 goto errout;
1350 }
1351
1352 if (gelf_getclass(elf) != ELFCLASS64) {
1353 err = -LIBBPF_ERRNO__FORMAT;
1354 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1355 goto errout;
1356 }
1357
1358 obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1359 if (!obj->efile.ehdr) {
1360 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1361 err = -LIBBPF_ERRNO__FORMAT;
1362 goto errout;
1363 }
1364
1365 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1366 pr_warn("elf: failed to get section names section index for %s: %s\n",
1367 obj->path, elf_errmsg(-1));
1368 err = -LIBBPF_ERRNO__FORMAT;
1369 goto errout;
1370 }
1371
1372 /* Elf is corrupted/truncated, avoid calling elf_strptr. */
1373 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1374 pr_warn("elf: failed to get section names strings from %s: %s\n",
1375 obj->path, elf_errmsg(-1));
1376 err = -LIBBPF_ERRNO__FORMAT;
1377 goto errout;
1378 }
1379
1380 /* Old LLVM set e_machine to EM_NONE */
1381 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1382 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1383 err = -LIBBPF_ERRNO__FORMAT;
1384 goto errout;
1385 }
1386
1387 return 0;
1388 errout:
1389 bpf_object__elf_finish(obj);
1390 return err;
1391 }
1392
bpf_object__check_endianness(struct bpf_object * obj)1393 static int bpf_object__check_endianness(struct bpf_object *obj)
1394 {
1395 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1396 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1397 return 0;
1398 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1399 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1400 return 0;
1401 #else
1402 # error "Unrecognized __BYTE_ORDER__"
1403 #endif
1404 pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1405 return -LIBBPF_ERRNO__ENDIAN;
1406 }
1407
1408 static int
bpf_object__init_license(struct bpf_object * obj,void * data,size_t size)1409 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1410 {
1411 if (!data) {
1412 pr_warn("invalid license section in %s\n", obj->path);
1413 return -LIBBPF_ERRNO__FORMAT;
1414 }
1415 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1416 * go over allowed ELF data section buffer
1417 */
1418 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1419 pr_debug("license of %s is %s\n", obj->path, obj->license);
1420 return 0;
1421 }
1422
1423 static int
bpf_object__init_kversion(struct bpf_object * obj,void * data,size_t size)1424 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1425 {
1426 __u32 kver;
1427
1428 if (!data || size != sizeof(kver)) {
1429 pr_warn("invalid kver section in %s\n", obj->path);
1430 return -LIBBPF_ERRNO__FORMAT;
1431 }
1432 memcpy(&kver, data, sizeof(kver));
1433 obj->kern_version = kver;
1434 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1435 return 0;
1436 }
1437
bpf_map_type__is_map_in_map(enum bpf_map_type type)1438 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1439 {
1440 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1441 type == BPF_MAP_TYPE_HASH_OF_MAPS)
1442 return true;
1443 return false;
1444 }
1445
find_elf_sec_sz(const struct bpf_object * obj,const char * name,__u32 * size)1446 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1447 {
1448 Elf_Data *data;
1449 Elf_Scn *scn;
1450
1451 if (!name)
1452 return -EINVAL;
1453
1454 scn = elf_sec_by_name(obj, name);
1455 data = elf_sec_data(obj, scn);
1456 if (data) {
1457 *size = data->d_size;
1458 return 0; /* found it */
1459 }
1460
1461 return -ENOENT;
1462 }
1463
find_elf_var_offset(const struct bpf_object * obj,const char * name,__u32 * off)1464 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off)
1465 {
1466 Elf_Data *symbols = obj->efile.symbols;
1467 const char *sname;
1468 size_t si;
1469
1470 if (!name || !off)
1471 return -EINVAL;
1472
1473 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1474 Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1475
1476 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1477 continue;
1478
1479 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1480 ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1481 continue;
1482
1483 sname = elf_sym_str(obj, sym->st_name);
1484 if (!sname) {
1485 pr_warn("failed to get sym name string for var %s\n", name);
1486 return -EIO;
1487 }
1488 if (strcmp(name, sname) == 0) {
1489 *off = sym->st_value;
1490 return 0;
1491 }
1492 }
1493
1494 return -ENOENT;
1495 }
1496
bpf_object__add_map(struct bpf_object * obj)1497 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1498 {
1499 struct bpf_map *map;
1500 int err;
1501
1502 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1503 sizeof(*obj->maps), obj->nr_maps + 1);
1504 if (err)
1505 return ERR_PTR(err);
1506
1507 map = &obj->maps[obj->nr_maps++];
1508 map->obj = obj;
1509 map->fd = -1;
1510 map->inner_map_fd = -1;
1511 map->autocreate = true;
1512
1513 return map;
1514 }
1515
bpf_map_mmap_sz(const struct bpf_map * map)1516 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1517 {
1518 long page_sz = sysconf(_SC_PAGE_SIZE);
1519 size_t map_sz;
1520
1521 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1522 map_sz = roundup(map_sz, page_sz);
1523 return map_sz;
1524 }
1525
internal_map_name(struct bpf_object * obj,const char * real_name)1526 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1527 {
1528 char map_name[BPF_OBJ_NAME_LEN], *p;
1529 int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1530
1531 /* This is one of the more confusing parts of libbpf for various
1532 * reasons, some of which are historical. The original idea for naming
1533 * internal names was to include as much of BPF object name prefix as
1534 * possible, so that it can be distinguished from similar internal
1535 * maps of a different BPF object.
1536 * As an example, let's say we have bpf_object named 'my_object_name'
1537 * and internal map corresponding to '.rodata' ELF section. The final
1538 * map name advertised to user and to the kernel will be
1539 * 'my_objec.rodata', taking first 8 characters of object name and
1540 * entire 7 characters of '.rodata'.
1541 * Somewhat confusingly, if internal map ELF section name is shorter
1542 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1543 * for the suffix, even though we only have 4 actual characters, and
1544 * resulting map will be called 'my_objec.bss', not even using all 15
1545 * characters allowed by the kernel. Oh well, at least the truncated
1546 * object name is somewhat consistent in this case. But if the map
1547 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1548 * (8 chars) and thus will be left with only first 7 characters of the
1549 * object name ('my_obje'). Happy guessing, user, that the final map
1550 * name will be "my_obje.kconfig".
1551 * Now, with libbpf starting to support arbitrarily named .rodata.*
1552 * and .data.* data sections, it's possible that ELF section name is
1553 * longer than allowed 15 chars, so we now need to be careful to take
1554 * only up to 15 first characters of ELF name, taking no BPF object
1555 * name characters at all. So '.rodata.abracadabra' will result in
1556 * '.rodata.abracad' kernel and user-visible name.
1557 * We need to keep this convoluted logic intact for .data, .bss and
1558 * .rodata maps, but for new custom .data.custom and .rodata.custom
1559 * maps we use their ELF names as is, not prepending bpf_object name
1560 * in front. We still need to truncate them to 15 characters for the
1561 * kernel. Full name can be recovered for such maps by using DATASEC
1562 * BTF type associated with such map's value type, though.
1563 */
1564 if (sfx_len >= BPF_OBJ_NAME_LEN)
1565 sfx_len = BPF_OBJ_NAME_LEN - 1;
1566
1567 /* if there are two or more dots in map name, it's a custom dot map */
1568 if (strchr(real_name + 1, '.') != NULL)
1569 pfx_len = 0;
1570 else
1571 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1572
1573 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1574 sfx_len, real_name);
1575
1576 /* sanitise map name to characters allowed by kernel */
1577 for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1578 if (!isalnum(*p) && *p != '_' && *p != '.')
1579 *p = '_';
1580
1581 return strdup(map_name);
1582 }
1583
1584 static int
1585 bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map);
1586
1587 static int
bpf_object__init_internal_map(struct bpf_object * obj,enum libbpf_map_type type,const char * real_name,int sec_idx,void * data,size_t data_sz)1588 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1589 const char *real_name, int sec_idx, void *data, size_t data_sz)
1590 {
1591 struct bpf_map_def *def;
1592 struct bpf_map *map;
1593 int err;
1594
1595 map = bpf_object__add_map(obj);
1596 if (IS_ERR(map))
1597 return PTR_ERR(map);
1598
1599 map->libbpf_type = type;
1600 map->sec_idx = sec_idx;
1601 map->sec_offset = 0;
1602 map->real_name = strdup(real_name);
1603 map->name = internal_map_name(obj, real_name);
1604 if (!map->real_name || !map->name) {
1605 zfree(&map->real_name);
1606 zfree(&map->name);
1607 return -ENOMEM;
1608 }
1609
1610 def = &map->def;
1611 def->type = BPF_MAP_TYPE_ARRAY;
1612 def->key_size = sizeof(int);
1613 def->value_size = data_sz;
1614 def->max_entries = 1;
1615 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1616 ? BPF_F_RDONLY_PROG : 0;
1617 def->map_flags |= BPF_F_MMAPABLE;
1618
1619 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1620 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1621
1622 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1623 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1624 if (map->mmaped == MAP_FAILED) {
1625 err = -errno;
1626 map->mmaped = NULL;
1627 pr_warn("failed to alloc map '%s' content buffer: %d\n",
1628 map->name, err);
1629 zfree(&map->real_name);
1630 zfree(&map->name);
1631 return err;
1632 }
1633
1634 /* failures are fine because of maps like .rodata.str1.1 */
1635 (void) bpf_map_find_btf_info(obj, map);
1636
1637 if (data)
1638 memcpy(map->mmaped, data, data_sz);
1639
1640 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1641 return 0;
1642 }
1643
bpf_object__init_global_data_maps(struct bpf_object * obj)1644 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1645 {
1646 struct elf_sec_desc *sec_desc;
1647 const char *sec_name;
1648 int err = 0, sec_idx;
1649
1650 /*
1651 * Populate obj->maps with libbpf internal maps.
1652 */
1653 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1654 sec_desc = &obj->efile.secs[sec_idx];
1655
1656 /* Skip recognized sections with size 0. */
1657 if (!sec_desc->data || sec_desc->data->d_size == 0)
1658 continue;
1659
1660 switch (sec_desc->sec_type) {
1661 case SEC_DATA:
1662 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1663 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1664 sec_name, sec_idx,
1665 sec_desc->data->d_buf,
1666 sec_desc->data->d_size);
1667 break;
1668 case SEC_RODATA:
1669 obj->has_rodata = true;
1670 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1671 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1672 sec_name, sec_idx,
1673 sec_desc->data->d_buf,
1674 sec_desc->data->d_size);
1675 break;
1676 case SEC_BSS:
1677 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1678 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1679 sec_name, sec_idx,
1680 NULL,
1681 sec_desc->data->d_size);
1682 break;
1683 default:
1684 /* skip */
1685 break;
1686 }
1687 if (err)
1688 return err;
1689 }
1690 return 0;
1691 }
1692
1693
find_extern_by_name(const struct bpf_object * obj,const void * name)1694 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1695 const void *name)
1696 {
1697 int i;
1698
1699 for (i = 0; i < obj->nr_extern; i++) {
1700 if (strcmp(obj->externs[i].name, name) == 0)
1701 return &obj->externs[i];
1702 }
1703 return NULL;
1704 }
1705
set_kcfg_value_tri(struct extern_desc * ext,void * ext_val,char value)1706 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1707 char value)
1708 {
1709 switch (ext->kcfg.type) {
1710 case KCFG_BOOL:
1711 if (value == 'm') {
1712 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1713 ext->name, value);
1714 return -EINVAL;
1715 }
1716 *(bool *)ext_val = value == 'y' ? true : false;
1717 break;
1718 case KCFG_TRISTATE:
1719 if (value == 'y')
1720 *(enum libbpf_tristate *)ext_val = TRI_YES;
1721 else if (value == 'm')
1722 *(enum libbpf_tristate *)ext_val = TRI_MODULE;
1723 else /* value == 'n' */
1724 *(enum libbpf_tristate *)ext_val = TRI_NO;
1725 break;
1726 case KCFG_CHAR:
1727 *(char *)ext_val = value;
1728 break;
1729 case KCFG_UNKNOWN:
1730 case KCFG_INT:
1731 case KCFG_CHAR_ARR:
1732 default:
1733 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1734 ext->name, value);
1735 return -EINVAL;
1736 }
1737 ext->is_set = true;
1738 return 0;
1739 }
1740
set_kcfg_value_str(struct extern_desc * ext,char * ext_val,const char * value)1741 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1742 const char *value)
1743 {
1744 size_t len;
1745
1746 if (ext->kcfg.type != KCFG_CHAR_ARR) {
1747 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1748 ext->name, value);
1749 return -EINVAL;
1750 }
1751
1752 len = strlen(value);
1753 if (value[len - 1] != '"') {
1754 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1755 ext->name, value);
1756 return -EINVAL;
1757 }
1758
1759 /* strip quotes */
1760 len -= 2;
1761 if (len >= ext->kcfg.sz) {
1762 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
1763 ext->name, value, len, ext->kcfg.sz - 1);
1764 len = ext->kcfg.sz - 1;
1765 }
1766 memcpy(ext_val, value + 1, len);
1767 ext_val[len] = '\0';
1768 ext->is_set = true;
1769 return 0;
1770 }
1771
parse_u64(const char * value,__u64 * res)1772 static int parse_u64(const char *value, __u64 *res)
1773 {
1774 char *value_end;
1775 int err;
1776
1777 errno = 0;
1778 *res = strtoull(value, &value_end, 0);
1779 if (errno) {
1780 err = -errno;
1781 pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1782 return err;
1783 }
1784 if (*value_end) {
1785 pr_warn("failed to parse '%s' as integer completely\n", value);
1786 return -EINVAL;
1787 }
1788 return 0;
1789 }
1790
is_kcfg_value_in_range(const struct extern_desc * ext,__u64 v)1791 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1792 {
1793 int bit_sz = ext->kcfg.sz * 8;
1794
1795 if (ext->kcfg.sz == 8)
1796 return true;
1797
1798 /* Validate that value stored in u64 fits in integer of `ext->sz`
1799 * bytes size without any loss of information. If the target integer
1800 * is signed, we rely on the following limits of integer type of
1801 * Y bits and subsequent transformation:
1802 *
1803 * -2^(Y-1) <= X <= 2^(Y-1) - 1
1804 * 0 <= X + 2^(Y-1) <= 2^Y - 1
1805 * 0 <= X + 2^(Y-1) < 2^Y
1806 *
1807 * For unsigned target integer, check that all the (64 - Y) bits are
1808 * zero.
1809 */
1810 if (ext->kcfg.is_signed)
1811 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1812 else
1813 return (v >> bit_sz) == 0;
1814 }
1815
set_kcfg_value_num(struct extern_desc * ext,void * ext_val,__u64 value)1816 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1817 __u64 value)
1818 {
1819 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
1820 ext->kcfg.type != KCFG_BOOL) {
1821 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
1822 ext->name, (unsigned long long)value);
1823 return -EINVAL;
1824 }
1825 if (ext->kcfg.type == KCFG_BOOL && value > 1) {
1826 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
1827 ext->name, (unsigned long long)value);
1828 return -EINVAL;
1829
1830 }
1831 if (!is_kcfg_value_in_range(ext, value)) {
1832 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
1833 ext->name, (unsigned long long)value, ext->kcfg.sz);
1834 return -ERANGE;
1835 }
1836 switch (ext->kcfg.sz) {
1837 case 1: *(__u8 *)ext_val = value; break;
1838 case 2: *(__u16 *)ext_val = value; break;
1839 case 4: *(__u32 *)ext_val = value; break;
1840 case 8: *(__u64 *)ext_val = value; break;
1841 default:
1842 return -EINVAL;
1843 }
1844 ext->is_set = true;
1845 return 0;
1846 }
1847
bpf_object__process_kconfig_line(struct bpf_object * obj,char * buf,void * data)1848 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1849 char *buf, void *data)
1850 {
1851 struct extern_desc *ext;
1852 char *sep, *value;
1853 int len, err = 0;
1854 void *ext_val;
1855 __u64 num;
1856
1857 if (!str_has_pfx(buf, "CONFIG_"))
1858 return 0;
1859
1860 sep = strchr(buf, '=');
1861 if (!sep) {
1862 pr_warn("failed to parse '%s': no separator\n", buf);
1863 return -EINVAL;
1864 }
1865
1866 /* Trim ending '\n' */
1867 len = strlen(buf);
1868 if (buf[len - 1] == '\n')
1869 buf[len - 1] = '\0';
1870 /* Split on '=' and ensure that a value is present. */
1871 *sep = '\0';
1872 if (!sep[1]) {
1873 *sep = '=';
1874 pr_warn("failed to parse '%s': no value\n", buf);
1875 return -EINVAL;
1876 }
1877
1878 ext = find_extern_by_name(obj, buf);
1879 if (!ext || ext->is_set)
1880 return 0;
1881
1882 ext_val = data + ext->kcfg.data_off;
1883 value = sep + 1;
1884
1885 switch (*value) {
1886 case 'y': case 'n': case 'm':
1887 err = set_kcfg_value_tri(ext, ext_val, *value);
1888 break;
1889 case '"':
1890 err = set_kcfg_value_str(ext, ext_val, value);
1891 break;
1892 default:
1893 /* assume integer */
1894 err = parse_u64(value, &num);
1895 if (err) {
1896 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
1897 return err;
1898 }
1899 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1900 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
1901 return -EINVAL;
1902 }
1903 err = set_kcfg_value_num(ext, ext_val, num);
1904 break;
1905 }
1906 if (err)
1907 return err;
1908 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
1909 return 0;
1910 }
1911
bpf_object__read_kconfig_file(struct bpf_object * obj,void * data)1912 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1913 {
1914 char buf[PATH_MAX];
1915 struct utsname uts;
1916 int len, err = 0;
1917 gzFile file;
1918
1919 uname(&uts);
1920 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1921 if (len < 0)
1922 return -EINVAL;
1923 else if (len >= PATH_MAX)
1924 return -ENAMETOOLONG;
1925
1926 /* gzopen also accepts uncompressed files. */
1927 file = gzopen(buf, "r");
1928 if (!file)
1929 file = gzopen("/proc/config.gz", "r");
1930
1931 if (!file) {
1932 pr_warn("failed to open system Kconfig\n");
1933 return -ENOENT;
1934 }
1935
1936 while (gzgets(file, buf, sizeof(buf))) {
1937 err = bpf_object__process_kconfig_line(obj, buf, data);
1938 if (err) {
1939 pr_warn("error parsing system Kconfig line '%s': %d\n",
1940 buf, err);
1941 goto out;
1942 }
1943 }
1944
1945 out:
1946 gzclose(file);
1947 return err;
1948 }
1949
bpf_object__read_kconfig_mem(struct bpf_object * obj,const char * config,void * data)1950 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1951 const char *config, void *data)
1952 {
1953 char buf[PATH_MAX];
1954 int err = 0;
1955 FILE *file;
1956
1957 file = fmemopen((void *)config, strlen(config), "r");
1958 if (!file) {
1959 err = -errno;
1960 pr_warn("failed to open in-memory Kconfig: %d\n", err);
1961 return err;
1962 }
1963
1964 while (fgets(buf, sizeof(buf), file)) {
1965 err = bpf_object__process_kconfig_line(obj, buf, data);
1966 if (err) {
1967 pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1968 buf, err);
1969 break;
1970 }
1971 }
1972
1973 fclose(file);
1974 return err;
1975 }
1976
bpf_object__init_kconfig_map(struct bpf_object * obj)1977 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1978 {
1979 struct extern_desc *last_ext = NULL, *ext;
1980 size_t map_sz;
1981 int i, err;
1982
1983 for (i = 0; i < obj->nr_extern; i++) {
1984 ext = &obj->externs[i];
1985 if (ext->type == EXT_KCFG)
1986 last_ext = ext;
1987 }
1988
1989 if (!last_ext)
1990 return 0;
1991
1992 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1993 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1994 ".kconfig", obj->efile.symbols_shndx,
1995 NULL, map_sz);
1996 if (err)
1997 return err;
1998
1999 obj->kconfig_map_idx = obj->nr_maps - 1;
2000
2001 return 0;
2002 }
2003
2004 const struct btf_type *
skip_mods_and_typedefs(const struct btf * btf,__u32 id,__u32 * res_id)2005 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2006 {
2007 const struct btf_type *t = btf__type_by_id(btf, id);
2008
2009 if (res_id)
2010 *res_id = id;
2011
2012 while (btf_is_mod(t) || btf_is_typedef(t)) {
2013 if (res_id)
2014 *res_id = t->type;
2015 t = btf__type_by_id(btf, t->type);
2016 }
2017
2018 return t;
2019 }
2020
2021 static const struct btf_type *
resolve_func_ptr(const struct btf * btf,__u32 id,__u32 * res_id)2022 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2023 {
2024 const struct btf_type *t;
2025
2026 t = skip_mods_and_typedefs(btf, id, NULL);
2027 if (!btf_is_ptr(t))
2028 return NULL;
2029
2030 t = skip_mods_and_typedefs(btf, t->type, res_id);
2031
2032 return btf_is_func_proto(t) ? t : NULL;
2033 }
2034
__btf_kind_str(__u16 kind)2035 static const char *__btf_kind_str(__u16 kind)
2036 {
2037 switch (kind) {
2038 case BTF_KIND_UNKN: return "void";
2039 case BTF_KIND_INT: return "int";
2040 case BTF_KIND_PTR: return "ptr";
2041 case BTF_KIND_ARRAY: return "array";
2042 case BTF_KIND_STRUCT: return "struct";
2043 case BTF_KIND_UNION: return "union";
2044 case BTF_KIND_ENUM: return "enum";
2045 case BTF_KIND_FWD: return "fwd";
2046 case BTF_KIND_TYPEDEF: return "typedef";
2047 case BTF_KIND_VOLATILE: return "volatile";
2048 case BTF_KIND_CONST: return "const";
2049 case BTF_KIND_RESTRICT: return "restrict";
2050 case BTF_KIND_FUNC: return "func";
2051 case BTF_KIND_FUNC_PROTO: return "func_proto";
2052 case BTF_KIND_VAR: return "var";
2053 case BTF_KIND_DATASEC: return "datasec";
2054 case BTF_KIND_FLOAT: return "float";
2055 case BTF_KIND_DECL_TAG: return "decl_tag";
2056 case BTF_KIND_TYPE_TAG: return "type_tag";
2057 case BTF_KIND_ENUM64: return "enum64";
2058 default: return "unknown";
2059 }
2060 }
2061
btf_kind_str(const struct btf_type * t)2062 const char *btf_kind_str(const struct btf_type *t)
2063 {
2064 return __btf_kind_str(btf_kind(t));
2065 }
2066
2067 /*
2068 * Fetch integer attribute of BTF map definition. Such attributes are
2069 * represented using a pointer to an array, in which dimensionality of array
2070 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2071 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2072 * type definition, while using only sizeof(void *) space in ELF data section.
2073 */
get_map_field_int(const char * map_name,const struct btf * btf,const struct btf_member * m,__u32 * res)2074 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2075 const struct btf_member *m, __u32 *res)
2076 {
2077 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2078 const char *name = btf__name_by_offset(btf, m->name_off);
2079 const struct btf_array *arr_info;
2080 const struct btf_type *arr_t;
2081
2082 if (!btf_is_ptr(t)) {
2083 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2084 map_name, name, btf_kind_str(t));
2085 return false;
2086 }
2087
2088 arr_t = btf__type_by_id(btf, t->type);
2089 if (!arr_t) {
2090 pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2091 map_name, name, t->type);
2092 return false;
2093 }
2094 if (!btf_is_array(arr_t)) {
2095 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2096 map_name, name, btf_kind_str(arr_t));
2097 return false;
2098 }
2099 arr_info = btf_array(arr_t);
2100 *res = arr_info->nelems;
2101 return true;
2102 }
2103
pathname_concat(char * buf,size_t buf_sz,const char * path,const char * name)2104 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2105 {
2106 int len;
2107
2108 len = snprintf(buf, buf_sz, "%s/%s", path, name);
2109 if (len < 0)
2110 return -EINVAL;
2111 if (len >= buf_sz)
2112 return -ENAMETOOLONG;
2113
2114 return 0;
2115 }
2116
build_map_pin_path(struct bpf_map * map,const char * path)2117 static int build_map_pin_path(struct bpf_map *map, const char *path)
2118 {
2119 char buf[PATH_MAX];
2120 int err;
2121
2122 if (!path)
2123 path = "/sys/fs/bpf";
2124
2125 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2126 if (err)
2127 return err;
2128
2129 return bpf_map__set_pin_path(map, buf);
2130 }
2131
2132 /* should match definition in bpf_helpers.h */
2133 enum libbpf_pin_type {
2134 LIBBPF_PIN_NONE,
2135 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2136 LIBBPF_PIN_BY_NAME,
2137 };
2138
parse_btf_map_def(const char * map_name,struct btf * btf,const struct btf_type * def_t,bool strict,struct btf_map_def * map_def,struct btf_map_def * inner_def)2139 int parse_btf_map_def(const char *map_name, struct btf *btf,
2140 const struct btf_type *def_t, bool strict,
2141 struct btf_map_def *map_def, struct btf_map_def *inner_def)
2142 {
2143 const struct btf_type *t;
2144 const struct btf_member *m;
2145 bool is_inner = inner_def == NULL;
2146 int vlen, i;
2147
2148 vlen = btf_vlen(def_t);
2149 m = btf_members(def_t);
2150 for (i = 0; i < vlen; i++, m++) {
2151 const char *name = btf__name_by_offset(btf, m->name_off);
2152
2153 if (!name) {
2154 pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2155 return -EINVAL;
2156 }
2157 if (strcmp(name, "type") == 0) {
2158 if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2159 return -EINVAL;
2160 map_def->parts |= MAP_DEF_MAP_TYPE;
2161 } else if (strcmp(name, "max_entries") == 0) {
2162 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2163 return -EINVAL;
2164 map_def->parts |= MAP_DEF_MAX_ENTRIES;
2165 } else if (strcmp(name, "map_flags") == 0) {
2166 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2167 return -EINVAL;
2168 map_def->parts |= MAP_DEF_MAP_FLAGS;
2169 } else if (strcmp(name, "numa_node") == 0) {
2170 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2171 return -EINVAL;
2172 map_def->parts |= MAP_DEF_NUMA_NODE;
2173 } else if (strcmp(name, "key_size") == 0) {
2174 __u32 sz;
2175
2176 if (!get_map_field_int(map_name, btf, m, &sz))
2177 return -EINVAL;
2178 if (map_def->key_size && map_def->key_size != sz) {
2179 pr_warn("map '%s': conflicting key size %u != %u.\n",
2180 map_name, map_def->key_size, sz);
2181 return -EINVAL;
2182 }
2183 map_def->key_size = sz;
2184 map_def->parts |= MAP_DEF_KEY_SIZE;
2185 } else if (strcmp(name, "key") == 0) {
2186 __s64 sz;
2187
2188 t = btf__type_by_id(btf, m->type);
2189 if (!t) {
2190 pr_warn("map '%s': key type [%d] not found.\n",
2191 map_name, m->type);
2192 return -EINVAL;
2193 }
2194 if (!btf_is_ptr(t)) {
2195 pr_warn("map '%s': key spec is not PTR: %s.\n",
2196 map_name, btf_kind_str(t));
2197 return -EINVAL;
2198 }
2199 sz = btf__resolve_size(btf, t->type);
2200 if (sz < 0) {
2201 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2202 map_name, t->type, (ssize_t)sz);
2203 return sz;
2204 }
2205 if (map_def->key_size && map_def->key_size != sz) {
2206 pr_warn("map '%s': conflicting key size %u != %zd.\n",
2207 map_name, map_def->key_size, (ssize_t)sz);
2208 return -EINVAL;
2209 }
2210 map_def->key_size = sz;
2211 map_def->key_type_id = t->type;
2212 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2213 } else if (strcmp(name, "value_size") == 0) {
2214 __u32 sz;
2215
2216 if (!get_map_field_int(map_name, btf, m, &sz))
2217 return -EINVAL;
2218 if (map_def->value_size && map_def->value_size != sz) {
2219 pr_warn("map '%s': conflicting value size %u != %u.\n",
2220 map_name, map_def->value_size, sz);
2221 return -EINVAL;
2222 }
2223 map_def->value_size = sz;
2224 map_def->parts |= MAP_DEF_VALUE_SIZE;
2225 } else if (strcmp(name, "value") == 0) {
2226 __s64 sz;
2227
2228 t = btf__type_by_id(btf, m->type);
2229 if (!t) {
2230 pr_warn("map '%s': value type [%d] not found.\n",
2231 map_name, m->type);
2232 return -EINVAL;
2233 }
2234 if (!btf_is_ptr(t)) {
2235 pr_warn("map '%s': value spec is not PTR: %s.\n",
2236 map_name, btf_kind_str(t));
2237 return -EINVAL;
2238 }
2239 sz = btf__resolve_size(btf, t->type);
2240 if (sz < 0) {
2241 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2242 map_name, t->type, (ssize_t)sz);
2243 return sz;
2244 }
2245 if (map_def->value_size && map_def->value_size != sz) {
2246 pr_warn("map '%s': conflicting value size %u != %zd.\n",
2247 map_name, map_def->value_size, (ssize_t)sz);
2248 return -EINVAL;
2249 }
2250 map_def->value_size = sz;
2251 map_def->value_type_id = t->type;
2252 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2253 }
2254 else if (strcmp(name, "values") == 0) {
2255 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2256 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2257 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2258 char inner_map_name[128];
2259 int err;
2260
2261 if (is_inner) {
2262 pr_warn("map '%s': multi-level inner maps not supported.\n",
2263 map_name);
2264 return -ENOTSUP;
2265 }
2266 if (i != vlen - 1) {
2267 pr_warn("map '%s': '%s' member should be last.\n",
2268 map_name, name);
2269 return -EINVAL;
2270 }
2271 if (!is_map_in_map && !is_prog_array) {
2272 pr_warn("map '%s': should be map-in-map or prog-array.\n",
2273 map_name);
2274 return -ENOTSUP;
2275 }
2276 if (map_def->value_size && map_def->value_size != 4) {
2277 pr_warn("map '%s': conflicting value size %u != 4.\n",
2278 map_name, map_def->value_size);
2279 return -EINVAL;
2280 }
2281 map_def->value_size = 4;
2282 t = btf__type_by_id(btf, m->type);
2283 if (!t) {
2284 pr_warn("map '%s': %s type [%d] not found.\n",
2285 map_name, desc, m->type);
2286 return -EINVAL;
2287 }
2288 if (!btf_is_array(t) || btf_array(t)->nelems) {
2289 pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2290 map_name, desc);
2291 return -EINVAL;
2292 }
2293 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2294 if (!btf_is_ptr(t)) {
2295 pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2296 map_name, desc, btf_kind_str(t));
2297 return -EINVAL;
2298 }
2299 t = skip_mods_and_typedefs(btf, t->type, NULL);
2300 if (is_prog_array) {
2301 if (!btf_is_func_proto(t)) {
2302 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2303 map_name, btf_kind_str(t));
2304 return -EINVAL;
2305 }
2306 continue;
2307 }
2308 if (!btf_is_struct(t)) {
2309 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2310 map_name, btf_kind_str(t));
2311 return -EINVAL;
2312 }
2313
2314 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2315 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2316 if (err)
2317 return err;
2318
2319 map_def->parts |= MAP_DEF_INNER_MAP;
2320 } else if (strcmp(name, "pinning") == 0) {
2321 __u32 val;
2322
2323 if (is_inner) {
2324 pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2325 return -EINVAL;
2326 }
2327 if (!get_map_field_int(map_name, btf, m, &val))
2328 return -EINVAL;
2329 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2330 pr_warn("map '%s': invalid pinning value %u.\n",
2331 map_name, val);
2332 return -EINVAL;
2333 }
2334 map_def->pinning = val;
2335 map_def->parts |= MAP_DEF_PINNING;
2336 } else if (strcmp(name, "map_extra") == 0) {
2337 __u32 map_extra;
2338
2339 if (!get_map_field_int(map_name, btf, m, &map_extra))
2340 return -EINVAL;
2341 map_def->map_extra = map_extra;
2342 map_def->parts |= MAP_DEF_MAP_EXTRA;
2343 } else {
2344 if (strict) {
2345 pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2346 return -ENOTSUP;
2347 }
2348 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2349 }
2350 }
2351
2352 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2353 pr_warn("map '%s': map type isn't specified.\n", map_name);
2354 return -EINVAL;
2355 }
2356
2357 return 0;
2358 }
2359
adjust_ringbuf_sz(size_t sz)2360 static size_t adjust_ringbuf_sz(size_t sz)
2361 {
2362 __u32 page_sz = sysconf(_SC_PAGE_SIZE);
2363 __u32 mul;
2364
2365 /* if user forgot to set any size, make sure they see error */
2366 if (sz == 0)
2367 return 0;
2368 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2369 * a power-of-2 multiple of kernel's page size. If user diligently
2370 * satisified these conditions, pass the size through.
2371 */
2372 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2373 return sz;
2374
2375 /* Otherwise find closest (page_sz * power_of_2) product bigger than
2376 * user-set size to satisfy both user size request and kernel
2377 * requirements and substitute correct max_entries for map creation.
2378 */
2379 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2380 if (mul * page_sz > sz)
2381 return mul * page_sz;
2382 }
2383
2384 /* if it's impossible to satisfy the conditions (i.e., user size is
2385 * very close to UINT_MAX but is not a power-of-2 multiple of
2386 * page_size) then just return original size and let kernel reject it
2387 */
2388 return sz;
2389 }
2390
map_is_ringbuf(const struct bpf_map * map)2391 static bool map_is_ringbuf(const struct bpf_map *map)
2392 {
2393 return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2394 map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2395 }
2396
fill_map_from_def(struct bpf_map * map,const struct btf_map_def * def)2397 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2398 {
2399 map->def.type = def->map_type;
2400 map->def.key_size = def->key_size;
2401 map->def.value_size = def->value_size;
2402 map->def.max_entries = def->max_entries;
2403 map->def.map_flags = def->map_flags;
2404 map->map_extra = def->map_extra;
2405
2406 map->numa_node = def->numa_node;
2407 map->btf_key_type_id = def->key_type_id;
2408 map->btf_value_type_id = def->value_type_id;
2409
2410 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2411 if (map_is_ringbuf(map))
2412 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2413
2414 if (def->parts & MAP_DEF_MAP_TYPE)
2415 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2416
2417 if (def->parts & MAP_DEF_KEY_TYPE)
2418 pr_debug("map '%s': found key [%u], sz = %u.\n",
2419 map->name, def->key_type_id, def->key_size);
2420 else if (def->parts & MAP_DEF_KEY_SIZE)
2421 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2422
2423 if (def->parts & MAP_DEF_VALUE_TYPE)
2424 pr_debug("map '%s': found value [%u], sz = %u.\n",
2425 map->name, def->value_type_id, def->value_size);
2426 else if (def->parts & MAP_DEF_VALUE_SIZE)
2427 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2428
2429 if (def->parts & MAP_DEF_MAX_ENTRIES)
2430 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2431 if (def->parts & MAP_DEF_MAP_FLAGS)
2432 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2433 if (def->parts & MAP_DEF_MAP_EXTRA)
2434 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2435 (unsigned long long)def->map_extra);
2436 if (def->parts & MAP_DEF_PINNING)
2437 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2438 if (def->parts & MAP_DEF_NUMA_NODE)
2439 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2440
2441 if (def->parts & MAP_DEF_INNER_MAP)
2442 pr_debug("map '%s': found inner map definition.\n", map->name);
2443 }
2444
btf_var_linkage_str(__u32 linkage)2445 static const char *btf_var_linkage_str(__u32 linkage)
2446 {
2447 switch (linkage) {
2448 case BTF_VAR_STATIC: return "static";
2449 case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2450 case BTF_VAR_GLOBAL_EXTERN: return "extern";
2451 default: return "unknown";
2452 }
2453 }
2454
bpf_object__init_user_btf_map(struct bpf_object * obj,const struct btf_type * sec,int var_idx,int sec_idx,const Elf_Data * data,bool strict,const char * pin_root_path)2455 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2456 const struct btf_type *sec,
2457 int var_idx, int sec_idx,
2458 const Elf_Data *data, bool strict,
2459 const char *pin_root_path)
2460 {
2461 struct btf_map_def map_def = {}, inner_def = {};
2462 const struct btf_type *var, *def;
2463 const struct btf_var_secinfo *vi;
2464 const struct btf_var *var_extra;
2465 const char *map_name;
2466 struct bpf_map *map;
2467 int err;
2468
2469 vi = btf_var_secinfos(sec) + var_idx;
2470 var = btf__type_by_id(obj->btf, vi->type);
2471 var_extra = btf_var(var);
2472 map_name = btf__name_by_offset(obj->btf, var->name_off);
2473
2474 if (map_name == NULL || map_name[0] == '\0') {
2475 pr_warn("map #%d: empty name.\n", var_idx);
2476 return -EINVAL;
2477 }
2478 if ((__u64)vi->offset + vi->size > data->d_size) {
2479 pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2480 return -EINVAL;
2481 }
2482 if (!btf_is_var(var)) {
2483 pr_warn("map '%s': unexpected var kind %s.\n",
2484 map_name, btf_kind_str(var));
2485 return -EINVAL;
2486 }
2487 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2488 pr_warn("map '%s': unsupported map linkage %s.\n",
2489 map_name, btf_var_linkage_str(var_extra->linkage));
2490 return -EOPNOTSUPP;
2491 }
2492
2493 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2494 if (!btf_is_struct(def)) {
2495 pr_warn("map '%s': unexpected def kind %s.\n",
2496 map_name, btf_kind_str(var));
2497 return -EINVAL;
2498 }
2499 if (def->size > vi->size) {
2500 pr_warn("map '%s': invalid def size.\n", map_name);
2501 return -EINVAL;
2502 }
2503
2504 map = bpf_object__add_map(obj);
2505 if (IS_ERR(map))
2506 return PTR_ERR(map);
2507 map->name = strdup(map_name);
2508 if (!map->name) {
2509 pr_warn("map '%s': failed to alloc map name.\n", map_name);
2510 return -ENOMEM;
2511 }
2512 map->libbpf_type = LIBBPF_MAP_UNSPEC;
2513 map->def.type = BPF_MAP_TYPE_UNSPEC;
2514 map->sec_idx = sec_idx;
2515 map->sec_offset = vi->offset;
2516 map->btf_var_idx = var_idx;
2517 pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2518 map_name, map->sec_idx, map->sec_offset);
2519
2520 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2521 if (err)
2522 return err;
2523
2524 fill_map_from_def(map, &map_def);
2525
2526 if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2527 err = build_map_pin_path(map, pin_root_path);
2528 if (err) {
2529 pr_warn("map '%s': couldn't build pin path.\n", map->name);
2530 return err;
2531 }
2532 }
2533
2534 if (map_def.parts & MAP_DEF_INNER_MAP) {
2535 map->inner_map = calloc(1, sizeof(*map->inner_map));
2536 if (!map->inner_map)
2537 return -ENOMEM;
2538 map->inner_map->fd = -1;
2539 map->inner_map->sec_idx = sec_idx;
2540 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2541 if (!map->inner_map->name)
2542 return -ENOMEM;
2543 sprintf(map->inner_map->name, "%s.inner", map_name);
2544
2545 fill_map_from_def(map->inner_map, &inner_def);
2546 }
2547
2548 err = bpf_map_find_btf_info(obj, map);
2549 if (err)
2550 return err;
2551
2552 return 0;
2553 }
2554
bpf_object__init_user_btf_maps(struct bpf_object * obj,bool strict,const char * pin_root_path)2555 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2556 const char *pin_root_path)
2557 {
2558 const struct btf_type *sec = NULL;
2559 int nr_types, i, vlen, err;
2560 const struct btf_type *t;
2561 const char *name;
2562 Elf_Data *data;
2563 Elf_Scn *scn;
2564
2565 if (obj->efile.btf_maps_shndx < 0)
2566 return 0;
2567
2568 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2569 data = elf_sec_data(obj, scn);
2570 if (!scn || !data) {
2571 pr_warn("elf: failed to get %s map definitions for %s\n",
2572 MAPS_ELF_SEC, obj->path);
2573 return -EINVAL;
2574 }
2575
2576 nr_types = btf__type_cnt(obj->btf);
2577 for (i = 1; i < nr_types; i++) {
2578 t = btf__type_by_id(obj->btf, i);
2579 if (!btf_is_datasec(t))
2580 continue;
2581 name = btf__name_by_offset(obj->btf, t->name_off);
2582 if (strcmp(name, MAPS_ELF_SEC) == 0) {
2583 sec = t;
2584 obj->efile.btf_maps_sec_btf_id = i;
2585 break;
2586 }
2587 }
2588
2589 if (!sec) {
2590 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2591 return -ENOENT;
2592 }
2593
2594 vlen = btf_vlen(sec);
2595 for (i = 0; i < vlen; i++) {
2596 err = bpf_object__init_user_btf_map(obj, sec, i,
2597 obj->efile.btf_maps_shndx,
2598 data, strict,
2599 pin_root_path);
2600 if (err)
2601 return err;
2602 }
2603
2604 return 0;
2605 }
2606
bpf_object__init_maps(struct bpf_object * obj,const struct bpf_object_open_opts * opts)2607 static int bpf_object__init_maps(struct bpf_object *obj,
2608 const struct bpf_object_open_opts *opts)
2609 {
2610 const char *pin_root_path;
2611 bool strict;
2612 int err = 0;
2613
2614 strict = !OPTS_GET(opts, relaxed_maps, false);
2615 pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2616
2617 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2618 err = err ?: bpf_object__init_global_data_maps(obj);
2619 err = err ?: bpf_object__init_kconfig_map(obj);
2620 err = err ?: bpf_object__init_struct_ops_maps(obj);
2621
2622 return err;
2623 }
2624
section_have_execinstr(struct bpf_object * obj,int idx)2625 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2626 {
2627 Elf64_Shdr *sh;
2628
2629 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2630 if (!sh)
2631 return false;
2632
2633 return sh->sh_flags & SHF_EXECINSTR;
2634 }
2635
btf_needs_sanitization(struct bpf_object * obj)2636 static bool btf_needs_sanitization(struct bpf_object *obj)
2637 {
2638 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2639 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2640 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2641 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2642 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2643 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2644 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2645
2646 return !has_func || !has_datasec || !has_func_global || !has_float ||
2647 !has_decl_tag || !has_type_tag || !has_enum64;
2648 }
2649
bpf_object__sanitize_btf(struct bpf_object * obj,struct btf * btf)2650 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2651 {
2652 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2653 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2654 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2655 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2656 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2657 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2658 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2659 int enum64_placeholder_id = 0;
2660 struct btf_type *t;
2661 int i, j, vlen;
2662
2663 for (i = 1; i < btf__type_cnt(btf); i++) {
2664 t = (struct btf_type *)btf__type_by_id(btf, i);
2665
2666 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2667 /* replace VAR/DECL_TAG with INT */
2668 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2669 /*
2670 * using size = 1 is the safest choice, 4 will be too
2671 * big and cause kernel BTF validation failure if
2672 * original variable took less than 4 bytes
2673 */
2674 t->size = 1;
2675 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2676 } else if (!has_datasec && btf_is_datasec(t)) {
2677 /* replace DATASEC with STRUCT */
2678 const struct btf_var_secinfo *v = btf_var_secinfos(t);
2679 struct btf_member *m = btf_members(t);
2680 struct btf_type *vt;
2681 char *name;
2682
2683 name = (char *)btf__name_by_offset(btf, t->name_off);
2684 while (*name) {
2685 if (*name == '.')
2686 *name = '_';
2687 name++;
2688 }
2689
2690 vlen = btf_vlen(t);
2691 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2692 for (j = 0; j < vlen; j++, v++, m++) {
2693 /* order of field assignments is important */
2694 m->offset = v->offset * 8;
2695 m->type = v->type;
2696 /* preserve variable name as member name */
2697 vt = (void *)btf__type_by_id(btf, v->type);
2698 m->name_off = vt->name_off;
2699 }
2700 } else if (!has_func && btf_is_func_proto(t)) {
2701 /* replace FUNC_PROTO with ENUM */
2702 vlen = btf_vlen(t);
2703 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2704 t->size = sizeof(__u32); /* kernel enforced */
2705 } else if (!has_func && btf_is_func(t)) {
2706 /* replace FUNC with TYPEDEF */
2707 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2708 } else if (!has_func_global && btf_is_func(t)) {
2709 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2710 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2711 } else if (!has_float && btf_is_float(t)) {
2712 /* replace FLOAT with an equally-sized empty STRUCT;
2713 * since C compilers do not accept e.g. "float" as a
2714 * valid struct name, make it anonymous
2715 */
2716 t->name_off = 0;
2717 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2718 } else if (!has_type_tag && btf_is_type_tag(t)) {
2719 /* replace TYPE_TAG with a CONST */
2720 t->name_off = 0;
2721 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2722 } else if (!has_enum64 && btf_is_enum(t)) {
2723 /* clear the kflag */
2724 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2725 } else if (!has_enum64 && btf_is_enum64(t)) {
2726 /* replace ENUM64 with a union */
2727 struct btf_member *m;
2728
2729 if (enum64_placeholder_id == 0) {
2730 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2731 if (enum64_placeholder_id < 0)
2732 return enum64_placeholder_id;
2733
2734 t = (struct btf_type *)btf__type_by_id(btf, i);
2735 }
2736
2737 m = btf_members(t);
2738 vlen = btf_vlen(t);
2739 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2740 for (j = 0; j < vlen; j++, m++) {
2741 m->type = enum64_placeholder_id;
2742 m->offset = 0;
2743 }
2744 }
2745 }
2746
2747 return 0;
2748 }
2749
libbpf_needs_btf(const struct bpf_object * obj)2750 static bool libbpf_needs_btf(const struct bpf_object *obj)
2751 {
2752 return obj->efile.btf_maps_shndx >= 0 ||
2753 obj->efile.st_ops_shndx >= 0 ||
2754 obj->nr_extern > 0;
2755 }
2756
kernel_needs_btf(const struct bpf_object * obj)2757 static bool kernel_needs_btf(const struct bpf_object *obj)
2758 {
2759 return obj->efile.st_ops_shndx >= 0;
2760 }
2761
bpf_object__init_btf(struct bpf_object * obj,Elf_Data * btf_data,Elf_Data * btf_ext_data)2762 static int bpf_object__init_btf(struct bpf_object *obj,
2763 Elf_Data *btf_data,
2764 Elf_Data *btf_ext_data)
2765 {
2766 int err = -ENOENT;
2767
2768 if (btf_data) {
2769 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2770 err = libbpf_get_error(obj->btf);
2771 if (err) {
2772 obj->btf = NULL;
2773 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2774 goto out;
2775 }
2776 /* enforce 8-byte pointers for BPF-targeted BTFs */
2777 btf__set_pointer_size(obj->btf, 8);
2778 }
2779 if (btf_ext_data) {
2780 struct btf_ext_info *ext_segs[3];
2781 int seg_num, sec_num;
2782
2783 if (!obj->btf) {
2784 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2785 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2786 goto out;
2787 }
2788 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2789 err = libbpf_get_error(obj->btf_ext);
2790 if (err) {
2791 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2792 BTF_EXT_ELF_SEC, err);
2793 obj->btf_ext = NULL;
2794 goto out;
2795 }
2796
2797 /* setup .BTF.ext to ELF section mapping */
2798 ext_segs[0] = &obj->btf_ext->func_info;
2799 ext_segs[1] = &obj->btf_ext->line_info;
2800 ext_segs[2] = &obj->btf_ext->core_relo_info;
2801 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2802 struct btf_ext_info *seg = ext_segs[seg_num];
2803 const struct btf_ext_info_sec *sec;
2804 const char *sec_name;
2805 Elf_Scn *scn;
2806
2807 if (seg->sec_cnt == 0)
2808 continue;
2809
2810 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2811 if (!seg->sec_idxs) {
2812 err = -ENOMEM;
2813 goto out;
2814 }
2815
2816 sec_num = 0;
2817 for_each_btf_ext_sec(seg, sec) {
2818 /* preventively increment index to avoid doing
2819 * this before every continue below
2820 */
2821 sec_num++;
2822
2823 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2824 if (str_is_empty(sec_name))
2825 continue;
2826 scn = elf_sec_by_name(obj, sec_name);
2827 if (!scn)
2828 continue;
2829
2830 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2831 }
2832 }
2833 }
2834 out:
2835 if (err && libbpf_needs_btf(obj)) {
2836 pr_warn("BTF is required, but is missing or corrupted.\n");
2837 return err;
2838 }
2839 return 0;
2840 }
2841
compare_vsi_off(const void * _a,const void * _b)2842 static int compare_vsi_off(const void *_a, const void *_b)
2843 {
2844 const struct btf_var_secinfo *a = _a;
2845 const struct btf_var_secinfo *b = _b;
2846
2847 return a->offset - b->offset;
2848 }
2849
btf_fixup_datasec(struct bpf_object * obj,struct btf * btf,struct btf_type * t)2850 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2851 struct btf_type *t)
2852 {
2853 __u32 size = 0, off = 0, i, vars = btf_vlen(t);
2854 const char *name = btf__name_by_offset(btf, t->name_off);
2855 const struct btf_type *t_var;
2856 struct btf_var_secinfo *vsi;
2857 const struct btf_var *var;
2858 int ret;
2859
2860 if (!name) {
2861 pr_debug("No name found in string section for DATASEC kind.\n");
2862 return -ENOENT;
2863 }
2864
2865 /* .extern datasec size and var offsets were set correctly during
2866 * extern collection step, so just skip straight to sorting variables
2867 */
2868 if (t->size)
2869 goto sort_vars;
2870
2871 ret = find_elf_sec_sz(obj, name, &size);
2872 if (ret || !size) {
2873 pr_debug("Invalid size for section %s: %u bytes\n", name, size);
2874 return -ENOENT;
2875 }
2876
2877 t->size = size;
2878
2879 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2880 t_var = btf__type_by_id(btf, vsi->type);
2881 if (!t_var || !btf_is_var(t_var)) {
2882 pr_debug("Non-VAR type seen in section %s\n", name);
2883 return -EINVAL;
2884 }
2885
2886 var = btf_var(t_var);
2887 if (var->linkage == BTF_VAR_STATIC)
2888 continue;
2889
2890 name = btf__name_by_offset(btf, t_var->name_off);
2891 if (!name) {
2892 pr_debug("No name found in string section for VAR kind\n");
2893 return -ENOENT;
2894 }
2895
2896 ret = find_elf_var_offset(obj, name, &off);
2897 if (ret) {
2898 pr_debug("No offset found in symbol table for VAR %s\n",
2899 name);
2900 return -ENOENT;
2901 }
2902
2903 vsi->offset = off;
2904 }
2905
2906 sort_vars:
2907 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
2908 return 0;
2909 }
2910
btf_finalize_data(struct bpf_object * obj,struct btf * btf)2911 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf)
2912 {
2913 int err = 0;
2914 __u32 i, n = btf__type_cnt(btf);
2915
2916 for (i = 1; i < n; i++) {
2917 struct btf_type *t = btf_type_by_id(btf, i);
2918
2919 /* Loader needs to fix up some of the things compiler
2920 * couldn't get its hands on while emitting BTF. This
2921 * is section size and global variable offset. We use
2922 * the info from the ELF itself for this purpose.
2923 */
2924 if (btf_is_datasec(t)) {
2925 err = btf_fixup_datasec(obj, btf, t);
2926 if (err)
2927 break;
2928 }
2929 }
2930
2931 return libbpf_err(err);
2932 }
2933
bpf_object__finalize_btf(struct bpf_object * obj)2934 static int bpf_object__finalize_btf(struct bpf_object *obj)
2935 {
2936 int err;
2937
2938 if (!obj->btf)
2939 return 0;
2940
2941 err = btf_finalize_data(obj, obj->btf);
2942 if (err) {
2943 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err);
2944 return err;
2945 }
2946
2947 return 0;
2948 }
2949
prog_needs_vmlinux_btf(struct bpf_program * prog)2950 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
2951 {
2952 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2953 prog->type == BPF_PROG_TYPE_LSM)
2954 return true;
2955
2956 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2957 * also need vmlinux BTF
2958 */
2959 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2960 return true;
2961
2962 return false;
2963 }
2964
obj_needs_vmlinux_btf(const struct bpf_object * obj)2965 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
2966 {
2967 struct bpf_program *prog;
2968 int i;
2969
2970 /* CO-RE relocations need kernel BTF, only when btf_custom_path
2971 * is not specified
2972 */
2973 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
2974 return true;
2975
2976 /* Support for typed ksyms needs kernel BTF */
2977 for (i = 0; i < obj->nr_extern; i++) {
2978 const struct extern_desc *ext;
2979
2980 ext = &obj->externs[i];
2981 if (ext->type == EXT_KSYM && ext->ksym.type_id)
2982 return true;
2983 }
2984
2985 bpf_object__for_each_program(prog, obj) {
2986 if (!prog->autoload)
2987 continue;
2988 if (prog_needs_vmlinux_btf(prog))
2989 return true;
2990 }
2991
2992 return false;
2993 }
2994
bpf_object__load_vmlinux_btf(struct bpf_object * obj,bool force)2995 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
2996 {
2997 int err;
2998
2999 /* btf_vmlinux could be loaded earlier */
3000 if (obj->btf_vmlinux || obj->gen_loader)
3001 return 0;
3002
3003 if (!force && !obj_needs_vmlinux_btf(obj))
3004 return 0;
3005
3006 obj->btf_vmlinux = btf__load_vmlinux_btf();
3007 err = libbpf_get_error(obj->btf_vmlinux);
3008 if (err) {
3009 pr_warn("Error loading vmlinux BTF: %d\n", err);
3010 obj->btf_vmlinux = NULL;
3011 return err;
3012 }
3013 return 0;
3014 }
3015
bpf_object__sanitize_and_load_btf(struct bpf_object * obj)3016 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3017 {
3018 struct btf *kern_btf = obj->btf;
3019 bool btf_mandatory, sanitize;
3020 int i, err = 0;
3021
3022 if (!obj->btf)
3023 return 0;
3024
3025 if (!kernel_supports(obj, FEAT_BTF)) {
3026 if (kernel_needs_btf(obj)) {
3027 err = -EOPNOTSUPP;
3028 goto report;
3029 }
3030 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3031 return 0;
3032 }
3033
3034 /* Even though some subprogs are global/weak, user might prefer more
3035 * permissive BPF verification process that BPF verifier performs for
3036 * static functions, taking into account more context from the caller
3037 * functions. In such case, they need to mark such subprogs with
3038 * __attribute__((visibility("hidden"))) and libbpf will adjust
3039 * corresponding FUNC BTF type to be marked as static and trigger more
3040 * involved BPF verification process.
3041 */
3042 for (i = 0; i < obj->nr_programs; i++) {
3043 struct bpf_program *prog = &obj->programs[i];
3044 struct btf_type *t;
3045 const char *name;
3046 int j, n;
3047
3048 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3049 continue;
3050
3051 n = btf__type_cnt(obj->btf);
3052 for (j = 1; j < n; j++) {
3053 t = btf_type_by_id(obj->btf, j);
3054 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3055 continue;
3056
3057 name = btf__str_by_offset(obj->btf, t->name_off);
3058 if (strcmp(name, prog->name) != 0)
3059 continue;
3060
3061 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3062 break;
3063 }
3064 }
3065
3066 sanitize = btf_needs_sanitization(obj);
3067 if (sanitize) {
3068 const void *raw_data;
3069 __u32 sz;
3070
3071 /* clone BTF to sanitize a copy and leave the original intact */
3072 raw_data = btf__raw_data(obj->btf, &sz);
3073 kern_btf = btf__new(raw_data, sz);
3074 err = libbpf_get_error(kern_btf);
3075 if (err)
3076 return err;
3077
3078 /* enforce 8-byte pointers for BPF-targeted BTFs */
3079 btf__set_pointer_size(obj->btf, 8);
3080 err = bpf_object__sanitize_btf(obj, kern_btf);
3081 if (err)
3082 return err;
3083 }
3084
3085 if (obj->gen_loader) {
3086 __u32 raw_size = 0;
3087 const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3088
3089 if (!raw_data)
3090 return -ENOMEM;
3091 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3092 /* Pretend to have valid FD to pass various fd >= 0 checks.
3093 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3094 */
3095 btf__set_fd(kern_btf, 0);
3096 } else {
3097 /* currently BPF_BTF_LOAD only supports log_level 1 */
3098 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3099 obj->log_level ? 1 : 0);
3100 }
3101 if (sanitize) {
3102 if (!err) {
3103 /* move fd to libbpf's BTF */
3104 btf__set_fd(obj->btf, btf__fd(kern_btf));
3105 btf__set_fd(kern_btf, -1);
3106 }
3107 btf__free(kern_btf);
3108 }
3109 report:
3110 if (err) {
3111 btf_mandatory = kernel_needs_btf(obj);
3112 pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3113 btf_mandatory ? "BTF is mandatory, can't proceed."
3114 : "BTF is optional, ignoring.");
3115 if (!btf_mandatory)
3116 err = 0;
3117 }
3118 return err;
3119 }
3120
elf_sym_str(const struct bpf_object * obj,size_t off)3121 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3122 {
3123 const char *name;
3124
3125 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3126 if (!name) {
3127 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3128 off, obj->path, elf_errmsg(-1));
3129 return NULL;
3130 }
3131
3132 return name;
3133 }
3134
elf_sec_str(const struct bpf_object * obj,size_t off)3135 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3136 {
3137 const char *name;
3138
3139 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3140 if (!name) {
3141 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3142 off, obj->path, elf_errmsg(-1));
3143 return NULL;
3144 }
3145
3146 return name;
3147 }
3148
elf_sec_by_idx(const struct bpf_object * obj,size_t idx)3149 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3150 {
3151 Elf_Scn *scn;
3152
3153 scn = elf_getscn(obj->efile.elf, idx);
3154 if (!scn) {
3155 pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3156 idx, obj->path, elf_errmsg(-1));
3157 return NULL;
3158 }
3159 return scn;
3160 }
3161
elf_sec_by_name(const struct bpf_object * obj,const char * name)3162 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3163 {
3164 Elf_Scn *scn = NULL;
3165 Elf *elf = obj->efile.elf;
3166 const char *sec_name;
3167
3168 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3169 sec_name = elf_sec_name(obj, scn);
3170 if (!sec_name)
3171 return NULL;
3172
3173 if (strcmp(sec_name, name) != 0)
3174 continue;
3175
3176 return scn;
3177 }
3178 return NULL;
3179 }
3180
elf_sec_hdr(const struct bpf_object * obj,Elf_Scn * scn)3181 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3182 {
3183 Elf64_Shdr *shdr;
3184
3185 if (!scn)
3186 return NULL;
3187
3188 shdr = elf64_getshdr(scn);
3189 if (!shdr) {
3190 pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3191 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3192 return NULL;
3193 }
3194
3195 return shdr;
3196 }
3197
elf_sec_name(const struct bpf_object * obj,Elf_Scn * scn)3198 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3199 {
3200 const char *name;
3201 Elf64_Shdr *sh;
3202
3203 if (!scn)
3204 return NULL;
3205
3206 sh = elf_sec_hdr(obj, scn);
3207 if (!sh)
3208 return NULL;
3209
3210 name = elf_sec_str(obj, sh->sh_name);
3211 if (!name) {
3212 pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3213 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3214 return NULL;
3215 }
3216
3217 return name;
3218 }
3219
elf_sec_data(const struct bpf_object * obj,Elf_Scn * scn)3220 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3221 {
3222 Elf_Data *data;
3223
3224 if (!scn)
3225 return NULL;
3226
3227 data = elf_getdata(scn, 0);
3228 if (!data) {
3229 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3230 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3231 obj->path, elf_errmsg(-1));
3232 return NULL;
3233 }
3234
3235 return data;
3236 }
3237
elf_sym_by_idx(const struct bpf_object * obj,size_t idx)3238 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3239 {
3240 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3241 return NULL;
3242
3243 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3244 }
3245
elf_rel_by_idx(Elf_Data * data,size_t idx)3246 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3247 {
3248 if (idx >= data->d_size / sizeof(Elf64_Rel))
3249 return NULL;
3250
3251 return (Elf64_Rel *)data->d_buf + idx;
3252 }
3253
is_sec_name_dwarf(const char * name)3254 static bool is_sec_name_dwarf(const char *name)
3255 {
3256 /* approximation, but the actual list is too long */
3257 return str_has_pfx(name, ".debug_");
3258 }
3259
ignore_elf_section(Elf64_Shdr * hdr,const char * name)3260 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3261 {
3262 /* no special handling of .strtab */
3263 if (hdr->sh_type == SHT_STRTAB)
3264 return true;
3265
3266 /* ignore .llvm_addrsig section as well */
3267 if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3268 return true;
3269
3270 /* no subprograms will lead to an empty .text section, ignore it */
3271 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3272 strcmp(name, ".text") == 0)
3273 return true;
3274
3275 /* DWARF sections */
3276 if (is_sec_name_dwarf(name))
3277 return true;
3278
3279 if (str_has_pfx(name, ".rel")) {
3280 name += sizeof(".rel") - 1;
3281 /* DWARF section relocations */
3282 if (is_sec_name_dwarf(name))
3283 return true;
3284
3285 /* .BTF and .BTF.ext don't need relocations */
3286 if (strcmp(name, BTF_ELF_SEC) == 0 ||
3287 strcmp(name, BTF_EXT_ELF_SEC) == 0)
3288 return true;
3289 }
3290
3291 return false;
3292 }
3293
cmp_progs(const void * _a,const void * _b)3294 static int cmp_progs(const void *_a, const void *_b)
3295 {
3296 const struct bpf_program *a = _a;
3297 const struct bpf_program *b = _b;
3298
3299 if (a->sec_idx != b->sec_idx)
3300 return a->sec_idx < b->sec_idx ? -1 : 1;
3301
3302 /* sec_insn_off can't be the same within the section */
3303 return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3304 }
3305
bpf_object__elf_collect(struct bpf_object * obj)3306 static int bpf_object__elf_collect(struct bpf_object *obj)
3307 {
3308 struct elf_sec_desc *sec_desc;
3309 Elf *elf = obj->efile.elf;
3310 Elf_Data *btf_ext_data = NULL;
3311 Elf_Data *btf_data = NULL;
3312 int idx = 0, err = 0;
3313 const char *name;
3314 Elf_Data *data;
3315 Elf_Scn *scn;
3316 Elf64_Shdr *sh;
3317
3318 /* ELF section indices are 0-based, but sec #0 is special "invalid"
3319 * section. Since section count retrieved by elf_getshdrnum() does
3320 * include sec #0, it is already the necessary size of an array to keep
3321 * all the sections.
3322 */
3323 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3324 pr_warn("elf: failed to get the number of sections for %s: %s\n",
3325 obj->path, elf_errmsg(-1));
3326 return -LIBBPF_ERRNO__FORMAT;
3327 }
3328 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3329 if (!obj->efile.secs)
3330 return -ENOMEM;
3331
3332 /* a bunch of ELF parsing functionality depends on processing symbols,
3333 * so do the first pass and find the symbol table
3334 */
3335 scn = NULL;
3336 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3337 sh = elf_sec_hdr(obj, scn);
3338 if (!sh)
3339 return -LIBBPF_ERRNO__FORMAT;
3340
3341 if (sh->sh_type == SHT_SYMTAB) {
3342 if (obj->efile.symbols) {
3343 pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3344 return -LIBBPF_ERRNO__FORMAT;
3345 }
3346
3347 data = elf_sec_data(obj, scn);
3348 if (!data)
3349 return -LIBBPF_ERRNO__FORMAT;
3350
3351 idx = elf_ndxscn(scn);
3352
3353 obj->efile.symbols = data;
3354 obj->efile.symbols_shndx = idx;
3355 obj->efile.strtabidx = sh->sh_link;
3356 }
3357 }
3358
3359 if (!obj->efile.symbols) {
3360 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3361 obj->path);
3362 return -ENOENT;
3363 }
3364
3365 scn = NULL;
3366 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3367 idx = elf_ndxscn(scn);
3368 sec_desc = &obj->efile.secs[idx];
3369
3370 sh = elf_sec_hdr(obj, scn);
3371 if (!sh)
3372 return -LIBBPF_ERRNO__FORMAT;
3373
3374 name = elf_sec_str(obj, sh->sh_name);
3375 if (!name)
3376 return -LIBBPF_ERRNO__FORMAT;
3377
3378 if (ignore_elf_section(sh, name))
3379 continue;
3380
3381 data = elf_sec_data(obj, scn);
3382 if (!data)
3383 return -LIBBPF_ERRNO__FORMAT;
3384
3385 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3386 idx, name, (unsigned long)data->d_size,
3387 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3388 (int)sh->sh_type);
3389
3390 if (strcmp(name, "license") == 0) {
3391 err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3392 if (err)
3393 return err;
3394 } else if (strcmp(name, "version") == 0) {
3395 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3396 if (err)
3397 return err;
3398 } else if (strcmp(name, "maps") == 0) {
3399 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3400 return -ENOTSUP;
3401 } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3402 obj->efile.btf_maps_shndx = idx;
3403 } else if (strcmp(name, BTF_ELF_SEC) == 0) {
3404 if (sh->sh_type != SHT_PROGBITS)
3405 return -LIBBPF_ERRNO__FORMAT;
3406 btf_data = data;
3407 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3408 if (sh->sh_type != SHT_PROGBITS)
3409 return -LIBBPF_ERRNO__FORMAT;
3410 btf_ext_data = data;
3411 } else if (sh->sh_type == SHT_SYMTAB) {
3412 /* already processed during the first pass above */
3413 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3414 if (sh->sh_flags & SHF_EXECINSTR) {
3415 if (strcmp(name, ".text") == 0)
3416 obj->efile.text_shndx = idx;
3417 err = bpf_object__add_programs(obj, data, name, idx);
3418 if (err)
3419 return err;
3420 } else if (strcmp(name, DATA_SEC) == 0 ||
3421 str_has_pfx(name, DATA_SEC ".")) {
3422 sec_desc->sec_type = SEC_DATA;
3423 sec_desc->shdr = sh;
3424 sec_desc->data = data;
3425 } else if (strcmp(name, RODATA_SEC) == 0 ||
3426 str_has_pfx(name, RODATA_SEC ".")) {
3427 sec_desc->sec_type = SEC_RODATA;
3428 sec_desc->shdr = sh;
3429 sec_desc->data = data;
3430 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3431 obj->efile.st_ops_data = data;
3432 obj->efile.st_ops_shndx = idx;
3433 } else {
3434 pr_info("elf: skipping unrecognized data section(%d) %s\n",
3435 idx, name);
3436 }
3437 } else if (sh->sh_type == SHT_REL) {
3438 int targ_sec_idx = sh->sh_info; /* points to other section */
3439
3440 if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3441 targ_sec_idx >= obj->efile.sec_cnt)
3442 return -LIBBPF_ERRNO__FORMAT;
3443
3444 /* Only do relo for section with exec instructions */
3445 if (!section_have_execinstr(obj, targ_sec_idx) &&
3446 strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3447 strcmp(name, ".rel" MAPS_ELF_SEC)) {
3448 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3449 idx, name, targ_sec_idx,
3450 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3451 continue;
3452 }
3453
3454 sec_desc->sec_type = SEC_RELO;
3455 sec_desc->shdr = sh;
3456 sec_desc->data = data;
3457 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) {
3458 sec_desc->sec_type = SEC_BSS;
3459 sec_desc->shdr = sh;
3460 sec_desc->data = data;
3461 } else {
3462 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3463 (size_t)sh->sh_size);
3464 }
3465 }
3466
3467 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3468 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3469 return -LIBBPF_ERRNO__FORMAT;
3470 }
3471
3472 /* sort BPF programs by section name and in-section instruction offset
3473 * for faster search */
3474 if (obj->nr_programs)
3475 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3476
3477 return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3478 }
3479
sym_is_extern(const Elf64_Sym * sym)3480 static bool sym_is_extern(const Elf64_Sym *sym)
3481 {
3482 int bind = ELF64_ST_BIND(sym->st_info);
3483 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3484 return sym->st_shndx == SHN_UNDEF &&
3485 (bind == STB_GLOBAL || bind == STB_WEAK) &&
3486 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3487 }
3488
sym_is_subprog(const Elf64_Sym * sym,int text_shndx)3489 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3490 {
3491 int bind = ELF64_ST_BIND(sym->st_info);
3492 int type = ELF64_ST_TYPE(sym->st_info);
3493
3494 /* in .text section */
3495 if (sym->st_shndx != text_shndx)
3496 return false;
3497
3498 /* local function */
3499 if (bind == STB_LOCAL && type == STT_SECTION)
3500 return true;
3501
3502 /* global function */
3503 return bind == STB_GLOBAL && type == STT_FUNC;
3504 }
3505
find_extern_btf_id(const struct btf * btf,const char * ext_name)3506 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3507 {
3508 const struct btf_type *t;
3509 const char *tname;
3510 int i, n;
3511
3512 if (!btf)
3513 return -ESRCH;
3514
3515 n = btf__type_cnt(btf);
3516 for (i = 1; i < n; i++) {
3517 t = btf__type_by_id(btf, i);
3518
3519 if (!btf_is_var(t) && !btf_is_func(t))
3520 continue;
3521
3522 tname = btf__name_by_offset(btf, t->name_off);
3523 if (strcmp(tname, ext_name))
3524 continue;
3525
3526 if (btf_is_var(t) &&
3527 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3528 return -EINVAL;
3529
3530 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3531 return -EINVAL;
3532
3533 return i;
3534 }
3535
3536 return -ENOENT;
3537 }
3538
find_extern_sec_btf_id(struct btf * btf,int ext_btf_id)3539 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3540 const struct btf_var_secinfo *vs;
3541 const struct btf_type *t;
3542 int i, j, n;
3543
3544 if (!btf)
3545 return -ESRCH;
3546
3547 n = btf__type_cnt(btf);
3548 for (i = 1; i < n; i++) {
3549 t = btf__type_by_id(btf, i);
3550
3551 if (!btf_is_datasec(t))
3552 continue;
3553
3554 vs = btf_var_secinfos(t);
3555 for (j = 0; j < btf_vlen(t); j++, vs++) {
3556 if (vs->type == ext_btf_id)
3557 return i;
3558 }
3559 }
3560
3561 return -ENOENT;
3562 }
3563
find_kcfg_type(const struct btf * btf,int id,bool * is_signed)3564 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3565 bool *is_signed)
3566 {
3567 const struct btf_type *t;
3568 const char *name;
3569
3570 t = skip_mods_and_typedefs(btf, id, NULL);
3571 name = btf__name_by_offset(btf, t->name_off);
3572
3573 if (is_signed)
3574 *is_signed = false;
3575 switch (btf_kind(t)) {
3576 case BTF_KIND_INT: {
3577 int enc = btf_int_encoding(t);
3578
3579 if (enc & BTF_INT_BOOL)
3580 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3581 if (is_signed)
3582 *is_signed = enc & BTF_INT_SIGNED;
3583 if (t->size == 1)
3584 return KCFG_CHAR;
3585 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3586 return KCFG_UNKNOWN;
3587 return KCFG_INT;
3588 }
3589 case BTF_KIND_ENUM:
3590 if (t->size != 4)
3591 return KCFG_UNKNOWN;
3592 if (strcmp(name, "libbpf_tristate"))
3593 return KCFG_UNKNOWN;
3594 return KCFG_TRISTATE;
3595 case BTF_KIND_ENUM64:
3596 if (strcmp(name, "libbpf_tristate"))
3597 return KCFG_UNKNOWN;
3598 return KCFG_TRISTATE;
3599 case BTF_KIND_ARRAY:
3600 if (btf_array(t)->nelems == 0)
3601 return KCFG_UNKNOWN;
3602 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3603 return KCFG_UNKNOWN;
3604 return KCFG_CHAR_ARR;
3605 default:
3606 return KCFG_UNKNOWN;
3607 }
3608 }
3609
cmp_externs(const void * _a,const void * _b)3610 static int cmp_externs(const void *_a, const void *_b)
3611 {
3612 const struct extern_desc *a = _a;
3613 const struct extern_desc *b = _b;
3614
3615 if (a->type != b->type)
3616 return a->type < b->type ? -1 : 1;
3617
3618 if (a->type == EXT_KCFG) {
3619 /* descending order by alignment requirements */
3620 if (a->kcfg.align != b->kcfg.align)
3621 return a->kcfg.align > b->kcfg.align ? -1 : 1;
3622 /* ascending order by size, within same alignment class */
3623 if (a->kcfg.sz != b->kcfg.sz)
3624 return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3625 }
3626
3627 /* resolve ties by name */
3628 return strcmp(a->name, b->name);
3629 }
3630
find_int_btf_id(const struct btf * btf)3631 static int find_int_btf_id(const struct btf *btf)
3632 {
3633 const struct btf_type *t;
3634 int i, n;
3635
3636 n = btf__type_cnt(btf);
3637 for (i = 1; i < n; i++) {
3638 t = btf__type_by_id(btf, i);
3639
3640 if (btf_is_int(t) && btf_int_bits(t) == 32)
3641 return i;
3642 }
3643
3644 return 0;
3645 }
3646
add_dummy_ksym_var(struct btf * btf)3647 static int add_dummy_ksym_var(struct btf *btf)
3648 {
3649 int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3650 const struct btf_var_secinfo *vs;
3651 const struct btf_type *sec;
3652
3653 if (!btf)
3654 return 0;
3655
3656 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3657 BTF_KIND_DATASEC);
3658 if (sec_btf_id < 0)
3659 return 0;
3660
3661 sec = btf__type_by_id(btf, sec_btf_id);
3662 vs = btf_var_secinfos(sec);
3663 for (i = 0; i < btf_vlen(sec); i++, vs++) {
3664 const struct btf_type *vt;
3665
3666 vt = btf__type_by_id(btf, vs->type);
3667 if (btf_is_func(vt))
3668 break;
3669 }
3670
3671 /* No func in ksyms sec. No need to add dummy var. */
3672 if (i == btf_vlen(sec))
3673 return 0;
3674
3675 int_btf_id = find_int_btf_id(btf);
3676 dummy_var_btf_id = btf__add_var(btf,
3677 "dummy_ksym",
3678 BTF_VAR_GLOBAL_ALLOCATED,
3679 int_btf_id);
3680 if (dummy_var_btf_id < 0)
3681 pr_warn("cannot create a dummy_ksym var\n");
3682
3683 return dummy_var_btf_id;
3684 }
3685
bpf_object__collect_externs(struct bpf_object * obj)3686 static int bpf_object__collect_externs(struct bpf_object *obj)
3687 {
3688 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3689 const struct btf_type *t;
3690 struct extern_desc *ext;
3691 int i, n, off, dummy_var_btf_id;
3692 const char *ext_name, *sec_name;
3693 Elf_Scn *scn;
3694 Elf64_Shdr *sh;
3695
3696 if (!obj->efile.symbols)
3697 return 0;
3698
3699 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3700 sh = elf_sec_hdr(obj, scn);
3701 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3702 return -LIBBPF_ERRNO__FORMAT;
3703
3704 dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3705 if (dummy_var_btf_id < 0)
3706 return dummy_var_btf_id;
3707
3708 n = sh->sh_size / sh->sh_entsize;
3709 pr_debug("looking for externs among %d symbols...\n", n);
3710
3711 for (i = 0; i < n; i++) {
3712 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3713
3714 if (!sym)
3715 return -LIBBPF_ERRNO__FORMAT;
3716 if (!sym_is_extern(sym))
3717 continue;
3718 ext_name = elf_sym_str(obj, sym->st_name);
3719 if (!ext_name || !ext_name[0])
3720 continue;
3721
3722 ext = obj->externs;
3723 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3724 if (!ext)
3725 return -ENOMEM;
3726 obj->externs = ext;
3727 ext = &ext[obj->nr_extern];
3728 memset(ext, 0, sizeof(*ext));
3729 obj->nr_extern++;
3730
3731 ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3732 if (ext->btf_id <= 0) {
3733 pr_warn("failed to find BTF for extern '%s': %d\n",
3734 ext_name, ext->btf_id);
3735 return ext->btf_id;
3736 }
3737 t = btf__type_by_id(obj->btf, ext->btf_id);
3738 ext->name = btf__name_by_offset(obj->btf, t->name_off);
3739 ext->sym_idx = i;
3740 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3741
3742 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3743 if (ext->sec_btf_id <= 0) {
3744 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3745 ext_name, ext->btf_id, ext->sec_btf_id);
3746 return ext->sec_btf_id;
3747 }
3748 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3749 sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3750
3751 if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3752 if (btf_is_func(t)) {
3753 pr_warn("extern function %s is unsupported under %s section\n",
3754 ext->name, KCONFIG_SEC);
3755 return -ENOTSUP;
3756 }
3757 kcfg_sec = sec;
3758 ext->type = EXT_KCFG;
3759 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3760 if (ext->kcfg.sz <= 0) {
3761 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3762 ext_name, ext->kcfg.sz);
3763 return ext->kcfg.sz;
3764 }
3765 ext->kcfg.align = btf__align_of(obj->btf, t->type);
3766 if (ext->kcfg.align <= 0) {
3767 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3768 ext_name, ext->kcfg.align);
3769 return -EINVAL;
3770 }
3771 ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3772 &ext->kcfg.is_signed);
3773 if (ext->kcfg.type == KCFG_UNKNOWN) {
3774 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
3775 return -ENOTSUP;
3776 }
3777 } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3778 ksym_sec = sec;
3779 ext->type = EXT_KSYM;
3780 skip_mods_and_typedefs(obj->btf, t->type,
3781 &ext->ksym.type_id);
3782 } else {
3783 pr_warn("unrecognized extern section '%s'\n", sec_name);
3784 return -ENOTSUP;
3785 }
3786 }
3787 pr_debug("collected %d externs total\n", obj->nr_extern);
3788
3789 if (!obj->nr_extern)
3790 return 0;
3791
3792 /* sort externs by type, for kcfg ones also by (align, size, name) */
3793 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3794
3795 /* for .ksyms section, we need to turn all externs into allocated
3796 * variables in BTF to pass kernel verification; we do this by
3797 * pretending that each extern is a 8-byte variable
3798 */
3799 if (ksym_sec) {
3800 /* find existing 4-byte integer type in BTF to use for fake
3801 * extern variables in DATASEC
3802 */
3803 int int_btf_id = find_int_btf_id(obj->btf);
3804 /* For extern function, a dummy_var added earlier
3805 * will be used to replace the vs->type and
3806 * its name string will be used to refill
3807 * the missing param's name.
3808 */
3809 const struct btf_type *dummy_var;
3810
3811 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3812 for (i = 0; i < obj->nr_extern; i++) {
3813 ext = &obj->externs[i];
3814 if (ext->type != EXT_KSYM)
3815 continue;
3816 pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3817 i, ext->sym_idx, ext->name);
3818 }
3819
3820 sec = ksym_sec;
3821 n = btf_vlen(sec);
3822 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3823 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3824 struct btf_type *vt;
3825
3826 vt = (void *)btf__type_by_id(obj->btf, vs->type);
3827 ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3828 ext = find_extern_by_name(obj, ext_name);
3829 if (!ext) {
3830 pr_warn("failed to find extern definition for BTF %s '%s'\n",
3831 btf_kind_str(vt), ext_name);
3832 return -ESRCH;
3833 }
3834 if (btf_is_func(vt)) {
3835 const struct btf_type *func_proto;
3836 struct btf_param *param;
3837 int j;
3838
3839 func_proto = btf__type_by_id(obj->btf,
3840 vt->type);
3841 param = btf_params(func_proto);
3842 /* Reuse the dummy_var string if the
3843 * func proto does not have param name.
3844 */
3845 for (j = 0; j < btf_vlen(func_proto); j++)
3846 if (param[j].type && !param[j].name_off)
3847 param[j].name_off =
3848 dummy_var->name_off;
3849 vs->type = dummy_var_btf_id;
3850 vt->info &= ~0xffff;
3851 vt->info |= BTF_FUNC_GLOBAL;
3852 } else {
3853 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3854 vt->type = int_btf_id;
3855 }
3856 vs->offset = off;
3857 vs->size = sizeof(int);
3858 }
3859 sec->size = off;
3860 }
3861
3862 if (kcfg_sec) {
3863 sec = kcfg_sec;
3864 /* for kcfg externs calculate their offsets within a .kconfig map */
3865 off = 0;
3866 for (i = 0; i < obj->nr_extern; i++) {
3867 ext = &obj->externs[i];
3868 if (ext->type != EXT_KCFG)
3869 continue;
3870
3871 ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3872 off = ext->kcfg.data_off + ext->kcfg.sz;
3873 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3874 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3875 }
3876 sec->size = off;
3877 n = btf_vlen(sec);
3878 for (i = 0; i < n; i++) {
3879 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3880
3881 t = btf__type_by_id(obj->btf, vs->type);
3882 ext_name = btf__name_by_offset(obj->btf, t->name_off);
3883 ext = find_extern_by_name(obj, ext_name);
3884 if (!ext) {
3885 pr_warn("failed to find extern definition for BTF var '%s'\n",
3886 ext_name);
3887 return -ESRCH;
3888 }
3889 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3890 vs->offset = ext->kcfg.data_off;
3891 }
3892 }
3893 return 0;
3894 }
3895
prog_is_subprog(const struct bpf_object * obj,const struct bpf_program * prog)3896 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
3897 {
3898 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3899 }
3900
3901 struct bpf_program *
bpf_object__find_program_by_name(const struct bpf_object * obj,const char * name)3902 bpf_object__find_program_by_name(const struct bpf_object *obj,
3903 const char *name)
3904 {
3905 struct bpf_program *prog;
3906
3907 bpf_object__for_each_program(prog, obj) {
3908 if (prog_is_subprog(obj, prog))
3909 continue;
3910 if (!strcmp(prog->name, name))
3911 return prog;
3912 }
3913 return errno = ENOENT, NULL;
3914 }
3915
bpf_object__shndx_is_data(const struct bpf_object * obj,int shndx)3916 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3917 int shndx)
3918 {
3919 switch (obj->efile.secs[shndx].sec_type) {
3920 case SEC_BSS:
3921 case SEC_DATA:
3922 case SEC_RODATA:
3923 return true;
3924 default:
3925 return false;
3926 }
3927 }
3928
bpf_object__shndx_is_maps(const struct bpf_object * obj,int shndx)3929 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3930 int shndx)
3931 {
3932 return shndx == obj->efile.btf_maps_shndx;
3933 }
3934
3935 static enum libbpf_map_type
bpf_object__section_to_libbpf_map_type(const struct bpf_object * obj,int shndx)3936 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3937 {
3938 if (shndx == obj->efile.symbols_shndx)
3939 return LIBBPF_MAP_KCONFIG;
3940
3941 switch (obj->efile.secs[shndx].sec_type) {
3942 case SEC_BSS:
3943 return LIBBPF_MAP_BSS;
3944 case SEC_DATA:
3945 return LIBBPF_MAP_DATA;
3946 case SEC_RODATA:
3947 return LIBBPF_MAP_RODATA;
3948 default:
3949 return LIBBPF_MAP_UNSPEC;
3950 }
3951 }
3952
bpf_program__record_reloc(struct bpf_program * prog,struct reloc_desc * reloc_desc,__u32 insn_idx,const char * sym_name,const Elf64_Sym * sym,const Elf64_Rel * rel)3953 static int bpf_program__record_reloc(struct bpf_program *prog,
3954 struct reloc_desc *reloc_desc,
3955 __u32 insn_idx, const char *sym_name,
3956 const Elf64_Sym *sym, const Elf64_Rel *rel)
3957 {
3958 struct bpf_insn *insn = &prog->insns[insn_idx];
3959 size_t map_idx, nr_maps = prog->obj->nr_maps;
3960 struct bpf_object *obj = prog->obj;
3961 __u32 shdr_idx = sym->st_shndx;
3962 enum libbpf_map_type type;
3963 const char *sym_sec_name;
3964 struct bpf_map *map;
3965
3966 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
3967 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
3968 prog->name, sym_name, insn_idx, insn->code);
3969 return -LIBBPF_ERRNO__RELOC;
3970 }
3971
3972 if (sym_is_extern(sym)) {
3973 int sym_idx = ELF64_R_SYM(rel->r_info);
3974 int i, n = obj->nr_extern;
3975 struct extern_desc *ext;
3976
3977 for (i = 0; i < n; i++) {
3978 ext = &obj->externs[i];
3979 if (ext->sym_idx == sym_idx)
3980 break;
3981 }
3982 if (i >= n) {
3983 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
3984 prog->name, sym_name, sym_idx);
3985 return -LIBBPF_ERRNO__RELOC;
3986 }
3987 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
3988 prog->name, i, ext->name, ext->sym_idx, insn_idx);
3989 if (insn->code == (BPF_JMP | BPF_CALL))
3990 reloc_desc->type = RELO_EXTERN_FUNC;
3991 else
3992 reloc_desc->type = RELO_EXTERN_VAR;
3993 reloc_desc->insn_idx = insn_idx;
3994 reloc_desc->sym_off = i; /* sym_off stores extern index */
3995 return 0;
3996 }
3997
3998 /* sub-program call relocation */
3999 if (is_call_insn(insn)) {
4000 if (insn->src_reg != BPF_PSEUDO_CALL) {
4001 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4002 return -LIBBPF_ERRNO__RELOC;
4003 }
4004 /* text_shndx can be 0, if no default "main" program exists */
4005 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4006 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4007 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4008 prog->name, sym_name, sym_sec_name);
4009 return -LIBBPF_ERRNO__RELOC;
4010 }
4011 if (sym->st_value % BPF_INSN_SZ) {
4012 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4013 prog->name, sym_name, (size_t)sym->st_value);
4014 return -LIBBPF_ERRNO__RELOC;
4015 }
4016 reloc_desc->type = RELO_CALL;
4017 reloc_desc->insn_idx = insn_idx;
4018 reloc_desc->sym_off = sym->st_value;
4019 return 0;
4020 }
4021
4022 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4023 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4024 prog->name, sym_name, shdr_idx);
4025 return -LIBBPF_ERRNO__RELOC;
4026 }
4027
4028 /* loading subprog addresses */
4029 if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4030 /* global_func: sym->st_value = offset in the section, insn->imm = 0.
4031 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4032 */
4033 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4034 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4035 prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4036 return -LIBBPF_ERRNO__RELOC;
4037 }
4038
4039 reloc_desc->type = RELO_SUBPROG_ADDR;
4040 reloc_desc->insn_idx = insn_idx;
4041 reloc_desc->sym_off = sym->st_value;
4042 return 0;
4043 }
4044
4045 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4046 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4047
4048 /* generic map reference relocation */
4049 if (type == LIBBPF_MAP_UNSPEC) {
4050 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4051 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4052 prog->name, sym_name, sym_sec_name);
4053 return -LIBBPF_ERRNO__RELOC;
4054 }
4055 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4056 map = &obj->maps[map_idx];
4057 if (map->libbpf_type != type ||
4058 map->sec_idx != sym->st_shndx ||
4059 map->sec_offset != sym->st_value)
4060 continue;
4061 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4062 prog->name, map_idx, map->name, map->sec_idx,
4063 map->sec_offset, insn_idx);
4064 break;
4065 }
4066 if (map_idx >= nr_maps) {
4067 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4068 prog->name, sym_sec_name, (size_t)sym->st_value);
4069 return -LIBBPF_ERRNO__RELOC;
4070 }
4071 reloc_desc->type = RELO_LD64;
4072 reloc_desc->insn_idx = insn_idx;
4073 reloc_desc->map_idx = map_idx;
4074 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4075 return 0;
4076 }
4077
4078 /* global data map relocation */
4079 if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4080 pr_warn("prog '%s': bad data relo against section '%s'\n",
4081 prog->name, sym_sec_name);
4082 return -LIBBPF_ERRNO__RELOC;
4083 }
4084 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4085 map = &obj->maps[map_idx];
4086 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4087 continue;
4088 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4089 prog->name, map_idx, map->name, map->sec_idx,
4090 map->sec_offset, insn_idx);
4091 break;
4092 }
4093 if (map_idx >= nr_maps) {
4094 pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4095 prog->name, sym_sec_name);
4096 return -LIBBPF_ERRNO__RELOC;
4097 }
4098
4099 reloc_desc->type = RELO_DATA;
4100 reloc_desc->insn_idx = insn_idx;
4101 reloc_desc->map_idx = map_idx;
4102 reloc_desc->sym_off = sym->st_value;
4103 return 0;
4104 }
4105
prog_contains_insn(const struct bpf_program * prog,size_t insn_idx)4106 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4107 {
4108 return insn_idx >= prog->sec_insn_off &&
4109 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4110 }
4111
find_prog_by_sec_insn(const struct bpf_object * obj,size_t sec_idx,size_t insn_idx)4112 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4113 size_t sec_idx, size_t insn_idx)
4114 {
4115 int l = 0, r = obj->nr_programs - 1, m;
4116 struct bpf_program *prog;
4117
4118 if (!obj->nr_programs)
4119 return NULL;
4120
4121 while (l < r) {
4122 m = l + (r - l + 1) / 2;
4123 prog = &obj->programs[m];
4124
4125 if (prog->sec_idx < sec_idx ||
4126 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4127 l = m;
4128 else
4129 r = m - 1;
4130 }
4131 /* matching program could be at index l, but it still might be the
4132 * wrong one, so we need to double check conditions for the last time
4133 */
4134 prog = &obj->programs[l];
4135 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4136 return prog;
4137 return NULL;
4138 }
4139
4140 static int
bpf_object__collect_prog_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)4141 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4142 {
4143 const char *relo_sec_name, *sec_name;
4144 size_t sec_idx = shdr->sh_info, sym_idx;
4145 struct bpf_program *prog;
4146 struct reloc_desc *relos;
4147 int err, i, nrels;
4148 const char *sym_name;
4149 __u32 insn_idx;
4150 Elf_Scn *scn;
4151 Elf_Data *scn_data;
4152 Elf64_Sym *sym;
4153 Elf64_Rel *rel;
4154
4155 if (sec_idx >= obj->efile.sec_cnt)
4156 return -EINVAL;
4157
4158 scn = elf_sec_by_idx(obj, sec_idx);
4159 scn_data = elf_sec_data(obj, scn);
4160 if (!scn_data)
4161 return -LIBBPF_ERRNO__FORMAT;
4162
4163 relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4164 sec_name = elf_sec_name(obj, scn);
4165 if (!relo_sec_name || !sec_name)
4166 return -EINVAL;
4167
4168 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4169 relo_sec_name, sec_idx, sec_name);
4170 nrels = shdr->sh_size / shdr->sh_entsize;
4171
4172 for (i = 0; i < nrels; i++) {
4173 rel = elf_rel_by_idx(data, i);
4174 if (!rel) {
4175 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4176 return -LIBBPF_ERRNO__FORMAT;
4177 }
4178
4179 sym_idx = ELF64_R_SYM(rel->r_info);
4180 sym = elf_sym_by_idx(obj, sym_idx);
4181 if (!sym) {
4182 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4183 relo_sec_name, sym_idx, i);
4184 return -LIBBPF_ERRNO__FORMAT;
4185 }
4186
4187 if (sym->st_shndx >= obj->efile.sec_cnt) {
4188 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4189 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4190 return -LIBBPF_ERRNO__FORMAT;
4191 }
4192
4193 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4194 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4195 relo_sec_name, (size_t)rel->r_offset, i);
4196 return -LIBBPF_ERRNO__FORMAT;
4197 }
4198
4199 insn_idx = rel->r_offset / BPF_INSN_SZ;
4200 /* relocations against static functions are recorded as
4201 * relocations against the section that contains a function;
4202 * in such case, symbol will be STT_SECTION and sym.st_name
4203 * will point to empty string (0), so fetch section name
4204 * instead
4205 */
4206 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4207 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4208 else
4209 sym_name = elf_sym_str(obj, sym->st_name);
4210 sym_name = sym_name ?: "<?";
4211
4212 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4213 relo_sec_name, i, insn_idx, sym_name);
4214
4215 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4216 if (!prog) {
4217 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4218 relo_sec_name, i, sec_name, insn_idx);
4219 continue;
4220 }
4221
4222 relos = libbpf_reallocarray(prog->reloc_desc,
4223 prog->nr_reloc + 1, sizeof(*relos));
4224 if (!relos)
4225 return -ENOMEM;
4226 prog->reloc_desc = relos;
4227
4228 /* adjust insn_idx to local BPF program frame of reference */
4229 insn_idx -= prog->sec_insn_off;
4230 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4231 insn_idx, sym_name, sym, rel);
4232 if (err)
4233 return err;
4234
4235 prog->nr_reloc++;
4236 }
4237 return 0;
4238 }
4239
bpf_map_find_btf_info(struct bpf_object * obj,struct bpf_map * map)4240 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
4241 {
4242 int id;
4243
4244 if (!obj->btf)
4245 return -ENOENT;
4246
4247 /* if it's BTF-defined map, we don't need to search for type IDs.
4248 * For struct_ops map, it does not need btf_key_type_id and
4249 * btf_value_type_id.
4250 */
4251 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4252 return 0;
4253
4254 /*
4255 * LLVM annotates global data differently in BTF, that is,
4256 * only as '.data', '.bss' or '.rodata'.
4257 */
4258 if (!bpf_map__is_internal(map))
4259 return -ENOENT;
4260
4261 id = btf__find_by_name(obj->btf, map->real_name);
4262 if (id < 0)
4263 return id;
4264
4265 map->btf_key_type_id = 0;
4266 map->btf_value_type_id = id;
4267 return 0;
4268 }
4269
bpf_get_map_info_from_fdinfo(int fd,struct bpf_map_info * info)4270 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4271 {
4272 char file[PATH_MAX], buff[4096];
4273 FILE *fp;
4274 __u32 val;
4275 int err;
4276
4277 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4278 memset(info, 0, sizeof(*info));
4279
4280 fp = fopen(file, "r");
4281 if (!fp) {
4282 err = -errno;
4283 pr_warn("failed to open %s: %d. No procfs support?\n", file,
4284 err);
4285 return err;
4286 }
4287
4288 while (fgets(buff, sizeof(buff), fp)) {
4289 if (sscanf(buff, "map_type:\t%u", &val) == 1)
4290 info->type = val;
4291 else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4292 info->key_size = val;
4293 else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4294 info->value_size = val;
4295 else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4296 info->max_entries = val;
4297 else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4298 info->map_flags = val;
4299 }
4300
4301 fclose(fp);
4302
4303 return 0;
4304 }
4305
bpf_map__autocreate(const struct bpf_map * map)4306 bool bpf_map__autocreate(const struct bpf_map *map)
4307 {
4308 return map->autocreate;
4309 }
4310
bpf_map__set_autocreate(struct bpf_map * map,bool autocreate)4311 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4312 {
4313 if (map->obj->loaded)
4314 return libbpf_err(-EBUSY);
4315
4316 map->autocreate = autocreate;
4317 return 0;
4318 }
4319
bpf_map__reuse_fd(struct bpf_map * map,int fd)4320 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4321 {
4322 struct bpf_map_info info;
4323 __u32 len = sizeof(info), name_len;
4324 int new_fd, err;
4325 char *new_name;
4326
4327 memset(&info, 0, len);
4328 err = bpf_obj_get_info_by_fd(fd, &info, &len);
4329 if (err && errno == EINVAL)
4330 err = bpf_get_map_info_from_fdinfo(fd, &info);
4331 if (err)
4332 return libbpf_err(err);
4333
4334 name_len = strlen(info.name);
4335 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4336 new_name = strdup(map->name);
4337 else
4338 new_name = strdup(info.name);
4339
4340 if (!new_name)
4341 return libbpf_err(-errno);
4342
4343 new_fd = open("/", O_RDONLY | O_CLOEXEC);
4344 if (new_fd < 0) {
4345 err = -errno;
4346 goto err_free_new_name;
4347 }
4348
4349 new_fd = dup3(fd, new_fd, O_CLOEXEC);
4350 if (new_fd < 0) {
4351 err = -errno;
4352 goto err_close_new_fd;
4353 }
4354
4355 err = zclose(map->fd);
4356 if (err) {
4357 err = -errno;
4358 goto err_close_new_fd;
4359 }
4360 free(map->name);
4361
4362 map->fd = new_fd;
4363 map->name = new_name;
4364 map->def.type = info.type;
4365 map->def.key_size = info.key_size;
4366 map->def.value_size = info.value_size;
4367 map->def.max_entries = info.max_entries;
4368 map->def.map_flags = info.map_flags;
4369 map->btf_key_type_id = info.btf_key_type_id;
4370 map->btf_value_type_id = info.btf_value_type_id;
4371 map->reused = true;
4372 map->map_extra = info.map_extra;
4373
4374 return 0;
4375
4376 err_close_new_fd:
4377 close(new_fd);
4378 err_free_new_name:
4379 free(new_name);
4380 return libbpf_err(err);
4381 }
4382
bpf_map__max_entries(const struct bpf_map * map)4383 __u32 bpf_map__max_entries(const struct bpf_map *map)
4384 {
4385 return map->def.max_entries;
4386 }
4387
bpf_map__inner_map(struct bpf_map * map)4388 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4389 {
4390 if (!bpf_map_type__is_map_in_map(map->def.type))
4391 return errno = EINVAL, NULL;
4392
4393 return map->inner_map;
4394 }
4395
bpf_map__set_max_entries(struct bpf_map * map,__u32 max_entries)4396 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4397 {
4398 if (map->obj->loaded)
4399 return libbpf_err(-EBUSY);
4400
4401 map->def.max_entries = max_entries;
4402
4403 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4404 if (map_is_ringbuf(map))
4405 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4406
4407 return 0;
4408 }
4409
4410 static int
bpf_object__probe_loading(struct bpf_object * obj)4411 bpf_object__probe_loading(struct bpf_object *obj)
4412 {
4413 char *cp, errmsg[STRERR_BUFSIZE];
4414 struct bpf_insn insns[] = {
4415 BPF_MOV64_IMM(BPF_REG_0, 0),
4416 BPF_EXIT_INSN(),
4417 };
4418 int ret, insn_cnt = ARRAY_SIZE(insns);
4419
4420 if (obj->gen_loader)
4421 return 0;
4422
4423 ret = bump_rlimit_memlock();
4424 if (ret)
4425 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4426
4427 /* make sure basic loading works */
4428 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4429 if (ret < 0)
4430 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4431 if (ret < 0) {
4432 ret = errno;
4433 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4434 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4435 "program. Make sure your kernel supports BPF "
4436 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4437 "set to big enough value.\n", __func__, cp, ret);
4438 return -ret;
4439 }
4440 close(ret);
4441
4442 return 0;
4443 }
4444
probe_fd(int fd)4445 static int probe_fd(int fd)
4446 {
4447 if (fd >= 0)
4448 close(fd);
4449 return fd >= 0;
4450 }
4451
probe_kern_prog_name(void)4452 static int probe_kern_prog_name(void)
4453 {
4454 const size_t attr_sz = offsetofend(union bpf_attr, prog_name);
4455 struct bpf_insn insns[] = {
4456 BPF_MOV64_IMM(BPF_REG_0, 0),
4457 BPF_EXIT_INSN(),
4458 };
4459 union bpf_attr attr;
4460 int ret;
4461
4462 memset(&attr, 0, attr_sz);
4463 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4464 attr.license = ptr_to_u64("GPL");
4465 attr.insns = ptr_to_u64(insns);
4466 attr.insn_cnt = (__u32)ARRAY_SIZE(insns);
4467 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name));
4468
4469 /* make sure loading with name works */
4470 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS);
4471 return probe_fd(ret);
4472 }
4473
probe_kern_global_data(void)4474 static int probe_kern_global_data(void)
4475 {
4476 char *cp, errmsg[STRERR_BUFSIZE];
4477 struct bpf_insn insns[] = {
4478 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4479 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4480 BPF_MOV64_IMM(BPF_REG_0, 0),
4481 BPF_EXIT_INSN(),
4482 };
4483 int ret, map, insn_cnt = ARRAY_SIZE(insns);
4484
4485 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL);
4486 if (map < 0) {
4487 ret = -errno;
4488 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4489 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4490 __func__, cp, -ret);
4491 return ret;
4492 }
4493
4494 insns[0].imm = map;
4495
4496 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4497 close(map);
4498 return probe_fd(ret);
4499 }
4500
probe_kern_btf(void)4501 static int probe_kern_btf(void)
4502 {
4503 static const char strs[] = "\0int";
4504 __u32 types[] = {
4505 /* int */
4506 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4507 };
4508
4509 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4510 strs, sizeof(strs)));
4511 }
4512
probe_kern_btf_func(void)4513 static int probe_kern_btf_func(void)
4514 {
4515 static const char strs[] = "\0int\0x\0a";
4516 /* void x(int a) {} */
4517 __u32 types[] = {
4518 /* int */
4519 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4520 /* FUNC_PROTO */ /* [2] */
4521 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4522 BTF_PARAM_ENC(7, 1),
4523 /* FUNC x */ /* [3] */
4524 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4525 };
4526
4527 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4528 strs, sizeof(strs)));
4529 }
4530
probe_kern_btf_func_global(void)4531 static int probe_kern_btf_func_global(void)
4532 {
4533 static const char strs[] = "\0int\0x\0a";
4534 /* static void x(int a) {} */
4535 __u32 types[] = {
4536 /* int */
4537 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4538 /* FUNC_PROTO */ /* [2] */
4539 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4540 BTF_PARAM_ENC(7, 1),
4541 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */
4542 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4543 };
4544
4545 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4546 strs, sizeof(strs)));
4547 }
4548
probe_kern_btf_datasec(void)4549 static int probe_kern_btf_datasec(void)
4550 {
4551 static const char strs[] = "\0x\0.data";
4552 /* static int a; */
4553 __u32 types[] = {
4554 /* int */
4555 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4556 /* VAR x */ /* [2] */
4557 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4558 BTF_VAR_STATIC,
4559 /* DATASEC val */ /* [3] */
4560 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4561 BTF_VAR_SECINFO_ENC(2, 0, 4),
4562 };
4563
4564 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4565 strs, sizeof(strs)));
4566 }
4567
probe_kern_btf_float(void)4568 static int probe_kern_btf_float(void)
4569 {
4570 static const char strs[] = "\0float";
4571 __u32 types[] = {
4572 /* float */
4573 BTF_TYPE_FLOAT_ENC(1, 4),
4574 };
4575
4576 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4577 strs, sizeof(strs)));
4578 }
4579
probe_kern_btf_decl_tag(void)4580 static int probe_kern_btf_decl_tag(void)
4581 {
4582 static const char strs[] = "\0tag";
4583 __u32 types[] = {
4584 /* int */
4585 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4586 /* VAR x */ /* [2] */
4587 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4588 BTF_VAR_STATIC,
4589 /* attr */
4590 BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4591 };
4592
4593 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4594 strs, sizeof(strs)));
4595 }
4596
probe_kern_btf_type_tag(void)4597 static int probe_kern_btf_type_tag(void)
4598 {
4599 static const char strs[] = "\0tag";
4600 __u32 types[] = {
4601 /* int */
4602 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4603 /* attr */
4604 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */
4605 /* ptr */
4606 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */
4607 };
4608
4609 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4610 strs, sizeof(strs)));
4611 }
4612
probe_kern_array_mmap(void)4613 static int probe_kern_array_mmap(void)
4614 {
4615 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4616 int fd;
4617
4618 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts);
4619 return probe_fd(fd);
4620 }
4621
probe_kern_exp_attach_type(void)4622 static int probe_kern_exp_attach_type(void)
4623 {
4624 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4625 struct bpf_insn insns[] = {
4626 BPF_MOV64_IMM(BPF_REG_0, 0),
4627 BPF_EXIT_INSN(),
4628 };
4629 int fd, insn_cnt = ARRAY_SIZE(insns);
4630
4631 /* use any valid combination of program type and (optional)
4632 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4633 * to see if kernel supports expected_attach_type field for
4634 * BPF_PROG_LOAD command
4635 */
4636 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4637 return probe_fd(fd);
4638 }
4639
probe_kern_probe_read_kernel(void)4640 static int probe_kern_probe_read_kernel(void)
4641 {
4642 struct bpf_insn insns[] = {
4643 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */
4644 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */
4645 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */
4646 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */
4647 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4648 BPF_EXIT_INSN(),
4649 };
4650 int fd, insn_cnt = ARRAY_SIZE(insns);
4651
4652 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4653 return probe_fd(fd);
4654 }
4655
probe_prog_bind_map(void)4656 static int probe_prog_bind_map(void)
4657 {
4658 char *cp, errmsg[STRERR_BUFSIZE];
4659 struct bpf_insn insns[] = {
4660 BPF_MOV64_IMM(BPF_REG_0, 0),
4661 BPF_EXIT_INSN(),
4662 };
4663 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4664
4665 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL);
4666 if (map < 0) {
4667 ret = -errno;
4668 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4669 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4670 __func__, cp, -ret);
4671 return ret;
4672 }
4673
4674 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4675 if (prog < 0) {
4676 close(map);
4677 return 0;
4678 }
4679
4680 ret = bpf_prog_bind_map(prog, map, NULL);
4681
4682 close(map);
4683 close(prog);
4684
4685 return ret >= 0;
4686 }
4687
probe_module_btf(void)4688 static int probe_module_btf(void)
4689 {
4690 static const char strs[] = "\0int";
4691 __u32 types[] = {
4692 /* int */
4693 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4694 };
4695 struct bpf_btf_info info;
4696 __u32 len = sizeof(info);
4697 char name[16];
4698 int fd, err;
4699
4700 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4701 if (fd < 0)
4702 return 0; /* BTF not supported at all */
4703
4704 memset(&info, 0, sizeof(info));
4705 info.name = ptr_to_u64(name);
4706 info.name_len = sizeof(name);
4707
4708 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4709 * kernel's module BTF support coincides with support for
4710 * name/name_len fields in struct bpf_btf_info.
4711 */
4712 err = bpf_obj_get_info_by_fd(fd, &info, &len);
4713 close(fd);
4714 return !err;
4715 }
4716
probe_perf_link(void)4717 static int probe_perf_link(void)
4718 {
4719 struct bpf_insn insns[] = {
4720 BPF_MOV64_IMM(BPF_REG_0, 0),
4721 BPF_EXIT_INSN(),
4722 };
4723 int prog_fd, link_fd, err;
4724
4725 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4726 insns, ARRAY_SIZE(insns), NULL);
4727 if (prog_fd < 0)
4728 return -errno;
4729
4730 /* use invalid perf_event FD to get EBADF, if link is supported;
4731 * otherwise EINVAL should be returned
4732 */
4733 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4734 err = -errno; /* close() can clobber errno */
4735
4736 if (link_fd >= 0)
4737 close(link_fd);
4738 close(prog_fd);
4739
4740 return link_fd < 0 && err == -EBADF;
4741 }
4742
probe_kern_bpf_cookie(void)4743 static int probe_kern_bpf_cookie(void)
4744 {
4745 struct bpf_insn insns[] = {
4746 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4747 BPF_EXIT_INSN(),
4748 };
4749 int ret, insn_cnt = ARRAY_SIZE(insns);
4750
4751 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4752 return probe_fd(ret);
4753 }
4754
probe_kern_btf_enum64(void)4755 static int probe_kern_btf_enum64(void)
4756 {
4757 static const char strs[] = "\0enum64";
4758 __u32 types[] = {
4759 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
4760 };
4761
4762 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4763 strs, sizeof(strs)));
4764 }
4765
4766 static int probe_kern_syscall_wrapper(void);
4767
4768 enum kern_feature_result {
4769 FEAT_UNKNOWN = 0,
4770 FEAT_SUPPORTED = 1,
4771 FEAT_MISSING = 2,
4772 };
4773
4774 typedef int (*feature_probe_fn)(void);
4775
4776 static struct kern_feature_desc {
4777 const char *desc;
4778 feature_probe_fn probe;
4779 enum kern_feature_result res;
4780 } feature_probes[__FEAT_CNT] = {
4781 [FEAT_PROG_NAME] = {
4782 "BPF program name", probe_kern_prog_name,
4783 },
4784 [FEAT_GLOBAL_DATA] = {
4785 "global variables", probe_kern_global_data,
4786 },
4787 [FEAT_BTF] = {
4788 "minimal BTF", probe_kern_btf,
4789 },
4790 [FEAT_BTF_FUNC] = {
4791 "BTF functions", probe_kern_btf_func,
4792 },
4793 [FEAT_BTF_GLOBAL_FUNC] = {
4794 "BTF global function", probe_kern_btf_func_global,
4795 },
4796 [FEAT_BTF_DATASEC] = {
4797 "BTF data section and variable", probe_kern_btf_datasec,
4798 },
4799 [FEAT_ARRAY_MMAP] = {
4800 "ARRAY map mmap()", probe_kern_array_mmap,
4801 },
4802 [FEAT_EXP_ATTACH_TYPE] = {
4803 "BPF_PROG_LOAD expected_attach_type attribute",
4804 probe_kern_exp_attach_type,
4805 },
4806 [FEAT_PROBE_READ_KERN] = {
4807 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4808 },
4809 [FEAT_PROG_BIND_MAP] = {
4810 "BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4811 },
4812 [FEAT_MODULE_BTF] = {
4813 "module BTF support", probe_module_btf,
4814 },
4815 [FEAT_BTF_FLOAT] = {
4816 "BTF_KIND_FLOAT support", probe_kern_btf_float,
4817 },
4818 [FEAT_PERF_LINK] = {
4819 "BPF perf link support", probe_perf_link,
4820 },
4821 [FEAT_BTF_DECL_TAG] = {
4822 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4823 },
4824 [FEAT_BTF_TYPE_TAG] = {
4825 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4826 },
4827 [FEAT_MEMCG_ACCOUNT] = {
4828 "memcg-based memory accounting", probe_memcg_account,
4829 },
4830 [FEAT_BPF_COOKIE] = {
4831 "BPF cookie support", probe_kern_bpf_cookie,
4832 },
4833 [FEAT_BTF_ENUM64] = {
4834 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
4835 },
4836 [FEAT_SYSCALL_WRAPPER] = {
4837 "Kernel using syscall wrapper", probe_kern_syscall_wrapper,
4838 },
4839 };
4840
kernel_supports(const struct bpf_object * obj,enum kern_feature_id feat_id)4841 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4842 {
4843 struct kern_feature_desc *feat = &feature_probes[feat_id];
4844 int ret;
4845
4846 if (obj && obj->gen_loader)
4847 /* To generate loader program assume the latest kernel
4848 * to avoid doing extra prog_load, map_create syscalls.
4849 */
4850 return true;
4851
4852 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4853 ret = feat->probe();
4854 if (ret > 0) {
4855 WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4856 } else if (ret == 0) {
4857 WRITE_ONCE(feat->res, FEAT_MISSING);
4858 } else {
4859 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4860 WRITE_ONCE(feat->res, FEAT_MISSING);
4861 }
4862 }
4863
4864 return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4865 }
4866
map_is_reuse_compat(const struct bpf_map * map,int map_fd)4867 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4868 {
4869 struct bpf_map_info map_info;
4870 char msg[STRERR_BUFSIZE];
4871 __u32 map_info_len = sizeof(map_info);
4872 int err;
4873
4874 memset(&map_info, 0, map_info_len);
4875 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len);
4876 if (err && errno == EINVAL)
4877 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4878 if (err) {
4879 pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4880 libbpf_strerror_r(errno, msg, sizeof(msg)));
4881 return false;
4882 }
4883
4884 return (map_info.type == map->def.type &&
4885 map_info.key_size == map->def.key_size &&
4886 map_info.value_size == map->def.value_size &&
4887 map_info.max_entries == map->def.max_entries &&
4888 map_info.map_flags == map->def.map_flags &&
4889 map_info.map_extra == map->map_extra);
4890 }
4891
4892 static int
bpf_object__reuse_map(struct bpf_map * map)4893 bpf_object__reuse_map(struct bpf_map *map)
4894 {
4895 char *cp, errmsg[STRERR_BUFSIZE];
4896 int err, pin_fd;
4897
4898 pin_fd = bpf_obj_get(map->pin_path);
4899 if (pin_fd < 0) {
4900 err = -errno;
4901 if (err == -ENOENT) {
4902 pr_debug("found no pinned map to reuse at '%s'\n",
4903 map->pin_path);
4904 return 0;
4905 }
4906
4907 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4908 pr_warn("couldn't retrieve pinned map '%s': %s\n",
4909 map->pin_path, cp);
4910 return err;
4911 }
4912
4913 if (!map_is_reuse_compat(map, pin_fd)) {
4914 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4915 map->pin_path);
4916 close(pin_fd);
4917 return -EINVAL;
4918 }
4919
4920 err = bpf_map__reuse_fd(map, pin_fd);
4921 close(pin_fd);
4922 if (err) {
4923 return err;
4924 }
4925 map->pinned = true;
4926 pr_debug("reused pinned map at '%s'\n", map->pin_path);
4927
4928 return 0;
4929 }
4930
4931 static int
bpf_object__populate_internal_map(struct bpf_object * obj,struct bpf_map * map)4932 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4933 {
4934 enum libbpf_map_type map_type = map->libbpf_type;
4935 char *cp, errmsg[STRERR_BUFSIZE];
4936 int err, zero = 0;
4937
4938 if (obj->gen_loader) {
4939 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
4940 map->mmaped, map->def.value_size);
4941 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
4942 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
4943 return 0;
4944 }
4945 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4946 if (err) {
4947 err = -errno;
4948 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4949 pr_warn("Error setting initial map(%s) contents: %s\n",
4950 map->name, cp);
4951 return err;
4952 }
4953
4954 /* Freeze .rodata and .kconfig map as read-only from syscall side. */
4955 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4956 err = bpf_map_freeze(map->fd);
4957 if (err) {
4958 err = -errno;
4959 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4960 pr_warn("Error freezing map(%s) as read-only: %s\n",
4961 map->name, cp);
4962 return err;
4963 }
4964 }
4965 return 0;
4966 }
4967
4968 static void bpf_map__destroy(struct bpf_map *map);
4969
bpf_object__create_map(struct bpf_object * obj,struct bpf_map * map,bool is_inner)4970 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
4971 {
4972 LIBBPF_OPTS(bpf_map_create_opts, create_attr);
4973 struct bpf_map_def *def = &map->def;
4974 const char *map_name = NULL;
4975 int err = 0;
4976
4977 if (kernel_supports(obj, FEAT_PROG_NAME))
4978 map_name = map->name;
4979 create_attr.map_ifindex = map->map_ifindex;
4980 create_attr.map_flags = def->map_flags;
4981 create_attr.numa_node = map->numa_node;
4982 create_attr.map_extra = map->map_extra;
4983
4984 if (bpf_map__is_struct_ops(map))
4985 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
4986
4987 if (obj->btf && btf__fd(obj->btf) >= 0) {
4988 create_attr.btf_fd = btf__fd(obj->btf);
4989 create_attr.btf_key_type_id = map->btf_key_type_id;
4990 create_attr.btf_value_type_id = map->btf_value_type_id;
4991 }
4992
4993 if (bpf_map_type__is_map_in_map(def->type)) {
4994 if (map->inner_map) {
4995 err = bpf_object__create_map(obj, map->inner_map, true);
4996 if (err) {
4997 pr_warn("map '%s': failed to create inner map: %d\n",
4998 map->name, err);
4999 return err;
5000 }
5001 map->inner_map_fd = bpf_map__fd(map->inner_map);
5002 }
5003 if (map->inner_map_fd >= 0)
5004 create_attr.inner_map_fd = map->inner_map_fd;
5005 }
5006
5007 switch (def->type) {
5008 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5009 case BPF_MAP_TYPE_CGROUP_ARRAY:
5010 case BPF_MAP_TYPE_STACK_TRACE:
5011 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5012 case BPF_MAP_TYPE_HASH_OF_MAPS:
5013 case BPF_MAP_TYPE_DEVMAP:
5014 case BPF_MAP_TYPE_DEVMAP_HASH:
5015 case BPF_MAP_TYPE_CPUMAP:
5016 case BPF_MAP_TYPE_XSKMAP:
5017 case BPF_MAP_TYPE_SOCKMAP:
5018 case BPF_MAP_TYPE_SOCKHASH:
5019 case BPF_MAP_TYPE_QUEUE:
5020 case BPF_MAP_TYPE_STACK:
5021 create_attr.btf_fd = 0;
5022 create_attr.btf_key_type_id = 0;
5023 create_attr.btf_value_type_id = 0;
5024 map->btf_key_type_id = 0;
5025 map->btf_value_type_id = 0;
5026 default:
5027 break;
5028 }
5029
5030 if (obj->gen_loader) {
5031 bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5032 def->key_size, def->value_size, def->max_entries,
5033 &create_attr, is_inner ? -1 : map - obj->maps);
5034 /* Pretend to have valid FD to pass various fd >= 0 checks.
5035 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
5036 */
5037 map->fd = 0;
5038 } else {
5039 map->fd = bpf_map_create(def->type, map_name,
5040 def->key_size, def->value_size,
5041 def->max_entries, &create_attr);
5042 }
5043 if (map->fd < 0 && (create_attr.btf_key_type_id ||
5044 create_attr.btf_value_type_id)) {
5045 char *cp, errmsg[STRERR_BUFSIZE];
5046
5047 err = -errno;
5048 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5049 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5050 map->name, cp, err);
5051 create_attr.btf_fd = 0;
5052 create_attr.btf_key_type_id = 0;
5053 create_attr.btf_value_type_id = 0;
5054 map->btf_key_type_id = 0;
5055 map->btf_value_type_id = 0;
5056 map->fd = bpf_map_create(def->type, map_name,
5057 def->key_size, def->value_size,
5058 def->max_entries, &create_attr);
5059 }
5060
5061 err = map->fd < 0 ? -errno : 0;
5062
5063 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5064 if (obj->gen_loader)
5065 map->inner_map->fd = -1;
5066 bpf_map__destroy(map->inner_map);
5067 zfree(&map->inner_map);
5068 }
5069
5070 return err;
5071 }
5072
init_map_in_map_slots(struct bpf_object * obj,struct bpf_map * map)5073 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5074 {
5075 const struct bpf_map *targ_map;
5076 unsigned int i;
5077 int fd, err = 0;
5078
5079 for (i = 0; i < map->init_slots_sz; i++) {
5080 if (!map->init_slots[i])
5081 continue;
5082
5083 targ_map = map->init_slots[i];
5084 fd = bpf_map__fd(targ_map);
5085
5086 if (obj->gen_loader) {
5087 bpf_gen__populate_outer_map(obj->gen_loader,
5088 map - obj->maps, i,
5089 targ_map - obj->maps);
5090 } else {
5091 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5092 }
5093 if (err) {
5094 err = -errno;
5095 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5096 map->name, i, targ_map->name, fd, err);
5097 return err;
5098 }
5099 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5100 map->name, i, targ_map->name, fd);
5101 }
5102
5103 zfree(&map->init_slots);
5104 map->init_slots_sz = 0;
5105
5106 return 0;
5107 }
5108
init_prog_array_slots(struct bpf_object * obj,struct bpf_map * map)5109 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5110 {
5111 const struct bpf_program *targ_prog;
5112 unsigned int i;
5113 int fd, err;
5114
5115 if (obj->gen_loader)
5116 return -ENOTSUP;
5117
5118 for (i = 0; i < map->init_slots_sz; i++) {
5119 if (!map->init_slots[i])
5120 continue;
5121
5122 targ_prog = map->init_slots[i];
5123 fd = bpf_program__fd(targ_prog);
5124
5125 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5126 if (err) {
5127 err = -errno;
5128 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5129 map->name, i, targ_prog->name, fd, err);
5130 return err;
5131 }
5132 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5133 map->name, i, targ_prog->name, fd);
5134 }
5135
5136 zfree(&map->init_slots);
5137 map->init_slots_sz = 0;
5138
5139 return 0;
5140 }
5141
bpf_object_init_prog_arrays(struct bpf_object * obj)5142 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5143 {
5144 struct bpf_map *map;
5145 int i, err;
5146
5147 for (i = 0; i < obj->nr_maps; i++) {
5148 map = &obj->maps[i];
5149
5150 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5151 continue;
5152
5153 err = init_prog_array_slots(obj, map);
5154 if (err < 0) {
5155 zclose(map->fd);
5156 return err;
5157 }
5158 }
5159 return 0;
5160 }
5161
map_set_def_max_entries(struct bpf_map * map)5162 static int map_set_def_max_entries(struct bpf_map *map)
5163 {
5164 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5165 int nr_cpus;
5166
5167 nr_cpus = libbpf_num_possible_cpus();
5168 if (nr_cpus < 0) {
5169 pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5170 map->name, nr_cpus);
5171 return nr_cpus;
5172 }
5173 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5174 map->def.max_entries = nr_cpus;
5175 }
5176
5177 return 0;
5178 }
5179
5180 static int
bpf_object__create_maps(struct bpf_object * obj)5181 bpf_object__create_maps(struct bpf_object *obj)
5182 {
5183 struct bpf_map *map;
5184 char *cp, errmsg[STRERR_BUFSIZE];
5185 unsigned int i, j;
5186 int err;
5187 bool retried;
5188
5189 for (i = 0; i < obj->nr_maps; i++) {
5190 map = &obj->maps[i];
5191
5192 /* To support old kernels, we skip creating global data maps
5193 * (.rodata, .data, .kconfig, etc); later on, during program
5194 * loading, if we detect that at least one of the to-be-loaded
5195 * programs is referencing any global data map, we'll error
5196 * out with program name and relocation index logged.
5197 * This approach allows to accommodate Clang emitting
5198 * unnecessary .rodata.str1.1 sections for string literals,
5199 * but also it allows to have CO-RE applications that use
5200 * global variables in some of BPF programs, but not others.
5201 * If those global variable-using programs are not loaded at
5202 * runtime due to bpf_program__set_autoload(prog, false),
5203 * bpf_object loading will succeed just fine even on old
5204 * kernels.
5205 */
5206 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5207 map->autocreate = false;
5208
5209 if (!map->autocreate) {
5210 pr_debug("map '%s': skipped auto-creating...\n", map->name);
5211 continue;
5212 }
5213
5214 err = map_set_def_max_entries(map);
5215 if (err)
5216 goto err_out;
5217
5218 retried = false;
5219 retry:
5220 if (map->pin_path) {
5221 err = bpf_object__reuse_map(map);
5222 if (err) {
5223 pr_warn("map '%s': error reusing pinned map\n",
5224 map->name);
5225 goto err_out;
5226 }
5227 if (retried && map->fd < 0) {
5228 pr_warn("map '%s': cannot find pinned map\n",
5229 map->name);
5230 err = -ENOENT;
5231 goto err_out;
5232 }
5233 }
5234
5235 if (map->fd >= 0) {
5236 pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5237 map->name, map->fd);
5238 } else {
5239 err = bpf_object__create_map(obj, map, false);
5240 if (err)
5241 goto err_out;
5242
5243 pr_debug("map '%s': created successfully, fd=%d\n",
5244 map->name, map->fd);
5245
5246 if (bpf_map__is_internal(map)) {
5247 err = bpf_object__populate_internal_map(obj, map);
5248 if (err < 0) {
5249 zclose(map->fd);
5250 goto err_out;
5251 }
5252 }
5253
5254 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5255 err = init_map_in_map_slots(obj, map);
5256 if (err < 0) {
5257 zclose(map->fd);
5258 goto err_out;
5259 }
5260 }
5261 }
5262
5263 if (map->pin_path && !map->pinned) {
5264 err = bpf_map__pin(map, NULL);
5265 if (err) {
5266 zclose(map->fd);
5267 if (!retried && err == -EEXIST) {
5268 retried = true;
5269 goto retry;
5270 }
5271 pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5272 map->name, map->pin_path, err);
5273 goto err_out;
5274 }
5275 }
5276 }
5277
5278 return 0;
5279
5280 err_out:
5281 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5282 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5283 pr_perm_msg(err);
5284 for (j = 0; j < i; j++)
5285 zclose(obj->maps[j].fd);
5286 return err;
5287 }
5288
bpf_core_is_flavor_sep(const char * s)5289 static bool bpf_core_is_flavor_sep(const char *s)
5290 {
5291 /* check X___Y name pattern, where X and Y are not underscores */
5292 return s[0] != '_' && /* X */
5293 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
5294 s[4] != '_'; /* Y */
5295 }
5296
5297 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5298 * before last triple underscore. Struct name part after last triple
5299 * underscore is ignored by BPF CO-RE relocation during relocation matching.
5300 */
bpf_core_essential_name_len(const char * name)5301 size_t bpf_core_essential_name_len(const char *name)
5302 {
5303 size_t n = strlen(name);
5304 int i;
5305
5306 for (i = n - 5; i >= 0; i--) {
5307 if (bpf_core_is_flavor_sep(name + i))
5308 return i + 1;
5309 }
5310 return n;
5311 }
5312
bpf_core_free_cands(struct bpf_core_cand_list * cands)5313 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5314 {
5315 if (!cands)
5316 return;
5317
5318 free(cands->cands);
5319 free(cands);
5320 }
5321
bpf_core_add_cands(struct bpf_core_cand * local_cand,size_t local_essent_len,const struct btf * targ_btf,const char * targ_btf_name,int targ_start_id,struct bpf_core_cand_list * cands)5322 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5323 size_t local_essent_len,
5324 const struct btf *targ_btf,
5325 const char *targ_btf_name,
5326 int targ_start_id,
5327 struct bpf_core_cand_list *cands)
5328 {
5329 struct bpf_core_cand *new_cands, *cand;
5330 const struct btf_type *t, *local_t;
5331 const char *targ_name, *local_name;
5332 size_t targ_essent_len;
5333 int n, i;
5334
5335 local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5336 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5337
5338 n = btf__type_cnt(targ_btf);
5339 for (i = targ_start_id; i < n; i++) {
5340 t = btf__type_by_id(targ_btf, i);
5341 if (!btf_kind_core_compat(t, local_t))
5342 continue;
5343
5344 targ_name = btf__name_by_offset(targ_btf, t->name_off);
5345 if (str_is_empty(targ_name))
5346 continue;
5347
5348 targ_essent_len = bpf_core_essential_name_len(targ_name);
5349 if (targ_essent_len != local_essent_len)
5350 continue;
5351
5352 if (strncmp(local_name, targ_name, local_essent_len) != 0)
5353 continue;
5354
5355 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5356 local_cand->id, btf_kind_str(local_t),
5357 local_name, i, btf_kind_str(t), targ_name,
5358 targ_btf_name);
5359 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5360 sizeof(*cands->cands));
5361 if (!new_cands)
5362 return -ENOMEM;
5363
5364 cand = &new_cands[cands->len];
5365 cand->btf = targ_btf;
5366 cand->id = i;
5367
5368 cands->cands = new_cands;
5369 cands->len++;
5370 }
5371 return 0;
5372 }
5373
load_module_btfs(struct bpf_object * obj)5374 static int load_module_btfs(struct bpf_object *obj)
5375 {
5376 struct bpf_btf_info info;
5377 struct module_btf *mod_btf;
5378 struct btf *btf;
5379 char name[64];
5380 __u32 id = 0, len;
5381 int err, fd;
5382
5383 if (obj->btf_modules_loaded)
5384 return 0;
5385
5386 if (obj->gen_loader)
5387 return 0;
5388
5389 /* don't do this again, even if we find no module BTFs */
5390 obj->btf_modules_loaded = true;
5391
5392 /* kernel too old to support module BTFs */
5393 if (!kernel_supports(obj, FEAT_MODULE_BTF))
5394 return 0;
5395
5396 while (true) {
5397 err = bpf_btf_get_next_id(id, &id);
5398 if (err && errno == ENOENT)
5399 return 0;
5400 if (err) {
5401 err = -errno;
5402 pr_warn("failed to iterate BTF objects: %d\n", err);
5403 return err;
5404 }
5405
5406 fd = bpf_btf_get_fd_by_id(id);
5407 if (fd < 0) {
5408 if (errno == ENOENT)
5409 continue; /* expected race: BTF was unloaded */
5410 err = -errno;
5411 pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5412 return err;
5413 }
5414
5415 len = sizeof(info);
5416 memset(&info, 0, sizeof(info));
5417 info.name = ptr_to_u64(name);
5418 info.name_len = sizeof(name);
5419
5420 err = bpf_obj_get_info_by_fd(fd, &info, &len);
5421 if (err) {
5422 err = -errno;
5423 pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5424 goto err_out;
5425 }
5426
5427 /* ignore non-module BTFs */
5428 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5429 close(fd);
5430 continue;
5431 }
5432
5433 btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5434 err = libbpf_get_error(btf);
5435 if (err) {
5436 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5437 name, id, err);
5438 goto err_out;
5439 }
5440
5441 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5442 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5443 if (err)
5444 goto err_out;
5445
5446 mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5447
5448 mod_btf->btf = btf;
5449 mod_btf->id = id;
5450 mod_btf->fd = fd;
5451 mod_btf->name = strdup(name);
5452 if (!mod_btf->name) {
5453 err = -ENOMEM;
5454 goto err_out;
5455 }
5456 continue;
5457
5458 err_out:
5459 close(fd);
5460 return err;
5461 }
5462
5463 return 0;
5464 }
5465
5466 static struct bpf_core_cand_list *
bpf_core_find_cands(struct bpf_object * obj,const struct btf * local_btf,__u32 local_type_id)5467 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5468 {
5469 struct bpf_core_cand local_cand = {};
5470 struct bpf_core_cand_list *cands;
5471 const struct btf *main_btf;
5472 const struct btf_type *local_t;
5473 const char *local_name;
5474 size_t local_essent_len;
5475 int err, i;
5476
5477 local_cand.btf = local_btf;
5478 local_cand.id = local_type_id;
5479 local_t = btf__type_by_id(local_btf, local_type_id);
5480 if (!local_t)
5481 return ERR_PTR(-EINVAL);
5482
5483 local_name = btf__name_by_offset(local_btf, local_t->name_off);
5484 if (str_is_empty(local_name))
5485 return ERR_PTR(-EINVAL);
5486 local_essent_len = bpf_core_essential_name_len(local_name);
5487
5488 cands = calloc(1, sizeof(*cands));
5489 if (!cands)
5490 return ERR_PTR(-ENOMEM);
5491
5492 /* Attempt to find target candidates in vmlinux BTF first */
5493 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5494 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5495 if (err)
5496 goto err_out;
5497
5498 /* if vmlinux BTF has any candidate, don't got for module BTFs */
5499 if (cands->len)
5500 return cands;
5501
5502 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5503 if (obj->btf_vmlinux_override)
5504 return cands;
5505
5506 /* now look through module BTFs, trying to still find candidates */
5507 err = load_module_btfs(obj);
5508 if (err)
5509 goto err_out;
5510
5511 for (i = 0; i < obj->btf_module_cnt; i++) {
5512 err = bpf_core_add_cands(&local_cand, local_essent_len,
5513 obj->btf_modules[i].btf,
5514 obj->btf_modules[i].name,
5515 btf__type_cnt(obj->btf_vmlinux),
5516 cands);
5517 if (err)
5518 goto err_out;
5519 }
5520
5521 return cands;
5522 err_out:
5523 bpf_core_free_cands(cands);
5524 return ERR_PTR(err);
5525 }
5526
5527 /* Check local and target types for compatibility. This check is used for
5528 * type-based CO-RE relocations and follow slightly different rules than
5529 * field-based relocations. This function assumes that root types were already
5530 * checked for name match. Beyond that initial root-level name check, names
5531 * are completely ignored. Compatibility rules are as follows:
5532 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5533 * kind should match for local and target types (i.e., STRUCT is not
5534 * compatible with UNION);
5535 * - for ENUMs, the size is ignored;
5536 * - for INT, size and signedness are ignored;
5537 * - for ARRAY, dimensionality is ignored, element types are checked for
5538 * compatibility recursively;
5539 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
5540 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5541 * - FUNC_PROTOs are compatible if they have compatible signature: same
5542 * number of input args and compatible return and argument types.
5543 * These rules are not set in stone and probably will be adjusted as we get
5544 * more experience with using BPF CO-RE relocations.
5545 */
bpf_core_types_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5546 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5547 const struct btf *targ_btf, __u32 targ_id)
5548 {
5549 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5550 }
5551
bpf_core_types_match(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5552 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5553 const struct btf *targ_btf, __u32 targ_id)
5554 {
5555 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5556 }
5557
bpf_core_hash_fn(const void * key,void * ctx)5558 static size_t bpf_core_hash_fn(const void *key, void *ctx)
5559 {
5560 return (size_t)key;
5561 }
5562
bpf_core_equal_fn(const void * k1,const void * k2,void * ctx)5563 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
5564 {
5565 return k1 == k2;
5566 }
5567
u32_as_hash_key(__u32 x)5568 static void *u32_as_hash_key(__u32 x)
5569 {
5570 return (void *)(uintptr_t)x;
5571 }
5572
record_relo_core(struct bpf_program * prog,const struct bpf_core_relo * core_relo,int insn_idx)5573 static int record_relo_core(struct bpf_program *prog,
5574 const struct bpf_core_relo *core_relo, int insn_idx)
5575 {
5576 struct reloc_desc *relos, *relo;
5577
5578 relos = libbpf_reallocarray(prog->reloc_desc,
5579 prog->nr_reloc + 1, sizeof(*relos));
5580 if (!relos)
5581 return -ENOMEM;
5582 relo = &relos[prog->nr_reloc];
5583 relo->type = RELO_CORE;
5584 relo->insn_idx = insn_idx;
5585 relo->core_relo = core_relo;
5586 prog->reloc_desc = relos;
5587 prog->nr_reloc++;
5588 return 0;
5589 }
5590
find_relo_core(struct bpf_program * prog,int insn_idx)5591 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5592 {
5593 struct reloc_desc *relo;
5594 int i;
5595
5596 for (i = 0; i < prog->nr_reloc; i++) {
5597 relo = &prog->reloc_desc[i];
5598 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5599 continue;
5600
5601 return relo->core_relo;
5602 }
5603
5604 return NULL;
5605 }
5606
bpf_core_resolve_relo(struct bpf_program * prog,const struct bpf_core_relo * relo,int relo_idx,const struct btf * local_btf,struct hashmap * cand_cache,struct bpf_core_relo_res * targ_res)5607 static int bpf_core_resolve_relo(struct bpf_program *prog,
5608 const struct bpf_core_relo *relo,
5609 int relo_idx,
5610 const struct btf *local_btf,
5611 struct hashmap *cand_cache,
5612 struct bpf_core_relo_res *targ_res)
5613 {
5614 struct bpf_core_spec specs_scratch[3] = {};
5615 const void *type_key = u32_as_hash_key(relo->type_id);
5616 struct bpf_core_cand_list *cands = NULL;
5617 const char *prog_name = prog->name;
5618 const struct btf_type *local_type;
5619 const char *local_name;
5620 __u32 local_id = relo->type_id;
5621 int err;
5622
5623 local_type = btf__type_by_id(local_btf, local_id);
5624 if (!local_type)
5625 return -EINVAL;
5626
5627 local_name = btf__name_by_offset(local_btf, local_type->name_off);
5628 if (!local_name)
5629 return -EINVAL;
5630
5631 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5632 !hashmap__find(cand_cache, type_key, (void **)&cands)) {
5633 cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5634 if (IS_ERR(cands)) {
5635 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5636 prog_name, relo_idx, local_id, btf_kind_str(local_type),
5637 local_name, PTR_ERR(cands));
5638 return PTR_ERR(cands);
5639 }
5640 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL);
5641 if (err) {
5642 bpf_core_free_cands(cands);
5643 return err;
5644 }
5645 }
5646
5647 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5648 targ_res);
5649 }
5650
5651 static int
bpf_object__relocate_core(struct bpf_object * obj,const char * targ_btf_path)5652 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5653 {
5654 const struct btf_ext_info_sec *sec;
5655 struct bpf_core_relo_res targ_res;
5656 const struct bpf_core_relo *rec;
5657 const struct btf_ext_info *seg;
5658 struct hashmap_entry *entry;
5659 struct hashmap *cand_cache = NULL;
5660 struct bpf_program *prog;
5661 struct bpf_insn *insn;
5662 const char *sec_name;
5663 int i, err = 0, insn_idx, sec_idx, sec_num;
5664
5665 if (obj->btf_ext->core_relo_info.len == 0)
5666 return 0;
5667
5668 if (targ_btf_path) {
5669 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5670 err = libbpf_get_error(obj->btf_vmlinux_override);
5671 if (err) {
5672 pr_warn("failed to parse target BTF: %d\n", err);
5673 return err;
5674 }
5675 }
5676
5677 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5678 if (IS_ERR(cand_cache)) {
5679 err = PTR_ERR(cand_cache);
5680 goto out;
5681 }
5682
5683 seg = &obj->btf_ext->core_relo_info;
5684 sec_num = 0;
5685 for_each_btf_ext_sec(seg, sec) {
5686 sec_idx = seg->sec_idxs[sec_num];
5687 sec_num++;
5688
5689 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5690 if (str_is_empty(sec_name)) {
5691 err = -EINVAL;
5692 goto out;
5693 }
5694
5695 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5696
5697 for_each_btf_ext_rec(seg, sec, i, rec) {
5698 if (rec->insn_off % BPF_INSN_SZ)
5699 return -EINVAL;
5700 insn_idx = rec->insn_off / BPF_INSN_SZ;
5701 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5702 if (!prog) {
5703 /* When __weak subprog is "overridden" by another instance
5704 * of the subprog from a different object file, linker still
5705 * appends all the .BTF.ext info that used to belong to that
5706 * eliminated subprogram.
5707 * This is similar to what x86-64 linker does for relocations.
5708 * So just ignore such relocations just like we ignore
5709 * subprog instructions when discovering subprograms.
5710 */
5711 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5712 sec_name, i, insn_idx);
5713 continue;
5714 }
5715 /* no need to apply CO-RE relocation if the program is
5716 * not going to be loaded
5717 */
5718 if (!prog->autoload)
5719 continue;
5720
5721 /* adjust insn_idx from section frame of reference to the local
5722 * program's frame of reference; (sub-)program code is not yet
5723 * relocated, so it's enough to just subtract in-section offset
5724 */
5725 insn_idx = insn_idx - prog->sec_insn_off;
5726 if (insn_idx >= prog->insns_cnt)
5727 return -EINVAL;
5728 insn = &prog->insns[insn_idx];
5729
5730 err = record_relo_core(prog, rec, insn_idx);
5731 if (err) {
5732 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5733 prog->name, i, err);
5734 goto out;
5735 }
5736
5737 if (prog->obj->gen_loader)
5738 continue;
5739
5740 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5741 if (err) {
5742 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5743 prog->name, i, err);
5744 goto out;
5745 }
5746
5747 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5748 if (err) {
5749 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5750 prog->name, i, insn_idx, err);
5751 goto out;
5752 }
5753 }
5754 }
5755
5756 out:
5757 /* obj->btf_vmlinux and module BTFs are freed after object load */
5758 btf__free(obj->btf_vmlinux_override);
5759 obj->btf_vmlinux_override = NULL;
5760
5761 if (!IS_ERR_OR_NULL(cand_cache)) {
5762 hashmap__for_each_entry(cand_cache, entry, i) {
5763 bpf_core_free_cands(entry->value);
5764 }
5765 hashmap__free(cand_cache);
5766 }
5767 return err;
5768 }
5769
5770 /* base map load ldimm64 special constant, used also for log fixup logic */
5771 #define MAP_LDIMM64_POISON_BASE 2001000000
5772 #define MAP_LDIMM64_POISON_PFX "200100"
5773
poison_map_ldimm64(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int map_idx,const struct bpf_map * map)5774 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5775 int insn_idx, struct bpf_insn *insn,
5776 int map_idx, const struct bpf_map *map)
5777 {
5778 int i;
5779
5780 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5781 prog->name, relo_idx, insn_idx, map_idx, map->name);
5782
5783 /* we turn single ldimm64 into two identical invalid calls */
5784 for (i = 0; i < 2; i++) {
5785 insn->code = BPF_JMP | BPF_CALL;
5786 insn->dst_reg = 0;
5787 insn->src_reg = 0;
5788 insn->off = 0;
5789 /* if this instruction is reachable (not a dead code),
5790 * verifier will complain with something like:
5791 * invalid func unknown#2001000123
5792 * where lower 123 is map index into obj->maps[] array
5793 */
5794 insn->imm = MAP_LDIMM64_POISON_BASE + map_idx;
5795
5796 insn++;
5797 }
5798 }
5799
5800 /* Relocate data references within program code:
5801 * - map references;
5802 * - global variable references;
5803 * - extern references.
5804 */
5805 static int
bpf_object__relocate_data(struct bpf_object * obj,struct bpf_program * prog)5806 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5807 {
5808 int i;
5809
5810 for (i = 0; i < prog->nr_reloc; i++) {
5811 struct reloc_desc *relo = &prog->reloc_desc[i];
5812 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5813 const struct bpf_map *map;
5814 struct extern_desc *ext;
5815
5816 switch (relo->type) {
5817 case RELO_LD64:
5818 map = &obj->maps[relo->map_idx];
5819 if (obj->gen_loader) {
5820 insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5821 insn[0].imm = relo->map_idx;
5822 } else if (map->autocreate) {
5823 insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5824 insn[0].imm = map->fd;
5825 } else {
5826 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5827 relo->map_idx, map);
5828 }
5829 break;
5830 case RELO_DATA:
5831 map = &obj->maps[relo->map_idx];
5832 insn[1].imm = insn[0].imm + relo->sym_off;
5833 if (obj->gen_loader) {
5834 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5835 insn[0].imm = relo->map_idx;
5836 } else if (map->autocreate) {
5837 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5838 insn[0].imm = map->fd;
5839 } else {
5840 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5841 relo->map_idx, map);
5842 }
5843 break;
5844 case RELO_EXTERN_VAR:
5845 ext = &obj->externs[relo->sym_off];
5846 if (ext->type == EXT_KCFG) {
5847 if (obj->gen_loader) {
5848 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5849 insn[0].imm = obj->kconfig_map_idx;
5850 } else {
5851 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5852 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
5853 }
5854 insn[1].imm = ext->kcfg.data_off;
5855 } else /* EXT_KSYM */ {
5856 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
5857 insn[0].src_reg = BPF_PSEUDO_BTF_ID;
5858 insn[0].imm = ext->ksym.kernel_btf_id;
5859 insn[1].imm = ext->ksym.kernel_btf_obj_fd;
5860 } else { /* typeless ksyms or unresolved typed ksyms */
5861 insn[0].imm = (__u32)ext->ksym.addr;
5862 insn[1].imm = ext->ksym.addr >> 32;
5863 }
5864 }
5865 break;
5866 case RELO_EXTERN_FUNC:
5867 ext = &obj->externs[relo->sym_off];
5868 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
5869 if (ext->is_set) {
5870 insn[0].imm = ext->ksym.kernel_btf_id;
5871 insn[0].off = ext->ksym.btf_fd_idx;
5872 } else { /* unresolved weak kfunc */
5873 insn[0].imm = 0;
5874 insn[0].off = 0;
5875 }
5876 break;
5877 case RELO_SUBPROG_ADDR:
5878 if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
5879 pr_warn("prog '%s': relo #%d: bad insn\n",
5880 prog->name, i);
5881 return -EINVAL;
5882 }
5883 /* handled already */
5884 break;
5885 case RELO_CALL:
5886 /* handled already */
5887 break;
5888 case RELO_CORE:
5889 /* will be handled by bpf_program_record_relos() */
5890 break;
5891 default:
5892 pr_warn("prog '%s': relo #%d: bad relo type %d\n",
5893 prog->name, i, relo->type);
5894 return -EINVAL;
5895 }
5896 }
5897
5898 return 0;
5899 }
5900
adjust_prog_btf_ext_info(const struct bpf_object * obj,const struct bpf_program * prog,const struct btf_ext_info * ext_info,void ** prog_info,__u32 * prog_rec_cnt,__u32 * prog_rec_sz)5901 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
5902 const struct bpf_program *prog,
5903 const struct btf_ext_info *ext_info,
5904 void **prog_info, __u32 *prog_rec_cnt,
5905 __u32 *prog_rec_sz)
5906 {
5907 void *copy_start = NULL, *copy_end = NULL;
5908 void *rec, *rec_end, *new_prog_info;
5909 const struct btf_ext_info_sec *sec;
5910 size_t old_sz, new_sz;
5911 int i, sec_num, sec_idx, off_adj;
5912
5913 sec_num = 0;
5914 for_each_btf_ext_sec(ext_info, sec) {
5915 sec_idx = ext_info->sec_idxs[sec_num];
5916 sec_num++;
5917 if (prog->sec_idx != sec_idx)
5918 continue;
5919
5920 for_each_btf_ext_rec(ext_info, sec, i, rec) {
5921 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
5922
5923 if (insn_off < prog->sec_insn_off)
5924 continue;
5925 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
5926 break;
5927
5928 if (!copy_start)
5929 copy_start = rec;
5930 copy_end = rec + ext_info->rec_size;
5931 }
5932
5933 if (!copy_start)
5934 return -ENOENT;
5935
5936 /* append func/line info of a given (sub-)program to the main
5937 * program func/line info
5938 */
5939 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
5940 new_sz = old_sz + (copy_end - copy_start);
5941 new_prog_info = realloc(*prog_info, new_sz);
5942 if (!new_prog_info)
5943 return -ENOMEM;
5944 *prog_info = new_prog_info;
5945 *prog_rec_cnt = new_sz / ext_info->rec_size;
5946 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
5947
5948 /* Kernel instruction offsets are in units of 8-byte
5949 * instructions, while .BTF.ext instruction offsets generated
5950 * by Clang are in units of bytes. So convert Clang offsets
5951 * into kernel offsets and adjust offset according to program
5952 * relocated position.
5953 */
5954 off_adj = prog->sub_insn_off - prog->sec_insn_off;
5955 rec = new_prog_info + old_sz;
5956 rec_end = new_prog_info + new_sz;
5957 for (; rec < rec_end; rec += ext_info->rec_size) {
5958 __u32 *insn_off = rec;
5959
5960 *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
5961 }
5962 *prog_rec_sz = ext_info->rec_size;
5963 return 0;
5964 }
5965
5966 return -ENOENT;
5967 }
5968
5969 static int
reloc_prog_func_and_line_info(const struct bpf_object * obj,struct bpf_program * main_prog,const struct bpf_program * prog)5970 reloc_prog_func_and_line_info(const struct bpf_object *obj,
5971 struct bpf_program *main_prog,
5972 const struct bpf_program *prog)
5973 {
5974 int err;
5975
5976 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
5977 * supprot func/line info
5978 */
5979 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
5980 return 0;
5981
5982 /* only attempt func info relocation if main program's func_info
5983 * relocation was successful
5984 */
5985 if (main_prog != prog && !main_prog->func_info)
5986 goto line_info;
5987
5988 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
5989 &main_prog->func_info,
5990 &main_prog->func_info_cnt,
5991 &main_prog->func_info_rec_size);
5992 if (err) {
5993 if (err != -ENOENT) {
5994 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
5995 prog->name, err);
5996 return err;
5997 }
5998 if (main_prog->func_info) {
5999 /*
6000 * Some info has already been found but has problem
6001 * in the last btf_ext reloc. Must have to error out.
6002 */
6003 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6004 return err;
6005 }
6006 /* Have problem loading the very first info. Ignore the rest. */
6007 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6008 prog->name);
6009 }
6010
6011 line_info:
6012 /* don't relocate line info if main program's relocation failed */
6013 if (main_prog != prog && !main_prog->line_info)
6014 return 0;
6015
6016 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6017 &main_prog->line_info,
6018 &main_prog->line_info_cnt,
6019 &main_prog->line_info_rec_size);
6020 if (err) {
6021 if (err != -ENOENT) {
6022 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6023 prog->name, err);
6024 return err;
6025 }
6026 if (main_prog->line_info) {
6027 /*
6028 * Some info has already been found but has problem
6029 * in the last btf_ext reloc. Must have to error out.
6030 */
6031 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6032 return err;
6033 }
6034 /* Have problem loading the very first info. Ignore the rest. */
6035 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6036 prog->name);
6037 }
6038 return 0;
6039 }
6040
cmp_relo_by_insn_idx(const void * key,const void * elem)6041 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6042 {
6043 size_t insn_idx = *(const size_t *)key;
6044 const struct reloc_desc *relo = elem;
6045
6046 if (insn_idx == relo->insn_idx)
6047 return 0;
6048 return insn_idx < relo->insn_idx ? -1 : 1;
6049 }
6050
find_prog_insn_relo(const struct bpf_program * prog,size_t insn_idx)6051 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6052 {
6053 if (!prog->nr_reloc)
6054 return NULL;
6055 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6056 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6057 }
6058
append_subprog_relos(struct bpf_program * main_prog,struct bpf_program * subprog)6059 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6060 {
6061 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6062 struct reloc_desc *relos;
6063 int i;
6064
6065 if (main_prog == subprog)
6066 return 0;
6067 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6068 /* if new count is zero, reallocarray can return a valid NULL result;
6069 * in this case the previous pointer will be freed, so we *have to*
6070 * reassign old pointer to the new value (even if it's NULL)
6071 */
6072 if (!relos && new_cnt)
6073 return -ENOMEM;
6074 if (subprog->nr_reloc)
6075 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6076 sizeof(*relos) * subprog->nr_reloc);
6077
6078 for (i = main_prog->nr_reloc; i < new_cnt; i++)
6079 relos[i].insn_idx += subprog->sub_insn_off;
6080 /* After insn_idx adjustment the 'relos' array is still sorted
6081 * by insn_idx and doesn't break bsearch.
6082 */
6083 main_prog->reloc_desc = relos;
6084 main_prog->nr_reloc = new_cnt;
6085 return 0;
6086 }
6087
6088 static int
bpf_object__reloc_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * prog)6089 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6090 struct bpf_program *prog)
6091 {
6092 size_t sub_insn_idx, insn_idx, new_cnt;
6093 struct bpf_program *subprog;
6094 struct bpf_insn *insns, *insn;
6095 struct reloc_desc *relo;
6096 int err;
6097
6098 err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6099 if (err)
6100 return err;
6101
6102 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6103 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6104 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6105 continue;
6106
6107 relo = find_prog_insn_relo(prog, insn_idx);
6108 if (relo && relo->type == RELO_EXTERN_FUNC)
6109 /* kfunc relocations will be handled later
6110 * in bpf_object__relocate_data()
6111 */
6112 continue;
6113 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6114 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6115 prog->name, insn_idx, relo->type);
6116 return -LIBBPF_ERRNO__RELOC;
6117 }
6118 if (relo) {
6119 /* sub-program instruction index is a combination of
6120 * an offset of a symbol pointed to by relocation and
6121 * call instruction's imm field; for global functions,
6122 * call always has imm = -1, but for static functions
6123 * relocation is against STT_SECTION and insn->imm
6124 * points to a start of a static function
6125 *
6126 * for subprog addr relocation, the relo->sym_off + insn->imm is
6127 * the byte offset in the corresponding section.
6128 */
6129 if (relo->type == RELO_CALL)
6130 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6131 else
6132 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6133 } else if (insn_is_pseudo_func(insn)) {
6134 /*
6135 * RELO_SUBPROG_ADDR relo is always emitted even if both
6136 * functions are in the same section, so it shouldn't reach here.
6137 */
6138 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6139 prog->name, insn_idx);
6140 return -LIBBPF_ERRNO__RELOC;
6141 } else {
6142 /* if subprogram call is to a static function within
6143 * the same ELF section, there won't be any relocation
6144 * emitted, but it also means there is no additional
6145 * offset necessary, insns->imm is relative to
6146 * instruction's original position within the section
6147 */
6148 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6149 }
6150
6151 /* we enforce that sub-programs should be in .text section */
6152 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6153 if (!subprog) {
6154 pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6155 prog->name);
6156 return -LIBBPF_ERRNO__RELOC;
6157 }
6158
6159 /* if it's the first call instruction calling into this
6160 * subprogram (meaning this subprog hasn't been processed
6161 * yet) within the context of current main program:
6162 * - append it at the end of main program's instructions blog;
6163 * - process is recursively, while current program is put on hold;
6164 * - if that subprogram calls some other not yet processes
6165 * subprogram, same thing will happen recursively until
6166 * there are no more unprocesses subprograms left to append
6167 * and relocate.
6168 */
6169 if (subprog->sub_insn_off == 0) {
6170 subprog->sub_insn_off = main_prog->insns_cnt;
6171
6172 new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6173 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6174 if (!insns) {
6175 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6176 return -ENOMEM;
6177 }
6178 main_prog->insns = insns;
6179 main_prog->insns_cnt = new_cnt;
6180
6181 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6182 subprog->insns_cnt * sizeof(*insns));
6183
6184 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6185 main_prog->name, subprog->insns_cnt, subprog->name);
6186
6187 /* The subprog insns are now appended. Append its relos too. */
6188 err = append_subprog_relos(main_prog, subprog);
6189 if (err)
6190 return err;
6191 err = bpf_object__reloc_code(obj, main_prog, subprog);
6192 if (err)
6193 return err;
6194 }
6195
6196 /* main_prog->insns memory could have been re-allocated, so
6197 * calculate pointer again
6198 */
6199 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6200 /* calculate correct instruction position within current main
6201 * prog; each main prog can have a different set of
6202 * subprograms appended (potentially in different order as
6203 * well), so position of any subprog can be different for
6204 * different main programs */
6205 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6206
6207 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6208 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6209 }
6210
6211 return 0;
6212 }
6213
6214 /*
6215 * Relocate sub-program calls.
6216 *
6217 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6218 * main prog) is processed separately. For each subprog (non-entry functions,
6219 * that can be called from either entry progs or other subprogs) gets their
6220 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6221 * hasn't been yet appended and relocated within current main prog. Once its
6222 * relocated, sub_insn_off will point at the position within current main prog
6223 * where given subprog was appended. This will further be used to relocate all
6224 * the call instructions jumping into this subprog.
6225 *
6226 * We start with main program and process all call instructions. If the call
6227 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6228 * is zero), subprog instructions are appended at the end of main program's
6229 * instruction array. Then main program is "put on hold" while we recursively
6230 * process newly appended subprogram. If that subprogram calls into another
6231 * subprogram that hasn't been appended, new subprogram is appended again to
6232 * the *main* prog's instructions (subprog's instructions are always left
6233 * untouched, as they need to be in unmodified state for subsequent main progs
6234 * and subprog instructions are always sent only as part of a main prog) and
6235 * the process continues recursively. Once all the subprogs called from a main
6236 * prog or any of its subprogs are appended (and relocated), all their
6237 * positions within finalized instructions array are known, so it's easy to
6238 * rewrite call instructions with correct relative offsets, corresponding to
6239 * desired target subprog.
6240 *
6241 * Its important to realize that some subprogs might not be called from some
6242 * main prog and any of its called/used subprogs. Those will keep their
6243 * subprog->sub_insn_off as zero at all times and won't be appended to current
6244 * main prog and won't be relocated within the context of current main prog.
6245 * They might still be used from other main progs later.
6246 *
6247 * Visually this process can be shown as below. Suppose we have two main
6248 * programs mainA and mainB and BPF object contains three subprogs: subA,
6249 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6250 * subC both call subB:
6251 *
6252 * +--------+ +-------+
6253 * | v v |
6254 * +--+---+ +--+-+-+ +---+--+
6255 * | subA | | subB | | subC |
6256 * +--+---+ +------+ +---+--+
6257 * ^ ^
6258 * | |
6259 * +---+-------+ +------+----+
6260 * | mainA | | mainB |
6261 * +-----------+ +-----------+
6262 *
6263 * We'll start relocating mainA, will find subA, append it and start
6264 * processing sub A recursively:
6265 *
6266 * +-----------+------+
6267 * | mainA | subA |
6268 * +-----------+------+
6269 *
6270 * At this point we notice that subB is used from subA, so we append it and
6271 * relocate (there are no further subcalls from subB):
6272 *
6273 * +-----------+------+------+
6274 * | mainA | subA | subB |
6275 * +-----------+------+------+
6276 *
6277 * At this point, we relocate subA calls, then go one level up and finish with
6278 * relocatin mainA calls. mainA is done.
6279 *
6280 * For mainB process is similar but results in different order. We start with
6281 * mainB and skip subA and subB, as mainB never calls them (at least
6282 * directly), but we see subC is needed, so we append and start processing it:
6283 *
6284 * +-----------+------+
6285 * | mainB | subC |
6286 * +-----------+------+
6287 * Now we see subC needs subB, so we go back to it, append and relocate it:
6288 *
6289 * +-----------+------+------+
6290 * | mainB | subC | subB |
6291 * +-----------+------+------+
6292 *
6293 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6294 */
6295 static int
bpf_object__relocate_calls(struct bpf_object * obj,struct bpf_program * prog)6296 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6297 {
6298 struct bpf_program *subprog;
6299 int i, err;
6300
6301 /* mark all subprogs as not relocated (yet) within the context of
6302 * current main program
6303 */
6304 for (i = 0; i < obj->nr_programs; i++) {
6305 subprog = &obj->programs[i];
6306 if (!prog_is_subprog(obj, subprog))
6307 continue;
6308
6309 subprog->sub_insn_off = 0;
6310 }
6311
6312 err = bpf_object__reloc_code(obj, prog, prog);
6313 if (err)
6314 return err;
6315
6316 return 0;
6317 }
6318
6319 static void
bpf_object__free_relocs(struct bpf_object * obj)6320 bpf_object__free_relocs(struct bpf_object *obj)
6321 {
6322 struct bpf_program *prog;
6323 int i;
6324
6325 /* free up relocation descriptors */
6326 for (i = 0; i < obj->nr_programs; i++) {
6327 prog = &obj->programs[i];
6328 zfree(&prog->reloc_desc);
6329 prog->nr_reloc = 0;
6330 }
6331 }
6332
cmp_relocs(const void * _a,const void * _b)6333 static int cmp_relocs(const void *_a, const void *_b)
6334 {
6335 const struct reloc_desc *a = _a;
6336 const struct reloc_desc *b = _b;
6337
6338 if (a->insn_idx != b->insn_idx)
6339 return a->insn_idx < b->insn_idx ? -1 : 1;
6340
6341 /* no two relocations should have the same insn_idx, but ... */
6342 if (a->type != b->type)
6343 return a->type < b->type ? -1 : 1;
6344
6345 return 0;
6346 }
6347
bpf_object__sort_relos(struct bpf_object * obj)6348 static void bpf_object__sort_relos(struct bpf_object *obj)
6349 {
6350 int i;
6351
6352 for (i = 0; i < obj->nr_programs; i++) {
6353 struct bpf_program *p = &obj->programs[i];
6354
6355 if (!p->nr_reloc)
6356 continue;
6357
6358 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6359 }
6360 }
6361
6362 static int
bpf_object__relocate(struct bpf_object * obj,const char * targ_btf_path)6363 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6364 {
6365 struct bpf_program *prog;
6366 size_t i, j;
6367 int err;
6368
6369 if (obj->btf_ext) {
6370 err = bpf_object__relocate_core(obj, targ_btf_path);
6371 if (err) {
6372 pr_warn("failed to perform CO-RE relocations: %d\n",
6373 err);
6374 return err;
6375 }
6376 bpf_object__sort_relos(obj);
6377 }
6378
6379 /* Before relocating calls pre-process relocations and mark
6380 * few ld_imm64 instructions that points to subprogs.
6381 * Otherwise bpf_object__reloc_code() later would have to consider
6382 * all ld_imm64 insns as relocation candidates. That would
6383 * reduce relocation speed, since amount of find_prog_insn_relo()
6384 * would increase and most of them will fail to find a relo.
6385 */
6386 for (i = 0; i < obj->nr_programs; i++) {
6387 prog = &obj->programs[i];
6388 for (j = 0; j < prog->nr_reloc; j++) {
6389 struct reloc_desc *relo = &prog->reloc_desc[j];
6390 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6391
6392 /* mark the insn, so it's recognized by insn_is_pseudo_func() */
6393 if (relo->type == RELO_SUBPROG_ADDR)
6394 insn[0].src_reg = BPF_PSEUDO_FUNC;
6395 }
6396 }
6397
6398 /* relocate subprogram calls and append used subprograms to main
6399 * programs; each copy of subprogram code needs to be relocated
6400 * differently for each main program, because its code location might
6401 * have changed.
6402 * Append subprog relos to main programs to allow data relos to be
6403 * processed after text is completely relocated.
6404 */
6405 for (i = 0; i < obj->nr_programs; i++) {
6406 prog = &obj->programs[i];
6407 /* sub-program's sub-calls are relocated within the context of
6408 * its main program only
6409 */
6410 if (prog_is_subprog(obj, prog))
6411 continue;
6412 if (!prog->autoload)
6413 continue;
6414
6415 err = bpf_object__relocate_calls(obj, prog);
6416 if (err) {
6417 pr_warn("prog '%s': failed to relocate calls: %d\n",
6418 prog->name, err);
6419 return err;
6420 }
6421 }
6422 /* Process data relos for main programs */
6423 for (i = 0; i < obj->nr_programs; i++) {
6424 prog = &obj->programs[i];
6425 if (prog_is_subprog(obj, prog))
6426 continue;
6427 if (!prog->autoload)
6428 continue;
6429 err = bpf_object__relocate_data(obj, prog);
6430 if (err) {
6431 pr_warn("prog '%s': failed to relocate data references: %d\n",
6432 prog->name, err);
6433 return err;
6434 }
6435 }
6436
6437 return 0;
6438 }
6439
6440 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6441 Elf64_Shdr *shdr, Elf_Data *data);
6442
bpf_object__collect_map_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)6443 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6444 Elf64_Shdr *shdr, Elf_Data *data)
6445 {
6446 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6447 int i, j, nrels, new_sz;
6448 const struct btf_var_secinfo *vi = NULL;
6449 const struct btf_type *sec, *var, *def;
6450 struct bpf_map *map = NULL, *targ_map = NULL;
6451 struct bpf_program *targ_prog = NULL;
6452 bool is_prog_array, is_map_in_map;
6453 const struct btf_member *member;
6454 const char *name, *mname, *type;
6455 unsigned int moff;
6456 Elf64_Sym *sym;
6457 Elf64_Rel *rel;
6458 void *tmp;
6459
6460 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6461 return -EINVAL;
6462 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6463 if (!sec)
6464 return -EINVAL;
6465
6466 nrels = shdr->sh_size / shdr->sh_entsize;
6467 for (i = 0; i < nrels; i++) {
6468 rel = elf_rel_by_idx(data, i);
6469 if (!rel) {
6470 pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6471 return -LIBBPF_ERRNO__FORMAT;
6472 }
6473
6474 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6475 if (!sym) {
6476 pr_warn(".maps relo #%d: symbol %zx not found\n",
6477 i, (size_t)ELF64_R_SYM(rel->r_info));
6478 return -LIBBPF_ERRNO__FORMAT;
6479 }
6480 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6481
6482 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6483 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6484 (size_t)rel->r_offset, sym->st_name, name);
6485
6486 for (j = 0; j < obj->nr_maps; j++) {
6487 map = &obj->maps[j];
6488 if (map->sec_idx != obj->efile.btf_maps_shndx)
6489 continue;
6490
6491 vi = btf_var_secinfos(sec) + map->btf_var_idx;
6492 if (vi->offset <= rel->r_offset &&
6493 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6494 break;
6495 }
6496 if (j == obj->nr_maps) {
6497 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6498 i, name, (size_t)rel->r_offset);
6499 return -EINVAL;
6500 }
6501
6502 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6503 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6504 type = is_map_in_map ? "map" : "prog";
6505 if (is_map_in_map) {
6506 if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6507 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6508 i, name);
6509 return -LIBBPF_ERRNO__RELOC;
6510 }
6511 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6512 map->def.key_size != sizeof(int)) {
6513 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6514 i, map->name, sizeof(int));
6515 return -EINVAL;
6516 }
6517 targ_map = bpf_object__find_map_by_name(obj, name);
6518 if (!targ_map) {
6519 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6520 i, name);
6521 return -ESRCH;
6522 }
6523 } else if (is_prog_array) {
6524 targ_prog = bpf_object__find_program_by_name(obj, name);
6525 if (!targ_prog) {
6526 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6527 i, name);
6528 return -ESRCH;
6529 }
6530 if (targ_prog->sec_idx != sym->st_shndx ||
6531 targ_prog->sec_insn_off * 8 != sym->st_value ||
6532 prog_is_subprog(obj, targ_prog)) {
6533 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6534 i, name);
6535 return -LIBBPF_ERRNO__RELOC;
6536 }
6537 } else {
6538 return -EINVAL;
6539 }
6540
6541 var = btf__type_by_id(obj->btf, vi->type);
6542 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6543 if (btf_vlen(def) == 0)
6544 return -EINVAL;
6545 member = btf_members(def) + btf_vlen(def) - 1;
6546 mname = btf__name_by_offset(obj->btf, member->name_off);
6547 if (strcmp(mname, "values"))
6548 return -EINVAL;
6549
6550 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6551 if (rel->r_offset - vi->offset < moff)
6552 return -EINVAL;
6553
6554 moff = rel->r_offset - vi->offset - moff;
6555 /* here we use BPF pointer size, which is always 64 bit, as we
6556 * are parsing ELF that was built for BPF target
6557 */
6558 if (moff % bpf_ptr_sz)
6559 return -EINVAL;
6560 moff /= bpf_ptr_sz;
6561 if (moff >= map->init_slots_sz) {
6562 new_sz = moff + 1;
6563 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6564 if (!tmp)
6565 return -ENOMEM;
6566 map->init_slots = tmp;
6567 memset(map->init_slots + map->init_slots_sz, 0,
6568 (new_sz - map->init_slots_sz) * host_ptr_sz);
6569 map->init_slots_sz = new_sz;
6570 }
6571 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6572
6573 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6574 i, map->name, moff, type, name);
6575 }
6576
6577 return 0;
6578 }
6579
bpf_object__collect_relos(struct bpf_object * obj)6580 static int bpf_object__collect_relos(struct bpf_object *obj)
6581 {
6582 int i, err;
6583
6584 for (i = 0; i < obj->efile.sec_cnt; i++) {
6585 struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6586 Elf64_Shdr *shdr;
6587 Elf_Data *data;
6588 int idx;
6589
6590 if (sec_desc->sec_type != SEC_RELO)
6591 continue;
6592
6593 shdr = sec_desc->shdr;
6594 data = sec_desc->data;
6595 idx = shdr->sh_info;
6596
6597 if (shdr->sh_type != SHT_REL) {
6598 pr_warn("internal error at %d\n", __LINE__);
6599 return -LIBBPF_ERRNO__INTERNAL;
6600 }
6601
6602 if (idx == obj->efile.st_ops_shndx)
6603 err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6604 else if (idx == obj->efile.btf_maps_shndx)
6605 err = bpf_object__collect_map_relos(obj, shdr, data);
6606 else
6607 err = bpf_object__collect_prog_relos(obj, shdr, data);
6608 if (err)
6609 return err;
6610 }
6611
6612 bpf_object__sort_relos(obj);
6613 return 0;
6614 }
6615
insn_is_helper_call(struct bpf_insn * insn,enum bpf_func_id * func_id)6616 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6617 {
6618 if (BPF_CLASS(insn->code) == BPF_JMP &&
6619 BPF_OP(insn->code) == BPF_CALL &&
6620 BPF_SRC(insn->code) == BPF_K &&
6621 insn->src_reg == 0 &&
6622 insn->dst_reg == 0) {
6623 *func_id = insn->imm;
6624 return true;
6625 }
6626 return false;
6627 }
6628
bpf_object__sanitize_prog(struct bpf_object * obj,struct bpf_program * prog)6629 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6630 {
6631 struct bpf_insn *insn = prog->insns;
6632 enum bpf_func_id func_id;
6633 int i;
6634
6635 if (obj->gen_loader)
6636 return 0;
6637
6638 for (i = 0; i < prog->insns_cnt; i++, insn++) {
6639 if (!insn_is_helper_call(insn, &func_id))
6640 continue;
6641
6642 /* on kernels that don't yet support
6643 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6644 * to bpf_probe_read() which works well for old kernels
6645 */
6646 switch (func_id) {
6647 case BPF_FUNC_probe_read_kernel:
6648 case BPF_FUNC_probe_read_user:
6649 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6650 insn->imm = BPF_FUNC_probe_read;
6651 break;
6652 case BPF_FUNC_probe_read_kernel_str:
6653 case BPF_FUNC_probe_read_user_str:
6654 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6655 insn->imm = BPF_FUNC_probe_read_str;
6656 break;
6657 default:
6658 break;
6659 }
6660 }
6661 return 0;
6662 }
6663
6664 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6665 int *btf_obj_fd, int *btf_type_id);
6666
6667 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
libbpf_prepare_prog_load(struct bpf_program * prog,struct bpf_prog_load_opts * opts,long cookie)6668 static int libbpf_prepare_prog_load(struct bpf_program *prog,
6669 struct bpf_prog_load_opts *opts, long cookie)
6670 {
6671 enum sec_def_flags def = cookie;
6672
6673 /* old kernels might not support specifying expected_attach_type */
6674 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6675 opts->expected_attach_type = 0;
6676
6677 if (def & SEC_SLEEPABLE)
6678 opts->prog_flags |= BPF_F_SLEEPABLE;
6679
6680 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
6681 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
6682
6683 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
6684 int btf_obj_fd = 0, btf_type_id = 0, err;
6685 const char *attach_name;
6686
6687 attach_name = strchr(prog->sec_name, '/');
6688 if (!attach_name) {
6689 /* if BPF program is annotated with just SEC("fentry")
6690 * (or similar) without declaratively specifying
6691 * target, then it is expected that target will be
6692 * specified with bpf_program__set_attach_target() at
6693 * runtime before BPF object load step. If not, then
6694 * there is nothing to load into the kernel as BPF
6695 * verifier won't be able to validate BPF program
6696 * correctness anyways.
6697 */
6698 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
6699 prog->name);
6700 return -EINVAL;
6701 }
6702 attach_name++; /* skip over / */
6703
6704 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6705 if (err)
6706 return err;
6707
6708 /* cache resolved BTF FD and BTF type ID in the prog */
6709 prog->attach_btf_obj_fd = btf_obj_fd;
6710 prog->attach_btf_id = btf_type_id;
6711
6712 /* but by now libbpf common logic is not utilizing
6713 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6714 * this callback is called after opts were populated by
6715 * libbpf, so this callback has to update opts explicitly here
6716 */
6717 opts->attach_btf_obj_fd = btf_obj_fd;
6718 opts->attach_btf_id = btf_type_id;
6719 }
6720 return 0;
6721 }
6722
6723 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
6724
bpf_object_load_prog(struct bpf_object * obj,struct bpf_program * prog,struct bpf_insn * insns,int insns_cnt,const char * license,__u32 kern_version,int * prog_fd)6725 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
6726 struct bpf_insn *insns, int insns_cnt,
6727 const char *license, __u32 kern_version, int *prog_fd)
6728 {
6729 LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
6730 const char *prog_name = NULL;
6731 char *cp, errmsg[STRERR_BUFSIZE];
6732 size_t log_buf_size = 0;
6733 char *log_buf = NULL, *tmp;
6734 int btf_fd, ret, err;
6735 bool own_log_buf = true;
6736 __u32 log_level = prog->log_level;
6737
6738 if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6739 /*
6740 * The program type must be set. Most likely we couldn't find a proper
6741 * section definition at load time, and thus we didn't infer the type.
6742 */
6743 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6744 prog->name, prog->sec_name);
6745 return -EINVAL;
6746 }
6747
6748 if (!insns || !insns_cnt)
6749 return -EINVAL;
6750
6751 load_attr.expected_attach_type = prog->expected_attach_type;
6752 if (kernel_supports(obj, FEAT_PROG_NAME))
6753 prog_name = prog->name;
6754 load_attr.attach_prog_fd = prog->attach_prog_fd;
6755 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6756 load_attr.attach_btf_id = prog->attach_btf_id;
6757 load_attr.kern_version = kern_version;
6758 load_attr.prog_ifindex = prog->prog_ifindex;
6759
6760 /* specify func_info/line_info only if kernel supports them */
6761 btf_fd = bpf_object__btf_fd(obj);
6762 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
6763 load_attr.prog_btf_fd = btf_fd;
6764 load_attr.func_info = prog->func_info;
6765 load_attr.func_info_rec_size = prog->func_info_rec_size;
6766 load_attr.func_info_cnt = prog->func_info_cnt;
6767 load_attr.line_info = prog->line_info;
6768 load_attr.line_info_rec_size = prog->line_info_rec_size;
6769 load_attr.line_info_cnt = prog->line_info_cnt;
6770 }
6771 load_attr.log_level = log_level;
6772 load_attr.prog_flags = prog->prog_flags;
6773 load_attr.fd_array = obj->fd_array;
6774
6775 /* adjust load_attr if sec_def provides custom preload callback */
6776 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
6777 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
6778 if (err < 0) {
6779 pr_warn("prog '%s': failed to prepare load attributes: %d\n",
6780 prog->name, err);
6781 return err;
6782 }
6783 insns = prog->insns;
6784 insns_cnt = prog->insns_cnt;
6785 }
6786
6787 if (obj->gen_loader) {
6788 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
6789 license, insns, insns_cnt, &load_attr,
6790 prog - obj->programs);
6791 *prog_fd = -1;
6792 return 0;
6793 }
6794
6795 retry_load:
6796 /* if log_level is zero, we don't request logs initially even if
6797 * custom log_buf is specified; if the program load fails, then we'll
6798 * bump log_level to 1 and use either custom log_buf or we'll allocate
6799 * our own and retry the load to get details on what failed
6800 */
6801 if (log_level) {
6802 if (prog->log_buf) {
6803 log_buf = prog->log_buf;
6804 log_buf_size = prog->log_size;
6805 own_log_buf = false;
6806 } else if (obj->log_buf) {
6807 log_buf = obj->log_buf;
6808 log_buf_size = obj->log_size;
6809 own_log_buf = false;
6810 } else {
6811 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
6812 tmp = realloc(log_buf, log_buf_size);
6813 if (!tmp) {
6814 ret = -ENOMEM;
6815 goto out;
6816 }
6817 log_buf = tmp;
6818 log_buf[0] = '\0';
6819 own_log_buf = true;
6820 }
6821 }
6822
6823 load_attr.log_buf = log_buf;
6824 load_attr.log_size = log_buf_size;
6825 load_attr.log_level = log_level;
6826
6827 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
6828 if (ret >= 0) {
6829 if (log_level && own_log_buf) {
6830 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6831 prog->name, log_buf);
6832 }
6833
6834 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
6835 struct bpf_map *map;
6836 int i;
6837
6838 for (i = 0; i < obj->nr_maps; i++) {
6839 map = &prog->obj->maps[i];
6840 if (map->libbpf_type != LIBBPF_MAP_RODATA)
6841 continue;
6842
6843 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
6844 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6845 pr_warn("prog '%s': failed to bind map '%s': %s\n",
6846 prog->name, map->real_name, cp);
6847 /* Don't fail hard if can't bind rodata. */
6848 }
6849 }
6850 }
6851
6852 *prog_fd = ret;
6853 ret = 0;
6854 goto out;
6855 }
6856
6857 if (log_level == 0) {
6858 log_level = 1;
6859 goto retry_load;
6860 }
6861 /* On ENOSPC, increase log buffer size and retry, unless custom
6862 * log_buf is specified.
6863 * Be careful to not overflow u32, though. Kernel's log buf size limit
6864 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
6865 * multiply by 2 unless we are sure we'll fit within 32 bits.
6866 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
6867 */
6868 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
6869 goto retry_load;
6870
6871 ret = -errno;
6872
6873 /* post-process verifier log to improve error descriptions */
6874 fixup_verifier_log(prog, log_buf, log_buf_size);
6875
6876 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6877 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
6878 pr_perm_msg(ret);
6879
6880 if (own_log_buf && log_buf && log_buf[0] != '\0') {
6881 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6882 prog->name, log_buf);
6883 }
6884
6885 out:
6886 if (own_log_buf)
6887 free(log_buf);
6888 return ret;
6889 }
6890
find_prev_line(char * buf,char * cur)6891 static char *find_prev_line(char *buf, char *cur)
6892 {
6893 char *p;
6894
6895 if (cur == buf) /* end of a log buf */
6896 return NULL;
6897
6898 p = cur - 1;
6899 while (p - 1 >= buf && *(p - 1) != '\n')
6900 p--;
6901
6902 return p;
6903 }
6904
patch_log(char * buf,size_t buf_sz,size_t log_sz,char * orig,size_t orig_sz,const char * patch)6905 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
6906 char *orig, size_t orig_sz, const char *patch)
6907 {
6908 /* size of the remaining log content to the right from the to-be-replaced part */
6909 size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
6910 size_t patch_sz = strlen(patch);
6911
6912 if (patch_sz != orig_sz) {
6913 /* If patch line(s) are longer than original piece of verifier log,
6914 * shift log contents by (patch_sz - orig_sz) bytes to the right
6915 * starting from after to-be-replaced part of the log.
6916 *
6917 * If patch line(s) are shorter than original piece of verifier log,
6918 * shift log contents by (orig_sz - patch_sz) bytes to the left
6919 * starting from after to-be-replaced part of the log
6920 *
6921 * We need to be careful about not overflowing available
6922 * buf_sz capacity. If that's the case, we'll truncate the end
6923 * of the original log, as necessary.
6924 */
6925 if (patch_sz > orig_sz) {
6926 if (orig + patch_sz >= buf + buf_sz) {
6927 /* patch is big enough to cover remaining space completely */
6928 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
6929 rem_sz = 0;
6930 } else if (patch_sz - orig_sz > buf_sz - log_sz) {
6931 /* patch causes part of remaining log to be truncated */
6932 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
6933 }
6934 }
6935 /* shift remaining log to the right by calculated amount */
6936 memmove(orig + patch_sz, orig + orig_sz, rem_sz);
6937 }
6938
6939 memcpy(orig, patch, patch_sz);
6940 }
6941
fixup_log_failed_core_relo(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)6942 static void fixup_log_failed_core_relo(struct bpf_program *prog,
6943 char *buf, size_t buf_sz, size_t log_sz,
6944 char *line1, char *line2, char *line3)
6945 {
6946 /* Expected log for failed and not properly guarded CO-RE relocation:
6947 * line1 -> 123: (85) call unknown#195896080
6948 * line2 -> invalid func unknown#195896080
6949 * line3 -> <anything else or end of buffer>
6950 *
6951 * "123" is the index of the instruction that was poisoned. We extract
6952 * instruction index to find corresponding CO-RE relocation and
6953 * replace this part of the log with more relevant information about
6954 * failed CO-RE relocation.
6955 */
6956 const struct bpf_core_relo *relo;
6957 struct bpf_core_spec spec;
6958 char patch[512], spec_buf[256];
6959 int insn_idx, err, spec_len;
6960
6961 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
6962 return;
6963
6964 relo = find_relo_core(prog, insn_idx);
6965 if (!relo)
6966 return;
6967
6968 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
6969 if (err)
6970 return;
6971
6972 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
6973 snprintf(patch, sizeof(patch),
6974 "%d: <invalid CO-RE relocation>\n"
6975 "failed to resolve CO-RE relocation %s%s\n",
6976 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
6977
6978 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
6979 }
6980
fixup_log_missing_map_load(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)6981 static void fixup_log_missing_map_load(struct bpf_program *prog,
6982 char *buf, size_t buf_sz, size_t log_sz,
6983 char *line1, char *line2, char *line3)
6984 {
6985 /* Expected log for failed and not properly guarded CO-RE relocation:
6986 * line1 -> 123: (85) call unknown#2001000345
6987 * line2 -> invalid func unknown#2001000345
6988 * line3 -> <anything else or end of buffer>
6989 *
6990 * "123" is the index of the instruction that was poisoned.
6991 * "345" in "2001000345" are map index in obj->maps to fetch map name.
6992 */
6993 struct bpf_object *obj = prog->obj;
6994 const struct bpf_map *map;
6995 int insn_idx, map_idx;
6996 char patch[128];
6997
6998 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
6999 return;
7000
7001 map_idx -= MAP_LDIMM64_POISON_BASE;
7002 if (map_idx < 0 || map_idx >= obj->nr_maps)
7003 return;
7004 map = &obj->maps[map_idx];
7005
7006 snprintf(patch, sizeof(patch),
7007 "%d: <invalid BPF map reference>\n"
7008 "BPF map '%s' is referenced but wasn't created\n",
7009 insn_idx, map->name);
7010
7011 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7012 }
7013
fixup_verifier_log(struct bpf_program * prog,char * buf,size_t buf_sz)7014 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7015 {
7016 /* look for familiar error patterns in last N lines of the log */
7017 const size_t max_last_line_cnt = 10;
7018 char *prev_line, *cur_line, *next_line;
7019 size_t log_sz;
7020 int i;
7021
7022 if (!buf)
7023 return;
7024
7025 log_sz = strlen(buf) + 1;
7026 next_line = buf + log_sz - 1;
7027
7028 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7029 cur_line = find_prev_line(buf, next_line);
7030 if (!cur_line)
7031 return;
7032
7033 /* failed CO-RE relocation case */
7034 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7035 prev_line = find_prev_line(buf, cur_line);
7036 if (!prev_line)
7037 continue;
7038
7039 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7040 prev_line, cur_line, next_line);
7041 return;
7042 } else if (str_has_pfx(cur_line, "invalid func unknown#"MAP_LDIMM64_POISON_PFX)) {
7043 prev_line = find_prev_line(buf, cur_line);
7044 if (!prev_line)
7045 continue;
7046
7047 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7048 prev_line, cur_line, next_line);
7049 return;
7050 }
7051 }
7052 }
7053
bpf_program_record_relos(struct bpf_program * prog)7054 static int bpf_program_record_relos(struct bpf_program *prog)
7055 {
7056 struct bpf_object *obj = prog->obj;
7057 int i;
7058
7059 for (i = 0; i < prog->nr_reloc; i++) {
7060 struct reloc_desc *relo = &prog->reloc_desc[i];
7061 struct extern_desc *ext = &obj->externs[relo->sym_off];
7062
7063 switch (relo->type) {
7064 case RELO_EXTERN_VAR:
7065 if (ext->type != EXT_KSYM)
7066 continue;
7067 bpf_gen__record_extern(obj->gen_loader, ext->name,
7068 ext->is_weak, !ext->ksym.type_id,
7069 BTF_KIND_VAR, relo->insn_idx);
7070 break;
7071 case RELO_EXTERN_FUNC:
7072 bpf_gen__record_extern(obj->gen_loader, ext->name,
7073 ext->is_weak, false, BTF_KIND_FUNC,
7074 relo->insn_idx);
7075 break;
7076 case RELO_CORE: {
7077 struct bpf_core_relo cr = {
7078 .insn_off = relo->insn_idx * 8,
7079 .type_id = relo->core_relo->type_id,
7080 .access_str_off = relo->core_relo->access_str_off,
7081 .kind = relo->core_relo->kind,
7082 };
7083
7084 bpf_gen__record_relo_core(obj->gen_loader, &cr);
7085 break;
7086 }
7087 default:
7088 continue;
7089 }
7090 }
7091 return 0;
7092 }
7093
7094 static int
bpf_object__load_progs(struct bpf_object * obj,int log_level)7095 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7096 {
7097 struct bpf_program *prog;
7098 size_t i;
7099 int err;
7100
7101 for (i = 0; i < obj->nr_programs; i++) {
7102 prog = &obj->programs[i];
7103 err = bpf_object__sanitize_prog(obj, prog);
7104 if (err)
7105 return err;
7106 }
7107
7108 for (i = 0; i < obj->nr_programs; i++) {
7109 prog = &obj->programs[i];
7110 if (prog_is_subprog(obj, prog))
7111 continue;
7112 if (!prog->autoload) {
7113 pr_debug("prog '%s': skipped loading\n", prog->name);
7114 continue;
7115 }
7116 prog->log_level |= log_level;
7117
7118 if (obj->gen_loader)
7119 bpf_program_record_relos(prog);
7120
7121 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7122 obj->license, obj->kern_version, &prog->fd);
7123 if (err) {
7124 pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7125 return err;
7126 }
7127 }
7128
7129 bpf_object__free_relocs(obj);
7130 return 0;
7131 }
7132
7133 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7134
bpf_object_init_progs(struct bpf_object * obj,const struct bpf_object_open_opts * opts)7135 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7136 {
7137 struct bpf_program *prog;
7138 int err;
7139
7140 bpf_object__for_each_program(prog, obj) {
7141 prog->sec_def = find_sec_def(prog->sec_name);
7142 if (!prog->sec_def) {
7143 /* couldn't guess, but user might manually specify */
7144 pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7145 prog->name, prog->sec_name);
7146 continue;
7147 }
7148
7149 prog->type = prog->sec_def->prog_type;
7150 prog->expected_attach_type = prog->sec_def->expected_attach_type;
7151
7152 /* sec_def can have custom callback which should be called
7153 * after bpf_program is initialized to adjust its properties
7154 */
7155 if (prog->sec_def->prog_setup_fn) {
7156 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7157 if (err < 0) {
7158 pr_warn("prog '%s': failed to initialize: %d\n",
7159 prog->name, err);
7160 return err;
7161 }
7162 }
7163 }
7164
7165 return 0;
7166 }
7167
bpf_object_open(const char * path,const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)7168 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7169 const struct bpf_object_open_opts *opts)
7170 {
7171 const char *obj_name, *kconfig, *btf_tmp_path;
7172 struct bpf_object *obj;
7173 char tmp_name[64];
7174 int err;
7175 char *log_buf;
7176 size_t log_size;
7177 __u32 log_level;
7178
7179 if (elf_version(EV_CURRENT) == EV_NONE) {
7180 pr_warn("failed to init libelf for %s\n",
7181 path ? : "(mem buf)");
7182 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7183 }
7184
7185 if (!OPTS_VALID(opts, bpf_object_open_opts))
7186 return ERR_PTR(-EINVAL);
7187
7188 obj_name = OPTS_GET(opts, object_name, NULL);
7189 if (obj_buf) {
7190 if (!obj_name) {
7191 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7192 (unsigned long)obj_buf,
7193 (unsigned long)obj_buf_sz);
7194 obj_name = tmp_name;
7195 }
7196 path = obj_name;
7197 pr_debug("loading object '%s' from buffer\n", obj_name);
7198 }
7199
7200 log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7201 log_size = OPTS_GET(opts, kernel_log_size, 0);
7202 log_level = OPTS_GET(opts, kernel_log_level, 0);
7203 if (log_size > UINT_MAX)
7204 return ERR_PTR(-EINVAL);
7205 if (log_size && !log_buf)
7206 return ERR_PTR(-EINVAL);
7207
7208 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7209 if (IS_ERR(obj))
7210 return obj;
7211
7212 obj->log_buf = log_buf;
7213 obj->log_size = log_size;
7214 obj->log_level = log_level;
7215
7216 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7217 if (btf_tmp_path) {
7218 if (strlen(btf_tmp_path) >= PATH_MAX) {
7219 err = -ENAMETOOLONG;
7220 goto out;
7221 }
7222 obj->btf_custom_path = strdup(btf_tmp_path);
7223 if (!obj->btf_custom_path) {
7224 err = -ENOMEM;
7225 goto out;
7226 }
7227 }
7228
7229 kconfig = OPTS_GET(opts, kconfig, NULL);
7230 if (kconfig) {
7231 obj->kconfig = strdup(kconfig);
7232 if (!obj->kconfig) {
7233 err = -ENOMEM;
7234 goto out;
7235 }
7236 }
7237
7238 err = bpf_object__elf_init(obj);
7239 err = err ? : bpf_object__check_endianness(obj);
7240 err = err ? : bpf_object__elf_collect(obj);
7241 err = err ? : bpf_object__collect_externs(obj);
7242 err = err ? : bpf_object__finalize_btf(obj);
7243 err = err ? : bpf_object__init_maps(obj, opts);
7244 err = err ? : bpf_object_init_progs(obj, opts);
7245 err = err ? : bpf_object__collect_relos(obj);
7246 if (err)
7247 goto out;
7248
7249 bpf_object__elf_finish(obj);
7250
7251 return obj;
7252 out:
7253 bpf_object__close(obj);
7254 return ERR_PTR(err);
7255 }
7256
7257 struct bpf_object *
bpf_object__open_file(const char * path,const struct bpf_object_open_opts * opts)7258 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7259 {
7260 if (!path)
7261 return libbpf_err_ptr(-EINVAL);
7262
7263 pr_debug("loading %s\n", path);
7264
7265 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7266 }
7267
bpf_object__open(const char * path)7268 struct bpf_object *bpf_object__open(const char *path)
7269 {
7270 return bpf_object__open_file(path, NULL);
7271 }
7272
7273 struct bpf_object *
bpf_object__open_mem(const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)7274 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7275 const struct bpf_object_open_opts *opts)
7276 {
7277 if (!obj_buf || obj_buf_sz == 0)
7278 return libbpf_err_ptr(-EINVAL);
7279
7280 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7281 }
7282
bpf_object_unload(struct bpf_object * obj)7283 static int bpf_object_unload(struct bpf_object *obj)
7284 {
7285 size_t i;
7286
7287 if (!obj)
7288 return libbpf_err(-EINVAL);
7289
7290 for (i = 0; i < obj->nr_maps; i++) {
7291 zclose(obj->maps[i].fd);
7292 if (obj->maps[i].st_ops)
7293 zfree(&obj->maps[i].st_ops->kern_vdata);
7294 }
7295
7296 for (i = 0; i < obj->nr_programs; i++)
7297 bpf_program__unload(&obj->programs[i]);
7298
7299 return 0;
7300 }
7301
bpf_object__sanitize_maps(struct bpf_object * obj)7302 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7303 {
7304 struct bpf_map *m;
7305
7306 bpf_object__for_each_map(m, obj) {
7307 if (!bpf_map__is_internal(m))
7308 continue;
7309 if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7310 m->def.map_flags ^= BPF_F_MMAPABLE;
7311 }
7312
7313 return 0;
7314 }
7315
libbpf_kallsyms_parse(kallsyms_cb_t cb,void * ctx)7316 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7317 {
7318 char sym_type, sym_name[500];
7319 unsigned long long sym_addr;
7320 int ret, err = 0;
7321 FILE *f;
7322
7323 f = fopen("/proc/kallsyms", "r");
7324 if (!f) {
7325 err = -errno;
7326 pr_warn("failed to open /proc/kallsyms: %d\n", err);
7327 return err;
7328 }
7329
7330 while (true) {
7331 ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7332 &sym_addr, &sym_type, sym_name);
7333 if (ret == EOF && feof(f))
7334 break;
7335 if (ret != 3) {
7336 pr_warn("failed to read kallsyms entry: %d\n", ret);
7337 err = -EINVAL;
7338 break;
7339 }
7340
7341 err = cb(sym_addr, sym_type, sym_name, ctx);
7342 if (err)
7343 break;
7344 }
7345
7346 fclose(f);
7347 return err;
7348 }
7349
kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)7350 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
7351 const char *sym_name, void *ctx)
7352 {
7353 struct bpf_object *obj = ctx;
7354 const struct btf_type *t;
7355 struct extern_desc *ext;
7356
7357 ext = find_extern_by_name(obj, sym_name);
7358 if (!ext || ext->type != EXT_KSYM)
7359 return 0;
7360
7361 t = btf__type_by_id(obj->btf, ext->btf_id);
7362 if (!btf_is_var(t))
7363 return 0;
7364
7365 if (ext->is_set && ext->ksym.addr != sym_addr) {
7366 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
7367 sym_name, ext->ksym.addr, sym_addr);
7368 return -EINVAL;
7369 }
7370 if (!ext->is_set) {
7371 ext->is_set = true;
7372 ext->ksym.addr = sym_addr;
7373 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
7374 }
7375 return 0;
7376 }
7377
bpf_object__read_kallsyms_file(struct bpf_object * obj)7378 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7379 {
7380 return libbpf_kallsyms_parse(kallsyms_cb, obj);
7381 }
7382
find_ksym_btf_id(struct bpf_object * obj,const char * ksym_name,__u16 kind,struct btf ** res_btf,struct module_btf ** res_mod_btf)7383 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7384 __u16 kind, struct btf **res_btf,
7385 struct module_btf **res_mod_btf)
7386 {
7387 struct module_btf *mod_btf;
7388 struct btf *btf;
7389 int i, id, err;
7390
7391 btf = obj->btf_vmlinux;
7392 mod_btf = NULL;
7393 id = btf__find_by_name_kind(btf, ksym_name, kind);
7394
7395 if (id == -ENOENT) {
7396 err = load_module_btfs(obj);
7397 if (err)
7398 return err;
7399
7400 for (i = 0; i < obj->btf_module_cnt; i++) {
7401 /* we assume module_btf's BTF FD is always >0 */
7402 mod_btf = &obj->btf_modules[i];
7403 btf = mod_btf->btf;
7404 id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7405 if (id != -ENOENT)
7406 break;
7407 }
7408 }
7409 if (id <= 0)
7410 return -ESRCH;
7411
7412 *res_btf = btf;
7413 *res_mod_btf = mod_btf;
7414 return id;
7415 }
7416
bpf_object__resolve_ksym_var_btf_id(struct bpf_object * obj,struct extern_desc * ext)7417 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7418 struct extern_desc *ext)
7419 {
7420 const struct btf_type *targ_var, *targ_type;
7421 __u32 targ_type_id, local_type_id;
7422 struct module_btf *mod_btf = NULL;
7423 const char *targ_var_name;
7424 struct btf *btf = NULL;
7425 int id, err;
7426
7427 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7428 if (id < 0) {
7429 if (id == -ESRCH && ext->is_weak)
7430 return 0;
7431 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7432 ext->name);
7433 return id;
7434 }
7435
7436 /* find local type_id */
7437 local_type_id = ext->ksym.type_id;
7438
7439 /* find target type_id */
7440 targ_var = btf__type_by_id(btf, id);
7441 targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7442 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7443
7444 err = bpf_core_types_are_compat(obj->btf, local_type_id,
7445 btf, targ_type_id);
7446 if (err <= 0) {
7447 const struct btf_type *local_type;
7448 const char *targ_name, *local_name;
7449
7450 local_type = btf__type_by_id(obj->btf, local_type_id);
7451 local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7452 targ_name = btf__name_by_offset(btf, targ_type->name_off);
7453
7454 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7455 ext->name, local_type_id,
7456 btf_kind_str(local_type), local_name, targ_type_id,
7457 btf_kind_str(targ_type), targ_name);
7458 return -EINVAL;
7459 }
7460
7461 ext->is_set = true;
7462 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7463 ext->ksym.kernel_btf_id = id;
7464 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7465 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7466
7467 return 0;
7468 }
7469
bpf_object__resolve_ksym_func_btf_id(struct bpf_object * obj,struct extern_desc * ext)7470 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7471 struct extern_desc *ext)
7472 {
7473 int local_func_proto_id, kfunc_proto_id, kfunc_id;
7474 struct module_btf *mod_btf = NULL;
7475 const struct btf_type *kern_func;
7476 struct btf *kern_btf = NULL;
7477 int ret;
7478
7479 local_func_proto_id = ext->ksym.type_id;
7480
7481 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf);
7482 if (kfunc_id < 0) {
7483 if (kfunc_id == -ESRCH && ext->is_weak)
7484 return 0;
7485 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7486 ext->name);
7487 return kfunc_id;
7488 }
7489
7490 kern_func = btf__type_by_id(kern_btf, kfunc_id);
7491 kfunc_proto_id = kern_func->type;
7492
7493 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7494 kern_btf, kfunc_proto_id);
7495 if (ret <= 0) {
7496 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n",
7497 ext->name, local_func_proto_id, kfunc_proto_id);
7498 return -EINVAL;
7499 }
7500
7501 /* set index for module BTF fd in fd_array, if unset */
7502 if (mod_btf && !mod_btf->fd_array_idx) {
7503 /* insn->off is s16 */
7504 if (obj->fd_array_cnt == INT16_MAX) {
7505 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7506 ext->name, mod_btf->fd_array_idx);
7507 return -E2BIG;
7508 }
7509 /* Cannot use index 0 for module BTF fd */
7510 if (!obj->fd_array_cnt)
7511 obj->fd_array_cnt = 1;
7512
7513 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7514 obj->fd_array_cnt + 1);
7515 if (ret)
7516 return ret;
7517 mod_btf->fd_array_idx = obj->fd_array_cnt;
7518 /* we assume module BTF FD is always >0 */
7519 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7520 }
7521
7522 ext->is_set = true;
7523 ext->ksym.kernel_btf_id = kfunc_id;
7524 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7525 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n",
7526 ext->name, kfunc_id);
7527
7528 return 0;
7529 }
7530
bpf_object__resolve_ksyms_btf_id(struct bpf_object * obj)7531 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7532 {
7533 const struct btf_type *t;
7534 struct extern_desc *ext;
7535 int i, err;
7536
7537 for (i = 0; i < obj->nr_extern; i++) {
7538 ext = &obj->externs[i];
7539 if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7540 continue;
7541
7542 if (obj->gen_loader) {
7543 ext->is_set = true;
7544 ext->ksym.kernel_btf_obj_fd = 0;
7545 ext->ksym.kernel_btf_id = 0;
7546 continue;
7547 }
7548 t = btf__type_by_id(obj->btf, ext->btf_id);
7549 if (btf_is_var(t))
7550 err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7551 else
7552 err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7553 if (err)
7554 return err;
7555 }
7556 return 0;
7557 }
7558
bpf_object__resolve_externs(struct bpf_object * obj,const char * extra_kconfig)7559 static int bpf_object__resolve_externs(struct bpf_object *obj,
7560 const char *extra_kconfig)
7561 {
7562 bool need_config = false, need_kallsyms = false;
7563 bool need_vmlinux_btf = false;
7564 struct extern_desc *ext;
7565 void *kcfg_data = NULL;
7566 int err, i;
7567
7568 if (obj->nr_extern == 0)
7569 return 0;
7570
7571 if (obj->kconfig_map_idx >= 0)
7572 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7573
7574 for (i = 0; i < obj->nr_extern; i++) {
7575 ext = &obj->externs[i];
7576
7577 if (ext->type == EXT_KSYM) {
7578 if (ext->ksym.type_id)
7579 need_vmlinux_btf = true;
7580 else
7581 need_kallsyms = true;
7582 continue;
7583 } else if (ext->type == EXT_KCFG) {
7584 void *ext_ptr = kcfg_data + ext->kcfg.data_off;
7585 __u64 value = 0;
7586
7587 /* Kconfig externs need actual /proc/config.gz */
7588 if (str_has_pfx(ext->name, "CONFIG_")) {
7589 need_config = true;
7590 continue;
7591 }
7592
7593 /* Virtual kcfg externs are customly handled by libbpf */
7594 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7595 value = get_kernel_version();
7596 if (!value) {
7597 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
7598 return -EINVAL;
7599 }
7600 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
7601 value = kernel_supports(obj, FEAT_BPF_COOKIE);
7602 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
7603 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
7604 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
7605 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
7606 * __kconfig externs, where LINUX_ ones are virtual and filled out
7607 * customly by libbpf (their values don't come from Kconfig).
7608 * If LINUX_xxx variable is not recognized by libbpf, but is marked
7609 * __weak, it defaults to zero value, just like for CONFIG_xxx
7610 * externs.
7611 */
7612 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
7613 return -EINVAL;
7614 }
7615
7616 err = set_kcfg_value_num(ext, ext_ptr, value);
7617 if (err)
7618 return err;
7619 pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
7620 ext->name, (long long)value);
7621 } else {
7622 pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
7623 return -EINVAL;
7624 }
7625 }
7626 if (need_config && extra_kconfig) {
7627 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7628 if (err)
7629 return -EINVAL;
7630 need_config = false;
7631 for (i = 0; i < obj->nr_extern; i++) {
7632 ext = &obj->externs[i];
7633 if (ext->type == EXT_KCFG && !ext->is_set) {
7634 need_config = true;
7635 break;
7636 }
7637 }
7638 }
7639 if (need_config) {
7640 err = bpf_object__read_kconfig_file(obj, kcfg_data);
7641 if (err)
7642 return -EINVAL;
7643 }
7644 if (need_kallsyms) {
7645 err = bpf_object__read_kallsyms_file(obj);
7646 if (err)
7647 return -EINVAL;
7648 }
7649 if (need_vmlinux_btf) {
7650 err = bpf_object__resolve_ksyms_btf_id(obj);
7651 if (err)
7652 return -EINVAL;
7653 }
7654 for (i = 0; i < obj->nr_extern; i++) {
7655 ext = &obj->externs[i];
7656
7657 if (!ext->is_set && !ext->is_weak) {
7658 pr_warn("extern '%s' (strong): not resolved\n", ext->name);
7659 return -ESRCH;
7660 } else if (!ext->is_set) {
7661 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
7662 ext->name);
7663 }
7664 }
7665
7666 return 0;
7667 }
7668
bpf_object_load(struct bpf_object * obj,int extra_log_level,const char * target_btf_path)7669 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
7670 {
7671 int err, i;
7672
7673 if (!obj)
7674 return libbpf_err(-EINVAL);
7675
7676 if (obj->loaded) {
7677 pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7678 return libbpf_err(-EINVAL);
7679 }
7680
7681 if (obj->gen_loader)
7682 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
7683
7684 err = bpf_object__probe_loading(obj);
7685 err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7686 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7687 err = err ? : bpf_object__sanitize_and_load_btf(obj);
7688 err = err ? : bpf_object__sanitize_maps(obj);
7689 err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7690 err = err ? : bpf_object__create_maps(obj);
7691 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
7692 err = err ? : bpf_object__load_progs(obj, extra_log_level);
7693 err = err ? : bpf_object_init_prog_arrays(obj);
7694
7695 if (obj->gen_loader) {
7696 /* reset FDs */
7697 if (obj->btf)
7698 btf__set_fd(obj->btf, -1);
7699 for (i = 0; i < obj->nr_maps; i++)
7700 obj->maps[i].fd = -1;
7701 if (!err)
7702 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
7703 }
7704
7705 /* clean up fd_array */
7706 zfree(&obj->fd_array);
7707
7708 /* clean up module BTFs */
7709 for (i = 0; i < obj->btf_module_cnt; i++) {
7710 close(obj->btf_modules[i].fd);
7711 btf__free(obj->btf_modules[i].btf);
7712 free(obj->btf_modules[i].name);
7713 }
7714 free(obj->btf_modules);
7715
7716 /* clean up vmlinux BTF */
7717 btf__free(obj->btf_vmlinux);
7718 obj->btf_vmlinux = NULL;
7719
7720 obj->loaded = true; /* doesn't matter if successfully or not */
7721
7722 if (err)
7723 goto out;
7724
7725 return 0;
7726 out:
7727 /* unpin any maps that were auto-pinned during load */
7728 for (i = 0; i < obj->nr_maps; i++)
7729 if (obj->maps[i].pinned && !obj->maps[i].reused)
7730 bpf_map__unpin(&obj->maps[i], NULL);
7731
7732 bpf_object_unload(obj);
7733 pr_warn("failed to load object '%s'\n", obj->path);
7734 return libbpf_err(err);
7735 }
7736
bpf_object__load(struct bpf_object * obj)7737 int bpf_object__load(struct bpf_object *obj)
7738 {
7739 return bpf_object_load(obj, 0, NULL);
7740 }
7741
make_parent_dir(const char * path)7742 static int make_parent_dir(const char *path)
7743 {
7744 char *cp, errmsg[STRERR_BUFSIZE];
7745 char *dname, *dir;
7746 int err = 0;
7747
7748 dname = strdup(path);
7749 if (dname == NULL)
7750 return -ENOMEM;
7751
7752 dir = dirname(dname);
7753 if (mkdir(dir, 0700) && errno != EEXIST)
7754 err = -errno;
7755
7756 free(dname);
7757 if (err) {
7758 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7759 pr_warn("failed to mkdir %s: %s\n", path, cp);
7760 }
7761 return err;
7762 }
7763
check_path(const char * path)7764 static int check_path(const char *path)
7765 {
7766 char *cp, errmsg[STRERR_BUFSIZE];
7767 struct statfs st_fs;
7768 char *dname, *dir;
7769 int err = 0;
7770
7771 if (path == NULL)
7772 return -EINVAL;
7773
7774 dname = strdup(path);
7775 if (dname == NULL)
7776 return -ENOMEM;
7777
7778 dir = dirname(dname);
7779 if (statfs(dir, &st_fs)) {
7780 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7781 pr_warn("failed to statfs %s: %s\n", dir, cp);
7782 err = -errno;
7783 }
7784 free(dname);
7785
7786 if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7787 pr_warn("specified path %s is not on BPF FS\n", path);
7788 err = -EINVAL;
7789 }
7790
7791 return err;
7792 }
7793
bpf_program__pin(struct bpf_program * prog,const char * path)7794 int bpf_program__pin(struct bpf_program *prog, const char *path)
7795 {
7796 char *cp, errmsg[STRERR_BUFSIZE];
7797 int err;
7798
7799 if (prog->fd < 0) {
7800 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
7801 return libbpf_err(-EINVAL);
7802 }
7803
7804 err = make_parent_dir(path);
7805 if (err)
7806 return libbpf_err(err);
7807
7808 err = check_path(path);
7809 if (err)
7810 return libbpf_err(err);
7811
7812 if (bpf_obj_pin(prog->fd, path)) {
7813 err = -errno;
7814 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7815 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
7816 return libbpf_err(err);
7817 }
7818
7819 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
7820 return 0;
7821 }
7822
bpf_program__unpin(struct bpf_program * prog,const char * path)7823 int bpf_program__unpin(struct bpf_program *prog, const char *path)
7824 {
7825 int err;
7826
7827 if (prog->fd < 0) {
7828 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
7829 return libbpf_err(-EINVAL);
7830 }
7831
7832 err = check_path(path);
7833 if (err)
7834 return libbpf_err(err);
7835
7836 err = unlink(path);
7837 if (err)
7838 return libbpf_err(-errno);
7839
7840 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
7841 return 0;
7842 }
7843
bpf_map__pin(struct bpf_map * map,const char * path)7844 int bpf_map__pin(struct bpf_map *map, const char *path)
7845 {
7846 char *cp, errmsg[STRERR_BUFSIZE];
7847 int err;
7848
7849 if (map == NULL) {
7850 pr_warn("invalid map pointer\n");
7851 return libbpf_err(-EINVAL);
7852 }
7853
7854 if (map->pin_path) {
7855 if (path && strcmp(path, map->pin_path)) {
7856 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7857 bpf_map__name(map), map->pin_path, path);
7858 return libbpf_err(-EINVAL);
7859 } else if (map->pinned) {
7860 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
7861 bpf_map__name(map), map->pin_path);
7862 return 0;
7863 }
7864 } else {
7865 if (!path) {
7866 pr_warn("missing a path to pin map '%s' at\n",
7867 bpf_map__name(map));
7868 return libbpf_err(-EINVAL);
7869 } else if (map->pinned) {
7870 pr_warn("map '%s' already pinned\n", bpf_map__name(map));
7871 return libbpf_err(-EEXIST);
7872 }
7873
7874 map->pin_path = strdup(path);
7875 if (!map->pin_path) {
7876 err = -errno;
7877 goto out_err;
7878 }
7879 }
7880
7881 err = make_parent_dir(map->pin_path);
7882 if (err)
7883 return libbpf_err(err);
7884
7885 err = check_path(map->pin_path);
7886 if (err)
7887 return libbpf_err(err);
7888
7889 if (bpf_obj_pin(map->fd, map->pin_path)) {
7890 err = -errno;
7891 goto out_err;
7892 }
7893
7894 map->pinned = true;
7895 pr_debug("pinned map '%s'\n", map->pin_path);
7896
7897 return 0;
7898
7899 out_err:
7900 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7901 pr_warn("failed to pin map: %s\n", cp);
7902 return libbpf_err(err);
7903 }
7904
bpf_map__unpin(struct bpf_map * map,const char * path)7905 int bpf_map__unpin(struct bpf_map *map, const char *path)
7906 {
7907 int err;
7908
7909 if (map == NULL) {
7910 pr_warn("invalid map pointer\n");
7911 return libbpf_err(-EINVAL);
7912 }
7913
7914 if (map->pin_path) {
7915 if (path && strcmp(path, map->pin_path)) {
7916 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7917 bpf_map__name(map), map->pin_path, path);
7918 return libbpf_err(-EINVAL);
7919 }
7920 path = map->pin_path;
7921 } else if (!path) {
7922 pr_warn("no path to unpin map '%s' from\n",
7923 bpf_map__name(map));
7924 return libbpf_err(-EINVAL);
7925 }
7926
7927 err = check_path(path);
7928 if (err)
7929 return libbpf_err(err);
7930
7931 err = unlink(path);
7932 if (err != 0)
7933 return libbpf_err(-errno);
7934
7935 map->pinned = false;
7936 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
7937
7938 return 0;
7939 }
7940
bpf_map__set_pin_path(struct bpf_map * map,const char * path)7941 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
7942 {
7943 char *new = NULL;
7944
7945 if (path) {
7946 new = strdup(path);
7947 if (!new)
7948 return libbpf_err(-errno);
7949 }
7950
7951 free(map->pin_path);
7952 map->pin_path = new;
7953 return 0;
7954 }
7955
7956 __alias(bpf_map__pin_path)
7957 const char *bpf_map__get_pin_path(const struct bpf_map *map);
7958
bpf_map__pin_path(const struct bpf_map * map)7959 const char *bpf_map__pin_path(const struct bpf_map *map)
7960 {
7961 return map->pin_path;
7962 }
7963
bpf_map__is_pinned(const struct bpf_map * map)7964 bool bpf_map__is_pinned(const struct bpf_map *map)
7965 {
7966 return map->pinned;
7967 }
7968
sanitize_pin_path(char * s)7969 static void sanitize_pin_path(char *s)
7970 {
7971 /* bpffs disallows periods in path names */
7972 while (*s) {
7973 if (*s == '.')
7974 *s = '_';
7975 s++;
7976 }
7977 }
7978
bpf_object__pin_maps(struct bpf_object * obj,const char * path)7979 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
7980 {
7981 struct bpf_map *map;
7982 int err;
7983
7984 if (!obj)
7985 return libbpf_err(-ENOENT);
7986
7987 if (!obj->loaded) {
7988 pr_warn("object not yet loaded; load it first\n");
7989 return libbpf_err(-ENOENT);
7990 }
7991
7992 bpf_object__for_each_map(map, obj) {
7993 char *pin_path = NULL;
7994 char buf[PATH_MAX];
7995
7996 if (!map->autocreate)
7997 continue;
7998
7999 if (path) {
8000 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8001 if (err)
8002 goto err_unpin_maps;
8003 sanitize_pin_path(buf);
8004 pin_path = buf;
8005 } else if (!map->pin_path) {
8006 continue;
8007 }
8008
8009 err = bpf_map__pin(map, pin_path);
8010 if (err)
8011 goto err_unpin_maps;
8012 }
8013
8014 return 0;
8015
8016 err_unpin_maps:
8017 while ((map = bpf_object__prev_map(obj, map))) {
8018 if (!map->pin_path)
8019 continue;
8020
8021 bpf_map__unpin(map, NULL);
8022 }
8023
8024 return libbpf_err(err);
8025 }
8026
bpf_object__unpin_maps(struct bpf_object * obj,const char * path)8027 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8028 {
8029 struct bpf_map *map;
8030 int err;
8031
8032 if (!obj)
8033 return libbpf_err(-ENOENT);
8034
8035 bpf_object__for_each_map(map, obj) {
8036 char *pin_path = NULL;
8037 char buf[PATH_MAX];
8038
8039 if (path) {
8040 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8041 if (err)
8042 return libbpf_err(err);
8043 sanitize_pin_path(buf);
8044 pin_path = buf;
8045 } else if (!map->pin_path) {
8046 continue;
8047 }
8048
8049 err = bpf_map__unpin(map, pin_path);
8050 if (err)
8051 return libbpf_err(err);
8052 }
8053
8054 return 0;
8055 }
8056
bpf_object__pin_programs(struct bpf_object * obj,const char * path)8057 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8058 {
8059 struct bpf_program *prog;
8060 char buf[PATH_MAX];
8061 int err;
8062
8063 if (!obj)
8064 return libbpf_err(-ENOENT);
8065
8066 if (!obj->loaded) {
8067 pr_warn("object not yet loaded; load it first\n");
8068 return libbpf_err(-ENOENT);
8069 }
8070
8071 bpf_object__for_each_program(prog, obj) {
8072 err = pathname_concat(buf, sizeof(buf), path, prog->name);
8073 if (err)
8074 goto err_unpin_programs;
8075
8076 err = bpf_program__pin(prog, buf);
8077 if (err)
8078 goto err_unpin_programs;
8079 }
8080
8081 return 0;
8082
8083 err_unpin_programs:
8084 while ((prog = bpf_object__prev_program(obj, prog))) {
8085 if (pathname_concat(buf, sizeof(buf), path, prog->name))
8086 continue;
8087
8088 bpf_program__unpin(prog, buf);
8089 }
8090
8091 return libbpf_err(err);
8092 }
8093
bpf_object__unpin_programs(struct bpf_object * obj,const char * path)8094 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8095 {
8096 struct bpf_program *prog;
8097 int err;
8098
8099 if (!obj)
8100 return libbpf_err(-ENOENT);
8101
8102 bpf_object__for_each_program(prog, obj) {
8103 char buf[PATH_MAX];
8104
8105 err = pathname_concat(buf, sizeof(buf), path, prog->name);
8106 if (err)
8107 return libbpf_err(err);
8108
8109 err = bpf_program__unpin(prog, buf);
8110 if (err)
8111 return libbpf_err(err);
8112 }
8113
8114 return 0;
8115 }
8116
bpf_object__pin(struct bpf_object * obj,const char * path)8117 int bpf_object__pin(struct bpf_object *obj, const char *path)
8118 {
8119 int err;
8120
8121 err = bpf_object__pin_maps(obj, path);
8122 if (err)
8123 return libbpf_err(err);
8124
8125 err = bpf_object__pin_programs(obj, path);
8126 if (err) {
8127 bpf_object__unpin_maps(obj, path);
8128 return libbpf_err(err);
8129 }
8130
8131 return 0;
8132 }
8133
bpf_map__destroy(struct bpf_map * map)8134 static void bpf_map__destroy(struct bpf_map *map)
8135 {
8136 if (map->inner_map) {
8137 bpf_map__destroy(map->inner_map);
8138 zfree(&map->inner_map);
8139 }
8140
8141 zfree(&map->init_slots);
8142 map->init_slots_sz = 0;
8143
8144 if (map->mmaped) {
8145 munmap(map->mmaped, bpf_map_mmap_sz(map));
8146 map->mmaped = NULL;
8147 }
8148
8149 if (map->st_ops) {
8150 zfree(&map->st_ops->data);
8151 zfree(&map->st_ops->progs);
8152 zfree(&map->st_ops->kern_func_off);
8153 zfree(&map->st_ops);
8154 }
8155
8156 zfree(&map->name);
8157 zfree(&map->real_name);
8158 zfree(&map->pin_path);
8159
8160 if (map->fd >= 0)
8161 zclose(map->fd);
8162 }
8163
bpf_object__close(struct bpf_object * obj)8164 void bpf_object__close(struct bpf_object *obj)
8165 {
8166 size_t i;
8167
8168 if (IS_ERR_OR_NULL(obj))
8169 return;
8170
8171 usdt_manager_free(obj->usdt_man);
8172 obj->usdt_man = NULL;
8173
8174 bpf_gen__free(obj->gen_loader);
8175 bpf_object__elf_finish(obj);
8176 bpf_object_unload(obj);
8177 btf__free(obj->btf);
8178 btf__free(obj->btf_vmlinux);
8179 btf_ext__free(obj->btf_ext);
8180
8181 for (i = 0; i < obj->nr_maps; i++)
8182 bpf_map__destroy(&obj->maps[i]);
8183
8184 zfree(&obj->btf_custom_path);
8185 zfree(&obj->kconfig);
8186 zfree(&obj->externs);
8187 obj->nr_extern = 0;
8188
8189 zfree(&obj->maps);
8190 obj->nr_maps = 0;
8191
8192 if (obj->programs && obj->nr_programs) {
8193 for (i = 0; i < obj->nr_programs; i++)
8194 bpf_program__exit(&obj->programs[i]);
8195 }
8196 zfree(&obj->programs);
8197
8198 free(obj);
8199 }
8200
bpf_object__name(const struct bpf_object * obj)8201 const char *bpf_object__name(const struct bpf_object *obj)
8202 {
8203 return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8204 }
8205
bpf_object__kversion(const struct bpf_object * obj)8206 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8207 {
8208 return obj ? obj->kern_version : 0;
8209 }
8210
bpf_object__btf(const struct bpf_object * obj)8211 struct btf *bpf_object__btf(const struct bpf_object *obj)
8212 {
8213 return obj ? obj->btf : NULL;
8214 }
8215
bpf_object__btf_fd(const struct bpf_object * obj)8216 int bpf_object__btf_fd(const struct bpf_object *obj)
8217 {
8218 return obj->btf ? btf__fd(obj->btf) : -1;
8219 }
8220
bpf_object__set_kversion(struct bpf_object * obj,__u32 kern_version)8221 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8222 {
8223 if (obj->loaded)
8224 return libbpf_err(-EINVAL);
8225
8226 obj->kern_version = kern_version;
8227
8228 return 0;
8229 }
8230
bpf_object__gen_loader(struct bpf_object * obj,struct gen_loader_opts * opts)8231 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8232 {
8233 struct bpf_gen *gen;
8234
8235 if (!opts)
8236 return -EFAULT;
8237 if (!OPTS_VALID(opts, gen_loader_opts))
8238 return -EINVAL;
8239 gen = calloc(sizeof(*gen), 1);
8240 if (!gen)
8241 return -ENOMEM;
8242 gen->opts = opts;
8243 obj->gen_loader = gen;
8244 return 0;
8245 }
8246
8247 static struct bpf_program *
__bpf_program__iter(const struct bpf_program * p,const struct bpf_object * obj,bool forward)8248 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8249 bool forward)
8250 {
8251 size_t nr_programs = obj->nr_programs;
8252 ssize_t idx;
8253
8254 if (!nr_programs)
8255 return NULL;
8256
8257 if (!p)
8258 /* Iter from the beginning */
8259 return forward ? &obj->programs[0] :
8260 &obj->programs[nr_programs - 1];
8261
8262 if (p->obj != obj) {
8263 pr_warn("error: program handler doesn't match object\n");
8264 return errno = EINVAL, NULL;
8265 }
8266
8267 idx = (p - obj->programs) + (forward ? 1 : -1);
8268 if (idx >= obj->nr_programs || idx < 0)
8269 return NULL;
8270 return &obj->programs[idx];
8271 }
8272
8273 struct bpf_program *
bpf_object__next_program(const struct bpf_object * obj,struct bpf_program * prev)8274 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8275 {
8276 struct bpf_program *prog = prev;
8277
8278 do {
8279 prog = __bpf_program__iter(prog, obj, true);
8280 } while (prog && prog_is_subprog(obj, prog));
8281
8282 return prog;
8283 }
8284
8285 struct bpf_program *
bpf_object__prev_program(const struct bpf_object * obj,struct bpf_program * next)8286 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8287 {
8288 struct bpf_program *prog = next;
8289
8290 do {
8291 prog = __bpf_program__iter(prog, obj, false);
8292 } while (prog && prog_is_subprog(obj, prog));
8293
8294 return prog;
8295 }
8296
bpf_program__set_ifindex(struct bpf_program * prog,__u32 ifindex)8297 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8298 {
8299 prog->prog_ifindex = ifindex;
8300 }
8301
bpf_program__name(const struct bpf_program * prog)8302 const char *bpf_program__name(const struct bpf_program *prog)
8303 {
8304 return prog->name;
8305 }
8306
bpf_program__section_name(const struct bpf_program * prog)8307 const char *bpf_program__section_name(const struct bpf_program *prog)
8308 {
8309 return prog->sec_name;
8310 }
8311
bpf_program__autoload(const struct bpf_program * prog)8312 bool bpf_program__autoload(const struct bpf_program *prog)
8313 {
8314 return prog->autoload;
8315 }
8316
bpf_program__set_autoload(struct bpf_program * prog,bool autoload)8317 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8318 {
8319 if (prog->obj->loaded)
8320 return libbpf_err(-EINVAL);
8321
8322 prog->autoload = autoload;
8323 return 0;
8324 }
8325
bpf_program__autoattach(const struct bpf_program * prog)8326 bool bpf_program__autoattach(const struct bpf_program *prog)
8327 {
8328 return prog->autoattach;
8329 }
8330
bpf_program__set_autoattach(struct bpf_program * prog,bool autoattach)8331 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
8332 {
8333 prog->autoattach = autoattach;
8334 }
8335
bpf_program__insns(const struct bpf_program * prog)8336 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8337 {
8338 return prog->insns;
8339 }
8340
bpf_program__insn_cnt(const struct bpf_program * prog)8341 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8342 {
8343 return prog->insns_cnt;
8344 }
8345
bpf_program__set_insns(struct bpf_program * prog,struct bpf_insn * new_insns,size_t new_insn_cnt)8346 int bpf_program__set_insns(struct bpf_program *prog,
8347 struct bpf_insn *new_insns, size_t new_insn_cnt)
8348 {
8349 struct bpf_insn *insns;
8350
8351 if (prog->obj->loaded)
8352 return -EBUSY;
8353
8354 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
8355 /* NULL is a valid return from reallocarray if the new count is zero */
8356 if (!insns && new_insn_cnt) {
8357 pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
8358 return -ENOMEM;
8359 }
8360 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
8361
8362 prog->insns = insns;
8363 prog->insns_cnt = new_insn_cnt;
8364 return 0;
8365 }
8366
bpf_program__fd(const struct bpf_program * prog)8367 int bpf_program__fd(const struct bpf_program *prog)
8368 {
8369 if (!prog)
8370 return libbpf_err(-EINVAL);
8371
8372 if (prog->fd < 0)
8373 return libbpf_err(-ENOENT);
8374
8375 return prog->fd;
8376 }
8377
8378 __alias(bpf_program__type)
8379 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
8380
bpf_program__type(const struct bpf_program * prog)8381 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
8382 {
8383 return prog->type;
8384 }
8385
bpf_program__set_type(struct bpf_program * prog,enum bpf_prog_type type)8386 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8387 {
8388 if (prog->obj->loaded)
8389 return libbpf_err(-EBUSY);
8390
8391 prog->type = type;
8392 return 0;
8393 }
8394
8395 __alias(bpf_program__expected_attach_type)
8396 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
8397
bpf_program__expected_attach_type(const struct bpf_program * prog)8398 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
8399 {
8400 return prog->expected_attach_type;
8401 }
8402
bpf_program__set_expected_attach_type(struct bpf_program * prog,enum bpf_attach_type type)8403 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
8404 enum bpf_attach_type type)
8405 {
8406 if (prog->obj->loaded)
8407 return libbpf_err(-EBUSY);
8408
8409 prog->expected_attach_type = type;
8410 return 0;
8411 }
8412
bpf_program__flags(const struct bpf_program * prog)8413 __u32 bpf_program__flags(const struct bpf_program *prog)
8414 {
8415 return prog->prog_flags;
8416 }
8417
bpf_program__set_flags(struct bpf_program * prog,__u32 flags)8418 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8419 {
8420 if (prog->obj->loaded)
8421 return libbpf_err(-EBUSY);
8422
8423 prog->prog_flags = flags;
8424 return 0;
8425 }
8426
bpf_program__log_level(const struct bpf_program * prog)8427 __u32 bpf_program__log_level(const struct bpf_program *prog)
8428 {
8429 return prog->log_level;
8430 }
8431
bpf_program__set_log_level(struct bpf_program * prog,__u32 log_level)8432 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8433 {
8434 if (prog->obj->loaded)
8435 return libbpf_err(-EBUSY);
8436
8437 prog->log_level = log_level;
8438 return 0;
8439 }
8440
bpf_program__log_buf(const struct bpf_program * prog,size_t * log_size)8441 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8442 {
8443 *log_size = prog->log_size;
8444 return prog->log_buf;
8445 }
8446
bpf_program__set_log_buf(struct bpf_program * prog,char * log_buf,size_t log_size)8447 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8448 {
8449 if (log_size && !log_buf)
8450 return -EINVAL;
8451 if (prog->log_size > UINT_MAX)
8452 return -EINVAL;
8453 if (prog->obj->loaded)
8454 return -EBUSY;
8455
8456 prog->log_buf = log_buf;
8457 prog->log_size = log_size;
8458 return 0;
8459 }
8460
8461 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \
8462 .sec = (char *)sec_pfx, \
8463 .prog_type = BPF_PROG_TYPE_##ptype, \
8464 .expected_attach_type = atype, \
8465 .cookie = (long)(flags), \
8466 .prog_prepare_load_fn = libbpf_prepare_prog_load, \
8467 __VA_ARGS__ \
8468 }
8469
8470 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8471 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8472 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8473 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8474 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8475 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8476 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8477 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8478 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8479 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8480
8481 static const struct bpf_sec_def section_defs[] = {
8482 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE),
8483 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
8484 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
8485 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
8486 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
8487 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8488 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
8489 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
8490 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8491 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8492 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8493 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
8494 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
8495 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt),
8496 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE),
8497 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE),
8498 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE),
8499 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp),
8500 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp),
8501 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8502 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8503 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8504 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8505 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
8506 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
8507 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
8508 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
8509 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8510 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8511 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8512 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace),
8513 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
8514 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
8515 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
8516 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
8517 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
8518 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE),
8519 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
8520 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
8521 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
8522 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
8523 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS),
8524 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
8525 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE),
8526 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE),
8527 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE),
8528 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE),
8529 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE),
8530 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
8531 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
8532 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
8533 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE),
8534 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
8535 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
8536 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
8537 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
8538 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
8539 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE),
8540 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
8541 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
8542 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
8543 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
8544 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
8545 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
8546 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
8547 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
8548 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
8549 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
8550 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
8551 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
8552 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
8553 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
8554 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
8555 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
8556 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
8557 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
8558 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
8559 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
8560 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
8561 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE),
8562 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
8563 };
8564
8565 static size_t custom_sec_def_cnt;
8566 static struct bpf_sec_def *custom_sec_defs;
8567 static struct bpf_sec_def custom_fallback_def;
8568 static bool has_custom_fallback_def;
8569
8570 static int last_custom_sec_def_handler_id;
8571
libbpf_register_prog_handler(const char * sec,enum bpf_prog_type prog_type,enum bpf_attach_type exp_attach_type,const struct libbpf_prog_handler_opts * opts)8572 int libbpf_register_prog_handler(const char *sec,
8573 enum bpf_prog_type prog_type,
8574 enum bpf_attach_type exp_attach_type,
8575 const struct libbpf_prog_handler_opts *opts)
8576 {
8577 struct bpf_sec_def *sec_def;
8578
8579 if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
8580 return libbpf_err(-EINVAL);
8581
8582 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
8583 return libbpf_err(-E2BIG);
8584
8585 if (sec) {
8586 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
8587 sizeof(*sec_def));
8588 if (!sec_def)
8589 return libbpf_err(-ENOMEM);
8590
8591 custom_sec_defs = sec_def;
8592 sec_def = &custom_sec_defs[custom_sec_def_cnt];
8593 } else {
8594 if (has_custom_fallback_def)
8595 return libbpf_err(-EBUSY);
8596
8597 sec_def = &custom_fallback_def;
8598 }
8599
8600 sec_def->sec = sec ? strdup(sec) : NULL;
8601 if (sec && !sec_def->sec)
8602 return libbpf_err(-ENOMEM);
8603
8604 sec_def->prog_type = prog_type;
8605 sec_def->expected_attach_type = exp_attach_type;
8606 sec_def->cookie = OPTS_GET(opts, cookie, 0);
8607
8608 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
8609 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
8610 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
8611
8612 sec_def->handler_id = ++last_custom_sec_def_handler_id;
8613
8614 if (sec)
8615 custom_sec_def_cnt++;
8616 else
8617 has_custom_fallback_def = true;
8618
8619 return sec_def->handler_id;
8620 }
8621
libbpf_unregister_prog_handler(int handler_id)8622 int libbpf_unregister_prog_handler(int handler_id)
8623 {
8624 struct bpf_sec_def *sec_defs;
8625 int i;
8626
8627 if (handler_id <= 0)
8628 return libbpf_err(-EINVAL);
8629
8630 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
8631 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
8632 has_custom_fallback_def = false;
8633 return 0;
8634 }
8635
8636 for (i = 0; i < custom_sec_def_cnt; i++) {
8637 if (custom_sec_defs[i].handler_id == handler_id)
8638 break;
8639 }
8640
8641 if (i == custom_sec_def_cnt)
8642 return libbpf_err(-ENOENT);
8643
8644 free(custom_sec_defs[i].sec);
8645 for (i = i + 1; i < custom_sec_def_cnt; i++)
8646 custom_sec_defs[i - 1] = custom_sec_defs[i];
8647 custom_sec_def_cnt--;
8648
8649 /* try to shrink the array, but it's ok if we couldn't */
8650 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
8651 /* if new count is zero, reallocarray can return a valid NULL result;
8652 * in this case the previous pointer will be freed, so we *have to*
8653 * reassign old pointer to the new value (even if it's NULL)
8654 */
8655 if (sec_defs || custom_sec_def_cnt == 0)
8656 custom_sec_defs = sec_defs;
8657
8658 return 0;
8659 }
8660
sec_def_matches(const struct bpf_sec_def * sec_def,const char * sec_name)8661 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
8662 {
8663 size_t len = strlen(sec_def->sec);
8664
8665 /* "type/" always has to have proper SEC("type/extras") form */
8666 if (sec_def->sec[len - 1] == '/') {
8667 if (str_has_pfx(sec_name, sec_def->sec))
8668 return true;
8669 return false;
8670 }
8671
8672 /* "type+" means it can be either exact SEC("type") or
8673 * well-formed SEC("type/extras") with proper '/' separator
8674 */
8675 if (sec_def->sec[len - 1] == '+') {
8676 len--;
8677 /* not even a prefix */
8678 if (strncmp(sec_name, sec_def->sec, len) != 0)
8679 return false;
8680 /* exact match or has '/' separator */
8681 if (sec_name[len] == '\0' || sec_name[len] == '/')
8682 return true;
8683 return false;
8684 }
8685
8686 return strcmp(sec_name, sec_def->sec) == 0;
8687 }
8688
find_sec_def(const char * sec_name)8689 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8690 {
8691 const struct bpf_sec_def *sec_def;
8692 int i, n;
8693
8694 n = custom_sec_def_cnt;
8695 for (i = 0; i < n; i++) {
8696 sec_def = &custom_sec_defs[i];
8697 if (sec_def_matches(sec_def, sec_name))
8698 return sec_def;
8699 }
8700
8701 n = ARRAY_SIZE(section_defs);
8702 for (i = 0; i < n; i++) {
8703 sec_def = §ion_defs[i];
8704 if (sec_def_matches(sec_def, sec_name))
8705 return sec_def;
8706 }
8707
8708 if (has_custom_fallback_def)
8709 return &custom_fallback_def;
8710
8711 return NULL;
8712 }
8713
8714 #define MAX_TYPE_NAME_SIZE 32
8715
libbpf_get_type_names(bool attach_type)8716 static char *libbpf_get_type_names(bool attach_type)
8717 {
8718 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8719 char *buf;
8720
8721 buf = malloc(len);
8722 if (!buf)
8723 return NULL;
8724
8725 buf[0] = '\0';
8726 /* Forge string buf with all available names */
8727 for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8728 const struct bpf_sec_def *sec_def = §ion_defs[i];
8729
8730 if (attach_type) {
8731 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
8732 continue;
8733
8734 if (!(sec_def->cookie & SEC_ATTACHABLE))
8735 continue;
8736 }
8737
8738 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8739 free(buf);
8740 return NULL;
8741 }
8742 strcat(buf, " ");
8743 strcat(buf, section_defs[i].sec);
8744 }
8745
8746 return buf;
8747 }
8748
libbpf_prog_type_by_name(const char * name,enum bpf_prog_type * prog_type,enum bpf_attach_type * expected_attach_type)8749 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8750 enum bpf_attach_type *expected_attach_type)
8751 {
8752 const struct bpf_sec_def *sec_def;
8753 char *type_names;
8754
8755 if (!name)
8756 return libbpf_err(-EINVAL);
8757
8758 sec_def = find_sec_def(name);
8759 if (sec_def) {
8760 *prog_type = sec_def->prog_type;
8761 *expected_attach_type = sec_def->expected_attach_type;
8762 return 0;
8763 }
8764
8765 pr_debug("failed to guess program type from ELF section '%s'\n", name);
8766 type_names = libbpf_get_type_names(false);
8767 if (type_names != NULL) {
8768 pr_debug("supported section(type) names are:%s\n", type_names);
8769 free(type_names);
8770 }
8771
8772 return libbpf_err(-ESRCH);
8773 }
8774
libbpf_bpf_attach_type_str(enum bpf_attach_type t)8775 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
8776 {
8777 if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
8778 return NULL;
8779
8780 return attach_type_name[t];
8781 }
8782
libbpf_bpf_link_type_str(enum bpf_link_type t)8783 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
8784 {
8785 if (t < 0 || t >= ARRAY_SIZE(link_type_name))
8786 return NULL;
8787
8788 return link_type_name[t];
8789 }
8790
libbpf_bpf_map_type_str(enum bpf_map_type t)8791 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
8792 {
8793 if (t < 0 || t >= ARRAY_SIZE(map_type_name))
8794 return NULL;
8795
8796 return map_type_name[t];
8797 }
8798
libbpf_bpf_prog_type_str(enum bpf_prog_type t)8799 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
8800 {
8801 if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
8802 return NULL;
8803
8804 return prog_type_name[t];
8805 }
8806
find_struct_ops_map_by_offset(struct bpf_object * obj,size_t offset)8807 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8808 size_t offset)
8809 {
8810 struct bpf_map *map;
8811 size_t i;
8812
8813 for (i = 0; i < obj->nr_maps; i++) {
8814 map = &obj->maps[i];
8815 if (!bpf_map__is_struct_ops(map))
8816 continue;
8817 if (map->sec_offset <= offset &&
8818 offset - map->sec_offset < map->def.value_size)
8819 return map;
8820 }
8821
8822 return NULL;
8823 }
8824
8825 /* Collect the reloc from ELF and populate the st_ops->progs[] */
bpf_object__collect_st_ops_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)8826 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
8827 Elf64_Shdr *shdr, Elf_Data *data)
8828 {
8829 const struct btf_member *member;
8830 struct bpf_struct_ops *st_ops;
8831 struct bpf_program *prog;
8832 unsigned int shdr_idx;
8833 const struct btf *btf;
8834 struct bpf_map *map;
8835 unsigned int moff, insn_idx;
8836 const char *name;
8837 __u32 member_idx;
8838 Elf64_Sym *sym;
8839 Elf64_Rel *rel;
8840 int i, nrels;
8841
8842 btf = obj->btf;
8843 nrels = shdr->sh_size / shdr->sh_entsize;
8844 for (i = 0; i < nrels; i++) {
8845 rel = elf_rel_by_idx(data, i);
8846 if (!rel) {
8847 pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
8848 return -LIBBPF_ERRNO__FORMAT;
8849 }
8850
8851 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
8852 if (!sym) {
8853 pr_warn("struct_ops reloc: symbol %zx not found\n",
8854 (size_t)ELF64_R_SYM(rel->r_info));
8855 return -LIBBPF_ERRNO__FORMAT;
8856 }
8857
8858 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
8859 map = find_struct_ops_map_by_offset(obj, rel->r_offset);
8860 if (!map) {
8861 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
8862 (size_t)rel->r_offset);
8863 return -EINVAL;
8864 }
8865
8866 moff = rel->r_offset - map->sec_offset;
8867 shdr_idx = sym->st_shndx;
8868 st_ops = map->st_ops;
8869 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
8870 map->name,
8871 (long long)(rel->r_info >> 32),
8872 (long long)sym->st_value,
8873 shdr_idx, (size_t)rel->r_offset,
8874 map->sec_offset, sym->st_name, name);
8875
8876 if (shdr_idx >= SHN_LORESERVE) {
8877 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
8878 map->name, (size_t)rel->r_offset, shdr_idx);
8879 return -LIBBPF_ERRNO__RELOC;
8880 }
8881 if (sym->st_value % BPF_INSN_SZ) {
8882 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
8883 map->name, (unsigned long long)sym->st_value);
8884 return -LIBBPF_ERRNO__FORMAT;
8885 }
8886 insn_idx = sym->st_value / BPF_INSN_SZ;
8887
8888 member = find_member_by_offset(st_ops->type, moff * 8);
8889 if (!member) {
8890 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
8891 map->name, moff);
8892 return -EINVAL;
8893 }
8894 member_idx = member - btf_members(st_ops->type);
8895 name = btf__name_by_offset(btf, member->name_off);
8896
8897 if (!resolve_func_ptr(btf, member->type, NULL)) {
8898 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
8899 map->name, name);
8900 return -EINVAL;
8901 }
8902
8903 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
8904 if (!prog) {
8905 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
8906 map->name, shdr_idx, name);
8907 return -EINVAL;
8908 }
8909
8910 /* prevent the use of BPF prog with invalid type */
8911 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
8912 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
8913 map->name, prog->name);
8914 return -EINVAL;
8915 }
8916
8917 /* if we haven't yet processed this BPF program, record proper
8918 * attach_btf_id and member_idx
8919 */
8920 if (!prog->attach_btf_id) {
8921 prog->attach_btf_id = st_ops->type_id;
8922 prog->expected_attach_type = member_idx;
8923 }
8924
8925 /* struct_ops BPF prog can be re-used between multiple
8926 * .struct_ops as long as it's the same struct_ops struct
8927 * definition and the same function pointer field
8928 */
8929 if (prog->attach_btf_id != st_ops->type_id ||
8930 prog->expected_attach_type != member_idx) {
8931 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
8932 map->name, prog->name, prog->sec_name, prog->type,
8933 prog->attach_btf_id, prog->expected_attach_type, name);
8934 return -EINVAL;
8935 }
8936
8937 st_ops->progs[member_idx] = prog;
8938 }
8939
8940 return 0;
8941 }
8942
8943 #define BTF_TRACE_PREFIX "btf_trace_"
8944 #define BTF_LSM_PREFIX "bpf_lsm_"
8945 #define BTF_ITER_PREFIX "bpf_iter_"
8946 #define BTF_MAX_NAME_SIZE 128
8947
btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,const char ** prefix,int * kind)8948 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
8949 const char **prefix, int *kind)
8950 {
8951 switch (attach_type) {
8952 case BPF_TRACE_RAW_TP:
8953 *prefix = BTF_TRACE_PREFIX;
8954 *kind = BTF_KIND_TYPEDEF;
8955 break;
8956 case BPF_LSM_MAC:
8957 case BPF_LSM_CGROUP:
8958 *prefix = BTF_LSM_PREFIX;
8959 *kind = BTF_KIND_FUNC;
8960 break;
8961 case BPF_TRACE_ITER:
8962 *prefix = BTF_ITER_PREFIX;
8963 *kind = BTF_KIND_FUNC;
8964 break;
8965 default:
8966 *prefix = "";
8967 *kind = BTF_KIND_FUNC;
8968 }
8969 }
8970
find_btf_by_prefix_kind(const struct btf * btf,const char * prefix,const char * name,__u32 kind)8971 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
8972 const char *name, __u32 kind)
8973 {
8974 char btf_type_name[BTF_MAX_NAME_SIZE];
8975 int ret;
8976
8977 ret = snprintf(btf_type_name, sizeof(btf_type_name),
8978 "%s%s", prefix, name);
8979 /* snprintf returns the number of characters written excluding the
8980 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
8981 * indicates truncation.
8982 */
8983 if (ret < 0 || ret >= sizeof(btf_type_name))
8984 return -ENAMETOOLONG;
8985 return btf__find_by_name_kind(btf, btf_type_name, kind);
8986 }
8987
find_attach_btf_id(struct btf * btf,const char * name,enum bpf_attach_type attach_type)8988 static inline int find_attach_btf_id(struct btf *btf, const char *name,
8989 enum bpf_attach_type attach_type)
8990 {
8991 const char *prefix;
8992 int kind;
8993
8994 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
8995 return find_btf_by_prefix_kind(btf, prefix, name, kind);
8996 }
8997
libbpf_find_vmlinux_btf_id(const char * name,enum bpf_attach_type attach_type)8998 int libbpf_find_vmlinux_btf_id(const char *name,
8999 enum bpf_attach_type attach_type)
9000 {
9001 struct btf *btf;
9002 int err;
9003
9004 btf = btf__load_vmlinux_btf();
9005 err = libbpf_get_error(btf);
9006 if (err) {
9007 pr_warn("vmlinux BTF is not found\n");
9008 return libbpf_err(err);
9009 }
9010
9011 err = find_attach_btf_id(btf, name, attach_type);
9012 if (err <= 0)
9013 pr_warn("%s is not found in vmlinux BTF\n", name);
9014
9015 btf__free(btf);
9016 return libbpf_err(err);
9017 }
9018
libbpf_find_prog_btf_id(const char * name,__u32 attach_prog_fd)9019 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9020 {
9021 struct bpf_prog_info info;
9022 __u32 info_len = sizeof(info);
9023 struct btf *btf;
9024 int err;
9025
9026 memset(&info, 0, info_len);
9027 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len);
9028 if (err) {
9029 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n",
9030 attach_prog_fd, err);
9031 return err;
9032 }
9033
9034 err = -EINVAL;
9035 if (!info.btf_id) {
9036 pr_warn("The target program doesn't have BTF\n");
9037 goto out;
9038 }
9039 btf = btf__load_from_kernel_by_id(info.btf_id);
9040 err = libbpf_get_error(btf);
9041 if (err) {
9042 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9043 goto out;
9044 }
9045 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9046 btf__free(btf);
9047 if (err <= 0) {
9048 pr_warn("%s is not found in prog's BTF\n", name);
9049 goto out;
9050 }
9051 out:
9052 return err;
9053 }
9054
find_kernel_btf_id(struct bpf_object * obj,const char * attach_name,enum bpf_attach_type attach_type,int * btf_obj_fd,int * btf_type_id)9055 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9056 enum bpf_attach_type attach_type,
9057 int *btf_obj_fd, int *btf_type_id)
9058 {
9059 int ret, i;
9060
9061 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9062 if (ret > 0) {
9063 *btf_obj_fd = 0; /* vmlinux BTF */
9064 *btf_type_id = ret;
9065 return 0;
9066 }
9067 if (ret != -ENOENT)
9068 return ret;
9069
9070 ret = load_module_btfs(obj);
9071 if (ret)
9072 return ret;
9073
9074 for (i = 0; i < obj->btf_module_cnt; i++) {
9075 const struct module_btf *mod = &obj->btf_modules[i];
9076
9077 ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9078 if (ret > 0) {
9079 *btf_obj_fd = mod->fd;
9080 *btf_type_id = ret;
9081 return 0;
9082 }
9083 if (ret == -ENOENT)
9084 continue;
9085
9086 return ret;
9087 }
9088
9089 return -ESRCH;
9090 }
9091
libbpf_find_attach_btf_id(struct bpf_program * prog,const char * attach_name,int * btf_obj_fd,int * btf_type_id)9092 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9093 int *btf_obj_fd, int *btf_type_id)
9094 {
9095 enum bpf_attach_type attach_type = prog->expected_attach_type;
9096 __u32 attach_prog_fd = prog->attach_prog_fd;
9097 int err = 0;
9098
9099 /* BPF program's BTF ID */
9100 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9101 if (!attach_prog_fd) {
9102 pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9103 return -EINVAL;
9104 }
9105 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9106 if (err < 0) {
9107 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9108 prog->name, attach_prog_fd, attach_name, err);
9109 return err;
9110 }
9111 *btf_obj_fd = 0;
9112 *btf_type_id = err;
9113 return 0;
9114 }
9115
9116 /* kernel/module BTF ID */
9117 if (prog->obj->gen_loader) {
9118 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9119 *btf_obj_fd = 0;
9120 *btf_type_id = 1;
9121 } else {
9122 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9123 }
9124 if (err) {
9125 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9126 prog->name, attach_name, err);
9127 return err;
9128 }
9129 return 0;
9130 }
9131
libbpf_attach_type_by_name(const char * name,enum bpf_attach_type * attach_type)9132 int libbpf_attach_type_by_name(const char *name,
9133 enum bpf_attach_type *attach_type)
9134 {
9135 char *type_names;
9136 const struct bpf_sec_def *sec_def;
9137
9138 if (!name)
9139 return libbpf_err(-EINVAL);
9140
9141 sec_def = find_sec_def(name);
9142 if (!sec_def) {
9143 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9144 type_names = libbpf_get_type_names(true);
9145 if (type_names != NULL) {
9146 pr_debug("attachable section(type) names are:%s\n", type_names);
9147 free(type_names);
9148 }
9149
9150 return libbpf_err(-EINVAL);
9151 }
9152
9153 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9154 return libbpf_err(-EINVAL);
9155 if (!(sec_def->cookie & SEC_ATTACHABLE))
9156 return libbpf_err(-EINVAL);
9157
9158 *attach_type = sec_def->expected_attach_type;
9159 return 0;
9160 }
9161
bpf_map__fd(const struct bpf_map * map)9162 int bpf_map__fd(const struct bpf_map *map)
9163 {
9164 return map ? map->fd : libbpf_err(-EINVAL);
9165 }
9166
map_uses_real_name(const struct bpf_map * map)9167 static bool map_uses_real_name(const struct bpf_map *map)
9168 {
9169 /* Since libbpf started to support custom .data.* and .rodata.* maps,
9170 * their user-visible name differs from kernel-visible name. Users see
9171 * such map's corresponding ELF section name as a map name.
9172 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9173 * maps to know which name has to be returned to the user.
9174 */
9175 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9176 return true;
9177 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9178 return true;
9179 return false;
9180 }
9181
bpf_map__name(const struct bpf_map * map)9182 const char *bpf_map__name(const struct bpf_map *map)
9183 {
9184 if (!map)
9185 return NULL;
9186
9187 if (map_uses_real_name(map))
9188 return map->real_name;
9189
9190 return map->name;
9191 }
9192
bpf_map__type(const struct bpf_map * map)9193 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9194 {
9195 return map->def.type;
9196 }
9197
bpf_map__set_type(struct bpf_map * map,enum bpf_map_type type)9198 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9199 {
9200 if (map->fd >= 0)
9201 return libbpf_err(-EBUSY);
9202 map->def.type = type;
9203 return 0;
9204 }
9205
bpf_map__map_flags(const struct bpf_map * map)9206 __u32 bpf_map__map_flags(const struct bpf_map *map)
9207 {
9208 return map->def.map_flags;
9209 }
9210
bpf_map__set_map_flags(struct bpf_map * map,__u32 flags)9211 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9212 {
9213 if (map->fd >= 0)
9214 return libbpf_err(-EBUSY);
9215 map->def.map_flags = flags;
9216 return 0;
9217 }
9218
bpf_map__map_extra(const struct bpf_map * map)9219 __u64 bpf_map__map_extra(const struct bpf_map *map)
9220 {
9221 return map->map_extra;
9222 }
9223
bpf_map__set_map_extra(struct bpf_map * map,__u64 map_extra)9224 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9225 {
9226 if (map->fd >= 0)
9227 return libbpf_err(-EBUSY);
9228 map->map_extra = map_extra;
9229 return 0;
9230 }
9231
bpf_map__numa_node(const struct bpf_map * map)9232 __u32 bpf_map__numa_node(const struct bpf_map *map)
9233 {
9234 return map->numa_node;
9235 }
9236
bpf_map__set_numa_node(struct bpf_map * map,__u32 numa_node)9237 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9238 {
9239 if (map->fd >= 0)
9240 return libbpf_err(-EBUSY);
9241 map->numa_node = numa_node;
9242 return 0;
9243 }
9244
bpf_map__key_size(const struct bpf_map * map)9245 __u32 bpf_map__key_size(const struct bpf_map *map)
9246 {
9247 return map->def.key_size;
9248 }
9249
bpf_map__set_key_size(struct bpf_map * map,__u32 size)9250 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9251 {
9252 if (map->fd >= 0)
9253 return libbpf_err(-EBUSY);
9254 map->def.key_size = size;
9255 return 0;
9256 }
9257
bpf_map__value_size(const struct bpf_map * map)9258 __u32 bpf_map__value_size(const struct bpf_map *map)
9259 {
9260 return map->def.value_size;
9261 }
9262
bpf_map__set_value_size(struct bpf_map * map,__u32 size)9263 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9264 {
9265 if (map->fd >= 0)
9266 return libbpf_err(-EBUSY);
9267 map->def.value_size = size;
9268 return 0;
9269 }
9270
bpf_map__btf_key_type_id(const struct bpf_map * map)9271 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9272 {
9273 return map ? map->btf_key_type_id : 0;
9274 }
9275
bpf_map__btf_value_type_id(const struct bpf_map * map)9276 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9277 {
9278 return map ? map->btf_value_type_id : 0;
9279 }
9280
bpf_map__set_initial_value(struct bpf_map * map,const void * data,size_t size)9281 int bpf_map__set_initial_value(struct bpf_map *map,
9282 const void *data, size_t size)
9283 {
9284 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9285 size != map->def.value_size || map->fd >= 0)
9286 return libbpf_err(-EINVAL);
9287
9288 memcpy(map->mmaped, data, size);
9289 return 0;
9290 }
9291
bpf_map__initial_value(struct bpf_map * map,size_t * psize)9292 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9293 {
9294 if (!map->mmaped)
9295 return NULL;
9296 *psize = map->def.value_size;
9297 return map->mmaped;
9298 }
9299
bpf_map__is_internal(const struct bpf_map * map)9300 bool bpf_map__is_internal(const struct bpf_map *map)
9301 {
9302 return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9303 }
9304
bpf_map__ifindex(const struct bpf_map * map)9305 __u32 bpf_map__ifindex(const struct bpf_map *map)
9306 {
9307 return map->map_ifindex;
9308 }
9309
bpf_map__set_ifindex(struct bpf_map * map,__u32 ifindex)9310 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9311 {
9312 if (map->fd >= 0)
9313 return libbpf_err(-EBUSY);
9314 map->map_ifindex = ifindex;
9315 return 0;
9316 }
9317
bpf_map__set_inner_map_fd(struct bpf_map * map,int fd)9318 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9319 {
9320 if (!bpf_map_type__is_map_in_map(map->def.type)) {
9321 pr_warn("error: unsupported map type\n");
9322 return libbpf_err(-EINVAL);
9323 }
9324 if (map->inner_map_fd != -1) {
9325 pr_warn("error: inner_map_fd already specified\n");
9326 return libbpf_err(-EINVAL);
9327 }
9328 if (map->inner_map) {
9329 bpf_map__destroy(map->inner_map);
9330 zfree(&map->inner_map);
9331 }
9332 map->inner_map_fd = fd;
9333 return 0;
9334 }
9335
9336 static struct bpf_map *
__bpf_map__iter(const struct bpf_map * m,const struct bpf_object * obj,int i)9337 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9338 {
9339 ssize_t idx;
9340 struct bpf_map *s, *e;
9341
9342 if (!obj || !obj->maps)
9343 return errno = EINVAL, NULL;
9344
9345 s = obj->maps;
9346 e = obj->maps + obj->nr_maps;
9347
9348 if ((m < s) || (m >= e)) {
9349 pr_warn("error in %s: map handler doesn't belong to object\n",
9350 __func__);
9351 return errno = EINVAL, NULL;
9352 }
9353
9354 idx = (m - obj->maps) + i;
9355 if (idx >= obj->nr_maps || idx < 0)
9356 return NULL;
9357 return &obj->maps[idx];
9358 }
9359
9360 struct bpf_map *
bpf_object__next_map(const struct bpf_object * obj,const struct bpf_map * prev)9361 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9362 {
9363 if (prev == NULL)
9364 return obj->maps;
9365
9366 return __bpf_map__iter(prev, obj, 1);
9367 }
9368
9369 struct bpf_map *
bpf_object__prev_map(const struct bpf_object * obj,const struct bpf_map * next)9370 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9371 {
9372 if (next == NULL) {
9373 if (!obj->nr_maps)
9374 return NULL;
9375 return obj->maps + obj->nr_maps - 1;
9376 }
9377
9378 return __bpf_map__iter(next, obj, -1);
9379 }
9380
9381 struct bpf_map *
bpf_object__find_map_by_name(const struct bpf_object * obj,const char * name)9382 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9383 {
9384 struct bpf_map *pos;
9385
9386 bpf_object__for_each_map(pos, obj) {
9387 /* if it's a special internal map name (which always starts
9388 * with dot) then check if that special name matches the
9389 * real map name (ELF section name)
9390 */
9391 if (name[0] == '.') {
9392 if (pos->real_name && strcmp(pos->real_name, name) == 0)
9393 return pos;
9394 continue;
9395 }
9396 /* otherwise map name has to be an exact match */
9397 if (map_uses_real_name(pos)) {
9398 if (strcmp(pos->real_name, name) == 0)
9399 return pos;
9400 continue;
9401 }
9402 if (strcmp(pos->name, name) == 0)
9403 return pos;
9404 }
9405 return errno = ENOENT, NULL;
9406 }
9407
9408 int
bpf_object__find_map_fd_by_name(const struct bpf_object * obj,const char * name)9409 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9410 {
9411 return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9412 }
9413
validate_map_op(const struct bpf_map * map,size_t key_sz,size_t value_sz,bool check_value_sz)9414 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
9415 size_t value_sz, bool check_value_sz)
9416 {
9417 if (map->fd <= 0)
9418 return -ENOENT;
9419
9420 if (map->def.key_size != key_sz) {
9421 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
9422 map->name, key_sz, map->def.key_size);
9423 return -EINVAL;
9424 }
9425
9426 if (!check_value_sz)
9427 return 0;
9428
9429 switch (map->def.type) {
9430 case BPF_MAP_TYPE_PERCPU_ARRAY:
9431 case BPF_MAP_TYPE_PERCPU_HASH:
9432 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
9433 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
9434 int num_cpu = libbpf_num_possible_cpus();
9435 size_t elem_sz = roundup(map->def.value_size, 8);
9436
9437 if (value_sz != num_cpu * elem_sz) {
9438 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
9439 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
9440 return -EINVAL;
9441 }
9442 break;
9443 }
9444 default:
9445 if (map->def.value_size != value_sz) {
9446 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
9447 map->name, value_sz, map->def.value_size);
9448 return -EINVAL;
9449 }
9450 break;
9451 }
9452 return 0;
9453 }
9454
bpf_map__lookup_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)9455 int bpf_map__lookup_elem(const struct bpf_map *map,
9456 const void *key, size_t key_sz,
9457 void *value, size_t value_sz, __u64 flags)
9458 {
9459 int err;
9460
9461 err = validate_map_op(map, key_sz, value_sz, true);
9462 if (err)
9463 return libbpf_err(err);
9464
9465 return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
9466 }
9467
bpf_map__update_elem(const struct bpf_map * map,const void * key,size_t key_sz,const void * value,size_t value_sz,__u64 flags)9468 int bpf_map__update_elem(const struct bpf_map *map,
9469 const void *key, size_t key_sz,
9470 const void *value, size_t value_sz, __u64 flags)
9471 {
9472 int err;
9473
9474 err = validate_map_op(map, key_sz, value_sz, true);
9475 if (err)
9476 return libbpf_err(err);
9477
9478 return bpf_map_update_elem(map->fd, key, value, flags);
9479 }
9480
bpf_map__delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,__u64 flags)9481 int bpf_map__delete_elem(const struct bpf_map *map,
9482 const void *key, size_t key_sz, __u64 flags)
9483 {
9484 int err;
9485
9486 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9487 if (err)
9488 return libbpf_err(err);
9489
9490 return bpf_map_delete_elem_flags(map->fd, key, flags);
9491 }
9492
bpf_map__lookup_and_delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)9493 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
9494 const void *key, size_t key_sz,
9495 void *value, size_t value_sz, __u64 flags)
9496 {
9497 int err;
9498
9499 err = validate_map_op(map, key_sz, value_sz, true);
9500 if (err)
9501 return libbpf_err(err);
9502
9503 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
9504 }
9505
bpf_map__get_next_key(const struct bpf_map * map,const void * cur_key,void * next_key,size_t key_sz)9506 int bpf_map__get_next_key(const struct bpf_map *map,
9507 const void *cur_key, void *next_key, size_t key_sz)
9508 {
9509 int err;
9510
9511 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9512 if (err)
9513 return libbpf_err(err);
9514
9515 return bpf_map_get_next_key(map->fd, cur_key, next_key);
9516 }
9517
libbpf_get_error(const void * ptr)9518 long libbpf_get_error(const void *ptr)
9519 {
9520 if (!IS_ERR_OR_NULL(ptr))
9521 return 0;
9522
9523 if (IS_ERR(ptr))
9524 errno = -PTR_ERR(ptr);
9525
9526 /* If ptr == NULL, then errno should be already set by the failing
9527 * API, because libbpf never returns NULL on success and it now always
9528 * sets errno on error. So no extra errno handling for ptr == NULL
9529 * case.
9530 */
9531 return -errno;
9532 }
9533
9534 /* Replace link's underlying BPF program with the new one */
bpf_link__update_program(struct bpf_link * link,struct bpf_program * prog)9535 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9536 {
9537 int ret;
9538
9539 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9540 return libbpf_err_errno(ret);
9541 }
9542
9543 /* Release "ownership" of underlying BPF resource (typically, BPF program
9544 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9545 * link, when destructed through bpf_link__destroy() call won't attempt to
9546 * detach/unregisted that BPF resource. This is useful in situations where,
9547 * say, attached BPF program has to outlive userspace program that attached it
9548 * in the system. Depending on type of BPF program, though, there might be
9549 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9550 * exit of userspace program doesn't trigger automatic detachment and clean up
9551 * inside the kernel.
9552 */
bpf_link__disconnect(struct bpf_link * link)9553 void bpf_link__disconnect(struct bpf_link *link)
9554 {
9555 link->disconnected = true;
9556 }
9557
bpf_link__destroy(struct bpf_link * link)9558 int bpf_link__destroy(struct bpf_link *link)
9559 {
9560 int err = 0;
9561
9562 if (IS_ERR_OR_NULL(link))
9563 return 0;
9564
9565 if (!link->disconnected && link->detach)
9566 err = link->detach(link);
9567 if (link->pin_path)
9568 free(link->pin_path);
9569 if (link->dealloc)
9570 link->dealloc(link);
9571 else
9572 free(link);
9573
9574 return libbpf_err(err);
9575 }
9576
bpf_link__fd(const struct bpf_link * link)9577 int bpf_link__fd(const struct bpf_link *link)
9578 {
9579 return link->fd;
9580 }
9581
bpf_link__pin_path(const struct bpf_link * link)9582 const char *bpf_link__pin_path(const struct bpf_link *link)
9583 {
9584 return link->pin_path;
9585 }
9586
bpf_link__detach_fd(struct bpf_link * link)9587 static int bpf_link__detach_fd(struct bpf_link *link)
9588 {
9589 return libbpf_err_errno(close(link->fd));
9590 }
9591
bpf_link__open(const char * path)9592 struct bpf_link *bpf_link__open(const char *path)
9593 {
9594 struct bpf_link *link;
9595 int fd;
9596
9597 fd = bpf_obj_get(path);
9598 if (fd < 0) {
9599 fd = -errno;
9600 pr_warn("failed to open link at %s: %d\n", path, fd);
9601 return libbpf_err_ptr(fd);
9602 }
9603
9604 link = calloc(1, sizeof(*link));
9605 if (!link) {
9606 close(fd);
9607 return libbpf_err_ptr(-ENOMEM);
9608 }
9609 link->detach = &bpf_link__detach_fd;
9610 link->fd = fd;
9611
9612 link->pin_path = strdup(path);
9613 if (!link->pin_path) {
9614 bpf_link__destroy(link);
9615 return libbpf_err_ptr(-ENOMEM);
9616 }
9617
9618 return link;
9619 }
9620
bpf_link__detach(struct bpf_link * link)9621 int bpf_link__detach(struct bpf_link *link)
9622 {
9623 return bpf_link_detach(link->fd) ? -errno : 0;
9624 }
9625
bpf_link__pin(struct bpf_link * link,const char * path)9626 int bpf_link__pin(struct bpf_link *link, const char *path)
9627 {
9628 int err;
9629
9630 if (link->pin_path)
9631 return libbpf_err(-EBUSY);
9632 err = make_parent_dir(path);
9633 if (err)
9634 return libbpf_err(err);
9635 err = check_path(path);
9636 if (err)
9637 return libbpf_err(err);
9638
9639 link->pin_path = strdup(path);
9640 if (!link->pin_path)
9641 return libbpf_err(-ENOMEM);
9642
9643 if (bpf_obj_pin(link->fd, link->pin_path)) {
9644 err = -errno;
9645 zfree(&link->pin_path);
9646 return libbpf_err(err);
9647 }
9648
9649 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9650 return 0;
9651 }
9652
bpf_link__unpin(struct bpf_link * link)9653 int bpf_link__unpin(struct bpf_link *link)
9654 {
9655 int err;
9656
9657 if (!link->pin_path)
9658 return libbpf_err(-EINVAL);
9659
9660 err = unlink(link->pin_path);
9661 if (err != 0)
9662 return -errno;
9663
9664 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9665 zfree(&link->pin_path);
9666 return 0;
9667 }
9668
9669 struct bpf_link_perf {
9670 struct bpf_link link;
9671 int perf_event_fd;
9672 /* legacy kprobe support: keep track of probe identifier and type */
9673 char *legacy_probe_name;
9674 bool legacy_is_kprobe;
9675 bool legacy_is_retprobe;
9676 };
9677
9678 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
9679 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
9680
bpf_link_perf_detach(struct bpf_link * link)9681 static int bpf_link_perf_detach(struct bpf_link *link)
9682 {
9683 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9684 int err = 0;
9685
9686 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
9687 err = -errno;
9688
9689 if (perf_link->perf_event_fd != link->fd)
9690 close(perf_link->perf_event_fd);
9691 close(link->fd);
9692
9693 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */
9694 if (perf_link->legacy_probe_name) {
9695 if (perf_link->legacy_is_kprobe) {
9696 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
9697 perf_link->legacy_is_retprobe);
9698 } else {
9699 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
9700 perf_link->legacy_is_retprobe);
9701 }
9702 }
9703
9704 return err;
9705 }
9706
bpf_link_perf_dealloc(struct bpf_link * link)9707 static void bpf_link_perf_dealloc(struct bpf_link *link)
9708 {
9709 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9710
9711 free(perf_link->legacy_probe_name);
9712 free(perf_link);
9713 }
9714
bpf_program__attach_perf_event_opts(const struct bpf_program * prog,int pfd,const struct bpf_perf_event_opts * opts)9715 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
9716 const struct bpf_perf_event_opts *opts)
9717 {
9718 char errmsg[STRERR_BUFSIZE];
9719 struct bpf_link_perf *link;
9720 int prog_fd, link_fd = -1, err;
9721
9722 if (!OPTS_VALID(opts, bpf_perf_event_opts))
9723 return libbpf_err_ptr(-EINVAL);
9724
9725 if (pfd < 0) {
9726 pr_warn("prog '%s': invalid perf event FD %d\n",
9727 prog->name, pfd);
9728 return libbpf_err_ptr(-EINVAL);
9729 }
9730 prog_fd = bpf_program__fd(prog);
9731 if (prog_fd < 0) {
9732 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
9733 prog->name);
9734 return libbpf_err_ptr(-EINVAL);
9735 }
9736
9737 link = calloc(1, sizeof(*link));
9738 if (!link)
9739 return libbpf_err_ptr(-ENOMEM);
9740 link->link.detach = &bpf_link_perf_detach;
9741 link->link.dealloc = &bpf_link_perf_dealloc;
9742 link->perf_event_fd = pfd;
9743
9744 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) {
9745 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
9746 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
9747
9748 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
9749 if (link_fd < 0) {
9750 err = -errno;
9751 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
9752 prog->name, pfd,
9753 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9754 goto err_out;
9755 }
9756 link->link.fd = link_fd;
9757 } else {
9758 if (OPTS_GET(opts, bpf_cookie, 0)) {
9759 pr_warn("prog '%s': user context value is not supported\n", prog->name);
9760 err = -EOPNOTSUPP;
9761 goto err_out;
9762 }
9763
9764 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
9765 err = -errno;
9766 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
9767 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9768 if (err == -EPROTO)
9769 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9770 prog->name, pfd);
9771 goto err_out;
9772 }
9773 link->link.fd = pfd;
9774 }
9775 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9776 err = -errno;
9777 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
9778 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9779 goto err_out;
9780 }
9781
9782 return &link->link;
9783 err_out:
9784 if (link_fd >= 0)
9785 close(link_fd);
9786 free(link);
9787 return libbpf_err_ptr(err);
9788 }
9789
bpf_program__attach_perf_event(const struct bpf_program * prog,int pfd)9790 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
9791 {
9792 return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
9793 }
9794
9795 /*
9796 * this function is expected to parse integer in the range of [0, 2^31-1] from
9797 * given file using scanf format string fmt. If actual parsed value is
9798 * negative, the result might be indistinguishable from error
9799 */
parse_uint_from_file(const char * file,const char * fmt)9800 static int parse_uint_from_file(const char *file, const char *fmt)
9801 {
9802 char buf[STRERR_BUFSIZE];
9803 int err, ret;
9804 FILE *f;
9805
9806 f = fopen(file, "r");
9807 if (!f) {
9808 err = -errno;
9809 pr_debug("failed to open '%s': %s\n", file,
9810 libbpf_strerror_r(err, buf, sizeof(buf)));
9811 return err;
9812 }
9813 err = fscanf(f, fmt, &ret);
9814 if (err != 1) {
9815 err = err == EOF ? -EIO : -errno;
9816 pr_debug("failed to parse '%s': %s\n", file,
9817 libbpf_strerror_r(err, buf, sizeof(buf)));
9818 fclose(f);
9819 return err;
9820 }
9821 fclose(f);
9822 return ret;
9823 }
9824
determine_kprobe_perf_type(void)9825 static int determine_kprobe_perf_type(void)
9826 {
9827 const char *file = "/sys/bus/event_source/devices/kprobe/type";
9828
9829 return parse_uint_from_file(file, "%d\n");
9830 }
9831
determine_uprobe_perf_type(void)9832 static int determine_uprobe_perf_type(void)
9833 {
9834 const char *file = "/sys/bus/event_source/devices/uprobe/type";
9835
9836 return parse_uint_from_file(file, "%d\n");
9837 }
9838
determine_kprobe_retprobe_bit(void)9839 static int determine_kprobe_retprobe_bit(void)
9840 {
9841 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
9842
9843 return parse_uint_from_file(file, "config:%d\n");
9844 }
9845
determine_uprobe_retprobe_bit(void)9846 static int determine_uprobe_retprobe_bit(void)
9847 {
9848 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
9849
9850 return parse_uint_from_file(file, "config:%d\n");
9851 }
9852
9853 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
9854 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
9855
perf_event_open_probe(bool uprobe,bool retprobe,const char * name,uint64_t offset,int pid,size_t ref_ctr_off)9856 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
9857 uint64_t offset, int pid, size_t ref_ctr_off)
9858 {
9859 const size_t attr_sz = sizeof(struct perf_event_attr);
9860 struct perf_event_attr attr;
9861 char errmsg[STRERR_BUFSIZE];
9862 int type, pfd;
9863
9864 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
9865 return -EINVAL;
9866
9867 memset(&attr, 0, attr_sz);
9868
9869 type = uprobe ? determine_uprobe_perf_type()
9870 : determine_kprobe_perf_type();
9871 if (type < 0) {
9872 pr_warn("failed to determine %s perf type: %s\n",
9873 uprobe ? "uprobe" : "kprobe",
9874 libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
9875 return type;
9876 }
9877 if (retprobe) {
9878 int bit = uprobe ? determine_uprobe_retprobe_bit()
9879 : determine_kprobe_retprobe_bit();
9880
9881 if (bit < 0) {
9882 pr_warn("failed to determine %s retprobe bit: %s\n",
9883 uprobe ? "uprobe" : "kprobe",
9884 libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
9885 return bit;
9886 }
9887 attr.config |= 1 << bit;
9888 }
9889 attr.size = attr_sz;
9890 attr.type = type;
9891 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9892 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
9893 attr.config2 = offset; /* kprobe_addr or probe_offset */
9894
9895 /* pid filter is meaningful only for uprobes */
9896 pfd = syscall(__NR_perf_event_open, &attr,
9897 pid < 0 ? -1 : pid /* pid */,
9898 pid == -1 ? 0 : -1 /* cpu */,
9899 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9900 return pfd >= 0 ? pfd : -errno;
9901 }
9902
append_to_file(const char * file,const char * fmt,...)9903 static int append_to_file(const char *file, const char *fmt, ...)
9904 {
9905 int fd, n, err = 0;
9906 va_list ap;
9907
9908 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
9909 if (fd < 0)
9910 return -errno;
9911
9912 va_start(ap, fmt);
9913 n = vdprintf(fd, fmt, ap);
9914 va_end(ap);
9915
9916 if (n < 0)
9917 err = -errno;
9918
9919 close(fd);
9920 return err;
9921 }
9922
9923 #define DEBUGFS "/sys/kernel/debug/tracing"
9924 #define TRACEFS "/sys/kernel/tracing"
9925
use_debugfs(void)9926 static bool use_debugfs(void)
9927 {
9928 static int has_debugfs = -1;
9929
9930 if (has_debugfs < 0)
9931 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
9932
9933 return has_debugfs == 1;
9934 }
9935
tracefs_path(void)9936 static const char *tracefs_path(void)
9937 {
9938 return use_debugfs() ? DEBUGFS : TRACEFS;
9939 }
9940
tracefs_kprobe_events(void)9941 static const char *tracefs_kprobe_events(void)
9942 {
9943 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
9944 }
9945
tracefs_uprobe_events(void)9946 static const char *tracefs_uprobe_events(void)
9947 {
9948 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
9949 }
9950
gen_kprobe_legacy_event_name(char * buf,size_t buf_sz,const char * kfunc_name,size_t offset)9951 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
9952 const char *kfunc_name, size_t offset)
9953 {
9954 static int index = 0;
9955
9956 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
9957 __sync_fetch_and_add(&index, 1));
9958 }
9959
add_kprobe_event_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset)9960 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
9961 const char *kfunc_name, size_t offset)
9962 {
9963 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
9964 retprobe ? 'r' : 'p',
9965 retprobe ? "kretprobes" : "kprobes",
9966 probe_name, kfunc_name, offset);
9967 }
9968
remove_kprobe_event_legacy(const char * probe_name,bool retprobe)9969 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
9970 {
9971 return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
9972 retprobe ? "kretprobes" : "kprobes", probe_name);
9973 }
9974
determine_kprobe_perf_type_legacy(const char * probe_name,bool retprobe)9975 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
9976 {
9977 char file[256];
9978
9979 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
9980 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
9981
9982 return parse_uint_from_file(file, "%d\n");
9983 }
9984
perf_event_kprobe_open_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset,int pid)9985 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
9986 const char *kfunc_name, size_t offset, int pid)
9987 {
9988 const size_t attr_sz = sizeof(struct perf_event_attr);
9989 struct perf_event_attr attr;
9990 char errmsg[STRERR_BUFSIZE];
9991 int type, pfd, err;
9992
9993 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
9994 if (err < 0) {
9995 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
9996 kfunc_name, offset,
9997 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9998 return err;
9999 }
10000 type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10001 if (type < 0) {
10002 err = type;
10003 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10004 kfunc_name, offset,
10005 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10006 goto err_clean_legacy;
10007 }
10008
10009 memset(&attr, 0, attr_sz);
10010 attr.size = attr_sz;
10011 attr.config = type;
10012 attr.type = PERF_TYPE_TRACEPOINT;
10013
10014 pfd = syscall(__NR_perf_event_open, &attr,
10015 pid < 0 ? -1 : pid, /* pid */
10016 pid == -1 ? 0 : -1, /* cpu */
10017 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10018 if (pfd < 0) {
10019 err = -errno;
10020 pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10021 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10022 goto err_clean_legacy;
10023 }
10024 return pfd;
10025
10026 err_clean_legacy:
10027 /* Clear the newly added legacy kprobe_event */
10028 remove_kprobe_event_legacy(probe_name, retprobe);
10029 return err;
10030 }
10031
arch_specific_syscall_pfx(void)10032 static const char *arch_specific_syscall_pfx(void)
10033 {
10034 #if defined(__x86_64__)
10035 return "x64";
10036 #elif defined(__i386__)
10037 return "ia32";
10038 #elif defined(__s390x__)
10039 return "s390x";
10040 #elif defined(__s390__)
10041 return "s390";
10042 #elif defined(__arm__)
10043 return "arm";
10044 #elif defined(__aarch64__)
10045 return "arm64";
10046 #elif defined(__mips__)
10047 return "mips";
10048 #elif defined(__riscv)
10049 return "riscv";
10050 #elif defined(__powerpc__)
10051 return "powerpc";
10052 #elif defined(__powerpc64__)
10053 return "powerpc64";
10054 #else
10055 return NULL;
10056 #endif
10057 }
10058
probe_kern_syscall_wrapper(void)10059 static int probe_kern_syscall_wrapper(void)
10060 {
10061 char syscall_name[64];
10062 const char *ksys_pfx;
10063
10064 ksys_pfx = arch_specific_syscall_pfx();
10065 if (!ksys_pfx)
10066 return 0;
10067
10068 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
10069
10070 if (determine_kprobe_perf_type() >= 0) {
10071 int pfd;
10072
10073 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
10074 if (pfd >= 0)
10075 close(pfd);
10076
10077 return pfd >= 0 ? 1 : 0;
10078 } else { /* legacy mode */
10079 char probe_name[128];
10080
10081 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
10082 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
10083 return 0;
10084
10085 (void)remove_kprobe_event_legacy(probe_name, false);
10086 return 1;
10087 }
10088 }
10089
10090 struct bpf_link *
bpf_program__attach_kprobe_opts(const struct bpf_program * prog,const char * func_name,const struct bpf_kprobe_opts * opts)10091 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10092 const char *func_name,
10093 const struct bpf_kprobe_opts *opts)
10094 {
10095 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10096 char errmsg[STRERR_BUFSIZE];
10097 char *legacy_probe = NULL;
10098 struct bpf_link *link;
10099 size_t offset;
10100 bool retprobe, legacy;
10101 int pfd, err;
10102
10103 if (!OPTS_VALID(opts, bpf_kprobe_opts))
10104 return libbpf_err_ptr(-EINVAL);
10105
10106 retprobe = OPTS_GET(opts, retprobe, false);
10107 offset = OPTS_GET(opts, offset, 0);
10108 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10109
10110 legacy = determine_kprobe_perf_type() < 0;
10111 if (!legacy) {
10112 pfd = perf_event_open_probe(false /* uprobe */, retprobe,
10113 func_name, offset,
10114 -1 /* pid */, 0 /* ref_ctr_off */);
10115 } else {
10116 char probe_name[256];
10117
10118 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
10119 func_name, offset);
10120
10121 legacy_probe = strdup(probe_name);
10122 if (!legacy_probe)
10123 return libbpf_err_ptr(-ENOMEM);
10124
10125 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
10126 offset, -1 /* pid */);
10127 }
10128 if (pfd < 0) {
10129 err = -errno;
10130 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
10131 prog->name, retprobe ? "kretprobe" : "kprobe",
10132 func_name, offset,
10133 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10134 goto err_out;
10135 }
10136 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10137 err = libbpf_get_error(link);
10138 if (err) {
10139 close(pfd);
10140 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
10141 prog->name, retprobe ? "kretprobe" : "kprobe",
10142 func_name, offset,
10143 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10144 goto err_clean_legacy;
10145 }
10146 if (legacy) {
10147 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10148
10149 perf_link->legacy_probe_name = legacy_probe;
10150 perf_link->legacy_is_kprobe = true;
10151 perf_link->legacy_is_retprobe = retprobe;
10152 }
10153
10154 return link;
10155
10156 err_clean_legacy:
10157 if (legacy)
10158 remove_kprobe_event_legacy(legacy_probe, retprobe);
10159 err_out:
10160 free(legacy_probe);
10161 return libbpf_err_ptr(err);
10162 }
10163
bpf_program__attach_kprobe(const struct bpf_program * prog,bool retprobe,const char * func_name)10164 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
10165 bool retprobe,
10166 const char *func_name)
10167 {
10168 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
10169 .retprobe = retprobe,
10170 );
10171
10172 return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
10173 }
10174
bpf_program__attach_ksyscall(const struct bpf_program * prog,const char * syscall_name,const struct bpf_ksyscall_opts * opts)10175 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
10176 const char *syscall_name,
10177 const struct bpf_ksyscall_opts *opts)
10178 {
10179 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
10180 char func_name[128];
10181
10182 if (!OPTS_VALID(opts, bpf_ksyscall_opts))
10183 return libbpf_err_ptr(-EINVAL);
10184
10185 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
10186 /* arch_specific_syscall_pfx() should never return NULL here
10187 * because it is guarded by kernel_supports(). However, since
10188 * compiler does not know that we have an explicit conditional
10189 * as well.
10190 */
10191 snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
10192 arch_specific_syscall_pfx() ? : "", syscall_name);
10193 } else {
10194 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
10195 }
10196
10197 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
10198 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10199
10200 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
10201 }
10202
10203 /* Adapted from perf/util/string.c */
glob_match(const char * str,const char * pat)10204 static bool glob_match(const char *str, const char *pat)
10205 {
10206 while (*str && *pat && *pat != '*') {
10207 if (*pat == '?') { /* Matches any single character */
10208 str++;
10209 pat++;
10210 continue;
10211 }
10212 if (*str != *pat)
10213 return false;
10214 str++;
10215 pat++;
10216 }
10217 /* Check wild card */
10218 if (*pat == '*') {
10219 while (*pat == '*')
10220 pat++;
10221 if (!*pat) /* Tail wild card matches all */
10222 return true;
10223 while (*str)
10224 if (glob_match(str++, pat))
10225 return true;
10226 }
10227 return !*str && !*pat;
10228 }
10229
10230 struct kprobe_multi_resolve {
10231 const char *pattern;
10232 unsigned long *addrs;
10233 size_t cap;
10234 size_t cnt;
10235 };
10236
10237 static int
resolve_kprobe_multi_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)10238 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type,
10239 const char *sym_name, void *ctx)
10240 {
10241 struct kprobe_multi_resolve *res = ctx;
10242 int err;
10243
10244 if (!glob_match(sym_name, res->pattern))
10245 return 0;
10246
10247 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long),
10248 res->cnt + 1);
10249 if (err)
10250 return err;
10251
10252 res->addrs[res->cnt++] = (unsigned long) sym_addr;
10253 return 0;
10254 }
10255
10256 struct bpf_link *
bpf_program__attach_kprobe_multi_opts(const struct bpf_program * prog,const char * pattern,const struct bpf_kprobe_multi_opts * opts)10257 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
10258 const char *pattern,
10259 const struct bpf_kprobe_multi_opts *opts)
10260 {
10261 LIBBPF_OPTS(bpf_link_create_opts, lopts);
10262 struct kprobe_multi_resolve res = {
10263 .pattern = pattern,
10264 };
10265 struct bpf_link *link = NULL;
10266 char errmsg[STRERR_BUFSIZE];
10267 const unsigned long *addrs;
10268 int err, link_fd, prog_fd;
10269 const __u64 *cookies;
10270 const char **syms;
10271 bool retprobe;
10272 size_t cnt;
10273
10274 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
10275 return libbpf_err_ptr(-EINVAL);
10276
10277 syms = OPTS_GET(opts, syms, false);
10278 addrs = OPTS_GET(opts, addrs, false);
10279 cnt = OPTS_GET(opts, cnt, false);
10280 cookies = OPTS_GET(opts, cookies, false);
10281
10282 if (!pattern && !addrs && !syms)
10283 return libbpf_err_ptr(-EINVAL);
10284 if (pattern && (addrs || syms || cookies || cnt))
10285 return libbpf_err_ptr(-EINVAL);
10286 if (!pattern && !cnt)
10287 return libbpf_err_ptr(-EINVAL);
10288 if (addrs && syms)
10289 return libbpf_err_ptr(-EINVAL);
10290
10291 if (pattern) {
10292 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res);
10293 if (err)
10294 goto error;
10295 if (!res.cnt) {
10296 err = -ENOENT;
10297 goto error;
10298 }
10299 addrs = res.addrs;
10300 cnt = res.cnt;
10301 }
10302
10303 retprobe = OPTS_GET(opts, retprobe, false);
10304
10305 lopts.kprobe_multi.syms = syms;
10306 lopts.kprobe_multi.addrs = addrs;
10307 lopts.kprobe_multi.cookies = cookies;
10308 lopts.kprobe_multi.cnt = cnt;
10309 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
10310
10311 link = calloc(1, sizeof(*link));
10312 if (!link) {
10313 err = -ENOMEM;
10314 goto error;
10315 }
10316 link->detach = &bpf_link__detach_fd;
10317
10318 prog_fd = bpf_program__fd(prog);
10319 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
10320 if (link_fd < 0) {
10321 err = -errno;
10322 pr_warn("prog '%s': failed to attach: %s\n",
10323 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10324 goto error;
10325 }
10326 link->fd = link_fd;
10327 free(res.addrs);
10328 return link;
10329
10330 error:
10331 free(link);
10332 free(res.addrs);
10333 return libbpf_err_ptr(err);
10334 }
10335
attach_kprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10336 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10337 {
10338 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
10339 unsigned long offset = 0;
10340 const char *func_name;
10341 char *func;
10342 int n;
10343
10344 *link = NULL;
10345
10346 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
10347 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
10348 return 0;
10349
10350 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
10351 if (opts.retprobe)
10352 func_name = prog->sec_name + sizeof("kretprobe/") - 1;
10353 else
10354 func_name = prog->sec_name + sizeof("kprobe/") - 1;
10355
10356 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
10357 if (n < 1) {
10358 pr_warn("kprobe name is invalid: %s\n", func_name);
10359 return -EINVAL;
10360 }
10361 if (opts.retprobe && offset != 0) {
10362 free(func);
10363 pr_warn("kretprobes do not support offset specification\n");
10364 return -EINVAL;
10365 }
10366
10367 opts.offset = offset;
10368 *link = bpf_program__attach_kprobe_opts(prog, func, &opts);
10369 free(func);
10370 return libbpf_get_error(*link);
10371 }
10372
attach_ksyscall(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10373 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10374 {
10375 LIBBPF_OPTS(bpf_ksyscall_opts, opts);
10376 const char *syscall_name;
10377
10378 *link = NULL;
10379
10380 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
10381 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
10382 return 0;
10383
10384 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
10385 if (opts.retprobe)
10386 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
10387 else
10388 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
10389
10390 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
10391 return *link ? 0 : -errno;
10392 }
10393
attach_kprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10394 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10395 {
10396 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
10397 const char *spec;
10398 char *pattern;
10399 int n;
10400
10401 *link = NULL;
10402
10403 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
10404 if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
10405 strcmp(prog->sec_name, "kretprobe.multi") == 0)
10406 return 0;
10407
10408 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
10409 if (opts.retprobe)
10410 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
10411 else
10412 spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
10413
10414 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
10415 if (n < 1) {
10416 pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
10417 return -EINVAL;
10418 }
10419
10420 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
10421 free(pattern);
10422 return libbpf_get_error(*link);
10423 }
10424
gen_uprobe_legacy_event_name(char * buf,size_t buf_sz,const char * binary_path,uint64_t offset)10425 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
10426 const char *binary_path, uint64_t offset)
10427 {
10428 int i;
10429
10430 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
10431
10432 /* sanitize binary_path in the probe name */
10433 for (i = 0; buf[i]; i++) {
10434 if (!isalnum(buf[i]))
10435 buf[i] = '_';
10436 }
10437 }
10438
add_uprobe_event_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset)10439 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
10440 const char *binary_path, size_t offset)
10441 {
10442 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
10443 retprobe ? 'r' : 'p',
10444 retprobe ? "uretprobes" : "uprobes",
10445 probe_name, binary_path, offset);
10446 }
10447
remove_uprobe_event_legacy(const char * probe_name,bool retprobe)10448 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
10449 {
10450 return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
10451 retprobe ? "uretprobes" : "uprobes", probe_name);
10452 }
10453
determine_uprobe_perf_type_legacy(const char * probe_name,bool retprobe)10454 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10455 {
10456 char file[512];
10457
10458 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10459 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
10460
10461 return parse_uint_from_file(file, "%d\n");
10462 }
10463
perf_event_uprobe_open_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset,int pid)10464 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
10465 const char *binary_path, size_t offset, int pid)
10466 {
10467 const size_t attr_sz = sizeof(struct perf_event_attr);
10468 struct perf_event_attr attr;
10469 int type, pfd, err;
10470
10471 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
10472 if (err < 0) {
10473 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
10474 binary_path, (size_t)offset, err);
10475 return err;
10476 }
10477 type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
10478 if (type < 0) {
10479 err = type;
10480 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
10481 binary_path, offset, err);
10482 goto err_clean_legacy;
10483 }
10484
10485 memset(&attr, 0, attr_sz);
10486 attr.size = attr_sz;
10487 attr.config = type;
10488 attr.type = PERF_TYPE_TRACEPOINT;
10489
10490 pfd = syscall(__NR_perf_event_open, &attr,
10491 pid < 0 ? -1 : pid, /* pid */
10492 pid == -1 ? 0 : -1, /* cpu */
10493 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10494 if (pfd < 0) {
10495 err = -errno;
10496 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
10497 goto err_clean_legacy;
10498 }
10499 return pfd;
10500
10501 err_clean_legacy:
10502 /* Clear the newly added legacy uprobe_event */
10503 remove_uprobe_event_legacy(probe_name, retprobe);
10504 return err;
10505 }
10506
10507 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */
elf_find_next_scn_by_type(Elf * elf,int sh_type,Elf_Scn * scn)10508 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn)
10509 {
10510 while ((scn = elf_nextscn(elf, scn)) != NULL) {
10511 GElf_Shdr sh;
10512
10513 if (!gelf_getshdr(scn, &sh))
10514 continue;
10515 if (sh.sh_type == sh_type)
10516 return scn;
10517 }
10518 return NULL;
10519 }
10520
10521 /* Find offset of function name in object specified by path. "name" matches
10522 * symbol name or name@@LIB for library functions.
10523 */
elf_find_func_offset(const char * binary_path,const char * name)10524 static long elf_find_func_offset(const char *binary_path, const char *name)
10525 {
10526 int fd, i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB };
10527 bool is_shared_lib, is_name_qualified;
10528 char errmsg[STRERR_BUFSIZE];
10529 long ret = -ENOENT;
10530 size_t name_len;
10531 GElf_Ehdr ehdr;
10532 Elf *elf;
10533
10534 fd = open(binary_path, O_RDONLY | O_CLOEXEC);
10535 if (fd < 0) {
10536 ret = -errno;
10537 pr_warn("failed to open %s: %s\n", binary_path,
10538 libbpf_strerror_r(ret, errmsg, sizeof(errmsg)));
10539 return ret;
10540 }
10541 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL);
10542 if (!elf) {
10543 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1));
10544 close(fd);
10545 return -LIBBPF_ERRNO__FORMAT;
10546 }
10547 if (!gelf_getehdr(elf, &ehdr)) {
10548 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1));
10549 ret = -LIBBPF_ERRNO__FORMAT;
10550 goto out;
10551 }
10552 /* for shared lib case, we do not need to calculate relative offset */
10553 is_shared_lib = ehdr.e_type == ET_DYN;
10554
10555 name_len = strlen(name);
10556 /* Does name specify "@@LIB"? */
10557 is_name_qualified = strstr(name, "@@") != NULL;
10558
10559 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if
10560 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically
10561 * linked binary may not have SHT_DYMSYM, so absence of a section should not be
10562 * reported as a warning/error.
10563 */
10564 for (i = 0; i < ARRAY_SIZE(sh_types); i++) {
10565 size_t nr_syms, strtabidx, idx;
10566 Elf_Data *symbols = NULL;
10567 Elf_Scn *scn = NULL;
10568 int last_bind = -1;
10569 const char *sname;
10570 GElf_Shdr sh;
10571
10572 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL);
10573 if (!scn) {
10574 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n",
10575 binary_path);
10576 continue;
10577 }
10578 if (!gelf_getshdr(scn, &sh))
10579 continue;
10580 strtabidx = sh.sh_link;
10581 symbols = elf_getdata(scn, 0);
10582 if (!symbols) {
10583 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n",
10584 binary_path, elf_errmsg(-1));
10585 ret = -LIBBPF_ERRNO__FORMAT;
10586 goto out;
10587 }
10588 nr_syms = symbols->d_size / sh.sh_entsize;
10589
10590 for (idx = 0; idx < nr_syms; idx++) {
10591 int curr_bind;
10592 GElf_Sym sym;
10593 Elf_Scn *sym_scn;
10594 GElf_Shdr sym_sh;
10595
10596 if (!gelf_getsym(symbols, idx, &sym))
10597 continue;
10598
10599 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC)
10600 continue;
10601
10602 sname = elf_strptr(elf, strtabidx, sym.st_name);
10603 if (!sname)
10604 continue;
10605
10606 curr_bind = GELF_ST_BIND(sym.st_info);
10607
10608 /* User can specify func, func@@LIB or func@@LIB_VERSION. */
10609 if (strncmp(sname, name, name_len) != 0)
10610 continue;
10611 /* ...but we don't want a search for "foo" to match 'foo2" also, so any
10612 * additional characters in sname should be of the form "@@LIB".
10613 */
10614 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@')
10615 continue;
10616
10617 if (ret >= 0) {
10618 /* handle multiple matches */
10619 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) {
10620 /* Only accept one non-weak bind. */
10621 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n",
10622 sname, name, binary_path);
10623 ret = -LIBBPF_ERRNO__FORMAT;
10624 goto out;
10625 } else if (curr_bind == STB_WEAK) {
10626 /* already have a non-weak bind, and
10627 * this is a weak bind, so ignore.
10628 */
10629 continue;
10630 }
10631 }
10632
10633 /* Transform symbol's virtual address (absolute for
10634 * binaries and relative for shared libs) into file
10635 * offset, which is what kernel is expecting for
10636 * uprobe/uretprobe attachment.
10637 * See Documentation/trace/uprobetracer.rst for more
10638 * details.
10639 * This is done by looking up symbol's containing
10640 * section's header and using it's virtual address
10641 * (sh_addr) and corresponding file offset (sh_offset)
10642 * to transform sym.st_value (virtual address) into
10643 * desired final file offset.
10644 */
10645 sym_scn = elf_getscn(elf, sym.st_shndx);
10646 if (!sym_scn)
10647 continue;
10648 if (!gelf_getshdr(sym_scn, &sym_sh))
10649 continue;
10650
10651 ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset;
10652 last_bind = curr_bind;
10653 }
10654 if (ret > 0)
10655 break;
10656 }
10657
10658 if (ret > 0) {
10659 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path,
10660 ret);
10661 } else {
10662 if (ret == 0) {
10663 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path,
10664 is_shared_lib ? "should not be 0 in a shared library" :
10665 "try using shared library path instead");
10666 ret = -ENOENT;
10667 } else {
10668 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path);
10669 }
10670 }
10671 out:
10672 elf_end(elf);
10673 close(fd);
10674 return ret;
10675 }
10676
arch_specific_lib_paths(void)10677 static const char *arch_specific_lib_paths(void)
10678 {
10679 /*
10680 * Based on https://packages.debian.org/sid/libc6.
10681 *
10682 * Assume that the traced program is built for the same architecture
10683 * as libbpf, which should cover the vast majority of cases.
10684 */
10685 #if defined(__x86_64__)
10686 return "/lib/x86_64-linux-gnu";
10687 #elif defined(__i386__)
10688 return "/lib/i386-linux-gnu";
10689 #elif defined(__s390x__)
10690 return "/lib/s390x-linux-gnu";
10691 #elif defined(__s390__)
10692 return "/lib/s390-linux-gnu";
10693 #elif defined(__arm__) && defined(__SOFTFP__)
10694 return "/lib/arm-linux-gnueabi";
10695 #elif defined(__arm__) && !defined(__SOFTFP__)
10696 return "/lib/arm-linux-gnueabihf";
10697 #elif defined(__aarch64__)
10698 return "/lib/aarch64-linux-gnu";
10699 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
10700 return "/lib/mips64el-linux-gnuabi64";
10701 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
10702 return "/lib/mipsel-linux-gnu";
10703 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
10704 return "/lib/powerpc64le-linux-gnu";
10705 #elif defined(__sparc__) && defined(__arch64__)
10706 return "/lib/sparc64-linux-gnu";
10707 #elif defined(__riscv) && __riscv_xlen == 64
10708 return "/lib/riscv64-linux-gnu";
10709 #else
10710 return NULL;
10711 #endif
10712 }
10713
10714 /* Get full path to program/shared library. */
resolve_full_path(const char * file,char * result,size_t result_sz)10715 static int resolve_full_path(const char *file, char *result, size_t result_sz)
10716 {
10717 const char *search_paths[3] = {};
10718 int i, perm;
10719
10720 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
10721 search_paths[0] = getenv("LD_LIBRARY_PATH");
10722 search_paths[1] = "/usr/lib64:/usr/lib";
10723 search_paths[2] = arch_specific_lib_paths();
10724 perm = R_OK;
10725 } else {
10726 search_paths[0] = getenv("PATH");
10727 search_paths[1] = "/usr/bin:/usr/sbin";
10728 perm = R_OK | X_OK;
10729 }
10730
10731 for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
10732 const char *s;
10733
10734 if (!search_paths[i])
10735 continue;
10736 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
10737 char *next_path;
10738 int seg_len;
10739
10740 if (s[0] == ':')
10741 s++;
10742 next_path = strchr(s, ':');
10743 seg_len = next_path ? next_path - s : strlen(s);
10744 if (!seg_len)
10745 continue;
10746 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
10747 /* ensure it has required permissions */
10748 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
10749 continue;
10750 pr_debug("resolved '%s' to '%s'\n", file, result);
10751 return 0;
10752 }
10753 }
10754 return -ENOENT;
10755 }
10756
10757 LIBBPF_API struct bpf_link *
bpf_program__attach_uprobe_opts(const struct bpf_program * prog,pid_t pid,const char * binary_path,size_t func_offset,const struct bpf_uprobe_opts * opts)10758 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
10759 const char *binary_path, size_t func_offset,
10760 const struct bpf_uprobe_opts *opts)
10761 {
10762 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10763 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
10764 char full_binary_path[PATH_MAX];
10765 struct bpf_link *link;
10766 size_t ref_ctr_off;
10767 int pfd, err;
10768 bool retprobe, legacy;
10769 const char *func_name;
10770
10771 if (!OPTS_VALID(opts, bpf_uprobe_opts))
10772 return libbpf_err_ptr(-EINVAL);
10773
10774 retprobe = OPTS_GET(opts, retprobe, false);
10775 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
10776 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10777
10778 if (!binary_path)
10779 return libbpf_err_ptr(-EINVAL);
10780
10781 if (!strchr(binary_path, '/')) {
10782 err = resolve_full_path(binary_path, full_binary_path,
10783 sizeof(full_binary_path));
10784 if (err) {
10785 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
10786 prog->name, binary_path, err);
10787 return libbpf_err_ptr(err);
10788 }
10789 binary_path = full_binary_path;
10790 }
10791 func_name = OPTS_GET(opts, func_name, NULL);
10792 if (func_name) {
10793 long sym_off;
10794
10795 sym_off = elf_find_func_offset(binary_path, func_name);
10796 if (sym_off < 0)
10797 return libbpf_err_ptr(sym_off);
10798 func_offset += sym_off;
10799 }
10800
10801 legacy = determine_uprobe_perf_type() < 0;
10802 if (!legacy) {
10803 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
10804 func_offset, pid, ref_ctr_off);
10805 } else {
10806 char probe_name[PATH_MAX + 64];
10807
10808 if (ref_ctr_off)
10809 return libbpf_err_ptr(-EINVAL);
10810
10811 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
10812 binary_path, func_offset);
10813
10814 legacy_probe = strdup(probe_name);
10815 if (!legacy_probe)
10816 return libbpf_err_ptr(-ENOMEM);
10817
10818 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
10819 binary_path, func_offset, pid);
10820 }
10821 if (pfd < 0) {
10822 err = -errno;
10823 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
10824 prog->name, retprobe ? "uretprobe" : "uprobe",
10825 binary_path, func_offset,
10826 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10827 goto err_out;
10828 }
10829
10830 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10831 err = libbpf_get_error(link);
10832 if (err) {
10833 close(pfd);
10834 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
10835 prog->name, retprobe ? "uretprobe" : "uprobe",
10836 binary_path, func_offset,
10837 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10838 goto err_clean_legacy;
10839 }
10840 if (legacy) {
10841 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10842
10843 perf_link->legacy_probe_name = legacy_probe;
10844 perf_link->legacy_is_kprobe = false;
10845 perf_link->legacy_is_retprobe = retprobe;
10846 }
10847 return link;
10848
10849 err_clean_legacy:
10850 if (legacy)
10851 remove_uprobe_event_legacy(legacy_probe, retprobe);
10852 err_out:
10853 free(legacy_probe);
10854 return libbpf_err_ptr(err);
10855 }
10856
10857 /* Format of u[ret]probe section definition supporting auto-attach:
10858 * u[ret]probe/binary:function[+offset]
10859 *
10860 * binary can be an absolute/relative path or a filename; the latter is resolved to a
10861 * full binary path via bpf_program__attach_uprobe_opts.
10862 *
10863 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
10864 * specified (and auto-attach is not possible) or the above format is specified for
10865 * auto-attach.
10866 */
attach_uprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10867 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10868 {
10869 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
10870 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
10871 int n, ret = -EINVAL;
10872 long offset = 0;
10873
10874 *link = NULL;
10875
10876 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li",
10877 &probe_type, &binary_path, &func_name, &offset);
10878 switch (n) {
10879 case 1:
10880 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
10881 ret = 0;
10882 break;
10883 case 2:
10884 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
10885 prog->name, prog->sec_name);
10886 break;
10887 case 3:
10888 case 4:
10889 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
10890 strcmp(probe_type, "uretprobe.s") == 0;
10891 if (opts.retprobe && offset != 0) {
10892 pr_warn("prog '%s': uretprobes do not support offset specification\n",
10893 prog->name);
10894 break;
10895 }
10896 opts.func_name = func_name;
10897 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
10898 ret = libbpf_get_error(*link);
10899 break;
10900 default:
10901 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
10902 prog->sec_name);
10903 break;
10904 }
10905 free(probe_type);
10906 free(binary_path);
10907 free(func_name);
10908
10909 return ret;
10910 }
10911
bpf_program__attach_uprobe(const struct bpf_program * prog,bool retprobe,pid_t pid,const char * binary_path,size_t func_offset)10912 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
10913 bool retprobe, pid_t pid,
10914 const char *binary_path,
10915 size_t func_offset)
10916 {
10917 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
10918
10919 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
10920 }
10921
bpf_program__attach_usdt(const struct bpf_program * prog,pid_t pid,const char * binary_path,const char * usdt_provider,const char * usdt_name,const struct bpf_usdt_opts * opts)10922 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
10923 pid_t pid, const char *binary_path,
10924 const char *usdt_provider, const char *usdt_name,
10925 const struct bpf_usdt_opts *opts)
10926 {
10927 char resolved_path[512];
10928 struct bpf_object *obj = prog->obj;
10929 struct bpf_link *link;
10930 __u64 usdt_cookie;
10931 int err;
10932
10933 if (!OPTS_VALID(opts, bpf_uprobe_opts))
10934 return libbpf_err_ptr(-EINVAL);
10935
10936 if (bpf_program__fd(prog) < 0) {
10937 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10938 prog->name);
10939 return libbpf_err_ptr(-EINVAL);
10940 }
10941
10942 if (!binary_path)
10943 return libbpf_err_ptr(-EINVAL);
10944
10945 if (!strchr(binary_path, '/')) {
10946 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
10947 if (err) {
10948 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
10949 prog->name, binary_path, err);
10950 return libbpf_err_ptr(err);
10951 }
10952 binary_path = resolved_path;
10953 }
10954
10955 /* USDT manager is instantiated lazily on first USDT attach. It will
10956 * be destroyed together with BPF object in bpf_object__close().
10957 */
10958 if (IS_ERR(obj->usdt_man))
10959 return libbpf_ptr(obj->usdt_man);
10960 if (!obj->usdt_man) {
10961 obj->usdt_man = usdt_manager_new(obj);
10962 if (IS_ERR(obj->usdt_man))
10963 return libbpf_ptr(obj->usdt_man);
10964 }
10965
10966 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
10967 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
10968 usdt_provider, usdt_name, usdt_cookie);
10969 err = libbpf_get_error(link);
10970 if (err)
10971 return libbpf_err_ptr(err);
10972 return link;
10973 }
10974
attach_usdt(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10975 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10976 {
10977 char *path = NULL, *provider = NULL, *name = NULL;
10978 const char *sec_name;
10979 int n, err;
10980
10981 sec_name = bpf_program__section_name(prog);
10982 if (strcmp(sec_name, "usdt") == 0) {
10983 /* no auto-attach for just SEC("usdt") */
10984 *link = NULL;
10985 return 0;
10986 }
10987
10988 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
10989 if (n != 3) {
10990 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
10991 sec_name);
10992 err = -EINVAL;
10993 } else {
10994 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
10995 provider, name, NULL);
10996 err = libbpf_get_error(*link);
10997 }
10998 free(path);
10999 free(provider);
11000 free(name);
11001 return err;
11002 }
11003
determine_tracepoint_id(const char * tp_category,const char * tp_name)11004 static int determine_tracepoint_id(const char *tp_category,
11005 const char *tp_name)
11006 {
11007 char file[PATH_MAX];
11008 int ret;
11009
11010 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11011 tracefs_path(), tp_category, tp_name);
11012 if (ret < 0)
11013 return -errno;
11014 if (ret >= sizeof(file)) {
11015 pr_debug("tracepoint %s/%s path is too long\n",
11016 tp_category, tp_name);
11017 return -E2BIG;
11018 }
11019 return parse_uint_from_file(file, "%d\n");
11020 }
11021
perf_event_open_tracepoint(const char * tp_category,const char * tp_name)11022 static int perf_event_open_tracepoint(const char *tp_category,
11023 const char *tp_name)
11024 {
11025 const size_t attr_sz = sizeof(struct perf_event_attr);
11026 struct perf_event_attr attr;
11027 char errmsg[STRERR_BUFSIZE];
11028 int tp_id, pfd, err;
11029
11030 tp_id = determine_tracepoint_id(tp_category, tp_name);
11031 if (tp_id < 0) {
11032 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
11033 tp_category, tp_name,
11034 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
11035 return tp_id;
11036 }
11037
11038 memset(&attr, 0, attr_sz);
11039 attr.type = PERF_TYPE_TRACEPOINT;
11040 attr.size = attr_sz;
11041 attr.config = tp_id;
11042
11043 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
11044 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11045 if (pfd < 0) {
11046 err = -errno;
11047 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
11048 tp_category, tp_name,
11049 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11050 return err;
11051 }
11052 return pfd;
11053 }
11054
bpf_program__attach_tracepoint_opts(const struct bpf_program * prog,const char * tp_category,const char * tp_name,const struct bpf_tracepoint_opts * opts)11055 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
11056 const char *tp_category,
11057 const char *tp_name,
11058 const struct bpf_tracepoint_opts *opts)
11059 {
11060 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11061 char errmsg[STRERR_BUFSIZE];
11062 struct bpf_link *link;
11063 int pfd, err;
11064
11065 if (!OPTS_VALID(opts, bpf_tracepoint_opts))
11066 return libbpf_err_ptr(-EINVAL);
11067
11068 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11069
11070 pfd = perf_event_open_tracepoint(tp_category, tp_name);
11071 if (pfd < 0) {
11072 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
11073 prog->name, tp_category, tp_name,
11074 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11075 return libbpf_err_ptr(pfd);
11076 }
11077 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11078 err = libbpf_get_error(link);
11079 if (err) {
11080 close(pfd);
11081 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
11082 prog->name, tp_category, tp_name,
11083 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11084 return libbpf_err_ptr(err);
11085 }
11086 return link;
11087 }
11088
bpf_program__attach_tracepoint(const struct bpf_program * prog,const char * tp_category,const char * tp_name)11089 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
11090 const char *tp_category,
11091 const char *tp_name)
11092 {
11093 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
11094 }
11095
attach_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11096 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11097 {
11098 char *sec_name, *tp_cat, *tp_name;
11099
11100 *link = NULL;
11101
11102 /* no auto-attach for SEC("tp") or SEC("tracepoint") */
11103 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
11104 return 0;
11105
11106 sec_name = strdup(prog->sec_name);
11107 if (!sec_name)
11108 return -ENOMEM;
11109
11110 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
11111 if (str_has_pfx(prog->sec_name, "tp/"))
11112 tp_cat = sec_name + sizeof("tp/") - 1;
11113 else
11114 tp_cat = sec_name + sizeof("tracepoint/") - 1;
11115 tp_name = strchr(tp_cat, '/');
11116 if (!tp_name) {
11117 free(sec_name);
11118 return -EINVAL;
11119 }
11120 *tp_name = '\0';
11121 tp_name++;
11122
11123 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
11124 free(sec_name);
11125 return libbpf_get_error(*link);
11126 }
11127
bpf_program__attach_raw_tracepoint(const struct bpf_program * prog,const char * tp_name)11128 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
11129 const char *tp_name)
11130 {
11131 char errmsg[STRERR_BUFSIZE];
11132 struct bpf_link *link;
11133 int prog_fd, pfd;
11134
11135 prog_fd = bpf_program__fd(prog);
11136 if (prog_fd < 0) {
11137 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11138 return libbpf_err_ptr(-EINVAL);
11139 }
11140
11141 link = calloc(1, sizeof(*link));
11142 if (!link)
11143 return libbpf_err_ptr(-ENOMEM);
11144 link->detach = &bpf_link__detach_fd;
11145
11146 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
11147 if (pfd < 0) {
11148 pfd = -errno;
11149 free(link);
11150 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
11151 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11152 return libbpf_err_ptr(pfd);
11153 }
11154 link->fd = pfd;
11155 return link;
11156 }
11157
attach_raw_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11158 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11159 {
11160 static const char *const prefixes[] = {
11161 "raw_tp",
11162 "raw_tracepoint",
11163 "raw_tp.w",
11164 "raw_tracepoint.w",
11165 };
11166 size_t i;
11167 const char *tp_name = NULL;
11168
11169 *link = NULL;
11170
11171 for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
11172 size_t pfx_len;
11173
11174 if (!str_has_pfx(prog->sec_name, prefixes[i]))
11175 continue;
11176
11177 pfx_len = strlen(prefixes[i]);
11178 /* no auto-attach case of, e.g., SEC("raw_tp") */
11179 if (prog->sec_name[pfx_len] == '\0')
11180 return 0;
11181
11182 if (prog->sec_name[pfx_len] != '/')
11183 continue;
11184
11185 tp_name = prog->sec_name + pfx_len + 1;
11186 break;
11187 }
11188
11189 if (!tp_name) {
11190 pr_warn("prog '%s': invalid section name '%s'\n",
11191 prog->name, prog->sec_name);
11192 return -EINVAL;
11193 }
11194
11195 *link = bpf_program__attach_raw_tracepoint(prog, tp_name);
11196 return libbpf_get_error(*link);
11197 }
11198
11199 /* Common logic for all BPF program types that attach to a btf_id */
bpf_program__attach_btf_id(const struct bpf_program * prog,const struct bpf_trace_opts * opts)11200 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
11201 const struct bpf_trace_opts *opts)
11202 {
11203 LIBBPF_OPTS(bpf_link_create_opts, link_opts);
11204 char errmsg[STRERR_BUFSIZE];
11205 struct bpf_link *link;
11206 int prog_fd, pfd;
11207
11208 if (!OPTS_VALID(opts, bpf_trace_opts))
11209 return libbpf_err_ptr(-EINVAL);
11210
11211 prog_fd = bpf_program__fd(prog);
11212 if (prog_fd < 0) {
11213 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11214 return libbpf_err_ptr(-EINVAL);
11215 }
11216
11217 link = calloc(1, sizeof(*link));
11218 if (!link)
11219 return libbpf_err_ptr(-ENOMEM);
11220 link->detach = &bpf_link__detach_fd;
11221
11222 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
11223 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
11224 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
11225 if (pfd < 0) {
11226 pfd = -errno;
11227 free(link);
11228 pr_warn("prog '%s': failed to attach: %s\n",
11229 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11230 return libbpf_err_ptr(pfd);
11231 }
11232 link->fd = pfd;
11233 return link;
11234 }
11235
bpf_program__attach_trace(const struct bpf_program * prog)11236 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
11237 {
11238 return bpf_program__attach_btf_id(prog, NULL);
11239 }
11240
bpf_program__attach_trace_opts(const struct bpf_program * prog,const struct bpf_trace_opts * opts)11241 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
11242 const struct bpf_trace_opts *opts)
11243 {
11244 return bpf_program__attach_btf_id(prog, opts);
11245 }
11246
bpf_program__attach_lsm(const struct bpf_program * prog)11247 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
11248 {
11249 return bpf_program__attach_btf_id(prog, NULL);
11250 }
11251
attach_trace(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11252 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11253 {
11254 *link = bpf_program__attach_trace(prog);
11255 return libbpf_get_error(*link);
11256 }
11257
attach_lsm(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11258 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11259 {
11260 *link = bpf_program__attach_lsm(prog);
11261 return libbpf_get_error(*link);
11262 }
11263
11264 static struct bpf_link *
bpf_program__attach_fd(const struct bpf_program * prog,int target_fd,int btf_id,const char * target_name)11265 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id,
11266 const char *target_name)
11267 {
11268 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
11269 .target_btf_id = btf_id);
11270 enum bpf_attach_type attach_type;
11271 char errmsg[STRERR_BUFSIZE];
11272 struct bpf_link *link;
11273 int prog_fd, link_fd;
11274
11275 prog_fd = bpf_program__fd(prog);
11276 if (prog_fd < 0) {
11277 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11278 return libbpf_err_ptr(-EINVAL);
11279 }
11280
11281 link = calloc(1, sizeof(*link));
11282 if (!link)
11283 return libbpf_err_ptr(-ENOMEM);
11284 link->detach = &bpf_link__detach_fd;
11285
11286 attach_type = bpf_program__expected_attach_type(prog);
11287 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
11288 if (link_fd < 0) {
11289 link_fd = -errno;
11290 free(link);
11291 pr_warn("prog '%s': failed to attach to %s: %s\n",
11292 prog->name, target_name,
11293 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11294 return libbpf_err_ptr(link_fd);
11295 }
11296 link->fd = link_fd;
11297 return link;
11298 }
11299
11300 struct bpf_link *
bpf_program__attach_cgroup(const struct bpf_program * prog,int cgroup_fd)11301 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
11302 {
11303 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
11304 }
11305
11306 struct bpf_link *
bpf_program__attach_netns(const struct bpf_program * prog,int netns_fd)11307 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
11308 {
11309 return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
11310 }
11311
bpf_program__attach_xdp(const struct bpf_program * prog,int ifindex)11312 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
11313 {
11314 /* target_fd/target_ifindex use the same field in LINK_CREATE */
11315 return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
11316 }
11317
bpf_program__attach_freplace(const struct bpf_program * prog,int target_fd,const char * attach_func_name)11318 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
11319 int target_fd,
11320 const char *attach_func_name)
11321 {
11322 int btf_id;
11323
11324 if (!!target_fd != !!attach_func_name) {
11325 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
11326 prog->name);
11327 return libbpf_err_ptr(-EINVAL);
11328 }
11329
11330 if (prog->type != BPF_PROG_TYPE_EXT) {
11331 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
11332 prog->name);
11333 return libbpf_err_ptr(-EINVAL);
11334 }
11335
11336 if (target_fd) {
11337 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
11338 if (btf_id < 0)
11339 return libbpf_err_ptr(btf_id);
11340
11341 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
11342 } else {
11343 /* no target, so use raw_tracepoint_open for compatibility
11344 * with old kernels
11345 */
11346 return bpf_program__attach_trace(prog);
11347 }
11348 }
11349
11350 struct bpf_link *
bpf_program__attach_iter(const struct bpf_program * prog,const struct bpf_iter_attach_opts * opts)11351 bpf_program__attach_iter(const struct bpf_program *prog,
11352 const struct bpf_iter_attach_opts *opts)
11353 {
11354 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
11355 char errmsg[STRERR_BUFSIZE];
11356 struct bpf_link *link;
11357 int prog_fd, link_fd;
11358 __u32 target_fd = 0;
11359
11360 if (!OPTS_VALID(opts, bpf_iter_attach_opts))
11361 return libbpf_err_ptr(-EINVAL);
11362
11363 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
11364 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
11365
11366 prog_fd = bpf_program__fd(prog);
11367 if (prog_fd < 0) {
11368 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11369 return libbpf_err_ptr(-EINVAL);
11370 }
11371
11372 link = calloc(1, sizeof(*link));
11373 if (!link)
11374 return libbpf_err_ptr(-ENOMEM);
11375 link->detach = &bpf_link__detach_fd;
11376
11377 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
11378 &link_create_opts);
11379 if (link_fd < 0) {
11380 link_fd = -errno;
11381 free(link);
11382 pr_warn("prog '%s': failed to attach to iterator: %s\n",
11383 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11384 return libbpf_err_ptr(link_fd);
11385 }
11386 link->fd = link_fd;
11387 return link;
11388 }
11389
attach_iter(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11390 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11391 {
11392 *link = bpf_program__attach_iter(prog, NULL);
11393 return libbpf_get_error(*link);
11394 }
11395
bpf_program__attach(const struct bpf_program * prog)11396 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
11397 {
11398 struct bpf_link *link = NULL;
11399 int err;
11400
11401 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
11402 return libbpf_err_ptr(-EOPNOTSUPP);
11403
11404 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
11405 if (err)
11406 return libbpf_err_ptr(err);
11407
11408 /* When calling bpf_program__attach() explicitly, auto-attach support
11409 * is expected to work, so NULL returned link is considered an error.
11410 * This is different for skeleton's attach, see comment in
11411 * bpf_object__attach_skeleton().
11412 */
11413 if (!link)
11414 return libbpf_err_ptr(-EOPNOTSUPP);
11415
11416 return link;
11417 }
11418
bpf_link__detach_struct_ops(struct bpf_link * link)11419 static int bpf_link__detach_struct_ops(struct bpf_link *link)
11420 {
11421 __u32 zero = 0;
11422
11423 if (bpf_map_delete_elem(link->fd, &zero))
11424 return -errno;
11425
11426 return 0;
11427 }
11428
bpf_map__attach_struct_ops(const struct bpf_map * map)11429 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
11430 {
11431 struct bpf_struct_ops *st_ops;
11432 struct bpf_link *link;
11433 __u32 i, zero = 0;
11434 int err;
11435
11436 if (!bpf_map__is_struct_ops(map) || map->fd == -1)
11437 return libbpf_err_ptr(-EINVAL);
11438
11439 link = calloc(1, sizeof(*link));
11440 if (!link)
11441 return libbpf_err_ptr(-EINVAL);
11442
11443 st_ops = map->st_ops;
11444 for (i = 0; i < btf_vlen(st_ops->type); i++) {
11445 struct bpf_program *prog = st_ops->progs[i];
11446 void *kern_data;
11447 int prog_fd;
11448
11449 if (!prog)
11450 continue;
11451
11452 prog_fd = bpf_program__fd(prog);
11453 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
11454 *(unsigned long *)kern_data = prog_fd;
11455 }
11456
11457 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
11458 if (err) {
11459 err = -errno;
11460 free(link);
11461 return libbpf_err_ptr(err);
11462 }
11463
11464 link->detach = bpf_link__detach_struct_ops;
11465 link->fd = map->fd;
11466
11467 return link;
11468 }
11469
11470 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
11471 void *private_data);
11472
11473 static enum bpf_perf_event_ret
perf_event_read_simple(void * mmap_mem,size_t mmap_size,size_t page_size,void ** copy_mem,size_t * copy_size,bpf_perf_event_print_t fn,void * private_data)11474 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
11475 void **copy_mem, size_t *copy_size,
11476 bpf_perf_event_print_t fn, void *private_data)
11477 {
11478 struct perf_event_mmap_page *header = mmap_mem;
11479 __u64 data_head = ring_buffer_read_head(header);
11480 __u64 data_tail = header->data_tail;
11481 void *base = ((__u8 *)header) + page_size;
11482 int ret = LIBBPF_PERF_EVENT_CONT;
11483 struct perf_event_header *ehdr;
11484 size_t ehdr_size;
11485
11486 while (data_head != data_tail) {
11487 ehdr = base + (data_tail & (mmap_size - 1));
11488 ehdr_size = ehdr->size;
11489
11490 if (((void *)ehdr) + ehdr_size > base + mmap_size) {
11491 void *copy_start = ehdr;
11492 size_t len_first = base + mmap_size - copy_start;
11493 size_t len_secnd = ehdr_size - len_first;
11494
11495 if (*copy_size < ehdr_size) {
11496 free(*copy_mem);
11497 *copy_mem = malloc(ehdr_size);
11498 if (!*copy_mem) {
11499 *copy_size = 0;
11500 ret = LIBBPF_PERF_EVENT_ERROR;
11501 break;
11502 }
11503 *copy_size = ehdr_size;
11504 }
11505
11506 memcpy(*copy_mem, copy_start, len_first);
11507 memcpy(*copy_mem + len_first, base, len_secnd);
11508 ehdr = *copy_mem;
11509 }
11510
11511 ret = fn(ehdr, private_data);
11512 data_tail += ehdr_size;
11513 if (ret != LIBBPF_PERF_EVENT_CONT)
11514 break;
11515 }
11516
11517 ring_buffer_write_tail(header, data_tail);
11518 return libbpf_err(ret);
11519 }
11520
11521 struct perf_buffer;
11522
11523 struct perf_buffer_params {
11524 struct perf_event_attr *attr;
11525 /* if event_cb is specified, it takes precendence */
11526 perf_buffer_event_fn event_cb;
11527 /* sample_cb and lost_cb are higher-level common-case callbacks */
11528 perf_buffer_sample_fn sample_cb;
11529 perf_buffer_lost_fn lost_cb;
11530 void *ctx;
11531 int cpu_cnt;
11532 int *cpus;
11533 int *map_keys;
11534 };
11535
11536 struct perf_cpu_buf {
11537 struct perf_buffer *pb;
11538 void *base; /* mmap()'ed memory */
11539 void *buf; /* for reconstructing segmented data */
11540 size_t buf_size;
11541 int fd;
11542 int cpu;
11543 int map_key;
11544 };
11545
11546 struct perf_buffer {
11547 perf_buffer_event_fn event_cb;
11548 perf_buffer_sample_fn sample_cb;
11549 perf_buffer_lost_fn lost_cb;
11550 void *ctx; /* passed into callbacks */
11551
11552 size_t page_size;
11553 size_t mmap_size;
11554 struct perf_cpu_buf **cpu_bufs;
11555 struct epoll_event *events;
11556 int cpu_cnt; /* number of allocated CPU buffers */
11557 int epoll_fd; /* perf event FD */
11558 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
11559 };
11560
perf_buffer__free_cpu_buf(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)11561 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
11562 struct perf_cpu_buf *cpu_buf)
11563 {
11564 if (!cpu_buf)
11565 return;
11566 if (cpu_buf->base &&
11567 munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
11568 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
11569 if (cpu_buf->fd >= 0) {
11570 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
11571 close(cpu_buf->fd);
11572 }
11573 free(cpu_buf->buf);
11574 free(cpu_buf);
11575 }
11576
perf_buffer__free(struct perf_buffer * pb)11577 void perf_buffer__free(struct perf_buffer *pb)
11578 {
11579 int i;
11580
11581 if (IS_ERR_OR_NULL(pb))
11582 return;
11583 if (pb->cpu_bufs) {
11584 for (i = 0; i < pb->cpu_cnt; i++) {
11585 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
11586
11587 if (!cpu_buf)
11588 continue;
11589
11590 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
11591 perf_buffer__free_cpu_buf(pb, cpu_buf);
11592 }
11593 free(pb->cpu_bufs);
11594 }
11595 if (pb->epoll_fd >= 0)
11596 close(pb->epoll_fd);
11597 free(pb->events);
11598 free(pb);
11599 }
11600
11601 static struct perf_cpu_buf *
perf_buffer__open_cpu_buf(struct perf_buffer * pb,struct perf_event_attr * attr,int cpu,int map_key)11602 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
11603 int cpu, int map_key)
11604 {
11605 struct perf_cpu_buf *cpu_buf;
11606 char msg[STRERR_BUFSIZE];
11607 int err;
11608
11609 cpu_buf = calloc(1, sizeof(*cpu_buf));
11610 if (!cpu_buf)
11611 return ERR_PTR(-ENOMEM);
11612
11613 cpu_buf->pb = pb;
11614 cpu_buf->cpu = cpu;
11615 cpu_buf->map_key = map_key;
11616
11617 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
11618 -1, PERF_FLAG_FD_CLOEXEC);
11619 if (cpu_buf->fd < 0) {
11620 err = -errno;
11621 pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
11622 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11623 goto error;
11624 }
11625
11626 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
11627 PROT_READ | PROT_WRITE, MAP_SHARED,
11628 cpu_buf->fd, 0);
11629 if (cpu_buf->base == MAP_FAILED) {
11630 cpu_buf->base = NULL;
11631 err = -errno;
11632 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
11633 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11634 goto error;
11635 }
11636
11637 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
11638 err = -errno;
11639 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
11640 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11641 goto error;
11642 }
11643
11644 return cpu_buf;
11645
11646 error:
11647 perf_buffer__free_cpu_buf(pb, cpu_buf);
11648 return (struct perf_cpu_buf *)ERR_PTR(err);
11649 }
11650
11651 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
11652 struct perf_buffer_params *p);
11653
perf_buffer__new(int map_fd,size_t page_cnt,perf_buffer_sample_fn sample_cb,perf_buffer_lost_fn lost_cb,void * ctx,const struct perf_buffer_opts * opts)11654 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
11655 perf_buffer_sample_fn sample_cb,
11656 perf_buffer_lost_fn lost_cb,
11657 void *ctx,
11658 const struct perf_buffer_opts *opts)
11659 {
11660 const size_t attr_sz = sizeof(struct perf_event_attr);
11661 struct perf_buffer_params p = {};
11662 struct perf_event_attr attr;
11663
11664 if (!OPTS_VALID(opts, perf_buffer_opts))
11665 return libbpf_err_ptr(-EINVAL);
11666
11667 memset(&attr, 0, attr_sz);
11668 attr.size = attr_sz;
11669 attr.config = PERF_COUNT_SW_BPF_OUTPUT;
11670 attr.type = PERF_TYPE_SOFTWARE;
11671 attr.sample_type = PERF_SAMPLE_RAW;
11672 attr.sample_period = 1;
11673 attr.wakeup_events = 1;
11674
11675 p.attr = &attr;
11676 p.sample_cb = sample_cb;
11677 p.lost_cb = lost_cb;
11678 p.ctx = ctx;
11679
11680 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
11681 }
11682
perf_buffer__new_raw(int map_fd,size_t page_cnt,struct perf_event_attr * attr,perf_buffer_event_fn event_cb,void * ctx,const struct perf_buffer_raw_opts * opts)11683 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
11684 struct perf_event_attr *attr,
11685 perf_buffer_event_fn event_cb, void *ctx,
11686 const struct perf_buffer_raw_opts *opts)
11687 {
11688 struct perf_buffer_params p = {};
11689
11690 if (!attr)
11691 return libbpf_err_ptr(-EINVAL);
11692
11693 if (!OPTS_VALID(opts, perf_buffer_raw_opts))
11694 return libbpf_err_ptr(-EINVAL);
11695
11696 p.attr = attr;
11697 p.event_cb = event_cb;
11698 p.ctx = ctx;
11699 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
11700 p.cpus = OPTS_GET(opts, cpus, NULL);
11701 p.map_keys = OPTS_GET(opts, map_keys, NULL);
11702
11703 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
11704 }
11705
__perf_buffer__new(int map_fd,size_t page_cnt,struct perf_buffer_params * p)11706 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
11707 struct perf_buffer_params *p)
11708 {
11709 const char *online_cpus_file = "/sys/devices/system/cpu/online";
11710 struct bpf_map_info map;
11711 char msg[STRERR_BUFSIZE];
11712 struct perf_buffer *pb;
11713 bool *online = NULL;
11714 __u32 map_info_len;
11715 int err, i, j, n;
11716
11717 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
11718 pr_warn("page count should be power of two, but is %zu\n",
11719 page_cnt);
11720 return ERR_PTR(-EINVAL);
11721 }
11722
11723 /* best-effort sanity checks */
11724 memset(&map, 0, sizeof(map));
11725 map_info_len = sizeof(map);
11726 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
11727 if (err) {
11728 err = -errno;
11729 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
11730 * -EBADFD, -EFAULT, or -E2BIG on real error
11731 */
11732 if (err != -EINVAL) {
11733 pr_warn("failed to get map info for map FD %d: %s\n",
11734 map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
11735 return ERR_PTR(err);
11736 }
11737 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
11738 map_fd);
11739 } else {
11740 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
11741 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
11742 map.name);
11743 return ERR_PTR(-EINVAL);
11744 }
11745 }
11746
11747 pb = calloc(1, sizeof(*pb));
11748 if (!pb)
11749 return ERR_PTR(-ENOMEM);
11750
11751 pb->event_cb = p->event_cb;
11752 pb->sample_cb = p->sample_cb;
11753 pb->lost_cb = p->lost_cb;
11754 pb->ctx = p->ctx;
11755
11756 pb->page_size = getpagesize();
11757 pb->mmap_size = pb->page_size * page_cnt;
11758 pb->map_fd = map_fd;
11759
11760 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
11761 if (pb->epoll_fd < 0) {
11762 err = -errno;
11763 pr_warn("failed to create epoll instance: %s\n",
11764 libbpf_strerror_r(err, msg, sizeof(msg)));
11765 goto error;
11766 }
11767
11768 if (p->cpu_cnt > 0) {
11769 pb->cpu_cnt = p->cpu_cnt;
11770 } else {
11771 pb->cpu_cnt = libbpf_num_possible_cpus();
11772 if (pb->cpu_cnt < 0) {
11773 err = pb->cpu_cnt;
11774 goto error;
11775 }
11776 if (map.max_entries && map.max_entries < pb->cpu_cnt)
11777 pb->cpu_cnt = map.max_entries;
11778 }
11779
11780 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
11781 if (!pb->events) {
11782 err = -ENOMEM;
11783 pr_warn("failed to allocate events: out of memory\n");
11784 goto error;
11785 }
11786 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
11787 if (!pb->cpu_bufs) {
11788 err = -ENOMEM;
11789 pr_warn("failed to allocate buffers: out of memory\n");
11790 goto error;
11791 }
11792
11793 err = parse_cpu_mask_file(online_cpus_file, &online, &n);
11794 if (err) {
11795 pr_warn("failed to get online CPU mask: %d\n", err);
11796 goto error;
11797 }
11798
11799 for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
11800 struct perf_cpu_buf *cpu_buf;
11801 int cpu, map_key;
11802
11803 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
11804 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
11805
11806 /* in case user didn't explicitly requested particular CPUs to
11807 * be attached to, skip offline/not present CPUs
11808 */
11809 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
11810 continue;
11811
11812 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
11813 if (IS_ERR(cpu_buf)) {
11814 err = PTR_ERR(cpu_buf);
11815 goto error;
11816 }
11817
11818 pb->cpu_bufs[j] = cpu_buf;
11819
11820 err = bpf_map_update_elem(pb->map_fd, &map_key,
11821 &cpu_buf->fd, 0);
11822 if (err) {
11823 err = -errno;
11824 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
11825 cpu, map_key, cpu_buf->fd,
11826 libbpf_strerror_r(err, msg, sizeof(msg)));
11827 goto error;
11828 }
11829
11830 pb->events[j].events = EPOLLIN;
11831 pb->events[j].data.ptr = cpu_buf;
11832 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
11833 &pb->events[j]) < 0) {
11834 err = -errno;
11835 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
11836 cpu, cpu_buf->fd,
11837 libbpf_strerror_r(err, msg, sizeof(msg)));
11838 goto error;
11839 }
11840 j++;
11841 }
11842 pb->cpu_cnt = j;
11843 free(online);
11844
11845 return pb;
11846
11847 error:
11848 free(online);
11849 if (pb)
11850 perf_buffer__free(pb);
11851 return ERR_PTR(err);
11852 }
11853
11854 struct perf_sample_raw {
11855 struct perf_event_header header;
11856 uint32_t size;
11857 char data[];
11858 };
11859
11860 struct perf_sample_lost {
11861 struct perf_event_header header;
11862 uint64_t id;
11863 uint64_t lost;
11864 uint64_t sample_id;
11865 };
11866
11867 static enum bpf_perf_event_ret
perf_buffer__process_record(struct perf_event_header * e,void * ctx)11868 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
11869 {
11870 struct perf_cpu_buf *cpu_buf = ctx;
11871 struct perf_buffer *pb = cpu_buf->pb;
11872 void *data = e;
11873
11874 /* user wants full control over parsing perf event */
11875 if (pb->event_cb)
11876 return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
11877
11878 switch (e->type) {
11879 case PERF_RECORD_SAMPLE: {
11880 struct perf_sample_raw *s = data;
11881
11882 if (pb->sample_cb)
11883 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
11884 break;
11885 }
11886 case PERF_RECORD_LOST: {
11887 struct perf_sample_lost *s = data;
11888
11889 if (pb->lost_cb)
11890 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
11891 break;
11892 }
11893 default:
11894 pr_warn("unknown perf sample type %d\n", e->type);
11895 return LIBBPF_PERF_EVENT_ERROR;
11896 }
11897 return LIBBPF_PERF_EVENT_CONT;
11898 }
11899
perf_buffer__process_records(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)11900 static int perf_buffer__process_records(struct perf_buffer *pb,
11901 struct perf_cpu_buf *cpu_buf)
11902 {
11903 enum bpf_perf_event_ret ret;
11904
11905 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
11906 pb->page_size, &cpu_buf->buf,
11907 &cpu_buf->buf_size,
11908 perf_buffer__process_record, cpu_buf);
11909 if (ret != LIBBPF_PERF_EVENT_CONT)
11910 return ret;
11911 return 0;
11912 }
11913
perf_buffer__epoll_fd(const struct perf_buffer * pb)11914 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
11915 {
11916 return pb->epoll_fd;
11917 }
11918
perf_buffer__poll(struct perf_buffer * pb,int timeout_ms)11919 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
11920 {
11921 int i, cnt, err;
11922
11923 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
11924 if (cnt < 0)
11925 return -errno;
11926
11927 for (i = 0; i < cnt; i++) {
11928 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
11929
11930 err = perf_buffer__process_records(pb, cpu_buf);
11931 if (err) {
11932 pr_warn("error while processing records: %d\n", err);
11933 return libbpf_err(err);
11934 }
11935 }
11936 return cnt;
11937 }
11938
11939 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
11940 * manager.
11941 */
perf_buffer__buffer_cnt(const struct perf_buffer * pb)11942 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
11943 {
11944 return pb->cpu_cnt;
11945 }
11946
11947 /*
11948 * Return perf_event FD of a ring buffer in *buf_idx* slot of
11949 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
11950 * select()/poll()/epoll() Linux syscalls.
11951 */
perf_buffer__buffer_fd(const struct perf_buffer * pb,size_t buf_idx)11952 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
11953 {
11954 struct perf_cpu_buf *cpu_buf;
11955
11956 if (buf_idx >= pb->cpu_cnt)
11957 return libbpf_err(-EINVAL);
11958
11959 cpu_buf = pb->cpu_bufs[buf_idx];
11960 if (!cpu_buf)
11961 return libbpf_err(-ENOENT);
11962
11963 return cpu_buf->fd;
11964 }
11965
perf_buffer__buffer(struct perf_buffer * pb,int buf_idx,void ** buf,size_t * buf_size)11966 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
11967 {
11968 struct perf_cpu_buf *cpu_buf;
11969
11970 if (buf_idx >= pb->cpu_cnt)
11971 return libbpf_err(-EINVAL);
11972
11973 cpu_buf = pb->cpu_bufs[buf_idx];
11974 if (!cpu_buf)
11975 return libbpf_err(-ENOENT);
11976
11977 *buf = cpu_buf->base;
11978 *buf_size = pb->mmap_size;
11979 return 0;
11980 }
11981
11982 /*
11983 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
11984 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
11985 * consume, do nothing and return success.
11986 * Returns:
11987 * - 0 on success;
11988 * - <0 on failure.
11989 */
perf_buffer__consume_buffer(struct perf_buffer * pb,size_t buf_idx)11990 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
11991 {
11992 struct perf_cpu_buf *cpu_buf;
11993
11994 if (buf_idx >= pb->cpu_cnt)
11995 return libbpf_err(-EINVAL);
11996
11997 cpu_buf = pb->cpu_bufs[buf_idx];
11998 if (!cpu_buf)
11999 return libbpf_err(-ENOENT);
12000
12001 return perf_buffer__process_records(pb, cpu_buf);
12002 }
12003
perf_buffer__consume(struct perf_buffer * pb)12004 int perf_buffer__consume(struct perf_buffer *pb)
12005 {
12006 int i, err;
12007
12008 for (i = 0; i < pb->cpu_cnt; i++) {
12009 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12010
12011 if (!cpu_buf)
12012 continue;
12013
12014 err = perf_buffer__process_records(pb, cpu_buf);
12015 if (err) {
12016 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
12017 return libbpf_err(err);
12018 }
12019 }
12020 return 0;
12021 }
12022
bpf_program__set_attach_target(struct bpf_program * prog,int attach_prog_fd,const char * attach_func_name)12023 int bpf_program__set_attach_target(struct bpf_program *prog,
12024 int attach_prog_fd,
12025 const char *attach_func_name)
12026 {
12027 int btf_obj_fd = 0, btf_id = 0, err;
12028
12029 if (!prog || attach_prog_fd < 0)
12030 return libbpf_err(-EINVAL);
12031
12032 if (prog->obj->loaded)
12033 return libbpf_err(-EINVAL);
12034
12035 if (attach_prog_fd && !attach_func_name) {
12036 /* remember attach_prog_fd and let bpf_program__load() find
12037 * BTF ID during the program load
12038 */
12039 prog->attach_prog_fd = attach_prog_fd;
12040 return 0;
12041 }
12042
12043 if (attach_prog_fd) {
12044 btf_id = libbpf_find_prog_btf_id(attach_func_name,
12045 attach_prog_fd);
12046 if (btf_id < 0)
12047 return libbpf_err(btf_id);
12048 } else {
12049 if (!attach_func_name)
12050 return libbpf_err(-EINVAL);
12051
12052 /* load btf_vmlinux, if not yet */
12053 err = bpf_object__load_vmlinux_btf(prog->obj, true);
12054 if (err)
12055 return libbpf_err(err);
12056 err = find_kernel_btf_id(prog->obj, attach_func_name,
12057 prog->expected_attach_type,
12058 &btf_obj_fd, &btf_id);
12059 if (err)
12060 return libbpf_err(err);
12061 }
12062
12063 prog->attach_btf_id = btf_id;
12064 prog->attach_btf_obj_fd = btf_obj_fd;
12065 prog->attach_prog_fd = attach_prog_fd;
12066 return 0;
12067 }
12068
parse_cpu_mask_str(const char * s,bool ** mask,int * mask_sz)12069 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
12070 {
12071 int err = 0, n, len, start, end = -1;
12072 bool *tmp;
12073
12074 *mask = NULL;
12075 *mask_sz = 0;
12076
12077 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
12078 while (*s) {
12079 if (*s == ',' || *s == '\n') {
12080 s++;
12081 continue;
12082 }
12083 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
12084 if (n <= 0 || n > 2) {
12085 pr_warn("Failed to get CPU range %s: %d\n", s, n);
12086 err = -EINVAL;
12087 goto cleanup;
12088 } else if (n == 1) {
12089 end = start;
12090 }
12091 if (start < 0 || start > end) {
12092 pr_warn("Invalid CPU range [%d,%d] in %s\n",
12093 start, end, s);
12094 err = -EINVAL;
12095 goto cleanup;
12096 }
12097 tmp = realloc(*mask, end + 1);
12098 if (!tmp) {
12099 err = -ENOMEM;
12100 goto cleanup;
12101 }
12102 *mask = tmp;
12103 memset(tmp + *mask_sz, 0, start - *mask_sz);
12104 memset(tmp + start, 1, end - start + 1);
12105 *mask_sz = end + 1;
12106 s += len;
12107 }
12108 if (!*mask_sz) {
12109 pr_warn("Empty CPU range\n");
12110 return -EINVAL;
12111 }
12112 return 0;
12113 cleanup:
12114 free(*mask);
12115 *mask = NULL;
12116 return err;
12117 }
12118
parse_cpu_mask_file(const char * fcpu,bool ** mask,int * mask_sz)12119 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
12120 {
12121 int fd, err = 0, len;
12122 char buf[128];
12123
12124 fd = open(fcpu, O_RDONLY | O_CLOEXEC);
12125 if (fd < 0) {
12126 err = -errno;
12127 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
12128 return err;
12129 }
12130 len = read(fd, buf, sizeof(buf));
12131 close(fd);
12132 if (len <= 0) {
12133 err = len ? -errno : -EINVAL;
12134 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
12135 return err;
12136 }
12137 if (len >= sizeof(buf)) {
12138 pr_warn("CPU mask is too big in file %s\n", fcpu);
12139 return -E2BIG;
12140 }
12141 buf[len] = '\0';
12142
12143 return parse_cpu_mask_str(buf, mask, mask_sz);
12144 }
12145
libbpf_num_possible_cpus(void)12146 int libbpf_num_possible_cpus(void)
12147 {
12148 static const char *fcpu = "/sys/devices/system/cpu/possible";
12149 static int cpus;
12150 int err, n, i, tmp_cpus;
12151 bool *mask;
12152
12153 tmp_cpus = READ_ONCE(cpus);
12154 if (tmp_cpus > 0)
12155 return tmp_cpus;
12156
12157 err = parse_cpu_mask_file(fcpu, &mask, &n);
12158 if (err)
12159 return libbpf_err(err);
12160
12161 tmp_cpus = 0;
12162 for (i = 0; i < n; i++) {
12163 if (mask[i])
12164 tmp_cpus++;
12165 }
12166 free(mask);
12167
12168 WRITE_ONCE(cpus, tmp_cpus);
12169 return tmp_cpus;
12170 }
12171
populate_skeleton_maps(const struct bpf_object * obj,struct bpf_map_skeleton * maps,size_t map_cnt)12172 static int populate_skeleton_maps(const struct bpf_object *obj,
12173 struct bpf_map_skeleton *maps,
12174 size_t map_cnt)
12175 {
12176 int i;
12177
12178 for (i = 0; i < map_cnt; i++) {
12179 struct bpf_map **map = maps[i].map;
12180 const char *name = maps[i].name;
12181 void **mmaped = maps[i].mmaped;
12182
12183 *map = bpf_object__find_map_by_name(obj, name);
12184 if (!*map) {
12185 pr_warn("failed to find skeleton map '%s'\n", name);
12186 return -ESRCH;
12187 }
12188
12189 /* externs shouldn't be pre-setup from user code */
12190 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
12191 *mmaped = (*map)->mmaped;
12192 }
12193 return 0;
12194 }
12195
populate_skeleton_progs(const struct bpf_object * obj,struct bpf_prog_skeleton * progs,size_t prog_cnt)12196 static int populate_skeleton_progs(const struct bpf_object *obj,
12197 struct bpf_prog_skeleton *progs,
12198 size_t prog_cnt)
12199 {
12200 int i;
12201
12202 for (i = 0; i < prog_cnt; i++) {
12203 struct bpf_program **prog = progs[i].prog;
12204 const char *name = progs[i].name;
12205
12206 *prog = bpf_object__find_program_by_name(obj, name);
12207 if (!*prog) {
12208 pr_warn("failed to find skeleton program '%s'\n", name);
12209 return -ESRCH;
12210 }
12211 }
12212 return 0;
12213 }
12214
bpf_object__open_skeleton(struct bpf_object_skeleton * s,const struct bpf_object_open_opts * opts)12215 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
12216 const struct bpf_object_open_opts *opts)
12217 {
12218 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
12219 .object_name = s->name,
12220 );
12221 struct bpf_object *obj;
12222 int err;
12223
12224 /* Attempt to preserve opts->object_name, unless overriden by user
12225 * explicitly. Overwriting object name for skeletons is discouraged,
12226 * as it breaks global data maps, because they contain object name
12227 * prefix as their own map name prefix. When skeleton is generated,
12228 * bpftool is making an assumption that this name will stay the same.
12229 */
12230 if (opts) {
12231 memcpy(&skel_opts, opts, sizeof(*opts));
12232 if (!opts->object_name)
12233 skel_opts.object_name = s->name;
12234 }
12235
12236 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
12237 err = libbpf_get_error(obj);
12238 if (err) {
12239 pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
12240 s->name, err);
12241 return libbpf_err(err);
12242 }
12243
12244 *s->obj = obj;
12245 err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
12246 if (err) {
12247 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
12248 return libbpf_err(err);
12249 }
12250
12251 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
12252 if (err) {
12253 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
12254 return libbpf_err(err);
12255 }
12256
12257 return 0;
12258 }
12259
bpf_object__open_subskeleton(struct bpf_object_subskeleton * s)12260 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
12261 {
12262 int err, len, var_idx, i;
12263 const char *var_name;
12264 const struct bpf_map *map;
12265 struct btf *btf;
12266 __u32 map_type_id;
12267 const struct btf_type *map_type, *var_type;
12268 const struct bpf_var_skeleton *var_skel;
12269 struct btf_var_secinfo *var;
12270
12271 if (!s->obj)
12272 return libbpf_err(-EINVAL);
12273
12274 btf = bpf_object__btf(s->obj);
12275 if (!btf) {
12276 pr_warn("subskeletons require BTF at runtime (object %s)\n",
12277 bpf_object__name(s->obj));
12278 return libbpf_err(-errno);
12279 }
12280
12281 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
12282 if (err) {
12283 pr_warn("failed to populate subskeleton maps: %d\n", err);
12284 return libbpf_err(err);
12285 }
12286
12287 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
12288 if (err) {
12289 pr_warn("failed to populate subskeleton maps: %d\n", err);
12290 return libbpf_err(err);
12291 }
12292
12293 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
12294 var_skel = &s->vars[var_idx];
12295 map = *var_skel->map;
12296 map_type_id = bpf_map__btf_value_type_id(map);
12297 map_type = btf__type_by_id(btf, map_type_id);
12298
12299 if (!btf_is_datasec(map_type)) {
12300 pr_warn("type for map '%1$s' is not a datasec: %2$s",
12301 bpf_map__name(map),
12302 __btf_kind_str(btf_kind(map_type)));
12303 return libbpf_err(-EINVAL);
12304 }
12305
12306 len = btf_vlen(map_type);
12307 var = btf_var_secinfos(map_type);
12308 for (i = 0; i < len; i++, var++) {
12309 var_type = btf__type_by_id(btf, var->type);
12310 var_name = btf__name_by_offset(btf, var_type->name_off);
12311 if (strcmp(var_name, var_skel->name) == 0) {
12312 *var_skel->addr = map->mmaped + var->offset;
12313 break;
12314 }
12315 }
12316 }
12317 return 0;
12318 }
12319
bpf_object__destroy_subskeleton(struct bpf_object_subskeleton * s)12320 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
12321 {
12322 if (!s)
12323 return;
12324 free(s->maps);
12325 free(s->progs);
12326 free(s->vars);
12327 free(s);
12328 }
12329
bpf_object__load_skeleton(struct bpf_object_skeleton * s)12330 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
12331 {
12332 int i, err;
12333
12334 err = bpf_object__load(*s->obj);
12335 if (err) {
12336 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
12337 return libbpf_err(err);
12338 }
12339
12340 for (i = 0; i < s->map_cnt; i++) {
12341 struct bpf_map *map = *s->maps[i].map;
12342 size_t mmap_sz = bpf_map_mmap_sz(map);
12343 int prot, map_fd = bpf_map__fd(map);
12344 void **mmaped = s->maps[i].mmaped;
12345
12346 if (!mmaped)
12347 continue;
12348
12349 if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
12350 *mmaped = NULL;
12351 continue;
12352 }
12353
12354 if (map->def.map_flags & BPF_F_RDONLY_PROG)
12355 prot = PROT_READ;
12356 else
12357 prot = PROT_READ | PROT_WRITE;
12358
12359 /* Remap anonymous mmap()-ed "map initialization image" as
12360 * a BPF map-backed mmap()-ed memory, but preserving the same
12361 * memory address. This will cause kernel to change process'
12362 * page table to point to a different piece of kernel memory,
12363 * but from userspace point of view memory address (and its
12364 * contents, being identical at this point) will stay the
12365 * same. This mapping will be released by bpf_object__close()
12366 * as per normal clean up procedure, so we don't need to worry
12367 * about it from skeleton's clean up perspective.
12368 */
12369 *mmaped = mmap(map->mmaped, mmap_sz, prot,
12370 MAP_SHARED | MAP_FIXED, map_fd, 0);
12371 if (*mmaped == MAP_FAILED) {
12372 err = -errno;
12373 *mmaped = NULL;
12374 pr_warn("failed to re-mmap() map '%s': %d\n",
12375 bpf_map__name(map), err);
12376 return libbpf_err(err);
12377 }
12378 }
12379
12380 return 0;
12381 }
12382
bpf_object__attach_skeleton(struct bpf_object_skeleton * s)12383 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
12384 {
12385 int i, err;
12386
12387 for (i = 0; i < s->prog_cnt; i++) {
12388 struct bpf_program *prog = *s->progs[i].prog;
12389 struct bpf_link **link = s->progs[i].link;
12390
12391 if (!prog->autoload || !prog->autoattach)
12392 continue;
12393
12394 /* auto-attaching not supported for this program */
12395 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12396 continue;
12397
12398 /* if user already set the link manually, don't attempt auto-attach */
12399 if (*link)
12400 continue;
12401
12402 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
12403 if (err) {
12404 pr_warn("prog '%s': failed to auto-attach: %d\n",
12405 bpf_program__name(prog), err);
12406 return libbpf_err(err);
12407 }
12408
12409 /* It's possible that for some SEC() definitions auto-attach
12410 * is supported in some cases (e.g., if definition completely
12411 * specifies target information), but is not in other cases.
12412 * SEC("uprobe") is one such case. If user specified target
12413 * binary and function name, such BPF program can be
12414 * auto-attached. But if not, it shouldn't trigger skeleton's
12415 * attach to fail. It should just be skipped.
12416 * attach_fn signals such case with returning 0 (no error) and
12417 * setting link to NULL.
12418 */
12419 }
12420
12421 return 0;
12422 }
12423
bpf_object__detach_skeleton(struct bpf_object_skeleton * s)12424 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
12425 {
12426 int i;
12427
12428 for (i = 0; i < s->prog_cnt; i++) {
12429 struct bpf_link **link = s->progs[i].link;
12430
12431 bpf_link__destroy(*link);
12432 *link = NULL;
12433 }
12434 }
12435
bpf_object__destroy_skeleton(struct bpf_object_skeleton * s)12436 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
12437 {
12438 if (!s)
12439 return;
12440
12441 if (s->progs)
12442 bpf_object__detach_skeleton(s);
12443 if (s->obj)
12444 bpf_object__close(*s->obj);
12445 free(s->maps);
12446 free(s->progs);
12447 free(s);
12448 }
12449