1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events ring-buffer code:
4 *
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
10
11 #include <linux/perf_event.h>
12 #include <linux/vmalloc.h>
13 #include <linux/slab.h>
14 #include <linux/circ_buf.h>
15 #include <linux/poll.h>
16 #include <linux/nospec.h>
17
18 #include "internal.h"
19
perf_output_wakeup(struct perf_output_handle * handle)20 static void perf_output_wakeup(struct perf_output_handle *handle)
21 {
22 atomic_set(&handle->rb->poll, EPOLLIN);
23
24 handle->event->pending_wakeup = 1;
25 irq_work_queue(&handle->event->pending_irq);
26 }
27
28 /*
29 * We need to ensure a later event_id doesn't publish a head when a former
30 * event isn't done writing. However since we need to deal with NMIs we
31 * cannot fully serialize things.
32 *
33 * We only publish the head (and generate a wakeup) when the outer-most
34 * event completes.
35 */
perf_output_get_handle(struct perf_output_handle * handle)36 static void perf_output_get_handle(struct perf_output_handle *handle)
37 {
38 struct perf_buffer *rb = handle->rb;
39
40 preempt_disable();
41
42 /*
43 * Avoid an explicit LOAD/STORE such that architectures with memops
44 * can use them.
45 */
46 (*(volatile unsigned int *)&rb->nest)++;
47 handle->wakeup = local_read(&rb->wakeup);
48 }
49
perf_output_put_handle(struct perf_output_handle * handle)50 static void perf_output_put_handle(struct perf_output_handle *handle)
51 {
52 struct perf_buffer *rb = handle->rb;
53 unsigned long head;
54 unsigned int nest;
55
56 /*
57 * If this isn't the outermost nesting, we don't have to update
58 * @rb->user_page->data_head.
59 */
60 nest = READ_ONCE(rb->nest);
61 if (nest > 1) {
62 WRITE_ONCE(rb->nest, nest - 1);
63 goto out;
64 }
65
66 again:
67 /*
68 * In order to avoid publishing a head value that goes backwards,
69 * we must ensure the load of @rb->head happens after we've
70 * incremented @rb->nest.
71 *
72 * Otherwise we can observe a @rb->head value before one published
73 * by an IRQ/NMI happening between the load and the increment.
74 */
75 barrier();
76 head = local_read(&rb->head);
77
78 /*
79 * IRQ/NMI can happen here and advance @rb->head, causing our
80 * load above to be stale.
81 */
82
83 /*
84 * Since the mmap() consumer (userspace) can run on a different CPU:
85 *
86 * kernel user
87 *
88 * if (LOAD ->data_tail) { LOAD ->data_head
89 * (A) smp_rmb() (C)
90 * STORE $data LOAD $data
91 * smp_wmb() (B) smp_mb() (D)
92 * STORE ->data_head STORE ->data_tail
93 * }
94 *
95 * Where A pairs with D, and B pairs with C.
96 *
97 * In our case (A) is a control dependency that separates the load of
98 * the ->data_tail and the stores of $data. In case ->data_tail
99 * indicates there is no room in the buffer to store $data we do not.
100 *
101 * D needs to be a full barrier since it separates the data READ
102 * from the tail WRITE.
103 *
104 * For B a WMB is sufficient since it separates two WRITEs, and for C
105 * an RMB is sufficient since it separates two READs.
106 *
107 * See perf_output_begin().
108 */
109 smp_wmb(); /* B, matches C */
110 WRITE_ONCE(rb->user_page->data_head, head);
111
112 /*
113 * We must publish the head before decrementing the nest count,
114 * otherwise an IRQ/NMI can publish a more recent head value and our
115 * write will (temporarily) publish a stale value.
116 */
117 barrier();
118 WRITE_ONCE(rb->nest, 0);
119
120 /*
121 * Ensure we decrement @rb->nest before we validate the @rb->head.
122 * Otherwise we cannot be sure we caught the 'last' nested update.
123 */
124 barrier();
125 if (unlikely(head != local_read(&rb->head))) {
126 WRITE_ONCE(rb->nest, 1);
127 goto again;
128 }
129
130 if (handle->wakeup != local_read(&rb->wakeup))
131 perf_output_wakeup(handle);
132
133 out:
134 preempt_enable();
135 }
136
137 static __always_inline bool
ring_buffer_has_space(unsigned long head,unsigned long tail,unsigned long data_size,unsigned int size,bool backward)138 ring_buffer_has_space(unsigned long head, unsigned long tail,
139 unsigned long data_size, unsigned int size,
140 bool backward)
141 {
142 if (!backward)
143 return CIRC_SPACE(head, tail, data_size) >= size;
144 else
145 return CIRC_SPACE(tail, head, data_size) >= size;
146 }
147
148 static __always_inline int
__perf_output_begin(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size,bool backward)149 __perf_output_begin(struct perf_output_handle *handle,
150 struct perf_sample_data *data,
151 struct perf_event *event, unsigned int size,
152 bool backward)
153 {
154 struct perf_buffer *rb;
155 unsigned long tail, offset, head;
156 int have_lost, page_shift;
157 struct {
158 struct perf_event_header header;
159 u64 id;
160 u64 lost;
161 } lost_event;
162
163 rcu_read_lock();
164 /*
165 * For inherited events we send all the output towards the parent.
166 */
167 if (event->parent)
168 event = event->parent;
169
170 rb = rcu_dereference(event->rb);
171 if (unlikely(!rb))
172 goto out;
173
174 if (unlikely(rb->paused)) {
175 if (rb->nr_pages) {
176 local_inc(&rb->lost);
177 atomic64_inc(&event->lost_samples);
178 }
179 goto out;
180 }
181
182 handle->rb = rb;
183 handle->event = event;
184
185 have_lost = local_read(&rb->lost);
186 if (unlikely(have_lost)) {
187 size += sizeof(lost_event);
188 if (event->attr.sample_id_all)
189 size += event->id_header_size;
190 }
191
192 perf_output_get_handle(handle);
193
194 do {
195 tail = READ_ONCE(rb->user_page->data_tail);
196 offset = head = local_read(&rb->head);
197 if (!rb->overwrite) {
198 if (unlikely(!ring_buffer_has_space(head, tail,
199 perf_data_size(rb),
200 size, backward)))
201 goto fail;
202 }
203
204 /*
205 * The above forms a control dependency barrier separating the
206 * @tail load above from the data stores below. Since the @tail
207 * load is required to compute the branch to fail below.
208 *
209 * A, matches D; the full memory barrier userspace SHOULD issue
210 * after reading the data and before storing the new tail
211 * position.
212 *
213 * See perf_output_put_handle().
214 */
215
216 if (!backward)
217 head += size;
218 else
219 head -= size;
220 } while (local_cmpxchg(&rb->head, offset, head) != offset);
221
222 if (backward) {
223 offset = head;
224 head = (u64)(-head);
225 }
226
227 /*
228 * We rely on the implied barrier() by local_cmpxchg() to ensure
229 * none of the data stores below can be lifted up by the compiler.
230 */
231
232 if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
233 local_add(rb->watermark, &rb->wakeup);
234
235 page_shift = PAGE_SHIFT + page_order(rb);
236
237 handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
238 offset &= (1UL << page_shift) - 1;
239 handle->addr = rb->data_pages[handle->page] + offset;
240 handle->size = (1UL << page_shift) - offset;
241
242 if (unlikely(have_lost)) {
243 lost_event.header.size = sizeof(lost_event);
244 lost_event.header.type = PERF_RECORD_LOST;
245 lost_event.header.misc = 0;
246 lost_event.id = event->id;
247 lost_event.lost = local_xchg(&rb->lost, 0);
248
249 /* XXX mostly redundant; @data is already fully initializes */
250 perf_event_header__init_id(&lost_event.header, data, event);
251 perf_output_put(handle, lost_event);
252 perf_event__output_id_sample(event, handle, data);
253 }
254
255 return 0;
256
257 fail:
258 local_inc(&rb->lost);
259 atomic64_inc(&event->lost_samples);
260 perf_output_put_handle(handle);
261 out:
262 rcu_read_unlock();
263
264 return -ENOSPC;
265 }
266
perf_output_begin_forward(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size)267 int perf_output_begin_forward(struct perf_output_handle *handle,
268 struct perf_sample_data *data,
269 struct perf_event *event, unsigned int size)
270 {
271 return __perf_output_begin(handle, data, event, size, false);
272 }
273
perf_output_begin_backward(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size)274 int perf_output_begin_backward(struct perf_output_handle *handle,
275 struct perf_sample_data *data,
276 struct perf_event *event, unsigned int size)
277 {
278 return __perf_output_begin(handle, data, event, size, true);
279 }
280
perf_output_begin(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size)281 int perf_output_begin(struct perf_output_handle *handle,
282 struct perf_sample_data *data,
283 struct perf_event *event, unsigned int size)
284 {
285
286 return __perf_output_begin(handle, data, event, size,
287 unlikely(is_write_backward(event)));
288 }
289
perf_output_copy(struct perf_output_handle * handle,const void * buf,unsigned int len)290 unsigned int perf_output_copy(struct perf_output_handle *handle,
291 const void *buf, unsigned int len)
292 {
293 return __output_copy(handle, buf, len);
294 }
295
perf_output_skip(struct perf_output_handle * handle,unsigned int len)296 unsigned int perf_output_skip(struct perf_output_handle *handle,
297 unsigned int len)
298 {
299 return __output_skip(handle, NULL, len);
300 }
301
perf_output_end(struct perf_output_handle * handle)302 void perf_output_end(struct perf_output_handle *handle)
303 {
304 perf_output_put_handle(handle);
305 rcu_read_unlock();
306 }
307
308 static void
ring_buffer_init(struct perf_buffer * rb,long watermark,int flags)309 ring_buffer_init(struct perf_buffer *rb, long watermark, int flags)
310 {
311 long max_size = perf_data_size(rb);
312
313 if (watermark)
314 rb->watermark = min(max_size, watermark);
315
316 if (!rb->watermark)
317 rb->watermark = max_size / 2;
318
319 if (flags & RING_BUFFER_WRITABLE)
320 rb->overwrite = 0;
321 else
322 rb->overwrite = 1;
323
324 refcount_set(&rb->refcount, 1);
325
326 INIT_LIST_HEAD(&rb->event_list);
327 spin_lock_init(&rb->event_lock);
328
329 /*
330 * perf_output_begin() only checks rb->paused, therefore
331 * rb->paused must be true if we have no pages for output.
332 */
333 if (!rb->nr_pages)
334 rb->paused = 1;
335 }
336
perf_aux_output_flag(struct perf_output_handle * handle,u64 flags)337 void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags)
338 {
339 /*
340 * OVERWRITE is determined by perf_aux_output_end() and can't
341 * be passed in directly.
342 */
343 if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE))
344 return;
345
346 handle->aux_flags |= flags;
347 }
348 EXPORT_SYMBOL_GPL(perf_aux_output_flag);
349
350 /*
351 * This is called before hardware starts writing to the AUX area to
352 * obtain an output handle and make sure there's room in the buffer.
353 * When the capture completes, call perf_aux_output_end() to commit
354 * the recorded data to the buffer.
355 *
356 * The ordering is similar to that of perf_output_{begin,end}, with
357 * the exception of (B), which should be taken care of by the pmu
358 * driver, since ordering rules will differ depending on hardware.
359 *
360 * Call this from pmu::start(); see the comment in perf_aux_output_end()
361 * about its use in pmu callbacks. Both can also be called from the PMI
362 * handler if needed.
363 */
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)364 void *perf_aux_output_begin(struct perf_output_handle *handle,
365 struct perf_event *event)
366 {
367 struct perf_event *output_event = event;
368 unsigned long aux_head, aux_tail;
369 struct perf_buffer *rb;
370 unsigned int nest;
371
372 if (output_event->parent)
373 output_event = output_event->parent;
374
375 /*
376 * Since this will typically be open across pmu::add/pmu::del, we
377 * grab ring_buffer's refcount instead of holding rcu read lock
378 * to make sure it doesn't disappear under us.
379 */
380 rb = ring_buffer_get(output_event);
381 if (!rb)
382 return NULL;
383
384 if (!rb_has_aux(rb))
385 goto err;
386
387 /*
388 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(),
389 * about to get freed, so we leave immediately.
390 *
391 * Checking rb::aux_mmap_count and rb::refcount has to be done in
392 * the same order, see perf_mmap_close. Otherwise we end up freeing
393 * aux pages in this path, which is a bug, because in_atomic().
394 */
395 if (!atomic_read(&rb->aux_mmap_count))
396 goto err;
397
398 if (!refcount_inc_not_zero(&rb->aux_refcount))
399 goto err;
400
401 nest = READ_ONCE(rb->aux_nest);
402 /*
403 * Nesting is not supported for AUX area, make sure nested
404 * writers are caught early
405 */
406 if (WARN_ON_ONCE(nest))
407 goto err_put;
408
409 WRITE_ONCE(rb->aux_nest, nest + 1);
410
411 aux_head = rb->aux_head;
412
413 handle->rb = rb;
414 handle->event = event;
415 handle->head = aux_head;
416 handle->size = 0;
417 handle->aux_flags = 0;
418
419 /*
420 * In overwrite mode, AUX data stores do not depend on aux_tail,
421 * therefore (A) control dependency barrier does not exist. The
422 * (B) <-> (C) ordering is still observed by the pmu driver.
423 */
424 if (!rb->aux_overwrite) {
425 aux_tail = READ_ONCE(rb->user_page->aux_tail);
426 handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
427 if (aux_head - aux_tail < perf_aux_size(rb))
428 handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
429
430 /*
431 * handle->size computation depends on aux_tail load; this forms a
432 * control dependency barrier separating aux_tail load from aux data
433 * store that will be enabled on successful return
434 */
435 if (!handle->size) { /* A, matches D */
436 event->pending_disable = smp_processor_id();
437 perf_output_wakeup(handle);
438 WRITE_ONCE(rb->aux_nest, 0);
439 goto err_put;
440 }
441 }
442
443 return handle->rb->aux_priv;
444
445 err_put:
446 /* can't be last */
447 rb_free_aux(rb);
448
449 err:
450 ring_buffer_put(rb);
451 handle->event = NULL;
452
453 return NULL;
454 }
455 EXPORT_SYMBOL_GPL(perf_aux_output_begin);
456
rb_need_aux_wakeup(struct perf_buffer * rb)457 static __always_inline bool rb_need_aux_wakeup(struct perf_buffer *rb)
458 {
459 if (rb->aux_overwrite)
460 return false;
461
462 if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) {
463 rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark);
464 return true;
465 }
466
467 return false;
468 }
469
470 /*
471 * Commit the data written by hardware into the ring buffer by adjusting
472 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
473 * pmu driver's responsibility to observe ordering rules of the hardware,
474 * so that all the data is externally visible before this is called.
475 *
476 * Note: this has to be called from pmu::stop() callback, as the assumption
477 * of the AUX buffer management code is that after pmu::stop(), the AUX
478 * transaction must be stopped and therefore drop the AUX reference count.
479 */
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)480 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
481 {
482 bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED);
483 struct perf_buffer *rb = handle->rb;
484 unsigned long aux_head;
485
486 /* in overwrite mode, driver provides aux_head via handle */
487 if (rb->aux_overwrite) {
488 handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE;
489
490 aux_head = handle->head;
491 rb->aux_head = aux_head;
492 } else {
493 handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE;
494
495 aux_head = rb->aux_head;
496 rb->aux_head += size;
497 }
498
499 /*
500 * Only send RECORD_AUX if we have something useful to communicate
501 *
502 * Note: the OVERWRITE records by themselves are not considered
503 * useful, as they don't communicate any *new* information,
504 * aside from the short-lived offset, that becomes history at
505 * the next event sched-in and therefore isn't useful.
506 * The userspace that needs to copy out AUX data in overwrite
507 * mode should know to use user_page::aux_head for the actual
508 * offset. So, from now on we don't output AUX records that
509 * have *only* OVERWRITE flag set.
510 */
511 if (size || (handle->aux_flags & ~(u64)PERF_AUX_FLAG_OVERWRITE))
512 perf_event_aux_event(handle->event, aux_head, size,
513 handle->aux_flags);
514
515 WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
516 if (rb_need_aux_wakeup(rb))
517 wakeup = true;
518
519 if (wakeup) {
520 if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)
521 handle->event->pending_disable = smp_processor_id();
522 perf_output_wakeup(handle);
523 }
524
525 handle->event = NULL;
526
527 WRITE_ONCE(rb->aux_nest, 0);
528 /* can't be last */
529 rb_free_aux(rb);
530 ring_buffer_put(rb);
531 }
532 EXPORT_SYMBOL_GPL(perf_aux_output_end);
533
534 /*
535 * Skip over a given number of bytes in the AUX buffer, due to, for example,
536 * hardware's alignment constraints.
537 */
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)538 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
539 {
540 struct perf_buffer *rb = handle->rb;
541
542 if (size > handle->size)
543 return -ENOSPC;
544
545 rb->aux_head += size;
546
547 WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
548 if (rb_need_aux_wakeup(rb)) {
549 perf_output_wakeup(handle);
550 handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
551 }
552
553 handle->head = rb->aux_head;
554 handle->size -= size;
555
556 return 0;
557 }
558 EXPORT_SYMBOL_GPL(perf_aux_output_skip);
559
perf_get_aux(struct perf_output_handle * handle)560 void *perf_get_aux(struct perf_output_handle *handle)
561 {
562 /* this is only valid between perf_aux_output_begin and *_end */
563 if (!handle->event)
564 return NULL;
565
566 return handle->rb->aux_priv;
567 }
568 EXPORT_SYMBOL_GPL(perf_get_aux);
569
570 /*
571 * Copy out AUX data from an AUX handle.
572 */
perf_output_copy_aux(struct perf_output_handle * aux_handle,struct perf_output_handle * handle,unsigned long from,unsigned long to)573 long perf_output_copy_aux(struct perf_output_handle *aux_handle,
574 struct perf_output_handle *handle,
575 unsigned long from, unsigned long to)
576 {
577 struct perf_buffer *rb = aux_handle->rb;
578 unsigned long tocopy, remainder, len = 0;
579 void *addr;
580
581 from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
582 to &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
583
584 do {
585 tocopy = PAGE_SIZE - offset_in_page(from);
586 if (to > from)
587 tocopy = min(tocopy, to - from);
588 if (!tocopy)
589 break;
590
591 addr = rb->aux_pages[from >> PAGE_SHIFT];
592 addr += offset_in_page(from);
593
594 remainder = perf_output_copy(handle, addr, tocopy);
595 if (remainder)
596 return -EFAULT;
597
598 len += tocopy;
599 from += tocopy;
600 from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
601 } while (to != from);
602
603 return len;
604 }
605
606 #define PERF_AUX_GFP (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
607
rb_alloc_aux_page(int node,int order)608 static struct page *rb_alloc_aux_page(int node, int order)
609 {
610 struct page *page;
611
612 if (order > MAX_ORDER)
613 order = MAX_ORDER;
614
615 do {
616 page = alloc_pages_node(node, PERF_AUX_GFP, order);
617 } while (!page && order--);
618
619 if (page && order) {
620 /*
621 * Communicate the allocation size to the driver:
622 * if we managed to secure a high-order allocation,
623 * set its first page's private to this order;
624 * !PagePrivate(page) means it's just a normal page.
625 */
626 split_page(page, order);
627 SetPagePrivate(page);
628 set_page_private(page, order);
629 }
630
631 return page;
632 }
633
rb_free_aux_page(struct perf_buffer * rb,int idx)634 static void rb_free_aux_page(struct perf_buffer *rb, int idx)
635 {
636 struct page *page = virt_to_page(rb->aux_pages[idx]);
637
638 ClearPagePrivate(page);
639 page->mapping = NULL;
640 __free_page(page);
641 }
642
__rb_free_aux(struct perf_buffer * rb)643 static void __rb_free_aux(struct perf_buffer *rb)
644 {
645 int pg;
646
647 /*
648 * Should never happen, the last reference should be dropped from
649 * perf_mmap_close() path, which first stops aux transactions (which
650 * in turn are the atomic holders of aux_refcount) and then does the
651 * last rb_free_aux().
652 */
653 WARN_ON_ONCE(in_atomic());
654
655 if (rb->aux_priv) {
656 rb->free_aux(rb->aux_priv);
657 rb->free_aux = NULL;
658 rb->aux_priv = NULL;
659 }
660
661 if (rb->aux_nr_pages) {
662 for (pg = 0; pg < rb->aux_nr_pages; pg++)
663 rb_free_aux_page(rb, pg);
664
665 kfree(rb->aux_pages);
666 rb->aux_nr_pages = 0;
667 }
668 }
669
rb_alloc_aux(struct perf_buffer * rb,struct perf_event * event,pgoff_t pgoff,int nr_pages,long watermark,int flags)670 int rb_alloc_aux(struct perf_buffer *rb, struct perf_event *event,
671 pgoff_t pgoff, int nr_pages, long watermark, int flags)
672 {
673 bool overwrite = !(flags & RING_BUFFER_WRITABLE);
674 int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
675 int ret = -ENOMEM, max_order;
676
677 if (!has_aux(event))
678 return -EOPNOTSUPP;
679
680 if (!overwrite) {
681 /*
682 * Watermark defaults to half the buffer, and so does the
683 * max_order, to aid PMU drivers in double buffering.
684 */
685 if (!watermark)
686 watermark = nr_pages << (PAGE_SHIFT - 1);
687
688 /*
689 * Use aux_watermark as the basis for chunking to
690 * help PMU drivers honor the watermark.
691 */
692 max_order = get_order(watermark);
693 } else {
694 /*
695 * We need to start with the max_order that fits in nr_pages,
696 * not the other way around, hence ilog2() and not get_order.
697 */
698 max_order = ilog2(nr_pages);
699 watermark = 0;
700 }
701
702 /*
703 * kcalloc_node() is unable to allocate buffer if the size is larger
704 * than: PAGE_SIZE << MAX_ORDER; directly bail out in this case.
705 */
706 if (get_order((unsigned long)nr_pages * sizeof(void *)) > MAX_ORDER)
707 return -ENOMEM;
708 rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL,
709 node);
710 if (!rb->aux_pages)
711 return -ENOMEM;
712
713 rb->free_aux = event->pmu->free_aux;
714 for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
715 struct page *page;
716 int last, order;
717
718 order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
719 page = rb_alloc_aux_page(node, order);
720 if (!page)
721 goto out;
722
723 for (last = rb->aux_nr_pages + (1 << page_private(page));
724 last > rb->aux_nr_pages; rb->aux_nr_pages++)
725 rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
726 }
727
728 /*
729 * In overwrite mode, PMUs that don't support SG may not handle more
730 * than one contiguous allocation, since they rely on PMI to do double
731 * buffering. In this case, the entire buffer has to be one contiguous
732 * chunk.
733 */
734 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
735 overwrite) {
736 struct page *page = virt_to_page(rb->aux_pages[0]);
737
738 if (page_private(page) != max_order)
739 goto out;
740 }
741
742 rb->aux_priv = event->pmu->setup_aux(event, rb->aux_pages, nr_pages,
743 overwrite);
744 if (!rb->aux_priv)
745 goto out;
746
747 ret = 0;
748
749 /*
750 * aux_pages (and pmu driver's private data, aux_priv) will be
751 * referenced in both producer's and consumer's contexts, thus
752 * we keep a refcount here to make sure either of the two can
753 * reference them safely.
754 */
755 refcount_set(&rb->aux_refcount, 1);
756
757 rb->aux_overwrite = overwrite;
758 rb->aux_watermark = watermark;
759
760 out:
761 if (!ret)
762 rb->aux_pgoff = pgoff;
763 else
764 __rb_free_aux(rb);
765
766 return ret;
767 }
768
rb_free_aux(struct perf_buffer * rb)769 void rb_free_aux(struct perf_buffer *rb)
770 {
771 if (refcount_dec_and_test(&rb->aux_refcount))
772 __rb_free_aux(rb);
773 }
774
775 #ifndef CONFIG_PERF_USE_VMALLOC
776
777 /*
778 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
779 */
780
781 static struct page *
__perf_mmap_to_page(struct perf_buffer * rb,unsigned long pgoff)782 __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
783 {
784 if (pgoff > rb->nr_pages)
785 return NULL;
786
787 if (pgoff == 0)
788 return virt_to_page(rb->user_page);
789
790 return virt_to_page(rb->data_pages[pgoff - 1]);
791 }
792
perf_mmap_alloc_page(int cpu)793 static void *perf_mmap_alloc_page(int cpu)
794 {
795 struct page *page;
796 int node;
797
798 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
799 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
800 if (!page)
801 return NULL;
802
803 return page_address(page);
804 }
805
perf_mmap_free_page(void * addr)806 static void perf_mmap_free_page(void *addr)
807 {
808 struct page *page = virt_to_page(addr);
809
810 page->mapping = NULL;
811 __free_page(page);
812 }
813
rb_alloc(int nr_pages,long watermark,int cpu,int flags)814 struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
815 {
816 struct perf_buffer *rb;
817 unsigned long size;
818 int i, node;
819
820 size = sizeof(struct perf_buffer);
821 size += nr_pages * sizeof(void *);
822
823 if (order_base_2(size) >= PAGE_SHIFT+MAX_ORDER)
824 goto fail;
825
826 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
827 rb = kzalloc_node(size, GFP_KERNEL, node);
828 if (!rb)
829 goto fail;
830
831 rb->user_page = perf_mmap_alloc_page(cpu);
832 if (!rb->user_page)
833 goto fail_user_page;
834
835 for (i = 0; i < nr_pages; i++) {
836 rb->data_pages[i] = perf_mmap_alloc_page(cpu);
837 if (!rb->data_pages[i])
838 goto fail_data_pages;
839 }
840
841 rb->nr_pages = nr_pages;
842
843 ring_buffer_init(rb, watermark, flags);
844
845 return rb;
846
847 fail_data_pages:
848 for (i--; i >= 0; i--)
849 perf_mmap_free_page(rb->data_pages[i]);
850
851 perf_mmap_free_page(rb->user_page);
852
853 fail_user_page:
854 kfree(rb);
855
856 fail:
857 return NULL;
858 }
859
rb_free(struct perf_buffer * rb)860 void rb_free(struct perf_buffer *rb)
861 {
862 int i;
863
864 perf_mmap_free_page(rb->user_page);
865 for (i = 0; i < rb->nr_pages; i++)
866 perf_mmap_free_page(rb->data_pages[i]);
867 kfree(rb);
868 }
869
870 #else
871 static struct page *
__perf_mmap_to_page(struct perf_buffer * rb,unsigned long pgoff)872 __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
873 {
874 /* The '>' counts in the user page. */
875 if (pgoff > data_page_nr(rb))
876 return NULL;
877
878 return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
879 }
880
perf_mmap_unmark_page(void * addr)881 static void perf_mmap_unmark_page(void *addr)
882 {
883 struct page *page = vmalloc_to_page(addr);
884
885 page->mapping = NULL;
886 }
887
rb_free_work(struct work_struct * work)888 static void rb_free_work(struct work_struct *work)
889 {
890 struct perf_buffer *rb;
891 void *base;
892 int i, nr;
893
894 rb = container_of(work, struct perf_buffer, work);
895 nr = data_page_nr(rb);
896
897 base = rb->user_page;
898 /* The '<=' counts in the user page. */
899 for (i = 0; i <= nr; i++)
900 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
901
902 vfree(base);
903 kfree(rb);
904 }
905
rb_free(struct perf_buffer * rb)906 void rb_free(struct perf_buffer *rb)
907 {
908 schedule_work(&rb->work);
909 }
910
rb_alloc(int nr_pages,long watermark,int cpu,int flags)911 struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
912 {
913 struct perf_buffer *rb;
914 unsigned long size;
915 void *all_buf;
916 int node;
917
918 size = sizeof(struct perf_buffer);
919 size += sizeof(void *);
920
921 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
922 rb = kzalloc_node(size, GFP_KERNEL, node);
923 if (!rb)
924 goto fail;
925
926 INIT_WORK(&rb->work, rb_free_work);
927
928 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
929 if (!all_buf)
930 goto fail_all_buf;
931
932 rb->user_page = all_buf;
933 rb->data_pages[0] = all_buf + PAGE_SIZE;
934 if (nr_pages) {
935 rb->nr_pages = 1;
936 rb->page_order = ilog2(nr_pages);
937 }
938
939 ring_buffer_init(rb, watermark, flags);
940
941 return rb;
942
943 fail_all_buf:
944 kfree(rb);
945
946 fail:
947 return NULL;
948 }
949
950 #endif
951
952 struct page *
perf_mmap_to_page(struct perf_buffer * rb,unsigned long pgoff)953 perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
954 {
955 if (rb->aux_nr_pages) {
956 /* above AUX space */
957 if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
958 return NULL;
959
960 /* AUX space */
961 if (pgoff >= rb->aux_pgoff) {
962 int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages);
963 return virt_to_page(rb->aux_pages[aux_pgoff]);
964 }
965 }
966
967 return __perf_mmap_to_page(rb, pgoff);
968 }
969