1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/pipe.c
4 *
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28 #include <linux/sysctl.h>
29
30 #include <linux/uaccess.h>
31 #include <asm/ioctls.h>
32
33 #include "internal.h"
34
35 /*
36 * New pipe buffers will be restricted to this size while the user is exceeding
37 * their pipe buffer quota. The general pipe use case needs at least two
38 * buffers: one for data yet to be read, and one for new data. If this is less
39 * than two, then a write to a non-empty pipe may block even if the pipe is not
40 * full. This can occur with GNU make jobserver or similar uses of pipes as
41 * semaphores: multiple processes may be waiting to write tokens back to the
42 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
43 *
44 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
45 * own risk, namely: pipe writes to non-full pipes may block until the pipe is
46 * emptied.
47 */
48 #define PIPE_MIN_DEF_BUFFERS 2
49
50 /*
51 * The max size that a non-root user is allowed to grow the pipe. Can
52 * be set by root in /proc/sys/fs/pipe-max-size
53 */
54 static unsigned int pipe_max_size = 1048576;
55
56 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
57 * matches default values.
58 */
59 static unsigned long pipe_user_pages_hard;
60 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
61
62 /*
63 * We use head and tail indices that aren't masked off, except at the point of
64 * dereference, but rather they're allowed to wrap naturally. This means there
65 * isn't a dead spot in the buffer, but the ring has to be a power of two and
66 * <= 2^31.
67 * -- David Howells 2019-09-23.
68 *
69 * Reads with count = 0 should always return 0.
70 * -- Julian Bradfield 1999-06-07.
71 *
72 * FIFOs and Pipes now generate SIGIO for both readers and writers.
73 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
74 *
75 * pipe_read & write cleanup
76 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
77 */
78
pipe_lock_nested(struct pipe_inode_info * pipe,int subclass)79 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
80 {
81 if (pipe->files)
82 mutex_lock_nested(&pipe->mutex, subclass);
83 }
84
pipe_lock(struct pipe_inode_info * pipe)85 void pipe_lock(struct pipe_inode_info *pipe)
86 {
87 /*
88 * pipe_lock() nests non-pipe inode locks (for writing to a file)
89 */
90 pipe_lock_nested(pipe, I_MUTEX_PARENT);
91 }
92 EXPORT_SYMBOL(pipe_lock);
93
pipe_unlock(struct pipe_inode_info * pipe)94 void pipe_unlock(struct pipe_inode_info *pipe)
95 {
96 if (pipe->files)
97 mutex_unlock(&pipe->mutex);
98 }
99 EXPORT_SYMBOL(pipe_unlock);
100
__pipe_lock(struct pipe_inode_info * pipe)101 static inline void __pipe_lock(struct pipe_inode_info *pipe)
102 {
103 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
104 }
105
__pipe_unlock(struct pipe_inode_info * pipe)106 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
107 {
108 mutex_unlock(&pipe->mutex);
109 }
110
pipe_double_lock(struct pipe_inode_info * pipe1,struct pipe_inode_info * pipe2)111 void pipe_double_lock(struct pipe_inode_info *pipe1,
112 struct pipe_inode_info *pipe2)
113 {
114 BUG_ON(pipe1 == pipe2);
115
116 if (pipe1 < pipe2) {
117 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
118 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
119 } else {
120 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
121 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
122 }
123 }
124
anon_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)125 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
126 struct pipe_buffer *buf)
127 {
128 struct page *page = buf->page;
129
130 /*
131 * If nobody else uses this page, and we don't already have a
132 * temporary page, let's keep track of it as a one-deep
133 * allocation cache. (Otherwise just release our reference to it)
134 */
135 if (page_count(page) == 1 && !pipe->tmp_page)
136 pipe->tmp_page = page;
137 else
138 put_page(page);
139 }
140
anon_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)141 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
142 struct pipe_buffer *buf)
143 {
144 struct page *page = buf->page;
145
146 if (page_count(page) != 1)
147 return false;
148 memcg_kmem_uncharge_page(page, 0);
149 __SetPageLocked(page);
150 return true;
151 }
152
153 /**
154 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
155 * @pipe: the pipe that the buffer belongs to
156 * @buf: the buffer to attempt to steal
157 *
158 * Description:
159 * This function attempts to steal the &struct page attached to
160 * @buf. If successful, this function returns 0 and returns with
161 * the page locked. The caller may then reuse the page for whatever
162 * he wishes; the typical use is insertion into a different file
163 * page cache.
164 */
generic_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)165 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
166 struct pipe_buffer *buf)
167 {
168 struct page *page = buf->page;
169
170 /*
171 * A reference of one is golden, that means that the owner of this
172 * page is the only one holding a reference to it. lock the page
173 * and return OK.
174 */
175 if (page_count(page) == 1) {
176 lock_page(page);
177 return true;
178 }
179 return false;
180 }
181 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
182
183 /**
184 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
185 * @pipe: the pipe that the buffer belongs to
186 * @buf: the buffer to get a reference to
187 *
188 * Description:
189 * This function grabs an extra reference to @buf. It's used in
190 * the tee() system call, when we duplicate the buffers in one
191 * pipe into another.
192 */
generic_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)193 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
194 {
195 return try_get_page(buf->page);
196 }
197 EXPORT_SYMBOL(generic_pipe_buf_get);
198
199 /**
200 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
201 * @pipe: the pipe that the buffer belongs to
202 * @buf: the buffer to put a reference to
203 *
204 * Description:
205 * This function releases a reference to @buf.
206 */
generic_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)207 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
208 struct pipe_buffer *buf)
209 {
210 put_page(buf->page);
211 }
212 EXPORT_SYMBOL(generic_pipe_buf_release);
213
214 static const struct pipe_buf_operations anon_pipe_buf_ops = {
215 .release = anon_pipe_buf_release,
216 .try_steal = anon_pipe_buf_try_steal,
217 .get = generic_pipe_buf_get,
218 };
219
220 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
pipe_readable(const struct pipe_inode_info * pipe)221 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
222 {
223 unsigned int head = READ_ONCE(pipe->head);
224 unsigned int tail = READ_ONCE(pipe->tail);
225 unsigned int writers = READ_ONCE(pipe->writers);
226
227 return !pipe_empty(head, tail) || !writers;
228 }
229
230 static ssize_t
pipe_read(struct kiocb * iocb,struct iov_iter * to)231 pipe_read(struct kiocb *iocb, struct iov_iter *to)
232 {
233 size_t total_len = iov_iter_count(to);
234 struct file *filp = iocb->ki_filp;
235 struct pipe_inode_info *pipe = filp->private_data;
236 bool was_full, wake_next_reader = false;
237 ssize_t ret;
238
239 /* Null read succeeds. */
240 if (unlikely(total_len == 0))
241 return 0;
242
243 ret = 0;
244 __pipe_lock(pipe);
245
246 /*
247 * We only wake up writers if the pipe was full when we started
248 * reading in order to avoid unnecessary wakeups.
249 *
250 * But when we do wake up writers, we do so using a sync wakeup
251 * (WF_SYNC), because we want them to get going and generate more
252 * data for us.
253 */
254 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
255 for (;;) {
256 /* Read ->head with a barrier vs post_one_notification() */
257 unsigned int head = smp_load_acquire(&pipe->head);
258 unsigned int tail = pipe->tail;
259 unsigned int mask = pipe->ring_size - 1;
260
261 #ifdef CONFIG_WATCH_QUEUE
262 if (pipe->note_loss) {
263 struct watch_notification n;
264
265 if (total_len < 8) {
266 if (ret == 0)
267 ret = -ENOBUFS;
268 break;
269 }
270
271 n.type = WATCH_TYPE_META;
272 n.subtype = WATCH_META_LOSS_NOTIFICATION;
273 n.info = watch_sizeof(n);
274 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
275 if (ret == 0)
276 ret = -EFAULT;
277 break;
278 }
279 ret += sizeof(n);
280 total_len -= sizeof(n);
281 pipe->note_loss = false;
282 }
283 #endif
284
285 if (!pipe_empty(head, tail)) {
286 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
287 size_t chars = buf->len;
288 size_t written;
289 int error;
290
291 if (chars > total_len) {
292 if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
293 if (ret == 0)
294 ret = -ENOBUFS;
295 break;
296 }
297 chars = total_len;
298 }
299
300 error = pipe_buf_confirm(pipe, buf);
301 if (error) {
302 if (!ret)
303 ret = error;
304 break;
305 }
306
307 written = copy_page_to_iter(buf->page, buf->offset, chars, to);
308 if (unlikely(written < chars)) {
309 if (!ret)
310 ret = -EFAULT;
311 break;
312 }
313 ret += chars;
314 buf->offset += chars;
315 buf->len -= chars;
316
317 /* Was it a packet buffer? Clean up and exit */
318 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
319 total_len = chars;
320 buf->len = 0;
321 }
322
323 if (!buf->len) {
324 pipe_buf_release(pipe, buf);
325 spin_lock_irq(&pipe->rd_wait.lock);
326 #ifdef CONFIG_WATCH_QUEUE
327 if (buf->flags & PIPE_BUF_FLAG_LOSS)
328 pipe->note_loss = true;
329 #endif
330 tail++;
331 pipe->tail = tail;
332 spin_unlock_irq(&pipe->rd_wait.lock);
333 }
334 total_len -= chars;
335 if (!total_len)
336 break; /* common path: read succeeded */
337 if (!pipe_empty(head, tail)) /* More to do? */
338 continue;
339 }
340
341 if (!pipe->writers)
342 break;
343 if (ret)
344 break;
345 if (filp->f_flags & O_NONBLOCK) {
346 ret = -EAGAIN;
347 break;
348 }
349 __pipe_unlock(pipe);
350
351 /*
352 * We only get here if we didn't actually read anything.
353 *
354 * However, we could have seen (and removed) a zero-sized
355 * pipe buffer, and might have made space in the buffers
356 * that way.
357 *
358 * You can't make zero-sized pipe buffers by doing an empty
359 * write (not even in packet mode), but they can happen if
360 * the writer gets an EFAULT when trying to fill a buffer
361 * that already got allocated and inserted in the buffer
362 * array.
363 *
364 * So we still need to wake up any pending writers in the
365 * _very_ unlikely case that the pipe was full, but we got
366 * no data.
367 */
368 if (unlikely(was_full))
369 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
370 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
371
372 /*
373 * But because we didn't read anything, at this point we can
374 * just return directly with -ERESTARTSYS if we're interrupted,
375 * since we've done any required wakeups and there's no need
376 * to mark anything accessed. And we've dropped the lock.
377 */
378 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
379 return -ERESTARTSYS;
380
381 __pipe_lock(pipe);
382 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
383 wake_next_reader = true;
384 }
385 if (pipe_empty(pipe->head, pipe->tail))
386 wake_next_reader = false;
387 __pipe_unlock(pipe);
388
389 if (was_full)
390 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
391 if (wake_next_reader)
392 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
393 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
394 if (ret > 0)
395 file_accessed(filp);
396 return ret;
397 }
398
is_packetized(struct file * file)399 static inline int is_packetized(struct file *file)
400 {
401 return (file->f_flags & O_DIRECT) != 0;
402 }
403
404 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
pipe_writable(const struct pipe_inode_info * pipe)405 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
406 {
407 unsigned int head = READ_ONCE(pipe->head);
408 unsigned int tail = READ_ONCE(pipe->tail);
409 unsigned int max_usage = READ_ONCE(pipe->max_usage);
410
411 return !pipe_full(head, tail, max_usage) ||
412 !READ_ONCE(pipe->readers);
413 }
414
415 static ssize_t
pipe_write(struct kiocb * iocb,struct iov_iter * from)416 pipe_write(struct kiocb *iocb, struct iov_iter *from)
417 {
418 struct file *filp = iocb->ki_filp;
419 struct pipe_inode_info *pipe = filp->private_data;
420 unsigned int head;
421 ssize_t ret = 0;
422 size_t total_len = iov_iter_count(from);
423 ssize_t chars;
424 bool was_empty = false;
425 bool wake_next_writer = false;
426
427 /* Null write succeeds. */
428 if (unlikely(total_len == 0))
429 return 0;
430
431 __pipe_lock(pipe);
432
433 if (!pipe->readers) {
434 send_sig(SIGPIPE, current, 0);
435 ret = -EPIPE;
436 goto out;
437 }
438
439 if (pipe_has_watch_queue(pipe)) {
440 ret = -EXDEV;
441 goto out;
442 }
443
444 /*
445 * If it wasn't empty we try to merge new data into
446 * the last buffer.
447 *
448 * That naturally merges small writes, but it also
449 * page-aligns the rest of the writes for large writes
450 * spanning multiple pages.
451 */
452 head = pipe->head;
453 was_empty = pipe_empty(head, pipe->tail);
454 chars = total_len & (PAGE_SIZE-1);
455 if (chars && !was_empty) {
456 unsigned int mask = pipe->ring_size - 1;
457 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
458 int offset = buf->offset + buf->len;
459
460 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
461 offset + chars <= PAGE_SIZE) {
462 ret = pipe_buf_confirm(pipe, buf);
463 if (ret)
464 goto out;
465
466 ret = copy_page_from_iter(buf->page, offset, chars, from);
467 if (unlikely(ret < chars)) {
468 ret = -EFAULT;
469 goto out;
470 }
471
472 buf->len += ret;
473 if (!iov_iter_count(from))
474 goto out;
475 }
476 }
477
478 for (;;) {
479 if (!pipe->readers) {
480 send_sig(SIGPIPE, current, 0);
481 if (!ret)
482 ret = -EPIPE;
483 break;
484 }
485
486 head = pipe->head;
487 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
488 unsigned int mask = pipe->ring_size - 1;
489 struct pipe_buffer *buf = &pipe->bufs[head & mask];
490 struct page *page = pipe->tmp_page;
491 int copied;
492
493 if (!page) {
494 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
495 if (unlikely(!page)) {
496 ret = ret ? : -ENOMEM;
497 break;
498 }
499 pipe->tmp_page = page;
500 }
501
502 /* Allocate a slot in the ring in advance and attach an
503 * empty buffer. If we fault or otherwise fail to use
504 * it, either the reader will consume it or it'll still
505 * be there for the next write.
506 */
507 spin_lock_irq(&pipe->rd_wait.lock);
508
509 head = pipe->head;
510 if (pipe_full(head, pipe->tail, pipe->max_usage)) {
511 spin_unlock_irq(&pipe->rd_wait.lock);
512 continue;
513 }
514
515 pipe->head = head + 1;
516 spin_unlock_irq(&pipe->rd_wait.lock);
517
518 /* Insert it into the buffer array */
519 buf = &pipe->bufs[head & mask];
520 buf->page = page;
521 buf->ops = &anon_pipe_buf_ops;
522 buf->offset = 0;
523 buf->len = 0;
524 if (is_packetized(filp))
525 buf->flags = PIPE_BUF_FLAG_PACKET;
526 else
527 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
528 pipe->tmp_page = NULL;
529
530 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
531 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
532 if (!ret)
533 ret = -EFAULT;
534 break;
535 }
536 ret += copied;
537 buf->offset = 0;
538 buf->len = copied;
539
540 if (!iov_iter_count(from))
541 break;
542 }
543
544 if (!pipe_full(head, pipe->tail, pipe->max_usage))
545 continue;
546
547 /* Wait for buffer space to become available. */
548 if (filp->f_flags & O_NONBLOCK) {
549 if (!ret)
550 ret = -EAGAIN;
551 break;
552 }
553 if (signal_pending(current)) {
554 if (!ret)
555 ret = -ERESTARTSYS;
556 break;
557 }
558
559 /*
560 * We're going to release the pipe lock and wait for more
561 * space. We wake up any readers if necessary, and then
562 * after waiting we need to re-check whether the pipe
563 * become empty while we dropped the lock.
564 */
565 __pipe_unlock(pipe);
566 if (was_empty)
567 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
568 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
569 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
570 __pipe_lock(pipe);
571 was_empty = pipe_empty(pipe->head, pipe->tail);
572 wake_next_writer = true;
573 }
574 out:
575 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
576 wake_next_writer = false;
577 __pipe_unlock(pipe);
578
579 /*
580 * If we do do a wakeup event, we do a 'sync' wakeup, because we
581 * want the reader to start processing things asap, rather than
582 * leave the data pending.
583 *
584 * This is particularly important for small writes, because of
585 * how (for example) the GNU make jobserver uses small writes to
586 * wake up pending jobs
587 *
588 * Epoll nonsensically wants a wakeup whether the pipe
589 * was already empty or not.
590 */
591 if (was_empty || pipe->poll_usage)
592 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
593 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
594 if (wake_next_writer)
595 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
596 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
597 int err = file_update_time(filp);
598 if (err)
599 ret = err;
600 sb_end_write(file_inode(filp)->i_sb);
601 }
602 return ret;
603 }
604
pipe_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)605 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
606 {
607 struct pipe_inode_info *pipe = filp->private_data;
608 unsigned int count, head, tail, mask;
609
610 switch (cmd) {
611 case FIONREAD:
612 __pipe_lock(pipe);
613 count = 0;
614 head = pipe->head;
615 tail = pipe->tail;
616 mask = pipe->ring_size - 1;
617
618 while (tail != head) {
619 count += pipe->bufs[tail & mask].len;
620 tail++;
621 }
622 __pipe_unlock(pipe);
623
624 return put_user(count, (int __user *)arg);
625
626 #ifdef CONFIG_WATCH_QUEUE
627 case IOC_WATCH_QUEUE_SET_SIZE: {
628 int ret;
629 __pipe_lock(pipe);
630 ret = watch_queue_set_size(pipe, arg);
631 __pipe_unlock(pipe);
632 return ret;
633 }
634
635 case IOC_WATCH_QUEUE_SET_FILTER:
636 return watch_queue_set_filter(
637 pipe, (struct watch_notification_filter __user *)arg);
638 #endif
639
640 default:
641 return -ENOIOCTLCMD;
642 }
643 }
644
645 /* No kernel lock held - fine */
646 static __poll_t
pipe_poll(struct file * filp,poll_table * wait)647 pipe_poll(struct file *filp, poll_table *wait)
648 {
649 __poll_t mask;
650 struct pipe_inode_info *pipe = filp->private_data;
651 unsigned int head, tail;
652
653 /* Epoll has some historical nasty semantics, this enables them */
654 WRITE_ONCE(pipe->poll_usage, true);
655
656 /*
657 * Reading pipe state only -- no need for acquiring the semaphore.
658 *
659 * But because this is racy, the code has to add the
660 * entry to the poll table _first_ ..
661 */
662 if (filp->f_mode & FMODE_READ)
663 poll_wait(filp, &pipe->rd_wait, wait);
664 if (filp->f_mode & FMODE_WRITE)
665 poll_wait(filp, &pipe->wr_wait, wait);
666
667 /*
668 * .. and only then can you do the racy tests. That way,
669 * if something changes and you got it wrong, the poll
670 * table entry will wake you up and fix it.
671 */
672 head = READ_ONCE(pipe->head);
673 tail = READ_ONCE(pipe->tail);
674
675 mask = 0;
676 if (filp->f_mode & FMODE_READ) {
677 if (!pipe_empty(head, tail))
678 mask |= EPOLLIN | EPOLLRDNORM;
679 if (!pipe->writers && filp->f_version != pipe->w_counter)
680 mask |= EPOLLHUP;
681 }
682
683 if (filp->f_mode & FMODE_WRITE) {
684 if (!pipe_full(head, tail, pipe->max_usage))
685 mask |= EPOLLOUT | EPOLLWRNORM;
686 /*
687 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
688 * behave exactly like pipes for poll().
689 */
690 if (!pipe->readers)
691 mask |= EPOLLERR;
692 }
693
694 return mask;
695 }
696
put_pipe_info(struct inode * inode,struct pipe_inode_info * pipe)697 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
698 {
699 int kill = 0;
700
701 spin_lock(&inode->i_lock);
702 if (!--pipe->files) {
703 inode->i_pipe = NULL;
704 kill = 1;
705 }
706 spin_unlock(&inode->i_lock);
707
708 if (kill)
709 free_pipe_info(pipe);
710 }
711
712 static int
pipe_release(struct inode * inode,struct file * file)713 pipe_release(struct inode *inode, struct file *file)
714 {
715 struct pipe_inode_info *pipe = file->private_data;
716
717 __pipe_lock(pipe);
718 if (file->f_mode & FMODE_READ)
719 pipe->readers--;
720 if (file->f_mode & FMODE_WRITE)
721 pipe->writers--;
722
723 /* Was that the last reader or writer, but not the other side? */
724 if (!pipe->readers != !pipe->writers) {
725 wake_up_interruptible_all(&pipe->rd_wait);
726 wake_up_interruptible_all(&pipe->wr_wait);
727 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
728 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
729 }
730 __pipe_unlock(pipe);
731
732 put_pipe_info(inode, pipe);
733 return 0;
734 }
735
736 static int
pipe_fasync(int fd,struct file * filp,int on)737 pipe_fasync(int fd, struct file *filp, int on)
738 {
739 struct pipe_inode_info *pipe = filp->private_data;
740 int retval = 0;
741
742 __pipe_lock(pipe);
743 if (filp->f_mode & FMODE_READ)
744 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
745 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
746 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
747 if (retval < 0 && (filp->f_mode & FMODE_READ))
748 /* this can happen only if on == T */
749 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
750 }
751 __pipe_unlock(pipe);
752 return retval;
753 }
754
account_pipe_buffers(struct user_struct * user,unsigned long old,unsigned long new)755 unsigned long account_pipe_buffers(struct user_struct *user,
756 unsigned long old, unsigned long new)
757 {
758 return atomic_long_add_return(new - old, &user->pipe_bufs);
759 }
760
too_many_pipe_buffers_soft(unsigned long user_bufs)761 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
762 {
763 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
764
765 return soft_limit && user_bufs > soft_limit;
766 }
767
too_many_pipe_buffers_hard(unsigned long user_bufs)768 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
769 {
770 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
771
772 return hard_limit && user_bufs > hard_limit;
773 }
774
pipe_is_unprivileged_user(void)775 bool pipe_is_unprivileged_user(void)
776 {
777 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
778 }
779
alloc_pipe_info(void)780 struct pipe_inode_info *alloc_pipe_info(void)
781 {
782 struct pipe_inode_info *pipe;
783 unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
784 struct user_struct *user = get_current_user();
785 unsigned long user_bufs;
786 unsigned int max_size = READ_ONCE(pipe_max_size);
787
788 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
789 if (pipe == NULL)
790 goto out_free_uid;
791
792 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
793 pipe_bufs = max_size >> PAGE_SHIFT;
794
795 user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
796
797 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
798 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
799 pipe_bufs = PIPE_MIN_DEF_BUFFERS;
800 }
801
802 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
803 goto out_revert_acct;
804
805 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
806 GFP_KERNEL_ACCOUNT);
807
808 if (pipe->bufs) {
809 init_waitqueue_head(&pipe->rd_wait);
810 init_waitqueue_head(&pipe->wr_wait);
811 pipe->r_counter = pipe->w_counter = 1;
812 pipe->max_usage = pipe_bufs;
813 pipe->ring_size = pipe_bufs;
814 pipe->nr_accounted = pipe_bufs;
815 pipe->user = user;
816 mutex_init(&pipe->mutex);
817 return pipe;
818 }
819
820 out_revert_acct:
821 (void) account_pipe_buffers(user, pipe_bufs, 0);
822 kfree(pipe);
823 out_free_uid:
824 free_uid(user);
825 return NULL;
826 }
827
free_pipe_info(struct pipe_inode_info * pipe)828 void free_pipe_info(struct pipe_inode_info *pipe)
829 {
830 unsigned int i;
831
832 #ifdef CONFIG_WATCH_QUEUE
833 if (pipe->watch_queue)
834 watch_queue_clear(pipe->watch_queue);
835 #endif
836
837 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
838 free_uid(pipe->user);
839 for (i = 0; i < pipe->ring_size; i++) {
840 struct pipe_buffer *buf = pipe->bufs + i;
841 if (buf->ops)
842 pipe_buf_release(pipe, buf);
843 }
844 #ifdef CONFIG_WATCH_QUEUE
845 if (pipe->watch_queue)
846 put_watch_queue(pipe->watch_queue);
847 #endif
848 if (pipe->tmp_page)
849 __free_page(pipe->tmp_page);
850 kfree(pipe->bufs);
851 kfree(pipe);
852 }
853
854 static struct vfsmount *pipe_mnt __read_mostly;
855
856 /*
857 * pipefs_dname() is called from d_path().
858 */
pipefs_dname(struct dentry * dentry,char * buffer,int buflen)859 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
860 {
861 return dynamic_dname(buffer, buflen, "pipe:[%lu]",
862 d_inode(dentry)->i_ino);
863 }
864
865 static const struct dentry_operations pipefs_dentry_operations = {
866 .d_dname = pipefs_dname,
867 };
868
get_pipe_inode(void)869 static struct inode * get_pipe_inode(void)
870 {
871 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
872 struct pipe_inode_info *pipe;
873
874 if (!inode)
875 goto fail_inode;
876
877 inode->i_ino = get_next_ino();
878
879 pipe = alloc_pipe_info();
880 if (!pipe)
881 goto fail_iput;
882
883 inode->i_pipe = pipe;
884 pipe->files = 2;
885 pipe->readers = pipe->writers = 1;
886 inode->i_fop = &pipefifo_fops;
887
888 /*
889 * Mark the inode dirty from the very beginning,
890 * that way it will never be moved to the dirty
891 * list because "mark_inode_dirty()" will think
892 * that it already _is_ on the dirty list.
893 */
894 inode->i_state = I_DIRTY;
895 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
896 inode->i_uid = current_fsuid();
897 inode->i_gid = current_fsgid();
898 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
899
900 return inode;
901
902 fail_iput:
903 iput(inode);
904
905 fail_inode:
906 return NULL;
907 }
908
create_pipe_files(struct file ** res,int flags)909 int create_pipe_files(struct file **res, int flags)
910 {
911 struct inode *inode = get_pipe_inode();
912 struct file *f;
913 int error;
914
915 if (!inode)
916 return -ENFILE;
917
918 if (flags & O_NOTIFICATION_PIPE) {
919 error = watch_queue_init(inode->i_pipe);
920 if (error) {
921 free_pipe_info(inode->i_pipe);
922 iput(inode);
923 return error;
924 }
925 }
926
927 f = alloc_file_pseudo(inode, pipe_mnt, "",
928 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
929 &pipefifo_fops);
930 if (IS_ERR(f)) {
931 free_pipe_info(inode->i_pipe);
932 iput(inode);
933 return PTR_ERR(f);
934 }
935
936 f->private_data = inode->i_pipe;
937
938 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
939 &pipefifo_fops);
940 if (IS_ERR(res[0])) {
941 put_pipe_info(inode, inode->i_pipe);
942 fput(f);
943 return PTR_ERR(res[0]);
944 }
945 res[0]->private_data = inode->i_pipe;
946 res[1] = f;
947 stream_open(inode, res[0]);
948 stream_open(inode, res[1]);
949 return 0;
950 }
951
__do_pipe_flags(int * fd,struct file ** files,int flags)952 static int __do_pipe_flags(int *fd, struct file **files, int flags)
953 {
954 int error;
955 int fdw, fdr;
956
957 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
958 return -EINVAL;
959
960 error = create_pipe_files(files, flags);
961 if (error)
962 return error;
963
964 error = get_unused_fd_flags(flags);
965 if (error < 0)
966 goto err_read_pipe;
967 fdr = error;
968
969 error = get_unused_fd_flags(flags);
970 if (error < 0)
971 goto err_fdr;
972 fdw = error;
973
974 audit_fd_pair(fdr, fdw);
975 fd[0] = fdr;
976 fd[1] = fdw;
977 return 0;
978
979 err_fdr:
980 put_unused_fd(fdr);
981 err_read_pipe:
982 fput(files[0]);
983 fput(files[1]);
984 return error;
985 }
986
do_pipe_flags(int * fd,int flags)987 int do_pipe_flags(int *fd, int flags)
988 {
989 struct file *files[2];
990 int error = __do_pipe_flags(fd, files, flags);
991 if (!error) {
992 fd_install(fd[0], files[0]);
993 fd_install(fd[1], files[1]);
994 }
995 return error;
996 }
997
998 /*
999 * sys_pipe() is the normal C calling standard for creating
1000 * a pipe. It's not the way Unix traditionally does this, though.
1001 */
do_pipe2(int __user * fildes,int flags)1002 static int do_pipe2(int __user *fildes, int flags)
1003 {
1004 struct file *files[2];
1005 int fd[2];
1006 int error;
1007
1008 error = __do_pipe_flags(fd, files, flags);
1009 if (!error) {
1010 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1011 fput(files[0]);
1012 fput(files[1]);
1013 put_unused_fd(fd[0]);
1014 put_unused_fd(fd[1]);
1015 error = -EFAULT;
1016 } else {
1017 fd_install(fd[0], files[0]);
1018 fd_install(fd[1], files[1]);
1019 }
1020 }
1021 return error;
1022 }
1023
SYSCALL_DEFINE2(pipe2,int __user *,fildes,int,flags)1024 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1025 {
1026 return do_pipe2(fildes, flags);
1027 }
1028
SYSCALL_DEFINE1(pipe,int __user *,fildes)1029 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1030 {
1031 return do_pipe2(fildes, 0);
1032 }
1033
1034 /*
1035 * This is the stupid "wait for pipe to be readable or writable"
1036 * model.
1037 *
1038 * See pipe_read/write() for the proper kind of exclusive wait,
1039 * but that requires that we wake up any other readers/writers
1040 * if we then do not end up reading everything (ie the whole
1041 * "wake_next_reader/writer" logic in pipe_read/write()).
1042 */
pipe_wait_readable(struct pipe_inode_info * pipe)1043 void pipe_wait_readable(struct pipe_inode_info *pipe)
1044 {
1045 pipe_unlock(pipe);
1046 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1047 pipe_lock(pipe);
1048 }
1049
pipe_wait_writable(struct pipe_inode_info * pipe)1050 void pipe_wait_writable(struct pipe_inode_info *pipe)
1051 {
1052 pipe_unlock(pipe);
1053 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1054 pipe_lock(pipe);
1055 }
1056
1057 /*
1058 * This depends on both the wait (here) and the wakeup (wake_up_partner)
1059 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1060 * race with the count check and waitqueue prep.
1061 *
1062 * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1063 * then check the condition you're waiting for, and only then sleep. But
1064 * because of the pipe lock, we can check the condition before being on
1065 * the wait queue.
1066 *
1067 * We use the 'rd_wait' waitqueue for pipe partner waiting.
1068 */
wait_for_partner(struct pipe_inode_info * pipe,unsigned int * cnt)1069 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1070 {
1071 DEFINE_WAIT(rdwait);
1072 int cur = *cnt;
1073
1074 while (cur == *cnt) {
1075 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1076 pipe_unlock(pipe);
1077 schedule();
1078 finish_wait(&pipe->rd_wait, &rdwait);
1079 pipe_lock(pipe);
1080 if (signal_pending(current))
1081 break;
1082 }
1083 return cur == *cnt ? -ERESTARTSYS : 0;
1084 }
1085
wake_up_partner(struct pipe_inode_info * pipe)1086 static void wake_up_partner(struct pipe_inode_info *pipe)
1087 {
1088 wake_up_interruptible_all(&pipe->rd_wait);
1089 }
1090
fifo_open(struct inode * inode,struct file * filp)1091 static int fifo_open(struct inode *inode, struct file *filp)
1092 {
1093 struct pipe_inode_info *pipe;
1094 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1095 int ret;
1096
1097 filp->f_version = 0;
1098
1099 spin_lock(&inode->i_lock);
1100 if (inode->i_pipe) {
1101 pipe = inode->i_pipe;
1102 pipe->files++;
1103 spin_unlock(&inode->i_lock);
1104 } else {
1105 spin_unlock(&inode->i_lock);
1106 pipe = alloc_pipe_info();
1107 if (!pipe)
1108 return -ENOMEM;
1109 pipe->files = 1;
1110 spin_lock(&inode->i_lock);
1111 if (unlikely(inode->i_pipe)) {
1112 inode->i_pipe->files++;
1113 spin_unlock(&inode->i_lock);
1114 free_pipe_info(pipe);
1115 pipe = inode->i_pipe;
1116 } else {
1117 inode->i_pipe = pipe;
1118 spin_unlock(&inode->i_lock);
1119 }
1120 }
1121 filp->private_data = pipe;
1122 /* OK, we have a pipe and it's pinned down */
1123
1124 __pipe_lock(pipe);
1125
1126 /* We can only do regular read/write on fifos */
1127 stream_open(inode, filp);
1128
1129 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1130 case FMODE_READ:
1131 /*
1132 * O_RDONLY
1133 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1134 * opened, even when there is no process writing the FIFO.
1135 */
1136 pipe->r_counter++;
1137 if (pipe->readers++ == 0)
1138 wake_up_partner(pipe);
1139
1140 if (!is_pipe && !pipe->writers) {
1141 if ((filp->f_flags & O_NONBLOCK)) {
1142 /* suppress EPOLLHUP until we have
1143 * seen a writer */
1144 filp->f_version = pipe->w_counter;
1145 } else {
1146 if (wait_for_partner(pipe, &pipe->w_counter))
1147 goto err_rd;
1148 }
1149 }
1150 break;
1151
1152 case FMODE_WRITE:
1153 /*
1154 * O_WRONLY
1155 * POSIX.1 says that O_NONBLOCK means return -1 with
1156 * errno=ENXIO when there is no process reading the FIFO.
1157 */
1158 ret = -ENXIO;
1159 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1160 goto err;
1161
1162 pipe->w_counter++;
1163 if (!pipe->writers++)
1164 wake_up_partner(pipe);
1165
1166 if (!is_pipe && !pipe->readers) {
1167 if (wait_for_partner(pipe, &pipe->r_counter))
1168 goto err_wr;
1169 }
1170 break;
1171
1172 case FMODE_READ | FMODE_WRITE:
1173 /*
1174 * O_RDWR
1175 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1176 * This implementation will NEVER block on a O_RDWR open, since
1177 * the process can at least talk to itself.
1178 */
1179
1180 pipe->readers++;
1181 pipe->writers++;
1182 pipe->r_counter++;
1183 pipe->w_counter++;
1184 if (pipe->readers == 1 || pipe->writers == 1)
1185 wake_up_partner(pipe);
1186 break;
1187
1188 default:
1189 ret = -EINVAL;
1190 goto err;
1191 }
1192
1193 /* Ok! */
1194 __pipe_unlock(pipe);
1195 return 0;
1196
1197 err_rd:
1198 if (!--pipe->readers)
1199 wake_up_interruptible(&pipe->wr_wait);
1200 ret = -ERESTARTSYS;
1201 goto err;
1202
1203 err_wr:
1204 if (!--pipe->writers)
1205 wake_up_interruptible_all(&pipe->rd_wait);
1206 ret = -ERESTARTSYS;
1207 goto err;
1208
1209 err:
1210 __pipe_unlock(pipe);
1211
1212 put_pipe_info(inode, pipe);
1213 return ret;
1214 }
1215
1216 const struct file_operations pipefifo_fops = {
1217 .open = fifo_open,
1218 .llseek = no_llseek,
1219 .read_iter = pipe_read,
1220 .write_iter = pipe_write,
1221 .poll = pipe_poll,
1222 .unlocked_ioctl = pipe_ioctl,
1223 .release = pipe_release,
1224 .fasync = pipe_fasync,
1225 .splice_write = iter_file_splice_write,
1226 };
1227
1228 /*
1229 * Currently we rely on the pipe array holding a power-of-2 number
1230 * of pages. Returns 0 on error.
1231 */
round_pipe_size(unsigned long size)1232 unsigned int round_pipe_size(unsigned long size)
1233 {
1234 if (size > (1U << 31))
1235 return 0;
1236
1237 /* Minimum pipe size, as required by POSIX */
1238 if (size < PAGE_SIZE)
1239 return PAGE_SIZE;
1240
1241 return roundup_pow_of_two(size);
1242 }
1243
1244 /*
1245 * Resize the pipe ring to a number of slots.
1246 *
1247 * Note the pipe can be reduced in capacity, but only if the current
1248 * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1249 * returned instead.
1250 */
pipe_resize_ring(struct pipe_inode_info * pipe,unsigned int nr_slots)1251 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1252 {
1253 struct pipe_buffer *bufs;
1254 unsigned int head, tail, mask, n;
1255
1256 bufs = kcalloc(nr_slots, sizeof(*bufs),
1257 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1258 if (unlikely(!bufs))
1259 return -ENOMEM;
1260
1261 spin_lock_irq(&pipe->rd_wait.lock);
1262 mask = pipe->ring_size - 1;
1263 head = pipe->head;
1264 tail = pipe->tail;
1265
1266 n = pipe_occupancy(head, tail);
1267 if (nr_slots < n) {
1268 spin_unlock_irq(&pipe->rd_wait.lock);
1269 kfree(bufs);
1270 return -EBUSY;
1271 }
1272
1273 /*
1274 * The pipe array wraps around, so just start the new one at zero
1275 * and adjust the indices.
1276 */
1277 if (n > 0) {
1278 unsigned int h = head & mask;
1279 unsigned int t = tail & mask;
1280 if (h > t) {
1281 memcpy(bufs, pipe->bufs + t,
1282 n * sizeof(struct pipe_buffer));
1283 } else {
1284 unsigned int tsize = pipe->ring_size - t;
1285 if (h > 0)
1286 memcpy(bufs + tsize, pipe->bufs,
1287 h * sizeof(struct pipe_buffer));
1288 memcpy(bufs, pipe->bufs + t,
1289 tsize * sizeof(struct pipe_buffer));
1290 }
1291 }
1292
1293 head = n;
1294 tail = 0;
1295
1296 kfree(pipe->bufs);
1297 pipe->bufs = bufs;
1298 pipe->ring_size = nr_slots;
1299 if (pipe->max_usage > nr_slots)
1300 pipe->max_usage = nr_slots;
1301 pipe->tail = tail;
1302 pipe->head = head;
1303
1304 if (!pipe_has_watch_queue(pipe)) {
1305 pipe->max_usage = nr_slots;
1306 pipe->nr_accounted = nr_slots;
1307 }
1308
1309 spin_unlock_irq(&pipe->rd_wait.lock);
1310
1311 /* This might have made more room for writers */
1312 wake_up_interruptible(&pipe->wr_wait);
1313 return 0;
1314 }
1315
1316 /*
1317 * Allocate a new array of pipe buffers and copy the info over. Returns the
1318 * pipe size if successful, or return -ERROR on error.
1319 */
pipe_set_size(struct pipe_inode_info * pipe,unsigned long arg)1320 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1321 {
1322 unsigned long user_bufs;
1323 unsigned int nr_slots, size;
1324 long ret = 0;
1325
1326 if (pipe_has_watch_queue(pipe))
1327 return -EBUSY;
1328
1329 size = round_pipe_size(arg);
1330 nr_slots = size >> PAGE_SHIFT;
1331
1332 if (!nr_slots)
1333 return -EINVAL;
1334
1335 /*
1336 * If trying to increase the pipe capacity, check that an
1337 * unprivileged user is not trying to exceed various limits
1338 * (soft limit check here, hard limit check just below).
1339 * Decreasing the pipe capacity is always permitted, even
1340 * if the user is currently over a limit.
1341 */
1342 if (nr_slots > pipe->max_usage &&
1343 size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1344 return -EPERM;
1345
1346 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1347
1348 if (nr_slots > pipe->max_usage &&
1349 (too_many_pipe_buffers_hard(user_bufs) ||
1350 too_many_pipe_buffers_soft(user_bufs)) &&
1351 pipe_is_unprivileged_user()) {
1352 ret = -EPERM;
1353 goto out_revert_acct;
1354 }
1355
1356 ret = pipe_resize_ring(pipe, nr_slots);
1357 if (ret < 0)
1358 goto out_revert_acct;
1359
1360 return pipe->max_usage * PAGE_SIZE;
1361
1362 out_revert_acct:
1363 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1364 return ret;
1365 }
1366
1367 /*
1368 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1369 * not enough to verify that this is a pipe.
1370 */
get_pipe_info(struct file * file,bool for_splice)1371 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1372 {
1373 struct pipe_inode_info *pipe = file->private_data;
1374
1375 if (file->f_op != &pipefifo_fops || !pipe)
1376 return NULL;
1377 if (for_splice && pipe_has_watch_queue(pipe))
1378 return NULL;
1379 return pipe;
1380 }
1381
pipe_fcntl(struct file * file,unsigned int cmd,unsigned long arg)1382 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1383 {
1384 struct pipe_inode_info *pipe;
1385 long ret;
1386
1387 pipe = get_pipe_info(file, false);
1388 if (!pipe)
1389 return -EBADF;
1390
1391 __pipe_lock(pipe);
1392
1393 switch (cmd) {
1394 case F_SETPIPE_SZ:
1395 ret = pipe_set_size(pipe, arg);
1396 break;
1397 case F_GETPIPE_SZ:
1398 ret = pipe->max_usage * PAGE_SIZE;
1399 break;
1400 default:
1401 ret = -EINVAL;
1402 break;
1403 }
1404
1405 __pipe_unlock(pipe);
1406 return ret;
1407 }
1408
1409 static const struct super_operations pipefs_ops = {
1410 .destroy_inode = free_inode_nonrcu,
1411 .statfs = simple_statfs,
1412 };
1413
1414 /*
1415 * pipefs should _never_ be mounted by userland - too much of security hassle,
1416 * no real gain from having the whole whorehouse mounted. So we don't need
1417 * any operations on the root directory. However, we need a non-trivial
1418 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1419 */
1420
pipefs_init_fs_context(struct fs_context * fc)1421 static int pipefs_init_fs_context(struct fs_context *fc)
1422 {
1423 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1424 if (!ctx)
1425 return -ENOMEM;
1426 ctx->ops = &pipefs_ops;
1427 ctx->dops = &pipefs_dentry_operations;
1428 return 0;
1429 }
1430
1431 static struct file_system_type pipe_fs_type = {
1432 .name = "pipefs",
1433 .init_fs_context = pipefs_init_fs_context,
1434 .kill_sb = kill_anon_super,
1435 };
1436
1437 #ifdef CONFIG_SYSCTL
do_proc_dopipe_max_size_conv(unsigned long * lvalp,unsigned int * valp,int write,void * data)1438 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1439 unsigned int *valp,
1440 int write, void *data)
1441 {
1442 if (write) {
1443 unsigned int val;
1444
1445 val = round_pipe_size(*lvalp);
1446 if (val == 0)
1447 return -EINVAL;
1448
1449 *valp = val;
1450 } else {
1451 unsigned int val = *valp;
1452 *lvalp = (unsigned long) val;
1453 }
1454
1455 return 0;
1456 }
1457
proc_dopipe_max_size(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1458 static int proc_dopipe_max_size(struct ctl_table *table, int write,
1459 void *buffer, size_t *lenp, loff_t *ppos)
1460 {
1461 return do_proc_douintvec(table, write, buffer, lenp, ppos,
1462 do_proc_dopipe_max_size_conv, NULL);
1463 }
1464
1465 static struct ctl_table fs_pipe_sysctls[] = {
1466 {
1467 .procname = "pipe-max-size",
1468 .data = &pipe_max_size,
1469 .maxlen = sizeof(pipe_max_size),
1470 .mode = 0644,
1471 .proc_handler = proc_dopipe_max_size,
1472 },
1473 {
1474 .procname = "pipe-user-pages-hard",
1475 .data = &pipe_user_pages_hard,
1476 .maxlen = sizeof(pipe_user_pages_hard),
1477 .mode = 0644,
1478 .proc_handler = proc_doulongvec_minmax,
1479 },
1480 {
1481 .procname = "pipe-user-pages-soft",
1482 .data = &pipe_user_pages_soft,
1483 .maxlen = sizeof(pipe_user_pages_soft),
1484 .mode = 0644,
1485 .proc_handler = proc_doulongvec_minmax,
1486 },
1487 { }
1488 };
1489 #endif
1490
init_pipe_fs(void)1491 static int __init init_pipe_fs(void)
1492 {
1493 int err = register_filesystem(&pipe_fs_type);
1494
1495 if (!err) {
1496 pipe_mnt = kern_mount(&pipe_fs_type);
1497 if (IS_ERR(pipe_mnt)) {
1498 err = PTR_ERR(pipe_mnt);
1499 unregister_filesystem(&pipe_fs_type);
1500 }
1501 }
1502 #ifdef CONFIG_SYSCTL
1503 register_sysctl_init("fs", fs_pipe_sysctls);
1504 #endif
1505 return err;
1506 }
1507
1508 fs_initcall(init_pipe_fs);
1509