1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3 *
4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5 */
6
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
9 *
10 * Unlike devmap which redirects XDP frames out another NIC device,
11 * this map type redirects raw XDP frames to another CPU. The remote
12 * CPU will do SKB-allocation and call the normal network stack.
13 *
14 * This is a scalability and isolation mechanism, that allow
15 * separating the early driver network XDP layer, from the rest of the
16 * netstack, and assigning dedicated CPUs for this stage. This
17 * basically allows for 10G wirespeed pre-filtering via bpf.
18 */
19 #include <linux/bitops.h>
20 #include <linux/bpf.h>
21 #include <linux/filter.h>
22 #include <linux/ptr_ring.h>
23 #include <net/xdp.h>
24
25 #include <linux/sched.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/capability.h>
29 #include <linux/completion.h>
30 #include <trace/events/xdp.h>
31 #include <linux/btf_ids.h>
32
33 #include <linux/netdevice.h> /* netif_receive_skb_list */
34 #include <linux/etherdevice.h> /* eth_type_trans */
35
36 /* General idea: XDP packets getting XDP redirected to another CPU,
37 * will maximum be stored/queued for one driver ->poll() call. It is
38 * guaranteed that queueing the frame and the flush operation happen on
39 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
40 * which queue in bpf_cpu_map_entry contains packets.
41 */
42
43 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */
44 struct bpf_cpu_map_entry;
45 struct bpf_cpu_map;
46
47 struct xdp_bulk_queue {
48 void *q[CPU_MAP_BULK_SIZE];
49 struct list_head flush_node;
50 struct bpf_cpu_map_entry *obj;
51 unsigned int count;
52 };
53
54 /* Struct for every remote "destination" CPU in map */
55 struct bpf_cpu_map_entry {
56 u32 cpu; /* kthread CPU and map index */
57 int map_id; /* Back reference to map */
58
59 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */
60 struct xdp_bulk_queue __percpu *bulkq;
61
62 struct bpf_cpu_map *cmap;
63
64 /* Queue with potential multi-producers, and single-consumer kthread */
65 struct ptr_ring *queue;
66 struct task_struct *kthread;
67
68 struct bpf_cpumap_val value;
69 struct bpf_prog *prog;
70
71 atomic_t refcnt; /* Control when this struct can be free'ed */
72 struct rcu_head rcu;
73
74 struct work_struct kthread_stop_wq;
75 struct completion kthread_running;
76 };
77
78 struct bpf_cpu_map {
79 struct bpf_map map;
80 /* Below members specific for map type */
81 struct bpf_cpu_map_entry __rcu **cpu_map;
82 };
83
84 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
85
cpu_map_alloc(union bpf_attr * attr)86 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
87 {
88 u32 value_size = attr->value_size;
89 struct bpf_cpu_map *cmap;
90 int err = -ENOMEM;
91
92 if (!bpf_capable())
93 return ERR_PTR(-EPERM);
94
95 /* check sanity of attributes */
96 if (attr->max_entries == 0 || attr->key_size != 4 ||
97 (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
98 value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
99 attr->map_flags & ~BPF_F_NUMA_NODE)
100 return ERR_PTR(-EINVAL);
101
102 cmap = bpf_map_area_alloc(sizeof(*cmap), NUMA_NO_NODE);
103 if (!cmap)
104 return ERR_PTR(-ENOMEM);
105
106 bpf_map_init_from_attr(&cmap->map, attr);
107
108 /* Pre-limit array size based on NR_CPUS, not final CPU check */
109 if (cmap->map.max_entries > NR_CPUS) {
110 err = -E2BIG;
111 goto free_cmap;
112 }
113
114 /* Alloc array for possible remote "destination" CPUs */
115 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
116 sizeof(struct bpf_cpu_map_entry *),
117 cmap->map.numa_node);
118 if (!cmap->cpu_map)
119 goto free_cmap;
120
121 return &cmap->map;
122 free_cmap:
123 bpf_map_area_free(cmap);
124 return ERR_PTR(err);
125 }
126
get_cpu_map_entry(struct bpf_cpu_map_entry * rcpu)127 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
128 {
129 atomic_inc(&rcpu->refcnt);
130 }
131
__cpu_map_ring_cleanup(struct ptr_ring * ring)132 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
133 {
134 /* The tear-down procedure should have made sure that queue is
135 * empty. See __cpu_map_entry_replace() and work-queue
136 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
137 * gracefully and warn once.
138 */
139 void *ptr;
140
141 while ((ptr = ptr_ring_consume(ring))) {
142 WARN_ON_ONCE(1);
143 if (unlikely(__ptr_test_bit(0, &ptr))) {
144 __ptr_clear_bit(0, &ptr);
145 kfree_skb(ptr);
146 continue;
147 }
148 xdp_return_frame(ptr);
149 }
150 }
151
put_cpu_map_entry(struct bpf_cpu_map_entry * rcpu)152 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
153 {
154 if (atomic_dec_and_test(&rcpu->refcnt)) {
155 if (rcpu->prog)
156 bpf_prog_put(rcpu->prog);
157 /* The queue should be empty at this point */
158 __cpu_map_ring_cleanup(rcpu->queue);
159 ptr_ring_cleanup(rcpu->queue, NULL);
160 kfree(rcpu->queue);
161 kfree(rcpu);
162 }
163 }
164
165 /* called from workqueue, to workaround syscall using preempt_disable */
cpu_map_kthread_stop(struct work_struct * work)166 static void cpu_map_kthread_stop(struct work_struct *work)
167 {
168 struct bpf_cpu_map_entry *rcpu;
169
170 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
171
172 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
173 * as it waits until all in-flight call_rcu() callbacks complete.
174 */
175 rcu_barrier();
176
177 /* kthread_stop will wake_up_process and wait for it to complete */
178 kthread_stop(rcpu->kthread);
179 }
180
cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry * rcpu,struct list_head * listp,struct xdp_cpumap_stats * stats)181 static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu,
182 struct list_head *listp,
183 struct xdp_cpumap_stats *stats)
184 {
185 struct sk_buff *skb, *tmp;
186 struct xdp_buff xdp;
187 u32 act;
188 int err;
189
190 list_for_each_entry_safe(skb, tmp, listp, list) {
191 act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog);
192 switch (act) {
193 case XDP_PASS:
194 break;
195 case XDP_REDIRECT:
196 skb_list_del_init(skb);
197 err = xdp_do_generic_redirect(skb->dev, skb, &xdp,
198 rcpu->prog);
199 if (unlikely(err)) {
200 kfree_skb(skb);
201 stats->drop++;
202 } else {
203 stats->redirect++;
204 }
205 return;
206 default:
207 bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
208 fallthrough;
209 case XDP_ABORTED:
210 trace_xdp_exception(skb->dev, rcpu->prog, act);
211 fallthrough;
212 case XDP_DROP:
213 skb_list_del_init(skb);
214 kfree_skb(skb);
215 stats->drop++;
216 return;
217 }
218 }
219 }
220
cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry * rcpu,void ** frames,int n,struct xdp_cpumap_stats * stats)221 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
222 void **frames, int n,
223 struct xdp_cpumap_stats *stats)
224 {
225 struct xdp_rxq_info rxq;
226 struct xdp_buff xdp;
227 int i, nframes = 0;
228
229 xdp_set_return_frame_no_direct();
230 xdp.rxq = &rxq;
231
232 for (i = 0; i < n; i++) {
233 struct xdp_frame *xdpf = frames[i];
234 u32 act;
235 int err;
236
237 rxq.dev = xdpf->dev_rx;
238 rxq.mem = xdpf->mem;
239 /* TODO: report queue_index to xdp_rxq_info */
240
241 xdp_convert_frame_to_buff(xdpf, &xdp);
242
243 act = bpf_prog_run_xdp(rcpu->prog, &xdp);
244 switch (act) {
245 case XDP_PASS:
246 err = xdp_update_frame_from_buff(&xdp, xdpf);
247 if (err < 0) {
248 xdp_return_frame(xdpf);
249 stats->drop++;
250 } else {
251 frames[nframes++] = xdpf;
252 stats->pass++;
253 }
254 break;
255 case XDP_REDIRECT:
256 err = xdp_do_redirect(xdpf->dev_rx, &xdp,
257 rcpu->prog);
258 if (unlikely(err)) {
259 xdp_return_frame(xdpf);
260 stats->drop++;
261 } else {
262 stats->redirect++;
263 }
264 break;
265 default:
266 bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
267 fallthrough;
268 case XDP_DROP:
269 xdp_return_frame(xdpf);
270 stats->drop++;
271 break;
272 }
273 }
274
275 xdp_clear_return_frame_no_direct();
276
277 return nframes;
278 }
279
280 #define CPUMAP_BATCH 8
281
cpu_map_bpf_prog_run(struct bpf_cpu_map_entry * rcpu,void ** frames,int xdp_n,struct xdp_cpumap_stats * stats,struct list_head * list)282 static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames,
283 int xdp_n, struct xdp_cpumap_stats *stats,
284 struct list_head *list)
285 {
286 int nframes;
287
288 if (!rcpu->prog)
289 return xdp_n;
290
291 rcu_read_lock_bh();
292
293 nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats);
294
295 if (stats->redirect)
296 xdp_do_flush();
297
298 if (unlikely(!list_empty(list)))
299 cpu_map_bpf_prog_run_skb(rcpu, list, stats);
300
301 rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
302
303 return nframes;
304 }
305
cpu_map_kthread_run(void * data)306 static int cpu_map_kthread_run(void *data)
307 {
308 struct bpf_cpu_map_entry *rcpu = data;
309
310 complete(&rcpu->kthread_running);
311 set_current_state(TASK_INTERRUPTIBLE);
312
313 /* When kthread gives stop order, then rcpu have been disconnected
314 * from map, thus no new packets can enter. Remaining in-flight
315 * per CPU stored packets are flushed to this queue. Wait honoring
316 * kthread_stop signal until queue is empty.
317 */
318 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
319 struct xdp_cpumap_stats stats = {}; /* zero stats */
320 unsigned int kmem_alloc_drops = 0, sched = 0;
321 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
322 int i, n, m, nframes, xdp_n;
323 void *frames[CPUMAP_BATCH];
324 void *skbs[CPUMAP_BATCH];
325 LIST_HEAD(list);
326
327 /* Release CPU reschedule checks */
328 if (__ptr_ring_empty(rcpu->queue)) {
329 set_current_state(TASK_INTERRUPTIBLE);
330 /* Recheck to avoid lost wake-up */
331 if (__ptr_ring_empty(rcpu->queue)) {
332 schedule();
333 sched = 1;
334 } else {
335 __set_current_state(TASK_RUNNING);
336 }
337 } else {
338 sched = cond_resched();
339 }
340
341 /*
342 * The bpf_cpu_map_entry is single consumer, with this
343 * kthread CPU pinned. Lockless access to ptr_ring
344 * consume side valid as no-resize allowed of queue.
345 */
346 n = __ptr_ring_consume_batched(rcpu->queue, frames,
347 CPUMAP_BATCH);
348 for (i = 0, xdp_n = 0; i < n; i++) {
349 void *f = frames[i];
350 struct page *page;
351
352 if (unlikely(__ptr_test_bit(0, &f))) {
353 struct sk_buff *skb = f;
354
355 __ptr_clear_bit(0, &skb);
356 list_add_tail(&skb->list, &list);
357 continue;
358 }
359
360 frames[xdp_n++] = f;
361 page = virt_to_page(f);
362
363 /* Bring struct page memory area to curr CPU. Read by
364 * build_skb_around via page_is_pfmemalloc(), and when
365 * freed written by page_frag_free call.
366 */
367 prefetchw(page);
368 }
369
370 /* Support running another XDP prog on this CPU */
371 nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list);
372 if (nframes) {
373 m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs);
374 if (unlikely(m == 0)) {
375 for (i = 0; i < nframes; i++)
376 skbs[i] = NULL; /* effect: xdp_return_frame */
377 kmem_alloc_drops += nframes;
378 }
379 }
380
381 local_bh_disable();
382 for (i = 0; i < nframes; i++) {
383 struct xdp_frame *xdpf = frames[i];
384 struct sk_buff *skb = skbs[i];
385
386 skb = __xdp_build_skb_from_frame(xdpf, skb,
387 xdpf->dev_rx);
388 if (!skb) {
389 xdp_return_frame(xdpf);
390 continue;
391 }
392
393 list_add_tail(&skb->list, &list);
394 }
395 netif_receive_skb_list(&list);
396
397 /* Feedback loop via tracepoint */
398 trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
399 sched, &stats);
400
401 local_bh_enable(); /* resched point, may call do_softirq() */
402 }
403 __set_current_state(TASK_RUNNING);
404
405 put_cpu_map_entry(rcpu);
406 return 0;
407 }
408
__cpu_map_load_bpf_program(struct bpf_cpu_map_entry * rcpu,struct bpf_map * map,int fd)409 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu,
410 struct bpf_map *map, int fd)
411 {
412 struct bpf_prog *prog;
413
414 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
415 if (IS_ERR(prog))
416 return PTR_ERR(prog);
417
418 if (prog->expected_attach_type != BPF_XDP_CPUMAP ||
419 !bpf_prog_map_compatible(map, prog)) {
420 bpf_prog_put(prog);
421 return -EINVAL;
422 }
423
424 rcpu->value.bpf_prog.id = prog->aux->id;
425 rcpu->prog = prog;
426
427 return 0;
428 }
429
430 static struct bpf_cpu_map_entry *
__cpu_map_entry_alloc(struct bpf_map * map,struct bpf_cpumap_val * value,u32 cpu)431 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
432 u32 cpu)
433 {
434 int numa, err, i, fd = value->bpf_prog.fd;
435 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
436 struct bpf_cpu_map_entry *rcpu;
437 struct xdp_bulk_queue *bq;
438
439 /* Have map->numa_node, but choose node of redirect target CPU */
440 numa = cpu_to_node(cpu);
441
442 rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
443 if (!rcpu)
444 return NULL;
445
446 /* Alloc percpu bulkq */
447 rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
448 sizeof(void *), gfp);
449 if (!rcpu->bulkq)
450 goto free_rcu;
451
452 for_each_possible_cpu(i) {
453 bq = per_cpu_ptr(rcpu->bulkq, i);
454 bq->obj = rcpu;
455 }
456
457 /* Alloc queue */
458 rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
459 numa);
460 if (!rcpu->queue)
461 goto free_bulkq;
462
463 err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
464 if (err)
465 goto free_queue;
466
467 rcpu->cpu = cpu;
468 rcpu->map_id = map->id;
469 rcpu->value.qsize = value->qsize;
470
471 if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd))
472 goto free_ptr_ring;
473
474 /* Setup kthread */
475 init_completion(&rcpu->kthread_running);
476 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
477 "cpumap/%d/map:%d", cpu,
478 map->id);
479 if (IS_ERR(rcpu->kthread))
480 goto free_prog;
481
482 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
483 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
484
485 /* Make sure kthread runs on a single CPU */
486 kthread_bind(rcpu->kthread, cpu);
487 wake_up_process(rcpu->kthread);
488
489 /* Make sure kthread has been running, so kthread_stop() will not
490 * stop the kthread prematurely and all pending frames or skbs
491 * will be handled by the kthread before kthread_stop() returns.
492 */
493 wait_for_completion(&rcpu->kthread_running);
494
495 return rcpu;
496
497 free_prog:
498 if (rcpu->prog)
499 bpf_prog_put(rcpu->prog);
500 free_ptr_ring:
501 ptr_ring_cleanup(rcpu->queue, NULL);
502 free_queue:
503 kfree(rcpu->queue);
504 free_bulkq:
505 free_percpu(rcpu->bulkq);
506 free_rcu:
507 kfree(rcpu);
508 return NULL;
509 }
510
__cpu_map_entry_free(struct rcu_head * rcu)511 static void __cpu_map_entry_free(struct rcu_head *rcu)
512 {
513 struct bpf_cpu_map_entry *rcpu;
514
515 /* This cpu_map_entry have been disconnected from map and one
516 * RCU grace-period have elapsed. Thus, XDP cannot queue any
517 * new packets and cannot change/set flush_needed that can
518 * find this entry.
519 */
520 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
521
522 free_percpu(rcpu->bulkq);
523 /* Cannot kthread_stop() here, last put free rcpu resources */
524 put_cpu_map_entry(rcpu);
525 }
526
527 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
528 * ensure any driver rcu critical sections have completed, but this
529 * does not guarantee a flush has happened yet. Because driver side
530 * rcu_read_lock/unlock only protects the running XDP program. The
531 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
532 * pending flush op doesn't fail.
533 *
534 * The bpf_cpu_map_entry is still used by the kthread, and there can
535 * still be pending packets (in queue and percpu bulkq). A refcnt
536 * makes sure to last user (kthread_stop vs. call_rcu) free memory
537 * resources.
538 *
539 * The rcu callback __cpu_map_entry_free flush remaining packets in
540 * percpu bulkq to queue. Due to caller map_delete_elem() disable
541 * preemption, cannot call kthread_stop() to make sure queue is empty.
542 * Instead a work_queue is started for stopping kthread,
543 * cpu_map_kthread_stop, which waits for an RCU grace period before
544 * stopping kthread, emptying the queue.
545 */
__cpu_map_entry_replace(struct bpf_cpu_map * cmap,u32 key_cpu,struct bpf_cpu_map_entry * rcpu)546 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
547 u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
548 {
549 struct bpf_cpu_map_entry *old_rcpu;
550
551 old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu)));
552 if (old_rcpu) {
553 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
554 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
555 schedule_work(&old_rcpu->kthread_stop_wq);
556 }
557 }
558
cpu_map_delete_elem(struct bpf_map * map,void * key)559 static int cpu_map_delete_elem(struct bpf_map *map, void *key)
560 {
561 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
562 u32 key_cpu = *(u32 *)key;
563
564 if (key_cpu >= map->max_entries)
565 return -EINVAL;
566
567 /* notice caller map_delete_elem() use preempt_disable() */
568 __cpu_map_entry_replace(cmap, key_cpu, NULL);
569 return 0;
570 }
571
cpu_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)572 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
573 u64 map_flags)
574 {
575 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
576 struct bpf_cpumap_val cpumap_value = {};
577 struct bpf_cpu_map_entry *rcpu;
578 /* Array index key correspond to CPU number */
579 u32 key_cpu = *(u32 *)key;
580
581 memcpy(&cpumap_value, value, map->value_size);
582
583 if (unlikely(map_flags > BPF_EXIST))
584 return -EINVAL;
585 if (unlikely(key_cpu >= cmap->map.max_entries))
586 return -E2BIG;
587 if (unlikely(map_flags == BPF_NOEXIST))
588 return -EEXIST;
589 if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
590 return -EOVERFLOW;
591
592 /* Make sure CPU is a valid possible cpu */
593 if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
594 return -ENODEV;
595
596 if (cpumap_value.qsize == 0) {
597 rcpu = NULL; /* Same as deleting */
598 } else {
599 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */
600 rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
601 if (!rcpu)
602 return -ENOMEM;
603 rcpu->cmap = cmap;
604 }
605 rcu_read_lock();
606 __cpu_map_entry_replace(cmap, key_cpu, rcpu);
607 rcu_read_unlock();
608 return 0;
609 }
610
cpu_map_free(struct bpf_map * map)611 static void cpu_map_free(struct bpf_map *map)
612 {
613 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
614 u32 i;
615
616 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
617 * so the bpf programs (can be more than one that used this map) were
618 * disconnected from events. Wait for outstanding critical sections in
619 * these programs to complete. The rcu critical section only guarantees
620 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
621 * It does __not__ ensure pending flush operations (if any) are
622 * complete.
623 */
624
625 synchronize_rcu();
626
627 /* For cpu_map the remote CPUs can still be using the entries
628 * (struct bpf_cpu_map_entry).
629 */
630 for (i = 0; i < cmap->map.max_entries; i++) {
631 struct bpf_cpu_map_entry *rcpu;
632
633 rcpu = rcu_dereference_raw(cmap->cpu_map[i]);
634 if (!rcpu)
635 continue;
636
637 /* bq flush and cleanup happens after RCU grace-period */
638 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
639 }
640 bpf_map_area_free(cmap->cpu_map);
641 bpf_map_area_free(cmap);
642 }
643
644 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
645 * by local_bh_disable() (from XDP calls inside NAPI). The
646 * rcu_read_lock_bh_held() below makes lockdep accept both.
647 */
__cpu_map_lookup_elem(struct bpf_map * map,u32 key)648 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
649 {
650 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
651 struct bpf_cpu_map_entry *rcpu;
652
653 if (key >= map->max_entries)
654 return NULL;
655
656 rcpu = rcu_dereference_check(cmap->cpu_map[key],
657 rcu_read_lock_bh_held());
658 return rcpu;
659 }
660
cpu_map_lookup_elem(struct bpf_map * map,void * key)661 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
662 {
663 struct bpf_cpu_map_entry *rcpu =
664 __cpu_map_lookup_elem(map, *(u32 *)key);
665
666 return rcpu ? &rcpu->value : NULL;
667 }
668
cpu_map_get_next_key(struct bpf_map * map,void * key,void * next_key)669 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
670 {
671 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
672 u32 index = key ? *(u32 *)key : U32_MAX;
673 u32 *next = next_key;
674
675 if (index >= cmap->map.max_entries) {
676 *next = 0;
677 return 0;
678 }
679
680 if (index == cmap->map.max_entries - 1)
681 return -ENOENT;
682 *next = index + 1;
683 return 0;
684 }
685
cpu_map_redirect(struct bpf_map * map,u32 ifindex,u64 flags)686 static int cpu_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags)
687 {
688 return __bpf_xdp_redirect_map(map, ifindex, flags, 0,
689 __cpu_map_lookup_elem);
690 }
691
692 BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map)
693 const struct bpf_map_ops cpu_map_ops = {
694 .map_meta_equal = bpf_map_meta_equal,
695 .map_alloc = cpu_map_alloc,
696 .map_free = cpu_map_free,
697 .map_delete_elem = cpu_map_delete_elem,
698 .map_update_elem = cpu_map_update_elem,
699 .map_lookup_elem = cpu_map_lookup_elem,
700 .map_get_next_key = cpu_map_get_next_key,
701 .map_check_btf = map_check_no_btf,
702 .map_btf_id = &cpu_map_btf_ids[0],
703 .map_redirect = cpu_map_redirect,
704 };
705
bq_flush_to_queue(struct xdp_bulk_queue * bq)706 static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
707 {
708 struct bpf_cpu_map_entry *rcpu = bq->obj;
709 unsigned int processed = 0, drops = 0;
710 const int to_cpu = rcpu->cpu;
711 struct ptr_ring *q;
712 int i;
713
714 if (unlikely(!bq->count))
715 return;
716
717 q = rcpu->queue;
718 spin_lock(&q->producer_lock);
719
720 for (i = 0; i < bq->count; i++) {
721 struct xdp_frame *xdpf = bq->q[i];
722 int err;
723
724 err = __ptr_ring_produce(q, xdpf);
725 if (err) {
726 drops++;
727 xdp_return_frame_rx_napi(xdpf);
728 }
729 processed++;
730 }
731 bq->count = 0;
732 spin_unlock(&q->producer_lock);
733
734 __list_del_clearprev(&bq->flush_node);
735
736 /* Feedback loop via tracepoints */
737 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
738 }
739
740 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
741 * Thus, safe percpu variable access.
742 */
bq_enqueue(struct bpf_cpu_map_entry * rcpu,struct xdp_frame * xdpf)743 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
744 {
745 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
746 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
747
748 if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
749 bq_flush_to_queue(bq);
750
751 /* Notice, xdp_buff/page MUST be queued here, long enough for
752 * driver to code invoking us to finished, due to driver
753 * (e.g. ixgbe) recycle tricks based on page-refcnt.
754 *
755 * Thus, incoming xdp_frame is always queued here (else we race
756 * with another CPU on page-refcnt and remaining driver code).
757 * Queue time is very short, as driver will invoke flush
758 * operation, when completing napi->poll call.
759 */
760 bq->q[bq->count++] = xdpf;
761
762 if (!bq->flush_node.prev)
763 list_add(&bq->flush_node, flush_list);
764 }
765
cpu_map_enqueue(struct bpf_cpu_map_entry * rcpu,struct xdp_frame * xdpf,struct net_device * dev_rx)766 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
767 struct net_device *dev_rx)
768 {
769 /* Info needed when constructing SKB on remote CPU */
770 xdpf->dev_rx = dev_rx;
771
772 bq_enqueue(rcpu, xdpf);
773 return 0;
774 }
775
cpu_map_generic_redirect(struct bpf_cpu_map_entry * rcpu,struct sk_buff * skb)776 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
777 struct sk_buff *skb)
778 {
779 int ret;
780
781 __skb_pull(skb, skb->mac_len);
782 skb_set_redirected(skb, false);
783 __ptr_set_bit(0, &skb);
784
785 ret = ptr_ring_produce(rcpu->queue, skb);
786 if (ret < 0)
787 goto trace;
788
789 wake_up_process(rcpu->kthread);
790 trace:
791 trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu);
792 return ret;
793 }
794
__cpu_map_flush(void)795 void __cpu_map_flush(void)
796 {
797 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
798 struct xdp_bulk_queue *bq, *tmp;
799
800 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
801 bq_flush_to_queue(bq);
802
803 /* If already running, costs spin_lock_irqsave + smb_mb */
804 wake_up_process(bq->obj->kthread);
805 }
806 }
807
cpu_map_init(void)808 static int __init cpu_map_init(void)
809 {
810 int cpu;
811
812 for_each_possible_cpu(cpu)
813 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
814 return 0;
815 }
816
817 subsys_initcall(cpu_map_init);
818