1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Generic pwmlib implementation
4 *
5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6 * Copyright (C) 2011-2012 Avionic Design GmbH
7 */
8
9 #include <linux/acpi.h>
10 #include <linux/module.h>
11 #include <linux/pwm.h>
12 #include <linux/radix-tree.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/debugfs.h>
19 #include <linux/seq_file.h>
20
21 #include <dt-bindings/pwm/pwm.h>
22
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/pwm.h>
25
26 #define MAX_PWMS 1024
27
28 static DEFINE_MUTEX(pwm_lookup_lock);
29 static LIST_HEAD(pwm_lookup_list);
30 static DEFINE_MUTEX(pwm_lock);
31 static LIST_HEAD(pwm_chips);
32 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
33 static RADIX_TREE(pwm_tree, GFP_KERNEL);
34
pwm_to_device(unsigned int pwm)35 static struct pwm_device *pwm_to_device(unsigned int pwm)
36 {
37 return radix_tree_lookup(&pwm_tree, pwm);
38 }
39
alloc_pwms(unsigned int count)40 static int alloc_pwms(unsigned int count)
41 {
42 unsigned int start;
43
44 start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0,
45 count, 0);
46
47 if (start + count > MAX_PWMS)
48 return -ENOSPC;
49
50 return start;
51 }
52
free_pwms(struct pwm_chip * chip)53 static void free_pwms(struct pwm_chip *chip)
54 {
55 unsigned int i;
56
57 for (i = 0; i < chip->npwm; i++) {
58 struct pwm_device *pwm = &chip->pwms[i];
59
60 radix_tree_delete(&pwm_tree, pwm->pwm);
61 }
62
63 bitmap_clear(allocated_pwms, chip->base, chip->npwm);
64
65 kfree(chip->pwms);
66 chip->pwms = NULL;
67 }
68
pwmchip_find_by_name(const char * name)69 static struct pwm_chip *pwmchip_find_by_name(const char *name)
70 {
71 struct pwm_chip *chip;
72
73 if (!name)
74 return NULL;
75
76 mutex_lock(&pwm_lock);
77
78 list_for_each_entry(chip, &pwm_chips, list) {
79 const char *chip_name = dev_name(chip->dev);
80
81 if (chip_name && strcmp(chip_name, name) == 0) {
82 mutex_unlock(&pwm_lock);
83 return chip;
84 }
85 }
86
87 mutex_unlock(&pwm_lock);
88
89 return NULL;
90 }
91
pwm_device_request(struct pwm_device * pwm,const char * label)92 static int pwm_device_request(struct pwm_device *pwm, const char *label)
93 {
94 int err;
95
96 if (test_bit(PWMF_REQUESTED, &pwm->flags))
97 return -EBUSY;
98
99 if (!try_module_get(pwm->chip->ops->owner))
100 return -ENODEV;
101
102 if (pwm->chip->ops->request) {
103 err = pwm->chip->ops->request(pwm->chip, pwm);
104 if (err) {
105 module_put(pwm->chip->ops->owner);
106 return err;
107 }
108 }
109
110 if (pwm->chip->ops->get_state) {
111 pwm->chip->ops->get_state(pwm->chip, pwm, &pwm->state);
112 trace_pwm_get(pwm, &pwm->state);
113
114 if (IS_ENABLED(CONFIG_PWM_DEBUG))
115 pwm->last = pwm->state;
116 }
117
118 set_bit(PWMF_REQUESTED, &pwm->flags);
119 pwm->label = label;
120
121 return 0;
122 }
123
124 struct pwm_device *
of_pwm_xlate_with_flags(struct pwm_chip * pc,const struct of_phandle_args * args)125 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
126 {
127 struct pwm_device *pwm;
128
129 if (pc->of_pwm_n_cells < 2)
130 return ERR_PTR(-EINVAL);
131
132 /* flags in the third cell are optional */
133 if (args->args_count < 2)
134 return ERR_PTR(-EINVAL);
135
136 if (args->args[0] >= pc->npwm)
137 return ERR_PTR(-EINVAL);
138
139 pwm = pwm_request_from_chip(pc, args->args[0], NULL);
140 if (IS_ERR(pwm))
141 return pwm;
142
143 pwm->args.period = args->args[1];
144 pwm->args.polarity = PWM_POLARITY_NORMAL;
145
146 if (pc->of_pwm_n_cells >= 3) {
147 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
148 pwm->args.polarity = PWM_POLARITY_INVERSED;
149 }
150
151 return pwm;
152 }
153 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
154
155 struct pwm_device *
of_pwm_single_xlate(struct pwm_chip * pc,const struct of_phandle_args * args)156 of_pwm_single_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
157 {
158 struct pwm_device *pwm;
159
160 if (pc->of_pwm_n_cells < 1)
161 return ERR_PTR(-EINVAL);
162
163 /* validate that one cell is specified, optionally with flags */
164 if (args->args_count != 1 && args->args_count != 2)
165 return ERR_PTR(-EINVAL);
166
167 pwm = pwm_request_from_chip(pc, 0, NULL);
168 if (IS_ERR(pwm))
169 return pwm;
170
171 pwm->args.period = args->args[0];
172 pwm->args.polarity = PWM_POLARITY_NORMAL;
173
174 if (args->args_count == 2 && args->args[1] & PWM_POLARITY_INVERTED)
175 pwm->args.polarity = PWM_POLARITY_INVERSED;
176
177 return pwm;
178 }
179 EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
180
of_pwmchip_add(struct pwm_chip * chip)181 static void of_pwmchip_add(struct pwm_chip *chip)
182 {
183 if (!chip->dev || !chip->dev->of_node)
184 return;
185
186 if (!chip->of_xlate) {
187 u32 pwm_cells;
188
189 if (of_property_read_u32(chip->dev->of_node, "#pwm-cells",
190 &pwm_cells))
191 pwm_cells = 2;
192
193 chip->of_xlate = of_pwm_xlate_with_flags;
194 chip->of_pwm_n_cells = pwm_cells;
195 }
196
197 of_node_get(chip->dev->of_node);
198 }
199
of_pwmchip_remove(struct pwm_chip * chip)200 static void of_pwmchip_remove(struct pwm_chip *chip)
201 {
202 if (chip->dev)
203 of_node_put(chip->dev->of_node);
204 }
205
206 /**
207 * pwm_set_chip_data() - set private chip data for a PWM
208 * @pwm: PWM device
209 * @data: pointer to chip-specific data
210 *
211 * Returns: 0 on success or a negative error code on failure.
212 */
pwm_set_chip_data(struct pwm_device * pwm,void * data)213 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
214 {
215 if (!pwm)
216 return -EINVAL;
217
218 pwm->chip_data = data;
219
220 return 0;
221 }
222 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
223
224 /**
225 * pwm_get_chip_data() - get private chip data for a PWM
226 * @pwm: PWM device
227 *
228 * Returns: A pointer to the chip-private data for the PWM device.
229 */
pwm_get_chip_data(struct pwm_device * pwm)230 void *pwm_get_chip_data(struct pwm_device *pwm)
231 {
232 return pwm ? pwm->chip_data : NULL;
233 }
234 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
235
pwm_ops_check(const struct pwm_chip * chip)236 static bool pwm_ops_check(const struct pwm_chip *chip)
237 {
238 const struct pwm_ops *ops = chip->ops;
239
240 if (!ops->apply)
241 return false;
242
243 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
244 dev_warn(chip->dev,
245 "Please implement the .get_state() callback\n");
246
247 return true;
248 }
249
250 /**
251 * pwmchip_add() - register a new PWM chip
252 * @chip: the PWM chip to add
253 *
254 * Register a new PWM chip.
255 *
256 * Returns: 0 on success or a negative error code on failure.
257 */
pwmchip_add(struct pwm_chip * chip)258 int pwmchip_add(struct pwm_chip *chip)
259 {
260 struct pwm_device *pwm;
261 unsigned int i;
262 int ret;
263
264 if (!chip || !chip->dev || !chip->ops || !chip->npwm)
265 return -EINVAL;
266
267 if (!pwm_ops_check(chip))
268 return -EINVAL;
269
270 mutex_lock(&pwm_lock);
271
272 ret = alloc_pwms(chip->npwm);
273 if (ret < 0)
274 goto out;
275
276 chip->base = ret;
277
278 chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
279 if (!chip->pwms) {
280 ret = -ENOMEM;
281 goto out;
282 }
283
284 for (i = 0; i < chip->npwm; i++) {
285 pwm = &chip->pwms[i];
286
287 pwm->chip = chip;
288 pwm->pwm = chip->base + i;
289 pwm->hwpwm = i;
290
291 radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
292 }
293
294 bitmap_set(allocated_pwms, chip->base, chip->npwm);
295
296 INIT_LIST_HEAD(&chip->list);
297 list_add(&chip->list, &pwm_chips);
298
299 ret = 0;
300
301 if (IS_ENABLED(CONFIG_OF))
302 of_pwmchip_add(chip);
303
304 out:
305 mutex_unlock(&pwm_lock);
306
307 if (!ret)
308 pwmchip_sysfs_export(chip);
309
310 return ret;
311 }
312 EXPORT_SYMBOL_GPL(pwmchip_add);
313
314 /**
315 * pwmchip_remove() - remove a PWM chip
316 * @chip: the PWM chip to remove
317 *
318 * Removes a PWM chip. This function may return busy if the PWM chip provides
319 * a PWM device that is still requested.
320 *
321 * Returns: 0 on success or a negative error code on failure.
322 */
pwmchip_remove(struct pwm_chip * chip)323 void pwmchip_remove(struct pwm_chip *chip)
324 {
325 pwmchip_sysfs_unexport(chip);
326
327 mutex_lock(&pwm_lock);
328
329 list_del_init(&chip->list);
330
331 if (IS_ENABLED(CONFIG_OF))
332 of_pwmchip_remove(chip);
333
334 free_pwms(chip);
335
336 mutex_unlock(&pwm_lock);
337 }
338 EXPORT_SYMBOL_GPL(pwmchip_remove);
339
devm_pwmchip_remove(void * data)340 static void devm_pwmchip_remove(void *data)
341 {
342 struct pwm_chip *chip = data;
343
344 pwmchip_remove(chip);
345 }
346
devm_pwmchip_add(struct device * dev,struct pwm_chip * chip)347 int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
348 {
349 int ret;
350
351 ret = pwmchip_add(chip);
352 if (ret)
353 return ret;
354
355 return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
356 }
357 EXPORT_SYMBOL_GPL(devm_pwmchip_add);
358
359 /**
360 * pwm_request() - request a PWM device
361 * @pwm: global PWM device index
362 * @label: PWM device label
363 *
364 * This function is deprecated, use pwm_get() instead.
365 *
366 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
367 * failure.
368 */
pwm_request(int pwm,const char * label)369 struct pwm_device *pwm_request(int pwm, const char *label)
370 {
371 struct pwm_device *dev;
372 int err;
373
374 if (pwm < 0 || pwm >= MAX_PWMS)
375 return ERR_PTR(-EINVAL);
376
377 mutex_lock(&pwm_lock);
378
379 dev = pwm_to_device(pwm);
380 if (!dev) {
381 dev = ERR_PTR(-EPROBE_DEFER);
382 goto out;
383 }
384
385 err = pwm_device_request(dev, label);
386 if (err < 0)
387 dev = ERR_PTR(err);
388
389 out:
390 mutex_unlock(&pwm_lock);
391
392 return dev;
393 }
394 EXPORT_SYMBOL_GPL(pwm_request);
395
396 /**
397 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
398 * @chip: PWM chip
399 * @index: per-chip index of the PWM to request
400 * @label: a literal description string of this PWM
401 *
402 * Returns: A pointer to the PWM device at the given index of the given PWM
403 * chip. A negative error code is returned if the index is not valid for the
404 * specified PWM chip or if the PWM device cannot be requested.
405 */
pwm_request_from_chip(struct pwm_chip * chip,unsigned int index,const char * label)406 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
407 unsigned int index,
408 const char *label)
409 {
410 struct pwm_device *pwm;
411 int err;
412
413 if (!chip || index >= chip->npwm)
414 return ERR_PTR(-EINVAL);
415
416 mutex_lock(&pwm_lock);
417 pwm = &chip->pwms[index];
418
419 err = pwm_device_request(pwm, label);
420 if (err < 0)
421 pwm = ERR_PTR(err);
422
423 mutex_unlock(&pwm_lock);
424 return pwm;
425 }
426 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
427
428 /**
429 * pwm_free() - free a PWM device
430 * @pwm: PWM device
431 *
432 * This function is deprecated, use pwm_put() instead.
433 */
pwm_free(struct pwm_device * pwm)434 void pwm_free(struct pwm_device *pwm)
435 {
436 pwm_put(pwm);
437 }
438 EXPORT_SYMBOL_GPL(pwm_free);
439
pwm_apply_state_debug(struct pwm_device * pwm,const struct pwm_state * state)440 static void pwm_apply_state_debug(struct pwm_device *pwm,
441 const struct pwm_state *state)
442 {
443 struct pwm_state *last = &pwm->last;
444 struct pwm_chip *chip = pwm->chip;
445 struct pwm_state s1, s2;
446 int err;
447
448 if (!IS_ENABLED(CONFIG_PWM_DEBUG))
449 return;
450
451 /* No reasonable diagnosis possible without .get_state() */
452 if (!chip->ops->get_state)
453 return;
454
455 /*
456 * *state was just applied. Read out the hardware state and do some
457 * checks.
458 */
459
460 chip->ops->get_state(chip, pwm, &s1);
461 trace_pwm_get(pwm, &s1);
462
463 /*
464 * The lowlevel driver either ignored .polarity (which is a bug) or as
465 * best effort inverted .polarity and fixed .duty_cycle respectively.
466 * Undo this inversion and fixup for further tests.
467 */
468 if (s1.enabled && s1.polarity != state->polarity) {
469 s2.polarity = state->polarity;
470 s2.duty_cycle = s1.period - s1.duty_cycle;
471 s2.period = s1.period;
472 s2.enabled = s1.enabled;
473 } else {
474 s2 = s1;
475 }
476
477 if (s2.polarity != state->polarity &&
478 state->duty_cycle < state->period)
479 dev_warn(chip->dev, ".apply ignored .polarity\n");
480
481 if (state->enabled &&
482 last->polarity == state->polarity &&
483 last->period > s2.period &&
484 last->period <= state->period)
485 dev_warn(chip->dev,
486 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
487 state->period, s2.period, last->period);
488
489 if (state->enabled && state->period < s2.period)
490 dev_warn(chip->dev,
491 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
492 state->period, s2.period);
493
494 if (state->enabled &&
495 last->polarity == state->polarity &&
496 last->period == s2.period &&
497 last->duty_cycle > s2.duty_cycle &&
498 last->duty_cycle <= state->duty_cycle)
499 dev_warn(chip->dev,
500 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
501 state->duty_cycle, state->period,
502 s2.duty_cycle, s2.period,
503 last->duty_cycle, last->period);
504
505 if (state->enabled && state->duty_cycle < s2.duty_cycle)
506 dev_warn(chip->dev,
507 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
508 state->duty_cycle, state->period,
509 s2.duty_cycle, s2.period);
510
511 if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
512 dev_warn(chip->dev,
513 "requested disabled, but yielded enabled with duty > 0\n");
514
515 /* reapply the state that the driver reported being configured. */
516 err = chip->ops->apply(chip, pwm, &s1);
517 if (err) {
518 *last = s1;
519 dev_err(chip->dev, "failed to reapply current setting\n");
520 return;
521 }
522
523 trace_pwm_apply(pwm, &s1);
524
525 chip->ops->get_state(chip, pwm, last);
526 trace_pwm_get(pwm, last);
527
528 /* reapplication of the current state should give an exact match */
529 if (s1.enabled != last->enabled ||
530 s1.polarity != last->polarity ||
531 (s1.enabled && s1.period != last->period) ||
532 (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
533 dev_err(chip->dev,
534 ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
535 s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
536 last->enabled, last->polarity, last->duty_cycle,
537 last->period);
538 }
539 }
540
541 /**
542 * pwm_apply_state() - atomically apply a new state to a PWM device
543 * @pwm: PWM device
544 * @state: new state to apply
545 */
pwm_apply_state(struct pwm_device * pwm,const struct pwm_state * state)546 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
547 {
548 struct pwm_chip *chip;
549 int err;
550
551 /*
552 * Some lowlevel driver's implementations of .apply() make use of
553 * mutexes, also with some drivers only returning when the new
554 * configuration is active calling pwm_apply_state() from atomic context
555 * is a bad idea. So make it explicit that calling this function might
556 * sleep.
557 */
558 might_sleep();
559
560 if (!pwm || !state || !state->period ||
561 state->duty_cycle > state->period)
562 return -EINVAL;
563
564 chip = pwm->chip;
565
566 if (state->period == pwm->state.period &&
567 state->duty_cycle == pwm->state.duty_cycle &&
568 state->polarity == pwm->state.polarity &&
569 state->enabled == pwm->state.enabled &&
570 state->usage_power == pwm->state.usage_power)
571 return 0;
572
573 err = chip->ops->apply(chip, pwm, state);
574 if (err)
575 return err;
576
577 trace_pwm_apply(pwm, state);
578
579 pwm->state = *state;
580
581 /*
582 * only do this after pwm->state was applied as some
583 * implementations of .get_state depend on this
584 */
585 pwm_apply_state_debug(pwm, state);
586
587 return 0;
588 }
589 EXPORT_SYMBOL_GPL(pwm_apply_state);
590
591 /**
592 * pwm_capture() - capture and report a PWM signal
593 * @pwm: PWM device
594 * @result: structure to fill with capture result
595 * @timeout: time to wait, in milliseconds, before giving up on capture
596 *
597 * Returns: 0 on success or a negative error code on failure.
598 */
pwm_capture(struct pwm_device * pwm,struct pwm_capture * result,unsigned long timeout)599 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
600 unsigned long timeout)
601 {
602 int err;
603
604 if (!pwm || !pwm->chip->ops)
605 return -EINVAL;
606
607 if (!pwm->chip->ops->capture)
608 return -ENOSYS;
609
610 mutex_lock(&pwm_lock);
611 err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
612 mutex_unlock(&pwm_lock);
613
614 return err;
615 }
616 EXPORT_SYMBOL_GPL(pwm_capture);
617
618 /**
619 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
620 * @pwm: PWM device
621 *
622 * This function will adjust the PWM config to the PWM arguments provided
623 * by the DT or PWM lookup table. This is particularly useful to adapt
624 * the bootloader config to the Linux one.
625 */
pwm_adjust_config(struct pwm_device * pwm)626 int pwm_adjust_config(struct pwm_device *pwm)
627 {
628 struct pwm_state state;
629 struct pwm_args pargs;
630
631 pwm_get_args(pwm, &pargs);
632 pwm_get_state(pwm, &state);
633
634 /*
635 * If the current period is zero it means that either the PWM driver
636 * does not support initial state retrieval or the PWM has not yet
637 * been configured.
638 *
639 * In either case, we setup the new period and polarity, and assign a
640 * duty cycle of 0.
641 */
642 if (!state.period) {
643 state.duty_cycle = 0;
644 state.period = pargs.period;
645 state.polarity = pargs.polarity;
646
647 return pwm_apply_state(pwm, &state);
648 }
649
650 /*
651 * Adjust the PWM duty cycle/period based on the period value provided
652 * in PWM args.
653 */
654 if (pargs.period != state.period) {
655 u64 dutycycle = (u64)state.duty_cycle * pargs.period;
656
657 do_div(dutycycle, state.period);
658 state.duty_cycle = dutycycle;
659 state.period = pargs.period;
660 }
661
662 /*
663 * If the polarity changed, we should also change the duty cycle.
664 */
665 if (pargs.polarity != state.polarity) {
666 state.polarity = pargs.polarity;
667 state.duty_cycle = state.period - state.duty_cycle;
668 }
669
670 return pwm_apply_state(pwm, &state);
671 }
672 EXPORT_SYMBOL_GPL(pwm_adjust_config);
673
fwnode_to_pwmchip(struct fwnode_handle * fwnode)674 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
675 {
676 struct pwm_chip *chip;
677
678 mutex_lock(&pwm_lock);
679
680 list_for_each_entry(chip, &pwm_chips, list)
681 if (chip->dev && device_match_fwnode(chip->dev, fwnode)) {
682 mutex_unlock(&pwm_lock);
683 return chip;
684 }
685
686 mutex_unlock(&pwm_lock);
687
688 return ERR_PTR(-EPROBE_DEFER);
689 }
690
pwm_device_link_add(struct device * dev,struct pwm_device * pwm)691 static struct device_link *pwm_device_link_add(struct device *dev,
692 struct pwm_device *pwm)
693 {
694 struct device_link *dl;
695
696 if (!dev) {
697 /*
698 * No device for the PWM consumer has been provided. It may
699 * impact the PM sequence ordering: the PWM supplier may get
700 * suspended before the consumer.
701 */
702 dev_warn(pwm->chip->dev,
703 "No consumer device specified to create a link to\n");
704 return NULL;
705 }
706
707 dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
708 if (!dl) {
709 dev_err(dev, "failed to create device link to %s\n",
710 dev_name(pwm->chip->dev));
711 return ERR_PTR(-EINVAL);
712 }
713
714 return dl;
715 }
716
717 /**
718 * of_pwm_get() - request a PWM via the PWM framework
719 * @dev: device for PWM consumer
720 * @np: device node to get the PWM from
721 * @con_id: consumer name
722 *
723 * Returns the PWM device parsed from the phandle and index specified in the
724 * "pwms" property of a device tree node or a negative error-code on failure.
725 * Values parsed from the device tree are stored in the returned PWM device
726 * object.
727 *
728 * If con_id is NULL, the first PWM device listed in the "pwms" property will
729 * be requested. Otherwise the "pwm-names" property is used to do a reverse
730 * lookup of the PWM index. This also means that the "pwm-names" property
731 * becomes mandatory for devices that look up the PWM device via the con_id
732 * parameter.
733 *
734 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
735 * error code on failure.
736 */
of_pwm_get(struct device * dev,struct device_node * np,const char * con_id)737 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
738 const char *con_id)
739 {
740 struct pwm_device *pwm = NULL;
741 struct of_phandle_args args;
742 struct device_link *dl;
743 struct pwm_chip *pc;
744 int index = 0;
745 int err;
746
747 if (con_id) {
748 index = of_property_match_string(np, "pwm-names", con_id);
749 if (index < 0)
750 return ERR_PTR(index);
751 }
752
753 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
754 &args);
755 if (err) {
756 pr_err("%s(): can't parse \"pwms\" property\n", __func__);
757 return ERR_PTR(err);
758 }
759
760 pc = fwnode_to_pwmchip(of_fwnode_handle(args.np));
761 if (IS_ERR(pc)) {
762 if (PTR_ERR(pc) != -EPROBE_DEFER)
763 pr_err("%s(): PWM chip not found\n", __func__);
764
765 pwm = ERR_CAST(pc);
766 goto put;
767 }
768
769 pwm = pc->of_xlate(pc, &args);
770 if (IS_ERR(pwm))
771 goto put;
772
773 dl = pwm_device_link_add(dev, pwm);
774 if (IS_ERR(dl)) {
775 /* of_xlate ended up calling pwm_request_from_chip() */
776 pwm_free(pwm);
777 pwm = ERR_CAST(dl);
778 goto put;
779 }
780
781 /*
782 * If a consumer name was not given, try to look it up from the
783 * "pwm-names" property if it exists. Otherwise use the name of
784 * the user device node.
785 */
786 if (!con_id) {
787 err = of_property_read_string_index(np, "pwm-names", index,
788 &con_id);
789 if (err < 0)
790 con_id = np->name;
791 }
792
793 pwm->label = con_id;
794
795 put:
796 of_node_put(args.np);
797
798 return pwm;
799 }
800
801 /**
802 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
803 * @fwnode: firmware node to get the "pwms" property from
804 *
805 * Returns the PWM device parsed from the fwnode and index specified in the
806 * "pwms" property or a negative error-code on failure.
807 * Values parsed from the device tree are stored in the returned PWM device
808 * object.
809 *
810 * This is analogous to of_pwm_get() except con_id is not yet supported.
811 * ACPI entries must look like
812 * Package () {"pwms", Package ()
813 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
814 *
815 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
816 * error code on failure.
817 */
acpi_pwm_get(const struct fwnode_handle * fwnode)818 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
819 {
820 struct pwm_device *pwm;
821 struct fwnode_reference_args args;
822 struct pwm_chip *chip;
823 int ret;
824
825 memset(&args, 0, sizeof(args));
826
827 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
828 if (ret < 0)
829 return ERR_PTR(ret);
830
831 if (args.nargs < 2)
832 return ERR_PTR(-EPROTO);
833
834 chip = fwnode_to_pwmchip(args.fwnode);
835 if (IS_ERR(chip))
836 return ERR_CAST(chip);
837
838 pwm = pwm_request_from_chip(chip, args.args[0], NULL);
839 if (IS_ERR(pwm))
840 return pwm;
841
842 pwm->args.period = args.args[1];
843 pwm->args.polarity = PWM_POLARITY_NORMAL;
844
845 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
846 pwm->args.polarity = PWM_POLARITY_INVERSED;
847
848 return pwm;
849 }
850
851 /**
852 * pwm_add_table() - register PWM device consumers
853 * @table: array of consumers to register
854 * @num: number of consumers in table
855 */
pwm_add_table(struct pwm_lookup * table,size_t num)856 void pwm_add_table(struct pwm_lookup *table, size_t num)
857 {
858 mutex_lock(&pwm_lookup_lock);
859
860 while (num--) {
861 list_add_tail(&table->list, &pwm_lookup_list);
862 table++;
863 }
864
865 mutex_unlock(&pwm_lookup_lock);
866 }
867
868 /**
869 * pwm_remove_table() - unregister PWM device consumers
870 * @table: array of consumers to unregister
871 * @num: number of consumers in table
872 */
pwm_remove_table(struct pwm_lookup * table,size_t num)873 void pwm_remove_table(struct pwm_lookup *table, size_t num)
874 {
875 mutex_lock(&pwm_lookup_lock);
876
877 while (num--) {
878 list_del(&table->list);
879 table++;
880 }
881
882 mutex_unlock(&pwm_lookup_lock);
883 }
884
885 /**
886 * pwm_get() - look up and request a PWM device
887 * @dev: device for PWM consumer
888 * @con_id: consumer name
889 *
890 * Lookup is first attempted using DT. If the device was not instantiated from
891 * a device tree, a PWM chip and a relative index is looked up via a table
892 * supplied by board setup code (see pwm_add_table()).
893 *
894 * Once a PWM chip has been found the specified PWM device will be requested
895 * and is ready to be used.
896 *
897 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
898 * error code on failure.
899 */
pwm_get(struct device * dev,const char * con_id)900 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
901 {
902 const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
903 const char *dev_id = dev ? dev_name(dev) : NULL;
904 struct pwm_device *pwm;
905 struct pwm_chip *chip;
906 struct device_link *dl;
907 unsigned int best = 0;
908 struct pwm_lookup *p, *chosen = NULL;
909 unsigned int match;
910 int err;
911
912 /* look up via DT first */
913 if (is_of_node(fwnode))
914 return of_pwm_get(dev, to_of_node(fwnode), con_id);
915
916 /* then lookup via ACPI */
917 if (is_acpi_node(fwnode)) {
918 pwm = acpi_pwm_get(fwnode);
919 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
920 return pwm;
921 }
922
923 /*
924 * We look up the provider in the static table typically provided by
925 * board setup code. We first try to lookup the consumer device by
926 * name. If the consumer device was passed in as NULL or if no match
927 * was found, we try to find the consumer by directly looking it up
928 * by name.
929 *
930 * If a match is found, the provider PWM chip is looked up by name
931 * and a PWM device is requested using the PWM device per-chip index.
932 *
933 * The lookup algorithm was shamelessly taken from the clock
934 * framework:
935 *
936 * We do slightly fuzzy matching here:
937 * An entry with a NULL ID is assumed to be a wildcard.
938 * If an entry has a device ID, it must match
939 * If an entry has a connection ID, it must match
940 * Then we take the most specific entry - with the following order
941 * of precedence: dev+con > dev only > con only.
942 */
943 mutex_lock(&pwm_lookup_lock);
944
945 list_for_each_entry(p, &pwm_lookup_list, list) {
946 match = 0;
947
948 if (p->dev_id) {
949 if (!dev_id || strcmp(p->dev_id, dev_id))
950 continue;
951
952 match += 2;
953 }
954
955 if (p->con_id) {
956 if (!con_id || strcmp(p->con_id, con_id))
957 continue;
958
959 match += 1;
960 }
961
962 if (match > best) {
963 chosen = p;
964
965 if (match != 3)
966 best = match;
967 else
968 break;
969 }
970 }
971
972 mutex_unlock(&pwm_lookup_lock);
973
974 if (!chosen)
975 return ERR_PTR(-ENODEV);
976
977 chip = pwmchip_find_by_name(chosen->provider);
978
979 /*
980 * If the lookup entry specifies a module, load the module and retry
981 * the PWM chip lookup. This can be used to work around driver load
982 * ordering issues if driver's can't be made to properly support the
983 * deferred probe mechanism.
984 */
985 if (!chip && chosen->module) {
986 err = request_module(chosen->module);
987 if (err == 0)
988 chip = pwmchip_find_by_name(chosen->provider);
989 }
990
991 if (!chip)
992 return ERR_PTR(-EPROBE_DEFER);
993
994 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
995 if (IS_ERR(pwm))
996 return pwm;
997
998 dl = pwm_device_link_add(dev, pwm);
999 if (IS_ERR(dl)) {
1000 pwm_free(pwm);
1001 return ERR_CAST(dl);
1002 }
1003
1004 pwm->args.period = chosen->period;
1005 pwm->args.polarity = chosen->polarity;
1006
1007 return pwm;
1008 }
1009 EXPORT_SYMBOL_GPL(pwm_get);
1010
1011 /**
1012 * pwm_put() - release a PWM device
1013 * @pwm: PWM device
1014 */
pwm_put(struct pwm_device * pwm)1015 void pwm_put(struct pwm_device *pwm)
1016 {
1017 if (!pwm)
1018 return;
1019
1020 mutex_lock(&pwm_lock);
1021
1022 if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1023 pr_warn("PWM device already freed\n");
1024 goto out;
1025 }
1026
1027 if (pwm->chip->ops->free)
1028 pwm->chip->ops->free(pwm->chip, pwm);
1029
1030 pwm_set_chip_data(pwm, NULL);
1031 pwm->label = NULL;
1032
1033 module_put(pwm->chip->ops->owner);
1034 out:
1035 mutex_unlock(&pwm_lock);
1036 }
1037 EXPORT_SYMBOL_GPL(pwm_put);
1038
devm_pwm_release(void * pwm)1039 static void devm_pwm_release(void *pwm)
1040 {
1041 pwm_put(pwm);
1042 }
1043
1044 /**
1045 * devm_pwm_get() - resource managed pwm_get()
1046 * @dev: device for PWM consumer
1047 * @con_id: consumer name
1048 *
1049 * This function performs like pwm_get() but the acquired PWM device will
1050 * automatically be released on driver detach.
1051 *
1052 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1053 * error code on failure.
1054 */
devm_pwm_get(struct device * dev,const char * con_id)1055 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1056 {
1057 struct pwm_device *pwm;
1058 int ret;
1059
1060 pwm = pwm_get(dev, con_id);
1061 if (IS_ERR(pwm))
1062 return pwm;
1063
1064 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1065 if (ret)
1066 return ERR_PTR(ret);
1067
1068 return pwm;
1069 }
1070 EXPORT_SYMBOL_GPL(devm_pwm_get);
1071
1072 /**
1073 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1074 * @dev: device for PWM consumer
1075 * @fwnode: firmware node to get the PWM from
1076 * @con_id: consumer name
1077 *
1078 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1079 * acpi_pwm_get() for a detailed description.
1080 *
1081 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1082 * error code on failure.
1083 */
devm_fwnode_pwm_get(struct device * dev,struct fwnode_handle * fwnode,const char * con_id)1084 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1085 struct fwnode_handle *fwnode,
1086 const char *con_id)
1087 {
1088 struct pwm_device *pwm = ERR_PTR(-ENODEV);
1089 int ret;
1090
1091 if (is_of_node(fwnode))
1092 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1093 else if (is_acpi_node(fwnode))
1094 pwm = acpi_pwm_get(fwnode);
1095 if (IS_ERR(pwm))
1096 return pwm;
1097
1098 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1099 if (ret)
1100 return ERR_PTR(ret);
1101
1102 return pwm;
1103 }
1104 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1105
1106 #ifdef CONFIG_DEBUG_FS
pwm_dbg_show(struct pwm_chip * chip,struct seq_file * s)1107 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1108 {
1109 unsigned int i;
1110
1111 for (i = 0; i < chip->npwm; i++) {
1112 struct pwm_device *pwm = &chip->pwms[i];
1113 struct pwm_state state;
1114
1115 pwm_get_state(pwm, &state);
1116
1117 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1118
1119 if (test_bit(PWMF_REQUESTED, &pwm->flags))
1120 seq_puts(s, " requested");
1121
1122 if (state.enabled)
1123 seq_puts(s, " enabled");
1124
1125 seq_printf(s, " period: %llu ns", state.period);
1126 seq_printf(s, " duty: %llu ns", state.duty_cycle);
1127 seq_printf(s, " polarity: %s",
1128 state.polarity ? "inverse" : "normal");
1129
1130 if (state.usage_power)
1131 seq_puts(s, " usage_power");
1132
1133 seq_puts(s, "\n");
1134 }
1135 }
1136
pwm_seq_start(struct seq_file * s,loff_t * pos)1137 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1138 {
1139 mutex_lock(&pwm_lock);
1140 s->private = "";
1141
1142 return seq_list_start(&pwm_chips, *pos);
1143 }
1144
pwm_seq_next(struct seq_file * s,void * v,loff_t * pos)1145 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1146 {
1147 s->private = "\n";
1148
1149 return seq_list_next(v, &pwm_chips, pos);
1150 }
1151
pwm_seq_stop(struct seq_file * s,void * v)1152 static void pwm_seq_stop(struct seq_file *s, void *v)
1153 {
1154 mutex_unlock(&pwm_lock);
1155 }
1156
pwm_seq_show(struct seq_file * s,void * v)1157 static int pwm_seq_show(struct seq_file *s, void *v)
1158 {
1159 struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1160
1161 seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1162 chip->dev->bus ? chip->dev->bus->name : "no-bus",
1163 dev_name(chip->dev), chip->npwm,
1164 (chip->npwm != 1) ? "s" : "");
1165
1166 pwm_dbg_show(chip, s);
1167
1168 return 0;
1169 }
1170
1171 static const struct seq_operations pwm_debugfs_sops = {
1172 .start = pwm_seq_start,
1173 .next = pwm_seq_next,
1174 .stop = pwm_seq_stop,
1175 .show = pwm_seq_show,
1176 };
1177
1178 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1179
pwm_debugfs_init(void)1180 static int __init pwm_debugfs_init(void)
1181 {
1182 debugfs_create_file("pwm", S_IFREG | 0444, NULL, NULL,
1183 &pwm_debugfs_fops);
1184
1185 return 0;
1186 }
1187 subsys_initcall(pwm_debugfs_init);
1188 #endif /* CONFIG_DEBUG_FS */
1189