1 /*
2 * Copyright (c) 2012, 2013 Intel Corporation. All rights reserved.
3 * Copyright (c) 2006 - 2012 QLogic Corporation. All rights reserved.
4 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/pci.h>
36 #include <linux/poll.h>
37 #include <linux/cdev.h>
38 #include <linux/swap.h>
39 #include <linux/vmalloc.h>
40 #include <linux/highmem.h>
41 #include <linux/io.h>
42 #include <linux/jiffies.h>
43 #include <linux/delay.h>
44 #include <linux/export.h>
45 #include <linux/uio.h>
46 #include <linux/pgtable.h>
47
48 #include <rdma/ib.h>
49
50 #include "qib.h"
51 #include "qib_common.h"
52 #include "qib_user_sdma.h"
53
54 #undef pr_fmt
55 #define pr_fmt(fmt) QIB_DRV_NAME ": " fmt
56
57 static int qib_open(struct inode *, struct file *);
58 static int qib_close(struct inode *, struct file *);
59 static ssize_t qib_write(struct file *, const char __user *, size_t, loff_t *);
60 static ssize_t qib_write_iter(struct kiocb *, struct iov_iter *);
61 static __poll_t qib_poll(struct file *, struct poll_table_struct *);
62 static int qib_mmapf(struct file *, struct vm_area_struct *);
63
64 /*
65 * This is really, really weird shit - write() and writev() here
66 * have completely unrelated semantics. Sucky userland ABI,
67 * film at 11.
68 */
69 static const struct file_operations qib_file_ops = {
70 .owner = THIS_MODULE,
71 .write = qib_write,
72 .write_iter = qib_write_iter,
73 .open = qib_open,
74 .release = qib_close,
75 .poll = qib_poll,
76 .mmap = qib_mmapf,
77 .llseek = noop_llseek,
78 };
79
80 /*
81 * Convert kernel virtual addresses to physical addresses so they don't
82 * potentially conflict with the chip addresses used as mmap offsets.
83 * It doesn't really matter what mmap offset we use as long as we can
84 * interpret it correctly.
85 */
cvt_kvaddr(void * p)86 static u64 cvt_kvaddr(void *p)
87 {
88 struct page *page;
89 u64 paddr = 0;
90
91 page = vmalloc_to_page(p);
92 if (page)
93 paddr = page_to_pfn(page) << PAGE_SHIFT;
94
95 return paddr;
96 }
97
qib_get_base_info(struct file * fp,void __user * ubase,size_t ubase_size)98 static int qib_get_base_info(struct file *fp, void __user *ubase,
99 size_t ubase_size)
100 {
101 struct qib_ctxtdata *rcd = ctxt_fp(fp);
102 int ret = 0;
103 struct qib_base_info *kinfo = NULL;
104 struct qib_devdata *dd = rcd->dd;
105 struct qib_pportdata *ppd = rcd->ppd;
106 unsigned subctxt_cnt;
107 int shared, master;
108 size_t sz;
109
110 subctxt_cnt = rcd->subctxt_cnt;
111 if (!subctxt_cnt) {
112 shared = 0;
113 master = 0;
114 subctxt_cnt = 1;
115 } else {
116 shared = 1;
117 master = !subctxt_fp(fp);
118 }
119
120 sz = sizeof(*kinfo);
121 /* If context sharing is not requested, allow the old size structure */
122 if (!shared)
123 sz -= 7 * sizeof(u64);
124 if (ubase_size < sz) {
125 ret = -EINVAL;
126 goto bail;
127 }
128
129 kinfo = kzalloc(sizeof(*kinfo), GFP_KERNEL);
130 if (kinfo == NULL) {
131 ret = -ENOMEM;
132 goto bail;
133 }
134
135 ret = dd->f_get_base_info(rcd, kinfo);
136 if (ret < 0)
137 goto bail;
138
139 kinfo->spi_rcvhdr_cnt = dd->rcvhdrcnt;
140 kinfo->spi_rcvhdrent_size = dd->rcvhdrentsize;
141 kinfo->spi_tidegrcnt = rcd->rcvegrcnt;
142 kinfo->spi_rcv_egrbufsize = dd->rcvegrbufsize;
143 /*
144 * have to mmap whole thing
145 */
146 kinfo->spi_rcv_egrbuftotlen =
147 rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size;
148 kinfo->spi_rcv_egrperchunk = rcd->rcvegrbufs_perchunk;
149 kinfo->spi_rcv_egrchunksize = kinfo->spi_rcv_egrbuftotlen /
150 rcd->rcvegrbuf_chunks;
151 kinfo->spi_tidcnt = dd->rcvtidcnt / subctxt_cnt;
152 if (master)
153 kinfo->spi_tidcnt += dd->rcvtidcnt % subctxt_cnt;
154 /*
155 * for this use, may be cfgctxts summed over all chips that
156 * are configured and present
157 */
158 kinfo->spi_nctxts = dd->cfgctxts;
159 /* unit (chip/board) our context is on */
160 kinfo->spi_unit = dd->unit;
161 kinfo->spi_port = ppd->port;
162 /* for now, only a single page */
163 kinfo->spi_tid_maxsize = PAGE_SIZE;
164
165 /*
166 * Doing this per context, and based on the skip value, etc. This has
167 * to be the actual buffer size, since the protocol code treats it
168 * as an array.
169 *
170 * These have to be set to user addresses in the user code via mmap.
171 * These values are used on return to user code for the mmap target
172 * addresses only. For 32 bit, same 44 bit address problem, so use
173 * the physical address, not virtual. Before 2.6.11, using the
174 * page_address() macro worked, but in 2.6.11, even that returns the
175 * full 64 bit address (upper bits all 1's). So far, using the
176 * physical addresses (or chip offsets, for chip mapping) works, but
177 * no doubt some future kernel release will change that, and we'll be
178 * on to yet another method of dealing with this.
179 * Normally only one of rcvhdr_tailaddr or rhf_offset is useful
180 * since the chips with non-zero rhf_offset don't normally
181 * enable tail register updates to host memory, but for testing,
182 * both can be enabled and used.
183 */
184 kinfo->spi_rcvhdr_base = (u64) rcd->rcvhdrq_phys;
185 kinfo->spi_rcvhdr_tailaddr = (u64) rcd->rcvhdrqtailaddr_phys;
186 kinfo->spi_rhf_offset = dd->rhf_offset;
187 kinfo->spi_rcv_egrbufs = (u64) rcd->rcvegr_phys;
188 kinfo->spi_pioavailaddr = (u64) dd->pioavailregs_phys;
189 /* setup per-unit (not port) status area for user programs */
190 kinfo->spi_status = (u64) kinfo->spi_pioavailaddr +
191 (char *) ppd->statusp -
192 (char *) dd->pioavailregs_dma;
193 kinfo->spi_uregbase = (u64) dd->uregbase + dd->ureg_align * rcd->ctxt;
194 if (!shared) {
195 kinfo->spi_piocnt = rcd->piocnt;
196 kinfo->spi_piobufbase = (u64) rcd->piobufs;
197 kinfo->spi_sendbuf_status = cvt_kvaddr(rcd->user_event_mask);
198 } else if (master) {
199 kinfo->spi_piocnt = (rcd->piocnt / subctxt_cnt) +
200 (rcd->piocnt % subctxt_cnt);
201 /* Master's PIO buffers are after all the slave's */
202 kinfo->spi_piobufbase = (u64) rcd->piobufs +
203 dd->palign *
204 (rcd->piocnt - kinfo->spi_piocnt);
205 } else {
206 unsigned slave = subctxt_fp(fp) - 1;
207
208 kinfo->spi_piocnt = rcd->piocnt / subctxt_cnt;
209 kinfo->spi_piobufbase = (u64) rcd->piobufs +
210 dd->palign * kinfo->spi_piocnt * slave;
211 }
212
213 if (shared) {
214 kinfo->spi_sendbuf_status =
215 cvt_kvaddr(&rcd->user_event_mask[subctxt_fp(fp)]);
216 /* only spi_subctxt_* fields should be set in this block! */
217 kinfo->spi_subctxt_uregbase = cvt_kvaddr(rcd->subctxt_uregbase);
218
219 kinfo->spi_subctxt_rcvegrbuf =
220 cvt_kvaddr(rcd->subctxt_rcvegrbuf);
221 kinfo->spi_subctxt_rcvhdr_base =
222 cvt_kvaddr(rcd->subctxt_rcvhdr_base);
223 }
224
225 /*
226 * All user buffers are 2KB buffers. If we ever support
227 * giving 4KB buffers to user processes, this will need some
228 * work. Can't use piobufbase directly, because it has
229 * both 2K and 4K buffer base values.
230 */
231 kinfo->spi_pioindex = (kinfo->spi_piobufbase - dd->pio2k_bufbase) /
232 dd->palign;
233 kinfo->spi_pioalign = dd->palign;
234 kinfo->spi_qpair = QIB_KD_QP;
235 /*
236 * user mode PIO buffers are always 2KB, even when 4KB can
237 * be received, and sent via the kernel; this is ibmaxlen
238 * for 2K MTU.
239 */
240 kinfo->spi_piosize = dd->piosize2k - 2 * sizeof(u32);
241 kinfo->spi_mtu = ppd->ibmaxlen; /* maxlen, not ibmtu */
242 kinfo->spi_ctxt = rcd->ctxt;
243 kinfo->spi_subctxt = subctxt_fp(fp);
244 kinfo->spi_sw_version = QIB_KERN_SWVERSION;
245 kinfo->spi_sw_version |= 1U << 31; /* QLogic-built, not kernel.org */
246 kinfo->spi_hw_version = dd->revision;
247
248 if (master)
249 kinfo->spi_runtime_flags |= QIB_RUNTIME_MASTER;
250
251 sz = (ubase_size < sizeof(*kinfo)) ? ubase_size : sizeof(*kinfo);
252 if (copy_to_user(ubase, kinfo, sz))
253 ret = -EFAULT;
254 bail:
255 kfree(kinfo);
256 return ret;
257 }
258
259 /**
260 * qib_tid_update - update a context TID
261 * @rcd: the context
262 * @fp: the qib device file
263 * @ti: the TID information
264 *
265 * The new implementation as of Oct 2004 is that the driver assigns
266 * the tid and returns it to the caller. To reduce search time, we
267 * keep a cursor for each context, walking the shadow tid array to find
268 * one that's not in use.
269 *
270 * For now, if we can't allocate the full list, we fail, although
271 * in the long run, we'll allocate as many as we can, and the
272 * caller will deal with that by trying the remaining pages later.
273 * That means that when we fail, we have to mark the tids as not in
274 * use again, in our shadow copy.
275 *
276 * It's up to the caller to free the tids when they are done.
277 * We'll unlock the pages as they free them.
278 *
279 * Also, right now we are locking one page at a time, but since
280 * the intended use of this routine is for a single group of
281 * virtually contiguous pages, that should change to improve
282 * performance.
283 */
qib_tid_update(struct qib_ctxtdata * rcd,struct file * fp,const struct qib_tid_info * ti)284 static int qib_tid_update(struct qib_ctxtdata *rcd, struct file *fp,
285 const struct qib_tid_info *ti)
286 {
287 int ret = 0, ntids;
288 u32 tid, ctxttid, cnt, i, tidcnt, tidoff;
289 u16 *tidlist;
290 struct qib_devdata *dd = rcd->dd;
291 u64 physaddr;
292 unsigned long vaddr;
293 u64 __iomem *tidbase;
294 unsigned long tidmap[8];
295 struct page **pagep = NULL;
296 unsigned subctxt = subctxt_fp(fp);
297
298 if (!dd->pageshadow) {
299 ret = -ENOMEM;
300 goto done;
301 }
302
303 cnt = ti->tidcnt;
304 if (!cnt) {
305 ret = -EFAULT;
306 goto done;
307 }
308 ctxttid = rcd->ctxt * dd->rcvtidcnt;
309 if (!rcd->subctxt_cnt) {
310 tidcnt = dd->rcvtidcnt;
311 tid = rcd->tidcursor;
312 tidoff = 0;
313 } else if (!subctxt) {
314 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) +
315 (dd->rcvtidcnt % rcd->subctxt_cnt);
316 tidoff = dd->rcvtidcnt - tidcnt;
317 ctxttid += tidoff;
318 tid = tidcursor_fp(fp);
319 } else {
320 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt;
321 tidoff = tidcnt * (subctxt - 1);
322 ctxttid += tidoff;
323 tid = tidcursor_fp(fp);
324 }
325 if (cnt > tidcnt) {
326 /* make sure it all fits in tid_pg_list */
327 qib_devinfo(dd->pcidev,
328 "Process tried to allocate %u TIDs, only trying max (%u)\n",
329 cnt, tidcnt);
330 cnt = tidcnt;
331 }
332 pagep = (struct page **) rcd->tid_pg_list;
333 tidlist = (u16 *) &pagep[dd->rcvtidcnt];
334 pagep += tidoff;
335 tidlist += tidoff;
336
337 memset(tidmap, 0, sizeof(tidmap));
338 /* before decrement; chip actual # */
339 ntids = tidcnt;
340 tidbase = (u64 __iomem *) (((char __iomem *) dd->kregbase) +
341 dd->rcvtidbase +
342 ctxttid * sizeof(*tidbase));
343
344 /* virtual address of first page in transfer */
345 vaddr = ti->tidvaddr;
346 if (!access_ok((void __user *) vaddr,
347 cnt * PAGE_SIZE)) {
348 ret = -EFAULT;
349 goto done;
350 }
351 ret = qib_get_user_pages(vaddr, cnt, pagep);
352 if (ret) {
353 /*
354 * if (ret == -EBUSY)
355 * We can't continue because the pagep array won't be
356 * initialized. This should never happen,
357 * unless perhaps the user has mpin'ed the pages
358 * themselves.
359 */
360 qib_devinfo(
361 dd->pcidev,
362 "Failed to lock addr %p, %u pages: errno %d\n",
363 (void *) vaddr, cnt, -ret);
364 goto done;
365 }
366 for (i = 0; i < cnt; i++, vaddr += PAGE_SIZE) {
367 dma_addr_t daddr;
368
369 for (; ntids--; tid++) {
370 if (tid == tidcnt)
371 tid = 0;
372 if (!dd->pageshadow[ctxttid + tid])
373 break;
374 }
375 if (ntids < 0) {
376 /*
377 * Oops, wrapped all the way through their TIDs,
378 * and didn't have enough free; see comments at
379 * start of routine
380 */
381 i--; /* last tidlist[i] not filled in */
382 ret = -ENOMEM;
383 break;
384 }
385 ret = qib_map_page(dd->pcidev, pagep[i], &daddr);
386 if (ret)
387 break;
388
389 tidlist[i] = tid + tidoff;
390 /* we "know" system pages and TID pages are same size */
391 dd->pageshadow[ctxttid + tid] = pagep[i];
392 dd->physshadow[ctxttid + tid] = daddr;
393 /*
394 * don't need atomic or it's overhead
395 */
396 __set_bit(tid, tidmap);
397 physaddr = dd->physshadow[ctxttid + tid];
398 /* PERFORMANCE: below should almost certainly be cached */
399 dd->f_put_tid(dd, &tidbase[tid],
400 RCVHQ_RCV_TYPE_EXPECTED, physaddr);
401 /*
402 * don't check this tid in qib_ctxtshadow, since we
403 * just filled it in; start with the next one.
404 */
405 tid++;
406 }
407
408 if (ret) {
409 u32 limit;
410 cleanup:
411 /* jump here if copy out of updated info failed... */
412 /* same code that's in qib_free_tid() */
413 limit = sizeof(tidmap) * BITS_PER_BYTE;
414 if (limit > tidcnt)
415 /* just in case size changes in future */
416 limit = tidcnt;
417 tid = find_first_bit((const unsigned long *)tidmap, limit);
418 for (; tid < limit; tid++) {
419 if (!test_bit(tid, tidmap))
420 continue;
421 if (dd->pageshadow[ctxttid + tid]) {
422 dma_addr_t phys;
423
424 phys = dd->physshadow[ctxttid + tid];
425 dd->physshadow[ctxttid + tid] = dd->tidinvalid;
426 /* PERFORMANCE: below should almost certainly
427 * be cached
428 */
429 dd->f_put_tid(dd, &tidbase[tid],
430 RCVHQ_RCV_TYPE_EXPECTED,
431 dd->tidinvalid);
432 dma_unmap_page(&dd->pcidev->dev, phys,
433 PAGE_SIZE, DMA_FROM_DEVICE);
434 dd->pageshadow[ctxttid + tid] = NULL;
435 }
436 }
437 qib_release_user_pages(pagep, cnt);
438 } else {
439 /*
440 * Copy the updated array, with qib_tid's filled in, back
441 * to user. Since we did the copy in already, this "should
442 * never fail" If it does, we have to clean up...
443 */
444 if (copy_to_user((void __user *)
445 (unsigned long) ti->tidlist,
446 tidlist, cnt * sizeof(*tidlist))) {
447 ret = -EFAULT;
448 goto cleanup;
449 }
450 if (copy_to_user(u64_to_user_ptr(ti->tidmap),
451 tidmap, sizeof(tidmap))) {
452 ret = -EFAULT;
453 goto cleanup;
454 }
455 if (tid == tidcnt)
456 tid = 0;
457 if (!rcd->subctxt_cnt)
458 rcd->tidcursor = tid;
459 else
460 tidcursor_fp(fp) = tid;
461 }
462
463 done:
464 return ret;
465 }
466
467 /**
468 * qib_tid_free - free a context TID
469 * @rcd: the context
470 * @subctxt: the subcontext
471 * @ti: the TID info
472 *
473 * right now we are unlocking one page at a time, but since
474 * the intended use of this routine is for a single group of
475 * virtually contiguous pages, that should change to improve
476 * performance. We check that the TID is in range for this context
477 * but otherwise don't check validity; if user has an error and
478 * frees the wrong tid, it's only their own data that can thereby
479 * be corrupted. We do check that the TID was in use, for sanity
480 * We always use our idea of the saved address, not the address that
481 * they pass in to us.
482 */
qib_tid_free(struct qib_ctxtdata * rcd,unsigned subctxt,const struct qib_tid_info * ti)483 static int qib_tid_free(struct qib_ctxtdata *rcd, unsigned subctxt,
484 const struct qib_tid_info *ti)
485 {
486 int ret = 0;
487 u32 tid, ctxttid, cnt, limit, tidcnt;
488 struct qib_devdata *dd = rcd->dd;
489 u64 __iomem *tidbase;
490 unsigned long tidmap[8];
491
492 if (!dd->pageshadow) {
493 ret = -ENOMEM;
494 goto done;
495 }
496
497 if (copy_from_user(tidmap, u64_to_user_ptr(ti->tidmap),
498 sizeof(tidmap))) {
499 ret = -EFAULT;
500 goto done;
501 }
502
503 ctxttid = rcd->ctxt * dd->rcvtidcnt;
504 if (!rcd->subctxt_cnt)
505 tidcnt = dd->rcvtidcnt;
506 else if (!subctxt) {
507 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) +
508 (dd->rcvtidcnt % rcd->subctxt_cnt);
509 ctxttid += dd->rcvtidcnt - tidcnt;
510 } else {
511 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt;
512 ctxttid += tidcnt * (subctxt - 1);
513 }
514 tidbase = (u64 __iomem *) ((char __iomem *)(dd->kregbase) +
515 dd->rcvtidbase +
516 ctxttid * sizeof(*tidbase));
517
518 limit = sizeof(tidmap) * BITS_PER_BYTE;
519 if (limit > tidcnt)
520 /* just in case size changes in future */
521 limit = tidcnt;
522 tid = find_first_bit(tidmap, limit);
523 for (cnt = 0; tid < limit; tid++) {
524 /*
525 * small optimization; if we detect a run of 3 or so without
526 * any set, use find_first_bit again. That's mainly to
527 * accelerate the case where we wrapped, so we have some at
528 * the beginning, and some at the end, and a big gap
529 * in the middle.
530 */
531 if (!test_bit(tid, tidmap))
532 continue;
533 cnt++;
534 if (dd->pageshadow[ctxttid + tid]) {
535 struct page *p;
536 dma_addr_t phys;
537
538 p = dd->pageshadow[ctxttid + tid];
539 dd->pageshadow[ctxttid + tid] = NULL;
540 phys = dd->physshadow[ctxttid + tid];
541 dd->physshadow[ctxttid + tid] = dd->tidinvalid;
542 /* PERFORMANCE: below should almost certainly be
543 * cached
544 */
545 dd->f_put_tid(dd, &tidbase[tid],
546 RCVHQ_RCV_TYPE_EXPECTED, dd->tidinvalid);
547 dma_unmap_page(&dd->pcidev->dev, phys, PAGE_SIZE,
548 DMA_FROM_DEVICE);
549 qib_release_user_pages(&p, 1);
550 }
551 }
552 done:
553 return ret;
554 }
555
556 /**
557 * qib_set_part_key - set a partition key
558 * @rcd: the context
559 * @key: the key
560 *
561 * We can have up to 4 active at a time (other than the default, which is
562 * always allowed). This is somewhat tricky, since multiple contexts may set
563 * the same key, so we reference count them, and clean up at exit. All 4
564 * partition keys are packed into a single qlogic_ib register. It's an
565 * error for a process to set the same pkey multiple times. We provide no
566 * mechanism to de-allocate a pkey at this time, we may eventually need to
567 * do that. I've used the atomic operations, and no locking, and only make
568 * a single pass through what's available. This should be more than
569 * adequate for some time. I'll think about spinlocks or the like if and as
570 * it's necessary.
571 */
qib_set_part_key(struct qib_ctxtdata * rcd,u16 key)572 static int qib_set_part_key(struct qib_ctxtdata *rcd, u16 key)
573 {
574 struct qib_pportdata *ppd = rcd->ppd;
575 int i, pidx = -1;
576 bool any = false;
577 u16 lkey = key & 0x7FFF;
578
579 if (lkey == (QIB_DEFAULT_P_KEY & 0x7FFF))
580 /* nothing to do; this key always valid */
581 return 0;
582
583 if (!lkey)
584 return -EINVAL;
585
586 /*
587 * Set the full membership bit, because it has to be
588 * set in the register or the packet, and it seems
589 * cleaner to set in the register than to force all
590 * callers to set it.
591 */
592 key |= 0x8000;
593
594 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) {
595 if (!rcd->pkeys[i] && pidx == -1)
596 pidx = i;
597 if (rcd->pkeys[i] == key)
598 return -EEXIST;
599 }
600 if (pidx == -1)
601 return -EBUSY;
602 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) {
603 if (!ppd->pkeys[i]) {
604 any = true;
605 continue;
606 }
607 if (ppd->pkeys[i] == key) {
608 atomic_t *pkrefs = &ppd->pkeyrefs[i];
609
610 if (atomic_inc_return(pkrefs) > 1) {
611 rcd->pkeys[pidx] = key;
612 return 0;
613 }
614 /*
615 * lost race, decrement count, catch below
616 */
617 atomic_dec(pkrefs);
618 any = true;
619 }
620 if ((ppd->pkeys[i] & 0x7FFF) == lkey)
621 /*
622 * It makes no sense to have both the limited and
623 * full membership PKEY set at the same time since
624 * the unlimited one will disable the limited one.
625 */
626 return -EEXIST;
627 }
628 if (!any)
629 return -EBUSY;
630 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) {
631 if (!ppd->pkeys[i] &&
632 atomic_inc_return(&ppd->pkeyrefs[i]) == 1) {
633 rcd->pkeys[pidx] = key;
634 ppd->pkeys[i] = key;
635 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0);
636 return 0;
637 }
638 }
639 return -EBUSY;
640 }
641
642 /**
643 * qib_manage_rcvq - manage a context's receive queue
644 * @rcd: the context
645 * @subctxt: the subcontext
646 * @start_stop: action to carry out
647 *
648 * start_stop == 0 disables receive on the context, for use in queue
649 * overflow conditions. start_stop==1 re-enables, to be used to
650 * re-init the software copy of the head register
651 */
qib_manage_rcvq(struct qib_ctxtdata * rcd,unsigned subctxt,int start_stop)652 static int qib_manage_rcvq(struct qib_ctxtdata *rcd, unsigned subctxt,
653 int start_stop)
654 {
655 struct qib_devdata *dd = rcd->dd;
656 unsigned int rcvctrl_op;
657
658 if (subctxt)
659 goto bail;
660 /* atomically clear receive enable ctxt. */
661 if (start_stop) {
662 /*
663 * On enable, force in-memory copy of the tail register to
664 * 0, so that protocol code doesn't have to worry about
665 * whether or not the chip has yet updated the in-memory
666 * copy or not on return from the system call. The chip
667 * always resets it's tail register back to 0 on a
668 * transition from disabled to enabled.
669 */
670 if (rcd->rcvhdrtail_kvaddr)
671 qib_clear_rcvhdrtail(rcd);
672 rcvctrl_op = QIB_RCVCTRL_CTXT_ENB;
673 } else
674 rcvctrl_op = QIB_RCVCTRL_CTXT_DIS;
675 dd->f_rcvctrl(rcd->ppd, rcvctrl_op, rcd->ctxt);
676 /* always; new head should be equal to new tail; see above */
677 bail:
678 return 0;
679 }
680
qib_clean_part_key(struct qib_ctxtdata * rcd,struct qib_devdata * dd)681 static void qib_clean_part_key(struct qib_ctxtdata *rcd,
682 struct qib_devdata *dd)
683 {
684 int i, j, pchanged = 0;
685 struct qib_pportdata *ppd = rcd->ppd;
686
687 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) {
688 if (!rcd->pkeys[i])
689 continue;
690 for (j = 0; j < ARRAY_SIZE(ppd->pkeys); j++) {
691 /* check for match independent of the global bit */
692 if ((ppd->pkeys[j] & 0x7fff) !=
693 (rcd->pkeys[i] & 0x7fff))
694 continue;
695 if (atomic_dec_and_test(&ppd->pkeyrefs[j])) {
696 ppd->pkeys[j] = 0;
697 pchanged++;
698 }
699 break;
700 }
701 rcd->pkeys[i] = 0;
702 }
703 if (pchanged)
704 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0);
705 }
706
707 /* common code for the mappings on dma_alloc_coherent mem */
qib_mmap_mem(struct vm_area_struct * vma,struct qib_ctxtdata * rcd,unsigned len,void * kvaddr,u32 write_ok,char * what)708 static int qib_mmap_mem(struct vm_area_struct *vma, struct qib_ctxtdata *rcd,
709 unsigned len, void *kvaddr, u32 write_ok, char *what)
710 {
711 struct qib_devdata *dd = rcd->dd;
712 unsigned long pfn;
713 int ret;
714
715 if ((vma->vm_end - vma->vm_start) > len) {
716 qib_devinfo(dd->pcidev,
717 "FAIL on %s: len %lx > %x\n", what,
718 vma->vm_end - vma->vm_start, len);
719 ret = -EFAULT;
720 goto bail;
721 }
722
723 /*
724 * shared context user code requires rcvhdrq mapped r/w, others
725 * only allowed readonly mapping.
726 */
727 if (!write_ok) {
728 if (vma->vm_flags & VM_WRITE) {
729 qib_devinfo(dd->pcidev,
730 "%s must be mapped readonly\n", what);
731 ret = -EPERM;
732 goto bail;
733 }
734
735 /* don't allow them to later change with mprotect */
736 vm_flags_clear(vma, VM_MAYWRITE);
737 }
738
739 pfn = virt_to_phys(kvaddr) >> PAGE_SHIFT;
740 ret = remap_pfn_range(vma, vma->vm_start, pfn,
741 len, vma->vm_page_prot);
742 if (ret)
743 qib_devinfo(dd->pcidev,
744 "%s ctxt%u mmap of %lx, %x bytes failed: %d\n",
745 what, rcd->ctxt, pfn, len, ret);
746 bail:
747 return ret;
748 }
749
mmap_ureg(struct vm_area_struct * vma,struct qib_devdata * dd,u64 ureg)750 static int mmap_ureg(struct vm_area_struct *vma, struct qib_devdata *dd,
751 u64 ureg)
752 {
753 unsigned long phys;
754 unsigned long sz;
755 int ret;
756
757 /*
758 * This is real hardware, so use io_remap. This is the mechanism
759 * for the user process to update the head registers for their ctxt
760 * in the chip.
761 */
762 sz = dd->flags & QIB_HAS_HDRSUPP ? 2 * PAGE_SIZE : PAGE_SIZE;
763 if ((vma->vm_end - vma->vm_start) > sz) {
764 qib_devinfo(dd->pcidev,
765 "FAIL mmap userreg: reqlen %lx > PAGE\n",
766 vma->vm_end - vma->vm_start);
767 ret = -EFAULT;
768 } else {
769 phys = dd->physaddr + ureg;
770 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
771
772 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND);
773 ret = io_remap_pfn_range(vma, vma->vm_start,
774 phys >> PAGE_SHIFT,
775 vma->vm_end - vma->vm_start,
776 vma->vm_page_prot);
777 }
778 return ret;
779 }
780
mmap_piobufs(struct vm_area_struct * vma,struct qib_devdata * dd,struct qib_ctxtdata * rcd,unsigned piobufs,unsigned piocnt)781 static int mmap_piobufs(struct vm_area_struct *vma,
782 struct qib_devdata *dd,
783 struct qib_ctxtdata *rcd,
784 unsigned piobufs, unsigned piocnt)
785 {
786 unsigned long phys;
787 int ret;
788
789 /*
790 * When we map the PIO buffers in the chip, we want to map them as
791 * writeonly, no read possible; unfortunately, x86 doesn't allow
792 * for this in hardware, but we still prevent users from asking
793 * for it.
794 */
795 if ((vma->vm_end - vma->vm_start) > (piocnt * dd->palign)) {
796 qib_devinfo(dd->pcidev,
797 "FAIL mmap piobufs: reqlen %lx > PAGE\n",
798 vma->vm_end - vma->vm_start);
799 ret = -EINVAL;
800 goto bail;
801 }
802
803 phys = dd->physaddr + piobufs;
804
805 #if defined(__powerpc__)
806 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
807 #endif
808
809 /*
810 * don't allow them to later change to readable with mprotect (for when
811 * not initially mapped readable, as is normally the case)
812 */
813 vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND, VM_MAYREAD);
814
815 /* We used PAT if wc_cookie == 0 */
816 if (!dd->wc_cookie)
817 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
818
819 ret = io_remap_pfn_range(vma, vma->vm_start, phys >> PAGE_SHIFT,
820 vma->vm_end - vma->vm_start,
821 vma->vm_page_prot);
822 bail:
823 return ret;
824 }
825
mmap_rcvegrbufs(struct vm_area_struct * vma,struct qib_ctxtdata * rcd)826 static int mmap_rcvegrbufs(struct vm_area_struct *vma,
827 struct qib_ctxtdata *rcd)
828 {
829 struct qib_devdata *dd = rcd->dd;
830 unsigned long start, size;
831 size_t total_size, i;
832 unsigned long pfn;
833 int ret;
834
835 size = rcd->rcvegrbuf_size;
836 total_size = rcd->rcvegrbuf_chunks * size;
837 if ((vma->vm_end - vma->vm_start) > total_size) {
838 qib_devinfo(dd->pcidev,
839 "FAIL on egr bufs: reqlen %lx > actual %lx\n",
840 vma->vm_end - vma->vm_start,
841 (unsigned long) total_size);
842 ret = -EINVAL;
843 goto bail;
844 }
845
846 if (vma->vm_flags & VM_WRITE) {
847 qib_devinfo(dd->pcidev,
848 "Can't map eager buffers as writable (flags=%lx)\n",
849 vma->vm_flags);
850 ret = -EPERM;
851 goto bail;
852 }
853 /* don't allow them to later change to writable with mprotect */
854 vm_flags_clear(vma, VM_MAYWRITE);
855
856 start = vma->vm_start;
857
858 for (i = 0; i < rcd->rcvegrbuf_chunks; i++, start += size) {
859 pfn = virt_to_phys(rcd->rcvegrbuf[i]) >> PAGE_SHIFT;
860 ret = remap_pfn_range(vma, start, pfn, size,
861 vma->vm_page_prot);
862 if (ret < 0)
863 goto bail;
864 }
865 ret = 0;
866
867 bail:
868 return ret;
869 }
870
871 /*
872 * qib_file_vma_fault - handle a VMA page fault.
873 */
qib_file_vma_fault(struct vm_fault * vmf)874 static vm_fault_t qib_file_vma_fault(struct vm_fault *vmf)
875 {
876 struct page *page;
877
878 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
879 if (!page)
880 return VM_FAULT_SIGBUS;
881
882 get_page(page);
883 vmf->page = page;
884
885 return 0;
886 }
887
888 static const struct vm_operations_struct qib_file_vm_ops = {
889 .fault = qib_file_vma_fault,
890 };
891
mmap_kvaddr(struct vm_area_struct * vma,u64 pgaddr,struct qib_ctxtdata * rcd,unsigned subctxt)892 static int mmap_kvaddr(struct vm_area_struct *vma, u64 pgaddr,
893 struct qib_ctxtdata *rcd, unsigned subctxt)
894 {
895 struct qib_devdata *dd = rcd->dd;
896 unsigned subctxt_cnt;
897 unsigned long len;
898 void *addr;
899 size_t size;
900 int ret = 0;
901
902 subctxt_cnt = rcd->subctxt_cnt;
903 size = rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size;
904
905 /*
906 * Each process has all the subctxt uregbase, rcvhdrq, and
907 * rcvegrbufs mmapped - as an array for all the processes,
908 * and also separately for this process.
909 */
910 if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase)) {
911 addr = rcd->subctxt_uregbase;
912 size = PAGE_SIZE * subctxt_cnt;
913 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base)) {
914 addr = rcd->subctxt_rcvhdr_base;
915 size = rcd->rcvhdrq_size * subctxt_cnt;
916 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf)) {
917 addr = rcd->subctxt_rcvegrbuf;
918 size *= subctxt_cnt;
919 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase +
920 PAGE_SIZE * subctxt)) {
921 addr = rcd->subctxt_uregbase + PAGE_SIZE * subctxt;
922 size = PAGE_SIZE;
923 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base +
924 rcd->rcvhdrq_size * subctxt)) {
925 addr = rcd->subctxt_rcvhdr_base +
926 rcd->rcvhdrq_size * subctxt;
927 size = rcd->rcvhdrq_size;
928 } else if (pgaddr == cvt_kvaddr(&rcd->user_event_mask[subctxt])) {
929 addr = rcd->user_event_mask;
930 size = PAGE_SIZE;
931 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf +
932 size * subctxt)) {
933 addr = rcd->subctxt_rcvegrbuf + size * subctxt;
934 /* rcvegrbufs are read-only on the slave */
935 if (vma->vm_flags & VM_WRITE) {
936 qib_devinfo(dd->pcidev,
937 "Can't map eager buffers as writable (flags=%lx)\n",
938 vma->vm_flags);
939 ret = -EPERM;
940 goto bail;
941 }
942 /*
943 * Don't allow permission to later change to writable
944 * with mprotect.
945 */
946 vm_flags_clear(vma, VM_MAYWRITE);
947 } else
948 goto bail;
949 len = vma->vm_end - vma->vm_start;
950 if (len > size) {
951 ret = -EINVAL;
952 goto bail;
953 }
954
955 vma->vm_pgoff = (unsigned long) addr >> PAGE_SHIFT;
956 vma->vm_ops = &qib_file_vm_ops;
957 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
958 ret = 1;
959
960 bail:
961 return ret;
962 }
963
964 /**
965 * qib_mmapf - mmap various structures into user space
966 * @fp: the file pointer
967 * @vma: the VM area
968 *
969 * We use this to have a shared buffer between the kernel and the user code
970 * for the rcvhdr queue, egr buffers, and the per-context user regs and pio
971 * buffers in the chip. We have the open and close entries so we can bump
972 * the ref count and keep the driver from being unloaded while still mapped.
973 */
qib_mmapf(struct file * fp,struct vm_area_struct * vma)974 static int qib_mmapf(struct file *fp, struct vm_area_struct *vma)
975 {
976 struct qib_ctxtdata *rcd;
977 struct qib_devdata *dd;
978 u64 pgaddr, ureg;
979 unsigned piobufs, piocnt;
980 int ret, match = 1;
981
982 rcd = ctxt_fp(fp);
983 if (!rcd || !(vma->vm_flags & VM_SHARED)) {
984 ret = -EINVAL;
985 goto bail;
986 }
987 dd = rcd->dd;
988
989 /*
990 * This is the qib_do_user_init() code, mapping the shared buffers
991 * and per-context user registers into the user process. The address
992 * referred to by vm_pgoff is the file offset passed via mmap().
993 * For shared contexts, this is the kernel vmalloc() address of the
994 * pages to share with the master.
995 * For non-shared or master ctxts, this is a physical address.
996 * We only do one mmap for each space mapped.
997 */
998 pgaddr = vma->vm_pgoff << PAGE_SHIFT;
999
1000 /*
1001 * Check for 0 in case one of the allocations failed, but user
1002 * called mmap anyway.
1003 */
1004 if (!pgaddr) {
1005 ret = -EINVAL;
1006 goto bail;
1007 }
1008
1009 /*
1010 * Physical addresses must fit in 40 bits for our hardware.
1011 * Check for kernel virtual addresses first, anything else must
1012 * match a HW or memory address.
1013 */
1014 ret = mmap_kvaddr(vma, pgaddr, rcd, subctxt_fp(fp));
1015 if (ret) {
1016 if (ret > 0)
1017 ret = 0;
1018 goto bail;
1019 }
1020
1021 ureg = dd->uregbase + dd->ureg_align * rcd->ctxt;
1022 if (!rcd->subctxt_cnt) {
1023 /* ctxt is not shared */
1024 piocnt = rcd->piocnt;
1025 piobufs = rcd->piobufs;
1026 } else if (!subctxt_fp(fp)) {
1027 /* caller is the master */
1028 piocnt = (rcd->piocnt / rcd->subctxt_cnt) +
1029 (rcd->piocnt % rcd->subctxt_cnt);
1030 piobufs = rcd->piobufs +
1031 dd->palign * (rcd->piocnt - piocnt);
1032 } else {
1033 unsigned slave = subctxt_fp(fp) - 1;
1034
1035 /* caller is a slave */
1036 piocnt = rcd->piocnt / rcd->subctxt_cnt;
1037 piobufs = rcd->piobufs + dd->palign * piocnt * slave;
1038 }
1039
1040 if (pgaddr == ureg)
1041 ret = mmap_ureg(vma, dd, ureg);
1042 else if (pgaddr == piobufs)
1043 ret = mmap_piobufs(vma, dd, rcd, piobufs, piocnt);
1044 else if (pgaddr == dd->pioavailregs_phys)
1045 /* in-memory copy of pioavail registers */
1046 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE,
1047 (void *) dd->pioavailregs_dma, 0,
1048 "pioavail registers");
1049 else if (pgaddr == rcd->rcvegr_phys)
1050 ret = mmap_rcvegrbufs(vma, rcd);
1051 else if (pgaddr == (u64) rcd->rcvhdrq_phys)
1052 /*
1053 * The rcvhdrq itself; multiple pages, contiguous
1054 * from an i/o perspective. Shared contexts need
1055 * to map r/w, so we allow writing.
1056 */
1057 ret = qib_mmap_mem(vma, rcd, rcd->rcvhdrq_size,
1058 rcd->rcvhdrq, 1, "rcvhdrq");
1059 else if (pgaddr == (u64) rcd->rcvhdrqtailaddr_phys)
1060 /* in-memory copy of rcvhdrq tail register */
1061 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE,
1062 rcd->rcvhdrtail_kvaddr, 0,
1063 "rcvhdrq tail");
1064 else
1065 match = 0;
1066 if (!match)
1067 ret = -EINVAL;
1068
1069 vma->vm_private_data = NULL;
1070
1071 if (ret < 0)
1072 qib_devinfo(dd->pcidev,
1073 "mmap Failure %d: off %llx len %lx\n",
1074 -ret, (unsigned long long)pgaddr,
1075 vma->vm_end - vma->vm_start);
1076 bail:
1077 return ret;
1078 }
1079
qib_poll_urgent(struct qib_ctxtdata * rcd,struct file * fp,struct poll_table_struct * pt)1080 static __poll_t qib_poll_urgent(struct qib_ctxtdata *rcd,
1081 struct file *fp,
1082 struct poll_table_struct *pt)
1083 {
1084 struct qib_devdata *dd = rcd->dd;
1085 __poll_t pollflag;
1086
1087 poll_wait(fp, &rcd->wait, pt);
1088
1089 spin_lock_irq(&dd->uctxt_lock);
1090 if (rcd->urgent != rcd->urgent_poll) {
1091 pollflag = EPOLLIN | EPOLLRDNORM;
1092 rcd->urgent_poll = rcd->urgent;
1093 } else {
1094 pollflag = 0;
1095 set_bit(QIB_CTXT_WAITING_URG, &rcd->flag);
1096 }
1097 spin_unlock_irq(&dd->uctxt_lock);
1098
1099 return pollflag;
1100 }
1101
qib_poll_next(struct qib_ctxtdata * rcd,struct file * fp,struct poll_table_struct * pt)1102 static __poll_t qib_poll_next(struct qib_ctxtdata *rcd,
1103 struct file *fp,
1104 struct poll_table_struct *pt)
1105 {
1106 struct qib_devdata *dd = rcd->dd;
1107 __poll_t pollflag;
1108
1109 poll_wait(fp, &rcd->wait, pt);
1110
1111 spin_lock_irq(&dd->uctxt_lock);
1112 if (dd->f_hdrqempty(rcd)) {
1113 set_bit(QIB_CTXT_WAITING_RCV, &rcd->flag);
1114 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_INTRAVAIL_ENB, rcd->ctxt);
1115 pollflag = 0;
1116 } else
1117 pollflag = EPOLLIN | EPOLLRDNORM;
1118 spin_unlock_irq(&dd->uctxt_lock);
1119
1120 return pollflag;
1121 }
1122
qib_poll(struct file * fp,struct poll_table_struct * pt)1123 static __poll_t qib_poll(struct file *fp, struct poll_table_struct *pt)
1124 {
1125 struct qib_ctxtdata *rcd;
1126 __poll_t pollflag;
1127
1128 rcd = ctxt_fp(fp);
1129 if (!rcd)
1130 pollflag = EPOLLERR;
1131 else if (rcd->poll_type == QIB_POLL_TYPE_URGENT)
1132 pollflag = qib_poll_urgent(rcd, fp, pt);
1133 else if (rcd->poll_type == QIB_POLL_TYPE_ANYRCV)
1134 pollflag = qib_poll_next(rcd, fp, pt);
1135 else /* invalid */
1136 pollflag = EPOLLERR;
1137
1138 return pollflag;
1139 }
1140
assign_ctxt_affinity(struct file * fp,struct qib_devdata * dd)1141 static void assign_ctxt_affinity(struct file *fp, struct qib_devdata *dd)
1142 {
1143 struct qib_filedata *fd = fp->private_data;
1144 const unsigned int weight = current->nr_cpus_allowed;
1145 const struct cpumask *local_mask = cpumask_of_pcibus(dd->pcidev->bus);
1146 int local_cpu;
1147
1148 /*
1149 * If process has NOT already set it's affinity, select and
1150 * reserve a processor for it on the local NUMA node.
1151 */
1152 if ((weight >= qib_cpulist_count) &&
1153 (cpumask_weight(local_mask) <= qib_cpulist_count)) {
1154 for_each_cpu(local_cpu, local_mask)
1155 if (!test_and_set_bit(local_cpu, qib_cpulist)) {
1156 fd->rec_cpu_num = local_cpu;
1157 return;
1158 }
1159 }
1160
1161 /*
1162 * If process has NOT already set it's affinity, select and
1163 * reserve a processor for it, as a rendevous for all
1164 * users of the driver. If they don't actually later
1165 * set affinity to this cpu, or set it to some other cpu,
1166 * it just means that sooner or later we don't recommend
1167 * a cpu, and let the scheduler do it's best.
1168 */
1169 if (weight >= qib_cpulist_count) {
1170 int cpu;
1171
1172 cpu = find_first_zero_bit(qib_cpulist,
1173 qib_cpulist_count);
1174 if (cpu == qib_cpulist_count)
1175 qib_dev_err(dd,
1176 "no cpus avail for affinity PID %u\n",
1177 current->pid);
1178 else {
1179 __set_bit(cpu, qib_cpulist);
1180 fd->rec_cpu_num = cpu;
1181 }
1182 }
1183 }
1184
1185 /*
1186 * Check that userland and driver are compatible for subcontexts.
1187 */
qib_compatible_subctxts(int user_swmajor,int user_swminor)1188 static int qib_compatible_subctxts(int user_swmajor, int user_swminor)
1189 {
1190 /* this code is written long-hand for clarity */
1191 if (QIB_USER_SWMAJOR != user_swmajor) {
1192 /* no promise of compatibility if major mismatch */
1193 return 0;
1194 }
1195 if (QIB_USER_SWMAJOR == 1) {
1196 switch (QIB_USER_SWMINOR) {
1197 case 0:
1198 case 1:
1199 case 2:
1200 /* no subctxt implementation so cannot be compatible */
1201 return 0;
1202 case 3:
1203 /* 3 is only compatible with itself */
1204 return user_swminor == 3;
1205 default:
1206 /* >= 4 are compatible (or are expected to be) */
1207 return user_swminor <= QIB_USER_SWMINOR;
1208 }
1209 }
1210 /* make no promises yet for future major versions */
1211 return 0;
1212 }
1213
init_subctxts(struct qib_devdata * dd,struct qib_ctxtdata * rcd,const struct qib_user_info * uinfo)1214 static int init_subctxts(struct qib_devdata *dd,
1215 struct qib_ctxtdata *rcd,
1216 const struct qib_user_info *uinfo)
1217 {
1218 int ret = 0;
1219 unsigned num_subctxts;
1220 size_t size;
1221
1222 /*
1223 * If the user is requesting zero subctxts,
1224 * skip the subctxt allocation.
1225 */
1226 if (uinfo->spu_subctxt_cnt <= 0)
1227 goto bail;
1228 num_subctxts = uinfo->spu_subctxt_cnt;
1229
1230 /* Check for subctxt compatibility */
1231 if (!qib_compatible_subctxts(uinfo->spu_userversion >> 16,
1232 uinfo->spu_userversion & 0xffff)) {
1233 qib_devinfo(dd->pcidev,
1234 "Mismatched user version (%d.%d) and driver version (%d.%d) while context sharing. Ensure that driver and library are from the same release.\n",
1235 (int) (uinfo->spu_userversion >> 16),
1236 (int) (uinfo->spu_userversion & 0xffff),
1237 QIB_USER_SWMAJOR, QIB_USER_SWMINOR);
1238 goto bail;
1239 }
1240 if (num_subctxts > QLOGIC_IB_MAX_SUBCTXT) {
1241 ret = -EINVAL;
1242 goto bail;
1243 }
1244
1245 rcd->subctxt_uregbase = vmalloc_user(PAGE_SIZE * num_subctxts);
1246 if (!rcd->subctxt_uregbase) {
1247 ret = -ENOMEM;
1248 goto bail;
1249 }
1250 /* Note: rcd->rcvhdrq_size isn't initialized yet. */
1251 size = ALIGN(dd->rcvhdrcnt * dd->rcvhdrentsize *
1252 sizeof(u32), PAGE_SIZE) * num_subctxts;
1253 rcd->subctxt_rcvhdr_base = vmalloc_user(size);
1254 if (!rcd->subctxt_rcvhdr_base) {
1255 ret = -ENOMEM;
1256 goto bail_ureg;
1257 }
1258
1259 rcd->subctxt_rcvegrbuf = vmalloc_user(rcd->rcvegrbuf_chunks *
1260 rcd->rcvegrbuf_size *
1261 num_subctxts);
1262 if (!rcd->subctxt_rcvegrbuf) {
1263 ret = -ENOMEM;
1264 goto bail_rhdr;
1265 }
1266
1267 rcd->subctxt_cnt = uinfo->spu_subctxt_cnt;
1268 rcd->subctxt_id = uinfo->spu_subctxt_id;
1269 rcd->active_slaves = 1;
1270 rcd->redirect_seq_cnt = 1;
1271 set_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag);
1272 goto bail;
1273
1274 bail_rhdr:
1275 vfree(rcd->subctxt_rcvhdr_base);
1276 bail_ureg:
1277 vfree(rcd->subctxt_uregbase);
1278 rcd->subctxt_uregbase = NULL;
1279 bail:
1280 return ret;
1281 }
1282
setup_ctxt(struct qib_pportdata * ppd,int ctxt,struct file * fp,const struct qib_user_info * uinfo)1283 static int setup_ctxt(struct qib_pportdata *ppd, int ctxt,
1284 struct file *fp, const struct qib_user_info *uinfo)
1285 {
1286 struct qib_filedata *fd = fp->private_data;
1287 struct qib_devdata *dd = ppd->dd;
1288 struct qib_ctxtdata *rcd;
1289 void *ptmp = NULL;
1290 int ret;
1291 int numa_id;
1292
1293 assign_ctxt_affinity(fp, dd);
1294
1295 numa_id = qib_numa_aware ? ((fd->rec_cpu_num != -1) ?
1296 cpu_to_node(fd->rec_cpu_num) :
1297 numa_node_id()) : dd->assigned_node_id;
1298
1299 rcd = qib_create_ctxtdata(ppd, ctxt, numa_id);
1300
1301 /*
1302 * Allocate memory for use in qib_tid_update() at open to
1303 * reduce cost of expected send setup per message segment
1304 */
1305 if (rcd)
1306 ptmp = kmalloc(dd->rcvtidcnt * sizeof(u16) +
1307 dd->rcvtidcnt * sizeof(struct page **),
1308 GFP_KERNEL);
1309
1310 if (!rcd || !ptmp) {
1311 qib_dev_err(dd,
1312 "Unable to allocate ctxtdata memory, failing open\n");
1313 ret = -ENOMEM;
1314 goto bailerr;
1315 }
1316 rcd->userversion = uinfo->spu_userversion;
1317 ret = init_subctxts(dd, rcd, uinfo);
1318 if (ret)
1319 goto bailerr;
1320 rcd->tid_pg_list = ptmp;
1321 rcd->pid = current->pid;
1322 init_waitqueue_head(&dd->rcd[ctxt]->wait);
1323 get_task_comm(rcd->comm, current);
1324 ctxt_fp(fp) = rcd;
1325 qib_stats.sps_ctxts++;
1326 dd->freectxts--;
1327 ret = 0;
1328 goto bail;
1329
1330 bailerr:
1331 if (fd->rec_cpu_num != -1)
1332 __clear_bit(fd->rec_cpu_num, qib_cpulist);
1333
1334 dd->rcd[ctxt] = NULL;
1335 kfree(rcd);
1336 kfree(ptmp);
1337 bail:
1338 return ret;
1339 }
1340
usable(struct qib_pportdata * ppd)1341 static inline int usable(struct qib_pportdata *ppd)
1342 {
1343 struct qib_devdata *dd = ppd->dd;
1344
1345 return dd && (dd->flags & QIB_PRESENT) && dd->kregbase && ppd->lid &&
1346 (ppd->lflags & QIBL_LINKACTIVE);
1347 }
1348
1349 /*
1350 * Select a context on the given device, either using a requested port
1351 * or the port based on the context number.
1352 */
choose_port_ctxt(struct file * fp,struct qib_devdata * dd,u32 port,const struct qib_user_info * uinfo)1353 static int choose_port_ctxt(struct file *fp, struct qib_devdata *dd, u32 port,
1354 const struct qib_user_info *uinfo)
1355 {
1356 struct qib_pportdata *ppd = NULL;
1357 int ret, ctxt;
1358
1359 if (port) {
1360 if (!usable(dd->pport + port - 1)) {
1361 ret = -ENETDOWN;
1362 goto done;
1363 } else
1364 ppd = dd->pport + port - 1;
1365 }
1366 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts && dd->rcd[ctxt];
1367 ctxt++)
1368 ;
1369 if (ctxt == dd->cfgctxts) {
1370 ret = -EBUSY;
1371 goto done;
1372 }
1373 if (!ppd) {
1374 u32 pidx = ctxt % dd->num_pports;
1375
1376 if (usable(dd->pport + pidx))
1377 ppd = dd->pport + pidx;
1378 else {
1379 for (pidx = 0; pidx < dd->num_pports && !ppd;
1380 pidx++)
1381 if (usable(dd->pport + pidx))
1382 ppd = dd->pport + pidx;
1383 }
1384 }
1385 ret = ppd ? setup_ctxt(ppd, ctxt, fp, uinfo) : -ENETDOWN;
1386 done:
1387 return ret;
1388 }
1389
find_free_ctxt(int unit,struct file * fp,const struct qib_user_info * uinfo)1390 static int find_free_ctxt(int unit, struct file *fp,
1391 const struct qib_user_info *uinfo)
1392 {
1393 struct qib_devdata *dd = qib_lookup(unit);
1394 int ret;
1395
1396 if (!dd || (uinfo->spu_port && uinfo->spu_port > dd->num_pports))
1397 ret = -ENODEV;
1398 else
1399 ret = choose_port_ctxt(fp, dd, uinfo->spu_port, uinfo);
1400
1401 return ret;
1402 }
1403
get_a_ctxt(struct file * fp,const struct qib_user_info * uinfo,unsigned alg)1404 static int get_a_ctxt(struct file *fp, const struct qib_user_info *uinfo,
1405 unsigned alg)
1406 {
1407 struct qib_devdata *udd = NULL;
1408 int ret = 0, devmax, npresent, nup, ndev, dusable = 0, i;
1409 u32 port = uinfo->spu_port, ctxt;
1410
1411 devmax = qib_count_units(&npresent, &nup);
1412 if (!npresent) {
1413 ret = -ENXIO;
1414 goto done;
1415 }
1416 if (nup == 0) {
1417 ret = -ENETDOWN;
1418 goto done;
1419 }
1420
1421 if (alg == QIB_PORT_ALG_ACROSS) {
1422 unsigned inuse = ~0U;
1423
1424 /* find device (with ACTIVE ports) with fewest ctxts in use */
1425 for (ndev = 0; ndev < devmax; ndev++) {
1426 struct qib_devdata *dd = qib_lookup(ndev);
1427 unsigned cused = 0, cfree = 0, pusable = 0;
1428
1429 if (!dd)
1430 continue;
1431 if (port && port <= dd->num_pports &&
1432 usable(dd->pport + port - 1))
1433 pusable = 1;
1434 else
1435 for (i = 0; i < dd->num_pports; i++)
1436 if (usable(dd->pport + i))
1437 pusable++;
1438 if (!pusable)
1439 continue;
1440 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts;
1441 ctxt++)
1442 if (dd->rcd[ctxt])
1443 cused++;
1444 else
1445 cfree++;
1446 if (cfree && cused < inuse) {
1447 udd = dd;
1448 inuse = cused;
1449 }
1450 }
1451 if (udd) {
1452 ret = choose_port_ctxt(fp, udd, port, uinfo);
1453 goto done;
1454 }
1455 } else {
1456 for (ndev = 0; ndev < devmax; ndev++) {
1457 struct qib_devdata *dd = qib_lookup(ndev);
1458
1459 if (dd) {
1460 ret = choose_port_ctxt(fp, dd, port, uinfo);
1461 if (!ret)
1462 goto done;
1463 if (ret == -EBUSY)
1464 dusable++;
1465 }
1466 }
1467 }
1468 ret = dusable ? -EBUSY : -ENETDOWN;
1469
1470 done:
1471 return ret;
1472 }
1473
find_shared_ctxt(struct file * fp,const struct qib_user_info * uinfo)1474 static int find_shared_ctxt(struct file *fp,
1475 const struct qib_user_info *uinfo)
1476 {
1477 int devmax, ndev, i;
1478 int ret = 0;
1479
1480 devmax = qib_count_units(NULL, NULL);
1481
1482 for (ndev = 0; ndev < devmax; ndev++) {
1483 struct qib_devdata *dd = qib_lookup(ndev);
1484
1485 /* device portion of usable() */
1486 if (!(dd && (dd->flags & QIB_PRESENT) && dd->kregbase))
1487 continue;
1488 for (i = dd->first_user_ctxt; i < dd->cfgctxts; i++) {
1489 struct qib_ctxtdata *rcd = dd->rcd[i];
1490
1491 /* Skip ctxts which are not yet open */
1492 if (!rcd || !rcd->cnt)
1493 continue;
1494 /* Skip ctxt if it doesn't match the requested one */
1495 if (rcd->subctxt_id != uinfo->spu_subctxt_id)
1496 continue;
1497 /* Verify the sharing process matches the master */
1498 if (rcd->subctxt_cnt != uinfo->spu_subctxt_cnt ||
1499 rcd->userversion != uinfo->spu_userversion ||
1500 rcd->cnt >= rcd->subctxt_cnt) {
1501 ret = -EINVAL;
1502 goto done;
1503 }
1504 ctxt_fp(fp) = rcd;
1505 subctxt_fp(fp) = rcd->cnt++;
1506 rcd->subpid[subctxt_fp(fp)] = current->pid;
1507 tidcursor_fp(fp) = 0;
1508 rcd->active_slaves |= 1 << subctxt_fp(fp);
1509 ret = 1;
1510 goto done;
1511 }
1512 }
1513
1514 done:
1515 return ret;
1516 }
1517
qib_open(struct inode * in,struct file * fp)1518 static int qib_open(struct inode *in, struct file *fp)
1519 {
1520 /* The real work is performed later in qib_assign_ctxt() */
1521 fp->private_data = kzalloc(sizeof(struct qib_filedata), GFP_KERNEL);
1522 if (fp->private_data) /* no cpu affinity by default */
1523 ((struct qib_filedata *)fp->private_data)->rec_cpu_num = -1;
1524 return fp->private_data ? 0 : -ENOMEM;
1525 }
1526
find_hca(unsigned int cpu,int * unit)1527 static int find_hca(unsigned int cpu, int *unit)
1528 {
1529 int ret = 0, devmax, npresent, nup, ndev;
1530
1531 *unit = -1;
1532
1533 devmax = qib_count_units(&npresent, &nup);
1534 if (!npresent) {
1535 ret = -ENXIO;
1536 goto done;
1537 }
1538 if (!nup) {
1539 ret = -ENETDOWN;
1540 goto done;
1541 }
1542 for (ndev = 0; ndev < devmax; ndev++) {
1543 struct qib_devdata *dd = qib_lookup(ndev);
1544
1545 if (dd) {
1546 if (pcibus_to_node(dd->pcidev->bus) < 0) {
1547 ret = -EINVAL;
1548 goto done;
1549 }
1550 if (cpu_to_node(cpu) ==
1551 pcibus_to_node(dd->pcidev->bus)) {
1552 *unit = ndev;
1553 goto done;
1554 }
1555 }
1556 }
1557 done:
1558 return ret;
1559 }
1560
do_qib_user_sdma_queue_create(struct file * fp)1561 static int do_qib_user_sdma_queue_create(struct file *fp)
1562 {
1563 struct qib_filedata *fd = fp->private_data;
1564 struct qib_ctxtdata *rcd = fd->rcd;
1565 struct qib_devdata *dd = rcd->dd;
1566
1567 if (dd->flags & QIB_HAS_SEND_DMA) {
1568
1569 fd->pq = qib_user_sdma_queue_create(&dd->pcidev->dev,
1570 dd->unit,
1571 rcd->ctxt,
1572 fd->subctxt);
1573 if (!fd->pq)
1574 return -ENOMEM;
1575 }
1576
1577 return 0;
1578 }
1579
1580 /*
1581 * Get ctxt early, so can set affinity prior to memory allocation.
1582 */
qib_assign_ctxt(struct file * fp,const struct qib_user_info * uinfo)1583 static int qib_assign_ctxt(struct file *fp, const struct qib_user_info *uinfo)
1584 {
1585 int ret;
1586 int i_minor;
1587 unsigned swmajor, swminor, alg = QIB_PORT_ALG_ACROSS;
1588
1589 /* Check to be sure we haven't already initialized this file */
1590 if (ctxt_fp(fp)) {
1591 ret = -EINVAL;
1592 goto done;
1593 }
1594
1595 /* for now, if major version is different, bail */
1596 swmajor = uinfo->spu_userversion >> 16;
1597 if (swmajor != QIB_USER_SWMAJOR) {
1598 ret = -ENODEV;
1599 goto done;
1600 }
1601
1602 swminor = uinfo->spu_userversion & 0xffff;
1603
1604 if (swminor >= 11 && uinfo->spu_port_alg < QIB_PORT_ALG_COUNT)
1605 alg = uinfo->spu_port_alg;
1606
1607 mutex_lock(&qib_mutex);
1608
1609 if (qib_compatible_subctxts(swmajor, swminor) &&
1610 uinfo->spu_subctxt_cnt) {
1611 ret = find_shared_ctxt(fp, uinfo);
1612 if (ret > 0) {
1613 ret = do_qib_user_sdma_queue_create(fp);
1614 if (!ret)
1615 assign_ctxt_affinity(fp, (ctxt_fp(fp))->dd);
1616 goto done_ok;
1617 }
1618 }
1619
1620 i_minor = iminor(file_inode(fp)) - QIB_USER_MINOR_BASE;
1621 if (i_minor)
1622 ret = find_free_ctxt(i_minor - 1, fp, uinfo);
1623 else {
1624 int unit;
1625 const unsigned int cpu = cpumask_first(current->cpus_ptr);
1626 const unsigned int weight = current->nr_cpus_allowed;
1627
1628 if (weight == 1 && !test_bit(cpu, qib_cpulist))
1629 if (!find_hca(cpu, &unit) && unit >= 0)
1630 if (!find_free_ctxt(unit, fp, uinfo)) {
1631 ret = 0;
1632 goto done_chk_sdma;
1633 }
1634 ret = get_a_ctxt(fp, uinfo, alg);
1635 }
1636
1637 done_chk_sdma:
1638 if (!ret)
1639 ret = do_qib_user_sdma_queue_create(fp);
1640 done_ok:
1641 mutex_unlock(&qib_mutex);
1642
1643 done:
1644 return ret;
1645 }
1646
1647
qib_do_user_init(struct file * fp,const struct qib_user_info * uinfo)1648 static int qib_do_user_init(struct file *fp,
1649 const struct qib_user_info *uinfo)
1650 {
1651 int ret;
1652 struct qib_ctxtdata *rcd = ctxt_fp(fp);
1653 struct qib_devdata *dd;
1654 unsigned uctxt;
1655
1656 /* Subctxts don't need to initialize anything since master did it. */
1657 if (subctxt_fp(fp)) {
1658 ret = wait_event_interruptible(rcd->wait,
1659 !test_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag));
1660 goto bail;
1661 }
1662
1663 dd = rcd->dd;
1664
1665 /* some ctxts may get extra buffers, calculate that here */
1666 uctxt = rcd->ctxt - dd->first_user_ctxt;
1667 if (uctxt < dd->ctxts_extrabuf) {
1668 rcd->piocnt = dd->pbufsctxt + 1;
1669 rcd->pio_base = rcd->piocnt * uctxt;
1670 } else {
1671 rcd->piocnt = dd->pbufsctxt;
1672 rcd->pio_base = rcd->piocnt * uctxt +
1673 dd->ctxts_extrabuf;
1674 }
1675
1676 /*
1677 * All user buffers are 2KB buffers. If we ever support
1678 * giving 4KB buffers to user processes, this will need some
1679 * work. Can't use piobufbase directly, because it has
1680 * both 2K and 4K buffer base values. So check and handle.
1681 */
1682 if ((rcd->pio_base + rcd->piocnt) > dd->piobcnt2k) {
1683 if (rcd->pio_base >= dd->piobcnt2k) {
1684 qib_dev_err(dd,
1685 "%u:ctxt%u: no 2KB buffers available\n",
1686 dd->unit, rcd->ctxt);
1687 ret = -ENOBUFS;
1688 goto bail;
1689 }
1690 rcd->piocnt = dd->piobcnt2k - rcd->pio_base;
1691 qib_dev_err(dd, "Ctxt%u: would use 4KB bufs, using %u\n",
1692 rcd->ctxt, rcd->piocnt);
1693 }
1694
1695 rcd->piobufs = dd->pio2k_bufbase + rcd->pio_base * dd->palign;
1696 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt,
1697 TXCHK_CHG_TYPE_USER, rcd);
1698 /*
1699 * try to ensure that processes start up with consistent avail update
1700 * for their own range, at least. If system very quiet, it might
1701 * have the in-memory copy out of date at startup for this range of
1702 * buffers, when a context gets re-used. Do after the chg_pioavail
1703 * and before the rest of setup, so it's "almost certain" the dma
1704 * will have occurred (can't 100% guarantee, but should be many
1705 * decimals of 9s, with this ordering), given how much else happens
1706 * after this.
1707 */
1708 dd->f_sendctrl(dd->pport, QIB_SENDCTRL_AVAIL_BLIP);
1709
1710 /*
1711 * Now allocate the rcvhdr Q and eager TIDs; skip the TID
1712 * array for time being. If rcd->ctxt > chip-supported,
1713 * we need to do extra stuff here to handle by handling overflow
1714 * through ctxt 0, someday
1715 */
1716 ret = qib_create_rcvhdrq(dd, rcd);
1717 if (!ret)
1718 ret = qib_setup_eagerbufs(rcd);
1719 if (ret)
1720 goto bail_pio;
1721
1722 rcd->tidcursor = 0; /* start at beginning after open */
1723
1724 /* initialize poll variables... */
1725 rcd->urgent = 0;
1726 rcd->urgent_poll = 0;
1727
1728 /*
1729 * Now enable the ctxt for receive.
1730 * For chips that are set to DMA the tail register to memory
1731 * when they change (and when the update bit transitions from
1732 * 0 to 1. So for those chips, we turn it off and then back on.
1733 * This will (very briefly) affect any other open ctxts, but the
1734 * duration is very short, and therefore isn't an issue. We
1735 * explicitly set the in-memory tail copy to 0 beforehand, so we
1736 * don't have to wait to be sure the DMA update has happened
1737 * (chip resets head/tail to 0 on transition to enable).
1738 */
1739 if (rcd->rcvhdrtail_kvaddr)
1740 qib_clear_rcvhdrtail(rcd);
1741
1742 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_ENB | QIB_RCVCTRL_TIDFLOW_ENB,
1743 rcd->ctxt);
1744
1745 /* Notify any waiting slaves */
1746 if (rcd->subctxt_cnt) {
1747 clear_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag);
1748 wake_up(&rcd->wait);
1749 }
1750 return 0;
1751
1752 bail_pio:
1753 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt,
1754 TXCHK_CHG_TYPE_KERN, rcd);
1755 bail:
1756 return ret;
1757 }
1758
1759 /**
1760 * unlock_expected_tids - unlock any expected TID entries context still had
1761 * in use
1762 * @rcd: ctxt
1763 *
1764 * We don't actually update the chip here, because we do a bulk update
1765 * below, using f_clear_tids.
1766 */
unlock_expected_tids(struct qib_ctxtdata * rcd)1767 static void unlock_expected_tids(struct qib_ctxtdata *rcd)
1768 {
1769 struct qib_devdata *dd = rcd->dd;
1770 int ctxt_tidbase = rcd->ctxt * dd->rcvtidcnt;
1771 int i, cnt = 0, maxtid = ctxt_tidbase + dd->rcvtidcnt;
1772
1773 for (i = ctxt_tidbase; i < maxtid; i++) {
1774 struct page *p = dd->pageshadow[i];
1775 dma_addr_t phys;
1776
1777 if (!p)
1778 continue;
1779
1780 phys = dd->physshadow[i];
1781 dd->physshadow[i] = dd->tidinvalid;
1782 dd->pageshadow[i] = NULL;
1783 dma_unmap_page(&dd->pcidev->dev, phys, PAGE_SIZE,
1784 DMA_FROM_DEVICE);
1785 qib_release_user_pages(&p, 1);
1786 cnt++;
1787 }
1788 }
1789
qib_close(struct inode * in,struct file * fp)1790 static int qib_close(struct inode *in, struct file *fp)
1791 {
1792 struct qib_filedata *fd;
1793 struct qib_ctxtdata *rcd;
1794 struct qib_devdata *dd;
1795 unsigned long flags;
1796 unsigned ctxt;
1797
1798 mutex_lock(&qib_mutex);
1799
1800 fd = fp->private_data;
1801 fp->private_data = NULL;
1802 rcd = fd->rcd;
1803 if (!rcd) {
1804 mutex_unlock(&qib_mutex);
1805 goto bail;
1806 }
1807
1808 dd = rcd->dd;
1809
1810 /* ensure all pio buffer writes in progress are flushed */
1811 qib_flush_wc();
1812
1813 /* drain user sdma queue */
1814 if (fd->pq) {
1815 qib_user_sdma_queue_drain(rcd->ppd, fd->pq);
1816 qib_user_sdma_queue_destroy(fd->pq);
1817 }
1818
1819 if (fd->rec_cpu_num != -1)
1820 __clear_bit(fd->rec_cpu_num, qib_cpulist);
1821
1822 if (--rcd->cnt) {
1823 /*
1824 * XXX If the master closes the context before the slave(s),
1825 * revoke the mmap for the eager receive queue so
1826 * the slave(s) don't wait for receive data forever.
1827 */
1828 rcd->active_slaves &= ~(1 << fd->subctxt);
1829 rcd->subpid[fd->subctxt] = 0;
1830 mutex_unlock(&qib_mutex);
1831 goto bail;
1832 }
1833
1834 /* early; no interrupt users after this */
1835 spin_lock_irqsave(&dd->uctxt_lock, flags);
1836 ctxt = rcd->ctxt;
1837 dd->rcd[ctxt] = NULL;
1838 rcd->pid = 0;
1839 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1840
1841 if (rcd->rcvwait_to || rcd->piowait_to ||
1842 rcd->rcvnowait || rcd->pionowait) {
1843 rcd->rcvwait_to = 0;
1844 rcd->piowait_to = 0;
1845 rcd->rcvnowait = 0;
1846 rcd->pionowait = 0;
1847 }
1848 if (rcd->flag)
1849 rcd->flag = 0;
1850
1851 if (dd->kregbase) {
1852 /* atomically clear receive enable ctxt and intr avail. */
1853 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_DIS |
1854 QIB_RCVCTRL_INTRAVAIL_DIS, ctxt);
1855
1856 /* clean up the pkeys for this ctxt user */
1857 qib_clean_part_key(rcd, dd);
1858 qib_disarm_piobufs(dd, rcd->pio_base, rcd->piocnt);
1859 qib_chg_pioavailkernel(dd, rcd->pio_base,
1860 rcd->piocnt, TXCHK_CHG_TYPE_KERN, NULL);
1861
1862 dd->f_clear_tids(dd, rcd);
1863
1864 if (dd->pageshadow)
1865 unlock_expected_tids(rcd);
1866 qib_stats.sps_ctxts--;
1867 dd->freectxts++;
1868 }
1869
1870 mutex_unlock(&qib_mutex);
1871 qib_free_ctxtdata(dd, rcd); /* after releasing the mutex */
1872
1873 bail:
1874 kfree(fd);
1875 return 0;
1876 }
1877
qib_ctxt_info(struct file * fp,struct qib_ctxt_info __user * uinfo)1878 static int qib_ctxt_info(struct file *fp, struct qib_ctxt_info __user *uinfo)
1879 {
1880 struct qib_ctxt_info info;
1881 int ret;
1882 size_t sz;
1883 struct qib_ctxtdata *rcd = ctxt_fp(fp);
1884 struct qib_filedata *fd;
1885
1886 fd = fp->private_data;
1887
1888 info.num_active = qib_count_active_units();
1889 info.unit = rcd->dd->unit;
1890 info.port = rcd->ppd->port;
1891 info.ctxt = rcd->ctxt;
1892 info.subctxt = subctxt_fp(fp);
1893 /* Number of user ctxts available for this device. */
1894 info.num_ctxts = rcd->dd->cfgctxts - rcd->dd->first_user_ctxt;
1895 info.num_subctxts = rcd->subctxt_cnt;
1896 info.rec_cpu = fd->rec_cpu_num;
1897 sz = sizeof(info);
1898
1899 if (copy_to_user(uinfo, &info, sz)) {
1900 ret = -EFAULT;
1901 goto bail;
1902 }
1903 ret = 0;
1904
1905 bail:
1906 return ret;
1907 }
1908
qib_sdma_get_inflight(struct qib_user_sdma_queue * pq,u32 __user * inflightp)1909 static int qib_sdma_get_inflight(struct qib_user_sdma_queue *pq,
1910 u32 __user *inflightp)
1911 {
1912 const u32 val = qib_user_sdma_inflight_counter(pq);
1913
1914 if (put_user(val, inflightp))
1915 return -EFAULT;
1916
1917 return 0;
1918 }
1919
qib_sdma_get_complete(struct qib_pportdata * ppd,struct qib_user_sdma_queue * pq,u32 __user * completep)1920 static int qib_sdma_get_complete(struct qib_pportdata *ppd,
1921 struct qib_user_sdma_queue *pq,
1922 u32 __user *completep)
1923 {
1924 u32 val;
1925 int err;
1926
1927 if (!pq)
1928 return -EINVAL;
1929
1930 err = qib_user_sdma_make_progress(ppd, pq);
1931 if (err < 0)
1932 return err;
1933
1934 val = qib_user_sdma_complete_counter(pq);
1935 if (put_user(val, completep))
1936 return -EFAULT;
1937
1938 return 0;
1939 }
1940
disarm_req_delay(struct qib_ctxtdata * rcd)1941 static int disarm_req_delay(struct qib_ctxtdata *rcd)
1942 {
1943 int ret = 0;
1944
1945 if (!usable(rcd->ppd)) {
1946 int i;
1947 /*
1948 * if link is down, or otherwise not usable, delay
1949 * the caller up to 30 seconds, so we don't thrash
1950 * in trying to get the chip back to ACTIVE, and
1951 * set flag so they make the call again.
1952 */
1953 if (rcd->user_event_mask) {
1954 /*
1955 * subctxt_cnt is 0 if not shared, so do base
1956 * separately, first, then remaining subctxt, if any
1957 */
1958 set_bit(_QIB_EVENT_DISARM_BUFS_BIT,
1959 &rcd->user_event_mask[0]);
1960 for (i = 1; i < rcd->subctxt_cnt; i++)
1961 set_bit(_QIB_EVENT_DISARM_BUFS_BIT,
1962 &rcd->user_event_mask[i]);
1963 }
1964 for (i = 0; !usable(rcd->ppd) && i < 300; i++)
1965 msleep(100);
1966 ret = -ENETDOWN;
1967 }
1968 return ret;
1969 }
1970
1971 /*
1972 * Find all user contexts in use, and set the specified bit in their
1973 * event mask.
1974 * See also find_ctxt() for a similar use, that is specific to send buffers.
1975 */
qib_set_uevent_bits(struct qib_pportdata * ppd,const int evtbit)1976 int qib_set_uevent_bits(struct qib_pportdata *ppd, const int evtbit)
1977 {
1978 struct qib_ctxtdata *rcd;
1979 unsigned ctxt;
1980 int ret = 0;
1981 unsigned long flags;
1982
1983 spin_lock_irqsave(&ppd->dd->uctxt_lock, flags);
1984 for (ctxt = ppd->dd->first_user_ctxt; ctxt < ppd->dd->cfgctxts;
1985 ctxt++) {
1986 rcd = ppd->dd->rcd[ctxt];
1987 if (!rcd)
1988 continue;
1989 if (rcd->user_event_mask) {
1990 int i;
1991 /*
1992 * subctxt_cnt is 0 if not shared, so do base
1993 * separately, first, then remaining subctxt, if any
1994 */
1995 set_bit(evtbit, &rcd->user_event_mask[0]);
1996 for (i = 1; i < rcd->subctxt_cnt; i++)
1997 set_bit(evtbit, &rcd->user_event_mask[i]);
1998 }
1999 ret = 1;
2000 break;
2001 }
2002 spin_unlock_irqrestore(&ppd->dd->uctxt_lock, flags);
2003
2004 return ret;
2005 }
2006
2007 /*
2008 * clear the event notifier events for this context.
2009 * For the DISARM_BUFS case, we also take action (this obsoletes
2010 * the older QIB_CMD_DISARM_BUFS, but we keep it for backwards
2011 * compatibility.
2012 * Other bits don't currently require actions, just atomically clear.
2013 * User process then performs actions appropriate to bit having been
2014 * set, if desired, and checks again in future.
2015 */
qib_user_event_ack(struct qib_ctxtdata * rcd,int subctxt,unsigned long events)2016 static int qib_user_event_ack(struct qib_ctxtdata *rcd, int subctxt,
2017 unsigned long events)
2018 {
2019 int ret = 0, i;
2020
2021 for (i = 0; i <= _QIB_MAX_EVENT_BIT; i++) {
2022 if (!test_bit(i, &events))
2023 continue;
2024 if (i == _QIB_EVENT_DISARM_BUFS_BIT) {
2025 (void)qib_disarm_piobufs_ifneeded(rcd);
2026 ret = disarm_req_delay(rcd);
2027 } else
2028 clear_bit(i, &rcd->user_event_mask[subctxt]);
2029 }
2030 return ret;
2031 }
2032
qib_write(struct file * fp,const char __user * data,size_t count,loff_t * off)2033 static ssize_t qib_write(struct file *fp, const char __user *data,
2034 size_t count, loff_t *off)
2035 {
2036 const struct qib_cmd __user *ucmd;
2037 struct qib_ctxtdata *rcd;
2038 const void __user *src;
2039 size_t consumed, copy = 0;
2040 struct qib_cmd cmd;
2041 ssize_t ret = 0;
2042 void *dest;
2043
2044 if (!ib_safe_file_access(fp)) {
2045 pr_err_once("qib_write: process %d (%s) changed security contexts after opening file descriptor, this is not allowed.\n",
2046 task_tgid_vnr(current), current->comm);
2047 return -EACCES;
2048 }
2049
2050 if (count < sizeof(cmd.type)) {
2051 ret = -EINVAL;
2052 goto bail;
2053 }
2054
2055 ucmd = (const struct qib_cmd __user *) data;
2056
2057 if (copy_from_user(&cmd.type, &ucmd->type, sizeof(cmd.type))) {
2058 ret = -EFAULT;
2059 goto bail;
2060 }
2061
2062 consumed = sizeof(cmd.type);
2063
2064 switch (cmd.type) {
2065 case QIB_CMD_ASSIGN_CTXT:
2066 case QIB_CMD_USER_INIT:
2067 copy = sizeof(cmd.cmd.user_info);
2068 dest = &cmd.cmd.user_info;
2069 src = &ucmd->cmd.user_info;
2070 break;
2071
2072 case QIB_CMD_RECV_CTRL:
2073 copy = sizeof(cmd.cmd.recv_ctrl);
2074 dest = &cmd.cmd.recv_ctrl;
2075 src = &ucmd->cmd.recv_ctrl;
2076 break;
2077
2078 case QIB_CMD_CTXT_INFO:
2079 copy = sizeof(cmd.cmd.ctxt_info);
2080 dest = &cmd.cmd.ctxt_info;
2081 src = &ucmd->cmd.ctxt_info;
2082 break;
2083
2084 case QIB_CMD_TID_UPDATE:
2085 case QIB_CMD_TID_FREE:
2086 copy = sizeof(cmd.cmd.tid_info);
2087 dest = &cmd.cmd.tid_info;
2088 src = &ucmd->cmd.tid_info;
2089 break;
2090
2091 case QIB_CMD_SET_PART_KEY:
2092 copy = sizeof(cmd.cmd.part_key);
2093 dest = &cmd.cmd.part_key;
2094 src = &ucmd->cmd.part_key;
2095 break;
2096
2097 case QIB_CMD_DISARM_BUFS:
2098 case QIB_CMD_PIOAVAILUPD: /* force an update of PIOAvail reg */
2099 copy = 0;
2100 src = NULL;
2101 dest = NULL;
2102 break;
2103
2104 case QIB_CMD_POLL_TYPE:
2105 copy = sizeof(cmd.cmd.poll_type);
2106 dest = &cmd.cmd.poll_type;
2107 src = &ucmd->cmd.poll_type;
2108 break;
2109
2110 case QIB_CMD_ARMLAUNCH_CTRL:
2111 copy = sizeof(cmd.cmd.armlaunch_ctrl);
2112 dest = &cmd.cmd.armlaunch_ctrl;
2113 src = &ucmd->cmd.armlaunch_ctrl;
2114 break;
2115
2116 case QIB_CMD_SDMA_INFLIGHT:
2117 copy = sizeof(cmd.cmd.sdma_inflight);
2118 dest = &cmd.cmd.sdma_inflight;
2119 src = &ucmd->cmd.sdma_inflight;
2120 break;
2121
2122 case QIB_CMD_SDMA_COMPLETE:
2123 copy = sizeof(cmd.cmd.sdma_complete);
2124 dest = &cmd.cmd.sdma_complete;
2125 src = &ucmd->cmd.sdma_complete;
2126 break;
2127
2128 case QIB_CMD_ACK_EVENT:
2129 copy = sizeof(cmd.cmd.event_mask);
2130 dest = &cmd.cmd.event_mask;
2131 src = &ucmd->cmd.event_mask;
2132 break;
2133
2134 default:
2135 ret = -EINVAL;
2136 goto bail;
2137 }
2138
2139 if (copy) {
2140 if ((count - consumed) < copy) {
2141 ret = -EINVAL;
2142 goto bail;
2143 }
2144 if (copy_from_user(dest, src, copy)) {
2145 ret = -EFAULT;
2146 goto bail;
2147 }
2148 consumed += copy;
2149 }
2150
2151 rcd = ctxt_fp(fp);
2152 if (!rcd && cmd.type != QIB_CMD_ASSIGN_CTXT) {
2153 ret = -EINVAL;
2154 goto bail;
2155 }
2156
2157 switch (cmd.type) {
2158 case QIB_CMD_ASSIGN_CTXT:
2159 if (rcd) {
2160 ret = -EINVAL;
2161 goto bail;
2162 }
2163
2164 ret = qib_assign_ctxt(fp, &cmd.cmd.user_info);
2165 if (ret)
2166 goto bail;
2167 break;
2168
2169 case QIB_CMD_USER_INIT:
2170 ret = qib_do_user_init(fp, &cmd.cmd.user_info);
2171 if (ret)
2172 goto bail;
2173 ret = qib_get_base_info(fp, u64_to_user_ptr(
2174 cmd.cmd.user_info.spu_base_info),
2175 cmd.cmd.user_info.spu_base_info_size);
2176 break;
2177
2178 case QIB_CMD_RECV_CTRL:
2179 ret = qib_manage_rcvq(rcd, subctxt_fp(fp), cmd.cmd.recv_ctrl);
2180 break;
2181
2182 case QIB_CMD_CTXT_INFO:
2183 ret = qib_ctxt_info(fp, (struct qib_ctxt_info __user *)
2184 (unsigned long) cmd.cmd.ctxt_info);
2185 break;
2186
2187 case QIB_CMD_TID_UPDATE:
2188 ret = qib_tid_update(rcd, fp, &cmd.cmd.tid_info);
2189 break;
2190
2191 case QIB_CMD_TID_FREE:
2192 ret = qib_tid_free(rcd, subctxt_fp(fp), &cmd.cmd.tid_info);
2193 break;
2194
2195 case QIB_CMD_SET_PART_KEY:
2196 ret = qib_set_part_key(rcd, cmd.cmd.part_key);
2197 break;
2198
2199 case QIB_CMD_DISARM_BUFS:
2200 (void)qib_disarm_piobufs_ifneeded(rcd);
2201 ret = disarm_req_delay(rcd);
2202 break;
2203
2204 case QIB_CMD_PIOAVAILUPD:
2205 qib_force_pio_avail_update(rcd->dd);
2206 break;
2207
2208 case QIB_CMD_POLL_TYPE:
2209 rcd->poll_type = cmd.cmd.poll_type;
2210 break;
2211
2212 case QIB_CMD_ARMLAUNCH_CTRL:
2213 rcd->dd->f_set_armlaunch(rcd->dd, cmd.cmd.armlaunch_ctrl);
2214 break;
2215
2216 case QIB_CMD_SDMA_INFLIGHT:
2217 ret = qib_sdma_get_inflight(user_sdma_queue_fp(fp),
2218 (u32 __user *) (unsigned long)
2219 cmd.cmd.sdma_inflight);
2220 break;
2221
2222 case QIB_CMD_SDMA_COMPLETE:
2223 ret = qib_sdma_get_complete(rcd->ppd,
2224 user_sdma_queue_fp(fp),
2225 (u32 __user *) (unsigned long)
2226 cmd.cmd.sdma_complete);
2227 break;
2228
2229 case QIB_CMD_ACK_EVENT:
2230 ret = qib_user_event_ack(rcd, subctxt_fp(fp),
2231 cmd.cmd.event_mask);
2232 break;
2233 }
2234
2235 if (ret >= 0)
2236 ret = consumed;
2237
2238 bail:
2239 return ret;
2240 }
2241
qib_write_iter(struct kiocb * iocb,struct iov_iter * from)2242 static ssize_t qib_write_iter(struct kiocb *iocb, struct iov_iter *from)
2243 {
2244 struct qib_filedata *fp = iocb->ki_filp->private_data;
2245 struct qib_ctxtdata *rcd = ctxt_fp(iocb->ki_filp);
2246 struct qib_user_sdma_queue *pq = fp->pq;
2247
2248 if (!iter_is_iovec(from) || !from->nr_segs || !pq)
2249 return -EINVAL;
2250
2251 return qib_user_sdma_writev(rcd, pq, from->iov, from->nr_segs);
2252 }
2253
2254 static struct class *qib_class;
2255 static dev_t qib_dev;
2256
qib_cdev_init(int minor,const char * name,const struct file_operations * fops,struct cdev ** cdevp,struct device ** devp)2257 int qib_cdev_init(int minor, const char *name,
2258 const struct file_operations *fops,
2259 struct cdev **cdevp, struct device **devp)
2260 {
2261 const dev_t dev = MKDEV(MAJOR(qib_dev), minor);
2262 struct cdev *cdev;
2263 struct device *device = NULL;
2264 int ret;
2265
2266 cdev = cdev_alloc();
2267 if (!cdev) {
2268 pr_err("Could not allocate cdev for minor %d, %s\n",
2269 minor, name);
2270 ret = -ENOMEM;
2271 goto done;
2272 }
2273
2274 cdev->owner = THIS_MODULE;
2275 cdev->ops = fops;
2276 kobject_set_name(&cdev->kobj, name);
2277
2278 ret = cdev_add(cdev, dev, 1);
2279 if (ret < 0) {
2280 pr_err("Could not add cdev for minor %d, %s (err %d)\n",
2281 minor, name, -ret);
2282 goto err_cdev;
2283 }
2284
2285 device = device_create(qib_class, NULL, dev, NULL, "%s", name);
2286 if (!IS_ERR(device))
2287 goto done;
2288 ret = PTR_ERR(device);
2289 device = NULL;
2290 pr_err("Could not create device for minor %d, %s (err %d)\n",
2291 minor, name, -ret);
2292 err_cdev:
2293 cdev_del(cdev);
2294 cdev = NULL;
2295 done:
2296 *cdevp = cdev;
2297 *devp = device;
2298 return ret;
2299 }
2300
qib_cdev_cleanup(struct cdev ** cdevp,struct device ** devp)2301 void qib_cdev_cleanup(struct cdev **cdevp, struct device **devp)
2302 {
2303 struct device *device = *devp;
2304
2305 if (device) {
2306 device_unregister(device);
2307 *devp = NULL;
2308 }
2309
2310 if (*cdevp) {
2311 cdev_del(*cdevp);
2312 *cdevp = NULL;
2313 }
2314 }
2315
2316 static struct cdev *wildcard_cdev;
2317 static struct device *wildcard_device;
2318
qib_dev_init(void)2319 int __init qib_dev_init(void)
2320 {
2321 int ret;
2322
2323 ret = alloc_chrdev_region(&qib_dev, 0, QIB_NMINORS, QIB_DRV_NAME);
2324 if (ret < 0) {
2325 pr_err("Could not allocate chrdev region (err %d)\n", -ret);
2326 goto done;
2327 }
2328
2329 qib_class = class_create(THIS_MODULE, "ipath");
2330 if (IS_ERR(qib_class)) {
2331 ret = PTR_ERR(qib_class);
2332 pr_err("Could not create device class (err %d)\n", -ret);
2333 unregister_chrdev_region(qib_dev, QIB_NMINORS);
2334 }
2335
2336 done:
2337 return ret;
2338 }
2339
qib_dev_cleanup(void)2340 void qib_dev_cleanup(void)
2341 {
2342 if (qib_class) {
2343 class_destroy(qib_class);
2344 qib_class = NULL;
2345 }
2346
2347 unregister_chrdev_region(qib_dev, QIB_NMINORS);
2348 }
2349
2350 static atomic_t user_count = ATOMIC_INIT(0);
2351
qib_user_remove(struct qib_devdata * dd)2352 static void qib_user_remove(struct qib_devdata *dd)
2353 {
2354 if (atomic_dec_return(&user_count) == 0)
2355 qib_cdev_cleanup(&wildcard_cdev, &wildcard_device);
2356
2357 qib_cdev_cleanup(&dd->user_cdev, &dd->user_device);
2358 }
2359
qib_user_add(struct qib_devdata * dd)2360 static int qib_user_add(struct qib_devdata *dd)
2361 {
2362 char name[10];
2363 int ret;
2364
2365 if (atomic_inc_return(&user_count) == 1) {
2366 ret = qib_cdev_init(0, "ipath", &qib_file_ops,
2367 &wildcard_cdev, &wildcard_device);
2368 if (ret)
2369 goto done;
2370 }
2371
2372 snprintf(name, sizeof(name), "ipath%d", dd->unit);
2373 ret = qib_cdev_init(dd->unit + 1, name, &qib_file_ops,
2374 &dd->user_cdev, &dd->user_device);
2375 if (ret)
2376 qib_user_remove(dd);
2377 done:
2378 return ret;
2379 }
2380
2381 /*
2382 * Create per-unit files in /dev
2383 */
qib_device_create(struct qib_devdata * dd)2384 int qib_device_create(struct qib_devdata *dd)
2385 {
2386 int r, ret;
2387
2388 r = qib_user_add(dd);
2389 ret = qib_diag_add(dd);
2390 if (r && !ret)
2391 ret = r;
2392 return ret;
2393 }
2394
2395 /*
2396 * Remove per-unit files in /dev
2397 * void, core kernel returns no errors for this stuff
2398 */
qib_device_remove(struct qib_devdata * dd)2399 void qib_device_remove(struct qib_devdata *dd)
2400 {
2401 qib_user_remove(dd);
2402 qib_diag_remove(dd);
2403 }
2404