• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion
4  *
5  * Copyright IBM Corporation, 2001
6  *
7  * Author: Dipankar Sarma <dipankar@in.ibm.com>
8  *
9  * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11  * Papers:
12  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14  *
15  * For detailed explanation of Read-Copy Update mechanism see -
16  *		http://lse.sourceforge.net/locking/rcupdate.html
17  *
18  */
19 
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22 
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <linux/cleanup.h>
31 #include <asm/processor.h>
32 #include <linux/cpumask.h>
33 #include <linux/context_tracking_irq.h>
34 
35 #define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
36 #define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
37 #define ulong2long(a)		(*(long *)(&(a)))
38 #define USHORT_CMP_GE(a, b)	(USHRT_MAX / 2 >= (unsigned short)((a) - (b)))
39 #define USHORT_CMP_LT(a, b)	(USHRT_MAX / 2 < (unsigned short)((a) - (b)))
40 
41 /* Exported common interfaces */
42 void call_rcu(struct rcu_head *head, rcu_callback_t func);
43 void rcu_barrier_tasks(void);
44 void rcu_barrier_tasks_rude(void);
45 void synchronize_rcu(void);
46 
47 struct rcu_gp_oldstate;
48 unsigned long get_completed_synchronize_rcu(void);
49 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp);
50 
51 // Maximum number of unsigned long values corresponding to
52 // not-yet-completed RCU grace periods.
53 #define NUM_ACTIVE_RCU_POLL_OLDSTATE 2
54 
55 /**
56  * same_state_synchronize_rcu - Are two old-state values identical?
57  * @oldstate1: First old-state value.
58  * @oldstate2: Second old-state value.
59  *
60  * The two old-state values must have been obtained from either
61  * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or
62  * get_completed_synchronize_rcu().  Returns @true if the two values are
63  * identical and @false otherwise.  This allows structures whose lifetimes
64  * are tracked by old-state values to push these values to a list header,
65  * allowing those structures to be slightly smaller.
66  */
same_state_synchronize_rcu(unsigned long oldstate1,unsigned long oldstate2)67 static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2)
68 {
69 	return oldstate1 == oldstate2;
70 }
71 
72 #ifdef CONFIG_PREEMPT_RCU
73 
74 void __rcu_read_lock(void);
75 void __rcu_read_unlock(void);
76 
77 /*
78  * Defined as a macro as it is a very low level header included from
79  * areas that don't even know about current.  This gives the rcu_read_lock()
80  * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
81  * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
82  */
83 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
84 
85 #else /* #ifdef CONFIG_PREEMPT_RCU */
86 
87 #ifdef CONFIG_TINY_RCU
88 #define rcu_read_unlock_strict() do { } while (0)
89 #else
90 void rcu_read_unlock_strict(void);
91 #endif
92 
__rcu_read_lock(void)93 static inline void __rcu_read_lock(void)
94 {
95 	preempt_disable();
96 }
97 
__rcu_read_unlock(void)98 static inline void __rcu_read_unlock(void)
99 {
100 	preempt_enable();
101 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
102 		rcu_read_unlock_strict();
103 }
104 
rcu_preempt_depth(void)105 static inline int rcu_preempt_depth(void)
106 {
107 	return 0;
108 }
109 
110 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
111 
112 #ifdef CONFIG_RCU_LAZY
113 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func);
114 #else
call_rcu_hurry(struct rcu_head * head,rcu_callback_t func)115 static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
116 {
117 	call_rcu(head, func);
118 }
119 #endif
120 
121 /* Internal to kernel */
122 void rcu_init(void);
123 extern int rcu_scheduler_active;
124 void rcu_sched_clock_irq(int user);
125 void rcu_report_dead(unsigned int cpu);
126 void rcutree_migrate_callbacks(int cpu);
127 
128 #ifdef CONFIG_TASKS_RCU_GENERIC
129 void rcu_init_tasks_generic(void);
130 #else
rcu_init_tasks_generic(void)131 static inline void rcu_init_tasks_generic(void) { }
132 #endif
133 
134 #ifdef CONFIG_RCU_STALL_COMMON
135 void rcu_sysrq_start(void);
136 void rcu_sysrq_end(void);
137 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)138 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)139 static inline void rcu_sysrq_end(void) { }
140 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
141 
142 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
143 void rcu_irq_work_resched(void);
144 #else
rcu_irq_work_resched(void)145 static inline void rcu_irq_work_resched(void) { }
146 #endif
147 
148 #ifdef CONFIG_RCU_NOCB_CPU
149 void rcu_init_nohz(void);
150 int rcu_nocb_cpu_offload(int cpu);
151 int rcu_nocb_cpu_deoffload(int cpu);
152 void rcu_nocb_flush_deferred_wakeup(void);
153 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)154 static inline void rcu_init_nohz(void) { }
rcu_nocb_cpu_offload(int cpu)155 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
rcu_nocb_cpu_deoffload(int cpu)156 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
rcu_nocb_flush_deferred_wakeup(void)157 static inline void rcu_nocb_flush_deferred_wakeup(void) { }
158 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
159 
160 /**
161  * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
162  * @a: Code that RCU needs to pay attention to.
163  *
164  * RCU read-side critical sections are forbidden in the inner idle loop,
165  * that is, between the ct_idle_enter() and the ct_idle_exit() -- RCU
166  * will happily ignore any such read-side critical sections.  However,
167  * things like powertop need tracepoints in the inner idle loop.
168  *
169  * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
170  * will tell RCU that it needs to pay attention, invoke its argument
171  * (in this example, calling the do_something_with_RCU() function),
172  * and then tell RCU to go back to ignoring this CPU.  It is permissible
173  * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
174  * on the order of a million or so, even on 32-bit systems).  It is
175  * not legal to block within RCU_NONIDLE(), nor is it permissible to
176  * transfer control either into or out of RCU_NONIDLE()'s statement.
177  */
178 #define RCU_NONIDLE(a) \
179 	do { \
180 		ct_irq_enter_irqson(); \
181 		do { a; } while (0); \
182 		ct_irq_exit_irqson(); \
183 	} while (0)
184 
185 /*
186  * Note a quasi-voluntary context switch for RCU-tasks's benefit.
187  * This is a macro rather than an inline function to avoid #include hell.
188  */
189 #ifdef CONFIG_TASKS_RCU_GENERIC
190 
191 # ifdef CONFIG_TASKS_RCU
192 # define rcu_tasks_classic_qs(t, preempt)				\
193 	do {								\
194 		if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout))	\
195 			WRITE_ONCE((t)->rcu_tasks_holdout, false);	\
196 	} while (0)
197 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
198 void synchronize_rcu_tasks(void);
199 # else
200 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
201 # define call_rcu_tasks call_rcu
202 # define synchronize_rcu_tasks synchronize_rcu
203 # endif
204 
205 # ifdef CONFIG_TASKS_TRACE_RCU
206 // Bits for ->trc_reader_special.b.need_qs field.
207 #define TRC_NEED_QS		0x1  // Task needs a quiescent state.
208 #define TRC_NEED_QS_CHECKED	0x2  // Task has been checked for needing quiescent state.
209 
210 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new);
211 void rcu_tasks_trace_qs_blkd(struct task_struct *t);
212 
213 # define rcu_tasks_trace_qs(t)							\
214 	do {									\
215 		int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting);	\
216 										\
217 		if (likely(!READ_ONCE((t)->trc_reader_special.b.need_qs)) &&	\
218 		    likely(!___rttq_nesting)) {					\
219 			rcu_trc_cmpxchg_need_qs((t), 0,	TRC_NEED_QS_CHECKED);	\
220 		} else if (___rttq_nesting && ___rttq_nesting != INT_MIN &&	\
221 			   !READ_ONCE((t)->trc_reader_special.b.blocked)) {	\
222 			rcu_tasks_trace_qs_blkd(t);				\
223 		}								\
224 	} while (0)
225 # else
226 # define rcu_tasks_trace_qs(t) do { } while (0)
227 # endif
228 
229 #define rcu_tasks_qs(t, preempt)					\
230 do {									\
231 	rcu_tasks_classic_qs((t), (preempt));				\
232 	rcu_tasks_trace_qs(t);						\
233 } while (0)
234 
235 # ifdef CONFIG_TASKS_RUDE_RCU
236 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
237 void synchronize_rcu_tasks_rude(void);
238 # endif
239 
240 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
241 void exit_tasks_rcu_start(void);
242 void exit_tasks_rcu_stop(void);
243 void exit_tasks_rcu_finish(void);
244 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
245 #define rcu_tasks_classic_qs(t, preempt) do { } while (0)
246 #define rcu_tasks_qs(t, preempt) do { } while (0)
247 #define rcu_note_voluntary_context_switch(t) do { } while (0)
248 #define call_rcu_tasks call_rcu
249 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)250 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_stop(void)251 static inline void exit_tasks_rcu_stop(void) { }
exit_tasks_rcu_finish(void)252 static inline void exit_tasks_rcu_finish(void) { }
253 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
254 
255 /**
256  * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period?
257  *
258  * As an accident of implementation, an RCU Tasks Trace grace period also
259  * acts as an RCU grace period.  However, this could change at any time.
260  * Code relying on this accident must call this function to verify that
261  * this accident is still happening.
262  *
263  * You have been warned!
264  */
rcu_trace_implies_rcu_gp(void)265 static inline bool rcu_trace_implies_rcu_gp(void) { return true; }
266 
267 /**
268  * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
269  *
270  * This macro resembles cond_resched(), except that it is defined to
271  * report potential quiescent states to RCU-tasks even if the cond_resched()
272  * machinery were to be shut off, as some advocate for PREEMPTION kernels.
273  */
274 #define cond_resched_tasks_rcu_qs() \
275 do { \
276 	rcu_tasks_qs(current, false); \
277 	cond_resched(); \
278 } while (0)
279 
280 /*
281  * Infrastructure to implement the synchronize_() primitives in
282  * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
283  */
284 
285 #if defined(CONFIG_TREE_RCU)
286 #include <linux/rcutree.h>
287 #elif defined(CONFIG_TINY_RCU)
288 #include <linux/rcutiny.h>
289 #else
290 #error "Unknown RCU implementation specified to kernel configuration"
291 #endif
292 
293 /*
294  * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
295  * are needed for dynamic initialization and destruction of rcu_head
296  * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
297  * dynamic initialization and destruction of statically allocated rcu_head
298  * structures.  However, rcu_head structures allocated dynamically in the
299  * heap don't need any initialization.
300  */
301 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
302 void init_rcu_head(struct rcu_head *head);
303 void destroy_rcu_head(struct rcu_head *head);
304 void init_rcu_head_on_stack(struct rcu_head *head);
305 void destroy_rcu_head_on_stack(struct rcu_head *head);
306 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)307 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)308 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)309 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)310 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
311 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
312 
313 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
314 bool rcu_lockdep_current_cpu_online(void);
315 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)316 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
317 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
318 
319 extern struct lockdep_map rcu_lock_map;
320 extern struct lockdep_map rcu_bh_lock_map;
321 extern struct lockdep_map rcu_sched_lock_map;
322 extern struct lockdep_map rcu_callback_map;
323 
324 #ifdef CONFIG_DEBUG_LOCK_ALLOC
325 
rcu_lock_acquire(struct lockdep_map * map)326 static inline void rcu_lock_acquire(struct lockdep_map *map)
327 {
328 	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
329 }
330 
rcu_lock_release(struct lockdep_map * map)331 static inline void rcu_lock_release(struct lockdep_map *map)
332 {
333 	lock_release(map, _THIS_IP_);
334 }
335 
336 int debug_lockdep_rcu_enabled(void);
337 int rcu_read_lock_held(void);
338 int rcu_read_lock_bh_held(void);
339 int rcu_read_lock_sched_held(void);
340 int rcu_read_lock_any_held(void);
341 
342 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
343 
344 # define rcu_lock_acquire(a)		do { } while (0)
345 # define rcu_lock_release(a)		do { } while (0)
346 
rcu_read_lock_held(void)347 static inline int rcu_read_lock_held(void)
348 {
349 	return 1;
350 }
351 
rcu_read_lock_bh_held(void)352 static inline int rcu_read_lock_bh_held(void)
353 {
354 	return 1;
355 }
356 
rcu_read_lock_sched_held(void)357 static inline int rcu_read_lock_sched_held(void)
358 {
359 	return !preemptible();
360 }
361 
rcu_read_lock_any_held(void)362 static inline int rcu_read_lock_any_held(void)
363 {
364 	return !preemptible();
365 }
366 
367 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
368 
369 #ifdef CONFIG_PROVE_RCU
370 
371 /**
372  * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
373  * @c: condition to check
374  * @s: informative message
375  *
376  * This checks debug_lockdep_rcu_enabled() before checking (c) to
377  * prevent early boot splats due to lockdep not yet being initialized,
378  * and rechecks it after checking (c) to prevent false-positive splats
379  * due to races with lockdep being disabled.  See commit 3066820034b5dd
380  * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail.
381  */
382 #define RCU_LOCKDEP_WARN(c, s)						\
383 	do {								\
384 		static bool __section(".data.unlikely") __warned;	\
385 		if (debug_lockdep_rcu_enabled() && (c) &&		\
386 		    debug_lockdep_rcu_enabled() && !__warned) {		\
387 			__warned = true;				\
388 			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
389 		}							\
390 	} while (0)
391 
392 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)393 static inline void rcu_preempt_sleep_check(void)
394 {
395 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
396 			 "Illegal context switch in RCU read-side critical section");
397 }
398 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)399 static inline void rcu_preempt_sleep_check(void) { }
400 #endif /* #else #ifdef CONFIG_PROVE_RCU */
401 
402 #define rcu_sleep_check()						\
403 	do {								\
404 		rcu_preempt_sleep_check();				\
405 		if (!IS_ENABLED(CONFIG_PREEMPT_RT))			\
406 		    RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),	\
407 				 "Illegal context switch in RCU-bh read-side critical section"); \
408 		RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),	\
409 				 "Illegal context switch in RCU-sched read-side critical section"); \
410 	} while (0)
411 
412 #else /* #ifdef CONFIG_PROVE_RCU */
413 
414 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
415 #define rcu_sleep_check() do { } while (0)
416 
417 #endif /* #else #ifdef CONFIG_PROVE_RCU */
418 
419 /*
420  * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
421  * and rcu_assign_pointer().  Some of these could be folded into their
422  * callers, but they are left separate in order to ease introduction of
423  * multiple pointers markings to match different RCU implementations
424  * (e.g., __srcu), should this make sense in the future.
425  */
426 
427 #ifdef __CHECKER__
428 #define rcu_check_sparse(p, space) \
429 	((void)(((typeof(*p) space *)p) == p))
430 #else /* #ifdef __CHECKER__ */
431 #define rcu_check_sparse(p, space)
432 #endif /* #else #ifdef __CHECKER__ */
433 
434 #define __unrcu_pointer(p, local)					\
435 ({									\
436 	typeof(*p) *local = (typeof(*p) *__force)(p);			\
437 	rcu_check_sparse(p, __rcu);					\
438 	((typeof(*p) __force __kernel *)(local)); 			\
439 })
440 /**
441  * unrcu_pointer - mark a pointer as not being RCU protected
442  * @p: pointer needing to lose its __rcu property
443  *
444  * Converts @p from an __rcu pointer to a __kernel pointer.
445  * This allows an __rcu pointer to be used with xchg() and friends.
446  */
447 #define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu))
448 
449 #define __rcu_access_pointer(p, local, space) \
450 ({ \
451 	typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
452 	rcu_check_sparse(p, space); \
453 	((typeof(*p) __force __kernel *)(local)); \
454 })
455 #define __rcu_dereference_check(p, local, c, space) \
456 ({ \
457 	/* Dependency order vs. p above. */ \
458 	typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
459 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
460 	rcu_check_sparse(p, space); \
461 	((typeof(*p) __force __kernel *)(local)); \
462 })
463 #define __rcu_dereference_protected(p, local, c, space) \
464 ({ \
465 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
466 	rcu_check_sparse(p, space); \
467 	((typeof(*p) __force __kernel *)(p)); \
468 })
469 #define __rcu_dereference_raw(p, local) \
470 ({ \
471 	/* Dependency order vs. p above. */ \
472 	typeof(p) local = READ_ONCE(p); \
473 	((typeof(*p) __force __kernel *)(local)); \
474 })
475 #define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu))
476 
477 /**
478  * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
479  * @v: The value to statically initialize with.
480  */
481 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
482 
483 /**
484  * rcu_assign_pointer() - assign to RCU-protected pointer
485  * @p: pointer to assign to
486  * @v: value to assign (publish)
487  *
488  * Assigns the specified value to the specified RCU-protected
489  * pointer, ensuring that any concurrent RCU readers will see
490  * any prior initialization.
491  *
492  * Inserts memory barriers on architectures that require them
493  * (which is most of them), and also prevents the compiler from
494  * reordering the code that initializes the structure after the pointer
495  * assignment.  More importantly, this call documents which pointers
496  * will be dereferenced by RCU read-side code.
497  *
498  * In some special cases, you may use RCU_INIT_POINTER() instead
499  * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
500  * to the fact that it does not constrain either the CPU or the compiler.
501  * That said, using RCU_INIT_POINTER() when you should have used
502  * rcu_assign_pointer() is a very bad thing that results in
503  * impossible-to-diagnose memory corruption.  So please be careful.
504  * See the RCU_INIT_POINTER() comment header for details.
505  *
506  * Note that rcu_assign_pointer() evaluates each of its arguments only
507  * once, appearances notwithstanding.  One of the "extra" evaluations
508  * is in typeof() and the other visible only to sparse (__CHECKER__),
509  * neither of which actually execute the argument.  As with most cpp
510  * macros, this execute-arguments-only-once property is important, so
511  * please be careful when making changes to rcu_assign_pointer() and the
512  * other macros that it invokes.
513  */
514 #define rcu_assign_pointer(p, v)					      \
515 do {									      \
516 	uintptr_t _r_a_p__v = (uintptr_t)(v);				      \
517 	rcu_check_sparse(p, __rcu);					      \
518 									      \
519 	if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)	      \
520 		WRITE_ONCE((p), (typeof(p))(_r_a_p__v));		      \
521 	else								      \
522 		smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
523 } while (0)
524 
525 /**
526  * rcu_replace_pointer() - replace an RCU pointer, returning its old value
527  * @rcu_ptr: RCU pointer, whose old value is returned
528  * @ptr: regular pointer
529  * @c: the lockdep conditions under which the dereference will take place
530  *
531  * Perform a replacement, where @rcu_ptr is an RCU-annotated
532  * pointer and @c is the lockdep argument that is passed to the
533  * rcu_dereference_protected() call used to read that pointer.  The old
534  * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
535  */
536 #define rcu_replace_pointer(rcu_ptr, ptr, c)				\
537 ({									\
538 	typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));	\
539 	rcu_assign_pointer((rcu_ptr), (ptr));				\
540 	__tmp;								\
541 })
542 
543 /**
544  * rcu_access_pointer() - fetch RCU pointer with no dereferencing
545  * @p: The pointer to read
546  *
547  * Return the value of the specified RCU-protected pointer, but omit the
548  * lockdep checks for being in an RCU read-side critical section.  This is
549  * useful when the value of this pointer is accessed, but the pointer is
550  * not dereferenced, for example, when testing an RCU-protected pointer
551  * against NULL.  Although rcu_access_pointer() may also be used in cases
552  * where update-side locks prevent the value of the pointer from changing,
553  * you should instead use rcu_dereference_protected() for this use case.
554  * Within an RCU read-side critical section, there is little reason to
555  * use rcu_access_pointer().
556  *
557  * It is usually best to test the rcu_access_pointer() return value
558  * directly in order to avoid accidental dereferences being introduced
559  * by later inattentive changes.  In other words, assigning the
560  * rcu_access_pointer() return value to a local variable results in an
561  * accident waiting to happen.
562  *
563  * It is also permissible to use rcu_access_pointer() when read-side
564  * access to the pointer was removed at least one grace period ago, as is
565  * the case in the context of the RCU callback that is freeing up the data,
566  * or after a synchronize_rcu() returns.  This can be useful when tearing
567  * down multi-linked structures after a grace period has elapsed.  However,
568  * rcu_dereference_protected() is normally preferred for this use case.
569  */
570 #define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu)
571 
572 /**
573  * rcu_dereference_check() - rcu_dereference with debug checking
574  * @p: The pointer to read, prior to dereferencing
575  * @c: The conditions under which the dereference will take place
576  *
577  * Do an rcu_dereference(), but check that the conditions under which the
578  * dereference will take place are correct.  Typically the conditions
579  * indicate the various locking conditions that should be held at that
580  * point.  The check should return true if the conditions are satisfied.
581  * An implicit check for being in an RCU read-side critical section
582  * (rcu_read_lock()) is included.
583  *
584  * For example:
585  *
586  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
587  *
588  * could be used to indicate to lockdep that foo->bar may only be dereferenced
589  * if either rcu_read_lock() is held, or that the lock required to replace
590  * the bar struct at foo->bar is held.
591  *
592  * Note that the list of conditions may also include indications of when a lock
593  * need not be held, for example during initialisation or destruction of the
594  * target struct:
595  *
596  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
597  *					      atomic_read(&foo->usage) == 0);
598  *
599  * Inserts memory barriers on architectures that require them
600  * (currently only the Alpha), prevents the compiler from refetching
601  * (and from merging fetches), and, more importantly, documents exactly
602  * which pointers are protected by RCU and checks that the pointer is
603  * annotated as __rcu.
604  */
605 #define rcu_dereference_check(p, c) \
606 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
607 				(c) || rcu_read_lock_held(), __rcu)
608 
609 /**
610  * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
611  * @p: The pointer to read, prior to dereferencing
612  * @c: The conditions under which the dereference will take place
613  *
614  * This is the RCU-bh counterpart to rcu_dereference_check().  However,
615  * please note that starting in v5.0 kernels, vanilla RCU grace periods
616  * wait for local_bh_disable() regions of code in addition to regions of
617  * code demarked by rcu_read_lock() and rcu_read_unlock().  This means
618  * that synchronize_rcu(), call_rcu, and friends all take not only
619  * rcu_read_lock() but also rcu_read_lock_bh() into account.
620  */
621 #define rcu_dereference_bh_check(p, c) \
622 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
623 				(c) || rcu_read_lock_bh_held(), __rcu)
624 
625 /**
626  * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
627  * @p: The pointer to read, prior to dereferencing
628  * @c: The conditions under which the dereference will take place
629  *
630  * This is the RCU-sched counterpart to rcu_dereference_check().
631  * However, please note that starting in v5.0 kernels, vanilla RCU grace
632  * periods wait for preempt_disable() regions of code in addition to
633  * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
634  * This means that synchronize_rcu(), call_rcu, and friends all take not
635  * only rcu_read_lock() but also rcu_read_lock_sched() into account.
636  */
637 #define rcu_dereference_sched_check(p, c) \
638 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
639 				(c) || rcu_read_lock_sched_held(), \
640 				__rcu)
641 
642 /*
643  * The tracing infrastructure traces RCU (we want that), but unfortunately
644  * some of the RCU checks causes tracing to lock up the system.
645  *
646  * The no-tracing version of rcu_dereference_raw() must not call
647  * rcu_read_lock_held().
648  */
649 #define rcu_dereference_raw_check(p) \
650 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu)
651 
652 /**
653  * rcu_dereference_protected() - fetch RCU pointer when updates prevented
654  * @p: The pointer to read, prior to dereferencing
655  * @c: The conditions under which the dereference will take place
656  *
657  * Return the value of the specified RCU-protected pointer, but omit
658  * the READ_ONCE().  This is useful in cases where update-side locks
659  * prevent the value of the pointer from changing.  Please note that this
660  * primitive does *not* prevent the compiler from repeating this reference
661  * or combining it with other references, so it should not be used without
662  * protection of appropriate locks.
663  *
664  * This function is only for update-side use.  Using this function
665  * when protected only by rcu_read_lock() will result in infrequent
666  * but very ugly failures.
667  */
668 #define rcu_dereference_protected(p, c) \
669 	__rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu)
670 
671 
672 /**
673  * rcu_dereference() - fetch RCU-protected pointer for dereferencing
674  * @p: The pointer to read, prior to dereferencing
675  *
676  * This is a simple wrapper around rcu_dereference_check().
677  */
678 #define rcu_dereference(p) rcu_dereference_check(p, 0)
679 
680 /**
681  * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
682  * @p: The pointer to read, prior to dereferencing
683  *
684  * Makes rcu_dereference_check() do the dirty work.
685  */
686 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
687 
688 /**
689  * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
690  * @p: The pointer to read, prior to dereferencing
691  *
692  * Makes rcu_dereference_check() do the dirty work.
693  */
694 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
695 
696 /**
697  * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
698  * @p: The pointer to hand off
699  *
700  * This is simply an identity function, but it documents where a pointer
701  * is handed off from RCU to some other synchronization mechanism, for
702  * example, reference counting or locking.  In C11, it would map to
703  * kill_dependency().  It could be used as follows::
704  *
705  *	rcu_read_lock();
706  *	p = rcu_dereference(gp);
707  *	long_lived = is_long_lived(p);
708  *	if (long_lived) {
709  *		if (!atomic_inc_not_zero(p->refcnt))
710  *			long_lived = false;
711  *		else
712  *			p = rcu_pointer_handoff(p);
713  *	}
714  *	rcu_read_unlock();
715  */
716 #define rcu_pointer_handoff(p) (p)
717 
718 /**
719  * rcu_read_lock() - mark the beginning of an RCU read-side critical section
720  *
721  * When synchronize_rcu() is invoked on one CPU while other CPUs
722  * are within RCU read-side critical sections, then the
723  * synchronize_rcu() is guaranteed to block until after all the other
724  * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
725  * on one CPU while other CPUs are within RCU read-side critical
726  * sections, invocation of the corresponding RCU callback is deferred
727  * until after the all the other CPUs exit their critical sections.
728  *
729  * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
730  * wait for regions of code with preemption disabled, including regions of
731  * code with interrupts or softirqs disabled.  In pre-v5.0 kernels, which
732  * define synchronize_sched(), only code enclosed within rcu_read_lock()
733  * and rcu_read_unlock() are guaranteed to be waited for.
734  *
735  * Note, however, that RCU callbacks are permitted to run concurrently
736  * with new RCU read-side critical sections.  One way that this can happen
737  * is via the following sequence of events: (1) CPU 0 enters an RCU
738  * read-side critical section, (2) CPU 1 invokes call_rcu() to register
739  * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
740  * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
741  * callback is invoked.  This is legal, because the RCU read-side critical
742  * section that was running concurrently with the call_rcu() (and which
743  * therefore might be referencing something that the corresponding RCU
744  * callback would free up) has completed before the corresponding
745  * RCU callback is invoked.
746  *
747  * RCU read-side critical sections may be nested.  Any deferred actions
748  * will be deferred until the outermost RCU read-side critical section
749  * completes.
750  *
751  * You can avoid reading and understanding the next paragraph by
752  * following this rule: don't put anything in an rcu_read_lock() RCU
753  * read-side critical section that would block in a !PREEMPTION kernel.
754  * But if you want the full story, read on!
755  *
756  * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
757  * it is illegal to block while in an RCU read-side critical section.
758  * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
759  * kernel builds, RCU read-side critical sections may be preempted,
760  * but explicit blocking is illegal.  Finally, in preemptible RCU
761  * implementations in real-time (with -rt patchset) kernel builds, RCU
762  * read-side critical sections may be preempted and they may also block, but
763  * only when acquiring spinlocks that are subject to priority inheritance.
764  */
rcu_read_lock(void)765 static __always_inline void rcu_read_lock(void)
766 {
767 	__rcu_read_lock();
768 	__acquire(RCU);
769 	rcu_lock_acquire(&rcu_lock_map);
770 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
771 			 "rcu_read_lock() used illegally while idle");
772 }
773 
774 /*
775  * So where is rcu_write_lock()?  It does not exist, as there is no
776  * way for writers to lock out RCU readers.  This is a feature, not
777  * a bug -- this property is what provides RCU's performance benefits.
778  * Of course, writers must coordinate with each other.  The normal
779  * spinlock primitives work well for this, but any other technique may be
780  * used as well.  RCU does not care how the writers keep out of each
781  * others' way, as long as they do so.
782  */
783 
784 /**
785  * rcu_read_unlock() - marks the end of an RCU read-side critical section.
786  *
787  * In almost all situations, rcu_read_unlock() is immune from deadlock.
788  * In recent kernels that have consolidated synchronize_sched() and
789  * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
790  * also extends to the scheduler's runqueue and priority-inheritance
791  * spinlocks, courtesy of the quiescent-state deferral that is carried
792  * out when rcu_read_unlock() is invoked with interrupts disabled.
793  *
794  * See rcu_read_lock() for more information.
795  */
rcu_read_unlock(void)796 static inline void rcu_read_unlock(void)
797 {
798 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
799 			 "rcu_read_unlock() used illegally while idle");
800 	__release(RCU);
801 	__rcu_read_unlock();
802 	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
803 }
804 
805 /**
806  * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
807  *
808  * This is equivalent to rcu_read_lock(), but also disables softirqs.
809  * Note that anything else that disables softirqs can also serve as an RCU
810  * read-side critical section.  However, please note that this equivalence
811  * applies only to v5.0 and later.  Before v5.0, rcu_read_lock() and
812  * rcu_read_lock_bh() were unrelated.
813  *
814  * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
815  * must occur in the same context, for example, it is illegal to invoke
816  * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
817  * was invoked from some other task.
818  */
rcu_read_lock_bh(void)819 static inline void rcu_read_lock_bh(void)
820 {
821 	local_bh_disable();
822 	__acquire(RCU_BH);
823 	rcu_lock_acquire(&rcu_bh_lock_map);
824 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
825 			 "rcu_read_lock_bh() used illegally while idle");
826 }
827 
828 /**
829  * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
830  *
831  * See rcu_read_lock_bh() for more information.
832  */
rcu_read_unlock_bh(void)833 static inline void rcu_read_unlock_bh(void)
834 {
835 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
836 			 "rcu_read_unlock_bh() used illegally while idle");
837 	rcu_lock_release(&rcu_bh_lock_map);
838 	__release(RCU_BH);
839 	local_bh_enable();
840 }
841 
842 /**
843  * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
844  *
845  * This is equivalent to rcu_read_lock(), but also disables preemption.
846  * Read-side critical sections can also be introduced by anything else that
847  * disables preemption, including local_irq_disable() and friends.  However,
848  * please note that the equivalence to rcu_read_lock() applies only to
849  * v5.0 and later.  Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
850  * were unrelated.
851  *
852  * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
853  * must occur in the same context, for example, it is illegal to invoke
854  * rcu_read_unlock_sched() from process context if the matching
855  * rcu_read_lock_sched() was invoked from an NMI handler.
856  */
rcu_read_lock_sched(void)857 static inline void rcu_read_lock_sched(void)
858 {
859 	preempt_disable();
860 	__acquire(RCU_SCHED);
861 	rcu_lock_acquire(&rcu_sched_lock_map);
862 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
863 			 "rcu_read_lock_sched() used illegally while idle");
864 }
865 
866 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)867 static inline notrace void rcu_read_lock_sched_notrace(void)
868 {
869 	preempt_disable_notrace();
870 	__acquire(RCU_SCHED);
871 }
872 
873 /**
874  * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
875  *
876  * See rcu_read_lock_sched() for more information.
877  */
rcu_read_unlock_sched(void)878 static inline void rcu_read_unlock_sched(void)
879 {
880 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
881 			 "rcu_read_unlock_sched() used illegally while idle");
882 	rcu_lock_release(&rcu_sched_lock_map);
883 	__release(RCU_SCHED);
884 	preempt_enable();
885 }
886 
887 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)888 static inline notrace void rcu_read_unlock_sched_notrace(void)
889 {
890 	__release(RCU_SCHED);
891 	preempt_enable_notrace();
892 }
893 
894 /**
895  * RCU_INIT_POINTER() - initialize an RCU protected pointer
896  * @p: The pointer to be initialized.
897  * @v: The value to initialized the pointer to.
898  *
899  * Initialize an RCU-protected pointer in special cases where readers
900  * do not need ordering constraints on the CPU or the compiler.  These
901  * special cases are:
902  *
903  * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
904  * 2.	The caller has taken whatever steps are required to prevent
905  *	RCU readers from concurrently accessing this pointer *or*
906  * 3.	The referenced data structure has already been exposed to
907  *	readers either at compile time or via rcu_assign_pointer() *and*
908  *
909  *	a.	You have not made *any* reader-visible changes to
910  *		this structure since then *or*
911  *	b.	It is OK for readers accessing this structure from its
912  *		new location to see the old state of the structure.  (For
913  *		example, the changes were to statistical counters or to
914  *		other state where exact synchronization is not required.)
915  *
916  * Failure to follow these rules governing use of RCU_INIT_POINTER() will
917  * result in impossible-to-diagnose memory corruption.  As in the structures
918  * will look OK in crash dumps, but any concurrent RCU readers might
919  * see pre-initialized values of the referenced data structure.  So
920  * please be very careful how you use RCU_INIT_POINTER()!!!
921  *
922  * If you are creating an RCU-protected linked structure that is accessed
923  * by a single external-to-structure RCU-protected pointer, then you may
924  * use RCU_INIT_POINTER() to initialize the internal RCU-protected
925  * pointers, but you must use rcu_assign_pointer() to initialize the
926  * external-to-structure pointer *after* you have completely initialized
927  * the reader-accessible portions of the linked structure.
928  *
929  * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
930  * ordering guarantees for either the CPU or the compiler.
931  */
932 #define RCU_INIT_POINTER(p, v) \
933 	do { \
934 		rcu_check_sparse(p, __rcu); \
935 		WRITE_ONCE(p, RCU_INITIALIZER(v)); \
936 	} while (0)
937 
938 /**
939  * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
940  * @p: The pointer to be initialized.
941  * @v: The value to initialized the pointer to.
942  *
943  * GCC-style initialization for an RCU-protected pointer in a structure field.
944  */
945 #define RCU_POINTER_INITIALIZER(p, v) \
946 		.p = RCU_INITIALIZER(v)
947 
948 /*
949  * Does the specified offset indicate that the corresponding rcu_head
950  * structure can be handled by kvfree_rcu()?
951  */
952 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
953 
954 /**
955  * kfree_rcu() - kfree an object after a grace period.
956  * @ptr: pointer to kfree for both single- and double-argument invocations.
957  * @rhf: the name of the struct rcu_head within the type of @ptr,
958  *       but only for double-argument invocations.
959  *
960  * Many rcu callbacks functions just call kfree() on the base structure.
961  * These functions are trivial, but their size adds up, and furthermore
962  * when they are used in a kernel module, that module must invoke the
963  * high-latency rcu_barrier() function at module-unload time.
964  *
965  * The kfree_rcu() function handles this issue.  Rather than encoding a
966  * function address in the embedded rcu_head structure, kfree_rcu() instead
967  * encodes the offset of the rcu_head structure within the base structure.
968  * Because the functions are not allowed in the low-order 4096 bytes of
969  * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
970  * If the offset is larger than 4095 bytes, a compile-time error will
971  * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
972  * either fall back to use of call_rcu() or rearrange the structure to
973  * position the rcu_head structure into the first 4096 bytes.
974  *
975  * Note that the allowable offset might decrease in the future, for example,
976  * to allow something like kmem_cache_free_rcu().
977  *
978  * The BUILD_BUG_ON check must not involve any function calls, hence the
979  * checks are done in macros here.
980  */
981 #define kfree_rcu(ptr, rhf...) kvfree_rcu(ptr, ## rhf)
982 
983 /**
984  * kvfree_rcu() - kvfree an object after a grace period.
985  *
986  * This macro consists of one or two arguments and it is
987  * based on whether an object is head-less or not. If it
988  * has a head then a semantic stays the same as it used
989  * to be before:
990  *
991  *     kvfree_rcu(ptr, rhf);
992  *
993  * where @ptr is a pointer to kvfree(), @rhf is the name
994  * of the rcu_head structure within the type of @ptr.
995  *
996  * When it comes to head-less variant, only one argument
997  * is passed and that is just a pointer which has to be
998  * freed after a grace period. Therefore the semantic is
999  *
1000  *     kvfree_rcu(ptr);
1001  *
1002  * where @ptr is the pointer to be freed by kvfree().
1003  *
1004  * Please note, head-less way of freeing is permitted to
1005  * use from a context that has to follow might_sleep()
1006  * annotation. Otherwise, please switch and embed the
1007  * rcu_head structure within the type of @ptr.
1008  */
1009 #define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__,		\
1010 	kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__)
1011 
1012 #define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME
1013 #define kvfree_rcu_arg_2(ptr, rhf)					\
1014 do {									\
1015 	typeof (ptr) ___p = (ptr);					\
1016 									\
1017 	if (___p) {									\
1018 		BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf)));	\
1019 		kvfree_call_rcu(&((___p)->rhf), (rcu_callback_t)(unsigned long)		\
1020 			(offsetof(typeof(*(ptr)), rhf)));				\
1021 	}										\
1022 } while (0)
1023 
1024 #define kvfree_rcu_arg_1(ptr)					\
1025 do {								\
1026 	typeof(ptr) ___p = (ptr);				\
1027 								\
1028 	if (___p)						\
1029 		kvfree_call_rcu(NULL, (rcu_callback_t) (___p));	\
1030 } while (0)
1031 
1032 /*
1033  * Place this after a lock-acquisition primitive to guarantee that
1034  * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
1035  * if the UNLOCK and LOCK are executed by the same CPU or if the
1036  * UNLOCK and LOCK operate on the same lock variable.
1037  */
1038 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
1039 #define smp_mb__after_unlock_lock()	smp_mb()  /* Full ordering for lock. */
1040 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1041 #define smp_mb__after_unlock_lock()	do { } while (0)
1042 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1043 
1044 
1045 /* Has the specified rcu_head structure been handed to call_rcu()? */
1046 
1047 /**
1048  * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
1049  * @rhp: The rcu_head structure to initialize.
1050  *
1051  * If you intend to invoke rcu_head_after_call_rcu() to test whether a
1052  * given rcu_head structure has already been passed to call_rcu(), then
1053  * you must also invoke this rcu_head_init() function on it just after
1054  * allocating that structure.  Calls to this function must not race with
1055  * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
1056  */
rcu_head_init(struct rcu_head * rhp)1057 static inline void rcu_head_init(struct rcu_head *rhp)
1058 {
1059 	rhp->func = (rcu_callback_t)~0L;
1060 }
1061 
1062 /**
1063  * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
1064  * @rhp: The rcu_head structure to test.
1065  * @f: The function passed to call_rcu() along with @rhp.
1066  *
1067  * Returns @true if the @rhp has been passed to call_rcu() with @func,
1068  * and @false otherwise.  Emits a warning in any other case, including
1069  * the case where @rhp has already been invoked after a grace period.
1070  * Calls to this function must not race with callback invocation.  One way
1071  * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
1072  * in an RCU read-side critical section that includes a read-side fetch
1073  * of the pointer to the structure containing @rhp.
1074  */
1075 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)1076 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
1077 {
1078 	rcu_callback_t func = READ_ONCE(rhp->func);
1079 
1080 	if (func == f)
1081 		return true;
1082 	WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1083 	return false;
1084 }
1085 
1086 /* kernel/ksysfs.c definitions */
1087 extern int rcu_expedited;
1088 extern int rcu_normal;
1089 
1090 DEFINE_LOCK_GUARD_0(rcu, rcu_read_lock(), rcu_read_unlock())
1091 
1092 #endif /* __LINUX_RCUPDATE_H */
1093