1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion
4 *
5 * Copyright IBM Corporation, 2001
6 *
7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
8 *
9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11 * Papers:
12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14 *
15 * For detailed explanation of Read-Copy Update mechanism see -
16 * http://lse.sourceforge.net/locking/rcupdate.html
17 *
18 */
19
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <linux/cleanup.h>
31 #include <asm/processor.h>
32 #include <linux/cpumask.h>
33 #include <linux/context_tracking_irq.h>
34
35 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
36 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
37 #define ulong2long(a) (*(long *)(&(a)))
38 #define USHORT_CMP_GE(a, b) (USHRT_MAX / 2 >= (unsigned short)((a) - (b)))
39 #define USHORT_CMP_LT(a, b) (USHRT_MAX / 2 < (unsigned short)((a) - (b)))
40
41 /* Exported common interfaces */
42 void call_rcu(struct rcu_head *head, rcu_callback_t func);
43 void rcu_barrier_tasks(void);
44 void rcu_barrier_tasks_rude(void);
45 void synchronize_rcu(void);
46
47 struct rcu_gp_oldstate;
48 unsigned long get_completed_synchronize_rcu(void);
49 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp);
50
51 // Maximum number of unsigned long values corresponding to
52 // not-yet-completed RCU grace periods.
53 #define NUM_ACTIVE_RCU_POLL_OLDSTATE 2
54
55 /**
56 * same_state_synchronize_rcu - Are two old-state values identical?
57 * @oldstate1: First old-state value.
58 * @oldstate2: Second old-state value.
59 *
60 * The two old-state values must have been obtained from either
61 * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or
62 * get_completed_synchronize_rcu(). Returns @true if the two values are
63 * identical and @false otherwise. This allows structures whose lifetimes
64 * are tracked by old-state values to push these values to a list header,
65 * allowing those structures to be slightly smaller.
66 */
same_state_synchronize_rcu(unsigned long oldstate1,unsigned long oldstate2)67 static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2)
68 {
69 return oldstate1 == oldstate2;
70 }
71
72 #ifdef CONFIG_PREEMPT_RCU
73
74 void __rcu_read_lock(void);
75 void __rcu_read_unlock(void);
76
77 /*
78 * Defined as a macro as it is a very low level header included from
79 * areas that don't even know about current. This gives the rcu_read_lock()
80 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
81 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
82 */
83 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
84
85 #else /* #ifdef CONFIG_PREEMPT_RCU */
86
87 #ifdef CONFIG_TINY_RCU
88 #define rcu_read_unlock_strict() do { } while (0)
89 #else
90 void rcu_read_unlock_strict(void);
91 #endif
92
__rcu_read_lock(void)93 static inline void __rcu_read_lock(void)
94 {
95 preempt_disable();
96 }
97
__rcu_read_unlock(void)98 static inline void __rcu_read_unlock(void)
99 {
100 preempt_enable();
101 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
102 rcu_read_unlock_strict();
103 }
104
rcu_preempt_depth(void)105 static inline int rcu_preempt_depth(void)
106 {
107 return 0;
108 }
109
110 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
111
112 #ifdef CONFIG_RCU_LAZY
113 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func);
114 #else
call_rcu_hurry(struct rcu_head * head,rcu_callback_t func)115 static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
116 {
117 call_rcu(head, func);
118 }
119 #endif
120
121 /* Internal to kernel */
122 void rcu_init(void);
123 extern int rcu_scheduler_active;
124 void rcu_sched_clock_irq(int user);
125 void rcu_report_dead(unsigned int cpu);
126 void rcutree_migrate_callbacks(int cpu);
127
128 #ifdef CONFIG_TASKS_RCU_GENERIC
129 void rcu_init_tasks_generic(void);
130 #else
rcu_init_tasks_generic(void)131 static inline void rcu_init_tasks_generic(void) { }
132 #endif
133
134 #ifdef CONFIG_RCU_STALL_COMMON
135 void rcu_sysrq_start(void);
136 void rcu_sysrq_end(void);
137 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)138 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)139 static inline void rcu_sysrq_end(void) { }
140 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
141
142 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
143 void rcu_irq_work_resched(void);
144 #else
rcu_irq_work_resched(void)145 static inline void rcu_irq_work_resched(void) { }
146 #endif
147
148 #ifdef CONFIG_RCU_NOCB_CPU
149 void rcu_init_nohz(void);
150 int rcu_nocb_cpu_offload(int cpu);
151 int rcu_nocb_cpu_deoffload(int cpu);
152 void rcu_nocb_flush_deferred_wakeup(void);
153 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)154 static inline void rcu_init_nohz(void) { }
rcu_nocb_cpu_offload(int cpu)155 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
rcu_nocb_cpu_deoffload(int cpu)156 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
rcu_nocb_flush_deferred_wakeup(void)157 static inline void rcu_nocb_flush_deferred_wakeup(void) { }
158 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
159
160 /**
161 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
162 * @a: Code that RCU needs to pay attention to.
163 *
164 * RCU read-side critical sections are forbidden in the inner idle loop,
165 * that is, between the ct_idle_enter() and the ct_idle_exit() -- RCU
166 * will happily ignore any such read-side critical sections. However,
167 * things like powertop need tracepoints in the inner idle loop.
168 *
169 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
170 * will tell RCU that it needs to pay attention, invoke its argument
171 * (in this example, calling the do_something_with_RCU() function),
172 * and then tell RCU to go back to ignoring this CPU. It is permissible
173 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
174 * on the order of a million or so, even on 32-bit systems). It is
175 * not legal to block within RCU_NONIDLE(), nor is it permissible to
176 * transfer control either into or out of RCU_NONIDLE()'s statement.
177 */
178 #define RCU_NONIDLE(a) \
179 do { \
180 ct_irq_enter_irqson(); \
181 do { a; } while (0); \
182 ct_irq_exit_irqson(); \
183 } while (0)
184
185 /*
186 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
187 * This is a macro rather than an inline function to avoid #include hell.
188 */
189 #ifdef CONFIG_TASKS_RCU_GENERIC
190
191 # ifdef CONFIG_TASKS_RCU
192 # define rcu_tasks_classic_qs(t, preempt) \
193 do { \
194 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \
195 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
196 } while (0)
197 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
198 void synchronize_rcu_tasks(void);
199 # else
200 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
201 # define call_rcu_tasks call_rcu
202 # define synchronize_rcu_tasks synchronize_rcu
203 # endif
204
205 # ifdef CONFIG_TASKS_TRACE_RCU
206 // Bits for ->trc_reader_special.b.need_qs field.
207 #define TRC_NEED_QS 0x1 // Task needs a quiescent state.
208 #define TRC_NEED_QS_CHECKED 0x2 // Task has been checked for needing quiescent state.
209
210 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new);
211 void rcu_tasks_trace_qs_blkd(struct task_struct *t);
212
213 # define rcu_tasks_trace_qs(t) \
214 do { \
215 int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting); \
216 \
217 if (likely(!READ_ONCE((t)->trc_reader_special.b.need_qs)) && \
218 likely(!___rttq_nesting)) { \
219 rcu_trc_cmpxchg_need_qs((t), 0, TRC_NEED_QS_CHECKED); \
220 } else if (___rttq_nesting && ___rttq_nesting != INT_MIN && \
221 !READ_ONCE((t)->trc_reader_special.b.blocked)) { \
222 rcu_tasks_trace_qs_blkd(t); \
223 } \
224 } while (0)
225 # else
226 # define rcu_tasks_trace_qs(t) do { } while (0)
227 # endif
228
229 #define rcu_tasks_qs(t, preempt) \
230 do { \
231 rcu_tasks_classic_qs((t), (preempt)); \
232 rcu_tasks_trace_qs(t); \
233 } while (0)
234
235 # ifdef CONFIG_TASKS_RUDE_RCU
236 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
237 void synchronize_rcu_tasks_rude(void);
238 # endif
239
240 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
241 void exit_tasks_rcu_start(void);
242 void exit_tasks_rcu_stop(void);
243 void exit_tasks_rcu_finish(void);
244 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
245 #define rcu_tasks_classic_qs(t, preempt) do { } while (0)
246 #define rcu_tasks_qs(t, preempt) do { } while (0)
247 #define rcu_note_voluntary_context_switch(t) do { } while (0)
248 #define call_rcu_tasks call_rcu
249 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)250 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_stop(void)251 static inline void exit_tasks_rcu_stop(void) { }
exit_tasks_rcu_finish(void)252 static inline void exit_tasks_rcu_finish(void) { }
253 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
254
255 /**
256 * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period?
257 *
258 * As an accident of implementation, an RCU Tasks Trace grace period also
259 * acts as an RCU grace period. However, this could change at any time.
260 * Code relying on this accident must call this function to verify that
261 * this accident is still happening.
262 *
263 * You have been warned!
264 */
rcu_trace_implies_rcu_gp(void)265 static inline bool rcu_trace_implies_rcu_gp(void) { return true; }
266
267 /**
268 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
269 *
270 * This macro resembles cond_resched(), except that it is defined to
271 * report potential quiescent states to RCU-tasks even if the cond_resched()
272 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
273 */
274 #define cond_resched_tasks_rcu_qs() \
275 do { \
276 rcu_tasks_qs(current, false); \
277 cond_resched(); \
278 } while (0)
279
280 /*
281 * Infrastructure to implement the synchronize_() primitives in
282 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
283 */
284
285 #if defined(CONFIG_TREE_RCU)
286 #include <linux/rcutree.h>
287 #elif defined(CONFIG_TINY_RCU)
288 #include <linux/rcutiny.h>
289 #else
290 #error "Unknown RCU implementation specified to kernel configuration"
291 #endif
292
293 /*
294 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
295 * are needed for dynamic initialization and destruction of rcu_head
296 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
297 * dynamic initialization and destruction of statically allocated rcu_head
298 * structures. However, rcu_head structures allocated dynamically in the
299 * heap don't need any initialization.
300 */
301 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
302 void init_rcu_head(struct rcu_head *head);
303 void destroy_rcu_head(struct rcu_head *head);
304 void init_rcu_head_on_stack(struct rcu_head *head);
305 void destroy_rcu_head_on_stack(struct rcu_head *head);
306 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)307 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)308 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)309 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)310 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
311 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
312
313 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
314 bool rcu_lockdep_current_cpu_online(void);
315 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)316 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
317 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
318
319 extern struct lockdep_map rcu_lock_map;
320 extern struct lockdep_map rcu_bh_lock_map;
321 extern struct lockdep_map rcu_sched_lock_map;
322 extern struct lockdep_map rcu_callback_map;
323
324 #ifdef CONFIG_DEBUG_LOCK_ALLOC
325
rcu_lock_acquire(struct lockdep_map * map)326 static inline void rcu_lock_acquire(struct lockdep_map *map)
327 {
328 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
329 }
330
rcu_lock_release(struct lockdep_map * map)331 static inline void rcu_lock_release(struct lockdep_map *map)
332 {
333 lock_release(map, _THIS_IP_);
334 }
335
336 int debug_lockdep_rcu_enabled(void);
337 int rcu_read_lock_held(void);
338 int rcu_read_lock_bh_held(void);
339 int rcu_read_lock_sched_held(void);
340 int rcu_read_lock_any_held(void);
341
342 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
343
344 # define rcu_lock_acquire(a) do { } while (0)
345 # define rcu_lock_release(a) do { } while (0)
346
rcu_read_lock_held(void)347 static inline int rcu_read_lock_held(void)
348 {
349 return 1;
350 }
351
rcu_read_lock_bh_held(void)352 static inline int rcu_read_lock_bh_held(void)
353 {
354 return 1;
355 }
356
rcu_read_lock_sched_held(void)357 static inline int rcu_read_lock_sched_held(void)
358 {
359 return !preemptible();
360 }
361
rcu_read_lock_any_held(void)362 static inline int rcu_read_lock_any_held(void)
363 {
364 return !preemptible();
365 }
366
367 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
368
369 #ifdef CONFIG_PROVE_RCU
370
371 /**
372 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
373 * @c: condition to check
374 * @s: informative message
375 *
376 * This checks debug_lockdep_rcu_enabled() before checking (c) to
377 * prevent early boot splats due to lockdep not yet being initialized,
378 * and rechecks it after checking (c) to prevent false-positive splats
379 * due to races with lockdep being disabled. See commit 3066820034b5dd
380 * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail.
381 */
382 #define RCU_LOCKDEP_WARN(c, s) \
383 do { \
384 static bool __section(".data.unlikely") __warned; \
385 if (debug_lockdep_rcu_enabled() && (c) && \
386 debug_lockdep_rcu_enabled() && !__warned) { \
387 __warned = true; \
388 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
389 } \
390 } while (0)
391
392 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)393 static inline void rcu_preempt_sleep_check(void)
394 {
395 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
396 "Illegal context switch in RCU read-side critical section");
397 }
398 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)399 static inline void rcu_preempt_sleep_check(void) { }
400 #endif /* #else #ifdef CONFIG_PROVE_RCU */
401
402 #define rcu_sleep_check() \
403 do { \
404 rcu_preempt_sleep_check(); \
405 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \
406 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
407 "Illegal context switch in RCU-bh read-side critical section"); \
408 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
409 "Illegal context switch in RCU-sched read-side critical section"); \
410 } while (0)
411
412 #else /* #ifdef CONFIG_PROVE_RCU */
413
414 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
415 #define rcu_sleep_check() do { } while (0)
416
417 #endif /* #else #ifdef CONFIG_PROVE_RCU */
418
419 /*
420 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
421 * and rcu_assign_pointer(). Some of these could be folded into their
422 * callers, but they are left separate in order to ease introduction of
423 * multiple pointers markings to match different RCU implementations
424 * (e.g., __srcu), should this make sense in the future.
425 */
426
427 #ifdef __CHECKER__
428 #define rcu_check_sparse(p, space) \
429 ((void)(((typeof(*p) space *)p) == p))
430 #else /* #ifdef __CHECKER__ */
431 #define rcu_check_sparse(p, space)
432 #endif /* #else #ifdef __CHECKER__ */
433
434 #define __unrcu_pointer(p, local) \
435 ({ \
436 typeof(*p) *local = (typeof(*p) *__force)(p); \
437 rcu_check_sparse(p, __rcu); \
438 ((typeof(*p) __force __kernel *)(local)); \
439 })
440 /**
441 * unrcu_pointer - mark a pointer as not being RCU protected
442 * @p: pointer needing to lose its __rcu property
443 *
444 * Converts @p from an __rcu pointer to a __kernel pointer.
445 * This allows an __rcu pointer to be used with xchg() and friends.
446 */
447 #define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu))
448
449 #define __rcu_access_pointer(p, local, space) \
450 ({ \
451 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
452 rcu_check_sparse(p, space); \
453 ((typeof(*p) __force __kernel *)(local)); \
454 })
455 #define __rcu_dereference_check(p, local, c, space) \
456 ({ \
457 /* Dependency order vs. p above. */ \
458 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
459 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
460 rcu_check_sparse(p, space); \
461 ((typeof(*p) __force __kernel *)(local)); \
462 })
463 #define __rcu_dereference_protected(p, local, c, space) \
464 ({ \
465 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
466 rcu_check_sparse(p, space); \
467 ((typeof(*p) __force __kernel *)(p)); \
468 })
469 #define __rcu_dereference_raw(p, local) \
470 ({ \
471 /* Dependency order vs. p above. */ \
472 typeof(p) local = READ_ONCE(p); \
473 ((typeof(*p) __force __kernel *)(local)); \
474 })
475 #define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu))
476
477 /**
478 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
479 * @v: The value to statically initialize with.
480 */
481 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
482
483 /**
484 * rcu_assign_pointer() - assign to RCU-protected pointer
485 * @p: pointer to assign to
486 * @v: value to assign (publish)
487 *
488 * Assigns the specified value to the specified RCU-protected
489 * pointer, ensuring that any concurrent RCU readers will see
490 * any prior initialization.
491 *
492 * Inserts memory barriers on architectures that require them
493 * (which is most of them), and also prevents the compiler from
494 * reordering the code that initializes the structure after the pointer
495 * assignment. More importantly, this call documents which pointers
496 * will be dereferenced by RCU read-side code.
497 *
498 * In some special cases, you may use RCU_INIT_POINTER() instead
499 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
500 * to the fact that it does not constrain either the CPU or the compiler.
501 * That said, using RCU_INIT_POINTER() when you should have used
502 * rcu_assign_pointer() is a very bad thing that results in
503 * impossible-to-diagnose memory corruption. So please be careful.
504 * See the RCU_INIT_POINTER() comment header for details.
505 *
506 * Note that rcu_assign_pointer() evaluates each of its arguments only
507 * once, appearances notwithstanding. One of the "extra" evaluations
508 * is in typeof() and the other visible only to sparse (__CHECKER__),
509 * neither of which actually execute the argument. As with most cpp
510 * macros, this execute-arguments-only-once property is important, so
511 * please be careful when making changes to rcu_assign_pointer() and the
512 * other macros that it invokes.
513 */
514 #define rcu_assign_pointer(p, v) \
515 do { \
516 uintptr_t _r_a_p__v = (uintptr_t)(v); \
517 rcu_check_sparse(p, __rcu); \
518 \
519 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
520 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
521 else \
522 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
523 } while (0)
524
525 /**
526 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
527 * @rcu_ptr: RCU pointer, whose old value is returned
528 * @ptr: regular pointer
529 * @c: the lockdep conditions under which the dereference will take place
530 *
531 * Perform a replacement, where @rcu_ptr is an RCU-annotated
532 * pointer and @c is the lockdep argument that is passed to the
533 * rcu_dereference_protected() call used to read that pointer. The old
534 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
535 */
536 #define rcu_replace_pointer(rcu_ptr, ptr, c) \
537 ({ \
538 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
539 rcu_assign_pointer((rcu_ptr), (ptr)); \
540 __tmp; \
541 })
542
543 /**
544 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
545 * @p: The pointer to read
546 *
547 * Return the value of the specified RCU-protected pointer, but omit the
548 * lockdep checks for being in an RCU read-side critical section. This is
549 * useful when the value of this pointer is accessed, but the pointer is
550 * not dereferenced, for example, when testing an RCU-protected pointer
551 * against NULL. Although rcu_access_pointer() may also be used in cases
552 * where update-side locks prevent the value of the pointer from changing,
553 * you should instead use rcu_dereference_protected() for this use case.
554 * Within an RCU read-side critical section, there is little reason to
555 * use rcu_access_pointer().
556 *
557 * It is usually best to test the rcu_access_pointer() return value
558 * directly in order to avoid accidental dereferences being introduced
559 * by later inattentive changes. In other words, assigning the
560 * rcu_access_pointer() return value to a local variable results in an
561 * accident waiting to happen.
562 *
563 * It is also permissible to use rcu_access_pointer() when read-side
564 * access to the pointer was removed at least one grace period ago, as is
565 * the case in the context of the RCU callback that is freeing up the data,
566 * or after a synchronize_rcu() returns. This can be useful when tearing
567 * down multi-linked structures after a grace period has elapsed. However,
568 * rcu_dereference_protected() is normally preferred for this use case.
569 */
570 #define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu)
571
572 /**
573 * rcu_dereference_check() - rcu_dereference with debug checking
574 * @p: The pointer to read, prior to dereferencing
575 * @c: The conditions under which the dereference will take place
576 *
577 * Do an rcu_dereference(), but check that the conditions under which the
578 * dereference will take place are correct. Typically the conditions
579 * indicate the various locking conditions that should be held at that
580 * point. The check should return true if the conditions are satisfied.
581 * An implicit check for being in an RCU read-side critical section
582 * (rcu_read_lock()) is included.
583 *
584 * For example:
585 *
586 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
587 *
588 * could be used to indicate to lockdep that foo->bar may only be dereferenced
589 * if either rcu_read_lock() is held, or that the lock required to replace
590 * the bar struct at foo->bar is held.
591 *
592 * Note that the list of conditions may also include indications of when a lock
593 * need not be held, for example during initialisation or destruction of the
594 * target struct:
595 *
596 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
597 * atomic_read(&foo->usage) == 0);
598 *
599 * Inserts memory barriers on architectures that require them
600 * (currently only the Alpha), prevents the compiler from refetching
601 * (and from merging fetches), and, more importantly, documents exactly
602 * which pointers are protected by RCU and checks that the pointer is
603 * annotated as __rcu.
604 */
605 #define rcu_dereference_check(p, c) \
606 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
607 (c) || rcu_read_lock_held(), __rcu)
608
609 /**
610 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
611 * @p: The pointer to read, prior to dereferencing
612 * @c: The conditions under which the dereference will take place
613 *
614 * This is the RCU-bh counterpart to rcu_dereference_check(). However,
615 * please note that starting in v5.0 kernels, vanilla RCU grace periods
616 * wait for local_bh_disable() regions of code in addition to regions of
617 * code demarked by rcu_read_lock() and rcu_read_unlock(). This means
618 * that synchronize_rcu(), call_rcu, and friends all take not only
619 * rcu_read_lock() but also rcu_read_lock_bh() into account.
620 */
621 #define rcu_dereference_bh_check(p, c) \
622 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
623 (c) || rcu_read_lock_bh_held(), __rcu)
624
625 /**
626 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
627 * @p: The pointer to read, prior to dereferencing
628 * @c: The conditions under which the dereference will take place
629 *
630 * This is the RCU-sched counterpart to rcu_dereference_check().
631 * However, please note that starting in v5.0 kernels, vanilla RCU grace
632 * periods wait for preempt_disable() regions of code in addition to
633 * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
634 * This means that synchronize_rcu(), call_rcu, and friends all take not
635 * only rcu_read_lock() but also rcu_read_lock_sched() into account.
636 */
637 #define rcu_dereference_sched_check(p, c) \
638 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
639 (c) || rcu_read_lock_sched_held(), \
640 __rcu)
641
642 /*
643 * The tracing infrastructure traces RCU (we want that), but unfortunately
644 * some of the RCU checks causes tracing to lock up the system.
645 *
646 * The no-tracing version of rcu_dereference_raw() must not call
647 * rcu_read_lock_held().
648 */
649 #define rcu_dereference_raw_check(p) \
650 __rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu)
651
652 /**
653 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
654 * @p: The pointer to read, prior to dereferencing
655 * @c: The conditions under which the dereference will take place
656 *
657 * Return the value of the specified RCU-protected pointer, but omit
658 * the READ_ONCE(). This is useful in cases where update-side locks
659 * prevent the value of the pointer from changing. Please note that this
660 * primitive does *not* prevent the compiler from repeating this reference
661 * or combining it with other references, so it should not be used without
662 * protection of appropriate locks.
663 *
664 * This function is only for update-side use. Using this function
665 * when protected only by rcu_read_lock() will result in infrequent
666 * but very ugly failures.
667 */
668 #define rcu_dereference_protected(p, c) \
669 __rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu)
670
671
672 /**
673 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
674 * @p: The pointer to read, prior to dereferencing
675 *
676 * This is a simple wrapper around rcu_dereference_check().
677 */
678 #define rcu_dereference(p) rcu_dereference_check(p, 0)
679
680 /**
681 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
682 * @p: The pointer to read, prior to dereferencing
683 *
684 * Makes rcu_dereference_check() do the dirty work.
685 */
686 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
687
688 /**
689 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
690 * @p: The pointer to read, prior to dereferencing
691 *
692 * Makes rcu_dereference_check() do the dirty work.
693 */
694 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
695
696 /**
697 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
698 * @p: The pointer to hand off
699 *
700 * This is simply an identity function, but it documents where a pointer
701 * is handed off from RCU to some other synchronization mechanism, for
702 * example, reference counting or locking. In C11, it would map to
703 * kill_dependency(). It could be used as follows::
704 *
705 * rcu_read_lock();
706 * p = rcu_dereference(gp);
707 * long_lived = is_long_lived(p);
708 * if (long_lived) {
709 * if (!atomic_inc_not_zero(p->refcnt))
710 * long_lived = false;
711 * else
712 * p = rcu_pointer_handoff(p);
713 * }
714 * rcu_read_unlock();
715 */
716 #define rcu_pointer_handoff(p) (p)
717
718 /**
719 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
720 *
721 * When synchronize_rcu() is invoked on one CPU while other CPUs
722 * are within RCU read-side critical sections, then the
723 * synchronize_rcu() is guaranteed to block until after all the other
724 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
725 * on one CPU while other CPUs are within RCU read-side critical
726 * sections, invocation of the corresponding RCU callback is deferred
727 * until after the all the other CPUs exit their critical sections.
728 *
729 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
730 * wait for regions of code with preemption disabled, including regions of
731 * code with interrupts or softirqs disabled. In pre-v5.0 kernels, which
732 * define synchronize_sched(), only code enclosed within rcu_read_lock()
733 * and rcu_read_unlock() are guaranteed to be waited for.
734 *
735 * Note, however, that RCU callbacks are permitted to run concurrently
736 * with new RCU read-side critical sections. One way that this can happen
737 * is via the following sequence of events: (1) CPU 0 enters an RCU
738 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
739 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
740 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
741 * callback is invoked. This is legal, because the RCU read-side critical
742 * section that was running concurrently with the call_rcu() (and which
743 * therefore might be referencing something that the corresponding RCU
744 * callback would free up) has completed before the corresponding
745 * RCU callback is invoked.
746 *
747 * RCU read-side critical sections may be nested. Any deferred actions
748 * will be deferred until the outermost RCU read-side critical section
749 * completes.
750 *
751 * You can avoid reading and understanding the next paragraph by
752 * following this rule: don't put anything in an rcu_read_lock() RCU
753 * read-side critical section that would block in a !PREEMPTION kernel.
754 * But if you want the full story, read on!
755 *
756 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
757 * it is illegal to block while in an RCU read-side critical section.
758 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
759 * kernel builds, RCU read-side critical sections may be preempted,
760 * but explicit blocking is illegal. Finally, in preemptible RCU
761 * implementations in real-time (with -rt patchset) kernel builds, RCU
762 * read-side critical sections may be preempted and they may also block, but
763 * only when acquiring spinlocks that are subject to priority inheritance.
764 */
rcu_read_lock(void)765 static __always_inline void rcu_read_lock(void)
766 {
767 __rcu_read_lock();
768 __acquire(RCU);
769 rcu_lock_acquire(&rcu_lock_map);
770 RCU_LOCKDEP_WARN(!rcu_is_watching(),
771 "rcu_read_lock() used illegally while idle");
772 }
773
774 /*
775 * So where is rcu_write_lock()? It does not exist, as there is no
776 * way for writers to lock out RCU readers. This is a feature, not
777 * a bug -- this property is what provides RCU's performance benefits.
778 * Of course, writers must coordinate with each other. The normal
779 * spinlock primitives work well for this, but any other technique may be
780 * used as well. RCU does not care how the writers keep out of each
781 * others' way, as long as they do so.
782 */
783
784 /**
785 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
786 *
787 * In almost all situations, rcu_read_unlock() is immune from deadlock.
788 * In recent kernels that have consolidated synchronize_sched() and
789 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
790 * also extends to the scheduler's runqueue and priority-inheritance
791 * spinlocks, courtesy of the quiescent-state deferral that is carried
792 * out when rcu_read_unlock() is invoked with interrupts disabled.
793 *
794 * See rcu_read_lock() for more information.
795 */
rcu_read_unlock(void)796 static inline void rcu_read_unlock(void)
797 {
798 RCU_LOCKDEP_WARN(!rcu_is_watching(),
799 "rcu_read_unlock() used illegally while idle");
800 __release(RCU);
801 __rcu_read_unlock();
802 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
803 }
804
805 /**
806 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
807 *
808 * This is equivalent to rcu_read_lock(), but also disables softirqs.
809 * Note that anything else that disables softirqs can also serve as an RCU
810 * read-side critical section. However, please note that this equivalence
811 * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and
812 * rcu_read_lock_bh() were unrelated.
813 *
814 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
815 * must occur in the same context, for example, it is illegal to invoke
816 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
817 * was invoked from some other task.
818 */
rcu_read_lock_bh(void)819 static inline void rcu_read_lock_bh(void)
820 {
821 local_bh_disable();
822 __acquire(RCU_BH);
823 rcu_lock_acquire(&rcu_bh_lock_map);
824 RCU_LOCKDEP_WARN(!rcu_is_watching(),
825 "rcu_read_lock_bh() used illegally while idle");
826 }
827
828 /**
829 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
830 *
831 * See rcu_read_lock_bh() for more information.
832 */
rcu_read_unlock_bh(void)833 static inline void rcu_read_unlock_bh(void)
834 {
835 RCU_LOCKDEP_WARN(!rcu_is_watching(),
836 "rcu_read_unlock_bh() used illegally while idle");
837 rcu_lock_release(&rcu_bh_lock_map);
838 __release(RCU_BH);
839 local_bh_enable();
840 }
841
842 /**
843 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
844 *
845 * This is equivalent to rcu_read_lock(), but also disables preemption.
846 * Read-side critical sections can also be introduced by anything else that
847 * disables preemption, including local_irq_disable() and friends. However,
848 * please note that the equivalence to rcu_read_lock() applies only to
849 * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
850 * were unrelated.
851 *
852 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
853 * must occur in the same context, for example, it is illegal to invoke
854 * rcu_read_unlock_sched() from process context if the matching
855 * rcu_read_lock_sched() was invoked from an NMI handler.
856 */
rcu_read_lock_sched(void)857 static inline void rcu_read_lock_sched(void)
858 {
859 preempt_disable();
860 __acquire(RCU_SCHED);
861 rcu_lock_acquire(&rcu_sched_lock_map);
862 RCU_LOCKDEP_WARN(!rcu_is_watching(),
863 "rcu_read_lock_sched() used illegally while idle");
864 }
865
866 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)867 static inline notrace void rcu_read_lock_sched_notrace(void)
868 {
869 preempt_disable_notrace();
870 __acquire(RCU_SCHED);
871 }
872
873 /**
874 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
875 *
876 * See rcu_read_lock_sched() for more information.
877 */
rcu_read_unlock_sched(void)878 static inline void rcu_read_unlock_sched(void)
879 {
880 RCU_LOCKDEP_WARN(!rcu_is_watching(),
881 "rcu_read_unlock_sched() used illegally while idle");
882 rcu_lock_release(&rcu_sched_lock_map);
883 __release(RCU_SCHED);
884 preempt_enable();
885 }
886
887 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)888 static inline notrace void rcu_read_unlock_sched_notrace(void)
889 {
890 __release(RCU_SCHED);
891 preempt_enable_notrace();
892 }
893
894 /**
895 * RCU_INIT_POINTER() - initialize an RCU protected pointer
896 * @p: The pointer to be initialized.
897 * @v: The value to initialized the pointer to.
898 *
899 * Initialize an RCU-protected pointer in special cases where readers
900 * do not need ordering constraints on the CPU or the compiler. These
901 * special cases are:
902 *
903 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
904 * 2. The caller has taken whatever steps are required to prevent
905 * RCU readers from concurrently accessing this pointer *or*
906 * 3. The referenced data structure has already been exposed to
907 * readers either at compile time or via rcu_assign_pointer() *and*
908 *
909 * a. You have not made *any* reader-visible changes to
910 * this structure since then *or*
911 * b. It is OK for readers accessing this structure from its
912 * new location to see the old state of the structure. (For
913 * example, the changes were to statistical counters or to
914 * other state where exact synchronization is not required.)
915 *
916 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
917 * result in impossible-to-diagnose memory corruption. As in the structures
918 * will look OK in crash dumps, but any concurrent RCU readers might
919 * see pre-initialized values of the referenced data structure. So
920 * please be very careful how you use RCU_INIT_POINTER()!!!
921 *
922 * If you are creating an RCU-protected linked structure that is accessed
923 * by a single external-to-structure RCU-protected pointer, then you may
924 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
925 * pointers, but you must use rcu_assign_pointer() to initialize the
926 * external-to-structure pointer *after* you have completely initialized
927 * the reader-accessible portions of the linked structure.
928 *
929 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
930 * ordering guarantees for either the CPU or the compiler.
931 */
932 #define RCU_INIT_POINTER(p, v) \
933 do { \
934 rcu_check_sparse(p, __rcu); \
935 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
936 } while (0)
937
938 /**
939 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
940 * @p: The pointer to be initialized.
941 * @v: The value to initialized the pointer to.
942 *
943 * GCC-style initialization for an RCU-protected pointer in a structure field.
944 */
945 #define RCU_POINTER_INITIALIZER(p, v) \
946 .p = RCU_INITIALIZER(v)
947
948 /*
949 * Does the specified offset indicate that the corresponding rcu_head
950 * structure can be handled by kvfree_rcu()?
951 */
952 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
953
954 /**
955 * kfree_rcu() - kfree an object after a grace period.
956 * @ptr: pointer to kfree for both single- and double-argument invocations.
957 * @rhf: the name of the struct rcu_head within the type of @ptr,
958 * but only for double-argument invocations.
959 *
960 * Many rcu callbacks functions just call kfree() on the base structure.
961 * These functions are trivial, but their size adds up, and furthermore
962 * when they are used in a kernel module, that module must invoke the
963 * high-latency rcu_barrier() function at module-unload time.
964 *
965 * The kfree_rcu() function handles this issue. Rather than encoding a
966 * function address in the embedded rcu_head structure, kfree_rcu() instead
967 * encodes the offset of the rcu_head structure within the base structure.
968 * Because the functions are not allowed in the low-order 4096 bytes of
969 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
970 * If the offset is larger than 4095 bytes, a compile-time error will
971 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
972 * either fall back to use of call_rcu() or rearrange the structure to
973 * position the rcu_head structure into the first 4096 bytes.
974 *
975 * Note that the allowable offset might decrease in the future, for example,
976 * to allow something like kmem_cache_free_rcu().
977 *
978 * The BUILD_BUG_ON check must not involve any function calls, hence the
979 * checks are done in macros here.
980 */
981 #define kfree_rcu(ptr, rhf...) kvfree_rcu(ptr, ## rhf)
982
983 /**
984 * kvfree_rcu() - kvfree an object after a grace period.
985 *
986 * This macro consists of one or two arguments and it is
987 * based on whether an object is head-less or not. If it
988 * has a head then a semantic stays the same as it used
989 * to be before:
990 *
991 * kvfree_rcu(ptr, rhf);
992 *
993 * where @ptr is a pointer to kvfree(), @rhf is the name
994 * of the rcu_head structure within the type of @ptr.
995 *
996 * When it comes to head-less variant, only one argument
997 * is passed and that is just a pointer which has to be
998 * freed after a grace period. Therefore the semantic is
999 *
1000 * kvfree_rcu(ptr);
1001 *
1002 * where @ptr is the pointer to be freed by kvfree().
1003 *
1004 * Please note, head-less way of freeing is permitted to
1005 * use from a context that has to follow might_sleep()
1006 * annotation. Otherwise, please switch and embed the
1007 * rcu_head structure within the type of @ptr.
1008 */
1009 #define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__, \
1010 kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__)
1011
1012 #define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME
1013 #define kvfree_rcu_arg_2(ptr, rhf) \
1014 do { \
1015 typeof (ptr) ___p = (ptr); \
1016 \
1017 if (___p) { \
1018 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \
1019 kvfree_call_rcu(&((___p)->rhf), (rcu_callback_t)(unsigned long) \
1020 (offsetof(typeof(*(ptr)), rhf))); \
1021 } \
1022 } while (0)
1023
1024 #define kvfree_rcu_arg_1(ptr) \
1025 do { \
1026 typeof(ptr) ___p = (ptr); \
1027 \
1028 if (___p) \
1029 kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \
1030 } while (0)
1031
1032 /*
1033 * Place this after a lock-acquisition primitive to guarantee that
1034 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
1035 * if the UNLOCK and LOCK are executed by the same CPU or if the
1036 * UNLOCK and LOCK operate on the same lock variable.
1037 */
1038 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
1039 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */
1040 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1041 #define smp_mb__after_unlock_lock() do { } while (0)
1042 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1043
1044
1045 /* Has the specified rcu_head structure been handed to call_rcu()? */
1046
1047 /**
1048 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
1049 * @rhp: The rcu_head structure to initialize.
1050 *
1051 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
1052 * given rcu_head structure has already been passed to call_rcu(), then
1053 * you must also invoke this rcu_head_init() function on it just after
1054 * allocating that structure. Calls to this function must not race with
1055 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
1056 */
rcu_head_init(struct rcu_head * rhp)1057 static inline void rcu_head_init(struct rcu_head *rhp)
1058 {
1059 rhp->func = (rcu_callback_t)~0L;
1060 }
1061
1062 /**
1063 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
1064 * @rhp: The rcu_head structure to test.
1065 * @f: The function passed to call_rcu() along with @rhp.
1066 *
1067 * Returns @true if the @rhp has been passed to call_rcu() with @func,
1068 * and @false otherwise. Emits a warning in any other case, including
1069 * the case where @rhp has already been invoked after a grace period.
1070 * Calls to this function must not race with callback invocation. One way
1071 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
1072 * in an RCU read-side critical section that includes a read-side fetch
1073 * of the pointer to the structure containing @rhp.
1074 */
1075 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)1076 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
1077 {
1078 rcu_callback_t func = READ_ONCE(rhp->func);
1079
1080 if (func == f)
1081 return true;
1082 WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1083 return false;
1084 }
1085
1086 /* kernel/ksysfs.c definitions */
1087 extern int rcu_expedited;
1088 extern int rcu_normal;
1089
1090 DEFINE_LOCK_GUARD_0(rcu, rcu_read_lock(), rcu_read_unlock())
1091
1092 #endif /* __LINUX_RCUPDATE_H */
1093