1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2
3 //! A contiguous growable array type with heap-allocated contents, written
4 //! `Vec<T>`.
5 //!
6 //! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
7 //! *O*(1) pop (from the end).
8 //!
9 //! Vectors ensure they never allocate more than `isize::MAX` bytes.
10 //!
11 //! # Examples
12 //!
13 //! You can explicitly create a [`Vec`] with [`Vec::new`]:
14 //!
15 //! ```
16 //! let v: Vec<i32> = Vec::new();
17 //! ```
18 //!
19 //! ...or by using the [`vec!`] macro:
20 //!
21 //! ```
22 //! let v: Vec<i32> = vec![];
23 //!
24 //! let v = vec![1, 2, 3, 4, 5];
25 //!
26 //! let v = vec![0; 10]; // ten zeroes
27 //! ```
28 //!
29 //! You can [`push`] values onto the end of a vector (which will grow the vector
30 //! as needed):
31 //!
32 //! ```
33 //! let mut v = vec![1, 2];
34 //!
35 //! v.push(3);
36 //! ```
37 //!
38 //! Popping values works in much the same way:
39 //!
40 //! ```
41 //! let mut v = vec![1, 2];
42 //!
43 //! let two = v.pop();
44 //! ```
45 //!
46 //! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
47 //!
48 //! ```
49 //! let mut v = vec![1, 2, 3];
50 //! let three = v[2];
51 //! v[1] = v[1] + 5;
52 //! ```
53 //!
54 //! [`push`]: Vec::push
55
56 #![stable(feature = "rust1", since = "1.0.0")]
57
58 #[cfg(not(no_global_oom_handling))]
59 use core::cmp;
60 use core::cmp::Ordering;
61 use core::convert::TryFrom;
62 use core::fmt;
63 use core::hash::{Hash, Hasher};
64 use core::intrinsics::{arith_offset, assume};
65 use core::iter;
66 #[cfg(not(no_global_oom_handling))]
67 use core::iter::FromIterator;
68 use core::marker::PhantomData;
69 use core::mem::{self, ManuallyDrop, MaybeUninit};
70 use core::ops::{self, Index, IndexMut, Range, RangeBounds};
71 use core::ptr::{self, NonNull};
72 use core::slice::{self, SliceIndex};
73
74 use crate::alloc::{Allocator, Global};
75 use crate::borrow::{Cow, ToOwned};
76 use crate::boxed::Box;
77 use crate::collections::TryReserveError;
78 use crate::raw_vec::RawVec;
79
80 #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
81 pub use self::drain_filter::DrainFilter;
82
83 mod drain_filter;
84
85 #[cfg(not(no_global_oom_handling))]
86 #[stable(feature = "vec_splice", since = "1.21.0")]
87 pub use self::splice::Splice;
88
89 #[cfg(not(no_global_oom_handling))]
90 mod splice;
91
92 #[stable(feature = "drain", since = "1.6.0")]
93 pub use self::drain::Drain;
94
95 mod drain;
96
97 #[cfg(not(no_global_oom_handling))]
98 mod cow;
99
100 #[cfg(not(no_global_oom_handling))]
101 pub(crate) use self::in_place_collect::AsVecIntoIter;
102 #[stable(feature = "rust1", since = "1.0.0")]
103 pub use self::into_iter::IntoIter;
104
105 mod into_iter;
106
107 #[cfg(not(no_global_oom_handling))]
108 use self::is_zero::IsZero;
109
110 mod is_zero;
111
112 #[cfg(not(no_global_oom_handling))]
113 mod in_place_collect;
114
115 mod partial_eq;
116
117 #[cfg(not(no_global_oom_handling))]
118 use self::spec_from_elem::SpecFromElem;
119
120 #[cfg(not(no_global_oom_handling))]
121 mod spec_from_elem;
122
123 #[cfg(not(no_global_oom_handling))]
124 use self::set_len_on_drop::SetLenOnDrop;
125
126 #[cfg(not(no_global_oom_handling))]
127 mod set_len_on_drop;
128
129 #[cfg(not(no_global_oom_handling))]
130 use self::in_place_drop::InPlaceDrop;
131
132 #[cfg(not(no_global_oom_handling))]
133 mod in_place_drop;
134
135 #[cfg(not(no_global_oom_handling))]
136 use self::spec_from_iter_nested::SpecFromIterNested;
137
138 #[cfg(not(no_global_oom_handling))]
139 mod spec_from_iter_nested;
140
141 #[cfg(not(no_global_oom_handling))]
142 use self::spec_from_iter::SpecFromIter;
143
144 #[cfg(not(no_global_oom_handling))]
145 mod spec_from_iter;
146
147 #[cfg(not(no_global_oom_handling))]
148 use self::spec_extend::SpecExtend;
149
150 #[cfg(not(no_global_oom_handling))]
151 mod spec_extend;
152
153 /// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
154 ///
155 /// # Examples
156 ///
157 /// ```
158 /// let mut vec = Vec::new();
159 /// vec.push(1);
160 /// vec.push(2);
161 ///
162 /// assert_eq!(vec.len(), 2);
163 /// assert_eq!(vec[0], 1);
164 ///
165 /// assert_eq!(vec.pop(), Some(2));
166 /// assert_eq!(vec.len(), 1);
167 ///
168 /// vec[0] = 7;
169 /// assert_eq!(vec[0], 7);
170 ///
171 /// vec.extend([1, 2, 3].iter().copied());
172 ///
173 /// for x in &vec {
174 /// println!("{x}");
175 /// }
176 /// assert_eq!(vec, [7, 1, 2, 3]);
177 /// ```
178 ///
179 /// The [`vec!`] macro is provided for convenient initialization:
180 ///
181 /// ```
182 /// let mut vec1 = vec![1, 2, 3];
183 /// vec1.push(4);
184 /// let vec2 = Vec::from([1, 2, 3, 4]);
185 /// assert_eq!(vec1, vec2);
186 /// ```
187 ///
188 /// It can also initialize each element of a `Vec<T>` with a given value.
189 /// This may be more efficient than performing allocation and initialization
190 /// in separate steps, especially when initializing a vector of zeros:
191 ///
192 /// ```
193 /// let vec = vec![0; 5];
194 /// assert_eq!(vec, [0, 0, 0, 0, 0]);
195 ///
196 /// // The following is equivalent, but potentially slower:
197 /// let mut vec = Vec::with_capacity(5);
198 /// vec.resize(5, 0);
199 /// assert_eq!(vec, [0, 0, 0, 0, 0]);
200 /// ```
201 ///
202 /// For more information, see
203 /// [Capacity and Reallocation](#capacity-and-reallocation).
204 ///
205 /// Use a `Vec<T>` as an efficient stack:
206 ///
207 /// ```
208 /// let mut stack = Vec::new();
209 ///
210 /// stack.push(1);
211 /// stack.push(2);
212 /// stack.push(3);
213 ///
214 /// while let Some(top) = stack.pop() {
215 /// // Prints 3, 2, 1
216 /// println!("{top}");
217 /// }
218 /// ```
219 ///
220 /// # Indexing
221 ///
222 /// The `Vec` type allows to access values by index, because it implements the
223 /// [`Index`] trait. An example will be more explicit:
224 ///
225 /// ```
226 /// let v = vec![0, 2, 4, 6];
227 /// println!("{}", v[1]); // it will display '2'
228 /// ```
229 ///
230 /// However be careful: if you try to access an index which isn't in the `Vec`,
231 /// your software will panic! You cannot do this:
232 ///
233 /// ```should_panic
234 /// let v = vec![0, 2, 4, 6];
235 /// println!("{}", v[6]); // it will panic!
236 /// ```
237 ///
238 /// Use [`get`] and [`get_mut`] if you want to check whether the index is in
239 /// the `Vec`.
240 ///
241 /// # Slicing
242 ///
243 /// A `Vec` can be mutable. On the other hand, slices are read-only objects.
244 /// To get a [slice][prim@slice], use [`&`]. Example:
245 ///
246 /// ```
247 /// fn read_slice(slice: &[usize]) {
248 /// // ...
249 /// }
250 ///
251 /// let v = vec![0, 1];
252 /// read_slice(&v);
253 ///
254 /// // ... and that's all!
255 /// // you can also do it like this:
256 /// let u: &[usize] = &v;
257 /// // or like this:
258 /// let u: &[_] = &v;
259 /// ```
260 ///
261 /// In Rust, it's more common to pass slices as arguments rather than vectors
262 /// when you just want to provide read access. The same goes for [`String`] and
263 /// [`&str`].
264 ///
265 /// # Capacity and reallocation
266 ///
267 /// The capacity of a vector is the amount of space allocated for any future
268 /// elements that will be added onto the vector. This is not to be confused with
269 /// the *length* of a vector, which specifies the number of actual elements
270 /// within the vector. If a vector's length exceeds its capacity, its capacity
271 /// will automatically be increased, but its elements will have to be
272 /// reallocated.
273 ///
274 /// For example, a vector with capacity 10 and length 0 would be an empty vector
275 /// with space for 10 more elements. Pushing 10 or fewer elements onto the
276 /// vector will not change its capacity or cause reallocation to occur. However,
277 /// if the vector's length is increased to 11, it will have to reallocate, which
278 /// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
279 /// whenever possible to specify how big the vector is expected to get.
280 ///
281 /// # Guarantees
282 ///
283 /// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
284 /// about its design. This ensures that it's as low-overhead as possible in
285 /// the general case, and can be correctly manipulated in primitive ways
286 /// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
287 /// If additional type parameters are added (e.g., to support custom allocators),
288 /// overriding their defaults may change the behavior.
289 ///
290 /// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
291 /// triplet. No more, no less. The order of these fields is completely
292 /// unspecified, and you should use the appropriate methods to modify these.
293 /// The pointer will never be null, so this type is null-pointer-optimized.
294 ///
295 /// However, the pointer might not actually point to allocated memory. In particular,
296 /// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
297 /// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
298 /// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
299 /// types inside a `Vec`, it will not allocate space for them. *Note that in this case
300 /// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
301 /// if <code>[mem::size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
302 /// details are very subtle --- if you intend to allocate memory using a `Vec`
303 /// and use it for something else (either to pass to unsafe code, or to build your
304 /// own memory-backed collection), be sure to deallocate this memory by using
305 /// `from_raw_parts` to recover the `Vec` and then dropping it.
306 ///
307 /// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
308 /// (as defined by the allocator Rust is configured to use by default), and its
309 /// pointer points to [`len`] initialized, contiguous elements in order (what
310 /// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
311 /// logically uninitialized, contiguous elements.
312 ///
313 /// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
314 /// visualized as below. The top part is the `Vec` struct, it contains a
315 /// pointer to the head of the allocation in the heap, length and capacity.
316 /// The bottom part is the allocation on the heap, a contiguous memory block.
317 ///
318 /// ```text
319 /// ptr len capacity
320 /// +--------+--------+--------+
321 /// | 0x0123 | 2 | 4 |
322 /// +--------+--------+--------+
323 /// |
324 /// v
325 /// Heap +--------+--------+--------+--------+
326 /// | 'a' | 'b' | uninit | uninit |
327 /// +--------+--------+--------+--------+
328 /// ```
329 ///
330 /// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
331 /// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
332 /// layout (including the order of fields).
333 ///
334 /// `Vec` will never perform a "small optimization" where elements are actually
335 /// stored on the stack for two reasons:
336 ///
337 /// * It would make it more difficult for unsafe code to correctly manipulate
338 /// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
339 /// only moved, and it would be more difficult to determine if a `Vec` had
340 /// actually allocated memory.
341 ///
342 /// * It would penalize the general case, incurring an additional branch
343 /// on every access.
344 ///
345 /// `Vec` will never automatically shrink itself, even if completely empty. This
346 /// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
347 /// and then filling it back up to the same [`len`] should incur no calls to
348 /// the allocator. If you wish to free up unused memory, use
349 /// [`shrink_to_fit`] or [`shrink_to`].
350 ///
351 /// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
352 /// sufficient. [`push`] and [`insert`] *will* (re)allocate if
353 /// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
354 /// accurate, and can be relied on. It can even be used to manually free the memory
355 /// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
356 /// when not necessary.
357 ///
358 /// `Vec` does not guarantee any particular growth strategy when reallocating
359 /// when full, nor when [`reserve`] is called. The current strategy is basic
360 /// and it may prove desirable to use a non-constant growth factor. Whatever
361 /// strategy is used will of course guarantee *O*(1) amortized [`push`].
362 ///
363 /// `vec![x; n]`, `vec![a, b, c, d]`, and
364 /// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec`
365 /// with exactly the requested capacity. If <code>[len] == [capacity]</code>,
366 /// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to
367 /// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
368 ///
369 /// `Vec` will not specifically overwrite any data that is removed from it,
370 /// but also won't specifically preserve it. Its uninitialized memory is
371 /// scratch space that it may use however it wants. It will generally just do
372 /// whatever is most efficient or otherwise easy to implement. Do not rely on
373 /// removed data to be erased for security purposes. Even if you drop a `Vec`, its
374 /// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
375 /// first, that might not actually happen because the optimizer does not consider
376 /// this a side-effect that must be preserved. There is one case which we will
377 /// not break, however: using `unsafe` code to write to the excess capacity,
378 /// and then increasing the length to match, is always valid.
379 ///
380 /// Currently, `Vec` does not guarantee the order in which elements are dropped.
381 /// The order has changed in the past and may change again.
382 ///
383 /// [`get`]: ../../std/vec/struct.Vec.html#method.get
384 /// [`get_mut`]: ../../std/vec/struct.Vec.html#method.get_mut
385 /// [`String`]: crate::string::String
386 /// [`&str`]: type@str
387 /// [`shrink_to_fit`]: Vec::shrink_to_fit
388 /// [`shrink_to`]: Vec::shrink_to
389 /// [capacity]: Vec::capacity
390 /// [`capacity`]: Vec::capacity
391 /// [mem::size_of::\<T>]: core::mem::size_of
392 /// [len]: Vec::len
393 /// [`len`]: Vec::len
394 /// [`push`]: Vec::push
395 /// [`insert`]: Vec::insert
396 /// [`reserve`]: Vec::reserve
397 /// [`MaybeUninit`]: core::mem::MaybeUninit
398 /// [owned slice]: Box
399 #[stable(feature = "rust1", since = "1.0.0")]
400 #[cfg_attr(not(test), rustc_diagnostic_item = "Vec")]
401 #[rustc_insignificant_dtor]
402 pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
403 buf: RawVec<T, A>,
404 len: usize,
405 }
406
407 ////////////////////////////////////////////////////////////////////////////////
408 // Inherent methods
409 ////////////////////////////////////////////////////////////////////////////////
410
411 impl<T> Vec<T> {
412 /// Constructs a new, empty `Vec<T>`.
413 ///
414 /// The vector will not allocate until elements are pushed onto it.
415 ///
416 /// # Examples
417 ///
418 /// ```
419 /// # #![allow(unused_mut)]
420 /// let mut vec: Vec<i32> = Vec::new();
421 /// ```
422 #[inline]
423 #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
424 #[stable(feature = "rust1", since = "1.0.0")]
425 #[must_use]
new() -> Self426 pub const fn new() -> Self {
427 Vec { buf: RawVec::NEW, len: 0 }
428 }
429
430 /// Constructs a new, empty `Vec<T>` with the specified capacity.
431 ///
432 /// The vector will be able to hold exactly `capacity` elements without
433 /// reallocating. If `capacity` is 0, the vector will not allocate.
434 ///
435 /// It is important to note that although the returned vector has the
436 /// *capacity* specified, the vector will have a zero *length*. For an
437 /// explanation of the difference between length and capacity, see
438 /// *[Capacity and reallocation]*.
439 ///
440 /// [Capacity and reallocation]: #capacity-and-reallocation
441 ///
442 /// # Panics
443 ///
444 /// Panics if the new capacity exceeds `isize::MAX` bytes.
445 ///
446 /// # Examples
447 ///
448 /// ```
449 /// let mut vec = Vec::with_capacity(10);
450 ///
451 /// // The vector contains no items, even though it has capacity for more
452 /// assert_eq!(vec.len(), 0);
453 /// assert_eq!(vec.capacity(), 10);
454 ///
455 /// // These are all done without reallocating...
456 /// for i in 0..10 {
457 /// vec.push(i);
458 /// }
459 /// assert_eq!(vec.len(), 10);
460 /// assert_eq!(vec.capacity(), 10);
461 ///
462 /// // ...but this may make the vector reallocate
463 /// vec.push(11);
464 /// assert_eq!(vec.len(), 11);
465 /// assert!(vec.capacity() >= 11);
466 /// ```
467 #[cfg(not(no_global_oom_handling))]
468 #[inline]
469 #[stable(feature = "rust1", since = "1.0.0")]
470 #[must_use]
with_capacity(capacity: usize) -> Self471 pub fn with_capacity(capacity: usize) -> Self {
472 Self::with_capacity_in(capacity, Global)
473 }
474
475 /// Creates a `Vec<T>` directly from the raw components of another vector.
476 ///
477 /// # Safety
478 ///
479 /// This is highly unsafe, due to the number of invariants that aren't
480 /// checked:
481 ///
482 /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
483 /// (at least, it's highly likely to be incorrect if it wasn't).
484 /// * `T` needs to have the same alignment as what `ptr` was allocated with.
485 /// (`T` having a less strict alignment is not sufficient, the alignment really
486 /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
487 /// allocated and deallocated with the same layout.)
488 /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
489 /// to be the same size as the pointer was allocated with. (Because similar to
490 /// alignment, [`dealloc`] must be called with the same layout `size`.)
491 /// * `length` needs to be less than or equal to `capacity`.
492 ///
493 /// Violating these may cause problems like corrupting the allocator's
494 /// internal data structures. For example it is normally **not** safe
495 /// to build a `Vec<u8>` from a pointer to a C `char` array with length
496 /// `size_t`, doing so is only safe if the array was initially allocated by
497 /// a `Vec` or `String`.
498 /// It's also not safe to build one from a `Vec<u16>` and its length, because
499 /// the allocator cares about the alignment, and these two types have different
500 /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
501 /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
502 /// these issues, it is often preferable to do casting/transmuting using
503 /// [`slice::from_raw_parts`] instead.
504 ///
505 /// The ownership of `ptr` is effectively transferred to the
506 /// `Vec<T>` which may then deallocate, reallocate or change the
507 /// contents of memory pointed to by the pointer at will. Ensure
508 /// that nothing else uses the pointer after calling this
509 /// function.
510 ///
511 /// [`String`]: crate::string::String
512 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
513 ///
514 /// # Examples
515 ///
516 /// ```
517 /// use std::ptr;
518 /// use std::mem;
519 ///
520 /// let v = vec![1, 2, 3];
521 ///
522 // FIXME Update this when vec_into_raw_parts is stabilized
523 /// // Prevent running `v`'s destructor so we are in complete control
524 /// // of the allocation.
525 /// let mut v = mem::ManuallyDrop::new(v);
526 ///
527 /// // Pull out the various important pieces of information about `v`
528 /// let p = v.as_mut_ptr();
529 /// let len = v.len();
530 /// let cap = v.capacity();
531 ///
532 /// unsafe {
533 /// // Overwrite memory with 4, 5, 6
534 /// for i in 0..len as isize {
535 /// ptr::write(p.offset(i), 4 + i);
536 /// }
537 ///
538 /// // Put everything back together into a Vec
539 /// let rebuilt = Vec::from_raw_parts(p, len, cap);
540 /// assert_eq!(rebuilt, [4, 5, 6]);
541 /// }
542 /// ```
543 #[inline]
544 #[stable(feature = "rust1", since = "1.0.0")]
from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self545 pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
546 unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
547 }
548 }
549
550 impl<T, A: Allocator> Vec<T, A> {
551 /// Constructs a new, empty `Vec<T, A>`.
552 ///
553 /// The vector will not allocate until elements are pushed onto it.
554 ///
555 /// # Examples
556 ///
557 /// ```
558 /// #![feature(allocator_api)]
559 ///
560 /// use std::alloc::System;
561 ///
562 /// # #[allow(unused_mut)]
563 /// let mut vec: Vec<i32, _> = Vec::new_in(System);
564 /// ```
565 #[inline]
566 #[unstable(feature = "allocator_api", issue = "32838")]
new_in(alloc: A) -> Self567 pub const fn new_in(alloc: A) -> Self {
568 Vec { buf: RawVec::new_in(alloc), len: 0 }
569 }
570
571 /// Constructs a new, empty `Vec<T, A>` with the specified capacity with the provided
572 /// allocator.
573 ///
574 /// The vector will be able to hold exactly `capacity` elements without
575 /// reallocating. If `capacity` is 0, the vector will not allocate.
576 ///
577 /// It is important to note that although the returned vector has the
578 /// *capacity* specified, the vector will have a zero *length*. For an
579 /// explanation of the difference between length and capacity, see
580 /// *[Capacity and reallocation]*.
581 ///
582 /// [Capacity and reallocation]: #capacity-and-reallocation
583 ///
584 /// # Panics
585 ///
586 /// Panics if the new capacity exceeds `isize::MAX` bytes.
587 ///
588 /// # Examples
589 ///
590 /// ```
591 /// #![feature(allocator_api)]
592 ///
593 /// use std::alloc::System;
594 ///
595 /// let mut vec = Vec::with_capacity_in(10, System);
596 ///
597 /// // The vector contains no items, even though it has capacity for more
598 /// assert_eq!(vec.len(), 0);
599 /// assert_eq!(vec.capacity(), 10);
600 ///
601 /// // These are all done without reallocating...
602 /// for i in 0..10 {
603 /// vec.push(i);
604 /// }
605 /// assert_eq!(vec.len(), 10);
606 /// assert_eq!(vec.capacity(), 10);
607 ///
608 /// // ...but this may make the vector reallocate
609 /// vec.push(11);
610 /// assert_eq!(vec.len(), 11);
611 /// assert!(vec.capacity() >= 11);
612 /// ```
613 #[cfg(not(no_global_oom_handling))]
614 #[inline]
615 #[unstable(feature = "allocator_api", issue = "32838")]
with_capacity_in(capacity: usize, alloc: A) -> Self616 pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
617 Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
618 }
619
620 /// Creates a `Vec<T, A>` directly from the raw components of another vector.
621 ///
622 /// # Safety
623 ///
624 /// This is highly unsafe, due to the number of invariants that aren't
625 /// checked:
626 ///
627 /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
628 /// (at least, it's highly likely to be incorrect if it wasn't).
629 /// * `T` needs to have the same size and alignment as what `ptr` was allocated with.
630 /// (`T` having a less strict alignment is not sufficient, the alignment really
631 /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
632 /// allocated and deallocated with the same layout.)
633 /// * `length` needs to be less than or equal to `capacity`.
634 /// * `capacity` needs to be the capacity that the pointer was allocated with.
635 ///
636 /// Violating these may cause problems like corrupting the allocator's
637 /// internal data structures. For example it is **not** safe
638 /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
639 /// It's also not safe to build one from a `Vec<u16>` and its length, because
640 /// the allocator cares about the alignment, and these two types have different
641 /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
642 /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
643 ///
644 /// The ownership of `ptr` is effectively transferred to the
645 /// `Vec<T>` which may then deallocate, reallocate or change the
646 /// contents of memory pointed to by the pointer at will. Ensure
647 /// that nothing else uses the pointer after calling this
648 /// function.
649 ///
650 /// [`String`]: crate::string::String
651 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
652 ///
653 /// # Examples
654 ///
655 /// ```
656 /// #![feature(allocator_api)]
657 ///
658 /// use std::alloc::System;
659 ///
660 /// use std::ptr;
661 /// use std::mem;
662 ///
663 /// let mut v = Vec::with_capacity_in(3, System);
664 /// v.push(1);
665 /// v.push(2);
666 /// v.push(3);
667 ///
668 // FIXME Update this when vec_into_raw_parts is stabilized
669 /// // Prevent running `v`'s destructor so we are in complete control
670 /// // of the allocation.
671 /// let mut v = mem::ManuallyDrop::new(v);
672 ///
673 /// // Pull out the various important pieces of information about `v`
674 /// let p = v.as_mut_ptr();
675 /// let len = v.len();
676 /// let cap = v.capacity();
677 /// let alloc = v.allocator();
678 ///
679 /// unsafe {
680 /// // Overwrite memory with 4, 5, 6
681 /// for i in 0..len as isize {
682 /// ptr::write(p.offset(i), 4 + i);
683 /// }
684 ///
685 /// // Put everything back together into a Vec
686 /// let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
687 /// assert_eq!(rebuilt, [4, 5, 6]);
688 /// }
689 /// ```
690 #[inline]
691 #[unstable(feature = "allocator_api", issue = "32838")]
from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self692 pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
693 unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
694 }
695
696 /// Decomposes a `Vec<T>` into its raw components.
697 ///
698 /// Returns the raw pointer to the underlying data, the length of
699 /// the vector (in elements), and the allocated capacity of the
700 /// data (in elements). These are the same arguments in the same
701 /// order as the arguments to [`from_raw_parts`].
702 ///
703 /// After calling this function, the caller is responsible for the
704 /// memory previously managed by the `Vec`. The only way to do
705 /// this is to convert the raw pointer, length, and capacity back
706 /// into a `Vec` with the [`from_raw_parts`] function, allowing
707 /// the destructor to perform the cleanup.
708 ///
709 /// [`from_raw_parts`]: Vec::from_raw_parts
710 ///
711 /// # Examples
712 ///
713 /// ```
714 /// #![feature(vec_into_raw_parts)]
715 /// let v: Vec<i32> = vec![-1, 0, 1];
716 ///
717 /// let (ptr, len, cap) = v.into_raw_parts();
718 ///
719 /// let rebuilt = unsafe {
720 /// // We can now make changes to the components, such as
721 /// // transmuting the raw pointer to a compatible type.
722 /// let ptr = ptr as *mut u32;
723 ///
724 /// Vec::from_raw_parts(ptr, len, cap)
725 /// };
726 /// assert_eq!(rebuilt, [4294967295, 0, 1]);
727 /// ```
728 #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
into_raw_parts(self) -> (*mut T, usize, usize)729 pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
730 let mut me = ManuallyDrop::new(self);
731 (me.as_mut_ptr(), me.len(), me.capacity())
732 }
733
734 /// Decomposes a `Vec<T>` into its raw components.
735 ///
736 /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
737 /// the allocated capacity of the data (in elements), and the allocator. These are the same
738 /// arguments in the same order as the arguments to [`from_raw_parts_in`].
739 ///
740 /// After calling this function, the caller is responsible for the
741 /// memory previously managed by the `Vec`. The only way to do
742 /// this is to convert the raw pointer, length, and capacity back
743 /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
744 /// the destructor to perform the cleanup.
745 ///
746 /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
747 ///
748 /// # Examples
749 ///
750 /// ```
751 /// #![feature(allocator_api, vec_into_raw_parts)]
752 ///
753 /// use std::alloc::System;
754 ///
755 /// let mut v: Vec<i32, System> = Vec::new_in(System);
756 /// v.push(-1);
757 /// v.push(0);
758 /// v.push(1);
759 ///
760 /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
761 ///
762 /// let rebuilt = unsafe {
763 /// // We can now make changes to the components, such as
764 /// // transmuting the raw pointer to a compatible type.
765 /// let ptr = ptr as *mut u32;
766 ///
767 /// Vec::from_raw_parts_in(ptr, len, cap, alloc)
768 /// };
769 /// assert_eq!(rebuilt, [4294967295, 0, 1]);
770 /// ```
771 #[unstable(feature = "allocator_api", issue = "32838")]
772 // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A)773 pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
774 let mut me = ManuallyDrop::new(self);
775 let len = me.len();
776 let capacity = me.capacity();
777 let ptr = me.as_mut_ptr();
778 let alloc = unsafe { ptr::read(me.allocator()) };
779 (ptr, len, capacity, alloc)
780 }
781
782 /// Returns the number of elements the vector can hold without
783 /// reallocating.
784 ///
785 /// # Examples
786 ///
787 /// ```
788 /// let vec: Vec<i32> = Vec::with_capacity(10);
789 /// assert_eq!(vec.capacity(), 10);
790 /// ```
791 #[inline]
792 #[stable(feature = "rust1", since = "1.0.0")]
capacity(&self) -> usize793 pub fn capacity(&self) -> usize {
794 self.buf.capacity()
795 }
796
797 /// Reserves capacity for at least `additional` more elements to be inserted
798 /// in the given `Vec<T>`. The collection may reserve more space to avoid
799 /// frequent reallocations. After calling `reserve`, capacity will be
800 /// greater than or equal to `self.len() + additional`. Does nothing if
801 /// capacity is already sufficient.
802 ///
803 /// # Panics
804 ///
805 /// Panics if the new capacity exceeds `isize::MAX` bytes.
806 ///
807 /// # Examples
808 ///
809 /// ```
810 /// let mut vec = vec![1];
811 /// vec.reserve(10);
812 /// assert!(vec.capacity() >= 11);
813 /// ```
814 #[cfg(not(no_global_oom_handling))]
815 #[stable(feature = "rust1", since = "1.0.0")]
reserve(&mut self, additional: usize)816 pub fn reserve(&mut self, additional: usize) {
817 self.buf.reserve(self.len, additional);
818 }
819
820 /// Reserves the minimum capacity for exactly `additional` more elements to
821 /// be inserted in the given `Vec<T>`. After calling `reserve_exact`,
822 /// capacity will be greater than or equal to `self.len() + additional`.
823 /// Does nothing if the capacity is already sufficient.
824 ///
825 /// Note that the allocator may give the collection more space than it
826 /// requests. Therefore, capacity can not be relied upon to be precisely
827 /// minimal. Prefer [`reserve`] if future insertions are expected.
828 ///
829 /// [`reserve`]: Vec::reserve
830 ///
831 /// # Panics
832 ///
833 /// Panics if the new capacity exceeds `isize::MAX` bytes.
834 ///
835 /// # Examples
836 ///
837 /// ```
838 /// let mut vec = vec![1];
839 /// vec.reserve_exact(10);
840 /// assert!(vec.capacity() >= 11);
841 /// ```
842 #[cfg(not(no_global_oom_handling))]
843 #[stable(feature = "rust1", since = "1.0.0")]
reserve_exact(&mut self, additional: usize)844 pub fn reserve_exact(&mut self, additional: usize) {
845 self.buf.reserve_exact(self.len, additional);
846 }
847
848 /// Tries to reserve capacity for at least `additional` more elements to be inserted
849 /// in the given `Vec<T>`. The collection may reserve more space to avoid
850 /// frequent reallocations. After calling `try_reserve`, capacity will be
851 /// greater than or equal to `self.len() + additional`. Does nothing if
852 /// capacity is already sufficient.
853 ///
854 /// # Errors
855 ///
856 /// If the capacity overflows, or the allocator reports a failure, then an error
857 /// is returned.
858 ///
859 /// # Examples
860 ///
861 /// ```
862 /// use std::collections::TryReserveError;
863 ///
864 /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
865 /// let mut output = Vec::new();
866 ///
867 /// // Pre-reserve the memory, exiting if we can't
868 /// output.try_reserve(data.len())?;
869 ///
870 /// // Now we know this can't OOM in the middle of our complex work
871 /// output.extend(data.iter().map(|&val| {
872 /// val * 2 + 5 // very complicated
873 /// }));
874 ///
875 /// Ok(output)
876 /// }
877 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
878 /// ```
879 #[stable(feature = "try_reserve", since = "1.57.0")]
try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>880 pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
881 self.buf.try_reserve(self.len, additional)
882 }
883
884 /// Tries to reserve the minimum capacity for exactly `additional`
885 /// elements to be inserted in the given `Vec<T>`. After calling
886 /// `try_reserve_exact`, capacity will be greater than or equal to
887 /// `self.len() + additional` if it returns `Ok(())`.
888 /// Does nothing if the capacity is already sufficient.
889 ///
890 /// Note that the allocator may give the collection more space than it
891 /// requests. Therefore, capacity can not be relied upon to be precisely
892 /// minimal. Prefer [`try_reserve`] if future insertions are expected.
893 ///
894 /// [`try_reserve`]: Vec::try_reserve
895 ///
896 /// # Errors
897 ///
898 /// If the capacity overflows, or the allocator reports a failure, then an error
899 /// is returned.
900 ///
901 /// # Examples
902 ///
903 /// ```
904 /// use std::collections::TryReserveError;
905 ///
906 /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
907 /// let mut output = Vec::new();
908 ///
909 /// // Pre-reserve the memory, exiting if we can't
910 /// output.try_reserve_exact(data.len())?;
911 ///
912 /// // Now we know this can't OOM in the middle of our complex work
913 /// output.extend(data.iter().map(|&val| {
914 /// val * 2 + 5 // very complicated
915 /// }));
916 ///
917 /// Ok(output)
918 /// }
919 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
920 /// ```
921 #[stable(feature = "try_reserve", since = "1.57.0")]
try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError>922 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
923 self.buf.try_reserve_exact(self.len, additional)
924 }
925
926 /// Shrinks the capacity of the vector as much as possible.
927 ///
928 /// It will drop down as close as possible to the length but the allocator
929 /// may still inform the vector that there is space for a few more elements.
930 ///
931 /// # Examples
932 ///
933 /// ```
934 /// let mut vec = Vec::with_capacity(10);
935 /// vec.extend([1, 2, 3]);
936 /// assert_eq!(vec.capacity(), 10);
937 /// vec.shrink_to_fit();
938 /// assert!(vec.capacity() >= 3);
939 /// ```
940 #[cfg(not(no_global_oom_handling))]
941 #[stable(feature = "rust1", since = "1.0.0")]
shrink_to_fit(&mut self)942 pub fn shrink_to_fit(&mut self) {
943 // The capacity is never less than the length, and there's nothing to do when
944 // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
945 // by only calling it with a greater capacity.
946 if self.capacity() > self.len {
947 self.buf.shrink_to_fit(self.len);
948 }
949 }
950
951 /// Shrinks the capacity of the vector with a lower bound.
952 ///
953 /// The capacity will remain at least as large as both the length
954 /// and the supplied value.
955 ///
956 /// If the current capacity is less than the lower limit, this is a no-op.
957 ///
958 /// # Examples
959 ///
960 /// ```
961 /// let mut vec = Vec::with_capacity(10);
962 /// vec.extend([1, 2, 3]);
963 /// assert_eq!(vec.capacity(), 10);
964 /// vec.shrink_to(4);
965 /// assert!(vec.capacity() >= 4);
966 /// vec.shrink_to(0);
967 /// assert!(vec.capacity() >= 3);
968 /// ```
969 #[cfg(not(no_global_oom_handling))]
970 #[stable(feature = "shrink_to", since = "1.56.0")]
shrink_to(&mut self, min_capacity: usize)971 pub fn shrink_to(&mut self, min_capacity: usize) {
972 if self.capacity() > min_capacity {
973 self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
974 }
975 }
976
977 /// Converts the vector into [`Box<[T]>`][owned slice].
978 ///
979 /// Note that this will drop any excess capacity.
980 ///
981 /// [owned slice]: Box
982 ///
983 /// # Examples
984 ///
985 /// ```
986 /// let v = vec![1, 2, 3];
987 ///
988 /// let slice = v.into_boxed_slice();
989 /// ```
990 ///
991 /// Any excess capacity is removed:
992 ///
993 /// ```
994 /// let mut vec = Vec::with_capacity(10);
995 /// vec.extend([1, 2, 3]);
996 ///
997 /// assert_eq!(vec.capacity(), 10);
998 /// let slice = vec.into_boxed_slice();
999 /// assert_eq!(slice.into_vec().capacity(), 3);
1000 /// ```
1001 #[cfg(not(no_global_oom_handling))]
1002 #[stable(feature = "rust1", since = "1.0.0")]
into_boxed_slice(mut self) -> Box<[T], A>1003 pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1004 unsafe {
1005 self.shrink_to_fit();
1006 let me = ManuallyDrop::new(self);
1007 let buf = ptr::read(&me.buf);
1008 let len = me.len();
1009 buf.into_box(len).assume_init()
1010 }
1011 }
1012
1013 /// Shortens the vector, keeping the first `len` elements and dropping
1014 /// the rest.
1015 ///
1016 /// If `len` is greater than the vector's current length, this has no
1017 /// effect.
1018 ///
1019 /// The [`drain`] method can emulate `truncate`, but causes the excess
1020 /// elements to be returned instead of dropped.
1021 ///
1022 /// Note that this method has no effect on the allocated capacity
1023 /// of the vector.
1024 ///
1025 /// # Examples
1026 ///
1027 /// Truncating a five element vector to two elements:
1028 ///
1029 /// ```
1030 /// let mut vec = vec![1, 2, 3, 4, 5];
1031 /// vec.truncate(2);
1032 /// assert_eq!(vec, [1, 2]);
1033 /// ```
1034 ///
1035 /// No truncation occurs when `len` is greater than the vector's current
1036 /// length:
1037 ///
1038 /// ```
1039 /// let mut vec = vec![1, 2, 3];
1040 /// vec.truncate(8);
1041 /// assert_eq!(vec, [1, 2, 3]);
1042 /// ```
1043 ///
1044 /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1045 /// method.
1046 ///
1047 /// ```
1048 /// let mut vec = vec![1, 2, 3];
1049 /// vec.truncate(0);
1050 /// assert_eq!(vec, []);
1051 /// ```
1052 ///
1053 /// [`clear`]: Vec::clear
1054 /// [`drain`]: Vec::drain
1055 #[stable(feature = "rust1", since = "1.0.0")]
truncate(&mut self, len: usize)1056 pub fn truncate(&mut self, len: usize) {
1057 // This is safe because:
1058 //
1059 // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1060 // case avoids creating an invalid slice, and
1061 // * the `len` of the vector is shrunk before calling `drop_in_place`,
1062 // such that no value will be dropped twice in case `drop_in_place`
1063 // were to panic once (if it panics twice, the program aborts).
1064 unsafe {
1065 // Note: It's intentional that this is `>` and not `>=`.
1066 // Changing it to `>=` has negative performance
1067 // implications in some cases. See #78884 for more.
1068 if len > self.len {
1069 return;
1070 }
1071 let remaining_len = self.len - len;
1072 let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1073 self.len = len;
1074 ptr::drop_in_place(s);
1075 }
1076 }
1077
1078 /// Extracts a slice containing the entire vector.
1079 ///
1080 /// Equivalent to `&s[..]`.
1081 ///
1082 /// # Examples
1083 ///
1084 /// ```
1085 /// use std::io::{self, Write};
1086 /// let buffer = vec![1, 2, 3, 5, 8];
1087 /// io::sink().write(buffer.as_slice()).unwrap();
1088 /// ```
1089 #[inline]
1090 #[stable(feature = "vec_as_slice", since = "1.7.0")]
as_slice(&self) -> &[T]1091 pub fn as_slice(&self) -> &[T] {
1092 self
1093 }
1094
1095 /// Extracts a mutable slice of the entire vector.
1096 ///
1097 /// Equivalent to `&mut s[..]`.
1098 ///
1099 /// # Examples
1100 ///
1101 /// ```
1102 /// use std::io::{self, Read};
1103 /// let mut buffer = vec![0; 3];
1104 /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1105 /// ```
1106 #[inline]
1107 #[stable(feature = "vec_as_slice", since = "1.7.0")]
as_mut_slice(&mut self) -> &mut [T]1108 pub fn as_mut_slice(&mut self) -> &mut [T] {
1109 self
1110 }
1111
1112 /// Returns a raw pointer to the vector's buffer.
1113 ///
1114 /// The caller must ensure that the vector outlives the pointer this
1115 /// function returns, or else it will end up pointing to garbage.
1116 /// Modifying the vector may cause its buffer to be reallocated,
1117 /// which would also make any pointers to it invalid.
1118 ///
1119 /// The caller must also ensure that the memory the pointer (non-transitively) points to
1120 /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1121 /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1122 ///
1123 /// # Examples
1124 ///
1125 /// ```
1126 /// let x = vec![1, 2, 4];
1127 /// let x_ptr = x.as_ptr();
1128 ///
1129 /// unsafe {
1130 /// for i in 0..x.len() {
1131 /// assert_eq!(*x_ptr.add(i), 1 << i);
1132 /// }
1133 /// }
1134 /// ```
1135 ///
1136 /// [`as_mut_ptr`]: Vec::as_mut_ptr
1137 #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1138 #[inline]
as_ptr(&self) -> *const T1139 pub fn as_ptr(&self) -> *const T {
1140 // We shadow the slice method of the same name to avoid going through
1141 // `deref`, which creates an intermediate reference.
1142 let ptr = self.buf.ptr();
1143 unsafe {
1144 assume(!ptr.is_null());
1145 }
1146 ptr
1147 }
1148
1149 /// Returns an unsafe mutable pointer to the vector's buffer.
1150 ///
1151 /// The caller must ensure that the vector outlives the pointer this
1152 /// function returns, or else it will end up pointing to garbage.
1153 /// Modifying the vector may cause its buffer to be reallocated,
1154 /// which would also make any pointers to it invalid.
1155 ///
1156 /// # Examples
1157 ///
1158 /// ```
1159 /// // Allocate vector big enough for 4 elements.
1160 /// let size = 4;
1161 /// let mut x: Vec<i32> = Vec::with_capacity(size);
1162 /// let x_ptr = x.as_mut_ptr();
1163 ///
1164 /// // Initialize elements via raw pointer writes, then set length.
1165 /// unsafe {
1166 /// for i in 0..size {
1167 /// *x_ptr.add(i) = i as i32;
1168 /// }
1169 /// x.set_len(size);
1170 /// }
1171 /// assert_eq!(&*x, &[0, 1, 2, 3]);
1172 /// ```
1173 #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1174 #[inline]
as_mut_ptr(&mut self) -> *mut T1175 pub fn as_mut_ptr(&mut self) -> *mut T {
1176 // We shadow the slice method of the same name to avoid going through
1177 // `deref_mut`, which creates an intermediate reference.
1178 let ptr = self.buf.ptr();
1179 unsafe {
1180 assume(!ptr.is_null());
1181 }
1182 ptr
1183 }
1184
1185 /// Returns a reference to the underlying allocator.
1186 #[unstable(feature = "allocator_api", issue = "32838")]
1187 #[inline]
allocator(&self) -> &A1188 pub fn allocator(&self) -> &A {
1189 self.buf.allocator()
1190 }
1191
1192 /// Forces the length of the vector to `new_len`.
1193 ///
1194 /// This is a low-level operation that maintains none of the normal
1195 /// invariants of the type. Normally changing the length of a vector
1196 /// is done using one of the safe operations instead, such as
1197 /// [`truncate`], [`resize`], [`extend`], or [`clear`].
1198 ///
1199 /// [`truncate`]: Vec::truncate
1200 /// [`resize`]: Vec::resize
1201 /// [`extend`]: Extend::extend
1202 /// [`clear`]: Vec::clear
1203 ///
1204 /// # Safety
1205 ///
1206 /// - `new_len` must be less than or equal to [`capacity()`].
1207 /// - The elements at `old_len..new_len` must be initialized.
1208 ///
1209 /// [`capacity()`]: Vec::capacity
1210 ///
1211 /// # Examples
1212 ///
1213 /// This method can be useful for situations in which the vector
1214 /// is serving as a buffer for other code, particularly over FFI:
1215 ///
1216 /// ```no_run
1217 /// # #![allow(dead_code)]
1218 /// # // This is just a minimal skeleton for the doc example;
1219 /// # // don't use this as a starting point for a real library.
1220 /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
1221 /// # const Z_OK: i32 = 0;
1222 /// # extern "C" {
1223 /// # fn deflateGetDictionary(
1224 /// # strm: *mut std::ffi::c_void,
1225 /// # dictionary: *mut u8,
1226 /// # dictLength: *mut usize,
1227 /// # ) -> i32;
1228 /// # }
1229 /// # impl StreamWrapper {
1230 /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
1231 /// // Per the FFI method's docs, "32768 bytes is always enough".
1232 /// let mut dict = Vec::with_capacity(32_768);
1233 /// let mut dict_length = 0;
1234 /// // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
1235 /// // 1. `dict_length` elements were initialized.
1236 /// // 2. `dict_length` <= the capacity (32_768)
1237 /// // which makes `set_len` safe to call.
1238 /// unsafe {
1239 /// // Make the FFI call...
1240 /// let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
1241 /// if r == Z_OK {
1242 /// // ...and update the length to what was initialized.
1243 /// dict.set_len(dict_length);
1244 /// Some(dict)
1245 /// } else {
1246 /// None
1247 /// }
1248 /// }
1249 /// }
1250 /// # }
1251 /// ```
1252 ///
1253 /// While the following example is sound, there is a memory leak since
1254 /// the inner vectors were not freed prior to the `set_len` call:
1255 ///
1256 /// ```
1257 /// let mut vec = vec![vec![1, 0, 0],
1258 /// vec![0, 1, 0],
1259 /// vec![0, 0, 1]];
1260 /// // SAFETY:
1261 /// // 1. `old_len..0` is empty so no elements need to be initialized.
1262 /// // 2. `0 <= capacity` always holds whatever `capacity` is.
1263 /// unsafe {
1264 /// vec.set_len(0);
1265 /// }
1266 /// ```
1267 ///
1268 /// Normally, here, one would use [`clear`] instead to correctly drop
1269 /// the contents and thus not leak memory.
1270 #[inline]
1271 #[stable(feature = "rust1", since = "1.0.0")]
set_len(&mut self, new_len: usize)1272 pub unsafe fn set_len(&mut self, new_len: usize) {
1273 debug_assert!(new_len <= self.capacity());
1274
1275 self.len = new_len;
1276 }
1277
1278 /// Removes an element from the vector and returns it.
1279 ///
1280 /// The removed element is replaced by the last element of the vector.
1281 ///
1282 /// This does not preserve ordering, but is *O*(1).
1283 /// If you need to preserve the element order, use [`remove`] instead.
1284 ///
1285 /// [`remove`]: Vec::remove
1286 ///
1287 /// # Panics
1288 ///
1289 /// Panics if `index` is out of bounds.
1290 ///
1291 /// # Examples
1292 ///
1293 /// ```
1294 /// let mut v = vec!["foo", "bar", "baz", "qux"];
1295 ///
1296 /// assert_eq!(v.swap_remove(1), "bar");
1297 /// assert_eq!(v, ["foo", "qux", "baz"]);
1298 ///
1299 /// assert_eq!(v.swap_remove(0), "foo");
1300 /// assert_eq!(v, ["baz", "qux"]);
1301 /// ```
1302 #[inline]
1303 #[stable(feature = "rust1", since = "1.0.0")]
swap_remove(&mut self, index: usize) -> T1304 pub fn swap_remove(&mut self, index: usize) -> T {
1305 #[cold]
1306 #[inline(never)]
1307 fn assert_failed(index: usize, len: usize) -> ! {
1308 panic!("swap_remove index (is {index}) should be < len (is {len})");
1309 }
1310
1311 let len = self.len();
1312 if index >= len {
1313 assert_failed(index, len);
1314 }
1315 unsafe {
1316 // We replace self[index] with the last element. Note that if the
1317 // bounds check above succeeds there must be a last element (which
1318 // can be self[index] itself).
1319 let value = ptr::read(self.as_ptr().add(index));
1320 let base_ptr = self.as_mut_ptr();
1321 ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
1322 self.set_len(len - 1);
1323 value
1324 }
1325 }
1326
1327 /// Inserts an element at position `index` within the vector, shifting all
1328 /// elements after it to the right.
1329 ///
1330 /// # Panics
1331 ///
1332 /// Panics if `index > len`.
1333 ///
1334 /// # Examples
1335 ///
1336 /// ```
1337 /// let mut vec = vec![1, 2, 3];
1338 /// vec.insert(1, 4);
1339 /// assert_eq!(vec, [1, 4, 2, 3]);
1340 /// vec.insert(4, 5);
1341 /// assert_eq!(vec, [1, 4, 2, 3, 5]);
1342 /// ```
1343 #[cfg(not(no_global_oom_handling))]
1344 #[stable(feature = "rust1", since = "1.0.0")]
insert(&mut self, index: usize, element: T)1345 pub fn insert(&mut self, index: usize, element: T) {
1346 #[cold]
1347 #[inline(never)]
1348 fn assert_failed(index: usize, len: usize) -> ! {
1349 panic!("insertion index (is {index}) should be <= len (is {len})");
1350 }
1351
1352 let len = self.len();
1353 if index > len {
1354 assert_failed(index, len);
1355 }
1356
1357 // space for the new element
1358 if len == self.buf.capacity() {
1359 self.reserve(1);
1360 }
1361
1362 unsafe {
1363 // infallible
1364 // The spot to put the new value
1365 {
1366 let p = self.as_mut_ptr().add(index);
1367 // Shift everything over to make space. (Duplicating the
1368 // `index`th element into two consecutive places.)
1369 ptr::copy(p, p.offset(1), len - index);
1370 // Write it in, overwriting the first copy of the `index`th
1371 // element.
1372 ptr::write(p, element);
1373 }
1374 self.set_len(len + 1);
1375 }
1376 }
1377
1378 /// Removes and returns the element at position `index` within the vector,
1379 /// shifting all elements after it to the left.
1380 ///
1381 /// Note: Because this shifts over the remaining elements, it has a
1382 /// worst-case performance of *O*(*n*). If you don't need the order of elements
1383 /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
1384 /// elements from the beginning of the `Vec`, consider using
1385 /// [`VecDeque::pop_front`] instead.
1386 ///
1387 /// [`swap_remove`]: Vec::swap_remove
1388 /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
1389 ///
1390 /// # Panics
1391 ///
1392 /// Panics if `index` is out of bounds.
1393 ///
1394 /// # Examples
1395 ///
1396 /// ```
1397 /// let mut v = vec![1, 2, 3];
1398 /// assert_eq!(v.remove(1), 2);
1399 /// assert_eq!(v, [1, 3]);
1400 /// ```
1401 #[stable(feature = "rust1", since = "1.0.0")]
1402 #[track_caller]
remove(&mut self, index: usize) -> T1403 pub fn remove(&mut self, index: usize) -> T {
1404 #[cold]
1405 #[inline(never)]
1406 #[track_caller]
1407 fn assert_failed(index: usize, len: usize) -> ! {
1408 panic!("removal index (is {index}) should be < len (is {len})");
1409 }
1410
1411 let len = self.len();
1412 if index >= len {
1413 assert_failed(index, len);
1414 }
1415 unsafe {
1416 // infallible
1417 let ret;
1418 {
1419 // the place we are taking from.
1420 let ptr = self.as_mut_ptr().add(index);
1421 // copy it out, unsafely having a copy of the value on
1422 // the stack and in the vector at the same time.
1423 ret = ptr::read(ptr);
1424
1425 // Shift everything down to fill in that spot.
1426 ptr::copy(ptr.offset(1), ptr, len - index - 1);
1427 }
1428 self.set_len(len - 1);
1429 ret
1430 }
1431 }
1432
1433 /// Retains only the elements specified by the predicate.
1434 ///
1435 /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
1436 /// This method operates in place, visiting each element exactly once in the
1437 /// original order, and preserves the order of the retained elements.
1438 ///
1439 /// # Examples
1440 ///
1441 /// ```
1442 /// let mut vec = vec![1, 2, 3, 4];
1443 /// vec.retain(|&x| x % 2 == 0);
1444 /// assert_eq!(vec, [2, 4]);
1445 /// ```
1446 ///
1447 /// Because the elements are visited exactly once in the original order,
1448 /// external state may be used to decide which elements to keep.
1449 ///
1450 /// ```
1451 /// let mut vec = vec![1, 2, 3, 4, 5];
1452 /// let keep = [false, true, true, false, true];
1453 /// let mut iter = keep.iter();
1454 /// vec.retain(|_| *iter.next().unwrap());
1455 /// assert_eq!(vec, [2, 3, 5]);
1456 /// ```
1457 #[stable(feature = "rust1", since = "1.0.0")]
retain<F>(&mut self, mut f: F) where F: FnMut(&T) -> bool,1458 pub fn retain<F>(&mut self, mut f: F)
1459 where
1460 F: FnMut(&T) -> bool,
1461 {
1462 self.retain_mut(|elem| f(elem));
1463 }
1464
1465 /// Retains only the elements specified by the predicate, passing a mutable reference to it.
1466 ///
1467 /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
1468 /// This method operates in place, visiting each element exactly once in the
1469 /// original order, and preserves the order of the retained elements.
1470 ///
1471 /// # Examples
1472 ///
1473 /// ```
1474 /// let mut vec = vec![1, 2, 3, 4];
1475 /// vec.retain_mut(|x| if *x > 3 {
1476 /// false
1477 /// } else {
1478 /// *x += 1;
1479 /// true
1480 /// });
1481 /// assert_eq!(vec, [2, 3, 4]);
1482 /// ```
1483 #[stable(feature = "vec_retain_mut", since = "1.61.0")]
retain_mut<F>(&mut self, mut f: F) where F: FnMut(&mut T) -> bool,1484 pub fn retain_mut<F>(&mut self, mut f: F)
1485 where
1486 F: FnMut(&mut T) -> bool,
1487 {
1488 let original_len = self.len();
1489 // Avoid double drop if the drop guard is not executed,
1490 // since we may make some holes during the process.
1491 unsafe { self.set_len(0) };
1492
1493 // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
1494 // |<- processed len ->| ^- next to check
1495 // |<- deleted cnt ->|
1496 // |<- original_len ->|
1497 // Kept: Elements which predicate returns true on.
1498 // Hole: Moved or dropped element slot.
1499 // Unchecked: Unchecked valid elements.
1500 //
1501 // This drop guard will be invoked when predicate or `drop` of element panicked.
1502 // It shifts unchecked elements to cover holes and `set_len` to the correct length.
1503 // In cases when predicate and `drop` never panick, it will be optimized out.
1504 struct BackshiftOnDrop<'a, T, A: Allocator> {
1505 v: &'a mut Vec<T, A>,
1506 processed_len: usize,
1507 deleted_cnt: usize,
1508 original_len: usize,
1509 }
1510
1511 impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
1512 fn drop(&mut self) {
1513 if self.deleted_cnt > 0 {
1514 // SAFETY: Trailing unchecked items must be valid since we never touch them.
1515 unsafe {
1516 ptr::copy(
1517 self.v.as_ptr().add(self.processed_len),
1518 self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
1519 self.original_len - self.processed_len,
1520 );
1521 }
1522 }
1523 // SAFETY: After filling holes, all items are in contiguous memory.
1524 unsafe {
1525 self.v.set_len(self.original_len - self.deleted_cnt);
1526 }
1527 }
1528 }
1529
1530 let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
1531
1532 fn process_loop<F, T, A: Allocator, const DELETED: bool>(
1533 original_len: usize,
1534 f: &mut F,
1535 g: &mut BackshiftOnDrop<'_, T, A>,
1536 ) where
1537 F: FnMut(&mut T) -> bool,
1538 {
1539 while g.processed_len != original_len {
1540 // SAFETY: Unchecked element must be valid.
1541 let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
1542 if !f(cur) {
1543 // Advance early to avoid double drop if `drop_in_place` panicked.
1544 g.processed_len += 1;
1545 g.deleted_cnt += 1;
1546 // SAFETY: We never touch this element again after dropped.
1547 unsafe { ptr::drop_in_place(cur) };
1548 // We already advanced the counter.
1549 if DELETED {
1550 continue;
1551 } else {
1552 break;
1553 }
1554 }
1555 if DELETED {
1556 // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
1557 // We use copy for move, and never touch this element again.
1558 unsafe {
1559 let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
1560 ptr::copy_nonoverlapping(cur, hole_slot, 1);
1561 }
1562 }
1563 g.processed_len += 1;
1564 }
1565 }
1566
1567 // Stage 1: Nothing was deleted.
1568 process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
1569
1570 // Stage 2: Some elements were deleted.
1571 process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
1572
1573 // All item are processed. This can be optimized to `set_len` by LLVM.
1574 drop(g);
1575 }
1576
1577 /// Removes all but the first of consecutive elements in the vector that resolve to the same
1578 /// key.
1579 ///
1580 /// If the vector is sorted, this removes all duplicates.
1581 ///
1582 /// # Examples
1583 ///
1584 /// ```
1585 /// let mut vec = vec![10, 20, 21, 30, 20];
1586 ///
1587 /// vec.dedup_by_key(|i| *i / 10);
1588 ///
1589 /// assert_eq!(vec, [10, 20, 30, 20]);
1590 /// ```
1591 #[stable(feature = "dedup_by", since = "1.16.0")]
1592 #[inline]
dedup_by_key<F, K>(&mut self, mut key: F) where F: FnMut(&mut T) -> K, K: PartialEq,1593 pub fn dedup_by_key<F, K>(&mut self, mut key: F)
1594 where
1595 F: FnMut(&mut T) -> K,
1596 K: PartialEq,
1597 {
1598 self.dedup_by(|a, b| key(a) == key(b))
1599 }
1600
1601 /// Removes all but the first of consecutive elements in the vector satisfying a given equality
1602 /// relation.
1603 ///
1604 /// The `same_bucket` function is passed references to two elements from the vector and
1605 /// must determine if the elements compare equal. The elements are passed in opposite order
1606 /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
1607 ///
1608 /// If the vector is sorted, this removes all duplicates.
1609 ///
1610 /// # Examples
1611 ///
1612 /// ```
1613 /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
1614 ///
1615 /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
1616 ///
1617 /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
1618 /// ```
1619 #[stable(feature = "dedup_by", since = "1.16.0")]
dedup_by<F>(&mut self, mut same_bucket: F) where F: FnMut(&mut T, &mut T) -> bool,1620 pub fn dedup_by<F>(&mut self, mut same_bucket: F)
1621 where
1622 F: FnMut(&mut T, &mut T) -> bool,
1623 {
1624 let len = self.len();
1625 if len <= 1 {
1626 return;
1627 }
1628
1629 /* INVARIANT: vec.len() > read >= write > write-1 >= 0 */
1630 struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
1631 /* Offset of the element we want to check if it is duplicate */
1632 read: usize,
1633
1634 /* Offset of the place where we want to place the non-duplicate
1635 * when we find it. */
1636 write: usize,
1637
1638 /* The Vec that would need correction if `same_bucket` panicked */
1639 vec: &'a mut Vec<T, A>,
1640 }
1641
1642 impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
1643 fn drop(&mut self) {
1644 /* This code gets executed when `same_bucket` panics */
1645
1646 /* SAFETY: invariant guarantees that `read - write`
1647 * and `len - read` never overflow and that the copy is always
1648 * in-bounds. */
1649 unsafe {
1650 let ptr = self.vec.as_mut_ptr();
1651 let len = self.vec.len();
1652
1653 /* How many items were left when `same_bucket` panicked.
1654 * Basically vec[read..].len() */
1655 let items_left = len.wrapping_sub(self.read);
1656
1657 /* Pointer to first item in vec[write..write+items_left] slice */
1658 let dropped_ptr = ptr.add(self.write);
1659 /* Pointer to first item in vec[read..] slice */
1660 let valid_ptr = ptr.add(self.read);
1661
1662 /* Copy `vec[read..]` to `vec[write..write+items_left]`.
1663 * The slices can overlap, so `copy_nonoverlapping` cannot be used */
1664 ptr::copy(valid_ptr, dropped_ptr, items_left);
1665
1666 /* How many items have been already dropped
1667 * Basically vec[read..write].len() */
1668 let dropped = self.read.wrapping_sub(self.write);
1669
1670 self.vec.set_len(len - dropped);
1671 }
1672 }
1673 }
1674
1675 let mut gap = FillGapOnDrop { read: 1, write: 1, vec: self };
1676 let ptr = gap.vec.as_mut_ptr();
1677
1678 /* Drop items while going through Vec, it should be more efficient than
1679 * doing slice partition_dedup + truncate */
1680
1681 /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
1682 * are always in-bounds and read_ptr never aliases prev_ptr */
1683 unsafe {
1684 while gap.read < len {
1685 let read_ptr = ptr.add(gap.read);
1686 let prev_ptr = ptr.add(gap.write.wrapping_sub(1));
1687
1688 if same_bucket(&mut *read_ptr, &mut *prev_ptr) {
1689 // Increase `gap.read` now since the drop may panic.
1690 gap.read += 1;
1691 /* We have found duplicate, drop it in-place */
1692 ptr::drop_in_place(read_ptr);
1693 } else {
1694 let write_ptr = ptr.add(gap.write);
1695
1696 /* Because `read_ptr` can be equal to `write_ptr`, we either
1697 * have to use `copy` or conditional `copy_nonoverlapping`.
1698 * Looks like the first option is faster. */
1699 ptr::copy(read_ptr, write_ptr, 1);
1700
1701 /* We have filled that place, so go further */
1702 gap.write += 1;
1703 gap.read += 1;
1704 }
1705 }
1706
1707 /* Technically we could let `gap` clean up with its Drop, but
1708 * when `same_bucket` is guaranteed to not panic, this bloats a little
1709 * the codegen, so we just do it manually */
1710 gap.vec.set_len(gap.write);
1711 mem::forget(gap);
1712 }
1713 }
1714
1715 /// Appends an element to the back of a collection.
1716 ///
1717 /// # Panics
1718 ///
1719 /// Panics if the new capacity exceeds `isize::MAX` bytes.
1720 ///
1721 /// # Examples
1722 ///
1723 /// ```
1724 /// let mut vec = vec![1, 2];
1725 /// vec.push(3);
1726 /// assert_eq!(vec, [1, 2, 3]);
1727 /// ```
1728 #[cfg(not(no_global_oom_handling))]
1729 #[inline]
1730 #[stable(feature = "rust1", since = "1.0.0")]
push(&mut self, value: T)1731 pub fn push(&mut self, value: T) {
1732 // This will panic or abort if we would allocate > isize::MAX bytes
1733 // or if the length increment would overflow for zero-sized types.
1734 if self.len == self.buf.capacity() {
1735 self.buf.reserve_for_push(self.len);
1736 }
1737 unsafe {
1738 let end = self.as_mut_ptr().add(self.len);
1739 ptr::write(end, value);
1740 self.len += 1;
1741 }
1742 }
1743
1744 /// Tries to append an element to the back of a collection.
1745 ///
1746 /// # Examples
1747 ///
1748 /// ```
1749 /// let mut vec = vec![1, 2];
1750 /// vec.try_push(3).unwrap();
1751 /// assert_eq!(vec, [1, 2, 3]);
1752 /// ```
1753 #[inline]
1754 #[stable(feature = "kernel", since = "1.0.0")]
try_push(&mut self, value: T) -> Result<(), TryReserveError>1755 pub fn try_push(&mut self, value: T) -> Result<(), TryReserveError> {
1756 if self.len == self.buf.capacity() {
1757 self.buf.try_reserve_for_push(self.len)?;
1758 }
1759 unsafe {
1760 let end = self.as_mut_ptr().add(self.len);
1761 ptr::write(end, value);
1762 self.len += 1;
1763 }
1764 Ok(())
1765 }
1766
1767 /// Removes the last element from a vector and returns it, or [`None`] if it
1768 /// is empty.
1769 ///
1770 /// If you'd like to pop the first element, consider using
1771 /// [`VecDeque::pop_front`] instead.
1772 ///
1773 /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
1774 ///
1775 /// # Examples
1776 ///
1777 /// ```
1778 /// let mut vec = vec![1, 2, 3];
1779 /// assert_eq!(vec.pop(), Some(3));
1780 /// assert_eq!(vec, [1, 2]);
1781 /// ```
1782 #[inline]
1783 #[stable(feature = "rust1", since = "1.0.0")]
pop(&mut self) -> Option<T>1784 pub fn pop(&mut self) -> Option<T> {
1785 if self.len == 0 {
1786 None
1787 } else {
1788 unsafe {
1789 self.len -= 1;
1790 Some(ptr::read(self.as_ptr().add(self.len())))
1791 }
1792 }
1793 }
1794
1795 /// Moves all the elements of `other` into `self`, leaving `other` empty.
1796 ///
1797 /// # Panics
1798 ///
1799 /// Panics if the number of elements in the vector overflows a `usize`.
1800 ///
1801 /// # Examples
1802 ///
1803 /// ```
1804 /// let mut vec = vec![1, 2, 3];
1805 /// let mut vec2 = vec![4, 5, 6];
1806 /// vec.append(&mut vec2);
1807 /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
1808 /// assert_eq!(vec2, []);
1809 /// ```
1810 #[cfg(not(no_global_oom_handling))]
1811 #[inline]
1812 #[stable(feature = "append", since = "1.4.0")]
append(&mut self, other: &mut Self)1813 pub fn append(&mut self, other: &mut Self) {
1814 unsafe {
1815 self.append_elements(other.as_slice() as _);
1816 other.set_len(0);
1817 }
1818 }
1819
1820 /// Appends elements to `self` from other buffer.
1821 #[cfg(not(no_global_oom_handling))]
1822 #[inline]
append_elements(&mut self, other: *const [T])1823 unsafe fn append_elements(&mut self, other: *const [T]) {
1824 let count = unsafe { (*other).len() };
1825 self.reserve(count);
1826 let len = self.len();
1827 unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
1828 self.len += count;
1829 }
1830
1831 /// Removes the specified range from the vector in bulk, returning all
1832 /// removed elements as an iterator. If the iterator is dropped before
1833 /// being fully consumed, it drops the remaining removed elements.
1834 ///
1835 /// The returned iterator keeps a mutable borrow on the vector to optimize
1836 /// its implementation.
1837 ///
1838 /// # Panics
1839 ///
1840 /// Panics if the starting point is greater than the end point or if
1841 /// the end point is greater than the length of the vector.
1842 ///
1843 /// # Leaking
1844 ///
1845 /// If the returned iterator goes out of scope without being dropped (due to
1846 /// [`mem::forget`], for example), the vector may have lost and leaked
1847 /// elements arbitrarily, including elements outside the range.
1848 ///
1849 /// # Examples
1850 ///
1851 /// ```
1852 /// let mut v = vec![1, 2, 3];
1853 /// let u: Vec<_> = v.drain(1..).collect();
1854 /// assert_eq!(v, &[1]);
1855 /// assert_eq!(u, &[2, 3]);
1856 ///
1857 /// // A full range clears the vector, like `clear()` does
1858 /// v.drain(..);
1859 /// assert_eq!(v, &[]);
1860 /// ```
1861 #[stable(feature = "drain", since = "1.6.0")]
drain<R>(&mut self, range: R) -> Drain<'_, T, A> where R: RangeBounds<usize>,1862 pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
1863 where
1864 R: RangeBounds<usize>,
1865 {
1866 // Memory safety
1867 //
1868 // When the Drain is first created, it shortens the length of
1869 // the source vector to make sure no uninitialized or moved-from elements
1870 // are accessible at all if the Drain's destructor never gets to run.
1871 //
1872 // Drain will ptr::read out the values to remove.
1873 // When finished, remaining tail of the vec is copied back to cover
1874 // the hole, and the vector length is restored to the new length.
1875 //
1876 let len = self.len();
1877 let Range { start, end } = slice::range(range, ..len);
1878
1879 unsafe {
1880 // set self.vec length's to start, to be safe in case Drain is leaked
1881 self.set_len(start);
1882 // Use the borrow in the IterMut to indicate borrowing behavior of the
1883 // whole Drain iterator (like &mut T).
1884 let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().add(start), end - start);
1885 Drain {
1886 tail_start: end,
1887 tail_len: len - end,
1888 iter: range_slice.iter(),
1889 vec: NonNull::from(self),
1890 }
1891 }
1892 }
1893
1894 /// Clears the vector, removing all values.
1895 ///
1896 /// Note that this method has no effect on the allocated capacity
1897 /// of the vector.
1898 ///
1899 /// # Examples
1900 ///
1901 /// ```
1902 /// let mut v = vec![1, 2, 3];
1903 ///
1904 /// v.clear();
1905 ///
1906 /// assert!(v.is_empty());
1907 /// ```
1908 #[inline]
1909 #[stable(feature = "rust1", since = "1.0.0")]
clear(&mut self)1910 pub fn clear(&mut self) {
1911 let elems: *mut [T] = self.as_mut_slice();
1912
1913 // SAFETY:
1914 // - `elems` comes directly from `as_mut_slice` and is therefore valid.
1915 // - Setting `self.len` before calling `drop_in_place` means that,
1916 // if an element's `Drop` impl panics, the vector's `Drop` impl will
1917 // do nothing (leaking the rest of the elements) instead of dropping
1918 // some twice.
1919 unsafe {
1920 self.len = 0;
1921 ptr::drop_in_place(elems);
1922 }
1923 }
1924
1925 /// Returns the number of elements in the vector, also referred to
1926 /// as its 'length'.
1927 ///
1928 /// # Examples
1929 ///
1930 /// ```
1931 /// let a = vec![1, 2, 3];
1932 /// assert_eq!(a.len(), 3);
1933 /// ```
1934 #[inline]
1935 #[stable(feature = "rust1", since = "1.0.0")]
len(&self) -> usize1936 pub fn len(&self) -> usize {
1937 self.len
1938 }
1939
1940 /// Returns `true` if the vector contains no elements.
1941 ///
1942 /// # Examples
1943 ///
1944 /// ```
1945 /// let mut v = Vec::new();
1946 /// assert!(v.is_empty());
1947 ///
1948 /// v.push(1);
1949 /// assert!(!v.is_empty());
1950 /// ```
1951 #[stable(feature = "rust1", since = "1.0.0")]
is_empty(&self) -> bool1952 pub fn is_empty(&self) -> bool {
1953 self.len() == 0
1954 }
1955
1956 /// Splits the collection into two at the given index.
1957 ///
1958 /// Returns a newly allocated vector containing the elements in the range
1959 /// `[at, len)`. After the call, the original vector will be left containing
1960 /// the elements `[0, at)` with its previous capacity unchanged.
1961 ///
1962 /// # Panics
1963 ///
1964 /// Panics if `at > len`.
1965 ///
1966 /// # Examples
1967 ///
1968 /// ```
1969 /// let mut vec = vec![1, 2, 3];
1970 /// let vec2 = vec.split_off(1);
1971 /// assert_eq!(vec, [1]);
1972 /// assert_eq!(vec2, [2, 3]);
1973 /// ```
1974 #[cfg(not(no_global_oom_handling))]
1975 #[inline]
1976 #[must_use = "use `.truncate()` if you don't need the other half"]
1977 #[stable(feature = "split_off", since = "1.4.0")]
split_off(&mut self, at: usize) -> Self where A: Clone,1978 pub fn split_off(&mut self, at: usize) -> Self
1979 where
1980 A: Clone,
1981 {
1982 #[cold]
1983 #[inline(never)]
1984 fn assert_failed(at: usize, len: usize) -> ! {
1985 panic!("`at` split index (is {at}) should be <= len (is {len})");
1986 }
1987
1988 if at > self.len() {
1989 assert_failed(at, self.len());
1990 }
1991
1992 if at == 0 {
1993 // the new vector can take over the original buffer and avoid the copy
1994 return mem::replace(
1995 self,
1996 Vec::with_capacity_in(self.capacity(), self.allocator().clone()),
1997 );
1998 }
1999
2000 let other_len = self.len - at;
2001 let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
2002
2003 // Unsafely `set_len` and copy items to `other`.
2004 unsafe {
2005 self.set_len(at);
2006 other.set_len(other_len);
2007
2008 ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
2009 }
2010 other
2011 }
2012
2013 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2014 ///
2015 /// If `new_len` is greater than `len`, the `Vec` is extended by the
2016 /// difference, with each additional slot filled with the result of
2017 /// calling the closure `f`. The return values from `f` will end up
2018 /// in the `Vec` in the order they have been generated.
2019 ///
2020 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2021 ///
2022 /// This method uses a closure to create new values on every push. If
2023 /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
2024 /// want to use the [`Default`] trait to generate values, you can
2025 /// pass [`Default::default`] as the second argument.
2026 ///
2027 /// # Examples
2028 ///
2029 /// ```
2030 /// let mut vec = vec![1, 2, 3];
2031 /// vec.resize_with(5, Default::default);
2032 /// assert_eq!(vec, [1, 2, 3, 0, 0]);
2033 ///
2034 /// let mut vec = vec![];
2035 /// let mut p = 1;
2036 /// vec.resize_with(4, || { p *= 2; p });
2037 /// assert_eq!(vec, [2, 4, 8, 16]);
2038 /// ```
2039 #[cfg(not(no_global_oom_handling))]
2040 #[stable(feature = "vec_resize_with", since = "1.33.0")]
resize_with<F>(&mut self, new_len: usize, f: F) where F: FnMut() -> T,2041 pub fn resize_with<F>(&mut self, new_len: usize, f: F)
2042 where
2043 F: FnMut() -> T,
2044 {
2045 let len = self.len();
2046 if new_len > len {
2047 self.extend_with(new_len - len, ExtendFunc(f));
2048 } else {
2049 self.truncate(new_len);
2050 }
2051 }
2052
2053 /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
2054 /// `&'a mut [T]`. Note that the type `T` must outlive the chosen lifetime
2055 /// `'a`. If the type has only static references, or none at all, then this
2056 /// may be chosen to be `'static`.
2057 ///
2058 /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
2059 /// so the leaked allocation may include unused capacity that is not part
2060 /// of the returned slice.
2061 ///
2062 /// This function is mainly useful for data that lives for the remainder of
2063 /// the program's life. Dropping the returned reference will cause a memory
2064 /// leak.
2065 ///
2066 /// # Examples
2067 ///
2068 /// Simple usage:
2069 ///
2070 /// ```
2071 /// let x = vec![1, 2, 3];
2072 /// let static_ref: &'static mut [usize] = x.leak();
2073 /// static_ref[0] += 1;
2074 /// assert_eq!(static_ref, &[2, 2, 3]);
2075 /// ```
2076 #[cfg(not(no_global_oom_handling))]
2077 #[stable(feature = "vec_leak", since = "1.47.0")]
2078 #[inline]
leak<'a>(self) -> &'a mut [T] where A: 'a,2079 pub fn leak<'a>(self) -> &'a mut [T]
2080 where
2081 A: 'a,
2082 {
2083 let mut me = ManuallyDrop::new(self);
2084 unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
2085 }
2086
2087 /// Returns the remaining spare capacity of the vector as a slice of
2088 /// `MaybeUninit<T>`.
2089 ///
2090 /// The returned slice can be used to fill the vector with data (e.g. by
2091 /// reading from a file) before marking the data as initialized using the
2092 /// [`set_len`] method.
2093 ///
2094 /// [`set_len`]: Vec::set_len
2095 ///
2096 /// # Examples
2097 ///
2098 /// ```
2099 /// // Allocate vector big enough for 10 elements.
2100 /// let mut v = Vec::with_capacity(10);
2101 ///
2102 /// // Fill in the first 3 elements.
2103 /// let uninit = v.spare_capacity_mut();
2104 /// uninit[0].write(0);
2105 /// uninit[1].write(1);
2106 /// uninit[2].write(2);
2107 ///
2108 /// // Mark the first 3 elements of the vector as being initialized.
2109 /// unsafe {
2110 /// v.set_len(3);
2111 /// }
2112 ///
2113 /// assert_eq!(&v, &[0, 1, 2]);
2114 /// ```
2115 #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
2116 #[inline]
spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>]2117 pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
2118 // Note:
2119 // This method is not implemented in terms of `split_at_spare_mut`,
2120 // to prevent invalidation of pointers to the buffer.
2121 unsafe {
2122 slice::from_raw_parts_mut(
2123 self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
2124 self.buf.capacity() - self.len,
2125 )
2126 }
2127 }
2128
2129 /// Returns vector content as a slice of `T`, along with the remaining spare
2130 /// capacity of the vector as a slice of `MaybeUninit<T>`.
2131 ///
2132 /// The returned spare capacity slice can be used to fill the vector with data
2133 /// (e.g. by reading from a file) before marking the data as initialized using
2134 /// the [`set_len`] method.
2135 ///
2136 /// [`set_len`]: Vec::set_len
2137 ///
2138 /// Note that this is a low-level API, which should be used with care for
2139 /// optimization purposes. If you need to append data to a `Vec`
2140 /// you can use [`push`], [`extend`], [`extend_from_slice`],
2141 /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
2142 /// [`resize_with`], depending on your exact needs.
2143 ///
2144 /// [`push`]: Vec::push
2145 /// [`extend`]: Vec::extend
2146 /// [`extend_from_slice`]: Vec::extend_from_slice
2147 /// [`extend_from_within`]: Vec::extend_from_within
2148 /// [`insert`]: Vec::insert
2149 /// [`append`]: Vec::append
2150 /// [`resize`]: Vec::resize
2151 /// [`resize_with`]: Vec::resize_with
2152 ///
2153 /// # Examples
2154 ///
2155 /// ```
2156 /// #![feature(vec_split_at_spare)]
2157 ///
2158 /// let mut v = vec![1, 1, 2];
2159 ///
2160 /// // Reserve additional space big enough for 10 elements.
2161 /// v.reserve(10);
2162 ///
2163 /// let (init, uninit) = v.split_at_spare_mut();
2164 /// let sum = init.iter().copied().sum::<u32>();
2165 ///
2166 /// // Fill in the next 4 elements.
2167 /// uninit[0].write(sum);
2168 /// uninit[1].write(sum * 2);
2169 /// uninit[2].write(sum * 3);
2170 /// uninit[3].write(sum * 4);
2171 ///
2172 /// // Mark the 4 elements of the vector as being initialized.
2173 /// unsafe {
2174 /// let len = v.len();
2175 /// v.set_len(len + 4);
2176 /// }
2177 ///
2178 /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
2179 /// ```
2180 #[unstable(feature = "vec_split_at_spare", issue = "81944")]
2181 #[inline]
split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>])2182 pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
2183 // SAFETY:
2184 // - len is ignored and so never changed
2185 let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
2186 (init, spare)
2187 }
2188
2189 /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
2190 ///
2191 /// This method provides unique access to all vec parts at once in `extend_from_within`.
split_at_spare_mut_with_len( &mut self, ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize)2192 unsafe fn split_at_spare_mut_with_len(
2193 &mut self,
2194 ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
2195 let ptr = self.as_mut_ptr();
2196 // SAFETY:
2197 // - `ptr` is guaranteed to be valid for `self.len` elements
2198 // - but the allocation extends out to `self.buf.capacity()` elements, possibly
2199 // uninitialized
2200 let spare_ptr = unsafe { ptr.add(self.len) };
2201 let spare_ptr = spare_ptr.cast::<MaybeUninit<T>>();
2202 let spare_len = self.buf.capacity() - self.len;
2203
2204 // SAFETY:
2205 // - `ptr` is guaranteed to be valid for `self.len` elements
2206 // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
2207 unsafe {
2208 let initialized = slice::from_raw_parts_mut(ptr, self.len);
2209 let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
2210
2211 (initialized, spare, &mut self.len)
2212 }
2213 }
2214 }
2215
2216 impl<T: Clone, A: Allocator> Vec<T, A> {
2217 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2218 ///
2219 /// If `new_len` is greater than `len`, the `Vec` is extended by the
2220 /// difference, with each additional slot filled with `value`.
2221 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2222 ///
2223 /// This method requires `T` to implement [`Clone`],
2224 /// in order to be able to clone the passed value.
2225 /// If you need more flexibility (or want to rely on [`Default`] instead of
2226 /// [`Clone`]), use [`Vec::resize_with`].
2227 /// If you only need to resize to a smaller size, use [`Vec::truncate`].
2228 ///
2229 /// # Examples
2230 ///
2231 /// ```
2232 /// let mut vec = vec!["hello"];
2233 /// vec.resize(3, "world");
2234 /// assert_eq!(vec, ["hello", "world", "world"]);
2235 ///
2236 /// let mut vec = vec![1, 2, 3, 4];
2237 /// vec.resize(2, 0);
2238 /// assert_eq!(vec, [1, 2]);
2239 /// ```
2240 #[cfg(not(no_global_oom_handling))]
2241 #[stable(feature = "vec_resize", since = "1.5.0")]
resize(&mut self, new_len: usize, value: T)2242 pub fn resize(&mut self, new_len: usize, value: T) {
2243 let len = self.len();
2244
2245 if new_len > len {
2246 self.extend_with(new_len - len, ExtendElement(value))
2247 } else {
2248 self.truncate(new_len);
2249 }
2250 }
2251
2252 /// Clones and appends all elements in a slice to the `Vec`.
2253 ///
2254 /// Iterates over the slice `other`, clones each element, and then appends
2255 /// it to this `Vec`. The `other` slice is traversed in-order.
2256 ///
2257 /// Note that this function is same as [`extend`] except that it is
2258 /// specialized to work with slices instead. If and when Rust gets
2259 /// specialization this function will likely be deprecated (but still
2260 /// available).
2261 ///
2262 /// # Examples
2263 ///
2264 /// ```
2265 /// let mut vec = vec![1];
2266 /// vec.extend_from_slice(&[2, 3, 4]);
2267 /// assert_eq!(vec, [1, 2, 3, 4]);
2268 /// ```
2269 ///
2270 /// [`extend`]: Vec::extend
2271 #[cfg(not(no_global_oom_handling))]
2272 #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
extend_from_slice(&mut self, other: &[T])2273 pub fn extend_from_slice(&mut self, other: &[T]) {
2274 self.spec_extend(other.iter())
2275 }
2276
2277 /// Copies elements from `src` range to the end of the vector.
2278 ///
2279 /// # Panics
2280 ///
2281 /// Panics if the starting point is greater than the end point or if
2282 /// the end point is greater than the length of the vector.
2283 ///
2284 /// # Examples
2285 ///
2286 /// ```
2287 /// let mut vec = vec![0, 1, 2, 3, 4];
2288 ///
2289 /// vec.extend_from_within(2..);
2290 /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4]);
2291 ///
2292 /// vec.extend_from_within(..2);
2293 /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1]);
2294 ///
2295 /// vec.extend_from_within(4..8);
2296 /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1, 4, 2, 3, 4]);
2297 /// ```
2298 #[cfg(not(no_global_oom_handling))]
2299 #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
extend_from_within<R>(&mut self, src: R) where R: RangeBounds<usize>,2300 pub fn extend_from_within<R>(&mut self, src: R)
2301 where
2302 R: RangeBounds<usize>,
2303 {
2304 let range = slice::range(src, ..self.len());
2305 self.reserve(range.len());
2306
2307 // SAFETY:
2308 // - `slice::range` guarantees that the given range is valid for indexing self
2309 unsafe {
2310 self.spec_extend_from_within(range);
2311 }
2312 }
2313 }
2314
2315 impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
2316 /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
2317 ///
2318 /// # Panics
2319 ///
2320 /// Panics if the length of the resulting vector would overflow a `usize`.
2321 ///
2322 /// This is only possible when flattening a vector of arrays of zero-sized
2323 /// types, and thus tends to be irrelevant in practice. If
2324 /// `size_of::<T>() > 0`, this will never panic.
2325 ///
2326 /// # Examples
2327 ///
2328 /// ```
2329 /// #![feature(slice_flatten)]
2330 ///
2331 /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
2332 /// assert_eq!(vec.pop(), Some([7, 8, 9]));
2333 ///
2334 /// let mut flattened = vec.into_flattened();
2335 /// assert_eq!(flattened.pop(), Some(6));
2336 /// ```
2337 #[unstable(feature = "slice_flatten", issue = "95629")]
into_flattened(self) -> Vec<T, A>2338 pub fn into_flattened(self) -> Vec<T, A> {
2339 let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
2340 let (new_len, new_cap) = if mem::size_of::<T>() == 0 {
2341 (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
2342 } else {
2343 // SAFETY:
2344 // - `cap * N` cannot overflow because the allocation is already in
2345 // the address space.
2346 // - Each `[T; N]` has `N` valid elements, so there are `len * N`
2347 // valid elements in the allocation.
2348 unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
2349 };
2350 // SAFETY:
2351 // - `ptr` was allocated by `self`
2352 // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
2353 // - `new_cap` refers to the same sized allocation as `cap` because
2354 // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
2355 // - `len` <= `cap`, so `len * N` <= `cap * N`.
2356 unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
2357 }
2358 }
2359
2360 // This code generalizes `extend_with_{element,default}`.
2361 trait ExtendWith<T> {
next(&mut self) -> T2362 fn next(&mut self) -> T;
last(self) -> T2363 fn last(self) -> T;
2364 }
2365
2366 struct ExtendElement<T>(T);
2367 impl<T: Clone> ExtendWith<T> for ExtendElement<T> {
next(&mut self) -> T2368 fn next(&mut self) -> T {
2369 self.0.clone()
2370 }
last(self) -> T2371 fn last(self) -> T {
2372 self.0
2373 }
2374 }
2375
2376 struct ExtendFunc<F>(F);
2377 impl<T, F: FnMut() -> T> ExtendWith<T> for ExtendFunc<F> {
next(&mut self) -> T2378 fn next(&mut self) -> T {
2379 (self.0)()
2380 }
last(mut self) -> T2381 fn last(mut self) -> T {
2382 (self.0)()
2383 }
2384 }
2385
2386 impl<T, A: Allocator> Vec<T, A> {
2387 #[cfg(not(no_global_oom_handling))]
2388 /// Extend the vector by `n` values, using the given generator.
extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E)2389 fn extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) {
2390 self.reserve(n);
2391
2392 unsafe {
2393 let mut ptr = self.as_mut_ptr().add(self.len());
2394 // Use SetLenOnDrop to work around bug where compiler
2395 // might not realize the store through `ptr` through self.set_len()
2396 // don't alias.
2397 let mut local_len = SetLenOnDrop::new(&mut self.len);
2398
2399 // Write all elements except the last one
2400 for _ in 1..n {
2401 ptr::write(ptr, value.next());
2402 ptr = ptr.offset(1);
2403 // Increment the length in every step in case next() panics
2404 local_len.increment_len(1);
2405 }
2406
2407 if n > 0 {
2408 // We can write the last element directly without cloning needlessly
2409 ptr::write(ptr, value.last());
2410 local_len.increment_len(1);
2411 }
2412
2413 // len set by scope guard
2414 }
2415 }
2416 }
2417
2418 impl<T: PartialEq, A: Allocator> Vec<T, A> {
2419 /// Removes consecutive repeated elements in the vector according to the
2420 /// [`PartialEq`] trait implementation.
2421 ///
2422 /// If the vector is sorted, this removes all duplicates.
2423 ///
2424 /// # Examples
2425 ///
2426 /// ```
2427 /// let mut vec = vec![1, 2, 2, 3, 2];
2428 ///
2429 /// vec.dedup();
2430 ///
2431 /// assert_eq!(vec, [1, 2, 3, 2]);
2432 /// ```
2433 #[stable(feature = "rust1", since = "1.0.0")]
2434 #[inline]
dedup(&mut self)2435 pub fn dedup(&mut self) {
2436 self.dedup_by(|a, b| a == b)
2437 }
2438 }
2439
2440 ////////////////////////////////////////////////////////////////////////////////
2441 // Internal methods and functions
2442 ////////////////////////////////////////////////////////////////////////////////
2443
2444 #[doc(hidden)]
2445 #[cfg(not(no_global_oom_handling))]
2446 #[stable(feature = "rust1", since = "1.0.0")]
from_elem<T: Clone>(elem: T, n: usize) -> Vec<T>2447 pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
2448 <T as SpecFromElem>::from_elem(elem, n, Global)
2449 }
2450
2451 #[doc(hidden)]
2452 #[cfg(not(no_global_oom_handling))]
2453 #[unstable(feature = "allocator_api", issue = "32838")]
from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A>2454 pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
2455 <T as SpecFromElem>::from_elem(elem, n, alloc)
2456 }
2457
2458 trait ExtendFromWithinSpec {
2459 /// # Safety
2460 ///
2461 /// - `src` needs to be valid index
2462 /// - `self.capacity() - self.len()` must be `>= src.len()`
spec_extend_from_within(&mut self, src: Range<usize>)2463 unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
2464 }
2465
2466 impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
spec_extend_from_within(&mut self, src: Range<usize>)2467 default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
2468 // SAFETY:
2469 // - len is increased only after initializing elements
2470 let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
2471
2472 // SAFETY:
2473 // - caller guaratees that src is a valid index
2474 let to_clone = unsafe { this.get_unchecked(src) };
2475
2476 iter::zip(to_clone, spare)
2477 .map(|(src, dst)| dst.write(src.clone()))
2478 // Note:
2479 // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
2480 // - len is increased after each element to prevent leaks (see issue #82533)
2481 .for_each(|_| *len += 1);
2482 }
2483 }
2484
2485 impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
spec_extend_from_within(&mut self, src: Range<usize>)2486 unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
2487 let count = src.len();
2488 {
2489 let (init, spare) = self.split_at_spare_mut();
2490
2491 // SAFETY:
2492 // - caller guaratees that `src` is a valid index
2493 let source = unsafe { init.get_unchecked(src) };
2494
2495 // SAFETY:
2496 // - Both pointers are created from unique slice references (`&mut [_]`)
2497 // so they are valid and do not overlap.
2498 // - Elements are :Copy so it's OK to to copy them, without doing
2499 // anything with the original values
2500 // - `count` is equal to the len of `source`, so source is valid for
2501 // `count` reads
2502 // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
2503 // is valid for `count` writes
2504 unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
2505 }
2506
2507 // SAFETY:
2508 // - The elements were just initialized by `copy_nonoverlapping`
2509 self.len += count;
2510 }
2511 }
2512
2513 ////////////////////////////////////////////////////////////////////////////////
2514 // Common trait implementations for Vec
2515 ////////////////////////////////////////////////////////////////////////////////
2516
2517 #[stable(feature = "rust1", since = "1.0.0")]
2518 impl<T, A: Allocator> ops::Deref for Vec<T, A> {
2519 type Target = [T];
2520
deref(&self) -> &[T]2521 fn deref(&self) -> &[T] {
2522 unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
2523 }
2524 }
2525
2526 #[stable(feature = "rust1", since = "1.0.0")]
2527 impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
deref_mut(&mut self) -> &mut [T]2528 fn deref_mut(&mut self) -> &mut [T] {
2529 unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
2530 }
2531 }
2532
2533 #[cfg(not(no_global_oom_handling))]
2534 trait SpecCloneFrom {
clone_from(this: &mut Self, other: &Self)2535 fn clone_from(this: &mut Self, other: &Self);
2536 }
2537
2538 #[cfg(not(no_global_oom_handling))]
2539 impl<T: Clone, A: Allocator> SpecCloneFrom for Vec<T, A> {
clone_from(this: &mut Self, other: &Self)2540 default fn clone_from(this: &mut Self, other: &Self) {
2541 // drop anything that will not be overwritten
2542 this.truncate(other.len());
2543
2544 // self.len <= other.len due to the truncate above, so the
2545 // slices here are always in-bounds.
2546 let (init, tail) = other.split_at(this.len());
2547
2548 // reuse the contained values' allocations/resources.
2549 this.clone_from_slice(init);
2550 this.extend_from_slice(tail);
2551 }
2552 }
2553
2554 #[cfg(not(no_global_oom_handling))]
2555 impl<T: Copy, A: Allocator> SpecCloneFrom for Vec<T, A> {
clone_from(this: &mut Self, other: &Self)2556 fn clone_from(this: &mut Self, other: &Self) {
2557 this.clear();
2558 this.extend_from_slice(other);
2559 }
2560 }
2561
2562 #[cfg(not(no_global_oom_handling))]
2563 #[stable(feature = "rust1", since = "1.0.0")]
2564 impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
2565 #[cfg(not(test))]
clone(&self) -> Self2566 fn clone(&self) -> Self {
2567 let alloc = self.allocator().clone();
2568 <[T]>::to_vec_in(&**self, alloc)
2569 }
2570
2571 // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
2572 // required for this method definition, is not available. Instead use the
2573 // `slice::to_vec` function which is only available with cfg(test)
2574 // NB see the slice::hack module in slice.rs for more information
2575 #[cfg(test)]
clone(&self) -> Self2576 fn clone(&self) -> Self {
2577 let alloc = self.allocator().clone();
2578 crate::slice::to_vec(&**self, alloc)
2579 }
2580
clone_from(&mut self, other: &Self)2581 fn clone_from(&mut self, other: &Self) {
2582 SpecCloneFrom::clone_from(self, other)
2583 }
2584 }
2585
2586 /// The hash of a vector is the same as that of the corresponding slice,
2587 /// as required by the `core::borrow::Borrow` implementation.
2588 ///
2589 /// ```
2590 /// #![feature(build_hasher_simple_hash_one)]
2591 /// use std::hash::BuildHasher;
2592 ///
2593 /// let b = std::collections::hash_map::RandomState::new();
2594 /// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
2595 /// let s: &[u8] = &[0xa8, 0x3c, 0x09];
2596 /// assert_eq!(b.hash_one(v), b.hash_one(s));
2597 /// ```
2598 #[stable(feature = "rust1", since = "1.0.0")]
2599 impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
2600 #[inline]
hash<H: Hasher>(&self, state: &mut H)2601 fn hash<H: Hasher>(&self, state: &mut H) {
2602 Hash::hash(&**self, state)
2603 }
2604 }
2605
2606 #[stable(feature = "rust1", since = "1.0.0")]
2607 #[rustc_on_unimplemented(
2608 message = "vector indices are of type `usize` or ranges of `usize`",
2609 label = "vector indices are of type `usize` or ranges of `usize`"
2610 )]
2611 impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
2612 type Output = I::Output;
2613
2614 #[inline]
index(&self, index: I) -> &Self::Output2615 fn index(&self, index: I) -> &Self::Output {
2616 Index::index(&**self, index)
2617 }
2618 }
2619
2620 #[stable(feature = "rust1", since = "1.0.0")]
2621 #[rustc_on_unimplemented(
2622 message = "vector indices are of type `usize` or ranges of `usize`",
2623 label = "vector indices are of type `usize` or ranges of `usize`"
2624 )]
2625 impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
2626 #[inline]
index_mut(&mut self, index: I) -> &mut Self::Output2627 fn index_mut(&mut self, index: I) -> &mut Self::Output {
2628 IndexMut::index_mut(&mut **self, index)
2629 }
2630 }
2631
2632 #[cfg(not(no_global_oom_handling))]
2633 #[stable(feature = "rust1", since = "1.0.0")]
2634 impl<T> FromIterator<T> for Vec<T> {
2635 #[inline]
from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T>2636 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
2637 <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
2638 }
2639 }
2640
2641 #[stable(feature = "rust1", since = "1.0.0")]
2642 impl<T, A: Allocator> IntoIterator for Vec<T, A> {
2643 type Item = T;
2644 type IntoIter = IntoIter<T, A>;
2645
2646 /// Creates a consuming iterator, that is, one that moves each value out of
2647 /// the vector (from start to end). The vector cannot be used after calling
2648 /// this.
2649 ///
2650 /// # Examples
2651 ///
2652 /// ```
2653 /// let v = vec!["a".to_string(), "b".to_string()];
2654 /// for s in v.into_iter() {
2655 /// // s has type String, not &String
2656 /// println!("{s}");
2657 /// }
2658 /// ```
2659 #[inline]
into_iter(self) -> IntoIter<T, A>2660 fn into_iter(self) -> IntoIter<T, A> {
2661 unsafe {
2662 let mut me = ManuallyDrop::new(self);
2663 let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
2664 let begin = me.as_mut_ptr();
2665 let end = if mem::size_of::<T>() == 0 {
2666 arith_offset(begin as *const i8, me.len() as isize) as *const T
2667 } else {
2668 begin.add(me.len()) as *const T
2669 };
2670 let cap = me.buf.capacity();
2671 IntoIter {
2672 buf: NonNull::new_unchecked(begin),
2673 phantom: PhantomData,
2674 cap,
2675 alloc,
2676 ptr: begin,
2677 end,
2678 }
2679 }
2680 }
2681 }
2682
2683 #[stable(feature = "rust1", since = "1.0.0")]
2684 impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
2685 type Item = &'a T;
2686 type IntoIter = slice::Iter<'a, T>;
2687
into_iter(self) -> slice::Iter<'a, T>2688 fn into_iter(self) -> slice::Iter<'a, T> {
2689 self.iter()
2690 }
2691 }
2692
2693 #[stable(feature = "rust1", since = "1.0.0")]
2694 impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
2695 type Item = &'a mut T;
2696 type IntoIter = slice::IterMut<'a, T>;
2697
into_iter(self) -> slice::IterMut<'a, T>2698 fn into_iter(self) -> slice::IterMut<'a, T> {
2699 self.iter_mut()
2700 }
2701 }
2702
2703 #[cfg(not(no_global_oom_handling))]
2704 #[stable(feature = "rust1", since = "1.0.0")]
2705 impl<T, A: Allocator> Extend<T> for Vec<T, A> {
2706 #[inline]
extend<I: IntoIterator<Item = T>>(&mut self, iter: I)2707 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
2708 <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
2709 }
2710
2711 #[inline]
extend_one(&mut self, item: T)2712 fn extend_one(&mut self, item: T) {
2713 self.push(item);
2714 }
2715
2716 #[inline]
extend_reserve(&mut self, additional: usize)2717 fn extend_reserve(&mut self, additional: usize) {
2718 self.reserve(additional);
2719 }
2720 }
2721
2722 impl<T, A: Allocator> Vec<T, A> {
2723 // leaf method to which various SpecFrom/SpecExtend implementations delegate when
2724 // they have no further optimizations to apply
2725 #[cfg(not(no_global_oom_handling))]
extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I)2726 fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
2727 // This is the case for a general iterator.
2728 //
2729 // This function should be the moral equivalent of:
2730 //
2731 // for item in iterator {
2732 // self.push(item);
2733 // }
2734 while let Some(element) = iterator.next() {
2735 let len = self.len();
2736 if len == self.capacity() {
2737 let (lower, _) = iterator.size_hint();
2738 self.reserve(lower.saturating_add(1));
2739 }
2740 unsafe {
2741 ptr::write(self.as_mut_ptr().add(len), element);
2742 // Since next() executes user code which can panic we have to bump the length
2743 // after each step.
2744 // NB can't overflow since we would have had to alloc the address space
2745 self.set_len(len + 1);
2746 }
2747 }
2748 }
2749
2750 /// Creates a splicing iterator that replaces the specified range in the vector
2751 /// with the given `replace_with` iterator and yields the removed items.
2752 /// `replace_with` does not need to be the same length as `range`.
2753 ///
2754 /// `range` is removed even if the iterator is not consumed until the end.
2755 ///
2756 /// It is unspecified how many elements are removed from the vector
2757 /// if the `Splice` value is leaked.
2758 ///
2759 /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
2760 ///
2761 /// This is optimal if:
2762 ///
2763 /// * The tail (elements in the vector after `range`) is empty,
2764 /// * or `replace_with` yields fewer or equal elements than `range`’s length
2765 /// * or the lower bound of its `size_hint()` is exact.
2766 ///
2767 /// Otherwise, a temporary vector is allocated and the tail is moved twice.
2768 ///
2769 /// # Panics
2770 ///
2771 /// Panics if the starting point is greater than the end point or if
2772 /// the end point is greater than the length of the vector.
2773 ///
2774 /// # Examples
2775 ///
2776 /// ```
2777 /// let mut v = vec![1, 2, 3, 4];
2778 /// let new = [7, 8, 9];
2779 /// let u: Vec<_> = v.splice(1..3, new).collect();
2780 /// assert_eq!(v, &[1, 7, 8, 9, 4]);
2781 /// assert_eq!(u, &[2, 3]);
2782 /// ```
2783 #[cfg(not(no_global_oom_handling))]
2784 #[inline]
2785 #[stable(feature = "vec_splice", since = "1.21.0")]
splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A> where R: RangeBounds<usize>, I: IntoIterator<Item = T>,2786 pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
2787 where
2788 R: RangeBounds<usize>,
2789 I: IntoIterator<Item = T>,
2790 {
2791 Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
2792 }
2793
2794 /// Creates an iterator which uses a closure to determine if an element should be removed.
2795 ///
2796 /// If the closure returns true, then the element is removed and yielded.
2797 /// If the closure returns false, the element will remain in the vector and will not be yielded
2798 /// by the iterator.
2799 ///
2800 /// Using this method is equivalent to the following code:
2801 ///
2802 /// ```
2803 /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
2804 /// # let mut vec = vec![1, 2, 3, 4, 5, 6];
2805 /// let mut i = 0;
2806 /// while i < vec.len() {
2807 /// if some_predicate(&mut vec[i]) {
2808 /// let val = vec.remove(i);
2809 /// // your code here
2810 /// } else {
2811 /// i += 1;
2812 /// }
2813 /// }
2814 ///
2815 /// # assert_eq!(vec, vec![1, 4, 5]);
2816 /// ```
2817 ///
2818 /// But `drain_filter` is easier to use. `drain_filter` is also more efficient,
2819 /// because it can backshift the elements of the array in bulk.
2820 ///
2821 /// Note that `drain_filter` also lets you mutate every element in the filter closure,
2822 /// regardless of whether you choose to keep or remove it.
2823 ///
2824 /// # Examples
2825 ///
2826 /// Splitting an array into evens and odds, reusing the original allocation:
2827 ///
2828 /// ```
2829 /// #![feature(drain_filter)]
2830 /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
2831 ///
2832 /// let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<Vec<_>>();
2833 /// let odds = numbers;
2834 ///
2835 /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
2836 /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
2837 /// ```
2838 #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
drain_filter<F>(&mut self, filter: F) -> DrainFilter<'_, T, F, A> where F: FnMut(&mut T) -> bool,2839 pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<'_, T, F, A>
2840 where
2841 F: FnMut(&mut T) -> bool,
2842 {
2843 let old_len = self.len();
2844
2845 // Guard against us getting leaked (leak amplification)
2846 unsafe {
2847 self.set_len(0);
2848 }
2849
2850 DrainFilter { vec: self, idx: 0, del: 0, old_len, pred: filter, panic_flag: false }
2851 }
2852 }
2853
2854 /// Extend implementation that copies elements out of references before pushing them onto the Vec.
2855 ///
2856 /// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
2857 /// append the entire slice at once.
2858 ///
2859 /// [`copy_from_slice`]: slice::copy_from_slice
2860 #[cfg(not(no_global_oom_handling))]
2861 #[stable(feature = "extend_ref", since = "1.2.0")]
2862 impl<'a, T: Copy + 'a, A: Allocator + 'a> Extend<&'a T> for Vec<T, A> {
extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I)2863 fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
2864 self.spec_extend(iter.into_iter())
2865 }
2866
2867 #[inline]
extend_one(&mut self, &item: &'a T)2868 fn extend_one(&mut self, &item: &'a T) {
2869 self.push(item);
2870 }
2871
2872 #[inline]
extend_reserve(&mut self, additional: usize)2873 fn extend_reserve(&mut self, additional: usize) {
2874 self.reserve(additional);
2875 }
2876 }
2877
2878 /// Implements comparison of vectors, [lexicographically](core::cmp::Ord#lexicographical-comparison).
2879 #[stable(feature = "rust1", since = "1.0.0")]
2880 impl<T: PartialOrd, A: Allocator> PartialOrd for Vec<T, A> {
2881 #[inline]
partial_cmp(&self, other: &Self) -> Option<Ordering>2882 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
2883 PartialOrd::partial_cmp(&**self, &**other)
2884 }
2885 }
2886
2887 #[stable(feature = "rust1", since = "1.0.0")]
2888 impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
2889
2890 /// Implements ordering of vectors, [lexicographically](core::cmp::Ord#lexicographical-comparison).
2891 #[stable(feature = "rust1", since = "1.0.0")]
2892 impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
2893 #[inline]
cmp(&self, other: &Self) -> Ordering2894 fn cmp(&self, other: &Self) -> Ordering {
2895 Ord::cmp(&**self, &**other)
2896 }
2897 }
2898
2899 #[stable(feature = "rust1", since = "1.0.0")]
2900 unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
drop(&mut self)2901 fn drop(&mut self) {
2902 unsafe {
2903 // use drop for [T]
2904 // use a raw slice to refer to the elements of the vector as weakest necessary type;
2905 // could avoid questions of validity in certain cases
2906 ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
2907 }
2908 // RawVec handles deallocation
2909 }
2910 }
2911
2912 #[stable(feature = "rust1", since = "1.0.0")]
2913 #[rustc_const_unstable(feature = "const_default_impls", issue = "87864")]
2914 impl<T> const Default for Vec<T> {
2915 /// Creates an empty `Vec<T>`.
default() -> Vec<T>2916 fn default() -> Vec<T> {
2917 Vec::new()
2918 }
2919 }
2920
2921 #[stable(feature = "rust1", since = "1.0.0")]
2922 impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result2923 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2924 fmt::Debug::fmt(&**self, f)
2925 }
2926 }
2927
2928 #[stable(feature = "rust1", since = "1.0.0")]
2929 impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
as_ref(&self) -> &Vec<T, A>2930 fn as_ref(&self) -> &Vec<T, A> {
2931 self
2932 }
2933 }
2934
2935 #[stable(feature = "vec_as_mut", since = "1.5.0")]
2936 impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
as_mut(&mut self) -> &mut Vec<T, A>2937 fn as_mut(&mut self) -> &mut Vec<T, A> {
2938 self
2939 }
2940 }
2941
2942 #[stable(feature = "rust1", since = "1.0.0")]
2943 impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
as_ref(&self) -> &[T]2944 fn as_ref(&self) -> &[T] {
2945 self
2946 }
2947 }
2948
2949 #[stable(feature = "vec_as_mut", since = "1.5.0")]
2950 impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
as_mut(&mut self) -> &mut [T]2951 fn as_mut(&mut self) -> &mut [T] {
2952 self
2953 }
2954 }
2955
2956 #[cfg(not(no_global_oom_handling))]
2957 #[stable(feature = "rust1", since = "1.0.0")]
2958 impl<T: Clone> From<&[T]> for Vec<T> {
2959 /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
2960 ///
2961 /// # Examples
2962 ///
2963 /// ```
2964 /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
2965 /// ```
2966 #[cfg(not(test))]
from(s: &[T]) -> Vec<T>2967 fn from(s: &[T]) -> Vec<T> {
2968 s.to_vec()
2969 }
2970 #[cfg(test)]
from(s: &[T]) -> Vec<T>2971 fn from(s: &[T]) -> Vec<T> {
2972 crate::slice::to_vec(s, Global)
2973 }
2974 }
2975
2976 #[cfg(not(no_global_oom_handling))]
2977 #[stable(feature = "vec_from_mut", since = "1.19.0")]
2978 impl<T: Clone> From<&mut [T]> for Vec<T> {
2979 /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
2980 ///
2981 /// # Examples
2982 ///
2983 /// ```
2984 /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
2985 /// ```
2986 #[cfg(not(test))]
from(s: &mut [T]) -> Vec<T>2987 fn from(s: &mut [T]) -> Vec<T> {
2988 s.to_vec()
2989 }
2990 #[cfg(test)]
from(s: &mut [T]) -> Vec<T>2991 fn from(s: &mut [T]) -> Vec<T> {
2992 crate::slice::to_vec(s, Global)
2993 }
2994 }
2995
2996 #[cfg(not(no_global_oom_handling))]
2997 #[stable(feature = "vec_from_array", since = "1.44.0")]
2998 impl<T, const N: usize> From<[T; N]> for Vec<T> {
2999 /// Allocate a `Vec<T>` and move `s`'s items into it.
3000 ///
3001 /// # Examples
3002 ///
3003 /// ```
3004 /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
3005 /// ```
3006 #[cfg(not(test))]
from(s: [T; N]) -> Vec<T>3007 fn from(s: [T; N]) -> Vec<T> {
3008 <[T]>::into_vec(box s)
3009 }
3010
3011 #[cfg(test)]
from(s: [T; N]) -> Vec<T>3012 fn from(s: [T; N]) -> Vec<T> {
3013 crate::slice::into_vec(box s)
3014 }
3015 }
3016
3017 #[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
3018 impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
3019 where
3020 [T]: ToOwned<Owned = Vec<T>>,
3021 {
3022 /// Convert a clone-on-write slice into a vector.
3023 ///
3024 /// If `s` already owns a `Vec<T>`, it will be returned directly.
3025 /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
3026 /// filled by cloning `s`'s items into it.
3027 ///
3028 /// # Examples
3029 ///
3030 /// ```
3031 /// # use std::borrow::Cow;
3032 /// let o: Cow<[i32]> = Cow::Owned(vec![1, 2, 3]);
3033 /// let b: Cow<[i32]> = Cow::Borrowed(&[1, 2, 3]);
3034 /// assert_eq!(Vec::from(o), Vec::from(b));
3035 /// ```
from(s: Cow<'a, [T]>) -> Vec<T>3036 fn from(s: Cow<'a, [T]>) -> Vec<T> {
3037 s.into_owned()
3038 }
3039 }
3040
3041 // note: test pulls in libstd, which causes errors here
3042 #[cfg(not(test))]
3043 #[stable(feature = "vec_from_box", since = "1.18.0")]
3044 impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
3045 /// Convert a boxed slice into a vector by transferring ownership of
3046 /// the existing heap allocation.
3047 ///
3048 /// # Examples
3049 ///
3050 /// ```
3051 /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
3052 /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
3053 /// ```
from(s: Box<[T], A>) -> Self3054 fn from(s: Box<[T], A>) -> Self {
3055 s.into_vec()
3056 }
3057 }
3058
3059 // note: test pulls in libstd, which causes errors here
3060 #[cfg(not(no_global_oom_handling))]
3061 #[cfg(not(test))]
3062 #[stable(feature = "box_from_vec", since = "1.20.0")]
3063 impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
3064 /// Convert a vector into a boxed slice.
3065 ///
3066 /// If `v` has excess capacity, its items will be moved into a
3067 /// newly-allocated buffer with exactly the right capacity.
3068 ///
3069 /// # Examples
3070 ///
3071 /// ```
3072 /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
3073 /// ```
from(v: Vec<T, A>) -> Self3074 fn from(v: Vec<T, A>) -> Self {
3075 v.into_boxed_slice()
3076 }
3077 }
3078
3079 #[cfg(not(no_global_oom_handling))]
3080 #[stable(feature = "rust1", since = "1.0.0")]
3081 impl From<&str> for Vec<u8> {
3082 /// Allocate a `Vec<u8>` and fill it with a UTF-8 string.
3083 ///
3084 /// # Examples
3085 ///
3086 /// ```
3087 /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
3088 /// ```
from(s: &str) -> Vec<u8>3089 fn from(s: &str) -> Vec<u8> {
3090 From::from(s.as_bytes())
3091 }
3092 }
3093
3094 #[stable(feature = "array_try_from_vec", since = "1.48.0")]
3095 impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
3096 type Error = Vec<T, A>;
3097
3098 /// Gets the entire contents of the `Vec<T>` as an array,
3099 /// if its size exactly matches that of the requested array.
3100 ///
3101 /// # Examples
3102 ///
3103 /// ```
3104 /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
3105 /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
3106 /// ```
3107 ///
3108 /// If the length doesn't match, the input comes back in `Err`:
3109 /// ```
3110 /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
3111 /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
3112 /// ```
3113 ///
3114 /// If you're fine with just getting a prefix of the `Vec<T>`,
3115 /// you can call [`.truncate(N)`](Vec::truncate) first.
3116 /// ```
3117 /// let mut v = String::from("hello world").into_bytes();
3118 /// v.sort();
3119 /// v.truncate(2);
3120 /// let [a, b]: [_; 2] = v.try_into().unwrap();
3121 /// assert_eq!(a, b' ');
3122 /// assert_eq!(b, b'd');
3123 /// ```
try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>>3124 fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
3125 if vec.len() != N {
3126 return Err(vec);
3127 }
3128
3129 // SAFETY: `.set_len(0)` is always sound.
3130 unsafe { vec.set_len(0) };
3131
3132 // SAFETY: A `Vec`'s pointer is always aligned properly, and
3133 // the alignment the array needs is the same as the items.
3134 // We checked earlier that we have sufficient items.
3135 // The items will not double-drop as the `set_len`
3136 // tells the `Vec` not to also drop them.
3137 let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
3138 Ok(array)
3139 }
3140 }
3141