1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2022 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24 /**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82 enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102 static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121 static int reg_num_devs_support_basehint;
122
123 /*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
137
get_cfg80211_regdom(void)138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140 return rcu_dereference_rtnl(cfg80211_regdomain);
141 }
142
143 /*
144 * Returns the regulatory domain associated with the wiphy.
145 *
146 * Requires any of RTNL, wiphy mutex or RCU protection.
147 */
get_wiphy_regdom(struct wiphy * wiphy)148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150 return rcu_dereference_check(wiphy->regd,
151 lockdep_is_held(&wiphy->mtx) ||
152 lockdep_rtnl_is_held());
153 }
154 EXPORT_SYMBOL(get_wiphy_regdom);
155
reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157 {
158 switch (dfs_region) {
159 case NL80211_DFS_UNSET:
160 return "unset";
161 case NL80211_DFS_FCC:
162 return "FCC";
163 case NL80211_DFS_ETSI:
164 return "ETSI";
165 case NL80211_DFS_JP:
166 return "JP";
167 }
168 return "Unknown";
169 }
170
reg_get_dfs_region(struct wiphy * wiphy)171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172 {
173 const struct ieee80211_regdomain *regd = NULL;
174 const struct ieee80211_regdomain *wiphy_regd = NULL;
175 enum nl80211_dfs_regions dfs_region;
176
177 rcu_read_lock();
178 regd = get_cfg80211_regdom();
179 dfs_region = regd->dfs_region;
180
181 if (!wiphy)
182 goto out;
183
184 wiphy_regd = get_wiphy_regdom(wiphy);
185 if (!wiphy_regd)
186 goto out;
187
188 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 dfs_region = wiphy_regd->dfs_region;
190 goto out;
191 }
192
193 if (wiphy_regd->dfs_region == regd->dfs_region)
194 goto out;
195
196 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 dev_name(&wiphy->dev),
198 reg_dfs_region_str(wiphy_regd->dfs_region),
199 reg_dfs_region_str(regd->dfs_region));
200
201 out:
202 rcu_read_unlock();
203
204 return dfs_region;
205 }
206
rcu_free_regdom(const struct ieee80211_regdomain * r)207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208 {
209 if (!r)
210 return;
211 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212 }
213
get_last_request(void)214 static struct regulatory_request *get_last_request(void)
215 {
216 return rcu_dereference_rtnl(last_request);
217 }
218
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
222
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
229
230 struct reg_beacon {
231 struct list_head list;
232 struct ieee80211_channel chan;
233 };
234
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
240
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
243 .n_reg_rules = 8,
244 .alpha2 = "00",
245 .reg_rules = {
246 /* IEEE 802.11b/g, channels 1..11 */
247 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 /* IEEE 802.11b/g, channels 12..13. */
249 REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 /* IEEE 802.11 channel 14 - Only JP enables
252 * this and for 802.11b only */
253 REG_RULE(2484-10, 2484+10, 20, 6, 20,
254 NL80211_RRF_NO_IR |
255 NL80211_RRF_NO_OFDM),
256 /* IEEE 802.11a, channel 36..48 */
257 REG_RULE(5180-10, 5240+10, 80, 6, 20,
258 NL80211_RRF_NO_IR |
259 NL80211_RRF_AUTO_BW),
260
261 /* IEEE 802.11a, channel 52..64 - DFS required */
262 REG_RULE(5260-10, 5320+10, 80, 6, 20,
263 NL80211_RRF_NO_IR |
264 NL80211_RRF_AUTO_BW |
265 NL80211_RRF_DFS),
266
267 /* IEEE 802.11a, channel 100..144 - DFS required */
268 REG_RULE(5500-10, 5720+10, 160, 6, 20,
269 NL80211_RRF_NO_IR |
270 NL80211_RRF_DFS),
271
272 /* IEEE 802.11a, channel 149..165 */
273 REG_RULE(5745-10, 5825+10, 80, 6, 20,
274 NL80211_RRF_NO_IR),
275
276 /* IEEE 802.11ad (60GHz), channels 1..3 */
277 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278 }
279 };
280
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
283 &world_regdom;
284
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
288
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291
reg_free_request(struct regulatory_request * request)292 static void reg_free_request(struct regulatory_request *request)
293 {
294 if (request == &core_request_world)
295 return;
296
297 if (request != get_last_request())
298 kfree(request);
299 }
300
reg_free_last_request(void)301 static void reg_free_last_request(void)
302 {
303 struct regulatory_request *lr = get_last_request();
304
305 if (lr != &core_request_world && lr)
306 kfree_rcu(lr, rcu_head);
307 }
308
reg_update_last_request(struct regulatory_request * request)309 static void reg_update_last_request(struct regulatory_request *request)
310 {
311 struct regulatory_request *lr;
312
313 lr = get_last_request();
314 if (lr == request)
315 return;
316
317 reg_free_last_request();
318 rcu_assign_pointer(last_request, request);
319 }
320
reset_regdomains(bool full_reset,const struct ieee80211_regdomain * new_regdom)321 static void reset_regdomains(bool full_reset,
322 const struct ieee80211_regdomain *new_regdom)
323 {
324 const struct ieee80211_regdomain *r;
325
326 ASSERT_RTNL();
327
328 r = get_cfg80211_regdom();
329
330 /* avoid freeing static information or freeing something twice */
331 if (r == cfg80211_world_regdom)
332 r = NULL;
333 if (cfg80211_world_regdom == &world_regdom)
334 cfg80211_world_regdom = NULL;
335 if (r == &world_regdom)
336 r = NULL;
337
338 rcu_free_regdom(r);
339 rcu_free_regdom(cfg80211_world_regdom);
340
341 cfg80211_world_regdom = &world_regdom;
342 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343
344 if (!full_reset)
345 return;
346
347 reg_update_last_request(&core_request_world);
348 }
349
350 /*
351 * Dynamic world regulatory domain requested by the wireless
352 * core upon initialization
353 */
update_world_regdomain(const struct ieee80211_regdomain * rd)354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355 {
356 struct regulatory_request *lr;
357
358 lr = get_last_request();
359
360 WARN_ON(!lr);
361
362 reset_regdomains(false, rd);
363
364 cfg80211_world_regdom = rd;
365 }
366
is_world_regdom(const char * alpha2)367 bool is_world_regdom(const char *alpha2)
368 {
369 if (!alpha2)
370 return false;
371 return alpha2[0] == '0' && alpha2[1] == '0';
372 }
373
is_alpha2_set(const char * alpha2)374 static bool is_alpha2_set(const char *alpha2)
375 {
376 if (!alpha2)
377 return false;
378 return alpha2[0] && alpha2[1];
379 }
380
is_unknown_alpha2(const char * alpha2)381 static bool is_unknown_alpha2(const char *alpha2)
382 {
383 if (!alpha2)
384 return false;
385 /*
386 * Special case where regulatory domain was built by driver
387 * but a specific alpha2 cannot be determined
388 */
389 return alpha2[0] == '9' && alpha2[1] == '9';
390 }
391
is_intersected_alpha2(const char * alpha2)392 static bool is_intersected_alpha2(const char *alpha2)
393 {
394 if (!alpha2)
395 return false;
396 /*
397 * Special case where regulatory domain is the
398 * result of an intersection between two regulatory domain
399 * structures
400 */
401 return alpha2[0] == '9' && alpha2[1] == '8';
402 }
403
is_an_alpha2(const char * alpha2)404 static bool is_an_alpha2(const char *alpha2)
405 {
406 if (!alpha2)
407 return false;
408 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409 }
410
alpha2_equal(const char * alpha2_x,const char * alpha2_y)411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412 {
413 if (!alpha2_x || !alpha2_y)
414 return false;
415 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416 }
417
regdom_changes(const char * alpha2)418 static bool regdom_changes(const char *alpha2)
419 {
420 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421
422 if (!r)
423 return true;
424 return !alpha2_equal(r->alpha2, alpha2);
425 }
426
427 /*
428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430 * has ever been issued.
431 */
is_user_regdom_saved(void)432 static bool is_user_regdom_saved(void)
433 {
434 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435 return false;
436
437 /* This would indicate a mistake on the design */
438 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439 "Unexpected user alpha2: %c%c\n",
440 user_alpha2[0], user_alpha2[1]))
441 return false;
442
443 return true;
444 }
445
446 static const struct ieee80211_regdomain *
reg_copy_regd(const struct ieee80211_regdomain * src_regd)447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448 {
449 struct ieee80211_regdomain *regd;
450 unsigned int i;
451
452 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453 GFP_KERNEL);
454 if (!regd)
455 return ERR_PTR(-ENOMEM);
456
457 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458
459 for (i = 0; i < src_regd->n_reg_rules; i++)
460 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
461 sizeof(struct ieee80211_reg_rule));
462
463 return regd;
464 }
465
cfg80211_save_user_regdom(const struct ieee80211_regdomain * rd)466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467 {
468 ASSERT_RTNL();
469
470 if (!IS_ERR(cfg80211_user_regdom))
471 kfree(cfg80211_user_regdom);
472 cfg80211_user_regdom = reg_copy_regd(rd);
473 }
474
475 struct reg_regdb_apply_request {
476 struct list_head list;
477 const struct ieee80211_regdomain *regdom;
478 };
479
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
482
reg_regdb_apply(struct work_struct * work)483 static void reg_regdb_apply(struct work_struct *work)
484 {
485 struct reg_regdb_apply_request *request;
486
487 rtnl_lock();
488
489 mutex_lock(®_regdb_apply_mutex);
490 while (!list_empty(®_regdb_apply_list)) {
491 request = list_first_entry(®_regdb_apply_list,
492 struct reg_regdb_apply_request,
493 list);
494 list_del(&request->list);
495
496 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497 kfree(request);
498 }
499 mutex_unlock(®_regdb_apply_mutex);
500
501 rtnl_unlock();
502 }
503
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505
reg_schedule_apply(const struct ieee80211_regdomain * regdom)506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507 {
508 struct reg_regdb_apply_request *request;
509
510 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511 if (!request) {
512 kfree(regdom);
513 return -ENOMEM;
514 }
515
516 request->regdom = regdom;
517
518 mutex_lock(®_regdb_apply_mutex);
519 list_add_tail(&request->list, ®_regdb_apply_list);
520 mutex_unlock(®_regdb_apply_mutex);
521
522 schedule_work(®_regdb_work);
523 return 0;
524 }
525
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529
530 static u32 reg_crda_timeouts;
531
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
crda_timeout_work(struct work_struct * work)535 static void crda_timeout_work(struct work_struct *work)
536 {
537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 rtnl_lock();
539 reg_crda_timeouts++;
540 restore_regulatory_settings(true, false);
541 rtnl_unlock();
542 }
543
cancel_crda_timeout(void)544 static void cancel_crda_timeout(void)
545 {
546 cancel_delayed_work(&crda_timeout);
547 }
548
cancel_crda_timeout_sync(void)549 static void cancel_crda_timeout_sync(void)
550 {
551 cancel_delayed_work_sync(&crda_timeout);
552 }
553
reset_crda_timeouts(void)554 static void reset_crda_timeouts(void)
555 {
556 reg_crda_timeouts = 0;
557 }
558
559 /*
560 * This lets us keep regulatory code which is updated on a regulatory
561 * basis in userspace.
562 */
call_crda(const char * alpha2)563 static int call_crda(const char *alpha2)
564 {
565 char country[12];
566 char *env[] = { country, NULL };
567 int ret;
568
569 snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 alpha2[0], alpha2[1]);
571
572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 return -EINVAL;
575 }
576
577 if (!is_world_regdom((char *) alpha2))
578 pr_debug("Calling CRDA for country: %c%c\n",
579 alpha2[0], alpha2[1]);
580 else
581 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
584 if (ret)
585 return ret;
586
587 queue_delayed_work(system_power_efficient_wq,
588 &crda_timeout, msecs_to_jiffies(3142));
589 return 0;
590 }
591 #else
cancel_crda_timeout(void)592 static inline void cancel_crda_timeout(void) {}
cancel_crda_timeout_sync(void)593 static inline void cancel_crda_timeout_sync(void) {}
reset_crda_timeouts(void)594 static inline void reset_crda_timeouts(void) {}
call_crda(const char * alpha2)595 static inline int call_crda(const char *alpha2)
596 {
597 return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
603
604 struct fwdb_country {
605 u8 alpha2[2];
606 __be16 coll_ptr;
607 /* this struct cannot be extended */
608 } __packed __aligned(4);
609
610 struct fwdb_collection {
611 u8 len;
612 u8 n_rules;
613 u8 dfs_region;
614 /* no optional data yet */
615 /* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
617
618 enum fwdb_flags {
619 FWDB_FLAG_NO_OFDM = BIT(0),
620 FWDB_FLAG_NO_OUTDOOR = BIT(1),
621 FWDB_FLAG_DFS = BIT(2),
622 FWDB_FLAG_NO_IR = BIT(3),
623 FWDB_FLAG_AUTO_BW = BIT(4),
624 };
625
626 struct fwdb_wmm_ac {
627 u8 ecw;
628 u8 aifsn;
629 __be16 cot;
630 } __packed;
631
632 struct fwdb_wmm_rule {
633 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635 } __packed;
636
637 struct fwdb_rule {
638 u8 len;
639 u8 flags;
640 __be16 max_eirp;
641 __be32 start, end, max_bw;
642 /* start of optional data */
643 __be16 cac_timeout;
644 __be16 wmm_ptr;
645 } __packed __aligned(4);
646
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
649
650 struct fwdb_header {
651 __be32 magic;
652 __be32 version;
653 struct fwdb_country country[];
654 } __packed __aligned(4);
655
ecw2cw(int ecw)656 static int ecw2cw(int ecw)
657 {
658 return (1 << ecw) - 1;
659 }
660
valid_wmm(struct fwdb_wmm_rule * rule)661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
662 {
663 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664 int i;
665
666 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669 u8 aifsn = ac[i].aifsn;
670
671 if (cw_min >= cw_max)
672 return false;
673
674 if (aifsn < 1)
675 return false;
676 }
677
678 return true;
679 }
680
valid_rule(const u8 * data,unsigned int size,u16 rule_ptr)681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682 {
683 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684
685 if ((u8 *)rule + sizeof(rule->len) > data + size)
686 return false;
687
688 /* mandatory fields */
689 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690 return false;
691 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693 struct fwdb_wmm_rule *wmm;
694
695 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696 return false;
697
698 wmm = (void *)(data + wmm_ptr);
699
700 if (!valid_wmm(wmm))
701 return false;
702 }
703 return true;
704 }
705
valid_country(const u8 * data,unsigned int size,const struct fwdb_country * country)706 static bool valid_country(const u8 *data, unsigned int size,
707 const struct fwdb_country *country)
708 {
709 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710 struct fwdb_collection *coll = (void *)(data + ptr);
711 __be16 *rules_ptr;
712 unsigned int i;
713
714 /* make sure we can read len/n_rules */
715 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716 return false;
717
718 /* make sure base struct and all rules fit */
719 if ((u8 *)coll + ALIGN(coll->len, 2) +
720 (coll->n_rules * 2) > data + size)
721 return false;
722
723 /* mandatory fields must exist */
724 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725 return false;
726
727 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728
729 for (i = 0; i < coll->n_rules; i++) {
730 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731
732 if (!valid_rule(data, size, rule_ptr))
733 return false;
734 }
735
736 return true;
737 }
738
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 static struct key *builtin_regdb_keys;
741
load_keys_from_buffer(const u8 * p,unsigned int buflen)742 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
743 {
744 const u8 *end = p + buflen;
745 size_t plen;
746 key_ref_t key;
747
748 while (p < end) {
749 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
750 * than 256 bytes in size.
751 */
752 if (end - p < 4)
753 goto dodgy_cert;
754 if (p[0] != 0x30 &&
755 p[1] != 0x82)
756 goto dodgy_cert;
757 plen = (p[2] << 8) | p[3];
758 plen += 4;
759 if (plen > end - p)
760 goto dodgy_cert;
761
762 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
763 "asymmetric", NULL, p, plen,
764 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765 KEY_USR_VIEW | KEY_USR_READ),
766 KEY_ALLOC_NOT_IN_QUOTA |
767 KEY_ALLOC_BUILT_IN |
768 KEY_ALLOC_BYPASS_RESTRICTION);
769 if (IS_ERR(key)) {
770 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
771 PTR_ERR(key));
772 } else {
773 pr_notice("Loaded X.509 cert '%s'\n",
774 key_ref_to_ptr(key)->description);
775 key_ref_put(key);
776 }
777 p += plen;
778 }
779
780 return;
781
782 dodgy_cert:
783 pr_err("Problem parsing in-kernel X.509 certificate list\n");
784 }
785
load_builtin_regdb_keys(void)786 static int __init load_builtin_regdb_keys(void)
787 {
788 builtin_regdb_keys =
789 keyring_alloc(".builtin_regdb_keys",
790 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
791 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
792 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
793 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
794 if (IS_ERR(builtin_regdb_keys))
795 return PTR_ERR(builtin_regdb_keys);
796
797 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
798
799 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
800 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
801 #endif
802 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
803 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
804 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
805 #endif
806
807 return 0;
808 }
809
810 MODULE_FIRMWARE("regulatory.db.p7s");
811
regdb_has_valid_signature(const u8 * data,unsigned int size)812 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
813 {
814 const struct firmware *sig;
815 bool result;
816
817 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev))
818 return false;
819
820 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
821 builtin_regdb_keys,
822 VERIFYING_UNSPECIFIED_SIGNATURE,
823 NULL, NULL) == 0;
824
825 release_firmware(sig);
826
827 return result;
828 }
829
free_regdb_keyring(void)830 static void free_regdb_keyring(void)
831 {
832 key_put(builtin_regdb_keys);
833 }
834 #else
load_builtin_regdb_keys(void)835 static int load_builtin_regdb_keys(void)
836 {
837 return 0;
838 }
839
regdb_has_valid_signature(const u8 * data,unsigned int size)840 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
841 {
842 return true;
843 }
844
free_regdb_keyring(void)845 static void free_regdb_keyring(void)
846 {
847 }
848 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
849
valid_regdb(const u8 * data,unsigned int size)850 static bool valid_regdb(const u8 *data, unsigned int size)
851 {
852 const struct fwdb_header *hdr = (void *)data;
853 const struct fwdb_country *country;
854
855 if (size < sizeof(*hdr))
856 return false;
857
858 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
859 return false;
860
861 if (hdr->version != cpu_to_be32(FWDB_VERSION))
862 return false;
863
864 if (!regdb_has_valid_signature(data, size))
865 return false;
866
867 country = &hdr->country[0];
868 while ((u8 *)(country + 1) <= data + size) {
869 if (!country->coll_ptr)
870 break;
871 if (!valid_country(data, size, country))
872 return false;
873 country++;
874 }
875
876 return true;
877 }
878
set_wmm_rule(const struct fwdb_header * db,const struct fwdb_country * country,const struct fwdb_rule * rule,struct ieee80211_reg_rule * rrule)879 static void set_wmm_rule(const struct fwdb_header *db,
880 const struct fwdb_country *country,
881 const struct fwdb_rule *rule,
882 struct ieee80211_reg_rule *rrule)
883 {
884 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
885 struct fwdb_wmm_rule *wmm;
886 unsigned int i, wmm_ptr;
887
888 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
889 wmm = (void *)((u8 *)db + wmm_ptr);
890
891 if (!valid_wmm(wmm)) {
892 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
893 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
894 country->alpha2[0], country->alpha2[1]);
895 return;
896 }
897
898 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
899 wmm_rule->client[i].cw_min =
900 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
901 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
902 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
903 wmm_rule->client[i].cot =
904 1000 * be16_to_cpu(wmm->client[i].cot);
905 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
906 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
907 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
908 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
909 }
910
911 rrule->has_wmm = true;
912 }
913
__regdb_query_wmm(const struct fwdb_header * db,const struct fwdb_country * country,int freq,struct ieee80211_reg_rule * rrule)914 static int __regdb_query_wmm(const struct fwdb_header *db,
915 const struct fwdb_country *country, int freq,
916 struct ieee80211_reg_rule *rrule)
917 {
918 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
919 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
920 int i;
921
922 for (i = 0; i < coll->n_rules; i++) {
923 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
924 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
925 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
926
927 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
928 continue;
929
930 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
931 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
932 set_wmm_rule(db, country, rule, rrule);
933 return 0;
934 }
935 }
936
937 return -ENODATA;
938 }
939
reg_query_regdb_wmm(char * alpha2,int freq,struct ieee80211_reg_rule * rule)940 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
941 {
942 const struct fwdb_header *hdr = regdb;
943 const struct fwdb_country *country;
944
945 if (!regdb)
946 return -ENODATA;
947
948 if (IS_ERR(regdb))
949 return PTR_ERR(regdb);
950
951 country = &hdr->country[0];
952 while (country->coll_ptr) {
953 if (alpha2_equal(alpha2, country->alpha2))
954 return __regdb_query_wmm(regdb, country, freq, rule);
955
956 country++;
957 }
958
959 return -ENODATA;
960 }
961 EXPORT_SYMBOL(reg_query_regdb_wmm);
962
regdb_query_country(const struct fwdb_header * db,const struct fwdb_country * country)963 static int regdb_query_country(const struct fwdb_header *db,
964 const struct fwdb_country *country)
965 {
966 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
967 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
968 struct ieee80211_regdomain *regdom;
969 unsigned int i;
970
971 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
972 GFP_KERNEL);
973 if (!regdom)
974 return -ENOMEM;
975
976 regdom->n_reg_rules = coll->n_rules;
977 regdom->alpha2[0] = country->alpha2[0];
978 regdom->alpha2[1] = country->alpha2[1];
979 regdom->dfs_region = coll->dfs_region;
980
981 for (i = 0; i < regdom->n_reg_rules; i++) {
982 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
983 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
984 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
985 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i];
986
987 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
988 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
989 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
990
991 rrule->power_rule.max_antenna_gain = 0;
992 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
993
994 rrule->flags = 0;
995 if (rule->flags & FWDB_FLAG_NO_OFDM)
996 rrule->flags |= NL80211_RRF_NO_OFDM;
997 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
998 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
999 if (rule->flags & FWDB_FLAG_DFS)
1000 rrule->flags |= NL80211_RRF_DFS;
1001 if (rule->flags & FWDB_FLAG_NO_IR)
1002 rrule->flags |= NL80211_RRF_NO_IR;
1003 if (rule->flags & FWDB_FLAG_AUTO_BW)
1004 rrule->flags |= NL80211_RRF_AUTO_BW;
1005
1006 rrule->dfs_cac_ms = 0;
1007
1008 /* handle optional data */
1009 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1010 rrule->dfs_cac_ms =
1011 1000 * be16_to_cpu(rule->cac_timeout);
1012 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1013 set_wmm_rule(db, country, rule, rrule);
1014 }
1015
1016 return reg_schedule_apply(regdom);
1017 }
1018
query_regdb(const char * alpha2)1019 static int query_regdb(const char *alpha2)
1020 {
1021 const struct fwdb_header *hdr = regdb;
1022 const struct fwdb_country *country;
1023
1024 ASSERT_RTNL();
1025
1026 if (IS_ERR(regdb))
1027 return PTR_ERR(regdb);
1028
1029 country = &hdr->country[0];
1030 while (country->coll_ptr) {
1031 if (alpha2_equal(alpha2, country->alpha2))
1032 return regdb_query_country(regdb, country);
1033 country++;
1034 }
1035
1036 return -ENODATA;
1037 }
1038
regdb_fw_cb(const struct firmware * fw,void * context)1039 static void regdb_fw_cb(const struct firmware *fw, void *context)
1040 {
1041 int set_error = 0;
1042 bool restore = true;
1043 void *db;
1044
1045 if (!fw) {
1046 pr_info("failed to load regulatory.db\n");
1047 set_error = -ENODATA;
1048 } else if (!valid_regdb(fw->data, fw->size)) {
1049 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1050 set_error = -EINVAL;
1051 }
1052
1053 rtnl_lock();
1054 if (regdb && !IS_ERR(regdb)) {
1055 /* negative case - a bug
1056 * positive case - can happen due to race in case of multiple cb's in
1057 * queue, due to usage of asynchronous callback
1058 *
1059 * Either case, just restore and free new db.
1060 */
1061 } else if (set_error) {
1062 regdb = ERR_PTR(set_error);
1063 } else if (fw) {
1064 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1065 if (db) {
1066 regdb = db;
1067 restore = context && query_regdb(context);
1068 } else {
1069 restore = true;
1070 }
1071 }
1072
1073 if (restore)
1074 restore_regulatory_settings(true, false);
1075
1076 rtnl_unlock();
1077
1078 kfree(context);
1079
1080 release_firmware(fw);
1081 }
1082
1083 MODULE_FIRMWARE("regulatory.db");
1084
query_regdb_file(const char * alpha2)1085 static int query_regdb_file(const char *alpha2)
1086 {
1087 int err;
1088
1089 ASSERT_RTNL();
1090
1091 if (regdb)
1092 return query_regdb(alpha2);
1093
1094 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1095 if (!alpha2)
1096 return -ENOMEM;
1097
1098 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1099 ®_pdev->dev, GFP_KERNEL,
1100 (void *)alpha2, regdb_fw_cb);
1101 if (err)
1102 kfree(alpha2);
1103
1104 return err;
1105 }
1106
reg_reload_regdb(void)1107 int reg_reload_regdb(void)
1108 {
1109 const struct firmware *fw;
1110 void *db;
1111 int err;
1112 const struct ieee80211_regdomain *current_regdomain;
1113 struct regulatory_request *request;
1114
1115 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev);
1116 if (err)
1117 return err;
1118
1119 if (!valid_regdb(fw->data, fw->size)) {
1120 err = -ENODATA;
1121 goto out;
1122 }
1123
1124 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1125 if (!db) {
1126 err = -ENOMEM;
1127 goto out;
1128 }
1129
1130 rtnl_lock();
1131 if (!IS_ERR_OR_NULL(regdb))
1132 kfree(regdb);
1133 regdb = db;
1134
1135 /* reset regulatory domain */
1136 current_regdomain = get_cfg80211_regdom();
1137
1138 request = kzalloc(sizeof(*request), GFP_KERNEL);
1139 if (!request) {
1140 err = -ENOMEM;
1141 goto out_unlock;
1142 }
1143
1144 request->wiphy_idx = WIPHY_IDX_INVALID;
1145 request->alpha2[0] = current_regdomain->alpha2[0];
1146 request->alpha2[1] = current_regdomain->alpha2[1];
1147 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1148 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1149
1150 reg_process_hint(request);
1151
1152 out_unlock:
1153 rtnl_unlock();
1154 out:
1155 release_firmware(fw);
1156 return err;
1157 }
1158
reg_query_database(struct regulatory_request * request)1159 static bool reg_query_database(struct regulatory_request *request)
1160 {
1161 if (query_regdb_file(request->alpha2) == 0)
1162 return true;
1163
1164 if (call_crda(request->alpha2) == 0)
1165 return true;
1166
1167 return false;
1168 }
1169
reg_is_valid_request(const char * alpha2)1170 bool reg_is_valid_request(const char *alpha2)
1171 {
1172 struct regulatory_request *lr = get_last_request();
1173
1174 if (!lr || lr->processed)
1175 return false;
1176
1177 return alpha2_equal(lr->alpha2, alpha2);
1178 }
1179
reg_get_regdomain(struct wiphy * wiphy)1180 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1181 {
1182 struct regulatory_request *lr = get_last_request();
1183
1184 /*
1185 * Follow the driver's regulatory domain, if present, unless a country
1186 * IE has been processed or a user wants to help complaince further
1187 */
1188 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1189 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1190 wiphy->regd)
1191 return get_wiphy_regdom(wiphy);
1192
1193 return get_cfg80211_regdom();
1194 }
1195
1196 static unsigned int
reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1197 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1198 const struct ieee80211_reg_rule *rule)
1199 {
1200 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1201 const struct ieee80211_freq_range *freq_range_tmp;
1202 const struct ieee80211_reg_rule *tmp;
1203 u32 start_freq, end_freq, idx, no;
1204
1205 for (idx = 0; idx < rd->n_reg_rules; idx++)
1206 if (rule == &rd->reg_rules[idx])
1207 break;
1208
1209 if (idx == rd->n_reg_rules)
1210 return 0;
1211
1212 /* get start_freq */
1213 no = idx;
1214
1215 while (no) {
1216 tmp = &rd->reg_rules[--no];
1217 freq_range_tmp = &tmp->freq_range;
1218
1219 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1220 break;
1221
1222 freq_range = freq_range_tmp;
1223 }
1224
1225 start_freq = freq_range->start_freq_khz;
1226
1227 /* get end_freq */
1228 freq_range = &rule->freq_range;
1229 no = idx;
1230
1231 while (no < rd->n_reg_rules - 1) {
1232 tmp = &rd->reg_rules[++no];
1233 freq_range_tmp = &tmp->freq_range;
1234
1235 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1236 break;
1237
1238 freq_range = freq_range_tmp;
1239 }
1240
1241 end_freq = freq_range->end_freq_khz;
1242
1243 return end_freq - start_freq;
1244 }
1245
reg_get_max_bandwidth(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1246 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1247 const struct ieee80211_reg_rule *rule)
1248 {
1249 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1250
1251 if (rule->flags & NL80211_RRF_NO_320MHZ)
1252 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1253 if (rule->flags & NL80211_RRF_NO_160MHZ)
1254 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1255 if (rule->flags & NL80211_RRF_NO_80MHZ)
1256 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1257
1258 /*
1259 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1260 * are not allowed.
1261 */
1262 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1263 rule->flags & NL80211_RRF_NO_HT40PLUS)
1264 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1265
1266 return bw;
1267 }
1268
1269 /* Sanity check on a regulatory rule */
is_valid_reg_rule(const struct ieee80211_reg_rule * rule)1270 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1271 {
1272 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1273 u32 freq_diff;
1274
1275 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1276 return false;
1277
1278 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1279 return false;
1280
1281 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1282
1283 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1284 freq_range->max_bandwidth_khz > freq_diff)
1285 return false;
1286
1287 return true;
1288 }
1289
is_valid_rd(const struct ieee80211_regdomain * rd)1290 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1291 {
1292 const struct ieee80211_reg_rule *reg_rule = NULL;
1293 unsigned int i;
1294
1295 if (!rd->n_reg_rules)
1296 return false;
1297
1298 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1299 return false;
1300
1301 for (i = 0; i < rd->n_reg_rules; i++) {
1302 reg_rule = &rd->reg_rules[i];
1303 if (!is_valid_reg_rule(reg_rule))
1304 return false;
1305 }
1306
1307 return true;
1308 }
1309
1310 /**
1311 * freq_in_rule_band - tells us if a frequency is in a frequency band
1312 * @freq_range: frequency rule we want to query
1313 * @freq_khz: frequency we are inquiring about
1314 *
1315 * This lets us know if a specific frequency rule is or is not relevant to
1316 * a specific frequency's band. Bands are device specific and artificial
1317 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1318 * however it is safe for now to assume that a frequency rule should not be
1319 * part of a frequency's band if the start freq or end freq are off by more
1320 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1321 * 60 GHz band.
1322 * This resolution can be lowered and should be considered as we add
1323 * regulatory rule support for other "bands".
1324 **/
freq_in_rule_band(const struct ieee80211_freq_range * freq_range,u32 freq_khz)1325 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1326 u32 freq_khz)
1327 {
1328 #define ONE_GHZ_IN_KHZ 1000000
1329 /*
1330 * From 802.11ad: directional multi-gigabit (DMG):
1331 * Pertaining to operation in a frequency band containing a channel
1332 * with the Channel starting frequency above 45 GHz.
1333 */
1334 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1335 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1336 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1337 return true;
1338 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1339 return true;
1340 return false;
1341 #undef ONE_GHZ_IN_KHZ
1342 }
1343
1344 /*
1345 * Later on we can perhaps use the more restrictive DFS
1346 * region but we don't have information for that yet so
1347 * for now simply disallow conflicts.
1348 */
1349 static enum nl80211_dfs_regions
reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,const enum nl80211_dfs_regions dfs_region2)1350 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1351 const enum nl80211_dfs_regions dfs_region2)
1352 {
1353 if (dfs_region1 != dfs_region2)
1354 return NL80211_DFS_UNSET;
1355 return dfs_region1;
1356 }
1357
reg_wmm_rules_intersect(const struct ieee80211_wmm_ac * wmm_ac1,const struct ieee80211_wmm_ac * wmm_ac2,struct ieee80211_wmm_ac * intersect)1358 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1359 const struct ieee80211_wmm_ac *wmm_ac2,
1360 struct ieee80211_wmm_ac *intersect)
1361 {
1362 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1363 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1364 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1365 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1366 }
1367
1368 /*
1369 * Helper for regdom_intersect(), this does the real
1370 * mathematical intersection fun
1371 */
reg_rules_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2,const struct ieee80211_reg_rule * rule1,const struct ieee80211_reg_rule * rule2,struct ieee80211_reg_rule * intersected_rule)1372 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1373 const struct ieee80211_regdomain *rd2,
1374 const struct ieee80211_reg_rule *rule1,
1375 const struct ieee80211_reg_rule *rule2,
1376 struct ieee80211_reg_rule *intersected_rule)
1377 {
1378 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1379 struct ieee80211_freq_range *freq_range;
1380 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1381 struct ieee80211_power_rule *power_rule;
1382 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1383 struct ieee80211_wmm_rule *wmm_rule;
1384 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1385
1386 freq_range1 = &rule1->freq_range;
1387 freq_range2 = &rule2->freq_range;
1388 freq_range = &intersected_rule->freq_range;
1389
1390 power_rule1 = &rule1->power_rule;
1391 power_rule2 = &rule2->power_rule;
1392 power_rule = &intersected_rule->power_rule;
1393
1394 wmm_rule1 = &rule1->wmm_rule;
1395 wmm_rule2 = &rule2->wmm_rule;
1396 wmm_rule = &intersected_rule->wmm_rule;
1397
1398 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1399 freq_range2->start_freq_khz);
1400 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1401 freq_range2->end_freq_khz);
1402
1403 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1404 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1405
1406 if (rule1->flags & NL80211_RRF_AUTO_BW)
1407 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1408 if (rule2->flags & NL80211_RRF_AUTO_BW)
1409 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1410
1411 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1412
1413 intersected_rule->flags = rule1->flags | rule2->flags;
1414
1415 /*
1416 * In case NL80211_RRF_AUTO_BW requested for both rules
1417 * set AUTO_BW in intersected rule also. Next we will
1418 * calculate BW correctly in handle_channel function.
1419 * In other case remove AUTO_BW flag while we calculate
1420 * maximum bandwidth correctly and auto calculation is
1421 * not required.
1422 */
1423 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1424 (rule2->flags & NL80211_RRF_AUTO_BW))
1425 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1426 else
1427 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1428
1429 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1430 if (freq_range->max_bandwidth_khz > freq_diff)
1431 freq_range->max_bandwidth_khz = freq_diff;
1432
1433 power_rule->max_eirp = min(power_rule1->max_eirp,
1434 power_rule2->max_eirp);
1435 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1436 power_rule2->max_antenna_gain);
1437
1438 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1439 rule2->dfs_cac_ms);
1440
1441 if (rule1->has_wmm && rule2->has_wmm) {
1442 u8 ac;
1443
1444 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1445 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1446 &wmm_rule2->client[ac],
1447 &wmm_rule->client[ac]);
1448 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1449 &wmm_rule2->ap[ac],
1450 &wmm_rule->ap[ac]);
1451 }
1452
1453 intersected_rule->has_wmm = true;
1454 } else if (rule1->has_wmm) {
1455 *wmm_rule = *wmm_rule1;
1456 intersected_rule->has_wmm = true;
1457 } else if (rule2->has_wmm) {
1458 *wmm_rule = *wmm_rule2;
1459 intersected_rule->has_wmm = true;
1460 } else {
1461 intersected_rule->has_wmm = false;
1462 }
1463
1464 if (!is_valid_reg_rule(intersected_rule))
1465 return -EINVAL;
1466
1467 return 0;
1468 }
1469
1470 /* check whether old rule contains new rule */
rule_contains(struct ieee80211_reg_rule * r1,struct ieee80211_reg_rule * r2)1471 static bool rule_contains(struct ieee80211_reg_rule *r1,
1472 struct ieee80211_reg_rule *r2)
1473 {
1474 /* for simplicity, currently consider only same flags */
1475 if (r1->flags != r2->flags)
1476 return false;
1477
1478 /* verify r1 is more restrictive */
1479 if ((r1->power_rule.max_antenna_gain >
1480 r2->power_rule.max_antenna_gain) ||
1481 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1482 return false;
1483
1484 /* make sure r2's range is contained within r1 */
1485 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1486 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1487 return false;
1488
1489 /* and finally verify that r1.max_bw >= r2.max_bw */
1490 if (r1->freq_range.max_bandwidth_khz <
1491 r2->freq_range.max_bandwidth_khz)
1492 return false;
1493
1494 return true;
1495 }
1496
1497 /* add or extend current rules. do nothing if rule is already contained */
add_rule(struct ieee80211_reg_rule * rule,struct ieee80211_reg_rule * reg_rules,u32 * n_rules)1498 static void add_rule(struct ieee80211_reg_rule *rule,
1499 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1500 {
1501 struct ieee80211_reg_rule *tmp_rule;
1502 int i;
1503
1504 for (i = 0; i < *n_rules; i++) {
1505 tmp_rule = ®_rules[i];
1506 /* rule is already contained - do nothing */
1507 if (rule_contains(tmp_rule, rule))
1508 return;
1509
1510 /* extend rule if possible */
1511 if (rule_contains(rule, tmp_rule)) {
1512 memcpy(tmp_rule, rule, sizeof(*rule));
1513 return;
1514 }
1515 }
1516
1517 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
1518 (*n_rules)++;
1519 }
1520
1521 /**
1522 * regdom_intersect - do the intersection between two regulatory domains
1523 * @rd1: first regulatory domain
1524 * @rd2: second regulatory domain
1525 *
1526 * Use this function to get the intersection between two regulatory domains.
1527 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1528 * as no one single alpha2 can represent this regulatory domain.
1529 *
1530 * Returns a pointer to the regulatory domain structure which will hold the
1531 * resulting intersection of rules between rd1 and rd2. We will
1532 * kzalloc() this structure for you.
1533 */
1534 static struct ieee80211_regdomain *
regdom_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2)1535 regdom_intersect(const struct ieee80211_regdomain *rd1,
1536 const struct ieee80211_regdomain *rd2)
1537 {
1538 int r;
1539 unsigned int x, y;
1540 unsigned int num_rules = 0;
1541 const struct ieee80211_reg_rule *rule1, *rule2;
1542 struct ieee80211_reg_rule intersected_rule;
1543 struct ieee80211_regdomain *rd;
1544
1545 if (!rd1 || !rd2)
1546 return NULL;
1547
1548 /*
1549 * First we get a count of the rules we'll need, then we actually
1550 * build them. This is to so we can malloc() and free() a
1551 * regdomain once. The reason we use reg_rules_intersect() here
1552 * is it will return -EINVAL if the rule computed makes no sense.
1553 * All rules that do check out OK are valid.
1554 */
1555
1556 for (x = 0; x < rd1->n_reg_rules; x++) {
1557 rule1 = &rd1->reg_rules[x];
1558 for (y = 0; y < rd2->n_reg_rules; y++) {
1559 rule2 = &rd2->reg_rules[y];
1560 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1561 &intersected_rule))
1562 num_rules++;
1563 }
1564 }
1565
1566 if (!num_rules)
1567 return NULL;
1568
1569 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1570 if (!rd)
1571 return NULL;
1572
1573 for (x = 0; x < rd1->n_reg_rules; x++) {
1574 rule1 = &rd1->reg_rules[x];
1575 for (y = 0; y < rd2->n_reg_rules; y++) {
1576 rule2 = &rd2->reg_rules[y];
1577 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1578 &intersected_rule);
1579 /*
1580 * No need to memset here the intersected rule here as
1581 * we're not using the stack anymore
1582 */
1583 if (r)
1584 continue;
1585
1586 add_rule(&intersected_rule, rd->reg_rules,
1587 &rd->n_reg_rules);
1588 }
1589 }
1590
1591 rd->alpha2[0] = '9';
1592 rd->alpha2[1] = '8';
1593 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1594 rd2->dfs_region);
1595
1596 return rd;
1597 }
1598
1599 /*
1600 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1601 * want to just have the channel structure use these
1602 */
map_regdom_flags(u32 rd_flags)1603 static u32 map_regdom_flags(u32 rd_flags)
1604 {
1605 u32 channel_flags = 0;
1606 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1607 channel_flags |= IEEE80211_CHAN_NO_IR;
1608 if (rd_flags & NL80211_RRF_DFS)
1609 channel_flags |= IEEE80211_CHAN_RADAR;
1610 if (rd_flags & NL80211_RRF_NO_OFDM)
1611 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1612 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1613 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1614 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1615 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1616 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1617 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1618 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1619 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1620 if (rd_flags & NL80211_RRF_NO_80MHZ)
1621 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1622 if (rd_flags & NL80211_RRF_NO_160MHZ)
1623 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1624 if (rd_flags & NL80211_RRF_NO_HE)
1625 channel_flags |= IEEE80211_CHAN_NO_HE;
1626 if (rd_flags & NL80211_RRF_NO_320MHZ)
1627 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1628 return channel_flags;
1629 }
1630
1631 static const struct ieee80211_reg_rule *
freq_reg_info_regd(u32 center_freq,const struct ieee80211_regdomain * regd,u32 bw)1632 freq_reg_info_regd(u32 center_freq,
1633 const struct ieee80211_regdomain *regd, u32 bw)
1634 {
1635 int i;
1636 bool band_rule_found = false;
1637 bool bw_fits = false;
1638
1639 if (!regd)
1640 return ERR_PTR(-EINVAL);
1641
1642 for (i = 0; i < regd->n_reg_rules; i++) {
1643 const struct ieee80211_reg_rule *rr;
1644 const struct ieee80211_freq_range *fr = NULL;
1645
1646 rr = ®d->reg_rules[i];
1647 fr = &rr->freq_range;
1648
1649 /*
1650 * We only need to know if one frequency rule was
1651 * in center_freq's band, that's enough, so let's
1652 * not overwrite it once found
1653 */
1654 if (!band_rule_found)
1655 band_rule_found = freq_in_rule_band(fr, center_freq);
1656
1657 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1658
1659 if (band_rule_found && bw_fits)
1660 return rr;
1661 }
1662
1663 if (!band_rule_found)
1664 return ERR_PTR(-ERANGE);
1665
1666 return ERR_PTR(-EINVAL);
1667 }
1668
1669 static const struct ieee80211_reg_rule *
__freq_reg_info(struct wiphy * wiphy,u32 center_freq,u32 min_bw)1670 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1671 {
1672 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1673 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1674 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1675 int i = ARRAY_SIZE(bws) - 1;
1676 u32 bw;
1677
1678 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1679 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1680 if (!IS_ERR(reg_rule))
1681 return reg_rule;
1682 }
1683
1684 return reg_rule;
1685 }
1686
freq_reg_info(struct wiphy * wiphy,u32 center_freq)1687 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1688 u32 center_freq)
1689 {
1690 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1691
1692 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1693 }
1694 EXPORT_SYMBOL(freq_reg_info);
1695
reg_initiator_name(enum nl80211_reg_initiator initiator)1696 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1697 {
1698 switch (initiator) {
1699 case NL80211_REGDOM_SET_BY_CORE:
1700 return "core";
1701 case NL80211_REGDOM_SET_BY_USER:
1702 return "user";
1703 case NL80211_REGDOM_SET_BY_DRIVER:
1704 return "driver";
1705 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1706 return "country element";
1707 default:
1708 WARN_ON(1);
1709 return "bug";
1710 }
1711 }
1712 EXPORT_SYMBOL(reg_initiator_name);
1713
reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain * regd,const struct ieee80211_reg_rule * reg_rule,const struct ieee80211_channel * chan)1714 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1715 const struct ieee80211_reg_rule *reg_rule,
1716 const struct ieee80211_channel *chan)
1717 {
1718 const struct ieee80211_freq_range *freq_range = NULL;
1719 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1720 bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1721
1722 freq_range = ®_rule->freq_range;
1723
1724 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1725 center_freq_khz = ieee80211_channel_to_khz(chan);
1726 /* Check if auto calculation requested */
1727 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1728 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1729
1730 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1731 if (!cfg80211_does_bw_fit_range(freq_range,
1732 center_freq_khz,
1733 MHZ_TO_KHZ(10)))
1734 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1735 if (!cfg80211_does_bw_fit_range(freq_range,
1736 center_freq_khz,
1737 MHZ_TO_KHZ(20)))
1738 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1739
1740 if (is_s1g) {
1741 /* S1G is strict about non overlapping channels. We can
1742 * calculate which bandwidth is allowed per channel by finding
1743 * the largest bandwidth which cleanly divides the freq_range.
1744 */
1745 int edge_offset;
1746 int ch_bw = max_bandwidth_khz;
1747
1748 while (ch_bw) {
1749 edge_offset = (center_freq_khz - ch_bw / 2) -
1750 freq_range->start_freq_khz;
1751 if (edge_offset % ch_bw == 0) {
1752 switch (KHZ_TO_MHZ(ch_bw)) {
1753 case 1:
1754 bw_flags |= IEEE80211_CHAN_1MHZ;
1755 break;
1756 case 2:
1757 bw_flags |= IEEE80211_CHAN_2MHZ;
1758 break;
1759 case 4:
1760 bw_flags |= IEEE80211_CHAN_4MHZ;
1761 break;
1762 case 8:
1763 bw_flags |= IEEE80211_CHAN_8MHZ;
1764 break;
1765 case 16:
1766 bw_flags |= IEEE80211_CHAN_16MHZ;
1767 break;
1768 default:
1769 /* If we got here, no bandwidths fit on
1770 * this frequency, ie. band edge.
1771 */
1772 bw_flags |= IEEE80211_CHAN_DISABLED;
1773 break;
1774 }
1775 break;
1776 }
1777 ch_bw /= 2;
1778 }
1779 } else {
1780 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1781 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1782 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1783 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1784 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1785 bw_flags |= IEEE80211_CHAN_NO_HT40;
1786 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1787 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1788 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1789 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1790 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1791 bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1792 }
1793 return bw_flags;
1794 }
1795
handle_channel_single_rule(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * reg_rule)1796 static void handle_channel_single_rule(struct wiphy *wiphy,
1797 enum nl80211_reg_initiator initiator,
1798 struct ieee80211_channel *chan,
1799 u32 flags,
1800 struct regulatory_request *lr,
1801 struct wiphy *request_wiphy,
1802 const struct ieee80211_reg_rule *reg_rule)
1803 {
1804 u32 bw_flags = 0;
1805 const struct ieee80211_power_rule *power_rule = NULL;
1806 const struct ieee80211_regdomain *regd;
1807
1808 regd = reg_get_regdomain(wiphy);
1809
1810 power_rule = ®_rule->power_rule;
1811 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1812
1813 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1814 request_wiphy && request_wiphy == wiphy &&
1815 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1816 /*
1817 * This guarantees the driver's requested regulatory domain
1818 * will always be used as a base for further regulatory
1819 * settings
1820 */
1821 chan->flags = chan->orig_flags =
1822 map_regdom_flags(reg_rule->flags) | bw_flags;
1823 chan->max_antenna_gain = chan->orig_mag =
1824 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1825 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1826 (int) MBM_TO_DBM(power_rule->max_eirp);
1827
1828 if (chan->flags & IEEE80211_CHAN_RADAR) {
1829 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1830 if (reg_rule->dfs_cac_ms)
1831 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1832 }
1833
1834 return;
1835 }
1836
1837 chan->dfs_state = NL80211_DFS_USABLE;
1838 chan->dfs_state_entered = jiffies;
1839
1840 chan->beacon_found = false;
1841 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1842 chan->max_antenna_gain =
1843 min_t(int, chan->orig_mag,
1844 MBI_TO_DBI(power_rule->max_antenna_gain));
1845 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1846
1847 if (chan->flags & IEEE80211_CHAN_RADAR) {
1848 if (reg_rule->dfs_cac_ms)
1849 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1850 else
1851 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1852 }
1853
1854 if (chan->orig_mpwr) {
1855 /*
1856 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1857 * will always follow the passed country IE power settings.
1858 */
1859 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1860 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1861 chan->max_power = chan->max_reg_power;
1862 else
1863 chan->max_power = min(chan->orig_mpwr,
1864 chan->max_reg_power);
1865 } else
1866 chan->max_power = chan->max_reg_power;
1867 }
1868
handle_channel_adjacent_rules(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * rrule1,const struct ieee80211_reg_rule * rrule2,struct ieee80211_freq_range * comb_range)1869 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1870 enum nl80211_reg_initiator initiator,
1871 struct ieee80211_channel *chan,
1872 u32 flags,
1873 struct regulatory_request *lr,
1874 struct wiphy *request_wiphy,
1875 const struct ieee80211_reg_rule *rrule1,
1876 const struct ieee80211_reg_rule *rrule2,
1877 struct ieee80211_freq_range *comb_range)
1878 {
1879 u32 bw_flags1 = 0;
1880 u32 bw_flags2 = 0;
1881 const struct ieee80211_power_rule *power_rule1 = NULL;
1882 const struct ieee80211_power_rule *power_rule2 = NULL;
1883 const struct ieee80211_regdomain *regd;
1884
1885 regd = reg_get_regdomain(wiphy);
1886
1887 power_rule1 = &rrule1->power_rule;
1888 power_rule2 = &rrule2->power_rule;
1889 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1890 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1891
1892 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1893 request_wiphy && request_wiphy == wiphy &&
1894 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1895 /* This guarantees the driver's requested regulatory domain
1896 * will always be used as a base for further regulatory
1897 * settings
1898 */
1899 chan->flags =
1900 map_regdom_flags(rrule1->flags) |
1901 map_regdom_flags(rrule2->flags) |
1902 bw_flags1 |
1903 bw_flags2;
1904 chan->orig_flags = chan->flags;
1905 chan->max_antenna_gain =
1906 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1907 MBI_TO_DBI(power_rule2->max_antenna_gain));
1908 chan->orig_mag = chan->max_antenna_gain;
1909 chan->max_reg_power =
1910 min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1911 MBM_TO_DBM(power_rule2->max_eirp));
1912 chan->max_power = chan->max_reg_power;
1913 chan->orig_mpwr = chan->max_reg_power;
1914
1915 if (chan->flags & IEEE80211_CHAN_RADAR) {
1916 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1917 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1918 chan->dfs_cac_ms = max_t(unsigned int,
1919 rrule1->dfs_cac_ms,
1920 rrule2->dfs_cac_ms);
1921 }
1922
1923 return;
1924 }
1925
1926 chan->dfs_state = NL80211_DFS_USABLE;
1927 chan->dfs_state_entered = jiffies;
1928
1929 chan->beacon_found = false;
1930 chan->flags = flags | bw_flags1 | bw_flags2 |
1931 map_regdom_flags(rrule1->flags) |
1932 map_regdom_flags(rrule2->flags);
1933
1934 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1935 * (otherwise no adj. rule case), recheck therefore
1936 */
1937 if (cfg80211_does_bw_fit_range(comb_range,
1938 ieee80211_channel_to_khz(chan),
1939 MHZ_TO_KHZ(10)))
1940 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1941 if (cfg80211_does_bw_fit_range(comb_range,
1942 ieee80211_channel_to_khz(chan),
1943 MHZ_TO_KHZ(20)))
1944 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1945
1946 chan->max_antenna_gain =
1947 min_t(int, chan->orig_mag,
1948 min_t(int,
1949 MBI_TO_DBI(power_rule1->max_antenna_gain),
1950 MBI_TO_DBI(power_rule2->max_antenna_gain)));
1951 chan->max_reg_power = min_t(int,
1952 MBM_TO_DBM(power_rule1->max_eirp),
1953 MBM_TO_DBM(power_rule2->max_eirp));
1954
1955 if (chan->flags & IEEE80211_CHAN_RADAR) {
1956 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1957 chan->dfs_cac_ms = max_t(unsigned int,
1958 rrule1->dfs_cac_ms,
1959 rrule2->dfs_cac_ms);
1960 else
1961 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1962 }
1963
1964 if (chan->orig_mpwr) {
1965 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1966 * will always follow the passed country IE power settings.
1967 */
1968 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1969 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1970 chan->max_power = chan->max_reg_power;
1971 else
1972 chan->max_power = min(chan->orig_mpwr,
1973 chan->max_reg_power);
1974 } else {
1975 chan->max_power = chan->max_reg_power;
1976 }
1977 }
1978
1979 /* Note that right now we assume the desired channel bandwidth
1980 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1981 * per channel, the primary and the extension channel).
1982 */
handle_channel(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan)1983 static void handle_channel(struct wiphy *wiphy,
1984 enum nl80211_reg_initiator initiator,
1985 struct ieee80211_channel *chan)
1986 {
1987 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1988 struct regulatory_request *lr = get_last_request();
1989 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1990 const struct ieee80211_reg_rule *rrule = NULL;
1991 const struct ieee80211_reg_rule *rrule1 = NULL;
1992 const struct ieee80211_reg_rule *rrule2 = NULL;
1993
1994 u32 flags = chan->orig_flags;
1995
1996 rrule = freq_reg_info(wiphy, orig_chan_freq);
1997 if (IS_ERR(rrule)) {
1998 /* check for adjacent match, therefore get rules for
1999 * chan - 20 MHz and chan + 20 MHz and test
2000 * if reg rules are adjacent
2001 */
2002 rrule1 = freq_reg_info(wiphy,
2003 orig_chan_freq - MHZ_TO_KHZ(20));
2004 rrule2 = freq_reg_info(wiphy,
2005 orig_chan_freq + MHZ_TO_KHZ(20));
2006 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
2007 struct ieee80211_freq_range comb_range;
2008
2009 if (rrule1->freq_range.end_freq_khz !=
2010 rrule2->freq_range.start_freq_khz)
2011 goto disable_chan;
2012
2013 comb_range.start_freq_khz =
2014 rrule1->freq_range.start_freq_khz;
2015 comb_range.end_freq_khz =
2016 rrule2->freq_range.end_freq_khz;
2017 comb_range.max_bandwidth_khz =
2018 min_t(u32,
2019 rrule1->freq_range.max_bandwidth_khz,
2020 rrule2->freq_range.max_bandwidth_khz);
2021
2022 if (!cfg80211_does_bw_fit_range(&comb_range,
2023 orig_chan_freq,
2024 MHZ_TO_KHZ(20)))
2025 goto disable_chan;
2026
2027 handle_channel_adjacent_rules(wiphy, initiator, chan,
2028 flags, lr, request_wiphy,
2029 rrule1, rrule2,
2030 &comb_range);
2031 return;
2032 }
2033
2034 disable_chan:
2035 /* We will disable all channels that do not match our
2036 * received regulatory rule unless the hint is coming
2037 * from a Country IE and the Country IE had no information
2038 * about a band. The IEEE 802.11 spec allows for an AP
2039 * to send only a subset of the regulatory rules allowed,
2040 * so an AP in the US that only supports 2.4 GHz may only send
2041 * a country IE with information for the 2.4 GHz band
2042 * while 5 GHz is still supported.
2043 */
2044 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2045 PTR_ERR(rrule) == -ERANGE)
2046 return;
2047
2048 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2049 request_wiphy && request_wiphy == wiphy &&
2050 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2051 pr_debug("Disabling freq %d.%03d MHz for good\n",
2052 chan->center_freq, chan->freq_offset);
2053 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2054 chan->flags = chan->orig_flags;
2055 } else {
2056 pr_debug("Disabling freq %d.%03d MHz\n",
2057 chan->center_freq, chan->freq_offset);
2058 chan->flags |= IEEE80211_CHAN_DISABLED;
2059 }
2060 return;
2061 }
2062
2063 handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2064 request_wiphy, rrule);
2065 }
2066
handle_band(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_supported_band * sband)2067 static void handle_band(struct wiphy *wiphy,
2068 enum nl80211_reg_initiator initiator,
2069 struct ieee80211_supported_band *sband)
2070 {
2071 unsigned int i;
2072
2073 if (!sband)
2074 return;
2075
2076 for (i = 0; i < sband->n_channels; i++)
2077 handle_channel(wiphy, initiator, &sband->channels[i]);
2078 }
2079
reg_request_cell_base(struct regulatory_request * request)2080 static bool reg_request_cell_base(struct regulatory_request *request)
2081 {
2082 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2083 return false;
2084 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2085 }
2086
reg_last_request_cell_base(void)2087 bool reg_last_request_cell_base(void)
2088 {
2089 return reg_request_cell_base(get_last_request());
2090 }
2091
2092 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2093 /* Core specific check */
2094 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2095 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2096 {
2097 struct regulatory_request *lr = get_last_request();
2098
2099 if (!reg_num_devs_support_basehint)
2100 return REG_REQ_IGNORE;
2101
2102 if (reg_request_cell_base(lr) &&
2103 !regdom_changes(pending_request->alpha2))
2104 return REG_REQ_ALREADY_SET;
2105
2106 return REG_REQ_OK;
2107 }
2108
2109 /* Device specific check */
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2110 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2111 {
2112 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2113 }
2114 #else
2115 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2116 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2117 {
2118 return REG_REQ_IGNORE;
2119 }
2120
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2121 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2122 {
2123 return true;
2124 }
2125 #endif
2126
wiphy_strict_alpha2_regd(struct wiphy * wiphy)2127 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2128 {
2129 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2130 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2131 return true;
2132 return false;
2133 }
2134
ignore_reg_update(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2135 static bool ignore_reg_update(struct wiphy *wiphy,
2136 enum nl80211_reg_initiator initiator)
2137 {
2138 struct regulatory_request *lr = get_last_request();
2139
2140 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2141 return true;
2142
2143 if (!lr) {
2144 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2145 reg_initiator_name(initiator));
2146 return true;
2147 }
2148
2149 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2150 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2151 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2152 reg_initiator_name(initiator));
2153 return true;
2154 }
2155
2156 /*
2157 * wiphy->regd will be set once the device has its own
2158 * desired regulatory domain set
2159 */
2160 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2161 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2162 !is_world_regdom(lr->alpha2)) {
2163 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2164 reg_initiator_name(initiator));
2165 return true;
2166 }
2167
2168 if (reg_request_cell_base(lr))
2169 return reg_dev_ignore_cell_hint(wiphy);
2170
2171 return false;
2172 }
2173
reg_is_world_roaming(struct wiphy * wiphy)2174 static bool reg_is_world_roaming(struct wiphy *wiphy)
2175 {
2176 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2177 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2178 struct regulatory_request *lr = get_last_request();
2179
2180 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2181 return true;
2182
2183 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2184 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2185 return true;
2186
2187 return false;
2188 }
2189
handle_reg_beacon(struct wiphy * wiphy,unsigned int chan_idx,struct reg_beacon * reg_beacon)2190 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2191 struct reg_beacon *reg_beacon)
2192 {
2193 struct ieee80211_supported_band *sband;
2194 struct ieee80211_channel *chan;
2195 bool channel_changed = false;
2196 struct ieee80211_channel chan_before;
2197
2198 sband = wiphy->bands[reg_beacon->chan.band];
2199 chan = &sband->channels[chan_idx];
2200
2201 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan)))
2202 return;
2203
2204 if (chan->beacon_found)
2205 return;
2206
2207 chan->beacon_found = true;
2208
2209 if (!reg_is_world_roaming(wiphy))
2210 return;
2211
2212 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2213 return;
2214
2215 chan_before = *chan;
2216
2217 if (chan->flags & IEEE80211_CHAN_NO_IR) {
2218 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2219 channel_changed = true;
2220 }
2221
2222 if (channel_changed)
2223 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2224 }
2225
2226 /*
2227 * Called when a scan on a wiphy finds a beacon on
2228 * new channel
2229 */
wiphy_update_new_beacon(struct wiphy * wiphy,struct reg_beacon * reg_beacon)2230 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2231 struct reg_beacon *reg_beacon)
2232 {
2233 unsigned int i;
2234 struct ieee80211_supported_band *sband;
2235
2236 if (!wiphy->bands[reg_beacon->chan.band])
2237 return;
2238
2239 sband = wiphy->bands[reg_beacon->chan.band];
2240
2241 for (i = 0; i < sband->n_channels; i++)
2242 handle_reg_beacon(wiphy, i, reg_beacon);
2243 }
2244
2245 /*
2246 * Called upon reg changes or a new wiphy is added
2247 */
wiphy_update_beacon_reg(struct wiphy * wiphy)2248 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2249 {
2250 unsigned int i;
2251 struct ieee80211_supported_band *sband;
2252 struct reg_beacon *reg_beacon;
2253
2254 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
2255 if (!wiphy->bands[reg_beacon->chan.band])
2256 continue;
2257 sband = wiphy->bands[reg_beacon->chan.band];
2258 for (i = 0; i < sband->n_channels; i++)
2259 handle_reg_beacon(wiphy, i, reg_beacon);
2260 }
2261 }
2262
2263 /* Reap the advantages of previously found beacons */
reg_process_beacons(struct wiphy * wiphy)2264 static void reg_process_beacons(struct wiphy *wiphy)
2265 {
2266 /*
2267 * Means we are just firing up cfg80211, so no beacons would
2268 * have been processed yet.
2269 */
2270 if (!last_request)
2271 return;
2272 wiphy_update_beacon_reg(wiphy);
2273 }
2274
is_ht40_allowed(struct ieee80211_channel * chan)2275 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2276 {
2277 if (!chan)
2278 return false;
2279 if (chan->flags & IEEE80211_CHAN_DISABLED)
2280 return false;
2281 /* This would happen when regulatory rules disallow HT40 completely */
2282 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2283 return false;
2284 return true;
2285 }
2286
reg_process_ht_flags_channel(struct wiphy * wiphy,struct ieee80211_channel * channel)2287 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2288 struct ieee80211_channel *channel)
2289 {
2290 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2291 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2292 const struct ieee80211_regdomain *regd;
2293 unsigned int i;
2294 u32 flags;
2295
2296 if (!is_ht40_allowed(channel)) {
2297 channel->flags |= IEEE80211_CHAN_NO_HT40;
2298 return;
2299 }
2300
2301 /*
2302 * We need to ensure the extension channels exist to
2303 * be able to use HT40- or HT40+, this finds them (or not)
2304 */
2305 for (i = 0; i < sband->n_channels; i++) {
2306 struct ieee80211_channel *c = &sband->channels[i];
2307
2308 if (c->center_freq == (channel->center_freq - 20))
2309 channel_before = c;
2310 if (c->center_freq == (channel->center_freq + 20))
2311 channel_after = c;
2312 }
2313
2314 flags = 0;
2315 regd = get_wiphy_regdom(wiphy);
2316 if (regd) {
2317 const struct ieee80211_reg_rule *reg_rule =
2318 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2319 regd, MHZ_TO_KHZ(20));
2320
2321 if (!IS_ERR(reg_rule))
2322 flags = reg_rule->flags;
2323 }
2324
2325 /*
2326 * Please note that this assumes target bandwidth is 20 MHz,
2327 * if that ever changes we also need to change the below logic
2328 * to include that as well.
2329 */
2330 if (!is_ht40_allowed(channel_before) ||
2331 flags & NL80211_RRF_NO_HT40MINUS)
2332 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2333 else
2334 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2335
2336 if (!is_ht40_allowed(channel_after) ||
2337 flags & NL80211_RRF_NO_HT40PLUS)
2338 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2339 else
2340 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2341 }
2342
reg_process_ht_flags_band(struct wiphy * wiphy,struct ieee80211_supported_band * sband)2343 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2344 struct ieee80211_supported_band *sband)
2345 {
2346 unsigned int i;
2347
2348 if (!sband)
2349 return;
2350
2351 for (i = 0; i < sband->n_channels; i++)
2352 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2353 }
2354
reg_process_ht_flags(struct wiphy * wiphy)2355 static void reg_process_ht_flags(struct wiphy *wiphy)
2356 {
2357 enum nl80211_band band;
2358
2359 if (!wiphy)
2360 return;
2361
2362 for (band = 0; band < NUM_NL80211_BANDS; band++)
2363 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2364 }
2365
reg_call_notifier(struct wiphy * wiphy,struct regulatory_request * request)2366 static void reg_call_notifier(struct wiphy *wiphy,
2367 struct regulatory_request *request)
2368 {
2369 if (wiphy->reg_notifier)
2370 wiphy->reg_notifier(wiphy, request);
2371 }
2372
reg_wdev_chan_valid(struct wiphy * wiphy,struct wireless_dev * wdev)2373 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2374 {
2375 struct cfg80211_chan_def chandef = {};
2376 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2377 enum nl80211_iftype iftype;
2378 bool ret;
2379 int link;
2380
2381 wdev_lock(wdev);
2382 iftype = wdev->iftype;
2383
2384 /* make sure the interface is active */
2385 if (!wdev->netdev || !netif_running(wdev->netdev))
2386 goto wdev_inactive_unlock;
2387
2388 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2389 struct ieee80211_channel *chan;
2390
2391 if (!wdev->valid_links && link > 0)
2392 break;
2393 if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2394 continue;
2395 switch (iftype) {
2396 case NL80211_IFTYPE_AP:
2397 case NL80211_IFTYPE_P2P_GO:
2398 if (!wdev->links[link].ap.beacon_interval)
2399 continue;
2400 chandef = wdev->links[link].ap.chandef;
2401 break;
2402 case NL80211_IFTYPE_MESH_POINT:
2403 if (!wdev->u.mesh.beacon_interval)
2404 continue;
2405 chandef = wdev->u.mesh.chandef;
2406 break;
2407 case NL80211_IFTYPE_ADHOC:
2408 if (!wdev->u.ibss.ssid_len)
2409 continue;
2410 chandef = wdev->u.ibss.chandef;
2411 break;
2412 case NL80211_IFTYPE_STATION:
2413 case NL80211_IFTYPE_P2P_CLIENT:
2414 /* Maybe we could consider disabling that link only? */
2415 if (!wdev->links[link].client.current_bss)
2416 continue;
2417
2418 chan = wdev->links[link].client.current_bss->pub.channel;
2419 if (!chan)
2420 continue;
2421
2422 if (!rdev->ops->get_channel ||
2423 rdev_get_channel(rdev, wdev, link, &chandef))
2424 cfg80211_chandef_create(&chandef, chan,
2425 NL80211_CHAN_NO_HT);
2426 break;
2427 case NL80211_IFTYPE_MONITOR:
2428 case NL80211_IFTYPE_AP_VLAN:
2429 case NL80211_IFTYPE_P2P_DEVICE:
2430 /* no enforcement required */
2431 break;
2432 case NL80211_IFTYPE_OCB:
2433 if (!wdev->u.ocb.chandef.chan)
2434 continue;
2435 chandef = wdev->u.ocb.chandef;
2436 break;
2437 case NL80211_IFTYPE_NAN:
2438 /* we have no info, but NAN is also pretty universal */
2439 continue;
2440 default:
2441 /* others not implemented for now */
2442 WARN_ON_ONCE(1);
2443 break;
2444 }
2445
2446 wdev_unlock(wdev);
2447
2448 switch (iftype) {
2449 case NL80211_IFTYPE_AP:
2450 case NL80211_IFTYPE_P2P_GO:
2451 case NL80211_IFTYPE_ADHOC:
2452 case NL80211_IFTYPE_MESH_POINT:
2453 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2454 iftype);
2455 if (!ret)
2456 return ret;
2457 break;
2458 case NL80211_IFTYPE_STATION:
2459 case NL80211_IFTYPE_P2P_CLIENT:
2460 ret = cfg80211_chandef_usable(wiphy, &chandef,
2461 IEEE80211_CHAN_DISABLED);
2462 if (!ret)
2463 return ret;
2464 break;
2465 default:
2466 break;
2467 }
2468
2469 wdev_lock(wdev);
2470 }
2471
2472 wdev_unlock(wdev);
2473
2474 return true;
2475
2476 wdev_inactive_unlock:
2477 wdev_unlock(wdev);
2478 return true;
2479 }
2480
reg_leave_invalid_chans(struct wiphy * wiphy)2481 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2482 {
2483 struct wireless_dev *wdev;
2484 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2485
2486 wiphy_lock(wiphy);
2487 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2488 if (!reg_wdev_chan_valid(wiphy, wdev))
2489 cfg80211_leave(rdev, wdev);
2490 wiphy_unlock(wiphy);
2491 }
2492
reg_check_chans_work(struct work_struct * work)2493 static void reg_check_chans_work(struct work_struct *work)
2494 {
2495 struct cfg80211_registered_device *rdev;
2496
2497 pr_debug("Verifying active interfaces after reg change\n");
2498 rtnl_lock();
2499
2500 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2501 reg_leave_invalid_chans(&rdev->wiphy);
2502
2503 rtnl_unlock();
2504 }
2505
reg_check_channels(void)2506 static void reg_check_channels(void)
2507 {
2508 /*
2509 * Give usermode a chance to do something nicer (move to another
2510 * channel, orderly disconnection), before forcing a disconnection.
2511 */
2512 mod_delayed_work(system_power_efficient_wq,
2513 ®_check_chans,
2514 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2515 }
2516
wiphy_update_regulatory(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2517 static void wiphy_update_regulatory(struct wiphy *wiphy,
2518 enum nl80211_reg_initiator initiator)
2519 {
2520 enum nl80211_band band;
2521 struct regulatory_request *lr = get_last_request();
2522
2523 if (ignore_reg_update(wiphy, initiator)) {
2524 /*
2525 * Regulatory updates set by CORE are ignored for custom
2526 * regulatory cards. Let us notify the changes to the driver,
2527 * as some drivers used this to restore its orig_* reg domain.
2528 */
2529 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2530 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2531 !(wiphy->regulatory_flags &
2532 REGULATORY_WIPHY_SELF_MANAGED))
2533 reg_call_notifier(wiphy, lr);
2534 return;
2535 }
2536
2537 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2538
2539 for (band = 0; band < NUM_NL80211_BANDS; band++)
2540 handle_band(wiphy, initiator, wiphy->bands[band]);
2541
2542 reg_process_beacons(wiphy);
2543 reg_process_ht_flags(wiphy);
2544 reg_call_notifier(wiphy, lr);
2545 }
2546
update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)2547 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2548 {
2549 struct cfg80211_registered_device *rdev;
2550 struct wiphy *wiphy;
2551
2552 ASSERT_RTNL();
2553
2554 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2555 wiphy = &rdev->wiphy;
2556 wiphy_update_regulatory(wiphy, initiator);
2557 }
2558
2559 reg_check_channels();
2560 }
2561
handle_channel_custom(struct wiphy * wiphy,struct ieee80211_channel * chan,const struct ieee80211_regdomain * regd,u32 min_bw)2562 static void handle_channel_custom(struct wiphy *wiphy,
2563 struct ieee80211_channel *chan,
2564 const struct ieee80211_regdomain *regd,
2565 u32 min_bw)
2566 {
2567 u32 bw_flags = 0;
2568 const struct ieee80211_reg_rule *reg_rule = NULL;
2569 const struct ieee80211_power_rule *power_rule = NULL;
2570 u32 bw, center_freq_khz;
2571
2572 center_freq_khz = ieee80211_channel_to_khz(chan);
2573 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2574 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2575 if (!IS_ERR(reg_rule))
2576 break;
2577 }
2578
2579 if (IS_ERR_OR_NULL(reg_rule)) {
2580 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2581 chan->center_freq, chan->freq_offset);
2582 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2583 chan->flags |= IEEE80211_CHAN_DISABLED;
2584 } else {
2585 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2586 chan->flags = chan->orig_flags;
2587 }
2588 return;
2589 }
2590
2591 power_rule = ®_rule->power_rule;
2592 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2593
2594 chan->dfs_state_entered = jiffies;
2595 chan->dfs_state = NL80211_DFS_USABLE;
2596
2597 chan->beacon_found = false;
2598
2599 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2600 chan->flags = chan->orig_flags | bw_flags |
2601 map_regdom_flags(reg_rule->flags);
2602 else
2603 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2604
2605 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2606 chan->max_reg_power = chan->max_power =
2607 (int) MBM_TO_DBM(power_rule->max_eirp);
2608
2609 if (chan->flags & IEEE80211_CHAN_RADAR) {
2610 if (reg_rule->dfs_cac_ms)
2611 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2612 else
2613 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2614 }
2615
2616 chan->max_power = chan->max_reg_power;
2617 }
2618
handle_band_custom(struct wiphy * wiphy,struct ieee80211_supported_band * sband,const struct ieee80211_regdomain * regd)2619 static void handle_band_custom(struct wiphy *wiphy,
2620 struct ieee80211_supported_band *sband,
2621 const struct ieee80211_regdomain *regd)
2622 {
2623 unsigned int i;
2624
2625 if (!sband)
2626 return;
2627
2628 /*
2629 * We currently assume that you always want at least 20 MHz,
2630 * otherwise channel 12 might get enabled if this rule is
2631 * compatible to US, which permits 2402 - 2472 MHz.
2632 */
2633 for (i = 0; i < sband->n_channels; i++)
2634 handle_channel_custom(wiphy, &sband->channels[i], regd,
2635 MHZ_TO_KHZ(20));
2636 }
2637
2638 /* Used by drivers prior to wiphy registration */
wiphy_apply_custom_regulatory(struct wiphy * wiphy,const struct ieee80211_regdomain * regd)2639 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2640 const struct ieee80211_regdomain *regd)
2641 {
2642 const struct ieee80211_regdomain *new_regd, *tmp;
2643 enum nl80211_band band;
2644 unsigned int bands_set = 0;
2645
2646 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2647 "wiphy should have REGULATORY_CUSTOM_REG\n");
2648 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2649
2650 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2651 if (!wiphy->bands[band])
2652 continue;
2653 handle_band_custom(wiphy, wiphy->bands[band], regd);
2654 bands_set++;
2655 }
2656
2657 /*
2658 * no point in calling this if it won't have any effect
2659 * on your device's supported bands.
2660 */
2661 WARN_ON(!bands_set);
2662 new_regd = reg_copy_regd(regd);
2663 if (IS_ERR(new_regd))
2664 return;
2665
2666 rtnl_lock();
2667 wiphy_lock(wiphy);
2668
2669 tmp = get_wiphy_regdom(wiphy);
2670 rcu_assign_pointer(wiphy->regd, new_regd);
2671 rcu_free_regdom(tmp);
2672
2673 wiphy_unlock(wiphy);
2674 rtnl_unlock();
2675 }
2676 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2677
reg_set_request_processed(void)2678 static void reg_set_request_processed(void)
2679 {
2680 bool need_more_processing = false;
2681 struct regulatory_request *lr = get_last_request();
2682
2683 lr->processed = true;
2684
2685 spin_lock(®_requests_lock);
2686 if (!list_empty(®_requests_list))
2687 need_more_processing = true;
2688 spin_unlock(®_requests_lock);
2689
2690 cancel_crda_timeout();
2691
2692 if (need_more_processing)
2693 schedule_work(®_work);
2694 }
2695
2696 /**
2697 * reg_process_hint_core - process core regulatory requests
2698 * @core_request: a pending core regulatory request
2699 *
2700 * The wireless subsystem can use this function to process
2701 * a regulatory request issued by the regulatory core.
2702 */
2703 static enum reg_request_treatment
reg_process_hint_core(struct regulatory_request * core_request)2704 reg_process_hint_core(struct regulatory_request *core_request)
2705 {
2706 if (reg_query_database(core_request)) {
2707 core_request->intersect = false;
2708 core_request->processed = false;
2709 reg_update_last_request(core_request);
2710 return REG_REQ_OK;
2711 }
2712
2713 return REG_REQ_IGNORE;
2714 }
2715
2716 static enum reg_request_treatment
__reg_process_hint_user(struct regulatory_request * user_request)2717 __reg_process_hint_user(struct regulatory_request *user_request)
2718 {
2719 struct regulatory_request *lr = get_last_request();
2720
2721 if (reg_request_cell_base(user_request))
2722 return reg_ignore_cell_hint(user_request);
2723
2724 if (reg_request_cell_base(lr))
2725 return REG_REQ_IGNORE;
2726
2727 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2728 return REG_REQ_INTERSECT;
2729 /*
2730 * If the user knows better the user should set the regdom
2731 * to their country before the IE is picked up
2732 */
2733 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2734 lr->intersect)
2735 return REG_REQ_IGNORE;
2736 /*
2737 * Process user requests only after previous user/driver/core
2738 * requests have been processed
2739 */
2740 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2741 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2742 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2743 regdom_changes(lr->alpha2))
2744 return REG_REQ_IGNORE;
2745
2746 if (!regdom_changes(user_request->alpha2))
2747 return REG_REQ_ALREADY_SET;
2748
2749 return REG_REQ_OK;
2750 }
2751
2752 /**
2753 * reg_process_hint_user - process user regulatory requests
2754 * @user_request: a pending user regulatory request
2755 *
2756 * The wireless subsystem can use this function to process
2757 * a regulatory request initiated by userspace.
2758 */
2759 static enum reg_request_treatment
reg_process_hint_user(struct regulatory_request * user_request)2760 reg_process_hint_user(struct regulatory_request *user_request)
2761 {
2762 enum reg_request_treatment treatment;
2763
2764 treatment = __reg_process_hint_user(user_request);
2765 if (treatment == REG_REQ_IGNORE ||
2766 treatment == REG_REQ_ALREADY_SET)
2767 return REG_REQ_IGNORE;
2768
2769 user_request->intersect = treatment == REG_REQ_INTERSECT;
2770 user_request->processed = false;
2771
2772 if (reg_query_database(user_request)) {
2773 reg_update_last_request(user_request);
2774 user_alpha2[0] = user_request->alpha2[0];
2775 user_alpha2[1] = user_request->alpha2[1];
2776 return REG_REQ_OK;
2777 }
2778
2779 return REG_REQ_IGNORE;
2780 }
2781
2782 static enum reg_request_treatment
__reg_process_hint_driver(struct regulatory_request * driver_request)2783 __reg_process_hint_driver(struct regulatory_request *driver_request)
2784 {
2785 struct regulatory_request *lr = get_last_request();
2786
2787 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2788 if (regdom_changes(driver_request->alpha2))
2789 return REG_REQ_OK;
2790 return REG_REQ_ALREADY_SET;
2791 }
2792
2793 /*
2794 * This would happen if you unplug and plug your card
2795 * back in or if you add a new device for which the previously
2796 * loaded card also agrees on the regulatory domain.
2797 */
2798 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2799 !regdom_changes(driver_request->alpha2))
2800 return REG_REQ_ALREADY_SET;
2801
2802 return REG_REQ_INTERSECT;
2803 }
2804
2805 /**
2806 * reg_process_hint_driver - process driver regulatory requests
2807 * @wiphy: the wireless device for the regulatory request
2808 * @driver_request: a pending driver regulatory request
2809 *
2810 * The wireless subsystem can use this function to process
2811 * a regulatory request issued by an 802.11 driver.
2812 *
2813 * Returns one of the different reg request treatment values.
2814 */
2815 static enum reg_request_treatment
reg_process_hint_driver(struct wiphy * wiphy,struct regulatory_request * driver_request)2816 reg_process_hint_driver(struct wiphy *wiphy,
2817 struct regulatory_request *driver_request)
2818 {
2819 const struct ieee80211_regdomain *regd, *tmp;
2820 enum reg_request_treatment treatment;
2821
2822 treatment = __reg_process_hint_driver(driver_request);
2823
2824 switch (treatment) {
2825 case REG_REQ_OK:
2826 break;
2827 case REG_REQ_IGNORE:
2828 return REG_REQ_IGNORE;
2829 case REG_REQ_INTERSECT:
2830 case REG_REQ_ALREADY_SET:
2831 regd = reg_copy_regd(get_cfg80211_regdom());
2832 if (IS_ERR(regd))
2833 return REG_REQ_IGNORE;
2834
2835 tmp = get_wiphy_regdom(wiphy);
2836 ASSERT_RTNL();
2837 wiphy_lock(wiphy);
2838 rcu_assign_pointer(wiphy->regd, regd);
2839 wiphy_unlock(wiphy);
2840 rcu_free_regdom(tmp);
2841 }
2842
2843
2844 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2845 driver_request->processed = false;
2846
2847 /*
2848 * Since CRDA will not be called in this case as we already
2849 * have applied the requested regulatory domain before we just
2850 * inform userspace we have processed the request
2851 */
2852 if (treatment == REG_REQ_ALREADY_SET) {
2853 nl80211_send_reg_change_event(driver_request);
2854 reg_update_last_request(driver_request);
2855 reg_set_request_processed();
2856 return REG_REQ_ALREADY_SET;
2857 }
2858
2859 if (reg_query_database(driver_request)) {
2860 reg_update_last_request(driver_request);
2861 return REG_REQ_OK;
2862 }
2863
2864 return REG_REQ_IGNORE;
2865 }
2866
2867 static enum reg_request_treatment
__reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2868 __reg_process_hint_country_ie(struct wiphy *wiphy,
2869 struct regulatory_request *country_ie_request)
2870 {
2871 struct wiphy *last_wiphy = NULL;
2872 struct regulatory_request *lr = get_last_request();
2873
2874 if (reg_request_cell_base(lr)) {
2875 /* Trust a Cell base station over the AP's country IE */
2876 if (regdom_changes(country_ie_request->alpha2))
2877 return REG_REQ_IGNORE;
2878 return REG_REQ_ALREADY_SET;
2879 } else {
2880 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2881 return REG_REQ_IGNORE;
2882 }
2883
2884 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2885 return -EINVAL;
2886
2887 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2888 return REG_REQ_OK;
2889
2890 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2891
2892 if (last_wiphy != wiphy) {
2893 /*
2894 * Two cards with two APs claiming different
2895 * Country IE alpha2s. We could
2896 * intersect them, but that seems unlikely
2897 * to be correct. Reject second one for now.
2898 */
2899 if (regdom_changes(country_ie_request->alpha2))
2900 return REG_REQ_IGNORE;
2901 return REG_REQ_ALREADY_SET;
2902 }
2903
2904 if (regdom_changes(country_ie_request->alpha2))
2905 return REG_REQ_OK;
2906 return REG_REQ_ALREADY_SET;
2907 }
2908
2909 /**
2910 * reg_process_hint_country_ie - process regulatory requests from country IEs
2911 * @wiphy: the wireless device for the regulatory request
2912 * @country_ie_request: a regulatory request from a country IE
2913 *
2914 * The wireless subsystem can use this function to process
2915 * a regulatory request issued by a country Information Element.
2916 *
2917 * Returns one of the different reg request treatment values.
2918 */
2919 static enum reg_request_treatment
reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2920 reg_process_hint_country_ie(struct wiphy *wiphy,
2921 struct regulatory_request *country_ie_request)
2922 {
2923 enum reg_request_treatment treatment;
2924
2925 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2926
2927 switch (treatment) {
2928 case REG_REQ_OK:
2929 break;
2930 case REG_REQ_IGNORE:
2931 return REG_REQ_IGNORE;
2932 case REG_REQ_ALREADY_SET:
2933 reg_free_request(country_ie_request);
2934 return REG_REQ_ALREADY_SET;
2935 case REG_REQ_INTERSECT:
2936 /*
2937 * This doesn't happen yet, not sure we
2938 * ever want to support it for this case.
2939 */
2940 WARN_ONCE(1, "Unexpected intersection for country elements");
2941 return REG_REQ_IGNORE;
2942 }
2943
2944 country_ie_request->intersect = false;
2945 country_ie_request->processed = false;
2946
2947 if (reg_query_database(country_ie_request)) {
2948 reg_update_last_request(country_ie_request);
2949 return REG_REQ_OK;
2950 }
2951
2952 return REG_REQ_IGNORE;
2953 }
2954
reg_dfs_domain_same(struct wiphy * wiphy1,struct wiphy * wiphy2)2955 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2956 {
2957 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2958 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2959 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2960 bool dfs_domain_same;
2961
2962 rcu_read_lock();
2963
2964 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2965 wiphy1_regd = rcu_dereference(wiphy1->regd);
2966 if (!wiphy1_regd)
2967 wiphy1_regd = cfg80211_regd;
2968
2969 wiphy2_regd = rcu_dereference(wiphy2->regd);
2970 if (!wiphy2_regd)
2971 wiphy2_regd = cfg80211_regd;
2972
2973 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2974
2975 rcu_read_unlock();
2976
2977 return dfs_domain_same;
2978 }
2979
reg_copy_dfs_chan_state(struct ieee80211_channel * dst_chan,struct ieee80211_channel * src_chan)2980 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2981 struct ieee80211_channel *src_chan)
2982 {
2983 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2984 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2985 return;
2986
2987 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2988 src_chan->flags & IEEE80211_CHAN_DISABLED)
2989 return;
2990
2991 if (src_chan->center_freq == dst_chan->center_freq &&
2992 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2993 dst_chan->dfs_state = src_chan->dfs_state;
2994 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2995 }
2996 }
2997
wiphy_share_dfs_chan_state(struct wiphy * dst_wiphy,struct wiphy * src_wiphy)2998 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2999 struct wiphy *src_wiphy)
3000 {
3001 struct ieee80211_supported_band *src_sband, *dst_sband;
3002 struct ieee80211_channel *src_chan, *dst_chan;
3003 int i, j, band;
3004
3005 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
3006 return;
3007
3008 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3009 dst_sband = dst_wiphy->bands[band];
3010 src_sband = src_wiphy->bands[band];
3011 if (!dst_sband || !src_sband)
3012 continue;
3013
3014 for (i = 0; i < dst_sband->n_channels; i++) {
3015 dst_chan = &dst_sband->channels[i];
3016 for (j = 0; j < src_sband->n_channels; j++) {
3017 src_chan = &src_sband->channels[j];
3018 reg_copy_dfs_chan_state(dst_chan, src_chan);
3019 }
3020 }
3021 }
3022 }
3023
wiphy_all_share_dfs_chan_state(struct wiphy * wiphy)3024 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3025 {
3026 struct cfg80211_registered_device *rdev;
3027
3028 ASSERT_RTNL();
3029
3030 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3031 if (wiphy == &rdev->wiphy)
3032 continue;
3033 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3034 }
3035 }
3036
3037 /* This processes *all* regulatory hints */
reg_process_hint(struct regulatory_request * reg_request)3038 static void reg_process_hint(struct regulatory_request *reg_request)
3039 {
3040 struct wiphy *wiphy = NULL;
3041 enum reg_request_treatment treatment;
3042 enum nl80211_reg_initiator initiator = reg_request->initiator;
3043
3044 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3045 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3046
3047 switch (initiator) {
3048 case NL80211_REGDOM_SET_BY_CORE:
3049 treatment = reg_process_hint_core(reg_request);
3050 break;
3051 case NL80211_REGDOM_SET_BY_USER:
3052 treatment = reg_process_hint_user(reg_request);
3053 break;
3054 case NL80211_REGDOM_SET_BY_DRIVER:
3055 if (!wiphy)
3056 goto out_free;
3057 treatment = reg_process_hint_driver(wiphy, reg_request);
3058 break;
3059 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3060 if (!wiphy)
3061 goto out_free;
3062 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3063 break;
3064 default:
3065 WARN(1, "invalid initiator %d\n", initiator);
3066 goto out_free;
3067 }
3068
3069 if (treatment == REG_REQ_IGNORE)
3070 goto out_free;
3071
3072 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3073 "unexpected treatment value %d\n", treatment);
3074
3075 /* This is required so that the orig_* parameters are saved.
3076 * NOTE: treatment must be set for any case that reaches here!
3077 */
3078 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3079 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3080 wiphy_update_regulatory(wiphy, initiator);
3081 wiphy_all_share_dfs_chan_state(wiphy);
3082 reg_check_channels();
3083 }
3084
3085 return;
3086
3087 out_free:
3088 reg_free_request(reg_request);
3089 }
3090
notify_self_managed_wiphys(struct regulatory_request * request)3091 static void notify_self_managed_wiphys(struct regulatory_request *request)
3092 {
3093 struct cfg80211_registered_device *rdev;
3094 struct wiphy *wiphy;
3095
3096 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3097 wiphy = &rdev->wiphy;
3098 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3099 request->initiator == NL80211_REGDOM_SET_BY_USER)
3100 reg_call_notifier(wiphy, request);
3101 }
3102 }
3103
3104 /*
3105 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3106 * Regulatory hints come on a first come first serve basis and we
3107 * must process each one atomically.
3108 */
reg_process_pending_hints(void)3109 static void reg_process_pending_hints(void)
3110 {
3111 struct regulatory_request *reg_request, *lr;
3112
3113 lr = get_last_request();
3114
3115 /* When last_request->processed becomes true this will be rescheduled */
3116 if (lr && !lr->processed) {
3117 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3118 return;
3119 }
3120
3121 spin_lock(®_requests_lock);
3122
3123 if (list_empty(®_requests_list)) {
3124 spin_unlock(®_requests_lock);
3125 return;
3126 }
3127
3128 reg_request = list_first_entry(®_requests_list,
3129 struct regulatory_request,
3130 list);
3131 list_del_init(®_request->list);
3132
3133 spin_unlock(®_requests_lock);
3134
3135 notify_self_managed_wiphys(reg_request);
3136
3137 reg_process_hint(reg_request);
3138
3139 lr = get_last_request();
3140
3141 spin_lock(®_requests_lock);
3142 if (!list_empty(®_requests_list) && lr && lr->processed)
3143 schedule_work(®_work);
3144 spin_unlock(®_requests_lock);
3145 }
3146
3147 /* Processes beacon hints -- this has nothing to do with country IEs */
reg_process_pending_beacon_hints(void)3148 static void reg_process_pending_beacon_hints(void)
3149 {
3150 struct cfg80211_registered_device *rdev;
3151 struct reg_beacon *pending_beacon, *tmp;
3152
3153 /* This goes through the _pending_ beacon list */
3154 spin_lock_bh(®_pending_beacons_lock);
3155
3156 list_for_each_entry_safe(pending_beacon, tmp,
3157 ®_pending_beacons, list) {
3158 list_del_init(&pending_beacon->list);
3159
3160 /* Applies the beacon hint to current wiphys */
3161 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3162 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3163
3164 /* Remembers the beacon hint for new wiphys or reg changes */
3165 list_add_tail(&pending_beacon->list, ®_beacon_list);
3166 }
3167
3168 spin_unlock_bh(®_pending_beacons_lock);
3169 }
3170
reg_process_self_managed_hint(struct wiphy * wiphy)3171 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3172 {
3173 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3174 const struct ieee80211_regdomain *tmp;
3175 const struct ieee80211_regdomain *regd;
3176 enum nl80211_band band;
3177 struct regulatory_request request = {};
3178
3179 ASSERT_RTNL();
3180 lockdep_assert_wiphy(wiphy);
3181
3182 spin_lock(®_requests_lock);
3183 regd = rdev->requested_regd;
3184 rdev->requested_regd = NULL;
3185 spin_unlock(®_requests_lock);
3186
3187 if (!regd)
3188 return;
3189
3190 tmp = get_wiphy_regdom(wiphy);
3191 rcu_assign_pointer(wiphy->regd, regd);
3192 rcu_free_regdom(tmp);
3193
3194 for (band = 0; band < NUM_NL80211_BANDS; band++)
3195 handle_band_custom(wiphy, wiphy->bands[band], regd);
3196
3197 reg_process_ht_flags(wiphy);
3198
3199 request.wiphy_idx = get_wiphy_idx(wiphy);
3200 request.alpha2[0] = regd->alpha2[0];
3201 request.alpha2[1] = regd->alpha2[1];
3202 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3203
3204 nl80211_send_wiphy_reg_change_event(&request);
3205 }
3206
reg_process_self_managed_hints(void)3207 static void reg_process_self_managed_hints(void)
3208 {
3209 struct cfg80211_registered_device *rdev;
3210
3211 ASSERT_RTNL();
3212
3213 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3214 wiphy_lock(&rdev->wiphy);
3215 reg_process_self_managed_hint(&rdev->wiphy);
3216 wiphy_unlock(&rdev->wiphy);
3217 }
3218
3219 reg_check_channels();
3220 }
3221
reg_todo(struct work_struct * work)3222 static void reg_todo(struct work_struct *work)
3223 {
3224 rtnl_lock();
3225 reg_process_pending_hints();
3226 reg_process_pending_beacon_hints();
3227 reg_process_self_managed_hints();
3228 rtnl_unlock();
3229 }
3230
queue_regulatory_request(struct regulatory_request * request)3231 static void queue_regulatory_request(struct regulatory_request *request)
3232 {
3233 request->alpha2[0] = toupper(request->alpha2[0]);
3234 request->alpha2[1] = toupper(request->alpha2[1]);
3235
3236 spin_lock(®_requests_lock);
3237 list_add_tail(&request->list, ®_requests_list);
3238 spin_unlock(®_requests_lock);
3239
3240 schedule_work(®_work);
3241 }
3242
3243 /*
3244 * Core regulatory hint -- happens during cfg80211_init()
3245 * and when we restore regulatory settings.
3246 */
regulatory_hint_core(const char * alpha2)3247 static int regulatory_hint_core(const char *alpha2)
3248 {
3249 struct regulatory_request *request;
3250
3251 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3252 if (!request)
3253 return -ENOMEM;
3254
3255 request->alpha2[0] = alpha2[0];
3256 request->alpha2[1] = alpha2[1];
3257 request->initiator = NL80211_REGDOM_SET_BY_CORE;
3258 request->wiphy_idx = WIPHY_IDX_INVALID;
3259
3260 queue_regulatory_request(request);
3261
3262 return 0;
3263 }
3264
3265 /* User hints */
regulatory_hint_user(const char * alpha2,enum nl80211_user_reg_hint_type user_reg_hint_type)3266 int regulatory_hint_user(const char *alpha2,
3267 enum nl80211_user_reg_hint_type user_reg_hint_type)
3268 {
3269 struct regulatory_request *request;
3270
3271 if (WARN_ON(!alpha2))
3272 return -EINVAL;
3273
3274 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3275 return -EINVAL;
3276
3277 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3278 if (!request)
3279 return -ENOMEM;
3280
3281 request->wiphy_idx = WIPHY_IDX_INVALID;
3282 request->alpha2[0] = alpha2[0];
3283 request->alpha2[1] = alpha2[1];
3284 request->initiator = NL80211_REGDOM_SET_BY_USER;
3285 request->user_reg_hint_type = user_reg_hint_type;
3286
3287 /* Allow calling CRDA again */
3288 reset_crda_timeouts();
3289
3290 queue_regulatory_request(request);
3291
3292 return 0;
3293 }
3294
regulatory_hint_indoor(bool is_indoor,u32 portid)3295 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3296 {
3297 spin_lock(®_indoor_lock);
3298
3299 /* It is possible that more than one user space process is trying to
3300 * configure the indoor setting. To handle such cases, clear the indoor
3301 * setting in case that some process does not think that the device
3302 * is operating in an indoor environment. In addition, if a user space
3303 * process indicates that it is controlling the indoor setting, save its
3304 * portid, i.e., make it the owner.
3305 */
3306 reg_is_indoor = is_indoor;
3307 if (reg_is_indoor) {
3308 if (!reg_is_indoor_portid)
3309 reg_is_indoor_portid = portid;
3310 } else {
3311 reg_is_indoor_portid = 0;
3312 }
3313
3314 spin_unlock(®_indoor_lock);
3315
3316 if (!is_indoor)
3317 reg_check_channels();
3318
3319 return 0;
3320 }
3321
regulatory_netlink_notify(u32 portid)3322 void regulatory_netlink_notify(u32 portid)
3323 {
3324 spin_lock(®_indoor_lock);
3325
3326 if (reg_is_indoor_portid != portid) {
3327 spin_unlock(®_indoor_lock);
3328 return;
3329 }
3330
3331 reg_is_indoor = false;
3332 reg_is_indoor_portid = 0;
3333
3334 spin_unlock(®_indoor_lock);
3335
3336 reg_check_channels();
3337 }
3338
3339 /* Driver hints */
regulatory_hint(struct wiphy * wiphy,const char * alpha2)3340 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3341 {
3342 struct regulatory_request *request;
3343
3344 if (WARN_ON(!alpha2 || !wiphy))
3345 return -EINVAL;
3346
3347 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3348
3349 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3350 if (!request)
3351 return -ENOMEM;
3352
3353 request->wiphy_idx = get_wiphy_idx(wiphy);
3354
3355 request->alpha2[0] = alpha2[0];
3356 request->alpha2[1] = alpha2[1];
3357 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3358
3359 /* Allow calling CRDA again */
3360 reset_crda_timeouts();
3361
3362 queue_regulatory_request(request);
3363
3364 return 0;
3365 }
3366 EXPORT_SYMBOL(regulatory_hint);
3367
regulatory_hint_country_ie(struct wiphy * wiphy,enum nl80211_band band,const u8 * country_ie,u8 country_ie_len)3368 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3369 const u8 *country_ie, u8 country_ie_len)
3370 {
3371 char alpha2[2];
3372 enum environment_cap env = ENVIRON_ANY;
3373 struct regulatory_request *request = NULL, *lr;
3374
3375 /* IE len must be evenly divisible by 2 */
3376 if (country_ie_len & 0x01)
3377 return;
3378
3379 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3380 return;
3381
3382 request = kzalloc(sizeof(*request), GFP_KERNEL);
3383 if (!request)
3384 return;
3385
3386 alpha2[0] = country_ie[0];
3387 alpha2[1] = country_ie[1];
3388
3389 if (country_ie[2] == 'I')
3390 env = ENVIRON_INDOOR;
3391 else if (country_ie[2] == 'O')
3392 env = ENVIRON_OUTDOOR;
3393
3394 rcu_read_lock();
3395 lr = get_last_request();
3396
3397 if (unlikely(!lr))
3398 goto out;
3399
3400 /*
3401 * We will run this only upon a successful connection on cfg80211.
3402 * We leave conflict resolution to the workqueue, where can hold
3403 * the RTNL.
3404 */
3405 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3406 lr->wiphy_idx != WIPHY_IDX_INVALID)
3407 goto out;
3408
3409 request->wiphy_idx = get_wiphy_idx(wiphy);
3410 request->alpha2[0] = alpha2[0];
3411 request->alpha2[1] = alpha2[1];
3412 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3413 request->country_ie_env = env;
3414
3415 /* Allow calling CRDA again */
3416 reset_crda_timeouts();
3417
3418 queue_regulatory_request(request);
3419 request = NULL;
3420 out:
3421 kfree(request);
3422 rcu_read_unlock();
3423 }
3424
restore_alpha2(char * alpha2,bool reset_user)3425 static void restore_alpha2(char *alpha2, bool reset_user)
3426 {
3427 /* indicates there is no alpha2 to consider for restoration */
3428 alpha2[0] = '9';
3429 alpha2[1] = '7';
3430
3431 /* The user setting has precedence over the module parameter */
3432 if (is_user_regdom_saved()) {
3433 /* Unless we're asked to ignore it and reset it */
3434 if (reset_user) {
3435 pr_debug("Restoring regulatory settings including user preference\n");
3436 user_alpha2[0] = '9';
3437 user_alpha2[1] = '7';
3438
3439 /*
3440 * If we're ignoring user settings, we still need to
3441 * check the module parameter to ensure we put things
3442 * back as they were for a full restore.
3443 */
3444 if (!is_world_regdom(ieee80211_regdom)) {
3445 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3446 ieee80211_regdom[0], ieee80211_regdom[1]);
3447 alpha2[0] = ieee80211_regdom[0];
3448 alpha2[1] = ieee80211_regdom[1];
3449 }
3450 } else {
3451 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3452 user_alpha2[0], user_alpha2[1]);
3453 alpha2[0] = user_alpha2[0];
3454 alpha2[1] = user_alpha2[1];
3455 }
3456 } else if (!is_world_regdom(ieee80211_regdom)) {
3457 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3458 ieee80211_regdom[0], ieee80211_regdom[1]);
3459 alpha2[0] = ieee80211_regdom[0];
3460 alpha2[1] = ieee80211_regdom[1];
3461 } else
3462 pr_debug("Restoring regulatory settings\n");
3463 }
3464
restore_custom_reg_settings(struct wiphy * wiphy)3465 static void restore_custom_reg_settings(struct wiphy *wiphy)
3466 {
3467 struct ieee80211_supported_band *sband;
3468 enum nl80211_band band;
3469 struct ieee80211_channel *chan;
3470 int i;
3471
3472 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3473 sband = wiphy->bands[band];
3474 if (!sband)
3475 continue;
3476 for (i = 0; i < sband->n_channels; i++) {
3477 chan = &sband->channels[i];
3478 chan->flags = chan->orig_flags;
3479 chan->max_antenna_gain = chan->orig_mag;
3480 chan->max_power = chan->orig_mpwr;
3481 chan->beacon_found = false;
3482 }
3483 }
3484 }
3485
3486 /*
3487 * Restoring regulatory settings involves ignoring any
3488 * possibly stale country IE information and user regulatory
3489 * settings if so desired, this includes any beacon hints
3490 * learned as we could have traveled outside to another country
3491 * after disconnection. To restore regulatory settings we do
3492 * exactly what we did at bootup:
3493 *
3494 * - send a core regulatory hint
3495 * - send a user regulatory hint if applicable
3496 *
3497 * Device drivers that send a regulatory hint for a specific country
3498 * keep their own regulatory domain on wiphy->regd so that does
3499 * not need to be remembered.
3500 */
restore_regulatory_settings(bool reset_user,bool cached)3501 static void restore_regulatory_settings(bool reset_user, bool cached)
3502 {
3503 char alpha2[2];
3504 char world_alpha2[2];
3505 struct reg_beacon *reg_beacon, *btmp;
3506 LIST_HEAD(tmp_reg_req_list);
3507 struct cfg80211_registered_device *rdev;
3508
3509 ASSERT_RTNL();
3510
3511 /*
3512 * Clear the indoor setting in case that it is not controlled by user
3513 * space, as otherwise there is no guarantee that the device is still
3514 * operating in an indoor environment.
3515 */
3516 spin_lock(®_indoor_lock);
3517 if (reg_is_indoor && !reg_is_indoor_portid) {
3518 reg_is_indoor = false;
3519 reg_check_channels();
3520 }
3521 spin_unlock(®_indoor_lock);
3522
3523 reset_regdomains(true, &world_regdom);
3524 restore_alpha2(alpha2, reset_user);
3525
3526 /*
3527 * If there's any pending requests we simply
3528 * stash them to a temporary pending queue and
3529 * add then after we've restored regulatory
3530 * settings.
3531 */
3532 spin_lock(®_requests_lock);
3533 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
3534 spin_unlock(®_requests_lock);
3535
3536 /* Clear beacon hints */
3537 spin_lock_bh(®_pending_beacons_lock);
3538 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3539 list_del(®_beacon->list);
3540 kfree(reg_beacon);
3541 }
3542 spin_unlock_bh(®_pending_beacons_lock);
3543
3544 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3545 list_del(®_beacon->list);
3546 kfree(reg_beacon);
3547 }
3548
3549 /* First restore to the basic regulatory settings */
3550 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3551 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3552
3553 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3554 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3555 continue;
3556 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3557 restore_custom_reg_settings(&rdev->wiphy);
3558 }
3559
3560 if (cached && (!is_an_alpha2(alpha2) ||
3561 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3562 reset_regdomains(false, cfg80211_world_regdom);
3563 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3564 print_regdomain(get_cfg80211_regdom());
3565 nl80211_send_reg_change_event(&core_request_world);
3566 reg_set_request_processed();
3567
3568 if (is_an_alpha2(alpha2) &&
3569 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3570 struct regulatory_request *ureq;
3571
3572 spin_lock(®_requests_lock);
3573 ureq = list_last_entry(®_requests_list,
3574 struct regulatory_request,
3575 list);
3576 list_del(&ureq->list);
3577 spin_unlock(®_requests_lock);
3578
3579 notify_self_managed_wiphys(ureq);
3580 reg_update_last_request(ureq);
3581 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3582 REGD_SOURCE_CACHED);
3583 }
3584 } else {
3585 regulatory_hint_core(world_alpha2);
3586
3587 /*
3588 * This restores the ieee80211_regdom module parameter
3589 * preference or the last user requested regulatory
3590 * settings, user regulatory settings takes precedence.
3591 */
3592 if (is_an_alpha2(alpha2))
3593 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3594 }
3595
3596 spin_lock(®_requests_lock);
3597 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
3598 spin_unlock(®_requests_lock);
3599
3600 pr_debug("Kicking the queue\n");
3601
3602 schedule_work(®_work);
3603 }
3604
is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)3605 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3606 {
3607 struct cfg80211_registered_device *rdev;
3608 struct wireless_dev *wdev;
3609
3610 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3611 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3612 wdev_lock(wdev);
3613 if (!(wdev->wiphy->regulatory_flags & flag)) {
3614 wdev_unlock(wdev);
3615 return false;
3616 }
3617 wdev_unlock(wdev);
3618 }
3619 }
3620
3621 return true;
3622 }
3623
regulatory_hint_disconnect(void)3624 void regulatory_hint_disconnect(void)
3625 {
3626 /* Restore of regulatory settings is not required when wiphy(s)
3627 * ignore IE from connected access point but clearance of beacon hints
3628 * is required when wiphy(s) supports beacon hints.
3629 */
3630 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3631 struct reg_beacon *reg_beacon, *btmp;
3632
3633 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3634 return;
3635
3636 spin_lock_bh(®_pending_beacons_lock);
3637 list_for_each_entry_safe(reg_beacon, btmp,
3638 ®_pending_beacons, list) {
3639 list_del(®_beacon->list);
3640 kfree(reg_beacon);
3641 }
3642 spin_unlock_bh(®_pending_beacons_lock);
3643
3644 list_for_each_entry_safe(reg_beacon, btmp,
3645 ®_beacon_list, list) {
3646 list_del(®_beacon->list);
3647 kfree(reg_beacon);
3648 }
3649
3650 return;
3651 }
3652
3653 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3654 restore_regulatory_settings(false, true);
3655 }
3656
freq_is_chan_12_13_14(u32 freq)3657 static bool freq_is_chan_12_13_14(u32 freq)
3658 {
3659 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3660 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3661 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3662 return true;
3663 return false;
3664 }
3665
pending_reg_beacon(struct ieee80211_channel * beacon_chan)3666 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3667 {
3668 struct reg_beacon *pending_beacon;
3669
3670 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
3671 if (ieee80211_channel_equal(beacon_chan,
3672 &pending_beacon->chan))
3673 return true;
3674 return false;
3675 }
3676
regulatory_hint_found_beacon(struct wiphy * wiphy,struct ieee80211_channel * beacon_chan,gfp_t gfp)3677 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3678 struct ieee80211_channel *beacon_chan,
3679 gfp_t gfp)
3680 {
3681 struct reg_beacon *reg_beacon;
3682 bool processing;
3683
3684 if (beacon_chan->beacon_found ||
3685 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3686 (beacon_chan->band == NL80211_BAND_2GHZ &&
3687 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3688 return 0;
3689
3690 spin_lock_bh(®_pending_beacons_lock);
3691 processing = pending_reg_beacon(beacon_chan);
3692 spin_unlock_bh(®_pending_beacons_lock);
3693
3694 if (processing)
3695 return 0;
3696
3697 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3698 if (!reg_beacon)
3699 return -ENOMEM;
3700
3701 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3702 beacon_chan->center_freq, beacon_chan->freq_offset,
3703 ieee80211_freq_khz_to_channel(
3704 ieee80211_channel_to_khz(beacon_chan)),
3705 wiphy_name(wiphy));
3706
3707 memcpy(®_beacon->chan, beacon_chan,
3708 sizeof(struct ieee80211_channel));
3709
3710 /*
3711 * Since we can be called from BH or and non-BH context
3712 * we must use spin_lock_bh()
3713 */
3714 spin_lock_bh(®_pending_beacons_lock);
3715 list_add_tail(®_beacon->list, ®_pending_beacons);
3716 spin_unlock_bh(®_pending_beacons_lock);
3717
3718 schedule_work(®_work);
3719
3720 return 0;
3721 }
3722
print_rd_rules(const struct ieee80211_regdomain * rd)3723 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3724 {
3725 unsigned int i;
3726 const struct ieee80211_reg_rule *reg_rule = NULL;
3727 const struct ieee80211_freq_range *freq_range = NULL;
3728 const struct ieee80211_power_rule *power_rule = NULL;
3729 char bw[32], cac_time[32];
3730
3731 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3732
3733 for (i = 0; i < rd->n_reg_rules; i++) {
3734 reg_rule = &rd->reg_rules[i];
3735 freq_range = ®_rule->freq_range;
3736 power_rule = ®_rule->power_rule;
3737
3738 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3739 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3740 freq_range->max_bandwidth_khz,
3741 reg_get_max_bandwidth(rd, reg_rule));
3742 else
3743 snprintf(bw, sizeof(bw), "%d KHz",
3744 freq_range->max_bandwidth_khz);
3745
3746 if (reg_rule->flags & NL80211_RRF_DFS)
3747 scnprintf(cac_time, sizeof(cac_time), "%u s",
3748 reg_rule->dfs_cac_ms/1000);
3749 else
3750 scnprintf(cac_time, sizeof(cac_time), "N/A");
3751
3752
3753 /*
3754 * There may not be documentation for max antenna gain
3755 * in certain regions
3756 */
3757 if (power_rule->max_antenna_gain)
3758 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3759 freq_range->start_freq_khz,
3760 freq_range->end_freq_khz,
3761 bw,
3762 power_rule->max_antenna_gain,
3763 power_rule->max_eirp,
3764 cac_time);
3765 else
3766 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3767 freq_range->start_freq_khz,
3768 freq_range->end_freq_khz,
3769 bw,
3770 power_rule->max_eirp,
3771 cac_time);
3772 }
3773 }
3774
reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)3775 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3776 {
3777 switch (dfs_region) {
3778 case NL80211_DFS_UNSET:
3779 case NL80211_DFS_FCC:
3780 case NL80211_DFS_ETSI:
3781 case NL80211_DFS_JP:
3782 return true;
3783 default:
3784 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3785 return false;
3786 }
3787 }
3788
print_regdomain(const struct ieee80211_regdomain * rd)3789 static void print_regdomain(const struct ieee80211_regdomain *rd)
3790 {
3791 struct regulatory_request *lr = get_last_request();
3792
3793 if (is_intersected_alpha2(rd->alpha2)) {
3794 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3795 struct cfg80211_registered_device *rdev;
3796 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3797 if (rdev) {
3798 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3799 rdev->country_ie_alpha2[0],
3800 rdev->country_ie_alpha2[1]);
3801 } else
3802 pr_debug("Current regulatory domain intersected:\n");
3803 } else
3804 pr_debug("Current regulatory domain intersected:\n");
3805 } else if (is_world_regdom(rd->alpha2)) {
3806 pr_debug("World regulatory domain updated:\n");
3807 } else {
3808 if (is_unknown_alpha2(rd->alpha2))
3809 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3810 else {
3811 if (reg_request_cell_base(lr))
3812 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3813 rd->alpha2[0], rd->alpha2[1]);
3814 else
3815 pr_debug("Regulatory domain changed to country: %c%c\n",
3816 rd->alpha2[0], rd->alpha2[1]);
3817 }
3818 }
3819
3820 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3821 print_rd_rules(rd);
3822 }
3823
print_regdomain_info(const struct ieee80211_regdomain * rd)3824 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3825 {
3826 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3827 print_rd_rules(rd);
3828 }
3829
reg_set_rd_core(const struct ieee80211_regdomain * rd)3830 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3831 {
3832 if (!is_world_regdom(rd->alpha2))
3833 return -EINVAL;
3834 update_world_regdomain(rd);
3835 return 0;
3836 }
3837
reg_set_rd_user(const struct ieee80211_regdomain * rd,struct regulatory_request * user_request)3838 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3839 struct regulatory_request *user_request)
3840 {
3841 const struct ieee80211_regdomain *intersected_rd = NULL;
3842
3843 if (!regdom_changes(rd->alpha2))
3844 return -EALREADY;
3845
3846 if (!is_valid_rd(rd)) {
3847 pr_err("Invalid regulatory domain detected: %c%c\n",
3848 rd->alpha2[0], rd->alpha2[1]);
3849 print_regdomain_info(rd);
3850 return -EINVAL;
3851 }
3852
3853 if (!user_request->intersect) {
3854 reset_regdomains(false, rd);
3855 return 0;
3856 }
3857
3858 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3859 if (!intersected_rd)
3860 return -EINVAL;
3861
3862 kfree(rd);
3863 rd = NULL;
3864 reset_regdomains(false, intersected_rd);
3865
3866 return 0;
3867 }
3868
reg_set_rd_driver(const struct ieee80211_regdomain * rd,struct regulatory_request * driver_request)3869 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3870 struct regulatory_request *driver_request)
3871 {
3872 const struct ieee80211_regdomain *regd;
3873 const struct ieee80211_regdomain *intersected_rd = NULL;
3874 const struct ieee80211_regdomain *tmp;
3875 struct wiphy *request_wiphy;
3876
3877 if (is_world_regdom(rd->alpha2))
3878 return -EINVAL;
3879
3880 if (!regdom_changes(rd->alpha2))
3881 return -EALREADY;
3882
3883 if (!is_valid_rd(rd)) {
3884 pr_err("Invalid regulatory domain detected: %c%c\n",
3885 rd->alpha2[0], rd->alpha2[1]);
3886 print_regdomain_info(rd);
3887 return -EINVAL;
3888 }
3889
3890 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3891 if (!request_wiphy)
3892 return -ENODEV;
3893
3894 if (!driver_request->intersect) {
3895 ASSERT_RTNL();
3896 wiphy_lock(request_wiphy);
3897 if (request_wiphy->regd) {
3898 wiphy_unlock(request_wiphy);
3899 return -EALREADY;
3900 }
3901
3902 regd = reg_copy_regd(rd);
3903 if (IS_ERR(regd)) {
3904 wiphy_unlock(request_wiphy);
3905 return PTR_ERR(regd);
3906 }
3907
3908 rcu_assign_pointer(request_wiphy->regd, regd);
3909 wiphy_unlock(request_wiphy);
3910 reset_regdomains(false, rd);
3911 return 0;
3912 }
3913
3914 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3915 if (!intersected_rd)
3916 return -EINVAL;
3917
3918 /*
3919 * We can trash what CRDA provided now.
3920 * However if a driver requested this specific regulatory
3921 * domain we keep it for its private use
3922 */
3923 tmp = get_wiphy_regdom(request_wiphy);
3924 rcu_assign_pointer(request_wiphy->regd, rd);
3925 rcu_free_regdom(tmp);
3926
3927 rd = NULL;
3928
3929 reset_regdomains(false, intersected_rd);
3930
3931 return 0;
3932 }
3933
reg_set_rd_country_ie(const struct ieee80211_regdomain * rd,struct regulatory_request * country_ie_request)3934 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3935 struct regulatory_request *country_ie_request)
3936 {
3937 struct wiphy *request_wiphy;
3938
3939 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3940 !is_unknown_alpha2(rd->alpha2))
3941 return -EINVAL;
3942
3943 /*
3944 * Lets only bother proceeding on the same alpha2 if the current
3945 * rd is non static (it means CRDA was present and was used last)
3946 * and the pending request came in from a country IE
3947 */
3948
3949 if (!is_valid_rd(rd)) {
3950 pr_err("Invalid regulatory domain detected: %c%c\n",
3951 rd->alpha2[0], rd->alpha2[1]);
3952 print_regdomain_info(rd);
3953 return -EINVAL;
3954 }
3955
3956 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3957 if (!request_wiphy)
3958 return -ENODEV;
3959
3960 if (country_ie_request->intersect)
3961 return -EINVAL;
3962
3963 reset_regdomains(false, rd);
3964 return 0;
3965 }
3966
3967 /*
3968 * Use this call to set the current regulatory domain. Conflicts with
3969 * multiple drivers can be ironed out later. Caller must've already
3970 * kmalloc'd the rd structure.
3971 */
set_regdom(const struct ieee80211_regdomain * rd,enum ieee80211_regd_source regd_src)3972 int set_regdom(const struct ieee80211_regdomain *rd,
3973 enum ieee80211_regd_source regd_src)
3974 {
3975 struct regulatory_request *lr;
3976 bool user_reset = false;
3977 int r;
3978
3979 if (IS_ERR_OR_NULL(rd))
3980 return -ENODATA;
3981
3982 if (!reg_is_valid_request(rd->alpha2)) {
3983 kfree(rd);
3984 return -EINVAL;
3985 }
3986
3987 if (regd_src == REGD_SOURCE_CRDA)
3988 reset_crda_timeouts();
3989
3990 lr = get_last_request();
3991
3992 /* Note that this doesn't update the wiphys, this is done below */
3993 switch (lr->initiator) {
3994 case NL80211_REGDOM_SET_BY_CORE:
3995 r = reg_set_rd_core(rd);
3996 break;
3997 case NL80211_REGDOM_SET_BY_USER:
3998 cfg80211_save_user_regdom(rd);
3999 r = reg_set_rd_user(rd, lr);
4000 user_reset = true;
4001 break;
4002 case NL80211_REGDOM_SET_BY_DRIVER:
4003 r = reg_set_rd_driver(rd, lr);
4004 break;
4005 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
4006 r = reg_set_rd_country_ie(rd, lr);
4007 break;
4008 default:
4009 WARN(1, "invalid initiator %d\n", lr->initiator);
4010 kfree(rd);
4011 return -EINVAL;
4012 }
4013
4014 if (r) {
4015 switch (r) {
4016 case -EALREADY:
4017 reg_set_request_processed();
4018 break;
4019 default:
4020 /* Back to world regulatory in case of errors */
4021 restore_regulatory_settings(user_reset, false);
4022 }
4023
4024 kfree(rd);
4025 return r;
4026 }
4027
4028 /* This would make this whole thing pointless */
4029 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4030 return -EINVAL;
4031
4032 /* update all wiphys now with the new established regulatory domain */
4033 update_all_wiphy_regulatory(lr->initiator);
4034
4035 print_regdomain(get_cfg80211_regdom());
4036
4037 nl80211_send_reg_change_event(lr);
4038
4039 reg_set_request_processed();
4040
4041 return 0;
4042 }
4043
__regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4044 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4045 struct ieee80211_regdomain *rd)
4046 {
4047 const struct ieee80211_regdomain *regd;
4048 const struct ieee80211_regdomain *prev_regd;
4049 struct cfg80211_registered_device *rdev;
4050
4051 if (WARN_ON(!wiphy || !rd))
4052 return -EINVAL;
4053
4054 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4055 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4056 return -EPERM;
4057
4058 if (WARN(!is_valid_rd(rd),
4059 "Invalid regulatory domain detected: %c%c\n",
4060 rd->alpha2[0], rd->alpha2[1])) {
4061 print_regdomain_info(rd);
4062 return -EINVAL;
4063 }
4064
4065 regd = reg_copy_regd(rd);
4066 if (IS_ERR(regd))
4067 return PTR_ERR(regd);
4068
4069 rdev = wiphy_to_rdev(wiphy);
4070
4071 spin_lock(®_requests_lock);
4072 prev_regd = rdev->requested_regd;
4073 rdev->requested_regd = regd;
4074 spin_unlock(®_requests_lock);
4075
4076 kfree(prev_regd);
4077 return 0;
4078 }
4079
regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4080 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4081 struct ieee80211_regdomain *rd)
4082 {
4083 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4084
4085 if (ret)
4086 return ret;
4087
4088 schedule_work(®_work);
4089 return 0;
4090 }
4091 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4092
regulatory_set_wiphy_regd_sync(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4093 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4094 struct ieee80211_regdomain *rd)
4095 {
4096 int ret;
4097
4098 ASSERT_RTNL();
4099
4100 ret = __regulatory_set_wiphy_regd(wiphy, rd);
4101 if (ret)
4102 return ret;
4103
4104 /* process the request immediately */
4105 reg_process_self_managed_hint(wiphy);
4106 reg_check_channels();
4107 return 0;
4108 }
4109 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4110
wiphy_regulatory_register(struct wiphy * wiphy)4111 void wiphy_regulatory_register(struct wiphy *wiphy)
4112 {
4113 struct regulatory_request *lr = get_last_request();
4114
4115 /* self-managed devices ignore beacon hints and country IE */
4116 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4117 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4118 REGULATORY_COUNTRY_IE_IGNORE;
4119
4120 /*
4121 * The last request may have been received before this
4122 * registration call. Call the driver notifier if
4123 * initiator is USER.
4124 */
4125 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4126 reg_call_notifier(wiphy, lr);
4127 }
4128
4129 if (!reg_dev_ignore_cell_hint(wiphy))
4130 reg_num_devs_support_basehint++;
4131
4132 wiphy_update_regulatory(wiphy, lr->initiator);
4133 wiphy_all_share_dfs_chan_state(wiphy);
4134 reg_process_self_managed_hints();
4135 }
4136
wiphy_regulatory_deregister(struct wiphy * wiphy)4137 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4138 {
4139 struct wiphy *request_wiphy = NULL;
4140 struct regulatory_request *lr;
4141
4142 lr = get_last_request();
4143
4144 if (!reg_dev_ignore_cell_hint(wiphy))
4145 reg_num_devs_support_basehint--;
4146
4147 rcu_free_regdom(get_wiphy_regdom(wiphy));
4148 RCU_INIT_POINTER(wiphy->regd, NULL);
4149
4150 if (lr)
4151 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4152
4153 if (!request_wiphy || request_wiphy != wiphy)
4154 return;
4155
4156 lr->wiphy_idx = WIPHY_IDX_INVALID;
4157 lr->country_ie_env = ENVIRON_ANY;
4158 }
4159
4160 /*
4161 * See FCC notices for UNII band definitions
4162 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4163 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4164 */
cfg80211_get_unii(int freq)4165 int cfg80211_get_unii(int freq)
4166 {
4167 /* UNII-1 */
4168 if (freq >= 5150 && freq <= 5250)
4169 return 0;
4170
4171 /* UNII-2A */
4172 if (freq > 5250 && freq <= 5350)
4173 return 1;
4174
4175 /* UNII-2B */
4176 if (freq > 5350 && freq <= 5470)
4177 return 2;
4178
4179 /* UNII-2C */
4180 if (freq > 5470 && freq <= 5725)
4181 return 3;
4182
4183 /* UNII-3 */
4184 if (freq > 5725 && freq <= 5825)
4185 return 4;
4186
4187 /* UNII-5 */
4188 if (freq > 5925 && freq <= 6425)
4189 return 5;
4190
4191 /* UNII-6 */
4192 if (freq > 6425 && freq <= 6525)
4193 return 6;
4194
4195 /* UNII-7 */
4196 if (freq > 6525 && freq <= 6875)
4197 return 7;
4198
4199 /* UNII-8 */
4200 if (freq > 6875 && freq <= 7125)
4201 return 8;
4202
4203 return -EINVAL;
4204 }
4205
regulatory_indoor_allowed(void)4206 bool regulatory_indoor_allowed(void)
4207 {
4208 return reg_is_indoor;
4209 }
4210
regulatory_pre_cac_allowed(struct wiphy * wiphy)4211 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4212 {
4213 const struct ieee80211_regdomain *regd = NULL;
4214 const struct ieee80211_regdomain *wiphy_regd = NULL;
4215 bool pre_cac_allowed = false;
4216
4217 rcu_read_lock();
4218
4219 regd = rcu_dereference(cfg80211_regdomain);
4220 wiphy_regd = rcu_dereference(wiphy->regd);
4221 if (!wiphy_regd) {
4222 if (regd->dfs_region == NL80211_DFS_ETSI)
4223 pre_cac_allowed = true;
4224
4225 rcu_read_unlock();
4226
4227 return pre_cac_allowed;
4228 }
4229
4230 if (regd->dfs_region == wiphy_regd->dfs_region &&
4231 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4232 pre_cac_allowed = true;
4233
4234 rcu_read_unlock();
4235
4236 return pre_cac_allowed;
4237 }
4238 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4239
cfg80211_check_and_end_cac(struct cfg80211_registered_device * rdev)4240 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4241 {
4242 struct wireless_dev *wdev;
4243 /* If we finished CAC or received radar, we should end any
4244 * CAC running on the same channels.
4245 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4246 * either all channels are available - those the CAC_FINISHED
4247 * event has effected another wdev state, or there is a channel
4248 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4249 * event has effected another wdev state.
4250 * In both cases we should end the CAC on the wdev.
4251 */
4252 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4253 struct cfg80211_chan_def *chandef;
4254
4255 if (!wdev->cac_started)
4256 continue;
4257
4258 /* FIXME: radar detection is tied to link 0 for now */
4259 chandef = wdev_chandef(wdev, 0);
4260 if (!chandef)
4261 continue;
4262
4263 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4264 rdev_end_cac(rdev, wdev->netdev);
4265 }
4266 }
4267
regulatory_propagate_dfs_state(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_dfs_state dfs_state,enum nl80211_radar_event event)4268 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4269 struct cfg80211_chan_def *chandef,
4270 enum nl80211_dfs_state dfs_state,
4271 enum nl80211_radar_event event)
4272 {
4273 struct cfg80211_registered_device *rdev;
4274
4275 ASSERT_RTNL();
4276
4277 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4278 return;
4279
4280 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4281 if (wiphy == &rdev->wiphy)
4282 continue;
4283
4284 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4285 continue;
4286
4287 if (!ieee80211_get_channel(&rdev->wiphy,
4288 chandef->chan->center_freq))
4289 continue;
4290
4291 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4292
4293 if (event == NL80211_RADAR_DETECTED ||
4294 event == NL80211_RADAR_CAC_FINISHED) {
4295 cfg80211_sched_dfs_chan_update(rdev);
4296 cfg80211_check_and_end_cac(rdev);
4297 }
4298
4299 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4300 }
4301 }
4302
regulatory_init_db(void)4303 static int __init regulatory_init_db(void)
4304 {
4305 int err;
4306
4307 /*
4308 * It's possible that - due to other bugs/issues - cfg80211
4309 * never called regulatory_init() below, or that it failed;
4310 * in that case, don't try to do any further work here as
4311 * it's doomed to lead to crashes.
4312 */
4313 if (IS_ERR_OR_NULL(reg_pdev))
4314 return -EINVAL;
4315
4316 err = load_builtin_regdb_keys();
4317 if (err) {
4318 platform_device_unregister(reg_pdev);
4319 return err;
4320 }
4321
4322 /* We always try to get an update for the static regdomain */
4323 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4324 if (err) {
4325 if (err == -ENOMEM) {
4326 platform_device_unregister(reg_pdev);
4327 return err;
4328 }
4329 /*
4330 * N.B. kobject_uevent_env() can fail mainly for when we're out
4331 * memory which is handled and propagated appropriately above
4332 * but it can also fail during a netlink_broadcast() or during
4333 * early boot for call_usermodehelper(). For now treat these
4334 * errors as non-fatal.
4335 */
4336 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4337 }
4338
4339 /*
4340 * Finally, if the user set the module parameter treat it
4341 * as a user hint.
4342 */
4343 if (!is_world_regdom(ieee80211_regdom))
4344 regulatory_hint_user(ieee80211_regdom,
4345 NL80211_USER_REG_HINT_USER);
4346
4347 return 0;
4348 }
4349 #ifndef MODULE
4350 late_initcall(regulatory_init_db);
4351 #endif
4352
regulatory_init(void)4353 int __init regulatory_init(void)
4354 {
4355 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4356 if (IS_ERR(reg_pdev))
4357 return PTR_ERR(reg_pdev);
4358
4359 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4360
4361 user_alpha2[0] = '9';
4362 user_alpha2[1] = '7';
4363
4364 #ifdef MODULE
4365 return regulatory_init_db();
4366 #else
4367 return 0;
4368 #endif
4369 }
4370
regulatory_exit(void)4371 void regulatory_exit(void)
4372 {
4373 struct regulatory_request *reg_request, *tmp;
4374 struct reg_beacon *reg_beacon, *btmp;
4375
4376 cancel_work_sync(®_work);
4377 cancel_crda_timeout_sync();
4378 cancel_delayed_work_sync(®_check_chans);
4379
4380 /* Lock to suppress warnings */
4381 rtnl_lock();
4382 reset_regdomains(true, NULL);
4383 rtnl_unlock();
4384
4385 dev_set_uevent_suppress(®_pdev->dev, true);
4386
4387 platform_device_unregister(reg_pdev);
4388
4389 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
4390 list_del(®_beacon->list);
4391 kfree(reg_beacon);
4392 }
4393
4394 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
4395 list_del(®_beacon->list);
4396 kfree(reg_beacon);
4397 }
4398
4399 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
4400 list_del(®_request->list);
4401 kfree(reg_request);
4402 }
4403
4404 if (!IS_ERR_OR_NULL(regdb))
4405 kfree(regdb);
4406 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4407 kfree(cfg80211_user_regdom);
4408
4409 free_regdb_keyring();
4410 }
4411