1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24
25 #include "internal.h"
26
27 /*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33 #undef LOG_DEVICE
34
35 #ifdef LOG_DEVICE
regmap_should_log(struct regmap * map)36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
regmap_should_log(struct regmap * map)41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43
44
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
48
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
59
regmap_reg_in_ranges(unsigned int reg,const struct regmap_range * ranges,unsigned int nranges)60 bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
63 {
64 const struct regmap_range *r;
65 int i;
66
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
69 return true;
70 return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
regmap_check_range_table(struct regmap * map,unsigned int reg,const struct regmap_access_table * table)74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
76 {
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
80
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
84
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
regmap_writeable(struct regmap * map,unsigned int reg)90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 if (map->max_register && reg > map->max_register)
93 return false;
94
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
97
98 if (map->wr_table)
99 return regmap_check_range_table(map, reg, map->wr_table);
100
101 return true;
102 }
103
regmap_cached(struct regmap * map,unsigned int reg)104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 int ret;
107 unsigned int val;
108
109 if (map->cache_type == REGCACHE_NONE)
110 return false;
111
112 if (!map->cache_ops)
113 return false;
114
115 if (map->max_register && reg > map->max_register)
116 return false;
117
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
123
124 return true;
125 }
126
regmap_readable(struct regmap * map,unsigned int reg)127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 if (!map->reg_read)
130 return false;
131
132 if (map->max_register && reg > map->max_register)
133 return false;
134
135 if (map->format.format_write)
136 return false;
137
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
140
141 if (map->rd_table)
142 return regmap_check_range_table(map, reg, map->rd_table);
143
144 return true;
145 }
146
regmap_volatile(struct regmap * map,unsigned int reg)147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 if (!map->format.format_write && !regmap_readable(map, reg))
150 return false;
151
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
154
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
157
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
162 }
163
regmap_precious(struct regmap * map,unsigned int reg)164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 if (!regmap_readable(map, reg))
167 return false;
168
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
171
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
174
175 return false;
176 }
177
regmap_writeable_noinc(struct regmap * map,unsigned int reg)178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
182
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186 return true;
187 }
188
regmap_readable_noinc(struct regmap * map,unsigned int reg)189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
193
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197 return true;
198 }
199
regmap_volatile_range(struct regmap * map,unsigned int reg,size_t num)200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 size_t num)
202 {
203 unsigned int i;
204
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 return false;
208
209 return true;
210 }
211
regmap_format_12_20_write(struct regmap * map,unsigned int reg,unsigned int val)212 static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
214 {
215 u8 *out = map->work_buf;
216
217 out[0] = reg >> 4;
218 out[1] = (reg << 4) | (val >> 16);
219 out[2] = val >> 8;
220 out[3] = val;
221 }
222
223
regmap_format_2_6_write(struct regmap * map,unsigned int reg,unsigned int val)224 static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
226 {
227 u8 *out = map->work_buf;
228
229 *out = (reg << 6) | val;
230 }
231
regmap_format_4_12_write(struct regmap * map,unsigned int reg,unsigned int val)232 static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
234 {
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
237 }
238
regmap_format_7_9_write(struct regmap * map,unsigned int reg,unsigned int val)239 static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
241 {
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
244 }
245
regmap_format_7_17_write(struct regmap * map,unsigned int reg,unsigned int val)246 static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
248 {
249 u8 *out = map->work_buf;
250
251 out[2] = val;
252 out[1] = val >> 8;
253 out[0] = (val >> 16) | (reg << 1);
254 }
255
regmap_format_10_14_write(struct regmap * map,unsigned int reg,unsigned int val)256 static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
258 {
259 u8 *out = map->work_buf;
260
261 out[2] = val;
262 out[1] = (val >> 8) | (reg << 6);
263 out[0] = reg >> 2;
264 }
265
regmap_format_8(void * buf,unsigned int val,unsigned int shift)266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268 u8 *b = buf;
269
270 b[0] = val << shift;
271 }
272
regmap_format_16_be(void * buf,unsigned int val,unsigned int shift)273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 put_unaligned_be16(val << shift, buf);
276 }
277
regmap_format_16_le(void * buf,unsigned int val,unsigned int shift)278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280 put_unaligned_le16(val << shift, buf);
281 }
282
regmap_format_16_native(void * buf,unsigned int val,unsigned int shift)283 static void regmap_format_16_native(void *buf, unsigned int val,
284 unsigned int shift)
285 {
286 u16 v = val << shift;
287
288 memcpy(buf, &v, sizeof(v));
289 }
290
regmap_format_24_be(void * buf,unsigned int val,unsigned int shift)291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
292 {
293 put_unaligned_be24(val << shift, buf);
294 }
295
regmap_format_32_be(void * buf,unsigned int val,unsigned int shift)296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
297 {
298 put_unaligned_be32(val << shift, buf);
299 }
300
regmap_format_32_le(void * buf,unsigned int val,unsigned int shift)301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302 {
303 put_unaligned_le32(val << shift, buf);
304 }
305
regmap_format_32_native(void * buf,unsigned int val,unsigned int shift)306 static void regmap_format_32_native(void *buf, unsigned int val,
307 unsigned int shift)
308 {
309 u32 v = val << shift;
310
311 memcpy(buf, &v, sizeof(v));
312 }
313
314 #ifdef CONFIG_64BIT
regmap_format_64_be(void * buf,unsigned int val,unsigned int shift)315 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
316 {
317 put_unaligned_be64((u64) val << shift, buf);
318 }
319
regmap_format_64_le(void * buf,unsigned int val,unsigned int shift)320 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
321 {
322 put_unaligned_le64((u64) val << shift, buf);
323 }
324
regmap_format_64_native(void * buf,unsigned int val,unsigned int shift)325 static void regmap_format_64_native(void *buf, unsigned int val,
326 unsigned int shift)
327 {
328 u64 v = (u64) val << shift;
329
330 memcpy(buf, &v, sizeof(v));
331 }
332 #endif
333
regmap_parse_inplace_noop(void * buf)334 static void regmap_parse_inplace_noop(void *buf)
335 {
336 }
337
regmap_parse_8(const void * buf)338 static unsigned int regmap_parse_8(const void *buf)
339 {
340 const u8 *b = buf;
341
342 return b[0];
343 }
344
regmap_parse_16_be(const void * buf)345 static unsigned int regmap_parse_16_be(const void *buf)
346 {
347 return get_unaligned_be16(buf);
348 }
349
regmap_parse_16_le(const void * buf)350 static unsigned int regmap_parse_16_le(const void *buf)
351 {
352 return get_unaligned_le16(buf);
353 }
354
regmap_parse_16_be_inplace(void * buf)355 static void regmap_parse_16_be_inplace(void *buf)
356 {
357 u16 v = get_unaligned_be16(buf);
358
359 memcpy(buf, &v, sizeof(v));
360 }
361
regmap_parse_16_le_inplace(void * buf)362 static void regmap_parse_16_le_inplace(void *buf)
363 {
364 u16 v = get_unaligned_le16(buf);
365
366 memcpy(buf, &v, sizeof(v));
367 }
368
regmap_parse_16_native(const void * buf)369 static unsigned int regmap_parse_16_native(const void *buf)
370 {
371 u16 v;
372
373 memcpy(&v, buf, sizeof(v));
374 return v;
375 }
376
regmap_parse_24_be(const void * buf)377 static unsigned int regmap_parse_24_be(const void *buf)
378 {
379 return get_unaligned_be24(buf);
380 }
381
regmap_parse_32_be(const void * buf)382 static unsigned int regmap_parse_32_be(const void *buf)
383 {
384 return get_unaligned_be32(buf);
385 }
386
regmap_parse_32_le(const void * buf)387 static unsigned int regmap_parse_32_le(const void *buf)
388 {
389 return get_unaligned_le32(buf);
390 }
391
regmap_parse_32_be_inplace(void * buf)392 static void regmap_parse_32_be_inplace(void *buf)
393 {
394 u32 v = get_unaligned_be32(buf);
395
396 memcpy(buf, &v, sizeof(v));
397 }
398
regmap_parse_32_le_inplace(void * buf)399 static void regmap_parse_32_le_inplace(void *buf)
400 {
401 u32 v = get_unaligned_le32(buf);
402
403 memcpy(buf, &v, sizeof(v));
404 }
405
regmap_parse_32_native(const void * buf)406 static unsigned int regmap_parse_32_native(const void *buf)
407 {
408 u32 v;
409
410 memcpy(&v, buf, sizeof(v));
411 return v;
412 }
413
414 #ifdef CONFIG_64BIT
regmap_parse_64_be(const void * buf)415 static unsigned int regmap_parse_64_be(const void *buf)
416 {
417 return get_unaligned_be64(buf);
418 }
419
regmap_parse_64_le(const void * buf)420 static unsigned int regmap_parse_64_le(const void *buf)
421 {
422 return get_unaligned_le64(buf);
423 }
424
regmap_parse_64_be_inplace(void * buf)425 static void regmap_parse_64_be_inplace(void *buf)
426 {
427 u64 v = get_unaligned_be64(buf);
428
429 memcpy(buf, &v, sizeof(v));
430 }
431
regmap_parse_64_le_inplace(void * buf)432 static void regmap_parse_64_le_inplace(void *buf)
433 {
434 u64 v = get_unaligned_le64(buf);
435
436 memcpy(buf, &v, sizeof(v));
437 }
438
regmap_parse_64_native(const void * buf)439 static unsigned int regmap_parse_64_native(const void *buf)
440 {
441 u64 v;
442
443 memcpy(&v, buf, sizeof(v));
444 return v;
445 }
446 #endif
447
regmap_lock_hwlock(void * __map)448 static void regmap_lock_hwlock(void *__map)
449 {
450 struct regmap *map = __map;
451
452 hwspin_lock_timeout(map->hwlock, UINT_MAX);
453 }
454
regmap_lock_hwlock_irq(void * __map)455 static void regmap_lock_hwlock_irq(void *__map)
456 {
457 struct regmap *map = __map;
458
459 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
460 }
461
regmap_lock_hwlock_irqsave(void * __map)462 static void regmap_lock_hwlock_irqsave(void *__map)
463 {
464 struct regmap *map = __map;
465
466 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
467 &map->spinlock_flags);
468 }
469
regmap_unlock_hwlock(void * __map)470 static void regmap_unlock_hwlock(void *__map)
471 {
472 struct regmap *map = __map;
473
474 hwspin_unlock(map->hwlock);
475 }
476
regmap_unlock_hwlock_irq(void * __map)477 static void regmap_unlock_hwlock_irq(void *__map)
478 {
479 struct regmap *map = __map;
480
481 hwspin_unlock_irq(map->hwlock);
482 }
483
regmap_unlock_hwlock_irqrestore(void * __map)484 static void regmap_unlock_hwlock_irqrestore(void *__map)
485 {
486 struct regmap *map = __map;
487
488 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
489 }
490
regmap_lock_unlock_none(void * __map)491 static void regmap_lock_unlock_none(void *__map)
492 {
493
494 }
495
regmap_lock_mutex(void * __map)496 static void regmap_lock_mutex(void *__map)
497 {
498 struct regmap *map = __map;
499 mutex_lock(&map->mutex);
500 }
501
regmap_unlock_mutex(void * __map)502 static void regmap_unlock_mutex(void *__map)
503 {
504 struct regmap *map = __map;
505 mutex_unlock(&map->mutex);
506 }
507
regmap_lock_spinlock(void * __map)508 static void regmap_lock_spinlock(void *__map)
509 __acquires(&map->spinlock)
510 {
511 struct regmap *map = __map;
512 unsigned long flags;
513
514 spin_lock_irqsave(&map->spinlock, flags);
515 map->spinlock_flags = flags;
516 }
517
regmap_unlock_spinlock(void * __map)518 static void regmap_unlock_spinlock(void *__map)
519 __releases(&map->spinlock)
520 {
521 struct regmap *map = __map;
522 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
523 }
524
regmap_lock_raw_spinlock(void * __map)525 static void regmap_lock_raw_spinlock(void *__map)
526 __acquires(&map->raw_spinlock)
527 {
528 struct regmap *map = __map;
529 unsigned long flags;
530
531 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
532 map->raw_spinlock_flags = flags;
533 }
534
regmap_unlock_raw_spinlock(void * __map)535 static void regmap_unlock_raw_spinlock(void *__map)
536 __releases(&map->raw_spinlock)
537 {
538 struct regmap *map = __map;
539 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
540 }
541
dev_get_regmap_release(struct device * dev,void * res)542 static void dev_get_regmap_release(struct device *dev, void *res)
543 {
544 /*
545 * We don't actually have anything to do here; the goal here
546 * is not to manage the regmap but to provide a simple way to
547 * get the regmap back given a struct device.
548 */
549 }
550
_regmap_range_add(struct regmap * map,struct regmap_range_node * data)551 static bool _regmap_range_add(struct regmap *map,
552 struct regmap_range_node *data)
553 {
554 struct rb_root *root = &map->range_tree;
555 struct rb_node **new = &(root->rb_node), *parent = NULL;
556
557 while (*new) {
558 struct regmap_range_node *this =
559 rb_entry(*new, struct regmap_range_node, node);
560
561 parent = *new;
562 if (data->range_max < this->range_min)
563 new = &((*new)->rb_left);
564 else if (data->range_min > this->range_max)
565 new = &((*new)->rb_right);
566 else
567 return false;
568 }
569
570 rb_link_node(&data->node, parent, new);
571 rb_insert_color(&data->node, root);
572
573 return true;
574 }
575
_regmap_range_lookup(struct regmap * map,unsigned int reg)576 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
577 unsigned int reg)
578 {
579 struct rb_node *node = map->range_tree.rb_node;
580
581 while (node) {
582 struct regmap_range_node *this =
583 rb_entry(node, struct regmap_range_node, node);
584
585 if (reg < this->range_min)
586 node = node->rb_left;
587 else if (reg > this->range_max)
588 node = node->rb_right;
589 else
590 return this;
591 }
592
593 return NULL;
594 }
595
regmap_range_exit(struct regmap * map)596 static void regmap_range_exit(struct regmap *map)
597 {
598 struct rb_node *next;
599 struct regmap_range_node *range_node;
600
601 next = rb_first(&map->range_tree);
602 while (next) {
603 range_node = rb_entry(next, struct regmap_range_node, node);
604 next = rb_next(&range_node->node);
605 rb_erase(&range_node->node, &map->range_tree);
606 kfree(range_node);
607 }
608
609 kfree(map->selector_work_buf);
610 }
611
regmap_set_name(struct regmap * map,const struct regmap_config * config)612 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
613 {
614 if (config->name) {
615 const char *name = kstrdup_const(config->name, GFP_KERNEL);
616
617 if (!name)
618 return -ENOMEM;
619
620 kfree_const(map->name);
621 map->name = name;
622 }
623
624 return 0;
625 }
626
regmap_attach_dev(struct device * dev,struct regmap * map,const struct regmap_config * config)627 int regmap_attach_dev(struct device *dev, struct regmap *map,
628 const struct regmap_config *config)
629 {
630 struct regmap **m;
631 int ret;
632
633 map->dev = dev;
634
635 ret = regmap_set_name(map, config);
636 if (ret)
637 return ret;
638
639 regmap_debugfs_exit(map);
640 regmap_debugfs_init(map);
641
642 /* Add a devres resource for dev_get_regmap() */
643 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
644 if (!m) {
645 regmap_debugfs_exit(map);
646 return -ENOMEM;
647 }
648 *m = map;
649 devres_add(dev, m);
650
651 return 0;
652 }
653 EXPORT_SYMBOL_GPL(regmap_attach_dev);
654
regmap_get_reg_endian(const struct regmap_bus * bus,const struct regmap_config * config)655 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
656 const struct regmap_config *config)
657 {
658 enum regmap_endian endian;
659
660 /* Retrieve the endianness specification from the regmap config */
661 endian = config->reg_format_endian;
662
663 /* If the regmap config specified a non-default value, use that */
664 if (endian != REGMAP_ENDIAN_DEFAULT)
665 return endian;
666
667 /* Retrieve the endianness specification from the bus config */
668 if (bus && bus->reg_format_endian_default)
669 endian = bus->reg_format_endian_default;
670
671 /* If the bus specified a non-default value, use that */
672 if (endian != REGMAP_ENDIAN_DEFAULT)
673 return endian;
674
675 /* Use this if no other value was found */
676 return REGMAP_ENDIAN_BIG;
677 }
678
regmap_get_val_endian(struct device * dev,const struct regmap_bus * bus,const struct regmap_config * config)679 enum regmap_endian regmap_get_val_endian(struct device *dev,
680 const struct regmap_bus *bus,
681 const struct regmap_config *config)
682 {
683 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
684 enum regmap_endian endian;
685
686 /* Retrieve the endianness specification from the regmap config */
687 endian = config->val_format_endian;
688
689 /* If the regmap config specified a non-default value, use that */
690 if (endian != REGMAP_ENDIAN_DEFAULT)
691 return endian;
692
693 /* If the firmware node exist try to get endianness from it */
694 if (fwnode_property_read_bool(fwnode, "big-endian"))
695 endian = REGMAP_ENDIAN_BIG;
696 else if (fwnode_property_read_bool(fwnode, "little-endian"))
697 endian = REGMAP_ENDIAN_LITTLE;
698 else if (fwnode_property_read_bool(fwnode, "native-endian"))
699 endian = REGMAP_ENDIAN_NATIVE;
700
701 /* If the endianness was specified in fwnode, use that */
702 if (endian != REGMAP_ENDIAN_DEFAULT)
703 return endian;
704
705 /* Retrieve the endianness specification from the bus config */
706 if (bus && bus->val_format_endian_default)
707 endian = bus->val_format_endian_default;
708
709 /* If the bus specified a non-default value, use that */
710 if (endian != REGMAP_ENDIAN_DEFAULT)
711 return endian;
712
713 /* Use this if no other value was found */
714 return REGMAP_ENDIAN_BIG;
715 }
716 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
717
__regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)718 struct regmap *__regmap_init(struct device *dev,
719 const struct regmap_bus *bus,
720 void *bus_context,
721 const struct regmap_config *config,
722 struct lock_class_key *lock_key,
723 const char *lock_name)
724 {
725 struct regmap *map;
726 int ret = -EINVAL;
727 enum regmap_endian reg_endian, val_endian;
728 int i, j;
729
730 if (!config)
731 goto err;
732
733 map = kzalloc(sizeof(*map), GFP_KERNEL);
734 if (map == NULL) {
735 ret = -ENOMEM;
736 goto err;
737 }
738
739 ret = regmap_set_name(map, config);
740 if (ret)
741 goto err_map;
742
743 ret = -EINVAL; /* Later error paths rely on this */
744
745 if (config->disable_locking) {
746 map->lock = map->unlock = regmap_lock_unlock_none;
747 map->can_sleep = config->can_sleep;
748 regmap_debugfs_disable(map);
749 } else if (config->lock && config->unlock) {
750 map->lock = config->lock;
751 map->unlock = config->unlock;
752 map->lock_arg = config->lock_arg;
753 map->can_sleep = config->can_sleep;
754 } else if (config->use_hwlock) {
755 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
756 if (!map->hwlock) {
757 ret = -ENXIO;
758 goto err_name;
759 }
760
761 switch (config->hwlock_mode) {
762 case HWLOCK_IRQSTATE:
763 map->lock = regmap_lock_hwlock_irqsave;
764 map->unlock = regmap_unlock_hwlock_irqrestore;
765 break;
766 case HWLOCK_IRQ:
767 map->lock = regmap_lock_hwlock_irq;
768 map->unlock = regmap_unlock_hwlock_irq;
769 break;
770 default:
771 map->lock = regmap_lock_hwlock;
772 map->unlock = regmap_unlock_hwlock;
773 break;
774 }
775
776 map->lock_arg = map;
777 } else {
778 if ((bus && bus->fast_io) ||
779 config->fast_io) {
780 if (config->use_raw_spinlock) {
781 raw_spin_lock_init(&map->raw_spinlock);
782 map->lock = regmap_lock_raw_spinlock;
783 map->unlock = regmap_unlock_raw_spinlock;
784 lockdep_set_class_and_name(&map->raw_spinlock,
785 lock_key, lock_name);
786 } else {
787 spin_lock_init(&map->spinlock);
788 map->lock = regmap_lock_spinlock;
789 map->unlock = regmap_unlock_spinlock;
790 lockdep_set_class_and_name(&map->spinlock,
791 lock_key, lock_name);
792 }
793 } else {
794 mutex_init(&map->mutex);
795 map->lock = regmap_lock_mutex;
796 map->unlock = regmap_unlock_mutex;
797 map->can_sleep = true;
798 lockdep_set_class_and_name(&map->mutex,
799 lock_key, lock_name);
800 }
801 map->lock_arg = map;
802 }
803
804 /*
805 * When we write in fast-paths with regmap_bulk_write() don't allocate
806 * scratch buffers with sleeping allocations.
807 */
808 if ((bus && bus->fast_io) || config->fast_io)
809 map->alloc_flags = GFP_ATOMIC;
810 else
811 map->alloc_flags = GFP_KERNEL;
812
813 map->reg_base = config->reg_base;
814
815 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
816 map->format.pad_bytes = config->pad_bits / 8;
817 map->format.reg_downshift = config->reg_downshift;
818 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
819 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
820 config->val_bits + config->pad_bits, 8);
821 map->reg_shift = config->pad_bits % 8;
822 if (config->reg_stride)
823 map->reg_stride = config->reg_stride;
824 else
825 map->reg_stride = 1;
826 if (is_power_of_2(map->reg_stride))
827 map->reg_stride_order = ilog2(map->reg_stride);
828 else
829 map->reg_stride_order = -1;
830 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
831 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
832 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
833 if (bus) {
834 map->max_raw_read = bus->max_raw_read;
835 map->max_raw_write = bus->max_raw_write;
836 } else if (config->max_raw_read && config->max_raw_write) {
837 map->max_raw_read = config->max_raw_read;
838 map->max_raw_write = config->max_raw_write;
839 }
840 map->dev = dev;
841 map->bus = bus;
842 map->bus_context = bus_context;
843 map->max_register = config->max_register;
844 map->wr_table = config->wr_table;
845 map->rd_table = config->rd_table;
846 map->volatile_table = config->volatile_table;
847 map->precious_table = config->precious_table;
848 map->wr_noinc_table = config->wr_noinc_table;
849 map->rd_noinc_table = config->rd_noinc_table;
850 map->writeable_reg = config->writeable_reg;
851 map->readable_reg = config->readable_reg;
852 map->volatile_reg = config->volatile_reg;
853 map->precious_reg = config->precious_reg;
854 map->writeable_noinc_reg = config->writeable_noinc_reg;
855 map->readable_noinc_reg = config->readable_noinc_reg;
856 map->cache_type = config->cache_type;
857
858 spin_lock_init(&map->async_lock);
859 INIT_LIST_HEAD(&map->async_list);
860 INIT_LIST_HEAD(&map->async_free);
861 init_waitqueue_head(&map->async_waitq);
862
863 if (config->read_flag_mask ||
864 config->write_flag_mask ||
865 config->zero_flag_mask) {
866 map->read_flag_mask = config->read_flag_mask;
867 map->write_flag_mask = config->write_flag_mask;
868 } else if (bus) {
869 map->read_flag_mask = bus->read_flag_mask;
870 }
871
872 if (config && config->read && config->write) {
873 map->reg_read = _regmap_bus_read;
874 if (config->reg_update_bits)
875 map->reg_update_bits = config->reg_update_bits;
876
877 /* Bulk read/write */
878 map->read = config->read;
879 map->write = config->write;
880
881 reg_endian = REGMAP_ENDIAN_NATIVE;
882 val_endian = REGMAP_ENDIAN_NATIVE;
883 } else if (!bus) {
884 map->reg_read = config->reg_read;
885 map->reg_write = config->reg_write;
886 map->reg_update_bits = config->reg_update_bits;
887
888 map->defer_caching = false;
889 goto skip_format_initialization;
890 } else if (!bus->read || !bus->write) {
891 map->reg_read = _regmap_bus_reg_read;
892 map->reg_write = _regmap_bus_reg_write;
893 map->reg_update_bits = bus->reg_update_bits;
894
895 map->defer_caching = false;
896 goto skip_format_initialization;
897 } else {
898 map->reg_read = _regmap_bus_read;
899 map->reg_update_bits = bus->reg_update_bits;
900 /* Bulk read/write */
901 map->read = bus->read;
902 map->write = bus->write;
903
904 reg_endian = regmap_get_reg_endian(bus, config);
905 val_endian = regmap_get_val_endian(dev, bus, config);
906 }
907
908 switch (config->reg_bits + map->reg_shift) {
909 case 2:
910 switch (config->val_bits) {
911 case 6:
912 map->format.format_write = regmap_format_2_6_write;
913 break;
914 default:
915 goto err_hwlock;
916 }
917 break;
918
919 case 4:
920 switch (config->val_bits) {
921 case 12:
922 map->format.format_write = regmap_format_4_12_write;
923 break;
924 default:
925 goto err_hwlock;
926 }
927 break;
928
929 case 7:
930 switch (config->val_bits) {
931 case 9:
932 map->format.format_write = regmap_format_7_9_write;
933 break;
934 case 17:
935 map->format.format_write = regmap_format_7_17_write;
936 break;
937 default:
938 goto err_hwlock;
939 }
940 break;
941
942 case 10:
943 switch (config->val_bits) {
944 case 14:
945 map->format.format_write = regmap_format_10_14_write;
946 break;
947 default:
948 goto err_hwlock;
949 }
950 break;
951
952 case 12:
953 switch (config->val_bits) {
954 case 20:
955 map->format.format_write = regmap_format_12_20_write;
956 break;
957 default:
958 goto err_hwlock;
959 }
960 break;
961
962 case 8:
963 map->format.format_reg = regmap_format_8;
964 break;
965
966 case 16:
967 switch (reg_endian) {
968 case REGMAP_ENDIAN_BIG:
969 map->format.format_reg = regmap_format_16_be;
970 break;
971 case REGMAP_ENDIAN_LITTLE:
972 map->format.format_reg = regmap_format_16_le;
973 break;
974 case REGMAP_ENDIAN_NATIVE:
975 map->format.format_reg = regmap_format_16_native;
976 break;
977 default:
978 goto err_hwlock;
979 }
980 break;
981
982 case 24:
983 switch (reg_endian) {
984 case REGMAP_ENDIAN_BIG:
985 map->format.format_reg = regmap_format_24_be;
986 break;
987 default:
988 goto err_hwlock;
989 }
990 break;
991
992 case 32:
993 switch (reg_endian) {
994 case REGMAP_ENDIAN_BIG:
995 map->format.format_reg = regmap_format_32_be;
996 break;
997 case REGMAP_ENDIAN_LITTLE:
998 map->format.format_reg = regmap_format_32_le;
999 break;
1000 case REGMAP_ENDIAN_NATIVE:
1001 map->format.format_reg = regmap_format_32_native;
1002 break;
1003 default:
1004 goto err_hwlock;
1005 }
1006 break;
1007
1008 #ifdef CONFIG_64BIT
1009 case 64:
1010 switch (reg_endian) {
1011 case REGMAP_ENDIAN_BIG:
1012 map->format.format_reg = regmap_format_64_be;
1013 break;
1014 case REGMAP_ENDIAN_LITTLE:
1015 map->format.format_reg = regmap_format_64_le;
1016 break;
1017 case REGMAP_ENDIAN_NATIVE:
1018 map->format.format_reg = regmap_format_64_native;
1019 break;
1020 default:
1021 goto err_hwlock;
1022 }
1023 break;
1024 #endif
1025
1026 default:
1027 goto err_hwlock;
1028 }
1029
1030 if (val_endian == REGMAP_ENDIAN_NATIVE)
1031 map->format.parse_inplace = regmap_parse_inplace_noop;
1032
1033 switch (config->val_bits) {
1034 case 8:
1035 map->format.format_val = regmap_format_8;
1036 map->format.parse_val = regmap_parse_8;
1037 map->format.parse_inplace = regmap_parse_inplace_noop;
1038 break;
1039 case 16:
1040 switch (val_endian) {
1041 case REGMAP_ENDIAN_BIG:
1042 map->format.format_val = regmap_format_16_be;
1043 map->format.parse_val = regmap_parse_16_be;
1044 map->format.parse_inplace = regmap_parse_16_be_inplace;
1045 break;
1046 case REGMAP_ENDIAN_LITTLE:
1047 map->format.format_val = regmap_format_16_le;
1048 map->format.parse_val = regmap_parse_16_le;
1049 map->format.parse_inplace = regmap_parse_16_le_inplace;
1050 break;
1051 case REGMAP_ENDIAN_NATIVE:
1052 map->format.format_val = regmap_format_16_native;
1053 map->format.parse_val = regmap_parse_16_native;
1054 break;
1055 default:
1056 goto err_hwlock;
1057 }
1058 break;
1059 case 24:
1060 switch (val_endian) {
1061 case REGMAP_ENDIAN_BIG:
1062 map->format.format_val = regmap_format_24_be;
1063 map->format.parse_val = regmap_parse_24_be;
1064 break;
1065 default:
1066 goto err_hwlock;
1067 }
1068 break;
1069 case 32:
1070 switch (val_endian) {
1071 case REGMAP_ENDIAN_BIG:
1072 map->format.format_val = regmap_format_32_be;
1073 map->format.parse_val = regmap_parse_32_be;
1074 map->format.parse_inplace = regmap_parse_32_be_inplace;
1075 break;
1076 case REGMAP_ENDIAN_LITTLE:
1077 map->format.format_val = regmap_format_32_le;
1078 map->format.parse_val = regmap_parse_32_le;
1079 map->format.parse_inplace = regmap_parse_32_le_inplace;
1080 break;
1081 case REGMAP_ENDIAN_NATIVE:
1082 map->format.format_val = regmap_format_32_native;
1083 map->format.parse_val = regmap_parse_32_native;
1084 break;
1085 default:
1086 goto err_hwlock;
1087 }
1088 break;
1089 #ifdef CONFIG_64BIT
1090 case 64:
1091 switch (val_endian) {
1092 case REGMAP_ENDIAN_BIG:
1093 map->format.format_val = regmap_format_64_be;
1094 map->format.parse_val = regmap_parse_64_be;
1095 map->format.parse_inplace = regmap_parse_64_be_inplace;
1096 break;
1097 case REGMAP_ENDIAN_LITTLE:
1098 map->format.format_val = regmap_format_64_le;
1099 map->format.parse_val = regmap_parse_64_le;
1100 map->format.parse_inplace = regmap_parse_64_le_inplace;
1101 break;
1102 case REGMAP_ENDIAN_NATIVE:
1103 map->format.format_val = regmap_format_64_native;
1104 map->format.parse_val = regmap_parse_64_native;
1105 break;
1106 default:
1107 goto err_hwlock;
1108 }
1109 break;
1110 #endif
1111 }
1112
1113 if (map->format.format_write) {
1114 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1115 (val_endian != REGMAP_ENDIAN_BIG))
1116 goto err_hwlock;
1117 map->use_single_write = true;
1118 }
1119
1120 if (!map->format.format_write &&
1121 !(map->format.format_reg && map->format.format_val))
1122 goto err_hwlock;
1123
1124 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1125 if (map->work_buf == NULL) {
1126 ret = -ENOMEM;
1127 goto err_hwlock;
1128 }
1129
1130 if (map->format.format_write) {
1131 map->defer_caching = false;
1132 map->reg_write = _regmap_bus_formatted_write;
1133 } else if (map->format.format_val) {
1134 map->defer_caching = true;
1135 map->reg_write = _regmap_bus_raw_write;
1136 }
1137
1138 skip_format_initialization:
1139
1140 map->range_tree = RB_ROOT;
1141 for (i = 0; i < config->num_ranges; i++) {
1142 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1143 struct regmap_range_node *new;
1144
1145 /* Sanity check */
1146 if (range_cfg->range_max < range_cfg->range_min) {
1147 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1148 range_cfg->range_max, range_cfg->range_min);
1149 goto err_range;
1150 }
1151
1152 if (range_cfg->range_max > map->max_register) {
1153 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1154 range_cfg->range_max, map->max_register);
1155 goto err_range;
1156 }
1157
1158 if (range_cfg->selector_reg > map->max_register) {
1159 dev_err(map->dev,
1160 "Invalid range %d: selector out of map\n", i);
1161 goto err_range;
1162 }
1163
1164 if (range_cfg->window_len == 0) {
1165 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1166 i);
1167 goto err_range;
1168 }
1169
1170 /* Make sure, that this register range has no selector
1171 or data window within its boundary */
1172 for (j = 0; j < config->num_ranges; j++) {
1173 unsigned int sel_reg = config->ranges[j].selector_reg;
1174 unsigned int win_min = config->ranges[j].window_start;
1175 unsigned int win_max = win_min +
1176 config->ranges[j].window_len - 1;
1177
1178 /* Allow data window inside its own virtual range */
1179 if (j == i)
1180 continue;
1181
1182 if (range_cfg->range_min <= sel_reg &&
1183 sel_reg <= range_cfg->range_max) {
1184 dev_err(map->dev,
1185 "Range %d: selector for %d in window\n",
1186 i, j);
1187 goto err_range;
1188 }
1189
1190 if (!(win_max < range_cfg->range_min ||
1191 win_min > range_cfg->range_max)) {
1192 dev_err(map->dev,
1193 "Range %d: window for %d in window\n",
1194 i, j);
1195 goto err_range;
1196 }
1197 }
1198
1199 new = kzalloc(sizeof(*new), GFP_KERNEL);
1200 if (new == NULL) {
1201 ret = -ENOMEM;
1202 goto err_range;
1203 }
1204
1205 new->map = map;
1206 new->name = range_cfg->name;
1207 new->range_min = range_cfg->range_min;
1208 new->range_max = range_cfg->range_max;
1209 new->selector_reg = range_cfg->selector_reg;
1210 new->selector_mask = range_cfg->selector_mask;
1211 new->selector_shift = range_cfg->selector_shift;
1212 new->window_start = range_cfg->window_start;
1213 new->window_len = range_cfg->window_len;
1214
1215 if (!_regmap_range_add(map, new)) {
1216 dev_err(map->dev, "Failed to add range %d\n", i);
1217 kfree(new);
1218 goto err_range;
1219 }
1220
1221 if (map->selector_work_buf == NULL) {
1222 map->selector_work_buf =
1223 kzalloc(map->format.buf_size, GFP_KERNEL);
1224 if (map->selector_work_buf == NULL) {
1225 ret = -ENOMEM;
1226 goto err_range;
1227 }
1228 }
1229 }
1230
1231 ret = regcache_init(map, config);
1232 if (ret != 0)
1233 goto err_range;
1234
1235 if (dev) {
1236 ret = regmap_attach_dev(dev, map, config);
1237 if (ret != 0)
1238 goto err_regcache;
1239 } else {
1240 regmap_debugfs_init(map);
1241 }
1242
1243 return map;
1244
1245 err_regcache:
1246 regcache_exit(map);
1247 err_range:
1248 regmap_range_exit(map);
1249 kfree(map->work_buf);
1250 err_hwlock:
1251 if (map->hwlock)
1252 hwspin_lock_free(map->hwlock);
1253 err_name:
1254 kfree_const(map->name);
1255 err_map:
1256 kfree(map);
1257 err:
1258 return ERR_PTR(ret);
1259 }
1260 EXPORT_SYMBOL_GPL(__regmap_init);
1261
devm_regmap_release(struct device * dev,void * res)1262 static void devm_regmap_release(struct device *dev, void *res)
1263 {
1264 regmap_exit(*(struct regmap **)res);
1265 }
1266
__devm_regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)1267 struct regmap *__devm_regmap_init(struct device *dev,
1268 const struct regmap_bus *bus,
1269 void *bus_context,
1270 const struct regmap_config *config,
1271 struct lock_class_key *lock_key,
1272 const char *lock_name)
1273 {
1274 struct regmap **ptr, *regmap;
1275
1276 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1277 if (!ptr)
1278 return ERR_PTR(-ENOMEM);
1279
1280 regmap = __regmap_init(dev, bus, bus_context, config,
1281 lock_key, lock_name);
1282 if (!IS_ERR(regmap)) {
1283 *ptr = regmap;
1284 devres_add(dev, ptr);
1285 } else {
1286 devres_free(ptr);
1287 }
1288
1289 return regmap;
1290 }
1291 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1292
regmap_field_init(struct regmap_field * rm_field,struct regmap * regmap,struct reg_field reg_field)1293 static void regmap_field_init(struct regmap_field *rm_field,
1294 struct regmap *regmap, struct reg_field reg_field)
1295 {
1296 rm_field->regmap = regmap;
1297 rm_field->reg = reg_field.reg;
1298 rm_field->shift = reg_field.lsb;
1299 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1300
1301 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1302
1303 rm_field->id_size = reg_field.id_size;
1304 rm_field->id_offset = reg_field.id_offset;
1305 }
1306
1307 /**
1308 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1309 *
1310 * @dev: Device that will be interacted with
1311 * @regmap: regmap bank in which this register field is located.
1312 * @reg_field: Register field with in the bank.
1313 *
1314 * The return value will be an ERR_PTR() on error or a valid pointer
1315 * to a struct regmap_field. The regmap_field will be automatically freed
1316 * by the device management code.
1317 */
devm_regmap_field_alloc(struct device * dev,struct regmap * regmap,struct reg_field reg_field)1318 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1319 struct regmap *regmap, struct reg_field reg_field)
1320 {
1321 struct regmap_field *rm_field = devm_kzalloc(dev,
1322 sizeof(*rm_field), GFP_KERNEL);
1323 if (!rm_field)
1324 return ERR_PTR(-ENOMEM);
1325
1326 regmap_field_init(rm_field, regmap, reg_field);
1327
1328 return rm_field;
1329
1330 }
1331 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1332
1333
1334 /**
1335 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1336 *
1337 * @regmap: regmap bank in which this register field is located.
1338 * @rm_field: regmap register fields within the bank.
1339 * @reg_field: Register fields within the bank.
1340 * @num_fields: Number of register fields.
1341 *
1342 * The return value will be an -ENOMEM on error or zero for success.
1343 * Newly allocated regmap_fields should be freed by calling
1344 * regmap_field_bulk_free()
1345 */
regmap_field_bulk_alloc(struct regmap * regmap,struct regmap_field ** rm_field,const struct reg_field * reg_field,int num_fields)1346 int regmap_field_bulk_alloc(struct regmap *regmap,
1347 struct regmap_field **rm_field,
1348 const struct reg_field *reg_field,
1349 int num_fields)
1350 {
1351 struct regmap_field *rf;
1352 int i;
1353
1354 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1355 if (!rf)
1356 return -ENOMEM;
1357
1358 for (i = 0; i < num_fields; i++) {
1359 regmap_field_init(&rf[i], regmap, reg_field[i]);
1360 rm_field[i] = &rf[i];
1361 }
1362
1363 return 0;
1364 }
1365 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1366
1367 /**
1368 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1369 * fields.
1370 *
1371 * @dev: Device that will be interacted with
1372 * @regmap: regmap bank in which this register field is located.
1373 * @rm_field: regmap register fields within the bank.
1374 * @reg_field: Register fields within the bank.
1375 * @num_fields: Number of register fields.
1376 *
1377 * The return value will be an -ENOMEM on error or zero for success.
1378 * Newly allocated regmap_fields will be automatically freed by the
1379 * device management code.
1380 */
devm_regmap_field_bulk_alloc(struct device * dev,struct regmap * regmap,struct regmap_field ** rm_field,const struct reg_field * reg_field,int num_fields)1381 int devm_regmap_field_bulk_alloc(struct device *dev,
1382 struct regmap *regmap,
1383 struct regmap_field **rm_field,
1384 const struct reg_field *reg_field,
1385 int num_fields)
1386 {
1387 struct regmap_field *rf;
1388 int i;
1389
1390 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1391 if (!rf)
1392 return -ENOMEM;
1393
1394 for (i = 0; i < num_fields; i++) {
1395 regmap_field_init(&rf[i], regmap, reg_field[i]);
1396 rm_field[i] = &rf[i];
1397 }
1398
1399 return 0;
1400 }
1401 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1402
1403 /**
1404 * regmap_field_bulk_free() - Free register field allocated using
1405 * regmap_field_bulk_alloc.
1406 *
1407 * @field: regmap fields which should be freed.
1408 */
regmap_field_bulk_free(struct regmap_field * field)1409 void regmap_field_bulk_free(struct regmap_field *field)
1410 {
1411 kfree(field);
1412 }
1413 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1414
1415 /**
1416 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1417 * devm_regmap_field_bulk_alloc.
1418 *
1419 * @dev: Device that will be interacted with
1420 * @field: regmap field which should be freed.
1421 *
1422 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1423 * drivers need not call this function, as the memory allocated via devm
1424 * will be freed as per device-driver life-cycle.
1425 */
devm_regmap_field_bulk_free(struct device * dev,struct regmap_field * field)1426 void devm_regmap_field_bulk_free(struct device *dev,
1427 struct regmap_field *field)
1428 {
1429 devm_kfree(dev, field);
1430 }
1431 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1432
1433 /**
1434 * devm_regmap_field_free() - Free a register field allocated using
1435 * devm_regmap_field_alloc.
1436 *
1437 * @dev: Device that will be interacted with
1438 * @field: regmap field which should be freed.
1439 *
1440 * Free register field allocated using devm_regmap_field_alloc(). Usually
1441 * drivers need not call this function, as the memory allocated via devm
1442 * will be freed as per device-driver life-cyle.
1443 */
devm_regmap_field_free(struct device * dev,struct regmap_field * field)1444 void devm_regmap_field_free(struct device *dev,
1445 struct regmap_field *field)
1446 {
1447 devm_kfree(dev, field);
1448 }
1449 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1450
1451 /**
1452 * regmap_field_alloc() - Allocate and initialise a register field.
1453 *
1454 * @regmap: regmap bank in which this register field is located.
1455 * @reg_field: Register field with in the bank.
1456 *
1457 * The return value will be an ERR_PTR() on error or a valid pointer
1458 * to a struct regmap_field. The regmap_field should be freed by the
1459 * user once its finished working with it using regmap_field_free().
1460 */
regmap_field_alloc(struct regmap * regmap,struct reg_field reg_field)1461 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1462 struct reg_field reg_field)
1463 {
1464 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1465
1466 if (!rm_field)
1467 return ERR_PTR(-ENOMEM);
1468
1469 regmap_field_init(rm_field, regmap, reg_field);
1470
1471 return rm_field;
1472 }
1473 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1474
1475 /**
1476 * regmap_field_free() - Free register field allocated using
1477 * regmap_field_alloc.
1478 *
1479 * @field: regmap field which should be freed.
1480 */
regmap_field_free(struct regmap_field * field)1481 void regmap_field_free(struct regmap_field *field)
1482 {
1483 kfree(field);
1484 }
1485 EXPORT_SYMBOL_GPL(regmap_field_free);
1486
1487 /**
1488 * regmap_reinit_cache() - Reinitialise the current register cache
1489 *
1490 * @map: Register map to operate on.
1491 * @config: New configuration. Only the cache data will be used.
1492 *
1493 * Discard any existing register cache for the map and initialize a
1494 * new cache. This can be used to restore the cache to defaults or to
1495 * update the cache configuration to reflect runtime discovery of the
1496 * hardware.
1497 *
1498 * No explicit locking is done here, the user needs to ensure that
1499 * this function will not race with other calls to regmap.
1500 */
regmap_reinit_cache(struct regmap * map,const struct regmap_config * config)1501 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1502 {
1503 int ret;
1504
1505 regcache_exit(map);
1506 regmap_debugfs_exit(map);
1507
1508 map->max_register = config->max_register;
1509 map->writeable_reg = config->writeable_reg;
1510 map->readable_reg = config->readable_reg;
1511 map->volatile_reg = config->volatile_reg;
1512 map->precious_reg = config->precious_reg;
1513 map->writeable_noinc_reg = config->writeable_noinc_reg;
1514 map->readable_noinc_reg = config->readable_noinc_reg;
1515 map->cache_type = config->cache_type;
1516
1517 ret = regmap_set_name(map, config);
1518 if (ret)
1519 return ret;
1520
1521 regmap_debugfs_init(map);
1522
1523 map->cache_bypass = false;
1524 map->cache_only = false;
1525
1526 return regcache_init(map, config);
1527 }
1528 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1529
1530 /**
1531 * regmap_exit() - Free a previously allocated register map
1532 *
1533 * @map: Register map to operate on.
1534 */
regmap_exit(struct regmap * map)1535 void regmap_exit(struct regmap *map)
1536 {
1537 struct regmap_async *async;
1538
1539 regcache_exit(map);
1540 regmap_debugfs_exit(map);
1541 regmap_range_exit(map);
1542 if (map->bus && map->bus->free_context)
1543 map->bus->free_context(map->bus_context);
1544 kfree(map->work_buf);
1545 while (!list_empty(&map->async_free)) {
1546 async = list_first_entry_or_null(&map->async_free,
1547 struct regmap_async,
1548 list);
1549 list_del(&async->list);
1550 kfree(async->work_buf);
1551 kfree(async);
1552 }
1553 if (map->hwlock)
1554 hwspin_lock_free(map->hwlock);
1555 if (map->lock == regmap_lock_mutex)
1556 mutex_destroy(&map->mutex);
1557 kfree_const(map->name);
1558 kfree(map->patch);
1559 if (map->bus && map->bus->free_on_exit)
1560 kfree(map->bus);
1561 kfree(map);
1562 }
1563 EXPORT_SYMBOL_GPL(regmap_exit);
1564
dev_get_regmap_match(struct device * dev,void * res,void * data)1565 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1566 {
1567 struct regmap **r = res;
1568 if (!r || !*r) {
1569 WARN_ON(!r || !*r);
1570 return 0;
1571 }
1572
1573 /* If the user didn't specify a name match any */
1574 if (data)
1575 return (*r)->name && !strcmp((*r)->name, data);
1576 else
1577 return 1;
1578 }
1579
1580 /**
1581 * dev_get_regmap() - Obtain the regmap (if any) for a device
1582 *
1583 * @dev: Device to retrieve the map for
1584 * @name: Optional name for the register map, usually NULL.
1585 *
1586 * Returns the regmap for the device if one is present, or NULL. If
1587 * name is specified then it must match the name specified when
1588 * registering the device, if it is NULL then the first regmap found
1589 * will be used. Devices with multiple register maps are very rare,
1590 * generic code should normally not need to specify a name.
1591 */
dev_get_regmap(struct device * dev,const char * name)1592 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1593 {
1594 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1595 dev_get_regmap_match, (void *)name);
1596
1597 if (!r)
1598 return NULL;
1599 return *r;
1600 }
1601 EXPORT_SYMBOL_GPL(dev_get_regmap);
1602
1603 /**
1604 * regmap_get_device() - Obtain the device from a regmap
1605 *
1606 * @map: Register map to operate on.
1607 *
1608 * Returns the underlying device that the regmap has been created for.
1609 */
regmap_get_device(struct regmap * map)1610 struct device *regmap_get_device(struct regmap *map)
1611 {
1612 return map->dev;
1613 }
1614 EXPORT_SYMBOL_GPL(regmap_get_device);
1615
_regmap_select_page(struct regmap * map,unsigned int * reg,struct regmap_range_node * range,unsigned int val_num)1616 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1617 struct regmap_range_node *range,
1618 unsigned int val_num)
1619 {
1620 void *orig_work_buf;
1621 unsigned int win_offset;
1622 unsigned int win_page;
1623 bool page_chg;
1624 int ret;
1625
1626 win_offset = (*reg - range->range_min) % range->window_len;
1627 win_page = (*reg - range->range_min) / range->window_len;
1628
1629 if (val_num > 1) {
1630 /* Bulk write shouldn't cross range boundary */
1631 if (*reg + val_num - 1 > range->range_max)
1632 return -EINVAL;
1633
1634 /* ... or single page boundary */
1635 if (val_num > range->window_len - win_offset)
1636 return -EINVAL;
1637 }
1638
1639 /* It is possible to have selector register inside data window.
1640 In that case, selector register is located on every page and
1641 it needs no page switching, when accessed alone. */
1642 if (val_num > 1 ||
1643 range->window_start + win_offset != range->selector_reg) {
1644 /* Use separate work_buf during page switching */
1645 orig_work_buf = map->work_buf;
1646 map->work_buf = map->selector_work_buf;
1647
1648 ret = _regmap_update_bits(map, range->selector_reg,
1649 range->selector_mask,
1650 win_page << range->selector_shift,
1651 &page_chg, false);
1652
1653 map->work_buf = orig_work_buf;
1654
1655 if (ret != 0)
1656 return ret;
1657 }
1658
1659 *reg = range->window_start + win_offset;
1660
1661 return 0;
1662 }
1663
regmap_set_work_buf_flag_mask(struct regmap * map,int max_bytes,unsigned long mask)1664 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1665 unsigned long mask)
1666 {
1667 u8 *buf;
1668 int i;
1669
1670 if (!mask || !map->work_buf)
1671 return;
1672
1673 buf = map->work_buf;
1674
1675 for (i = 0; i < max_bytes; i++)
1676 buf[i] |= (mask >> (8 * i)) & 0xff;
1677 }
1678
_regmap_raw_write_impl(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)1679 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1680 const void *val, size_t val_len, bool noinc)
1681 {
1682 struct regmap_range_node *range;
1683 unsigned long flags;
1684 void *work_val = map->work_buf + map->format.reg_bytes +
1685 map->format.pad_bytes;
1686 void *buf;
1687 int ret = -ENOTSUPP;
1688 size_t len;
1689 int i;
1690
1691 /* Check for unwritable or noinc registers in range
1692 * before we start
1693 */
1694 if (!regmap_writeable_noinc(map, reg)) {
1695 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1696 unsigned int element =
1697 reg + regmap_get_offset(map, i);
1698 if (!regmap_writeable(map, element) ||
1699 regmap_writeable_noinc(map, element))
1700 return -EINVAL;
1701 }
1702 }
1703
1704 if (!map->cache_bypass && map->format.parse_val) {
1705 unsigned int ival, offset;
1706 int val_bytes = map->format.val_bytes;
1707
1708 /* Cache the last written value for noinc writes */
1709 i = noinc ? val_len - val_bytes : 0;
1710 for (; i < val_len; i += val_bytes) {
1711 ival = map->format.parse_val(val + i);
1712 offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1713 ret = regcache_write(map, reg + offset, ival);
1714 if (ret) {
1715 dev_err(map->dev,
1716 "Error in caching of register: %x ret: %d\n",
1717 reg + offset, ret);
1718 return ret;
1719 }
1720 }
1721 if (map->cache_only) {
1722 map->cache_dirty = true;
1723 return 0;
1724 }
1725 }
1726
1727 range = _regmap_range_lookup(map, reg);
1728 if (range) {
1729 int val_num = val_len / map->format.val_bytes;
1730 int win_offset = (reg - range->range_min) % range->window_len;
1731 int win_residue = range->window_len - win_offset;
1732
1733 /* If the write goes beyond the end of the window split it */
1734 while (val_num > win_residue) {
1735 dev_dbg(map->dev, "Writing window %d/%zu\n",
1736 win_residue, val_len / map->format.val_bytes);
1737 ret = _regmap_raw_write_impl(map, reg, val,
1738 win_residue *
1739 map->format.val_bytes, noinc);
1740 if (ret != 0)
1741 return ret;
1742
1743 reg += win_residue;
1744 val_num -= win_residue;
1745 val += win_residue * map->format.val_bytes;
1746 val_len -= win_residue * map->format.val_bytes;
1747
1748 win_offset = (reg - range->range_min) %
1749 range->window_len;
1750 win_residue = range->window_len - win_offset;
1751 }
1752
1753 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1754 if (ret != 0)
1755 return ret;
1756 }
1757
1758 reg += map->reg_base;
1759 reg >>= map->format.reg_downshift;
1760 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1761 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1762 map->write_flag_mask);
1763
1764 /*
1765 * Essentially all I/O mechanisms will be faster with a single
1766 * buffer to write. Since register syncs often generate raw
1767 * writes of single registers optimise that case.
1768 */
1769 if (val != work_val && val_len == map->format.val_bytes) {
1770 memcpy(work_val, val, map->format.val_bytes);
1771 val = work_val;
1772 }
1773
1774 if (map->async && map->bus && map->bus->async_write) {
1775 struct regmap_async *async;
1776
1777 trace_regmap_async_write_start(map, reg, val_len);
1778
1779 spin_lock_irqsave(&map->async_lock, flags);
1780 async = list_first_entry_or_null(&map->async_free,
1781 struct regmap_async,
1782 list);
1783 if (async)
1784 list_del(&async->list);
1785 spin_unlock_irqrestore(&map->async_lock, flags);
1786
1787 if (!async) {
1788 async = map->bus->async_alloc();
1789 if (!async)
1790 return -ENOMEM;
1791
1792 async->work_buf = kzalloc(map->format.buf_size,
1793 GFP_KERNEL | GFP_DMA);
1794 if (!async->work_buf) {
1795 kfree(async);
1796 return -ENOMEM;
1797 }
1798 }
1799
1800 async->map = map;
1801
1802 /* If the caller supplied the value we can use it safely. */
1803 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1804 map->format.reg_bytes + map->format.val_bytes);
1805
1806 spin_lock_irqsave(&map->async_lock, flags);
1807 list_add_tail(&async->list, &map->async_list);
1808 spin_unlock_irqrestore(&map->async_lock, flags);
1809
1810 if (val != work_val)
1811 ret = map->bus->async_write(map->bus_context,
1812 async->work_buf,
1813 map->format.reg_bytes +
1814 map->format.pad_bytes,
1815 val, val_len, async);
1816 else
1817 ret = map->bus->async_write(map->bus_context,
1818 async->work_buf,
1819 map->format.reg_bytes +
1820 map->format.pad_bytes +
1821 val_len, NULL, 0, async);
1822
1823 if (ret != 0) {
1824 dev_err(map->dev, "Failed to schedule write: %d\n",
1825 ret);
1826
1827 spin_lock_irqsave(&map->async_lock, flags);
1828 list_move(&async->list, &map->async_free);
1829 spin_unlock_irqrestore(&map->async_lock, flags);
1830 }
1831
1832 return ret;
1833 }
1834
1835 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1836
1837 /* If we're doing a single register write we can probably just
1838 * send the work_buf directly, otherwise try to do a gather
1839 * write.
1840 */
1841 if (val == work_val)
1842 ret = map->write(map->bus_context, map->work_buf,
1843 map->format.reg_bytes +
1844 map->format.pad_bytes +
1845 val_len);
1846 else if (map->bus && map->bus->gather_write)
1847 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1848 map->format.reg_bytes +
1849 map->format.pad_bytes,
1850 val, val_len);
1851 else
1852 ret = -ENOTSUPP;
1853
1854 /* If that didn't work fall back on linearising by hand. */
1855 if (ret == -ENOTSUPP) {
1856 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1857 buf = kzalloc(len, GFP_KERNEL);
1858 if (!buf)
1859 return -ENOMEM;
1860
1861 memcpy(buf, map->work_buf, map->format.reg_bytes);
1862 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1863 val, val_len);
1864 ret = map->write(map->bus_context, buf, len);
1865
1866 kfree(buf);
1867 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1868 /* regcache_drop_region() takes lock that we already have,
1869 * thus call map->cache_ops->drop() directly
1870 */
1871 if (map->cache_ops && map->cache_ops->drop)
1872 map->cache_ops->drop(map, reg, reg + 1);
1873 }
1874
1875 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1876
1877 return ret;
1878 }
1879
1880 /**
1881 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1882 *
1883 * @map: Map to check.
1884 */
regmap_can_raw_write(struct regmap * map)1885 bool regmap_can_raw_write(struct regmap *map)
1886 {
1887 return map->write && map->format.format_val && map->format.format_reg;
1888 }
1889 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1890
1891 /**
1892 * regmap_get_raw_read_max - Get the maximum size we can read
1893 *
1894 * @map: Map to check.
1895 */
regmap_get_raw_read_max(struct regmap * map)1896 size_t regmap_get_raw_read_max(struct regmap *map)
1897 {
1898 return map->max_raw_read;
1899 }
1900 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1901
1902 /**
1903 * regmap_get_raw_write_max - Get the maximum size we can read
1904 *
1905 * @map: Map to check.
1906 */
regmap_get_raw_write_max(struct regmap * map)1907 size_t regmap_get_raw_write_max(struct regmap *map)
1908 {
1909 return map->max_raw_write;
1910 }
1911 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1912
_regmap_bus_formatted_write(void * context,unsigned int reg,unsigned int val)1913 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1914 unsigned int val)
1915 {
1916 int ret;
1917 struct regmap_range_node *range;
1918 struct regmap *map = context;
1919
1920 WARN_ON(!map->format.format_write);
1921
1922 range = _regmap_range_lookup(map, reg);
1923 if (range) {
1924 ret = _regmap_select_page(map, ®, range, 1);
1925 if (ret != 0)
1926 return ret;
1927 }
1928
1929 reg += map->reg_base;
1930 reg >>= map->format.reg_downshift;
1931 map->format.format_write(map, reg, val);
1932
1933 trace_regmap_hw_write_start(map, reg, 1);
1934
1935 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1936
1937 trace_regmap_hw_write_done(map, reg, 1);
1938
1939 return ret;
1940 }
1941
_regmap_bus_reg_write(void * context,unsigned int reg,unsigned int val)1942 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1943 unsigned int val)
1944 {
1945 struct regmap *map = context;
1946
1947 reg += map->reg_base;
1948 reg >>= map->format.reg_downshift;
1949 return map->bus->reg_write(map->bus_context, reg, val);
1950 }
1951
_regmap_bus_raw_write(void * context,unsigned int reg,unsigned int val)1952 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1953 unsigned int val)
1954 {
1955 struct regmap *map = context;
1956
1957 WARN_ON(!map->format.format_val);
1958
1959 map->format.format_val(map->work_buf + map->format.reg_bytes
1960 + map->format.pad_bytes, val, 0);
1961 return _regmap_raw_write_impl(map, reg,
1962 map->work_buf +
1963 map->format.reg_bytes +
1964 map->format.pad_bytes,
1965 map->format.val_bytes,
1966 false);
1967 }
1968
_regmap_map_get_context(struct regmap * map)1969 static inline void *_regmap_map_get_context(struct regmap *map)
1970 {
1971 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1972 }
1973
_regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1974 int _regmap_write(struct regmap *map, unsigned int reg,
1975 unsigned int val)
1976 {
1977 int ret;
1978 void *context = _regmap_map_get_context(map);
1979
1980 if (!regmap_writeable(map, reg))
1981 return -EIO;
1982
1983 if (!map->cache_bypass && !map->defer_caching) {
1984 ret = regcache_write(map, reg, val);
1985 if (ret != 0)
1986 return ret;
1987 if (map->cache_only) {
1988 map->cache_dirty = true;
1989 return 0;
1990 }
1991 }
1992
1993 ret = map->reg_write(context, reg, val);
1994 if (ret == 0) {
1995 if (regmap_should_log(map))
1996 dev_info(map->dev, "%x <= %x\n", reg, val);
1997
1998 trace_regmap_reg_write(map, reg, val);
1999 }
2000
2001 return ret;
2002 }
2003
2004 /**
2005 * regmap_write() - Write a value to a single register
2006 *
2007 * @map: Register map to write to
2008 * @reg: Register to write to
2009 * @val: Value to be written
2010 *
2011 * A value of zero will be returned on success, a negative errno will
2012 * be returned in error cases.
2013 */
regmap_write(struct regmap * map,unsigned int reg,unsigned int val)2014 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
2015 {
2016 int ret;
2017
2018 if (!IS_ALIGNED(reg, map->reg_stride))
2019 return -EINVAL;
2020
2021 map->lock(map->lock_arg);
2022
2023 ret = _regmap_write(map, reg, val);
2024
2025 map->unlock(map->lock_arg);
2026
2027 return ret;
2028 }
2029 EXPORT_SYMBOL_GPL(regmap_write);
2030
2031 /**
2032 * regmap_write_async() - Write a value to a single register asynchronously
2033 *
2034 * @map: Register map to write to
2035 * @reg: Register to write to
2036 * @val: Value to be written
2037 *
2038 * A value of zero will be returned on success, a negative errno will
2039 * be returned in error cases.
2040 */
regmap_write_async(struct regmap * map,unsigned int reg,unsigned int val)2041 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2042 {
2043 int ret;
2044
2045 if (!IS_ALIGNED(reg, map->reg_stride))
2046 return -EINVAL;
2047
2048 map->lock(map->lock_arg);
2049
2050 map->async = true;
2051
2052 ret = _regmap_write(map, reg, val);
2053
2054 map->async = false;
2055
2056 map->unlock(map->lock_arg);
2057
2058 return ret;
2059 }
2060 EXPORT_SYMBOL_GPL(regmap_write_async);
2061
_regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)2062 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2063 const void *val, size_t val_len, bool noinc)
2064 {
2065 size_t val_bytes = map->format.val_bytes;
2066 size_t val_count = val_len / val_bytes;
2067 size_t chunk_count, chunk_bytes;
2068 size_t chunk_regs = val_count;
2069 int ret, i;
2070
2071 if (!val_count)
2072 return -EINVAL;
2073
2074 if (map->use_single_write)
2075 chunk_regs = 1;
2076 else if (map->max_raw_write && val_len > map->max_raw_write)
2077 chunk_regs = map->max_raw_write / val_bytes;
2078
2079 chunk_count = val_count / chunk_regs;
2080 chunk_bytes = chunk_regs * val_bytes;
2081
2082 /* Write as many bytes as possible with chunk_size */
2083 for (i = 0; i < chunk_count; i++) {
2084 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2085 if (ret)
2086 return ret;
2087
2088 reg += regmap_get_offset(map, chunk_regs);
2089 val += chunk_bytes;
2090 val_len -= chunk_bytes;
2091 }
2092
2093 /* Write remaining bytes */
2094 if (val_len)
2095 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2096
2097 return ret;
2098 }
2099
2100 /**
2101 * regmap_raw_write() - Write raw values to one or more registers
2102 *
2103 * @map: Register map to write to
2104 * @reg: Initial register to write to
2105 * @val: Block of data to be written, laid out for direct transmission to the
2106 * device
2107 * @val_len: Length of data pointed to by val.
2108 *
2109 * This function is intended to be used for things like firmware
2110 * download where a large block of data needs to be transferred to the
2111 * device. No formatting will be done on the data provided.
2112 *
2113 * A value of zero will be returned on success, a negative errno will
2114 * be returned in error cases.
2115 */
regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2116 int regmap_raw_write(struct regmap *map, unsigned int reg,
2117 const void *val, size_t val_len)
2118 {
2119 int ret;
2120
2121 if (!regmap_can_raw_write(map))
2122 return -EINVAL;
2123 if (val_len % map->format.val_bytes)
2124 return -EINVAL;
2125
2126 map->lock(map->lock_arg);
2127
2128 ret = _regmap_raw_write(map, reg, val, val_len, false);
2129
2130 map->unlock(map->lock_arg);
2131
2132 return ret;
2133 }
2134 EXPORT_SYMBOL_GPL(regmap_raw_write);
2135
regmap_noinc_readwrite(struct regmap * map,unsigned int reg,void * val,unsigned int val_len,bool write)2136 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2137 void *val, unsigned int val_len, bool write)
2138 {
2139 size_t val_bytes = map->format.val_bytes;
2140 size_t val_count = val_len / val_bytes;
2141 unsigned int lastval;
2142 u8 *u8p;
2143 u16 *u16p;
2144 u32 *u32p;
2145 #ifdef CONFIG_64BIT
2146 u64 *u64p;
2147 #endif
2148 int ret;
2149 int i;
2150
2151 switch (val_bytes) {
2152 case 1:
2153 u8p = val;
2154 if (write)
2155 lastval = (unsigned int)u8p[val_count - 1];
2156 break;
2157 case 2:
2158 u16p = val;
2159 if (write)
2160 lastval = (unsigned int)u16p[val_count - 1];
2161 break;
2162 case 4:
2163 u32p = val;
2164 if (write)
2165 lastval = (unsigned int)u32p[val_count - 1];
2166 break;
2167 #ifdef CONFIG_64BIT
2168 case 8:
2169 u64p = val;
2170 if (write)
2171 lastval = (unsigned int)u64p[val_count - 1];
2172 break;
2173 #endif
2174 default:
2175 return -EINVAL;
2176 }
2177
2178 /*
2179 * Update the cache with the last value we write, the rest is just
2180 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2181 * sure a single read from the cache will work.
2182 */
2183 if (write) {
2184 if (!map->cache_bypass && !map->defer_caching) {
2185 ret = regcache_write(map, reg, lastval);
2186 if (ret != 0)
2187 return ret;
2188 if (map->cache_only) {
2189 map->cache_dirty = true;
2190 return 0;
2191 }
2192 }
2193 ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2194 } else {
2195 ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2196 }
2197
2198 if (!ret && regmap_should_log(map)) {
2199 dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2200 for (i = 0; i < val_count; i++) {
2201 switch (val_bytes) {
2202 case 1:
2203 pr_cont("%x", u8p[i]);
2204 break;
2205 case 2:
2206 pr_cont("%x", u16p[i]);
2207 break;
2208 case 4:
2209 pr_cont("%x", u32p[i]);
2210 break;
2211 #ifdef CONFIG_64BIT
2212 case 8:
2213 pr_cont("%llx", u64p[i]);
2214 break;
2215 #endif
2216 default:
2217 break;
2218 }
2219 if (i == (val_count - 1))
2220 pr_cont("]\n");
2221 else
2222 pr_cont(",");
2223 }
2224 }
2225
2226 return 0;
2227 }
2228
2229 /**
2230 * regmap_noinc_write(): Write data from a register without incrementing the
2231 * register number
2232 *
2233 * @map: Register map to write to
2234 * @reg: Register to write to
2235 * @val: Pointer to data buffer
2236 * @val_len: Length of output buffer in bytes.
2237 *
2238 * The regmap API usually assumes that bulk bus write operations will write a
2239 * range of registers. Some devices have certain registers for which a write
2240 * operation can write to an internal FIFO.
2241 *
2242 * The target register must be volatile but registers after it can be
2243 * completely unrelated cacheable registers.
2244 *
2245 * This will attempt multiple writes as required to write val_len bytes.
2246 *
2247 * A value of zero will be returned on success, a negative errno will be
2248 * returned in error cases.
2249 */
regmap_noinc_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2250 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2251 const void *val, size_t val_len)
2252 {
2253 size_t write_len;
2254 int ret;
2255
2256 if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2257 return -EINVAL;
2258 if (val_len % map->format.val_bytes)
2259 return -EINVAL;
2260 if (!IS_ALIGNED(reg, map->reg_stride))
2261 return -EINVAL;
2262 if (val_len == 0)
2263 return -EINVAL;
2264
2265 map->lock(map->lock_arg);
2266
2267 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2268 ret = -EINVAL;
2269 goto out_unlock;
2270 }
2271
2272 /*
2273 * Use the accelerated operation if we can. The val drops the const
2274 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2275 */
2276 if (map->bus->reg_noinc_write) {
2277 ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2278 goto out_unlock;
2279 }
2280
2281 while (val_len) {
2282 if (map->max_raw_write && map->max_raw_write < val_len)
2283 write_len = map->max_raw_write;
2284 else
2285 write_len = val_len;
2286 ret = _regmap_raw_write(map, reg, val, write_len, true);
2287 if (ret)
2288 goto out_unlock;
2289 val = ((u8 *)val) + write_len;
2290 val_len -= write_len;
2291 }
2292
2293 out_unlock:
2294 map->unlock(map->lock_arg);
2295 return ret;
2296 }
2297 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2298
2299 /**
2300 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2301 * register field.
2302 *
2303 * @field: Register field to write to
2304 * @mask: Bitmask to change
2305 * @val: Value to be written
2306 * @change: Boolean indicating if a write was done
2307 * @async: Boolean indicating asynchronously
2308 * @force: Boolean indicating use force update
2309 *
2310 * Perform a read/modify/write cycle on the register field with change,
2311 * async, force option.
2312 *
2313 * A value of zero will be returned on success, a negative errno will
2314 * be returned in error cases.
2315 */
regmap_field_update_bits_base(struct regmap_field * field,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2316 int regmap_field_update_bits_base(struct regmap_field *field,
2317 unsigned int mask, unsigned int val,
2318 bool *change, bool async, bool force)
2319 {
2320 mask = (mask << field->shift) & field->mask;
2321
2322 return regmap_update_bits_base(field->regmap, field->reg,
2323 mask, val << field->shift,
2324 change, async, force);
2325 }
2326 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2327
2328 /**
2329 * regmap_field_test_bits() - Check if all specified bits are set in a
2330 * register field.
2331 *
2332 * @field: Register field to operate on
2333 * @bits: Bits to test
2334 *
2335 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2336 * tested bits is not set and 1 if all tested bits are set.
2337 */
regmap_field_test_bits(struct regmap_field * field,unsigned int bits)2338 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2339 {
2340 unsigned int val, ret;
2341
2342 ret = regmap_field_read(field, &val);
2343 if (ret)
2344 return ret;
2345
2346 return (val & bits) == bits;
2347 }
2348 EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2349
2350 /**
2351 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2352 * register field with port ID
2353 *
2354 * @field: Register field to write to
2355 * @id: port ID
2356 * @mask: Bitmask to change
2357 * @val: Value to be written
2358 * @change: Boolean indicating if a write was done
2359 * @async: Boolean indicating asynchronously
2360 * @force: Boolean indicating use force update
2361 *
2362 * A value of zero will be returned on success, a negative errno will
2363 * be returned in error cases.
2364 */
regmap_fields_update_bits_base(struct regmap_field * field,unsigned int id,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2365 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2366 unsigned int mask, unsigned int val,
2367 bool *change, bool async, bool force)
2368 {
2369 if (id >= field->id_size)
2370 return -EINVAL;
2371
2372 mask = (mask << field->shift) & field->mask;
2373
2374 return regmap_update_bits_base(field->regmap,
2375 field->reg + (field->id_offset * id),
2376 mask, val << field->shift,
2377 change, async, force);
2378 }
2379 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2380
2381 /**
2382 * regmap_bulk_write() - Write multiple registers to the device
2383 *
2384 * @map: Register map to write to
2385 * @reg: First register to be write from
2386 * @val: Block of data to be written, in native register size for device
2387 * @val_count: Number of registers to write
2388 *
2389 * This function is intended to be used for writing a large block of
2390 * data to the device either in single transfer or multiple transfer.
2391 *
2392 * A value of zero will be returned on success, a negative errno will
2393 * be returned in error cases.
2394 */
regmap_bulk_write(struct regmap * map,unsigned int reg,const void * val,size_t val_count)2395 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2396 size_t val_count)
2397 {
2398 int ret = 0, i;
2399 size_t val_bytes = map->format.val_bytes;
2400
2401 if (!IS_ALIGNED(reg, map->reg_stride))
2402 return -EINVAL;
2403
2404 /*
2405 * Some devices don't support bulk write, for them we have a series of
2406 * single write operations.
2407 */
2408 if (!map->write || !map->format.parse_inplace) {
2409 map->lock(map->lock_arg);
2410 for (i = 0; i < val_count; i++) {
2411 unsigned int ival;
2412
2413 switch (val_bytes) {
2414 case 1:
2415 ival = *(u8 *)(val + (i * val_bytes));
2416 break;
2417 case 2:
2418 ival = *(u16 *)(val + (i * val_bytes));
2419 break;
2420 case 4:
2421 ival = *(u32 *)(val + (i * val_bytes));
2422 break;
2423 #ifdef CONFIG_64BIT
2424 case 8:
2425 ival = *(u64 *)(val + (i * val_bytes));
2426 break;
2427 #endif
2428 default:
2429 ret = -EINVAL;
2430 goto out;
2431 }
2432
2433 ret = _regmap_write(map,
2434 reg + regmap_get_offset(map, i),
2435 ival);
2436 if (ret != 0)
2437 goto out;
2438 }
2439 out:
2440 map->unlock(map->lock_arg);
2441 } else {
2442 void *wval;
2443
2444 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2445 if (!wval)
2446 return -ENOMEM;
2447
2448 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2449 map->format.parse_inplace(wval + i);
2450
2451 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2452
2453 kfree(wval);
2454 }
2455
2456 if (!ret)
2457 trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2458
2459 return ret;
2460 }
2461 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2462
2463 /*
2464 * _regmap_raw_multi_reg_write()
2465 *
2466 * the (register,newvalue) pairs in regs have not been formatted, but
2467 * they are all in the same page and have been changed to being page
2468 * relative. The page register has been written if that was necessary.
2469 */
_regmap_raw_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2470 static int _regmap_raw_multi_reg_write(struct regmap *map,
2471 const struct reg_sequence *regs,
2472 size_t num_regs)
2473 {
2474 int ret;
2475 void *buf;
2476 int i;
2477 u8 *u8;
2478 size_t val_bytes = map->format.val_bytes;
2479 size_t reg_bytes = map->format.reg_bytes;
2480 size_t pad_bytes = map->format.pad_bytes;
2481 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2482 size_t len = pair_size * num_regs;
2483
2484 if (!len)
2485 return -EINVAL;
2486
2487 buf = kzalloc(len, GFP_KERNEL);
2488 if (!buf)
2489 return -ENOMEM;
2490
2491 /* We have to linearise by hand. */
2492
2493 u8 = buf;
2494
2495 for (i = 0; i < num_regs; i++) {
2496 unsigned int reg = regs[i].reg;
2497 unsigned int val = regs[i].def;
2498 trace_regmap_hw_write_start(map, reg, 1);
2499 reg += map->reg_base;
2500 reg >>= map->format.reg_downshift;
2501 map->format.format_reg(u8, reg, map->reg_shift);
2502 u8 += reg_bytes + pad_bytes;
2503 map->format.format_val(u8, val, 0);
2504 u8 += val_bytes;
2505 }
2506 u8 = buf;
2507 *u8 |= map->write_flag_mask;
2508
2509 ret = map->write(map->bus_context, buf, len);
2510
2511 kfree(buf);
2512
2513 for (i = 0; i < num_regs; i++) {
2514 int reg = regs[i].reg;
2515 trace_regmap_hw_write_done(map, reg, 1);
2516 }
2517 return ret;
2518 }
2519
_regmap_register_page(struct regmap * map,unsigned int reg,struct regmap_range_node * range)2520 static unsigned int _regmap_register_page(struct regmap *map,
2521 unsigned int reg,
2522 struct regmap_range_node *range)
2523 {
2524 unsigned int win_page = (reg - range->range_min) / range->window_len;
2525
2526 return win_page;
2527 }
2528
_regmap_range_multi_paged_reg_write(struct regmap * map,struct reg_sequence * regs,size_t num_regs)2529 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2530 struct reg_sequence *regs,
2531 size_t num_regs)
2532 {
2533 int ret;
2534 int i, n;
2535 struct reg_sequence *base;
2536 unsigned int this_page = 0;
2537 unsigned int page_change = 0;
2538 /*
2539 * the set of registers are not neccessarily in order, but
2540 * since the order of write must be preserved this algorithm
2541 * chops the set each time the page changes. This also applies
2542 * if there is a delay required at any point in the sequence.
2543 */
2544 base = regs;
2545 for (i = 0, n = 0; i < num_regs; i++, n++) {
2546 unsigned int reg = regs[i].reg;
2547 struct regmap_range_node *range;
2548
2549 range = _regmap_range_lookup(map, reg);
2550 if (range) {
2551 unsigned int win_page = _regmap_register_page(map, reg,
2552 range);
2553
2554 if (i == 0)
2555 this_page = win_page;
2556 if (win_page != this_page) {
2557 this_page = win_page;
2558 page_change = 1;
2559 }
2560 }
2561
2562 /* If we have both a page change and a delay make sure to
2563 * write the regs and apply the delay before we change the
2564 * page.
2565 */
2566
2567 if (page_change || regs[i].delay_us) {
2568
2569 /* For situations where the first write requires
2570 * a delay we need to make sure we don't call
2571 * raw_multi_reg_write with n=0
2572 * This can't occur with page breaks as we
2573 * never write on the first iteration
2574 */
2575 if (regs[i].delay_us && i == 0)
2576 n = 1;
2577
2578 ret = _regmap_raw_multi_reg_write(map, base, n);
2579 if (ret != 0)
2580 return ret;
2581
2582 if (regs[i].delay_us) {
2583 if (map->can_sleep)
2584 fsleep(regs[i].delay_us);
2585 else
2586 udelay(regs[i].delay_us);
2587 }
2588
2589 base += n;
2590 n = 0;
2591
2592 if (page_change) {
2593 ret = _regmap_select_page(map,
2594 &base[n].reg,
2595 range, 1);
2596 if (ret != 0)
2597 return ret;
2598
2599 page_change = 0;
2600 }
2601
2602 }
2603
2604 }
2605 if (n > 0)
2606 return _regmap_raw_multi_reg_write(map, base, n);
2607 return 0;
2608 }
2609
_regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2610 static int _regmap_multi_reg_write(struct regmap *map,
2611 const struct reg_sequence *regs,
2612 size_t num_regs)
2613 {
2614 int i;
2615 int ret;
2616
2617 if (!map->can_multi_write) {
2618 for (i = 0; i < num_regs; i++) {
2619 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2620 if (ret != 0)
2621 return ret;
2622
2623 if (regs[i].delay_us) {
2624 if (map->can_sleep)
2625 fsleep(regs[i].delay_us);
2626 else
2627 udelay(regs[i].delay_us);
2628 }
2629 }
2630 return 0;
2631 }
2632
2633 if (!map->format.parse_inplace)
2634 return -EINVAL;
2635
2636 if (map->writeable_reg)
2637 for (i = 0; i < num_regs; i++) {
2638 int reg = regs[i].reg;
2639 if (!map->writeable_reg(map->dev, reg))
2640 return -EINVAL;
2641 if (!IS_ALIGNED(reg, map->reg_stride))
2642 return -EINVAL;
2643 }
2644
2645 if (!map->cache_bypass) {
2646 for (i = 0; i < num_regs; i++) {
2647 unsigned int val = regs[i].def;
2648 unsigned int reg = regs[i].reg;
2649 ret = regcache_write(map, reg, val);
2650 if (ret) {
2651 dev_err(map->dev,
2652 "Error in caching of register: %x ret: %d\n",
2653 reg, ret);
2654 return ret;
2655 }
2656 }
2657 if (map->cache_only) {
2658 map->cache_dirty = true;
2659 return 0;
2660 }
2661 }
2662
2663 WARN_ON(!map->bus);
2664
2665 for (i = 0; i < num_regs; i++) {
2666 unsigned int reg = regs[i].reg;
2667 struct regmap_range_node *range;
2668
2669 /* Coalesce all the writes between a page break or a delay
2670 * in a sequence
2671 */
2672 range = _regmap_range_lookup(map, reg);
2673 if (range || regs[i].delay_us) {
2674 size_t len = sizeof(struct reg_sequence)*num_regs;
2675 struct reg_sequence *base = kmemdup(regs, len,
2676 GFP_KERNEL);
2677 if (!base)
2678 return -ENOMEM;
2679 ret = _regmap_range_multi_paged_reg_write(map, base,
2680 num_regs);
2681 kfree(base);
2682
2683 return ret;
2684 }
2685 }
2686 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2687 }
2688
2689 /**
2690 * regmap_multi_reg_write() - Write multiple registers to the device
2691 *
2692 * @map: Register map to write to
2693 * @regs: Array of structures containing register,value to be written
2694 * @num_regs: Number of registers to write
2695 *
2696 * Write multiple registers to the device where the set of register, value
2697 * pairs are supplied in any order, possibly not all in a single range.
2698 *
2699 * The 'normal' block write mode will send ultimately send data on the
2700 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2701 * addressed. However, this alternative block multi write mode will send
2702 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2703 * must of course support the mode.
2704 *
2705 * A value of zero will be returned on success, a negative errno will be
2706 * returned in error cases.
2707 */
regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,int num_regs)2708 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2709 int num_regs)
2710 {
2711 int ret;
2712
2713 map->lock(map->lock_arg);
2714
2715 ret = _regmap_multi_reg_write(map, regs, num_regs);
2716
2717 map->unlock(map->lock_arg);
2718
2719 return ret;
2720 }
2721 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2722
2723 /**
2724 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2725 * device but not the cache
2726 *
2727 * @map: Register map to write to
2728 * @regs: Array of structures containing register,value to be written
2729 * @num_regs: Number of registers to write
2730 *
2731 * Write multiple registers to the device but not the cache where the set
2732 * of register are supplied in any order.
2733 *
2734 * This function is intended to be used for writing a large block of data
2735 * atomically to the device in single transfer for those I2C client devices
2736 * that implement this alternative block write mode.
2737 *
2738 * A value of zero will be returned on success, a negative errno will
2739 * be returned in error cases.
2740 */
regmap_multi_reg_write_bypassed(struct regmap * map,const struct reg_sequence * regs,int num_regs)2741 int regmap_multi_reg_write_bypassed(struct regmap *map,
2742 const struct reg_sequence *regs,
2743 int num_regs)
2744 {
2745 int ret;
2746 bool bypass;
2747
2748 map->lock(map->lock_arg);
2749
2750 bypass = map->cache_bypass;
2751 map->cache_bypass = true;
2752
2753 ret = _regmap_multi_reg_write(map, regs, num_regs);
2754
2755 map->cache_bypass = bypass;
2756
2757 map->unlock(map->lock_arg);
2758
2759 return ret;
2760 }
2761 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2762
2763 /**
2764 * regmap_raw_write_async() - Write raw values to one or more registers
2765 * asynchronously
2766 *
2767 * @map: Register map to write to
2768 * @reg: Initial register to write to
2769 * @val: Block of data to be written, laid out for direct transmission to the
2770 * device. Must be valid until regmap_async_complete() is called.
2771 * @val_len: Length of data pointed to by val.
2772 *
2773 * This function is intended to be used for things like firmware
2774 * download where a large block of data needs to be transferred to the
2775 * device. No formatting will be done on the data provided.
2776 *
2777 * If supported by the underlying bus the write will be scheduled
2778 * asynchronously, helping maximise I/O speed on higher speed buses
2779 * like SPI. regmap_async_complete() can be called to ensure that all
2780 * asynchrnous writes have been completed.
2781 *
2782 * A value of zero will be returned on success, a negative errno will
2783 * be returned in error cases.
2784 */
regmap_raw_write_async(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2785 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2786 const void *val, size_t val_len)
2787 {
2788 int ret;
2789
2790 if (val_len % map->format.val_bytes)
2791 return -EINVAL;
2792 if (!IS_ALIGNED(reg, map->reg_stride))
2793 return -EINVAL;
2794
2795 map->lock(map->lock_arg);
2796
2797 map->async = true;
2798
2799 ret = _regmap_raw_write(map, reg, val, val_len, false);
2800
2801 map->async = false;
2802
2803 map->unlock(map->lock_arg);
2804
2805 return ret;
2806 }
2807 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2808
_regmap_raw_read(struct regmap * map,unsigned int reg,void * val,unsigned int val_len,bool noinc)2809 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2810 unsigned int val_len, bool noinc)
2811 {
2812 struct regmap_range_node *range;
2813 int ret;
2814
2815 if (!map->read)
2816 return -EINVAL;
2817
2818 range = _regmap_range_lookup(map, reg);
2819 if (range) {
2820 ret = _regmap_select_page(map, ®, range,
2821 noinc ? 1 : val_len / map->format.val_bytes);
2822 if (ret != 0)
2823 return ret;
2824 }
2825
2826 reg += map->reg_base;
2827 reg >>= map->format.reg_downshift;
2828 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2829 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2830 map->read_flag_mask);
2831 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2832
2833 ret = map->read(map->bus_context, map->work_buf,
2834 map->format.reg_bytes + map->format.pad_bytes,
2835 val, val_len);
2836
2837 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2838
2839 return ret;
2840 }
2841
_regmap_bus_reg_read(void * context,unsigned int reg,unsigned int * val)2842 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2843 unsigned int *val)
2844 {
2845 struct regmap *map = context;
2846
2847 reg += map->reg_base;
2848 reg >>= map->format.reg_downshift;
2849 return map->bus->reg_read(map->bus_context, reg, val);
2850 }
2851
_regmap_bus_read(void * context,unsigned int reg,unsigned int * val)2852 static int _regmap_bus_read(void *context, unsigned int reg,
2853 unsigned int *val)
2854 {
2855 int ret;
2856 struct regmap *map = context;
2857 void *work_val = map->work_buf + map->format.reg_bytes +
2858 map->format.pad_bytes;
2859
2860 if (!map->format.parse_val)
2861 return -EINVAL;
2862
2863 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2864 if (ret == 0)
2865 *val = map->format.parse_val(work_val);
2866
2867 return ret;
2868 }
2869
_regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2870 static int _regmap_read(struct regmap *map, unsigned int reg,
2871 unsigned int *val)
2872 {
2873 int ret;
2874 void *context = _regmap_map_get_context(map);
2875
2876 if (!map->cache_bypass) {
2877 ret = regcache_read(map, reg, val);
2878 if (ret == 0)
2879 return 0;
2880 }
2881
2882 if (map->cache_only)
2883 return -EBUSY;
2884
2885 if (!regmap_readable(map, reg))
2886 return -EIO;
2887
2888 ret = map->reg_read(context, reg, val);
2889 if (ret == 0) {
2890 if (regmap_should_log(map))
2891 dev_info(map->dev, "%x => %x\n", reg, *val);
2892
2893 trace_regmap_reg_read(map, reg, *val);
2894
2895 if (!map->cache_bypass)
2896 regcache_write(map, reg, *val);
2897 }
2898
2899 return ret;
2900 }
2901
2902 /**
2903 * regmap_read() - Read a value from a single register
2904 *
2905 * @map: Register map to read from
2906 * @reg: Register to be read from
2907 * @val: Pointer to store read value
2908 *
2909 * A value of zero will be returned on success, a negative errno will
2910 * be returned in error cases.
2911 */
regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2912 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2913 {
2914 int ret;
2915
2916 if (!IS_ALIGNED(reg, map->reg_stride))
2917 return -EINVAL;
2918
2919 map->lock(map->lock_arg);
2920
2921 ret = _regmap_read(map, reg, val);
2922
2923 map->unlock(map->lock_arg);
2924
2925 return ret;
2926 }
2927 EXPORT_SYMBOL_GPL(regmap_read);
2928
2929 /**
2930 * regmap_raw_read() - Read raw data from the device
2931 *
2932 * @map: Register map to read from
2933 * @reg: First register to be read from
2934 * @val: Pointer to store read value
2935 * @val_len: Size of data to read
2936 *
2937 * A value of zero will be returned on success, a negative errno will
2938 * be returned in error cases.
2939 */
regmap_raw_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2940 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2941 size_t val_len)
2942 {
2943 size_t val_bytes = map->format.val_bytes;
2944 size_t val_count = val_len / val_bytes;
2945 unsigned int v;
2946 int ret, i;
2947
2948 if (val_len % map->format.val_bytes)
2949 return -EINVAL;
2950 if (!IS_ALIGNED(reg, map->reg_stride))
2951 return -EINVAL;
2952 if (val_count == 0)
2953 return -EINVAL;
2954
2955 map->lock(map->lock_arg);
2956
2957 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2958 map->cache_type == REGCACHE_NONE) {
2959 size_t chunk_count, chunk_bytes;
2960 size_t chunk_regs = val_count;
2961
2962 if (!map->read) {
2963 ret = -ENOTSUPP;
2964 goto out;
2965 }
2966
2967 if (map->use_single_read)
2968 chunk_regs = 1;
2969 else if (map->max_raw_read && val_len > map->max_raw_read)
2970 chunk_regs = map->max_raw_read / val_bytes;
2971
2972 chunk_count = val_count / chunk_regs;
2973 chunk_bytes = chunk_regs * val_bytes;
2974
2975 /* Read bytes that fit into whole chunks */
2976 for (i = 0; i < chunk_count; i++) {
2977 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2978 if (ret != 0)
2979 goto out;
2980
2981 reg += regmap_get_offset(map, chunk_regs);
2982 val += chunk_bytes;
2983 val_len -= chunk_bytes;
2984 }
2985
2986 /* Read remaining bytes */
2987 if (val_len) {
2988 ret = _regmap_raw_read(map, reg, val, val_len, false);
2989 if (ret != 0)
2990 goto out;
2991 }
2992 } else {
2993 /* Otherwise go word by word for the cache; should be low
2994 * cost as we expect to hit the cache.
2995 */
2996 for (i = 0; i < val_count; i++) {
2997 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2998 &v);
2999 if (ret != 0)
3000 goto out;
3001
3002 map->format.format_val(val + (i * val_bytes), v, 0);
3003 }
3004 }
3005
3006 out:
3007 map->unlock(map->lock_arg);
3008
3009 return ret;
3010 }
3011 EXPORT_SYMBOL_GPL(regmap_raw_read);
3012
3013 /**
3014 * regmap_noinc_read(): Read data from a register without incrementing the
3015 * register number
3016 *
3017 * @map: Register map to read from
3018 * @reg: Register to read from
3019 * @val: Pointer to data buffer
3020 * @val_len: Length of output buffer in bytes.
3021 *
3022 * The regmap API usually assumes that bulk read operations will read a
3023 * range of registers. Some devices have certain registers for which a read
3024 * operation read will read from an internal FIFO.
3025 *
3026 * The target register must be volatile but registers after it can be
3027 * completely unrelated cacheable registers.
3028 *
3029 * This will attempt multiple reads as required to read val_len bytes.
3030 *
3031 * A value of zero will be returned on success, a negative errno will be
3032 * returned in error cases.
3033 */
regmap_noinc_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)3034 int regmap_noinc_read(struct regmap *map, unsigned int reg,
3035 void *val, size_t val_len)
3036 {
3037 size_t read_len;
3038 int ret;
3039
3040 if (!map->read)
3041 return -ENOTSUPP;
3042
3043 if (val_len % map->format.val_bytes)
3044 return -EINVAL;
3045 if (!IS_ALIGNED(reg, map->reg_stride))
3046 return -EINVAL;
3047 if (val_len == 0)
3048 return -EINVAL;
3049
3050 map->lock(map->lock_arg);
3051
3052 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3053 ret = -EINVAL;
3054 goto out_unlock;
3055 }
3056
3057 /* Use the accelerated operation if we can */
3058 if (map->bus->reg_noinc_read) {
3059 /*
3060 * We have not defined the FIFO semantics for cache, as the
3061 * cache is just one value deep. Should we return the last
3062 * written value? Just avoid this by always reading the FIFO
3063 * even when using cache. Cache only will not work.
3064 */
3065 if (map->cache_only) {
3066 ret = -EBUSY;
3067 goto out_unlock;
3068 }
3069 ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3070 goto out_unlock;
3071 }
3072
3073 while (val_len) {
3074 if (map->max_raw_read && map->max_raw_read < val_len)
3075 read_len = map->max_raw_read;
3076 else
3077 read_len = val_len;
3078 ret = _regmap_raw_read(map, reg, val, read_len, true);
3079 if (ret)
3080 goto out_unlock;
3081 val = ((u8 *)val) + read_len;
3082 val_len -= read_len;
3083 }
3084
3085 out_unlock:
3086 map->unlock(map->lock_arg);
3087 return ret;
3088 }
3089 EXPORT_SYMBOL_GPL(regmap_noinc_read);
3090
3091 /**
3092 * regmap_field_read(): Read a value to a single register field
3093 *
3094 * @field: Register field to read from
3095 * @val: Pointer to store read value
3096 *
3097 * A value of zero will be returned on success, a negative errno will
3098 * be returned in error cases.
3099 */
regmap_field_read(struct regmap_field * field,unsigned int * val)3100 int regmap_field_read(struct regmap_field *field, unsigned int *val)
3101 {
3102 int ret;
3103 unsigned int reg_val;
3104 ret = regmap_read(field->regmap, field->reg, ®_val);
3105 if (ret != 0)
3106 return ret;
3107
3108 reg_val &= field->mask;
3109 reg_val >>= field->shift;
3110 *val = reg_val;
3111
3112 return ret;
3113 }
3114 EXPORT_SYMBOL_GPL(regmap_field_read);
3115
3116 /**
3117 * regmap_fields_read() - Read a value to a single register field with port ID
3118 *
3119 * @field: Register field to read from
3120 * @id: port ID
3121 * @val: Pointer to store read value
3122 *
3123 * A value of zero will be returned on success, a negative errno will
3124 * be returned in error cases.
3125 */
regmap_fields_read(struct regmap_field * field,unsigned int id,unsigned int * val)3126 int regmap_fields_read(struct regmap_field *field, unsigned int id,
3127 unsigned int *val)
3128 {
3129 int ret;
3130 unsigned int reg_val;
3131
3132 if (id >= field->id_size)
3133 return -EINVAL;
3134
3135 ret = regmap_read(field->regmap,
3136 field->reg + (field->id_offset * id),
3137 ®_val);
3138 if (ret != 0)
3139 return ret;
3140
3141 reg_val &= field->mask;
3142 reg_val >>= field->shift;
3143 *val = reg_val;
3144
3145 return ret;
3146 }
3147 EXPORT_SYMBOL_GPL(regmap_fields_read);
3148
3149 /**
3150 * regmap_bulk_read() - Read multiple registers from the device
3151 *
3152 * @map: Register map to read from
3153 * @reg: First register to be read from
3154 * @val: Pointer to store read value, in native register size for device
3155 * @val_count: Number of registers to read
3156 *
3157 * A value of zero will be returned on success, a negative errno will
3158 * be returned in error cases.
3159 */
regmap_bulk_read(struct regmap * map,unsigned int reg,void * val,size_t val_count)3160 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3161 size_t val_count)
3162 {
3163 int ret, i;
3164 size_t val_bytes = map->format.val_bytes;
3165 bool vol = regmap_volatile_range(map, reg, val_count);
3166
3167 if (!IS_ALIGNED(reg, map->reg_stride))
3168 return -EINVAL;
3169 if (val_count == 0)
3170 return -EINVAL;
3171
3172 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3173 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3174 if (ret != 0)
3175 return ret;
3176
3177 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3178 map->format.parse_inplace(val + i);
3179 } else {
3180 #ifdef CONFIG_64BIT
3181 u64 *u64 = val;
3182 #endif
3183 u32 *u32 = val;
3184 u16 *u16 = val;
3185 u8 *u8 = val;
3186
3187 map->lock(map->lock_arg);
3188
3189 for (i = 0; i < val_count; i++) {
3190 unsigned int ival;
3191
3192 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3193 &ival);
3194 if (ret != 0)
3195 goto out;
3196
3197 switch (map->format.val_bytes) {
3198 #ifdef CONFIG_64BIT
3199 case 8:
3200 u64[i] = ival;
3201 break;
3202 #endif
3203 case 4:
3204 u32[i] = ival;
3205 break;
3206 case 2:
3207 u16[i] = ival;
3208 break;
3209 case 1:
3210 u8[i] = ival;
3211 break;
3212 default:
3213 ret = -EINVAL;
3214 goto out;
3215 }
3216 }
3217
3218 out:
3219 map->unlock(map->lock_arg);
3220 }
3221
3222 if (!ret)
3223 trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3224
3225 return ret;
3226 }
3227 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3228
_regmap_update_bits(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool force_write)3229 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3230 unsigned int mask, unsigned int val,
3231 bool *change, bool force_write)
3232 {
3233 int ret;
3234 unsigned int tmp, orig;
3235
3236 if (change)
3237 *change = false;
3238
3239 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3240 reg += map->reg_base;
3241 reg >>= map->format.reg_downshift;
3242 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3243 if (ret == 0 && change)
3244 *change = true;
3245 } else {
3246 ret = _regmap_read(map, reg, &orig);
3247 if (ret != 0)
3248 return ret;
3249
3250 tmp = orig & ~mask;
3251 tmp |= val & mask;
3252
3253 if (force_write || (tmp != orig)) {
3254 ret = _regmap_write(map, reg, tmp);
3255 if (ret == 0 && change)
3256 *change = true;
3257 }
3258 }
3259
3260 return ret;
3261 }
3262
3263 /**
3264 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3265 *
3266 * @map: Register map to update
3267 * @reg: Register to update
3268 * @mask: Bitmask to change
3269 * @val: New value for bitmask
3270 * @change: Boolean indicating if a write was done
3271 * @async: Boolean indicating asynchronously
3272 * @force: Boolean indicating use force update
3273 *
3274 * Perform a read/modify/write cycle on a register map with change, async, force
3275 * options.
3276 *
3277 * If async is true:
3278 *
3279 * With most buses the read must be done synchronously so this is most useful
3280 * for devices with a cache which do not need to interact with the hardware to
3281 * determine the current register value.
3282 *
3283 * Returns zero for success, a negative number on error.
3284 */
regmap_update_bits_base(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool async,bool force)3285 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3286 unsigned int mask, unsigned int val,
3287 bool *change, bool async, bool force)
3288 {
3289 int ret;
3290
3291 map->lock(map->lock_arg);
3292
3293 map->async = async;
3294
3295 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3296
3297 map->async = false;
3298
3299 map->unlock(map->lock_arg);
3300
3301 return ret;
3302 }
3303 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3304
3305 /**
3306 * regmap_test_bits() - Check if all specified bits are set in a register.
3307 *
3308 * @map: Register map to operate on
3309 * @reg: Register to read from
3310 * @bits: Bits to test
3311 *
3312 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3313 * bits are set and a negative error number if the underlying regmap_read()
3314 * fails.
3315 */
regmap_test_bits(struct regmap * map,unsigned int reg,unsigned int bits)3316 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3317 {
3318 unsigned int val, ret;
3319
3320 ret = regmap_read(map, reg, &val);
3321 if (ret)
3322 return ret;
3323
3324 return (val & bits) == bits;
3325 }
3326 EXPORT_SYMBOL_GPL(regmap_test_bits);
3327
regmap_async_complete_cb(struct regmap_async * async,int ret)3328 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3329 {
3330 struct regmap *map = async->map;
3331 bool wake;
3332
3333 trace_regmap_async_io_complete(map);
3334
3335 spin_lock(&map->async_lock);
3336 list_move(&async->list, &map->async_free);
3337 wake = list_empty(&map->async_list);
3338
3339 if (ret != 0)
3340 map->async_ret = ret;
3341
3342 spin_unlock(&map->async_lock);
3343
3344 if (wake)
3345 wake_up(&map->async_waitq);
3346 }
3347 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3348
regmap_async_is_done(struct regmap * map)3349 static int regmap_async_is_done(struct regmap *map)
3350 {
3351 unsigned long flags;
3352 int ret;
3353
3354 spin_lock_irqsave(&map->async_lock, flags);
3355 ret = list_empty(&map->async_list);
3356 spin_unlock_irqrestore(&map->async_lock, flags);
3357
3358 return ret;
3359 }
3360
3361 /**
3362 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3363 *
3364 * @map: Map to operate on.
3365 *
3366 * Blocks until any pending asynchronous I/O has completed. Returns
3367 * an error code for any failed I/O operations.
3368 */
regmap_async_complete(struct regmap * map)3369 int regmap_async_complete(struct regmap *map)
3370 {
3371 unsigned long flags;
3372 int ret;
3373
3374 /* Nothing to do with no async support */
3375 if (!map->bus || !map->bus->async_write)
3376 return 0;
3377
3378 trace_regmap_async_complete_start(map);
3379
3380 wait_event(map->async_waitq, regmap_async_is_done(map));
3381
3382 spin_lock_irqsave(&map->async_lock, flags);
3383 ret = map->async_ret;
3384 map->async_ret = 0;
3385 spin_unlock_irqrestore(&map->async_lock, flags);
3386
3387 trace_regmap_async_complete_done(map);
3388
3389 return ret;
3390 }
3391 EXPORT_SYMBOL_GPL(regmap_async_complete);
3392
3393 /**
3394 * regmap_register_patch - Register and apply register updates to be applied
3395 * on device initialistion
3396 *
3397 * @map: Register map to apply updates to.
3398 * @regs: Values to update.
3399 * @num_regs: Number of entries in regs.
3400 *
3401 * Register a set of register updates to be applied to the device
3402 * whenever the device registers are synchronised with the cache and
3403 * apply them immediately. Typically this is used to apply
3404 * corrections to be applied to the device defaults on startup, such
3405 * as the updates some vendors provide to undocumented registers.
3406 *
3407 * The caller must ensure that this function cannot be called
3408 * concurrently with either itself or regcache_sync().
3409 */
regmap_register_patch(struct regmap * map,const struct reg_sequence * regs,int num_regs)3410 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3411 int num_regs)
3412 {
3413 struct reg_sequence *p;
3414 int ret;
3415 bool bypass;
3416
3417 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3418 num_regs))
3419 return 0;
3420
3421 p = krealloc(map->patch,
3422 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3423 GFP_KERNEL);
3424 if (p) {
3425 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3426 map->patch = p;
3427 map->patch_regs += num_regs;
3428 } else {
3429 return -ENOMEM;
3430 }
3431
3432 map->lock(map->lock_arg);
3433
3434 bypass = map->cache_bypass;
3435
3436 map->cache_bypass = true;
3437 map->async = true;
3438
3439 ret = _regmap_multi_reg_write(map, regs, num_regs);
3440
3441 map->async = false;
3442 map->cache_bypass = bypass;
3443
3444 map->unlock(map->lock_arg);
3445
3446 regmap_async_complete(map);
3447
3448 return ret;
3449 }
3450 EXPORT_SYMBOL_GPL(regmap_register_patch);
3451
3452 /**
3453 * regmap_get_val_bytes() - Report the size of a register value
3454 *
3455 * @map: Register map to operate on.
3456 *
3457 * Report the size of a register value, mainly intended to for use by
3458 * generic infrastructure built on top of regmap.
3459 */
regmap_get_val_bytes(struct regmap * map)3460 int regmap_get_val_bytes(struct regmap *map)
3461 {
3462 if (map->format.format_write)
3463 return -EINVAL;
3464
3465 return map->format.val_bytes;
3466 }
3467 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3468
3469 /**
3470 * regmap_get_max_register() - Report the max register value
3471 *
3472 * @map: Register map to operate on.
3473 *
3474 * Report the max register value, mainly intended to for use by
3475 * generic infrastructure built on top of regmap.
3476 */
regmap_get_max_register(struct regmap * map)3477 int regmap_get_max_register(struct regmap *map)
3478 {
3479 return map->max_register ? map->max_register : -EINVAL;
3480 }
3481 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3482
3483 /**
3484 * regmap_get_reg_stride() - Report the register address stride
3485 *
3486 * @map: Register map to operate on.
3487 *
3488 * Report the register address stride, mainly intended to for use by
3489 * generic infrastructure built on top of regmap.
3490 */
regmap_get_reg_stride(struct regmap * map)3491 int regmap_get_reg_stride(struct regmap *map)
3492 {
3493 return map->reg_stride;
3494 }
3495 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3496
regmap_parse_val(struct regmap * map,const void * buf,unsigned int * val)3497 int regmap_parse_val(struct regmap *map, const void *buf,
3498 unsigned int *val)
3499 {
3500 if (!map->format.parse_val)
3501 return -EINVAL;
3502
3503 *val = map->format.parse_val(buf);
3504
3505 return 0;
3506 }
3507 EXPORT_SYMBOL_GPL(regmap_parse_val);
3508
regmap_initcall(void)3509 static int __init regmap_initcall(void)
3510 {
3511 regmap_debugfs_initcall();
3512
3513 return 0;
3514 }
3515 postcore_initcall(regmap_initcall);
3516