• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24 
25 #include "internal.h"
26 
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34 
35 #ifdef LOG_DEVICE
regmap_should_log(struct regmap * map)36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
regmap_should_log(struct regmap * map)41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43 
44 
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 			       unsigned int mask, unsigned int val,
47 			       bool *change, bool force_write);
48 
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 				unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 			    unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 				       unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 				 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 				 unsigned int val);
59 
regmap_reg_in_ranges(unsigned int reg,const struct regmap_range * ranges,unsigned int nranges)60 bool regmap_reg_in_ranges(unsigned int reg,
61 			  const struct regmap_range *ranges,
62 			  unsigned int nranges)
63 {
64 	const struct regmap_range *r;
65 	int i;
66 
67 	for (i = 0, r = ranges; i < nranges; i++, r++)
68 		if (regmap_reg_in_range(reg, r))
69 			return true;
70 	return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73 
regmap_check_range_table(struct regmap * map,unsigned int reg,const struct regmap_access_table * table)74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 			      const struct regmap_access_table *table)
76 {
77 	/* Check "no ranges" first */
78 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 		return false;
80 
81 	/* In case zero "yes ranges" are supplied, any reg is OK */
82 	if (!table->n_yes_ranges)
83 		return true;
84 
85 	return regmap_reg_in_ranges(reg, table->yes_ranges,
86 				    table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89 
regmap_writeable(struct regmap * map,unsigned int reg)90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 	if (map->max_register && reg > map->max_register)
93 		return false;
94 
95 	if (map->writeable_reg)
96 		return map->writeable_reg(map->dev, reg);
97 
98 	if (map->wr_table)
99 		return regmap_check_range_table(map, reg, map->wr_table);
100 
101 	return true;
102 }
103 
regmap_cached(struct regmap * map,unsigned int reg)104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 	int ret;
107 	unsigned int val;
108 
109 	if (map->cache_type == REGCACHE_NONE)
110 		return false;
111 
112 	if (!map->cache_ops)
113 		return false;
114 
115 	if (map->max_register && reg > map->max_register)
116 		return false;
117 
118 	map->lock(map->lock_arg);
119 	ret = regcache_read(map, reg, &val);
120 	map->unlock(map->lock_arg);
121 	if (ret)
122 		return false;
123 
124 	return true;
125 }
126 
regmap_readable(struct regmap * map,unsigned int reg)127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 	if (!map->reg_read)
130 		return false;
131 
132 	if (map->max_register && reg > map->max_register)
133 		return false;
134 
135 	if (map->format.format_write)
136 		return false;
137 
138 	if (map->readable_reg)
139 		return map->readable_reg(map->dev, reg);
140 
141 	if (map->rd_table)
142 		return regmap_check_range_table(map, reg, map->rd_table);
143 
144 	return true;
145 }
146 
regmap_volatile(struct regmap * map,unsigned int reg)147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 	if (!map->format.format_write && !regmap_readable(map, reg))
150 		return false;
151 
152 	if (map->volatile_reg)
153 		return map->volatile_reg(map->dev, reg);
154 
155 	if (map->volatile_table)
156 		return regmap_check_range_table(map, reg, map->volatile_table);
157 
158 	if (map->cache_ops)
159 		return false;
160 	else
161 		return true;
162 }
163 
regmap_precious(struct regmap * map,unsigned int reg)164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 	if (!regmap_readable(map, reg))
167 		return false;
168 
169 	if (map->precious_reg)
170 		return map->precious_reg(map->dev, reg);
171 
172 	if (map->precious_table)
173 		return regmap_check_range_table(map, reg, map->precious_table);
174 
175 	return false;
176 }
177 
regmap_writeable_noinc(struct regmap * map,unsigned int reg)178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 	if (map->writeable_noinc_reg)
181 		return map->writeable_noinc_reg(map->dev, reg);
182 
183 	if (map->wr_noinc_table)
184 		return regmap_check_range_table(map, reg, map->wr_noinc_table);
185 
186 	return true;
187 }
188 
regmap_readable_noinc(struct regmap * map,unsigned int reg)189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 	if (map->readable_noinc_reg)
192 		return map->readable_noinc_reg(map->dev, reg);
193 
194 	if (map->rd_noinc_table)
195 		return regmap_check_range_table(map, reg, map->rd_noinc_table);
196 
197 	return true;
198 }
199 
regmap_volatile_range(struct regmap * map,unsigned int reg,size_t num)200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 	size_t num)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < num; i++)
206 		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 			return false;
208 
209 	return true;
210 }
211 
regmap_format_12_20_write(struct regmap * map,unsigned int reg,unsigned int val)212 static void regmap_format_12_20_write(struct regmap *map,
213 				     unsigned int reg, unsigned int val)
214 {
215 	u8 *out = map->work_buf;
216 
217 	out[0] = reg >> 4;
218 	out[1] = (reg << 4) | (val >> 16);
219 	out[2] = val >> 8;
220 	out[3] = val;
221 }
222 
223 
regmap_format_2_6_write(struct regmap * map,unsigned int reg,unsigned int val)224 static void regmap_format_2_6_write(struct regmap *map,
225 				     unsigned int reg, unsigned int val)
226 {
227 	u8 *out = map->work_buf;
228 
229 	*out = (reg << 6) | val;
230 }
231 
regmap_format_4_12_write(struct regmap * map,unsigned int reg,unsigned int val)232 static void regmap_format_4_12_write(struct regmap *map,
233 				     unsigned int reg, unsigned int val)
234 {
235 	__be16 *out = map->work_buf;
236 	*out = cpu_to_be16((reg << 12) | val);
237 }
238 
regmap_format_7_9_write(struct regmap * map,unsigned int reg,unsigned int val)239 static void regmap_format_7_9_write(struct regmap *map,
240 				    unsigned int reg, unsigned int val)
241 {
242 	__be16 *out = map->work_buf;
243 	*out = cpu_to_be16((reg << 9) | val);
244 }
245 
regmap_format_7_17_write(struct regmap * map,unsigned int reg,unsigned int val)246 static void regmap_format_7_17_write(struct regmap *map,
247 				    unsigned int reg, unsigned int val)
248 {
249 	u8 *out = map->work_buf;
250 
251 	out[2] = val;
252 	out[1] = val >> 8;
253 	out[0] = (val >> 16) | (reg << 1);
254 }
255 
regmap_format_10_14_write(struct regmap * map,unsigned int reg,unsigned int val)256 static void regmap_format_10_14_write(struct regmap *map,
257 				    unsigned int reg, unsigned int val)
258 {
259 	u8 *out = map->work_buf;
260 
261 	out[2] = val;
262 	out[1] = (val >> 8) | (reg << 6);
263 	out[0] = reg >> 2;
264 }
265 
regmap_format_8(void * buf,unsigned int val,unsigned int shift)266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268 	u8 *b = buf;
269 
270 	b[0] = val << shift;
271 }
272 
regmap_format_16_be(void * buf,unsigned int val,unsigned int shift)273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 	put_unaligned_be16(val << shift, buf);
276 }
277 
regmap_format_16_le(void * buf,unsigned int val,unsigned int shift)278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280 	put_unaligned_le16(val << shift, buf);
281 }
282 
regmap_format_16_native(void * buf,unsigned int val,unsigned int shift)283 static void regmap_format_16_native(void *buf, unsigned int val,
284 				    unsigned int shift)
285 {
286 	u16 v = val << shift;
287 
288 	memcpy(buf, &v, sizeof(v));
289 }
290 
regmap_format_24_be(void * buf,unsigned int val,unsigned int shift)291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
292 {
293 	put_unaligned_be24(val << shift, buf);
294 }
295 
regmap_format_32_be(void * buf,unsigned int val,unsigned int shift)296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
297 {
298 	put_unaligned_be32(val << shift, buf);
299 }
300 
regmap_format_32_le(void * buf,unsigned int val,unsigned int shift)301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302 {
303 	put_unaligned_le32(val << shift, buf);
304 }
305 
regmap_format_32_native(void * buf,unsigned int val,unsigned int shift)306 static void regmap_format_32_native(void *buf, unsigned int val,
307 				    unsigned int shift)
308 {
309 	u32 v = val << shift;
310 
311 	memcpy(buf, &v, sizeof(v));
312 }
313 
314 #ifdef CONFIG_64BIT
regmap_format_64_be(void * buf,unsigned int val,unsigned int shift)315 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
316 {
317 	put_unaligned_be64((u64) val << shift, buf);
318 }
319 
regmap_format_64_le(void * buf,unsigned int val,unsigned int shift)320 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
321 {
322 	put_unaligned_le64((u64) val << shift, buf);
323 }
324 
regmap_format_64_native(void * buf,unsigned int val,unsigned int shift)325 static void regmap_format_64_native(void *buf, unsigned int val,
326 				    unsigned int shift)
327 {
328 	u64 v = (u64) val << shift;
329 
330 	memcpy(buf, &v, sizeof(v));
331 }
332 #endif
333 
regmap_parse_inplace_noop(void * buf)334 static void regmap_parse_inplace_noop(void *buf)
335 {
336 }
337 
regmap_parse_8(const void * buf)338 static unsigned int regmap_parse_8(const void *buf)
339 {
340 	const u8 *b = buf;
341 
342 	return b[0];
343 }
344 
regmap_parse_16_be(const void * buf)345 static unsigned int regmap_parse_16_be(const void *buf)
346 {
347 	return get_unaligned_be16(buf);
348 }
349 
regmap_parse_16_le(const void * buf)350 static unsigned int regmap_parse_16_le(const void *buf)
351 {
352 	return get_unaligned_le16(buf);
353 }
354 
regmap_parse_16_be_inplace(void * buf)355 static void regmap_parse_16_be_inplace(void *buf)
356 {
357 	u16 v = get_unaligned_be16(buf);
358 
359 	memcpy(buf, &v, sizeof(v));
360 }
361 
regmap_parse_16_le_inplace(void * buf)362 static void regmap_parse_16_le_inplace(void *buf)
363 {
364 	u16 v = get_unaligned_le16(buf);
365 
366 	memcpy(buf, &v, sizeof(v));
367 }
368 
regmap_parse_16_native(const void * buf)369 static unsigned int regmap_parse_16_native(const void *buf)
370 {
371 	u16 v;
372 
373 	memcpy(&v, buf, sizeof(v));
374 	return v;
375 }
376 
regmap_parse_24_be(const void * buf)377 static unsigned int regmap_parse_24_be(const void *buf)
378 {
379 	return get_unaligned_be24(buf);
380 }
381 
regmap_parse_32_be(const void * buf)382 static unsigned int regmap_parse_32_be(const void *buf)
383 {
384 	return get_unaligned_be32(buf);
385 }
386 
regmap_parse_32_le(const void * buf)387 static unsigned int regmap_parse_32_le(const void *buf)
388 {
389 	return get_unaligned_le32(buf);
390 }
391 
regmap_parse_32_be_inplace(void * buf)392 static void regmap_parse_32_be_inplace(void *buf)
393 {
394 	u32 v = get_unaligned_be32(buf);
395 
396 	memcpy(buf, &v, sizeof(v));
397 }
398 
regmap_parse_32_le_inplace(void * buf)399 static void regmap_parse_32_le_inplace(void *buf)
400 {
401 	u32 v = get_unaligned_le32(buf);
402 
403 	memcpy(buf, &v, sizeof(v));
404 }
405 
regmap_parse_32_native(const void * buf)406 static unsigned int regmap_parse_32_native(const void *buf)
407 {
408 	u32 v;
409 
410 	memcpy(&v, buf, sizeof(v));
411 	return v;
412 }
413 
414 #ifdef CONFIG_64BIT
regmap_parse_64_be(const void * buf)415 static unsigned int regmap_parse_64_be(const void *buf)
416 {
417 	return get_unaligned_be64(buf);
418 }
419 
regmap_parse_64_le(const void * buf)420 static unsigned int regmap_parse_64_le(const void *buf)
421 {
422 	return get_unaligned_le64(buf);
423 }
424 
regmap_parse_64_be_inplace(void * buf)425 static void regmap_parse_64_be_inplace(void *buf)
426 {
427 	u64 v =  get_unaligned_be64(buf);
428 
429 	memcpy(buf, &v, sizeof(v));
430 }
431 
regmap_parse_64_le_inplace(void * buf)432 static void regmap_parse_64_le_inplace(void *buf)
433 {
434 	u64 v = get_unaligned_le64(buf);
435 
436 	memcpy(buf, &v, sizeof(v));
437 }
438 
regmap_parse_64_native(const void * buf)439 static unsigned int regmap_parse_64_native(const void *buf)
440 {
441 	u64 v;
442 
443 	memcpy(&v, buf, sizeof(v));
444 	return v;
445 }
446 #endif
447 
regmap_lock_hwlock(void * __map)448 static void regmap_lock_hwlock(void *__map)
449 {
450 	struct regmap *map = __map;
451 
452 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
453 }
454 
regmap_lock_hwlock_irq(void * __map)455 static void regmap_lock_hwlock_irq(void *__map)
456 {
457 	struct regmap *map = __map;
458 
459 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
460 }
461 
regmap_lock_hwlock_irqsave(void * __map)462 static void regmap_lock_hwlock_irqsave(void *__map)
463 {
464 	struct regmap *map = __map;
465 
466 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
467 				    &map->spinlock_flags);
468 }
469 
regmap_unlock_hwlock(void * __map)470 static void regmap_unlock_hwlock(void *__map)
471 {
472 	struct regmap *map = __map;
473 
474 	hwspin_unlock(map->hwlock);
475 }
476 
regmap_unlock_hwlock_irq(void * __map)477 static void regmap_unlock_hwlock_irq(void *__map)
478 {
479 	struct regmap *map = __map;
480 
481 	hwspin_unlock_irq(map->hwlock);
482 }
483 
regmap_unlock_hwlock_irqrestore(void * __map)484 static void regmap_unlock_hwlock_irqrestore(void *__map)
485 {
486 	struct regmap *map = __map;
487 
488 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
489 }
490 
regmap_lock_unlock_none(void * __map)491 static void regmap_lock_unlock_none(void *__map)
492 {
493 
494 }
495 
regmap_lock_mutex(void * __map)496 static void regmap_lock_mutex(void *__map)
497 {
498 	struct regmap *map = __map;
499 	mutex_lock(&map->mutex);
500 }
501 
regmap_unlock_mutex(void * __map)502 static void regmap_unlock_mutex(void *__map)
503 {
504 	struct regmap *map = __map;
505 	mutex_unlock(&map->mutex);
506 }
507 
regmap_lock_spinlock(void * __map)508 static void regmap_lock_spinlock(void *__map)
509 __acquires(&map->spinlock)
510 {
511 	struct regmap *map = __map;
512 	unsigned long flags;
513 
514 	spin_lock_irqsave(&map->spinlock, flags);
515 	map->spinlock_flags = flags;
516 }
517 
regmap_unlock_spinlock(void * __map)518 static void regmap_unlock_spinlock(void *__map)
519 __releases(&map->spinlock)
520 {
521 	struct regmap *map = __map;
522 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
523 }
524 
regmap_lock_raw_spinlock(void * __map)525 static void regmap_lock_raw_spinlock(void *__map)
526 __acquires(&map->raw_spinlock)
527 {
528 	struct regmap *map = __map;
529 	unsigned long flags;
530 
531 	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
532 	map->raw_spinlock_flags = flags;
533 }
534 
regmap_unlock_raw_spinlock(void * __map)535 static void regmap_unlock_raw_spinlock(void *__map)
536 __releases(&map->raw_spinlock)
537 {
538 	struct regmap *map = __map;
539 	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
540 }
541 
dev_get_regmap_release(struct device * dev,void * res)542 static void dev_get_regmap_release(struct device *dev, void *res)
543 {
544 	/*
545 	 * We don't actually have anything to do here; the goal here
546 	 * is not to manage the regmap but to provide a simple way to
547 	 * get the regmap back given a struct device.
548 	 */
549 }
550 
_regmap_range_add(struct regmap * map,struct regmap_range_node * data)551 static bool _regmap_range_add(struct regmap *map,
552 			      struct regmap_range_node *data)
553 {
554 	struct rb_root *root = &map->range_tree;
555 	struct rb_node **new = &(root->rb_node), *parent = NULL;
556 
557 	while (*new) {
558 		struct regmap_range_node *this =
559 			rb_entry(*new, struct regmap_range_node, node);
560 
561 		parent = *new;
562 		if (data->range_max < this->range_min)
563 			new = &((*new)->rb_left);
564 		else if (data->range_min > this->range_max)
565 			new = &((*new)->rb_right);
566 		else
567 			return false;
568 	}
569 
570 	rb_link_node(&data->node, parent, new);
571 	rb_insert_color(&data->node, root);
572 
573 	return true;
574 }
575 
_regmap_range_lookup(struct regmap * map,unsigned int reg)576 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
577 						      unsigned int reg)
578 {
579 	struct rb_node *node = map->range_tree.rb_node;
580 
581 	while (node) {
582 		struct regmap_range_node *this =
583 			rb_entry(node, struct regmap_range_node, node);
584 
585 		if (reg < this->range_min)
586 			node = node->rb_left;
587 		else if (reg > this->range_max)
588 			node = node->rb_right;
589 		else
590 			return this;
591 	}
592 
593 	return NULL;
594 }
595 
regmap_range_exit(struct regmap * map)596 static void regmap_range_exit(struct regmap *map)
597 {
598 	struct rb_node *next;
599 	struct regmap_range_node *range_node;
600 
601 	next = rb_first(&map->range_tree);
602 	while (next) {
603 		range_node = rb_entry(next, struct regmap_range_node, node);
604 		next = rb_next(&range_node->node);
605 		rb_erase(&range_node->node, &map->range_tree);
606 		kfree(range_node);
607 	}
608 
609 	kfree(map->selector_work_buf);
610 }
611 
regmap_set_name(struct regmap * map,const struct regmap_config * config)612 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
613 {
614 	if (config->name) {
615 		const char *name = kstrdup_const(config->name, GFP_KERNEL);
616 
617 		if (!name)
618 			return -ENOMEM;
619 
620 		kfree_const(map->name);
621 		map->name = name;
622 	}
623 
624 	return 0;
625 }
626 
regmap_attach_dev(struct device * dev,struct regmap * map,const struct regmap_config * config)627 int regmap_attach_dev(struct device *dev, struct regmap *map,
628 		      const struct regmap_config *config)
629 {
630 	struct regmap **m;
631 	int ret;
632 
633 	map->dev = dev;
634 
635 	ret = regmap_set_name(map, config);
636 	if (ret)
637 		return ret;
638 
639 	regmap_debugfs_exit(map);
640 	regmap_debugfs_init(map);
641 
642 	/* Add a devres resource for dev_get_regmap() */
643 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
644 	if (!m) {
645 		regmap_debugfs_exit(map);
646 		return -ENOMEM;
647 	}
648 	*m = map;
649 	devres_add(dev, m);
650 
651 	return 0;
652 }
653 EXPORT_SYMBOL_GPL(regmap_attach_dev);
654 
regmap_get_reg_endian(const struct regmap_bus * bus,const struct regmap_config * config)655 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
656 					const struct regmap_config *config)
657 {
658 	enum regmap_endian endian;
659 
660 	/* Retrieve the endianness specification from the regmap config */
661 	endian = config->reg_format_endian;
662 
663 	/* If the regmap config specified a non-default value, use that */
664 	if (endian != REGMAP_ENDIAN_DEFAULT)
665 		return endian;
666 
667 	/* Retrieve the endianness specification from the bus config */
668 	if (bus && bus->reg_format_endian_default)
669 		endian = bus->reg_format_endian_default;
670 
671 	/* If the bus specified a non-default value, use that */
672 	if (endian != REGMAP_ENDIAN_DEFAULT)
673 		return endian;
674 
675 	/* Use this if no other value was found */
676 	return REGMAP_ENDIAN_BIG;
677 }
678 
regmap_get_val_endian(struct device * dev,const struct regmap_bus * bus,const struct regmap_config * config)679 enum regmap_endian regmap_get_val_endian(struct device *dev,
680 					 const struct regmap_bus *bus,
681 					 const struct regmap_config *config)
682 {
683 	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
684 	enum regmap_endian endian;
685 
686 	/* Retrieve the endianness specification from the regmap config */
687 	endian = config->val_format_endian;
688 
689 	/* If the regmap config specified a non-default value, use that */
690 	if (endian != REGMAP_ENDIAN_DEFAULT)
691 		return endian;
692 
693 	/* If the firmware node exist try to get endianness from it */
694 	if (fwnode_property_read_bool(fwnode, "big-endian"))
695 		endian = REGMAP_ENDIAN_BIG;
696 	else if (fwnode_property_read_bool(fwnode, "little-endian"))
697 		endian = REGMAP_ENDIAN_LITTLE;
698 	else if (fwnode_property_read_bool(fwnode, "native-endian"))
699 		endian = REGMAP_ENDIAN_NATIVE;
700 
701 	/* If the endianness was specified in fwnode, use that */
702 	if (endian != REGMAP_ENDIAN_DEFAULT)
703 		return endian;
704 
705 	/* Retrieve the endianness specification from the bus config */
706 	if (bus && bus->val_format_endian_default)
707 		endian = bus->val_format_endian_default;
708 
709 	/* If the bus specified a non-default value, use that */
710 	if (endian != REGMAP_ENDIAN_DEFAULT)
711 		return endian;
712 
713 	/* Use this if no other value was found */
714 	return REGMAP_ENDIAN_BIG;
715 }
716 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
717 
__regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)718 struct regmap *__regmap_init(struct device *dev,
719 			     const struct regmap_bus *bus,
720 			     void *bus_context,
721 			     const struct regmap_config *config,
722 			     struct lock_class_key *lock_key,
723 			     const char *lock_name)
724 {
725 	struct regmap *map;
726 	int ret = -EINVAL;
727 	enum regmap_endian reg_endian, val_endian;
728 	int i, j;
729 
730 	if (!config)
731 		goto err;
732 
733 	map = kzalloc(sizeof(*map), GFP_KERNEL);
734 	if (map == NULL) {
735 		ret = -ENOMEM;
736 		goto err;
737 	}
738 
739 	ret = regmap_set_name(map, config);
740 	if (ret)
741 		goto err_map;
742 
743 	ret = -EINVAL; /* Later error paths rely on this */
744 
745 	if (config->disable_locking) {
746 		map->lock = map->unlock = regmap_lock_unlock_none;
747 		map->can_sleep = config->can_sleep;
748 		regmap_debugfs_disable(map);
749 	} else if (config->lock && config->unlock) {
750 		map->lock = config->lock;
751 		map->unlock = config->unlock;
752 		map->lock_arg = config->lock_arg;
753 		map->can_sleep = config->can_sleep;
754 	} else if (config->use_hwlock) {
755 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
756 		if (!map->hwlock) {
757 			ret = -ENXIO;
758 			goto err_name;
759 		}
760 
761 		switch (config->hwlock_mode) {
762 		case HWLOCK_IRQSTATE:
763 			map->lock = regmap_lock_hwlock_irqsave;
764 			map->unlock = regmap_unlock_hwlock_irqrestore;
765 			break;
766 		case HWLOCK_IRQ:
767 			map->lock = regmap_lock_hwlock_irq;
768 			map->unlock = regmap_unlock_hwlock_irq;
769 			break;
770 		default:
771 			map->lock = regmap_lock_hwlock;
772 			map->unlock = regmap_unlock_hwlock;
773 			break;
774 		}
775 
776 		map->lock_arg = map;
777 	} else {
778 		if ((bus && bus->fast_io) ||
779 		    config->fast_io) {
780 			if (config->use_raw_spinlock) {
781 				raw_spin_lock_init(&map->raw_spinlock);
782 				map->lock = regmap_lock_raw_spinlock;
783 				map->unlock = regmap_unlock_raw_spinlock;
784 				lockdep_set_class_and_name(&map->raw_spinlock,
785 							   lock_key, lock_name);
786 			} else {
787 				spin_lock_init(&map->spinlock);
788 				map->lock = regmap_lock_spinlock;
789 				map->unlock = regmap_unlock_spinlock;
790 				lockdep_set_class_and_name(&map->spinlock,
791 							   lock_key, lock_name);
792 			}
793 		} else {
794 			mutex_init(&map->mutex);
795 			map->lock = regmap_lock_mutex;
796 			map->unlock = regmap_unlock_mutex;
797 			map->can_sleep = true;
798 			lockdep_set_class_and_name(&map->mutex,
799 						   lock_key, lock_name);
800 		}
801 		map->lock_arg = map;
802 	}
803 
804 	/*
805 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
806 	 * scratch buffers with sleeping allocations.
807 	 */
808 	if ((bus && bus->fast_io) || config->fast_io)
809 		map->alloc_flags = GFP_ATOMIC;
810 	else
811 		map->alloc_flags = GFP_KERNEL;
812 
813 	map->reg_base = config->reg_base;
814 
815 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
816 	map->format.pad_bytes = config->pad_bits / 8;
817 	map->format.reg_downshift = config->reg_downshift;
818 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
819 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
820 			config->val_bits + config->pad_bits, 8);
821 	map->reg_shift = config->pad_bits % 8;
822 	if (config->reg_stride)
823 		map->reg_stride = config->reg_stride;
824 	else
825 		map->reg_stride = 1;
826 	if (is_power_of_2(map->reg_stride))
827 		map->reg_stride_order = ilog2(map->reg_stride);
828 	else
829 		map->reg_stride_order = -1;
830 	map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
831 	map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
832 	map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
833 	if (bus) {
834 		map->max_raw_read = bus->max_raw_read;
835 		map->max_raw_write = bus->max_raw_write;
836 	} else if (config->max_raw_read && config->max_raw_write) {
837 		map->max_raw_read = config->max_raw_read;
838 		map->max_raw_write = config->max_raw_write;
839 	}
840 	map->dev = dev;
841 	map->bus = bus;
842 	map->bus_context = bus_context;
843 	map->max_register = config->max_register;
844 	map->wr_table = config->wr_table;
845 	map->rd_table = config->rd_table;
846 	map->volatile_table = config->volatile_table;
847 	map->precious_table = config->precious_table;
848 	map->wr_noinc_table = config->wr_noinc_table;
849 	map->rd_noinc_table = config->rd_noinc_table;
850 	map->writeable_reg = config->writeable_reg;
851 	map->readable_reg = config->readable_reg;
852 	map->volatile_reg = config->volatile_reg;
853 	map->precious_reg = config->precious_reg;
854 	map->writeable_noinc_reg = config->writeable_noinc_reg;
855 	map->readable_noinc_reg = config->readable_noinc_reg;
856 	map->cache_type = config->cache_type;
857 
858 	spin_lock_init(&map->async_lock);
859 	INIT_LIST_HEAD(&map->async_list);
860 	INIT_LIST_HEAD(&map->async_free);
861 	init_waitqueue_head(&map->async_waitq);
862 
863 	if (config->read_flag_mask ||
864 	    config->write_flag_mask ||
865 	    config->zero_flag_mask) {
866 		map->read_flag_mask = config->read_flag_mask;
867 		map->write_flag_mask = config->write_flag_mask;
868 	} else if (bus) {
869 		map->read_flag_mask = bus->read_flag_mask;
870 	}
871 
872 	if (config && config->read && config->write) {
873 		map->reg_read  = _regmap_bus_read;
874 		if (config->reg_update_bits)
875 			map->reg_update_bits = config->reg_update_bits;
876 
877 		/* Bulk read/write */
878 		map->read = config->read;
879 		map->write = config->write;
880 
881 		reg_endian = REGMAP_ENDIAN_NATIVE;
882 		val_endian = REGMAP_ENDIAN_NATIVE;
883 	} else if (!bus) {
884 		map->reg_read  = config->reg_read;
885 		map->reg_write = config->reg_write;
886 		map->reg_update_bits = config->reg_update_bits;
887 
888 		map->defer_caching = false;
889 		goto skip_format_initialization;
890 	} else if (!bus->read || !bus->write) {
891 		map->reg_read = _regmap_bus_reg_read;
892 		map->reg_write = _regmap_bus_reg_write;
893 		map->reg_update_bits = bus->reg_update_bits;
894 
895 		map->defer_caching = false;
896 		goto skip_format_initialization;
897 	} else {
898 		map->reg_read  = _regmap_bus_read;
899 		map->reg_update_bits = bus->reg_update_bits;
900 		/* Bulk read/write */
901 		map->read = bus->read;
902 		map->write = bus->write;
903 
904 		reg_endian = regmap_get_reg_endian(bus, config);
905 		val_endian = regmap_get_val_endian(dev, bus, config);
906 	}
907 
908 	switch (config->reg_bits + map->reg_shift) {
909 	case 2:
910 		switch (config->val_bits) {
911 		case 6:
912 			map->format.format_write = regmap_format_2_6_write;
913 			break;
914 		default:
915 			goto err_hwlock;
916 		}
917 		break;
918 
919 	case 4:
920 		switch (config->val_bits) {
921 		case 12:
922 			map->format.format_write = regmap_format_4_12_write;
923 			break;
924 		default:
925 			goto err_hwlock;
926 		}
927 		break;
928 
929 	case 7:
930 		switch (config->val_bits) {
931 		case 9:
932 			map->format.format_write = regmap_format_7_9_write;
933 			break;
934 		case 17:
935 			map->format.format_write = regmap_format_7_17_write;
936 			break;
937 		default:
938 			goto err_hwlock;
939 		}
940 		break;
941 
942 	case 10:
943 		switch (config->val_bits) {
944 		case 14:
945 			map->format.format_write = regmap_format_10_14_write;
946 			break;
947 		default:
948 			goto err_hwlock;
949 		}
950 		break;
951 
952 	case 12:
953 		switch (config->val_bits) {
954 		case 20:
955 			map->format.format_write = regmap_format_12_20_write;
956 			break;
957 		default:
958 			goto err_hwlock;
959 		}
960 		break;
961 
962 	case 8:
963 		map->format.format_reg = regmap_format_8;
964 		break;
965 
966 	case 16:
967 		switch (reg_endian) {
968 		case REGMAP_ENDIAN_BIG:
969 			map->format.format_reg = regmap_format_16_be;
970 			break;
971 		case REGMAP_ENDIAN_LITTLE:
972 			map->format.format_reg = regmap_format_16_le;
973 			break;
974 		case REGMAP_ENDIAN_NATIVE:
975 			map->format.format_reg = regmap_format_16_native;
976 			break;
977 		default:
978 			goto err_hwlock;
979 		}
980 		break;
981 
982 	case 24:
983 		switch (reg_endian) {
984 		case REGMAP_ENDIAN_BIG:
985 			map->format.format_reg = regmap_format_24_be;
986 			break;
987 		default:
988 			goto err_hwlock;
989 		}
990 		break;
991 
992 	case 32:
993 		switch (reg_endian) {
994 		case REGMAP_ENDIAN_BIG:
995 			map->format.format_reg = regmap_format_32_be;
996 			break;
997 		case REGMAP_ENDIAN_LITTLE:
998 			map->format.format_reg = regmap_format_32_le;
999 			break;
1000 		case REGMAP_ENDIAN_NATIVE:
1001 			map->format.format_reg = regmap_format_32_native;
1002 			break;
1003 		default:
1004 			goto err_hwlock;
1005 		}
1006 		break;
1007 
1008 #ifdef CONFIG_64BIT
1009 	case 64:
1010 		switch (reg_endian) {
1011 		case REGMAP_ENDIAN_BIG:
1012 			map->format.format_reg = regmap_format_64_be;
1013 			break;
1014 		case REGMAP_ENDIAN_LITTLE:
1015 			map->format.format_reg = regmap_format_64_le;
1016 			break;
1017 		case REGMAP_ENDIAN_NATIVE:
1018 			map->format.format_reg = regmap_format_64_native;
1019 			break;
1020 		default:
1021 			goto err_hwlock;
1022 		}
1023 		break;
1024 #endif
1025 
1026 	default:
1027 		goto err_hwlock;
1028 	}
1029 
1030 	if (val_endian == REGMAP_ENDIAN_NATIVE)
1031 		map->format.parse_inplace = regmap_parse_inplace_noop;
1032 
1033 	switch (config->val_bits) {
1034 	case 8:
1035 		map->format.format_val = regmap_format_8;
1036 		map->format.parse_val = regmap_parse_8;
1037 		map->format.parse_inplace = regmap_parse_inplace_noop;
1038 		break;
1039 	case 16:
1040 		switch (val_endian) {
1041 		case REGMAP_ENDIAN_BIG:
1042 			map->format.format_val = regmap_format_16_be;
1043 			map->format.parse_val = regmap_parse_16_be;
1044 			map->format.parse_inplace = regmap_parse_16_be_inplace;
1045 			break;
1046 		case REGMAP_ENDIAN_LITTLE:
1047 			map->format.format_val = regmap_format_16_le;
1048 			map->format.parse_val = regmap_parse_16_le;
1049 			map->format.parse_inplace = regmap_parse_16_le_inplace;
1050 			break;
1051 		case REGMAP_ENDIAN_NATIVE:
1052 			map->format.format_val = regmap_format_16_native;
1053 			map->format.parse_val = regmap_parse_16_native;
1054 			break;
1055 		default:
1056 			goto err_hwlock;
1057 		}
1058 		break;
1059 	case 24:
1060 		switch (val_endian) {
1061 		case REGMAP_ENDIAN_BIG:
1062 			map->format.format_val = regmap_format_24_be;
1063 			map->format.parse_val = regmap_parse_24_be;
1064 			break;
1065 		default:
1066 			goto err_hwlock;
1067 		}
1068 		break;
1069 	case 32:
1070 		switch (val_endian) {
1071 		case REGMAP_ENDIAN_BIG:
1072 			map->format.format_val = regmap_format_32_be;
1073 			map->format.parse_val = regmap_parse_32_be;
1074 			map->format.parse_inplace = regmap_parse_32_be_inplace;
1075 			break;
1076 		case REGMAP_ENDIAN_LITTLE:
1077 			map->format.format_val = regmap_format_32_le;
1078 			map->format.parse_val = regmap_parse_32_le;
1079 			map->format.parse_inplace = regmap_parse_32_le_inplace;
1080 			break;
1081 		case REGMAP_ENDIAN_NATIVE:
1082 			map->format.format_val = regmap_format_32_native;
1083 			map->format.parse_val = regmap_parse_32_native;
1084 			break;
1085 		default:
1086 			goto err_hwlock;
1087 		}
1088 		break;
1089 #ifdef CONFIG_64BIT
1090 	case 64:
1091 		switch (val_endian) {
1092 		case REGMAP_ENDIAN_BIG:
1093 			map->format.format_val = regmap_format_64_be;
1094 			map->format.parse_val = regmap_parse_64_be;
1095 			map->format.parse_inplace = regmap_parse_64_be_inplace;
1096 			break;
1097 		case REGMAP_ENDIAN_LITTLE:
1098 			map->format.format_val = regmap_format_64_le;
1099 			map->format.parse_val = regmap_parse_64_le;
1100 			map->format.parse_inplace = regmap_parse_64_le_inplace;
1101 			break;
1102 		case REGMAP_ENDIAN_NATIVE:
1103 			map->format.format_val = regmap_format_64_native;
1104 			map->format.parse_val = regmap_parse_64_native;
1105 			break;
1106 		default:
1107 			goto err_hwlock;
1108 		}
1109 		break;
1110 #endif
1111 	}
1112 
1113 	if (map->format.format_write) {
1114 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1115 		    (val_endian != REGMAP_ENDIAN_BIG))
1116 			goto err_hwlock;
1117 		map->use_single_write = true;
1118 	}
1119 
1120 	if (!map->format.format_write &&
1121 	    !(map->format.format_reg && map->format.format_val))
1122 		goto err_hwlock;
1123 
1124 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1125 	if (map->work_buf == NULL) {
1126 		ret = -ENOMEM;
1127 		goto err_hwlock;
1128 	}
1129 
1130 	if (map->format.format_write) {
1131 		map->defer_caching = false;
1132 		map->reg_write = _regmap_bus_formatted_write;
1133 	} else if (map->format.format_val) {
1134 		map->defer_caching = true;
1135 		map->reg_write = _regmap_bus_raw_write;
1136 	}
1137 
1138 skip_format_initialization:
1139 
1140 	map->range_tree = RB_ROOT;
1141 	for (i = 0; i < config->num_ranges; i++) {
1142 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1143 		struct regmap_range_node *new;
1144 
1145 		/* Sanity check */
1146 		if (range_cfg->range_max < range_cfg->range_min) {
1147 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1148 				range_cfg->range_max, range_cfg->range_min);
1149 			goto err_range;
1150 		}
1151 
1152 		if (range_cfg->range_max > map->max_register) {
1153 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1154 				range_cfg->range_max, map->max_register);
1155 			goto err_range;
1156 		}
1157 
1158 		if (range_cfg->selector_reg > map->max_register) {
1159 			dev_err(map->dev,
1160 				"Invalid range %d: selector out of map\n", i);
1161 			goto err_range;
1162 		}
1163 
1164 		if (range_cfg->window_len == 0) {
1165 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1166 				i);
1167 			goto err_range;
1168 		}
1169 
1170 		/* Make sure, that this register range has no selector
1171 		   or data window within its boundary */
1172 		for (j = 0; j < config->num_ranges; j++) {
1173 			unsigned int sel_reg = config->ranges[j].selector_reg;
1174 			unsigned int win_min = config->ranges[j].window_start;
1175 			unsigned int win_max = win_min +
1176 					       config->ranges[j].window_len - 1;
1177 
1178 			/* Allow data window inside its own virtual range */
1179 			if (j == i)
1180 				continue;
1181 
1182 			if (range_cfg->range_min <= sel_reg &&
1183 			    sel_reg <= range_cfg->range_max) {
1184 				dev_err(map->dev,
1185 					"Range %d: selector for %d in window\n",
1186 					i, j);
1187 				goto err_range;
1188 			}
1189 
1190 			if (!(win_max < range_cfg->range_min ||
1191 			      win_min > range_cfg->range_max)) {
1192 				dev_err(map->dev,
1193 					"Range %d: window for %d in window\n",
1194 					i, j);
1195 				goto err_range;
1196 			}
1197 		}
1198 
1199 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1200 		if (new == NULL) {
1201 			ret = -ENOMEM;
1202 			goto err_range;
1203 		}
1204 
1205 		new->map = map;
1206 		new->name = range_cfg->name;
1207 		new->range_min = range_cfg->range_min;
1208 		new->range_max = range_cfg->range_max;
1209 		new->selector_reg = range_cfg->selector_reg;
1210 		new->selector_mask = range_cfg->selector_mask;
1211 		new->selector_shift = range_cfg->selector_shift;
1212 		new->window_start = range_cfg->window_start;
1213 		new->window_len = range_cfg->window_len;
1214 
1215 		if (!_regmap_range_add(map, new)) {
1216 			dev_err(map->dev, "Failed to add range %d\n", i);
1217 			kfree(new);
1218 			goto err_range;
1219 		}
1220 
1221 		if (map->selector_work_buf == NULL) {
1222 			map->selector_work_buf =
1223 				kzalloc(map->format.buf_size, GFP_KERNEL);
1224 			if (map->selector_work_buf == NULL) {
1225 				ret = -ENOMEM;
1226 				goto err_range;
1227 			}
1228 		}
1229 	}
1230 
1231 	ret = regcache_init(map, config);
1232 	if (ret != 0)
1233 		goto err_range;
1234 
1235 	if (dev) {
1236 		ret = regmap_attach_dev(dev, map, config);
1237 		if (ret != 0)
1238 			goto err_regcache;
1239 	} else {
1240 		regmap_debugfs_init(map);
1241 	}
1242 
1243 	return map;
1244 
1245 err_regcache:
1246 	regcache_exit(map);
1247 err_range:
1248 	regmap_range_exit(map);
1249 	kfree(map->work_buf);
1250 err_hwlock:
1251 	if (map->hwlock)
1252 		hwspin_lock_free(map->hwlock);
1253 err_name:
1254 	kfree_const(map->name);
1255 err_map:
1256 	kfree(map);
1257 err:
1258 	return ERR_PTR(ret);
1259 }
1260 EXPORT_SYMBOL_GPL(__regmap_init);
1261 
devm_regmap_release(struct device * dev,void * res)1262 static void devm_regmap_release(struct device *dev, void *res)
1263 {
1264 	regmap_exit(*(struct regmap **)res);
1265 }
1266 
__devm_regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)1267 struct regmap *__devm_regmap_init(struct device *dev,
1268 				  const struct regmap_bus *bus,
1269 				  void *bus_context,
1270 				  const struct regmap_config *config,
1271 				  struct lock_class_key *lock_key,
1272 				  const char *lock_name)
1273 {
1274 	struct regmap **ptr, *regmap;
1275 
1276 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1277 	if (!ptr)
1278 		return ERR_PTR(-ENOMEM);
1279 
1280 	regmap = __regmap_init(dev, bus, bus_context, config,
1281 			       lock_key, lock_name);
1282 	if (!IS_ERR(regmap)) {
1283 		*ptr = regmap;
1284 		devres_add(dev, ptr);
1285 	} else {
1286 		devres_free(ptr);
1287 	}
1288 
1289 	return regmap;
1290 }
1291 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1292 
regmap_field_init(struct regmap_field * rm_field,struct regmap * regmap,struct reg_field reg_field)1293 static void regmap_field_init(struct regmap_field *rm_field,
1294 	struct regmap *regmap, struct reg_field reg_field)
1295 {
1296 	rm_field->regmap = regmap;
1297 	rm_field->reg = reg_field.reg;
1298 	rm_field->shift = reg_field.lsb;
1299 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1300 
1301 	WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1302 
1303 	rm_field->id_size = reg_field.id_size;
1304 	rm_field->id_offset = reg_field.id_offset;
1305 }
1306 
1307 /**
1308  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1309  *
1310  * @dev: Device that will be interacted with
1311  * @regmap: regmap bank in which this register field is located.
1312  * @reg_field: Register field with in the bank.
1313  *
1314  * The return value will be an ERR_PTR() on error or a valid pointer
1315  * to a struct regmap_field. The regmap_field will be automatically freed
1316  * by the device management code.
1317  */
devm_regmap_field_alloc(struct device * dev,struct regmap * regmap,struct reg_field reg_field)1318 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1319 		struct regmap *regmap, struct reg_field reg_field)
1320 {
1321 	struct regmap_field *rm_field = devm_kzalloc(dev,
1322 					sizeof(*rm_field), GFP_KERNEL);
1323 	if (!rm_field)
1324 		return ERR_PTR(-ENOMEM);
1325 
1326 	regmap_field_init(rm_field, regmap, reg_field);
1327 
1328 	return rm_field;
1329 
1330 }
1331 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1332 
1333 
1334 /**
1335  * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1336  *
1337  * @regmap: regmap bank in which this register field is located.
1338  * @rm_field: regmap register fields within the bank.
1339  * @reg_field: Register fields within the bank.
1340  * @num_fields: Number of register fields.
1341  *
1342  * The return value will be an -ENOMEM on error or zero for success.
1343  * Newly allocated regmap_fields should be freed by calling
1344  * regmap_field_bulk_free()
1345  */
regmap_field_bulk_alloc(struct regmap * regmap,struct regmap_field ** rm_field,const struct reg_field * reg_field,int num_fields)1346 int regmap_field_bulk_alloc(struct regmap *regmap,
1347 			    struct regmap_field **rm_field,
1348 			    const struct reg_field *reg_field,
1349 			    int num_fields)
1350 {
1351 	struct regmap_field *rf;
1352 	int i;
1353 
1354 	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1355 	if (!rf)
1356 		return -ENOMEM;
1357 
1358 	for (i = 0; i < num_fields; i++) {
1359 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1360 		rm_field[i] = &rf[i];
1361 	}
1362 
1363 	return 0;
1364 }
1365 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1366 
1367 /**
1368  * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1369  * fields.
1370  *
1371  * @dev: Device that will be interacted with
1372  * @regmap: regmap bank in which this register field is located.
1373  * @rm_field: regmap register fields within the bank.
1374  * @reg_field: Register fields within the bank.
1375  * @num_fields: Number of register fields.
1376  *
1377  * The return value will be an -ENOMEM on error or zero for success.
1378  * Newly allocated regmap_fields will be automatically freed by the
1379  * device management code.
1380  */
devm_regmap_field_bulk_alloc(struct device * dev,struct regmap * regmap,struct regmap_field ** rm_field,const struct reg_field * reg_field,int num_fields)1381 int devm_regmap_field_bulk_alloc(struct device *dev,
1382 				 struct regmap *regmap,
1383 				 struct regmap_field **rm_field,
1384 				 const struct reg_field *reg_field,
1385 				 int num_fields)
1386 {
1387 	struct regmap_field *rf;
1388 	int i;
1389 
1390 	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1391 	if (!rf)
1392 		return -ENOMEM;
1393 
1394 	for (i = 0; i < num_fields; i++) {
1395 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1396 		rm_field[i] = &rf[i];
1397 	}
1398 
1399 	return 0;
1400 }
1401 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1402 
1403 /**
1404  * regmap_field_bulk_free() - Free register field allocated using
1405  *                       regmap_field_bulk_alloc.
1406  *
1407  * @field: regmap fields which should be freed.
1408  */
regmap_field_bulk_free(struct regmap_field * field)1409 void regmap_field_bulk_free(struct regmap_field *field)
1410 {
1411 	kfree(field);
1412 }
1413 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1414 
1415 /**
1416  * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1417  *                            devm_regmap_field_bulk_alloc.
1418  *
1419  * @dev: Device that will be interacted with
1420  * @field: regmap field which should be freed.
1421  *
1422  * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1423  * drivers need not call this function, as the memory allocated via devm
1424  * will be freed as per device-driver life-cycle.
1425  */
devm_regmap_field_bulk_free(struct device * dev,struct regmap_field * field)1426 void devm_regmap_field_bulk_free(struct device *dev,
1427 				 struct regmap_field *field)
1428 {
1429 	devm_kfree(dev, field);
1430 }
1431 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1432 
1433 /**
1434  * devm_regmap_field_free() - Free a register field allocated using
1435  *                            devm_regmap_field_alloc.
1436  *
1437  * @dev: Device that will be interacted with
1438  * @field: regmap field which should be freed.
1439  *
1440  * Free register field allocated using devm_regmap_field_alloc(). Usually
1441  * drivers need not call this function, as the memory allocated via devm
1442  * will be freed as per device-driver life-cyle.
1443  */
devm_regmap_field_free(struct device * dev,struct regmap_field * field)1444 void devm_regmap_field_free(struct device *dev,
1445 	struct regmap_field *field)
1446 {
1447 	devm_kfree(dev, field);
1448 }
1449 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1450 
1451 /**
1452  * regmap_field_alloc() - Allocate and initialise a register field.
1453  *
1454  * @regmap: regmap bank in which this register field is located.
1455  * @reg_field: Register field with in the bank.
1456  *
1457  * The return value will be an ERR_PTR() on error or a valid pointer
1458  * to a struct regmap_field. The regmap_field should be freed by the
1459  * user once its finished working with it using regmap_field_free().
1460  */
regmap_field_alloc(struct regmap * regmap,struct reg_field reg_field)1461 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1462 		struct reg_field reg_field)
1463 {
1464 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1465 
1466 	if (!rm_field)
1467 		return ERR_PTR(-ENOMEM);
1468 
1469 	regmap_field_init(rm_field, regmap, reg_field);
1470 
1471 	return rm_field;
1472 }
1473 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1474 
1475 /**
1476  * regmap_field_free() - Free register field allocated using
1477  *                       regmap_field_alloc.
1478  *
1479  * @field: regmap field which should be freed.
1480  */
regmap_field_free(struct regmap_field * field)1481 void regmap_field_free(struct regmap_field *field)
1482 {
1483 	kfree(field);
1484 }
1485 EXPORT_SYMBOL_GPL(regmap_field_free);
1486 
1487 /**
1488  * regmap_reinit_cache() - Reinitialise the current register cache
1489  *
1490  * @map: Register map to operate on.
1491  * @config: New configuration.  Only the cache data will be used.
1492  *
1493  * Discard any existing register cache for the map and initialize a
1494  * new cache.  This can be used to restore the cache to defaults or to
1495  * update the cache configuration to reflect runtime discovery of the
1496  * hardware.
1497  *
1498  * No explicit locking is done here, the user needs to ensure that
1499  * this function will not race with other calls to regmap.
1500  */
regmap_reinit_cache(struct regmap * map,const struct regmap_config * config)1501 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1502 {
1503 	int ret;
1504 
1505 	regcache_exit(map);
1506 	regmap_debugfs_exit(map);
1507 
1508 	map->max_register = config->max_register;
1509 	map->writeable_reg = config->writeable_reg;
1510 	map->readable_reg = config->readable_reg;
1511 	map->volatile_reg = config->volatile_reg;
1512 	map->precious_reg = config->precious_reg;
1513 	map->writeable_noinc_reg = config->writeable_noinc_reg;
1514 	map->readable_noinc_reg = config->readable_noinc_reg;
1515 	map->cache_type = config->cache_type;
1516 
1517 	ret = regmap_set_name(map, config);
1518 	if (ret)
1519 		return ret;
1520 
1521 	regmap_debugfs_init(map);
1522 
1523 	map->cache_bypass = false;
1524 	map->cache_only = false;
1525 
1526 	return regcache_init(map, config);
1527 }
1528 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1529 
1530 /**
1531  * regmap_exit() - Free a previously allocated register map
1532  *
1533  * @map: Register map to operate on.
1534  */
regmap_exit(struct regmap * map)1535 void regmap_exit(struct regmap *map)
1536 {
1537 	struct regmap_async *async;
1538 
1539 	regcache_exit(map);
1540 	regmap_debugfs_exit(map);
1541 	regmap_range_exit(map);
1542 	if (map->bus && map->bus->free_context)
1543 		map->bus->free_context(map->bus_context);
1544 	kfree(map->work_buf);
1545 	while (!list_empty(&map->async_free)) {
1546 		async = list_first_entry_or_null(&map->async_free,
1547 						 struct regmap_async,
1548 						 list);
1549 		list_del(&async->list);
1550 		kfree(async->work_buf);
1551 		kfree(async);
1552 	}
1553 	if (map->hwlock)
1554 		hwspin_lock_free(map->hwlock);
1555 	if (map->lock == regmap_lock_mutex)
1556 		mutex_destroy(&map->mutex);
1557 	kfree_const(map->name);
1558 	kfree(map->patch);
1559 	if (map->bus && map->bus->free_on_exit)
1560 		kfree(map->bus);
1561 	kfree(map);
1562 }
1563 EXPORT_SYMBOL_GPL(regmap_exit);
1564 
dev_get_regmap_match(struct device * dev,void * res,void * data)1565 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1566 {
1567 	struct regmap **r = res;
1568 	if (!r || !*r) {
1569 		WARN_ON(!r || !*r);
1570 		return 0;
1571 	}
1572 
1573 	/* If the user didn't specify a name match any */
1574 	if (data)
1575 		return (*r)->name && !strcmp((*r)->name, data);
1576 	else
1577 		return 1;
1578 }
1579 
1580 /**
1581  * dev_get_regmap() - Obtain the regmap (if any) for a device
1582  *
1583  * @dev: Device to retrieve the map for
1584  * @name: Optional name for the register map, usually NULL.
1585  *
1586  * Returns the regmap for the device if one is present, or NULL.  If
1587  * name is specified then it must match the name specified when
1588  * registering the device, if it is NULL then the first regmap found
1589  * will be used.  Devices with multiple register maps are very rare,
1590  * generic code should normally not need to specify a name.
1591  */
dev_get_regmap(struct device * dev,const char * name)1592 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1593 {
1594 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1595 					dev_get_regmap_match, (void *)name);
1596 
1597 	if (!r)
1598 		return NULL;
1599 	return *r;
1600 }
1601 EXPORT_SYMBOL_GPL(dev_get_regmap);
1602 
1603 /**
1604  * regmap_get_device() - Obtain the device from a regmap
1605  *
1606  * @map: Register map to operate on.
1607  *
1608  * Returns the underlying device that the regmap has been created for.
1609  */
regmap_get_device(struct regmap * map)1610 struct device *regmap_get_device(struct regmap *map)
1611 {
1612 	return map->dev;
1613 }
1614 EXPORT_SYMBOL_GPL(regmap_get_device);
1615 
_regmap_select_page(struct regmap * map,unsigned int * reg,struct regmap_range_node * range,unsigned int val_num)1616 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1617 			       struct regmap_range_node *range,
1618 			       unsigned int val_num)
1619 {
1620 	void *orig_work_buf;
1621 	unsigned int win_offset;
1622 	unsigned int win_page;
1623 	bool page_chg;
1624 	int ret;
1625 
1626 	win_offset = (*reg - range->range_min) % range->window_len;
1627 	win_page = (*reg - range->range_min) / range->window_len;
1628 
1629 	if (val_num > 1) {
1630 		/* Bulk write shouldn't cross range boundary */
1631 		if (*reg + val_num - 1 > range->range_max)
1632 			return -EINVAL;
1633 
1634 		/* ... or single page boundary */
1635 		if (val_num > range->window_len - win_offset)
1636 			return -EINVAL;
1637 	}
1638 
1639 	/* It is possible to have selector register inside data window.
1640 	   In that case, selector register is located on every page and
1641 	   it needs no page switching, when accessed alone. */
1642 	if (val_num > 1 ||
1643 	    range->window_start + win_offset != range->selector_reg) {
1644 		/* Use separate work_buf during page switching */
1645 		orig_work_buf = map->work_buf;
1646 		map->work_buf = map->selector_work_buf;
1647 
1648 		ret = _regmap_update_bits(map, range->selector_reg,
1649 					  range->selector_mask,
1650 					  win_page << range->selector_shift,
1651 					  &page_chg, false);
1652 
1653 		map->work_buf = orig_work_buf;
1654 
1655 		if (ret != 0)
1656 			return ret;
1657 	}
1658 
1659 	*reg = range->window_start + win_offset;
1660 
1661 	return 0;
1662 }
1663 
regmap_set_work_buf_flag_mask(struct regmap * map,int max_bytes,unsigned long mask)1664 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1665 					  unsigned long mask)
1666 {
1667 	u8 *buf;
1668 	int i;
1669 
1670 	if (!mask || !map->work_buf)
1671 		return;
1672 
1673 	buf = map->work_buf;
1674 
1675 	for (i = 0; i < max_bytes; i++)
1676 		buf[i] |= (mask >> (8 * i)) & 0xff;
1677 }
1678 
_regmap_raw_write_impl(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)1679 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1680 				  const void *val, size_t val_len, bool noinc)
1681 {
1682 	struct regmap_range_node *range;
1683 	unsigned long flags;
1684 	void *work_val = map->work_buf + map->format.reg_bytes +
1685 		map->format.pad_bytes;
1686 	void *buf;
1687 	int ret = -ENOTSUPP;
1688 	size_t len;
1689 	int i;
1690 
1691 	/* Check for unwritable or noinc registers in range
1692 	 * before we start
1693 	 */
1694 	if (!regmap_writeable_noinc(map, reg)) {
1695 		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1696 			unsigned int element =
1697 				reg + regmap_get_offset(map, i);
1698 			if (!regmap_writeable(map, element) ||
1699 				regmap_writeable_noinc(map, element))
1700 				return -EINVAL;
1701 		}
1702 	}
1703 
1704 	if (!map->cache_bypass && map->format.parse_val) {
1705 		unsigned int ival, offset;
1706 		int val_bytes = map->format.val_bytes;
1707 
1708 		/* Cache the last written value for noinc writes */
1709 		i = noinc ? val_len - val_bytes : 0;
1710 		for (; i < val_len; i += val_bytes) {
1711 			ival = map->format.parse_val(val + i);
1712 			offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1713 			ret = regcache_write(map, reg + offset, ival);
1714 			if (ret) {
1715 				dev_err(map->dev,
1716 					"Error in caching of register: %x ret: %d\n",
1717 					reg + offset, ret);
1718 				return ret;
1719 			}
1720 		}
1721 		if (map->cache_only) {
1722 			map->cache_dirty = true;
1723 			return 0;
1724 		}
1725 	}
1726 
1727 	range = _regmap_range_lookup(map, reg);
1728 	if (range) {
1729 		int val_num = val_len / map->format.val_bytes;
1730 		int win_offset = (reg - range->range_min) % range->window_len;
1731 		int win_residue = range->window_len - win_offset;
1732 
1733 		/* If the write goes beyond the end of the window split it */
1734 		while (val_num > win_residue) {
1735 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1736 				win_residue, val_len / map->format.val_bytes);
1737 			ret = _regmap_raw_write_impl(map, reg, val,
1738 						     win_residue *
1739 						     map->format.val_bytes, noinc);
1740 			if (ret != 0)
1741 				return ret;
1742 
1743 			reg += win_residue;
1744 			val_num -= win_residue;
1745 			val += win_residue * map->format.val_bytes;
1746 			val_len -= win_residue * map->format.val_bytes;
1747 
1748 			win_offset = (reg - range->range_min) %
1749 				range->window_len;
1750 			win_residue = range->window_len - win_offset;
1751 		}
1752 
1753 		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1754 		if (ret != 0)
1755 			return ret;
1756 	}
1757 
1758 	reg += map->reg_base;
1759 	reg >>= map->format.reg_downshift;
1760 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1761 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1762 				      map->write_flag_mask);
1763 
1764 	/*
1765 	 * Essentially all I/O mechanisms will be faster with a single
1766 	 * buffer to write.  Since register syncs often generate raw
1767 	 * writes of single registers optimise that case.
1768 	 */
1769 	if (val != work_val && val_len == map->format.val_bytes) {
1770 		memcpy(work_val, val, map->format.val_bytes);
1771 		val = work_val;
1772 	}
1773 
1774 	if (map->async && map->bus && map->bus->async_write) {
1775 		struct regmap_async *async;
1776 
1777 		trace_regmap_async_write_start(map, reg, val_len);
1778 
1779 		spin_lock_irqsave(&map->async_lock, flags);
1780 		async = list_first_entry_or_null(&map->async_free,
1781 						 struct regmap_async,
1782 						 list);
1783 		if (async)
1784 			list_del(&async->list);
1785 		spin_unlock_irqrestore(&map->async_lock, flags);
1786 
1787 		if (!async) {
1788 			async = map->bus->async_alloc();
1789 			if (!async)
1790 				return -ENOMEM;
1791 
1792 			async->work_buf = kzalloc(map->format.buf_size,
1793 						  GFP_KERNEL | GFP_DMA);
1794 			if (!async->work_buf) {
1795 				kfree(async);
1796 				return -ENOMEM;
1797 			}
1798 		}
1799 
1800 		async->map = map;
1801 
1802 		/* If the caller supplied the value we can use it safely. */
1803 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1804 		       map->format.reg_bytes + map->format.val_bytes);
1805 
1806 		spin_lock_irqsave(&map->async_lock, flags);
1807 		list_add_tail(&async->list, &map->async_list);
1808 		spin_unlock_irqrestore(&map->async_lock, flags);
1809 
1810 		if (val != work_val)
1811 			ret = map->bus->async_write(map->bus_context,
1812 						    async->work_buf,
1813 						    map->format.reg_bytes +
1814 						    map->format.pad_bytes,
1815 						    val, val_len, async);
1816 		else
1817 			ret = map->bus->async_write(map->bus_context,
1818 						    async->work_buf,
1819 						    map->format.reg_bytes +
1820 						    map->format.pad_bytes +
1821 						    val_len, NULL, 0, async);
1822 
1823 		if (ret != 0) {
1824 			dev_err(map->dev, "Failed to schedule write: %d\n",
1825 				ret);
1826 
1827 			spin_lock_irqsave(&map->async_lock, flags);
1828 			list_move(&async->list, &map->async_free);
1829 			spin_unlock_irqrestore(&map->async_lock, flags);
1830 		}
1831 
1832 		return ret;
1833 	}
1834 
1835 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1836 
1837 	/* If we're doing a single register write we can probably just
1838 	 * send the work_buf directly, otherwise try to do a gather
1839 	 * write.
1840 	 */
1841 	if (val == work_val)
1842 		ret = map->write(map->bus_context, map->work_buf,
1843 				 map->format.reg_bytes +
1844 				 map->format.pad_bytes +
1845 				 val_len);
1846 	else if (map->bus && map->bus->gather_write)
1847 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1848 					     map->format.reg_bytes +
1849 					     map->format.pad_bytes,
1850 					     val, val_len);
1851 	else
1852 		ret = -ENOTSUPP;
1853 
1854 	/* If that didn't work fall back on linearising by hand. */
1855 	if (ret == -ENOTSUPP) {
1856 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1857 		buf = kzalloc(len, GFP_KERNEL);
1858 		if (!buf)
1859 			return -ENOMEM;
1860 
1861 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1862 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1863 		       val, val_len);
1864 		ret = map->write(map->bus_context, buf, len);
1865 
1866 		kfree(buf);
1867 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1868 		/* regcache_drop_region() takes lock that we already have,
1869 		 * thus call map->cache_ops->drop() directly
1870 		 */
1871 		if (map->cache_ops && map->cache_ops->drop)
1872 			map->cache_ops->drop(map, reg, reg + 1);
1873 	}
1874 
1875 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1876 
1877 	return ret;
1878 }
1879 
1880 /**
1881  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1882  *
1883  * @map: Map to check.
1884  */
regmap_can_raw_write(struct regmap * map)1885 bool regmap_can_raw_write(struct regmap *map)
1886 {
1887 	return map->write && map->format.format_val && map->format.format_reg;
1888 }
1889 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1890 
1891 /**
1892  * regmap_get_raw_read_max - Get the maximum size we can read
1893  *
1894  * @map: Map to check.
1895  */
regmap_get_raw_read_max(struct regmap * map)1896 size_t regmap_get_raw_read_max(struct regmap *map)
1897 {
1898 	return map->max_raw_read;
1899 }
1900 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1901 
1902 /**
1903  * regmap_get_raw_write_max - Get the maximum size we can read
1904  *
1905  * @map: Map to check.
1906  */
regmap_get_raw_write_max(struct regmap * map)1907 size_t regmap_get_raw_write_max(struct regmap *map)
1908 {
1909 	return map->max_raw_write;
1910 }
1911 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1912 
_regmap_bus_formatted_write(void * context,unsigned int reg,unsigned int val)1913 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1914 				       unsigned int val)
1915 {
1916 	int ret;
1917 	struct regmap_range_node *range;
1918 	struct regmap *map = context;
1919 
1920 	WARN_ON(!map->format.format_write);
1921 
1922 	range = _regmap_range_lookup(map, reg);
1923 	if (range) {
1924 		ret = _regmap_select_page(map, &reg, range, 1);
1925 		if (ret != 0)
1926 			return ret;
1927 	}
1928 
1929 	reg += map->reg_base;
1930 	reg >>= map->format.reg_downshift;
1931 	map->format.format_write(map, reg, val);
1932 
1933 	trace_regmap_hw_write_start(map, reg, 1);
1934 
1935 	ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1936 
1937 	trace_regmap_hw_write_done(map, reg, 1);
1938 
1939 	return ret;
1940 }
1941 
_regmap_bus_reg_write(void * context,unsigned int reg,unsigned int val)1942 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1943 				 unsigned int val)
1944 {
1945 	struct regmap *map = context;
1946 
1947 	reg += map->reg_base;
1948 	reg >>= map->format.reg_downshift;
1949 	return map->bus->reg_write(map->bus_context, reg, val);
1950 }
1951 
_regmap_bus_raw_write(void * context,unsigned int reg,unsigned int val)1952 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1953 				 unsigned int val)
1954 {
1955 	struct regmap *map = context;
1956 
1957 	WARN_ON(!map->format.format_val);
1958 
1959 	map->format.format_val(map->work_buf + map->format.reg_bytes
1960 			       + map->format.pad_bytes, val, 0);
1961 	return _regmap_raw_write_impl(map, reg,
1962 				      map->work_buf +
1963 				      map->format.reg_bytes +
1964 				      map->format.pad_bytes,
1965 				      map->format.val_bytes,
1966 				      false);
1967 }
1968 
_regmap_map_get_context(struct regmap * map)1969 static inline void *_regmap_map_get_context(struct regmap *map)
1970 {
1971 	return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1972 }
1973 
_regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1974 int _regmap_write(struct regmap *map, unsigned int reg,
1975 		  unsigned int val)
1976 {
1977 	int ret;
1978 	void *context = _regmap_map_get_context(map);
1979 
1980 	if (!regmap_writeable(map, reg))
1981 		return -EIO;
1982 
1983 	if (!map->cache_bypass && !map->defer_caching) {
1984 		ret = regcache_write(map, reg, val);
1985 		if (ret != 0)
1986 			return ret;
1987 		if (map->cache_only) {
1988 			map->cache_dirty = true;
1989 			return 0;
1990 		}
1991 	}
1992 
1993 	ret = map->reg_write(context, reg, val);
1994 	if (ret == 0) {
1995 		if (regmap_should_log(map))
1996 			dev_info(map->dev, "%x <= %x\n", reg, val);
1997 
1998 		trace_regmap_reg_write(map, reg, val);
1999 	}
2000 
2001 	return ret;
2002 }
2003 
2004 /**
2005  * regmap_write() - Write a value to a single register
2006  *
2007  * @map: Register map to write to
2008  * @reg: Register to write to
2009  * @val: Value to be written
2010  *
2011  * A value of zero will be returned on success, a negative errno will
2012  * be returned in error cases.
2013  */
regmap_write(struct regmap * map,unsigned int reg,unsigned int val)2014 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
2015 {
2016 	int ret;
2017 
2018 	if (!IS_ALIGNED(reg, map->reg_stride))
2019 		return -EINVAL;
2020 
2021 	map->lock(map->lock_arg);
2022 
2023 	ret = _regmap_write(map, reg, val);
2024 
2025 	map->unlock(map->lock_arg);
2026 
2027 	return ret;
2028 }
2029 EXPORT_SYMBOL_GPL(regmap_write);
2030 
2031 /**
2032  * regmap_write_async() - Write a value to a single register asynchronously
2033  *
2034  * @map: Register map to write to
2035  * @reg: Register to write to
2036  * @val: Value to be written
2037  *
2038  * A value of zero will be returned on success, a negative errno will
2039  * be returned in error cases.
2040  */
regmap_write_async(struct regmap * map,unsigned int reg,unsigned int val)2041 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2042 {
2043 	int ret;
2044 
2045 	if (!IS_ALIGNED(reg, map->reg_stride))
2046 		return -EINVAL;
2047 
2048 	map->lock(map->lock_arg);
2049 
2050 	map->async = true;
2051 
2052 	ret = _regmap_write(map, reg, val);
2053 
2054 	map->async = false;
2055 
2056 	map->unlock(map->lock_arg);
2057 
2058 	return ret;
2059 }
2060 EXPORT_SYMBOL_GPL(regmap_write_async);
2061 
_regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)2062 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2063 		      const void *val, size_t val_len, bool noinc)
2064 {
2065 	size_t val_bytes = map->format.val_bytes;
2066 	size_t val_count = val_len / val_bytes;
2067 	size_t chunk_count, chunk_bytes;
2068 	size_t chunk_regs = val_count;
2069 	int ret, i;
2070 
2071 	if (!val_count)
2072 		return -EINVAL;
2073 
2074 	if (map->use_single_write)
2075 		chunk_regs = 1;
2076 	else if (map->max_raw_write && val_len > map->max_raw_write)
2077 		chunk_regs = map->max_raw_write / val_bytes;
2078 
2079 	chunk_count = val_count / chunk_regs;
2080 	chunk_bytes = chunk_regs * val_bytes;
2081 
2082 	/* Write as many bytes as possible with chunk_size */
2083 	for (i = 0; i < chunk_count; i++) {
2084 		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2085 		if (ret)
2086 			return ret;
2087 
2088 		reg += regmap_get_offset(map, chunk_regs);
2089 		val += chunk_bytes;
2090 		val_len -= chunk_bytes;
2091 	}
2092 
2093 	/* Write remaining bytes */
2094 	if (val_len)
2095 		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2096 
2097 	return ret;
2098 }
2099 
2100 /**
2101  * regmap_raw_write() - Write raw values to one or more registers
2102  *
2103  * @map: Register map to write to
2104  * @reg: Initial register to write to
2105  * @val: Block of data to be written, laid out for direct transmission to the
2106  *       device
2107  * @val_len: Length of data pointed to by val.
2108  *
2109  * This function is intended to be used for things like firmware
2110  * download where a large block of data needs to be transferred to the
2111  * device.  No formatting will be done on the data provided.
2112  *
2113  * A value of zero will be returned on success, a negative errno will
2114  * be returned in error cases.
2115  */
regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2116 int regmap_raw_write(struct regmap *map, unsigned int reg,
2117 		     const void *val, size_t val_len)
2118 {
2119 	int ret;
2120 
2121 	if (!regmap_can_raw_write(map))
2122 		return -EINVAL;
2123 	if (val_len % map->format.val_bytes)
2124 		return -EINVAL;
2125 
2126 	map->lock(map->lock_arg);
2127 
2128 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2129 
2130 	map->unlock(map->lock_arg);
2131 
2132 	return ret;
2133 }
2134 EXPORT_SYMBOL_GPL(regmap_raw_write);
2135 
regmap_noinc_readwrite(struct regmap * map,unsigned int reg,void * val,unsigned int val_len,bool write)2136 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2137 				  void *val, unsigned int val_len, bool write)
2138 {
2139 	size_t val_bytes = map->format.val_bytes;
2140 	size_t val_count = val_len / val_bytes;
2141 	unsigned int lastval;
2142 	u8 *u8p;
2143 	u16 *u16p;
2144 	u32 *u32p;
2145 #ifdef CONFIG_64BIT
2146 	u64 *u64p;
2147 #endif
2148 	int ret;
2149 	int i;
2150 
2151 	switch (val_bytes) {
2152 	case 1:
2153 		u8p = val;
2154 		if (write)
2155 			lastval = (unsigned int)u8p[val_count - 1];
2156 		break;
2157 	case 2:
2158 		u16p = val;
2159 		if (write)
2160 			lastval = (unsigned int)u16p[val_count - 1];
2161 		break;
2162 	case 4:
2163 		u32p = val;
2164 		if (write)
2165 			lastval = (unsigned int)u32p[val_count - 1];
2166 		break;
2167 #ifdef CONFIG_64BIT
2168 	case 8:
2169 		u64p = val;
2170 		if (write)
2171 			lastval = (unsigned int)u64p[val_count - 1];
2172 		break;
2173 #endif
2174 	default:
2175 		return -EINVAL;
2176 	}
2177 
2178 	/*
2179 	 * Update the cache with the last value we write, the rest is just
2180 	 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2181 	 * sure a single read from the cache will work.
2182 	 */
2183 	if (write) {
2184 		if (!map->cache_bypass && !map->defer_caching) {
2185 			ret = regcache_write(map, reg, lastval);
2186 			if (ret != 0)
2187 				return ret;
2188 			if (map->cache_only) {
2189 				map->cache_dirty = true;
2190 				return 0;
2191 			}
2192 		}
2193 		ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2194 	} else {
2195 		ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2196 	}
2197 
2198 	if (!ret && regmap_should_log(map)) {
2199 		dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2200 		for (i = 0; i < val_count; i++) {
2201 			switch (val_bytes) {
2202 			case 1:
2203 				pr_cont("%x", u8p[i]);
2204 				break;
2205 			case 2:
2206 				pr_cont("%x", u16p[i]);
2207 				break;
2208 			case 4:
2209 				pr_cont("%x", u32p[i]);
2210 				break;
2211 #ifdef CONFIG_64BIT
2212 			case 8:
2213 				pr_cont("%llx", u64p[i]);
2214 				break;
2215 #endif
2216 			default:
2217 				break;
2218 			}
2219 			if (i == (val_count - 1))
2220 				pr_cont("]\n");
2221 			else
2222 				pr_cont(",");
2223 		}
2224 	}
2225 
2226 	return 0;
2227 }
2228 
2229 /**
2230  * regmap_noinc_write(): Write data from a register without incrementing the
2231  *			register number
2232  *
2233  * @map: Register map to write to
2234  * @reg: Register to write to
2235  * @val: Pointer to data buffer
2236  * @val_len: Length of output buffer in bytes.
2237  *
2238  * The regmap API usually assumes that bulk bus write operations will write a
2239  * range of registers. Some devices have certain registers for which a write
2240  * operation can write to an internal FIFO.
2241  *
2242  * The target register must be volatile but registers after it can be
2243  * completely unrelated cacheable registers.
2244  *
2245  * This will attempt multiple writes as required to write val_len bytes.
2246  *
2247  * A value of zero will be returned on success, a negative errno will be
2248  * returned in error cases.
2249  */
regmap_noinc_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2250 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2251 		      const void *val, size_t val_len)
2252 {
2253 	size_t write_len;
2254 	int ret;
2255 
2256 	if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2257 		return -EINVAL;
2258 	if (val_len % map->format.val_bytes)
2259 		return -EINVAL;
2260 	if (!IS_ALIGNED(reg, map->reg_stride))
2261 		return -EINVAL;
2262 	if (val_len == 0)
2263 		return -EINVAL;
2264 
2265 	map->lock(map->lock_arg);
2266 
2267 	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2268 		ret = -EINVAL;
2269 		goto out_unlock;
2270 	}
2271 
2272 	/*
2273 	 * Use the accelerated operation if we can. The val drops the const
2274 	 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2275 	 */
2276 	if (map->bus->reg_noinc_write) {
2277 		ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2278 		goto out_unlock;
2279 	}
2280 
2281 	while (val_len) {
2282 		if (map->max_raw_write && map->max_raw_write < val_len)
2283 			write_len = map->max_raw_write;
2284 		else
2285 			write_len = val_len;
2286 		ret = _regmap_raw_write(map, reg, val, write_len, true);
2287 		if (ret)
2288 			goto out_unlock;
2289 		val = ((u8 *)val) + write_len;
2290 		val_len -= write_len;
2291 	}
2292 
2293 out_unlock:
2294 	map->unlock(map->lock_arg);
2295 	return ret;
2296 }
2297 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2298 
2299 /**
2300  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2301  *                                   register field.
2302  *
2303  * @field: Register field to write to
2304  * @mask: Bitmask to change
2305  * @val: Value to be written
2306  * @change: Boolean indicating if a write was done
2307  * @async: Boolean indicating asynchronously
2308  * @force: Boolean indicating use force update
2309  *
2310  * Perform a read/modify/write cycle on the register field with change,
2311  * async, force option.
2312  *
2313  * A value of zero will be returned on success, a negative errno will
2314  * be returned in error cases.
2315  */
regmap_field_update_bits_base(struct regmap_field * field,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2316 int regmap_field_update_bits_base(struct regmap_field *field,
2317 				  unsigned int mask, unsigned int val,
2318 				  bool *change, bool async, bool force)
2319 {
2320 	mask = (mask << field->shift) & field->mask;
2321 
2322 	return regmap_update_bits_base(field->regmap, field->reg,
2323 				       mask, val << field->shift,
2324 				       change, async, force);
2325 }
2326 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2327 
2328 /**
2329  * regmap_field_test_bits() - Check if all specified bits are set in a
2330  *                            register field.
2331  *
2332  * @field: Register field to operate on
2333  * @bits: Bits to test
2334  *
2335  * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2336  * tested bits is not set and 1 if all tested bits are set.
2337  */
regmap_field_test_bits(struct regmap_field * field,unsigned int bits)2338 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2339 {
2340 	unsigned int val, ret;
2341 
2342 	ret = regmap_field_read(field, &val);
2343 	if (ret)
2344 		return ret;
2345 
2346 	return (val & bits) == bits;
2347 }
2348 EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2349 
2350 /**
2351  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2352  *                                    register field with port ID
2353  *
2354  * @field: Register field to write to
2355  * @id: port ID
2356  * @mask: Bitmask to change
2357  * @val: Value to be written
2358  * @change: Boolean indicating if a write was done
2359  * @async: Boolean indicating asynchronously
2360  * @force: Boolean indicating use force update
2361  *
2362  * A value of zero will be returned on success, a negative errno will
2363  * be returned in error cases.
2364  */
regmap_fields_update_bits_base(struct regmap_field * field,unsigned int id,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2365 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2366 				   unsigned int mask, unsigned int val,
2367 				   bool *change, bool async, bool force)
2368 {
2369 	if (id >= field->id_size)
2370 		return -EINVAL;
2371 
2372 	mask = (mask << field->shift) & field->mask;
2373 
2374 	return regmap_update_bits_base(field->regmap,
2375 				       field->reg + (field->id_offset * id),
2376 				       mask, val << field->shift,
2377 				       change, async, force);
2378 }
2379 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2380 
2381 /**
2382  * regmap_bulk_write() - Write multiple registers to the device
2383  *
2384  * @map: Register map to write to
2385  * @reg: First register to be write from
2386  * @val: Block of data to be written, in native register size for device
2387  * @val_count: Number of registers to write
2388  *
2389  * This function is intended to be used for writing a large block of
2390  * data to the device either in single transfer or multiple transfer.
2391  *
2392  * A value of zero will be returned on success, a negative errno will
2393  * be returned in error cases.
2394  */
regmap_bulk_write(struct regmap * map,unsigned int reg,const void * val,size_t val_count)2395 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2396 		     size_t val_count)
2397 {
2398 	int ret = 0, i;
2399 	size_t val_bytes = map->format.val_bytes;
2400 
2401 	if (!IS_ALIGNED(reg, map->reg_stride))
2402 		return -EINVAL;
2403 
2404 	/*
2405 	 * Some devices don't support bulk write, for them we have a series of
2406 	 * single write operations.
2407 	 */
2408 	if (!map->write || !map->format.parse_inplace) {
2409 		map->lock(map->lock_arg);
2410 		for (i = 0; i < val_count; i++) {
2411 			unsigned int ival;
2412 
2413 			switch (val_bytes) {
2414 			case 1:
2415 				ival = *(u8 *)(val + (i * val_bytes));
2416 				break;
2417 			case 2:
2418 				ival = *(u16 *)(val + (i * val_bytes));
2419 				break;
2420 			case 4:
2421 				ival = *(u32 *)(val + (i * val_bytes));
2422 				break;
2423 #ifdef CONFIG_64BIT
2424 			case 8:
2425 				ival = *(u64 *)(val + (i * val_bytes));
2426 				break;
2427 #endif
2428 			default:
2429 				ret = -EINVAL;
2430 				goto out;
2431 			}
2432 
2433 			ret = _regmap_write(map,
2434 					    reg + regmap_get_offset(map, i),
2435 					    ival);
2436 			if (ret != 0)
2437 				goto out;
2438 		}
2439 out:
2440 		map->unlock(map->lock_arg);
2441 	} else {
2442 		void *wval;
2443 
2444 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2445 		if (!wval)
2446 			return -ENOMEM;
2447 
2448 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2449 			map->format.parse_inplace(wval + i);
2450 
2451 		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2452 
2453 		kfree(wval);
2454 	}
2455 
2456 	if (!ret)
2457 		trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2458 
2459 	return ret;
2460 }
2461 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2462 
2463 /*
2464  * _regmap_raw_multi_reg_write()
2465  *
2466  * the (register,newvalue) pairs in regs have not been formatted, but
2467  * they are all in the same page and have been changed to being page
2468  * relative. The page register has been written if that was necessary.
2469  */
_regmap_raw_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2470 static int _regmap_raw_multi_reg_write(struct regmap *map,
2471 				       const struct reg_sequence *regs,
2472 				       size_t num_regs)
2473 {
2474 	int ret;
2475 	void *buf;
2476 	int i;
2477 	u8 *u8;
2478 	size_t val_bytes = map->format.val_bytes;
2479 	size_t reg_bytes = map->format.reg_bytes;
2480 	size_t pad_bytes = map->format.pad_bytes;
2481 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2482 	size_t len = pair_size * num_regs;
2483 
2484 	if (!len)
2485 		return -EINVAL;
2486 
2487 	buf = kzalloc(len, GFP_KERNEL);
2488 	if (!buf)
2489 		return -ENOMEM;
2490 
2491 	/* We have to linearise by hand. */
2492 
2493 	u8 = buf;
2494 
2495 	for (i = 0; i < num_regs; i++) {
2496 		unsigned int reg = regs[i].reg;
2497 		unsigned int val = regs[i].def;
2498 		trace_regmap_hw_write_start(map, reg, 1);
2499 		reg += map->reg_base;
2500 		reg >>= map->format.reg_downshift;
2501 		map->format.format_reg(u8, reg, map->reg_shift);
2502 		u8 += reg_bytes + pad_bytes;
2503 		map->format.format_val(u8, val, 0);
2504 		u8 += val_bytes;
2505 	}
2506 	u8 = buf;
2507 	*u8 |= map->write_flag_mask;
2508 
2509 	ret = map->write(map->bus_context, buf, len);
2510 
2511 	kfree(buf);
2512 
2513 	for (i = 0; i < num_regs; i++) {
2514 		int reg = regs[i].reg;
2515 		trace_regmap_hw_write_done(map, reg, 1);
2516 	}
2517 	return ret;
2518 }
2519 
_regmap_register_page(struct regmap * map,unsigned int reg,struct regmap_range_node * range)2520 static unsigned int _regmap_register_page(struct regmap *map,
2521 					  unsigned int reg,
2522 					  struct regmap_range_node *range)
2523 {
2524 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2525 
2526 	return win_page;
2527 }
2528 
_regmap_range_multi_paged_reg_write(struct regmap * map,struct reg_sequence * regs,size_t num_regs)2529 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2530 					       struct reg_sequence *regs,
2531 					       size_t num_regs)
2532 {
2533 	int ret;
2534 	int i, n;
2535 	struct reg_sequence *base;
2536 	unsigned int this_page = 0;
2537 	unsigned int page_change = 0;
2538 	/*
2539 	 * the set of registers are not neccessarily in order, but
2540 	 * since the order of write must be preserved this algorithm
2541 	 * chops the set each time the page changes. This also applies
2542 	 * if there is a delay required at any point in the sequence.
2543 	 */
2544 	base = regs;
2545 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2546 		unsigned int reg = regs[i].reg;
2547 		struct regmap_range_node *range;
2548 
2549 		range = _regmap_range_lookup(map, reg);
2550 		if (range) {
2551 			unsigned int win_page = _regmap_register_page(map, reg,
2552 								      range);
2553 
2554 			if (i == 0)
2555 				this_page = win_page;
2556 			if (win_page != this_page) {
2557 				this_page = win_page;
2558 				page_change = 1;
2559 			}
2560 		}
2561 
2562 		/* If we have both a page change and a delay make sure to
2563 		 * write the regs and apply the delay before we change the
2564 		 * page.
2565 		 */
2566 
2567 		if (page_change || regs[i].delay_us) {
2568 
2569 				/* For situations where the first write requires
2570 				 * a delay we need to make sure we don't call
2571 				 * raw_multi_reg_write with n=0
2572 				 * This can't occur with page breaks as we
2573 				 * never write on the first iteration
2574 				 */
2575 				if (regs[i].delay_us && i == 0)
2576 					n = 1;
2577 
2578 				ret = _regmap_raw_multi_reg_write(map, base, n);
2579 				if (ret != 0)
2580 					return ret;
2581 
2582 				if (regs[i].delay_us) {
2583 					if (map->can_sleep)
2584 						fsleep(regs[i].delay_us);
2585 					else
2586 						udelay(regs[i].delay_us);
2587 				}
2588 
2589 				base += n;
2590 				n = 0;
2591 
2592 				if (page_change) {
2593 					ret = _regmap_select_page(map,
2594 								  &base[n].reg,
2595 								  range, 1);
2596 					if (ret != 0)
2597 						return ret;
2598 
2599 					page_change = 0;
2600 				}
2601 
2602 		}
2603 
2604 	}
2605 	if (n > 0)
2606 		return _regmap_raw_multi_reg_write(map, base, n);
2607 	return 0;
2608 }
2609 
_regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2610 static int _regmap_multi_reg_write(struct regmap *map,
2611 				   const struct reg_sequence *regs,
2612 				   size_t num_regs)
2613 {
2614 	int i;
2615 	int ret;
2616 
2617 	if (!map->can_multi_write) {
2618 		for (i = 0; i < num_regs; i++) {
2619 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2620 			if (ret != 0)
2621 				return ret;
2622 
2623 			if (regs[i].delay_us) {
2624 				if (map->can_sleep)
2625 					fsleep(regs[i].delay_us);
2626 				else
2627 					udelay(regs[i].delay_us);
2628 			}
2629 		}
2630 		return 0;
2631 	}
2632 
2633 	if (!map->format.parse_inplace)
2634 		return -EINVAL;
2635 
2636 	if (map->writeable_reg)
2637 		for (i = 0; i < num_regs; i++) {
2638 			int reg = regs[i].reg;
2639 			if (!map->writeable_reg(map->dev, reg))
2640 				return -EINVAL;
2641 			if (!IS_ALIGNED(reg, map->reg_stride))
2642 				return -EINVAL;
2643 		}
2644 
2645 	if (!map->cache_bypass) {
2646 		for (i = 0; i < num_regs; i++) {
2647 			unsigned int val = regs[i].def;
2648 			unsigned int reg = regs[i].reg;
2649 			ret = regcache_write(map, reg, val);
2650 			if (ret) {
2651 				dev_err(map->dev,
2652 				"Error in caching of register: %x ret: %d\n",
2653 								reg, ret);
2654 				return ret;
2655 			}
2656 		}
2657 		if (map->cache_only) {
2658 			map->cache_dirty = true;
2659 			return 0;
2660 		}
2661 	}
2662 
2663 	WARN_ON(!map->bus);
2664 
2665 	for (i = 0; i < num_regs; i++) {
2666 		unsigned int reg = regs[i].reg;
2667 		struct regmap_range_node *range;
2668 
2669 		/* Coalesce all the writes between a page break or a delay
2670 		 * in a sequence
2671 		 */
2672 		range = _regmap_range_lookup(map, reg);
2673 		if (range || regs[i].delay_us) {
2674 			size_t len = sizeof(struct reg_sequence)*num_regs;
2675 			struct reg_sequence *base = kmemdup(regs, len,
2676 							   GFP_KERNEL);
2677 			if (!base)
2678 				return -ENOMEM;
2679 			ret = _regmap_range_multi_paged_reg_write(map, base,
2680 								  num_regs);
2681 			kfree(base);
2682 
2683 			return ret;
2684 		}
2685 	}
2686 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2687 }
2688 
2689 /**
2690  * regmap_multi_reg_write() - Write multiple registers to the device
2691  *
2692  * @map: Register map to write to
2693  * @regs: Array of structures containing register,value to be written
2694  * @num_regs: Number of registers to write
2695  *
2696  * Write multiple registers to the device where the set of register, value
2697  * pairs are supplied in any order, possibly not all in a single range.
2698  *
2699  * The 'normal' block write mode will send ultimately send data on the
2700  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2701  * addressed. However, this alternative block multi write mode will send
2702  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2703  * must of course support the mode.
2704  *
2705  * A value of zero will be returned on success, a negative errno will be
2706  * returned in error cases.
2707  */
regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,int num_regs)2708 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2709 			   int num_regs)
2710 {
2711 	int ret;
2712 
2713 	map->lock(map->lock_arg);
2714 
2715 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2716 
2717 	map->unlock(map->lock_arg);
2718 
2719 	return ret;
2720 }
2721 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2722 
2723 /**
2724  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2725  *                                     device but not the cache
2726  *
2727  * @map: Register map to write to
2728  * @regs: Array of structures containing register,value to be written
2729  * @num_regs: Number of registers to write
2730  *
2731  * Write multiple registers to the device but not the cache where the set
2732  * of register are supplied in any order.
2733  *
2734  * This function is intended to be used for writing a large block of data
2735  * atomically to the device in single transfer for those I2C client devices
2736  * that implement this alternative block write mode.
2737  *
2738  * A value of zero will be returned on success, a negative errno will
2739  * be returned in error cases.
2740  */
regmap_multi_reg_write_bypassed(struct regmap * map,const struct reg_sequence * regs,int num_regs)2741 int regmap_multi_reg_write_bypassed(struct regmap *map,
2742 				    const struct reg_sequence *regs,
2743 				    int num_regs)
2744 {
2745 	int ret;
2746 	bool bypass;
2747 
2748 	map->lock(map->lock_arg);
2749 
2750 	bypass = map->cache_bypass;
2751 	map->cache_bypass = true;
2752 
2753 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2754 
2755 	map->cache_bypass = bypass;
2756 
2757 	map->unlock(map->lock_arg);
2758 
2759 	return ret;
2760 }
2761 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2762 
2763 /**
2764  * regmap_raw_write_async() - Write raw values to one or more registers
2765  *                            asynchronously
2766  *
2767  * @map: Register map to write to
2768  * @reg: Initial register to write to
2769  * @val: Block of data to be written, laid out for direct transmission to the
2770  *       device.  Must be valid until regmap_async_complete() is called.
2771  * @val_len: Length of data pointed to by val.
2772  *
2773  * This function is intended to be used for things like firmware
2774  * download where a large block of data needs to be transferred to the
2775  * device.  No formatting will be done on the data provided.
2776  *
2777  * If supported by the underlying bus the write will be scheduled
2778  * asynchronously, helping maximise I/O speed on higher speed buses
2779  * like SPI.  regmap_async_complete() can be called to ensure that all
2780  * asynchrnous writes have been completed.
2781  *
2782  * A value of zero will be returned on success, a negative errno will
2783  * be returned in error cases.
2784  */
regmap_raw_write_async(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2785 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2786 			   const void *val, size_t val_len)
2787 {
2788 	int ret;
2789 
2790 	if (val_len % map->format.val_bytes)
2791 		return -EINVAL;
2792 	if (!IS_ALIGNED(reg, map->reg_stride))
2793 		return -EINVAL;
2794 
2795 	map->lock(map->lock_arg);
2796 
2797 	map->async = true;
2798 
2799 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2800 
2801 	map->async = false;
2802 
2803 	map->unlock(map->lock_arg);
2804 
2805 	return ret;
2806 }
2807 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2808 
_regmap_raw_read(struct regmap * map,unsigned int reg,void * val,unsigned int val_len,bool noinc)2809 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2810 			    unsigned int val_len, bool noinc)
2811 {
2812 	struct regmap_range_node *range;
2813 	int ret;
2814 
2815 	if (!map->read)
2816 		return -EINVAL;
2817 
2818 	range = _regmap_range_lookup(map, reg);
2819 	if (range) {
2820 		ret = _regmap_select_page(map, &reg, range,
2821 					  noinc ? 1 : val_len / map->format.val_bytes);
2822 		if (ret != 0)
2823 			return ret;
2824 	}
2825 
2826 	reg += map->reg_base;
2827 	reg >>= map->format.reg_downshift;
2828 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2829 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2830 				      map->read_flag_mask);
2831 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2832 
2833 	ret = map->read(map->bus_context, map->work_buf,
2834 			map->format.reg_bytes + map->format.pad_bytes,
2835 			val, val_len);
2836 
2837 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2838 
2839 	return ret;
2840 }
2841 
_regmap_bus_reg_read(void * context,unsigned int reg,unsigned int * val)2842 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2843 				unsigned int *val)
2844 {
2845 	struct regmap *map = context;
2846 
2847 	reg += map->reg_base;
2848 	reg >>= map->format.reg_downshift;
2849 	return map->bus->reg_read(map->bus_context, reg, val);
2850 }
2851 
_regmap_bus_read(void * context,unsigned int reg,unsigned int * val)2852 static int _regmap_bus_read(void *context, unsigned int reg,
2853 			    unsigned int *val)
2854 {
2855 	int ret;
2856 	struct regmap *map = context;
2857 	void *work_val = map->work_buf + map->format.reg_bytes +
2858 		map->format.pad_bytes;
2859 
2860 	if (!map->format.parse_val)
2861 		return -EINVAL;
2862 
2863 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2864 	if (ret == 0)
2865 		*val = map->format.parse_val(work_val);
2866 
2867 	return ret;
2868 }
2869 
_regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2870 static int _regmap_read(struct regmap *map, unsigned int reg,
2871 			unsigned int *val)
2872 {
2873 	int ret;
2874 	void *context = _regmap_map_get_context(map);
2875 
2876 	if (!map->cache_bypass) {
2877 		ret = regcache_read(map, reg, val);
2878 		if (ret == 0)
2879 			return 0;
2880 	}
2881 
2882 	if (map->cache_only)
2883 		return -EBUSY;
2884 
2885 	if (!regmap_readable(map, reg))
2886 		return -EIO;
2887 
2888 	ret = map->reg_read(context, reg, val);
2889 	if (ret == 0) {
2890 		if (regmap_should_log(map))
2891 			dev_info(map->dev, "%x => %x\n", reg, *val);
2892 
2893 		trace_regmap_reg_read(map, reg, *val);
2894 
2895 		if (!map->cache_bypass)
2896 			regcache_write(map, reg, *val);
2897 	}
2898 
2899 	return ret;
2900 }
2901 
2902 /**
2903  * regmap_read() - Read a value from a single register
2904  *
2905  * @map: Register map to read from
2906  * @reg: Register to be read from
2907  * @val: Pointer to store read value
2908  *
2909  * A value of zero will be returned on success, a negative errno will
2910  * be returned in error cases.
2911  */
regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2912 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2913 {
2914 	int ret;
2915 
2916 	if (!IS_ALIGNED(reg, map->reg_stride))
2917 		return -EINVAL;
2918 
2919 	map->lock(map->lock_arg);
2920 
2921 	ret = _regmap_read(map, reg, val);
2922 
2923 	map->unlock(map->lock_arg);
2924 
2925 	return ret;
2926 }
2927 EXPORT_SYMBOL_GPL(regmap_read);
2928 
2929 /**
2930  * regmap_raw_read() - Read raw data from the device
2931  *
2932  * @map: Register map to read from
2933  * @reg: First register to be read from
2934  * @val: Pointer to store read value
2935  * @val_len: Size of data to read
2936  *
2937  * A value of zero will be returned on success, a negative errno will
2938  * be returned in error cases.
2939  */
regmap_raw_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2940 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2941 		    size_t val_len)
2942 {
2943 	size_t val_bytes = map->format.val_bytes;
2944 	size_t val_count = val_len / val_bytes;
2945 	unsigned int v;
2946 	int ret, i;
2947 
2948 	if (val_len % map->format.val_bytes)
2949 		return -EINVAL;
2950 	if (!IS_ALIGNED(reg, map->reg_stride))
2951 		return -EINVAL;
2952 	if (val_count == 0)
2953 		return -EINVAL;
2954 
2955 	map->lock(map->lock_arg);
2956 
2957 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2958 	    map->cache_type == REGCACHE_NONE) {
2959 		size_t chunk_count, chunk_bytes;
2960 		size_t chunk_regs = val_count;
2961 
2962 		if (!map->read) {
2963 			ret = -ENOTSUPP;
2964 			goto out;
2965 		}
2966 
2967 		if (map->use_single_read)
2968 			chunk_regs = 1;
2969 		else if (map->max_raw_read && val_len > map->max_raw_read)
2970 			chunk_regs = map->max_raw_read / val_bytes;
2971 
2972 		chunk_count = val_count / chunk_regs;
2973 		chunk_bytes = chunk_regs * val_bytes;
2974 
2975 		/* Read bytes that fit into whole chunks */
2976 		for (i = 0; i < chunk_count; i++) {
2977 			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2978 			if (ret != 0)
2979 				goto out;
2980 
2981 			reg += regmap_get_offset(map, chunk_regs);
2982 			val += chunk_bytes;
2983 			val_len -= chunk_bytes;
2984 		}
2985 
2986 		/* Read remaining bytes */
2987 		if (val_len) {
2988 			ret = _regmap_raw_read(map, reg, val, val_len, false);
2989 			if (ret != 0)
2990 				goto out;
2991 		}
2992 	} else {
2993 		/* Otherwise go word by word for the cache; should be low
2994 		 * cost as we expect to hit the cache.
2995 		 */
2996 		for (i = 0; i < val_count; i++) {
2997 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2998 					   &v);
2999 			if (ret != 0)
3000 				goto out;
3001 
3002 			map->format.format_val(val + (i * val_bytes), v, 0);
3003 		}
3004 	}
3005 
3006  out:
3007 	map->unlock(map->lock_arg);
3008 
3009 	return ret;
3010 }
3011 EXPORT_SYMBOL_GPL(regmap_raw_read);
3012 
3013 /**
3014  * regmap_noinc_read(): Read data from a register without incrementing the
3015  *			register number
3016  *
3017  * @map: Register map to read from
3018  * @reg: Register to read from
3019  * @val: Pointer to data buffer
3020  * @val_len: Length of output buffer in bytes.
3021  *
3022  * The regmap API usually assumes that bulk read operations will read a
3023  * range of registers. Some devices have certain registers for which a read
3024  * operation read will read from an internal FIFO.
3025  *
3026  * The target register must be volatile but registers after it can be
3027  * completely unrelated cacheable registers.
3028  *
3029  * This will attempt multiple reads as required to read val_len bytes.
3030  *
3031  * A value of zero will be returned on success, a negative errno will be
3032  * returned in error cases.
3033  */
regmap_noinc_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)3034 int regmap_noinc_read(struct regmap *map, unsigned int reg,
3035 		      void *val, size_t val_len)
3036 {
3037 	size_t read_len;
3038 	int ret;
3039 
3040 	if (!map->read)
3041 		return -ENOTSUPP;
3042 
3043 	if (val_len % map->format.val_bytes)
3044 		return -EINVAL;
3045 	if (!IS_ALIGNED(reg, map->reg_stride))
3046 		return -EINVAL;
3047 	if (val_len == 0)
3048 		return -EINVAL;
3049 
3050 	map->lock(map->lock_arg);
3051 
3052 	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3053 		ret = -EINVAL;
3054 		goto out_unlock;
3055 	}
3056 
3057 	/* Use the accelerated operation if we can */
3058 	if (map->bus->reg_noinc_read) {
3059 		/*
3060 		 * We have not defined the FIFO semantics for cache, as the
3061 		 * cache is just one value deep. Should we return the last
3062 		 * written value? Just avoid this by always reading the FIFO
3063 		 * even when using cache. Cache only will not work.
3064 		 */
3065 		if (map->cache_only) {
3066 			ret = -EBUSY;
3067 			goto out_unlock;
3068 		}
3069 		ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3070 		goto out_unlock;
3071 	}
3072 
3073 	while (val_len) {
3074 		if (map->max_raw_read && map->max_raw_read < val_len)
3075 			read_len = map->max_raw_read;
3076 		else
3077 			read_len = val_len;
3078 		ret = _regmap_raw_read(map, reg, val, read_len, true);
3079 		if (ret)
3080 			goto out_unlock;
3081 		val = ((u8 *)val) + read_len;
3082 		val_len -= read_len;
3083 	}
3084 
3085 out_unlock:
3086 	map->unlock(map->lock_arg);
3087 	return ret;
3088 }
3089 EXPORT_SYMBOL_GPL(regmap_noinc_read);
3090 
3091 /**
3092  * regmap_field_read(): Read a value to a single register field
3093  *
3094  * @field: Register field to read from
3095  * @val: Pointer to store read value
3096  *
3097  * A value of zero will be returned on success, a negative errno will
3098  * be returned in error cases.
3099  */
regmap_field_read(struct regmap_field * field,unsigned int * val)3100 int regmap_field_read(struct regmap_field *field, unsigned int *val)
3101 {
3102 	int ret;
3103 	unsigned int reg_val;
3104 	ret = regmap_read(field->regmap, field->reg, &reg_val);
3105 	if (ret != 0)
3106 		return ret;
3107 
3108 	reg_val &= field->mask;
3109 	reg_val >>= field->shift;
3110 	*val = reg_val;
3111 
3112 	return ret;
3113 }
3114 EXPORT_SYMBOL_GPL(regmap_field_read);
3115 
3116 /**
3117  * regmap_fields_read() - Read a value to a single register field with port ID
3118  *
3119  * @field: Register field to read from
3120  * @id: port ID
3121  * @val: Pointer to store read value
3122  *
3123  * A value of zero will be returned on success, a negative errno will
3124  * be returned in error cases.
3125  */
regmap_fields_read(struct regmap_field * field,unsigned int id,unsigned int * val)3126 int regmap_fields_read(struct regmap_field *field, unsigned int id,
3127 		       unsigned int *val)
3128 {
3129 	int ret;
3130 	unsigned int reg_val;
3131 
3132 	if (id >= field->id_size)
3133 		return -EINVAL;
3134 
3135 	ret = regmap_read(field->regmap,
3136 			  field->reg + (field->id_offset * id),
3137 			  &reg_val);
3138 	if (ret != 0)
3139 		return ret;
3140 
3141 	reg_val &= field->mask;
3142 	reg_val >>= field->shift;
3143 	*val = reg_val;
3144 
3145 	return ret;
3146 }
3147 EXPORT_SYMBOL_GPL(regmap_fields_read);
3148 
3149 /**
3150  * regmap_bulk_read() - Read multiple registers from the device
3151  *
3152  * @map: Register map to read from
3153  * @reg: First register to be read from
3154  * @val: Pointer to store read value, in native register size for device
3155  * @val_count: Number of registers to read
3156  *
3157  * A value of zero will be returned on success, a negative errno will
3158  * be returned in error cases.
3159  */
regmap_bulk_read(struct regmap * map,unsigned int reg,void * val,size_t val_count)3160 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3161 		     size_t val_count)
3162 {
3163 	int ret, i;
3164 	size_t val_bytes = map->format.val_bytes;
3165 	bool vol = regmap_volatile_range(map, reg, val_count);
3166 
3167 	if (!IS_ALIGNED(reg, map->reg_stride))
3168 		return -EINVAL;
3169 	if (val_count == 0)
3170 		return -EINVAL;
3171 
3172 	if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3173 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3174 		if (ret != 0)
3175 			return ret;
3176 
3177 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3178 			map->format.parse_inplace(val + i);
3179 	} else {
3180 #ifdef CONFIG_64BIT
3181 		u64 *u64 = val;
3182 #endif
3183 		u32 *u32 = val;
3184 		u16 *u16 = val;
3185 		u8 *u8 = val;
3186 
3187 		map->lock(map->lock_arg);
3188 
3189 		for (i = 0; i < val_count; i++) {
3190 			unsigned int ival;
3191 
3192 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3193 					   &ival);
3194 			if (ret != 0)
3195 				goto out;
3196 
3197 			switch (map->format.val_bytes) {
3198 #ifdef CONFIG_64BIT
3199 			case 8:
3200 				u64[i] = ival;
3201 				break;
3202 #endif
3203 			case 4:
3204 				u32[i] = ival;
3205 				break;
3206 			case 2:
3207 				u16[i] = ival;
3208 				break;
3209 			case 1:
3210 				u8[i] = ival;
3211 				break;
3212 			default:
3213 				ret = -EINVAL;
3214 				goto out;
3215 			}
3216 		}
3217 
3218 out:
3219 		map->unlock(map->lock_arg);
3220 	}
3221 
3222 	if (!ret)
3223 		trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3224 
3225 	return ret;
3226 }
3227 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3228 
_regmap_update_bits(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool force_write)3229 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3230 			       unsigned int mask, unsigned int val,
3231 			       bool *change, bool force_write)
3232 {
3233 	int ret;
3234 	unsigned int tmp, orig;
3235 
3236 	if (change)
3237 		*change = false;
3238 
3239 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3240 		reg += map->reg_base;
3241 		reg >>= map->format.reg_downshift;
3242 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3243 		if (ret == 0 && change)
3244 			*change = true;
3245 	} else {
3246 		ret = _regmap_read(map, reg, &orig);
3247 		if (ret != 0)
3248 			return ret;
3249 
3250 		tmp = orig & ~mask;
3251 		tmp |= val & mask;
3252 
3253 		if (force_write || (tmp != orig)) {
3254 			ret = _regmap_write(map, reg, tmp);
3255 			if (ret == 0 && change)
3256 				*change = true;
3257 		}
3258 	}
3259 
3260 	return ret;
3261 }
3262 
3263 /**
3264  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3265  *
3266  * @map: Register map to update
3267  * @reg: Register to update
3268  * @mask: Bitmask to change
3269  * @val: New value for bitmask
3270  * @change: Boolean indicating if a write was done
3271  * @async: Boolean indicating asynchronously
3272  * @force: Boolean indicating use force update
3273  *
3274  * Perform a read/modify/write cycle on a register map with change, async, force
3275  * options.
3276  *
3277  * If async is true:
3278  *
3279  * With most buses the read must be done synchronously so this is most useful
3280  * for devices with a cache which do not need to interact with the hardware to
3281  * determine the current register value.
3282  *
3283  * Returns zero for success, a negative number on error.
3284  */
regmap_update_bits_base(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool async,bool force)3285 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3286 			    unsigned int mask, unsigned int val,
3287 			    bool *change, bool async, bool force)
3288 {
3289 	int ret;
3290 
3291 	map->lock(map->lock_arg);
3292 
3293 	map->async = async;
3294 
3295 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3296 
3297 	map->async = false;
3298 
3299 	map->unlock(map->lock_arg);
3300 
3301 	return ret;
3302 }
3303 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3304 
3305 /**
3306  * regmap_test_bits() - Check if all specified bits are set in a register.
3307  *
3308  * @map: Register map to operate on
3309  * @reg: Register to read from
3310  * @bits: Bits to test
3311  *
3312  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3313  * bits are set and a negative error number if the underlying regmap_read()
3314  * fails.
3315  */
regmap_test_bits(struct regmap * map,unsigned int reg,unsigned int bits)3316 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3317 {
3318 	unsigned int val, ret;
3319 
3320 	ret = regmap_read(map, reg, &val);
3321 	if (ret)
3322 		return ret;
3323 
3324 	return (val & bits) == bits;
3325 }
3326 EXPORT_SYMBOL_GPL(regmap_test_bits);
3327 
regmap_async_complete_cb(struct regmap_async * async,int ret)3328 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3329 {
3330 	struct regmap *map = async->map;
3331 	bool wake;
3332 
3333 	trace_regmap_async_io_complete(map);
3334 
3335 	spin_lock(&map->async_lock);
3336 	list_move(&async->list, &map->async_free);
3337 	wake = list_empty(&map->async_list);
3338 
3339 	if (ret != 0)
3340 		map->async_ret = ret;
3341 
3342 	spin_unlock(&map->async_lock);
3343 
3344 	if (wake)
3345 		wake_up(&map->async_waitq);
3346 }
3347 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3348 
regmap_async_is_done(struct regmap * map)3349 static int regmap_async_is_done(struct regmap *map)
3350 {
3351 	unsigned long flags;
3352 	int ret;
3353 
3354 	spin_lock_irqsave(&map->async_lock, flags);
3355 	ret = list_empty(&map->async_list);
3356 	spin_unlock_irqrestore(&map->async_lock, flags);
3357 
3358 	return ret;
3359 }
3360 
3361 /**
3362  * regmap_async_complete - Ensure all asynchronous I/O has completed.
3363  *
3364  * @map: Map to operate on.
3365  *
3366  * Blocks until any pending asynchronous I/O has completed.  Returns
3367  * an error code for any failed I/O operations.
3368  */
regmap_async_complete(struct regmap * map)3369 int regmap_async_complete(struct regmap *map)
3370 {
3371 	unsigned long flags;
3372 	int ret;
3373 
3374 	/* Nothing to do with no async support */
3375 	if (!map->bus || !map->bus->async_write)
3376 		return 0;
3377 
3378 	trace_regmap_async_complete_start(map);
3379 
3380 	wait_event(map->async_waitq, regmap_async_is_done(map));
3381 
3382 	spin_lock_irqsave(&map->async_lock, flags);
3383 	ret = map->async_ret;
3384 	map->async_ret = 0;
3385 	spin_unlock_irqrestore(&map->async_lock, flags);
3386 
3387 	trace_regmap_async_complete_done(map);
3388 
3389 	return ret;
3390 }
3391 EXPORT_SYMBOL_GPL(regmap_async_complete);
3392 
3393 /**
3394  * regmap_register_patch - Register and apply register updates to be applied
3395  *                         on device initialistion
3396  *
3397  * @map: Register map to apply updates to.
3398  * @regs: Values to update.
3399  * @num_regs: Number of entries in regs.
3400  *
3401  * Register a set of register updates to be applied to the device
3402  * whenever the device registers are synchronised with the cache and
3403  * apply them immediately.  Typically this is used to apply
3404  * corrections to be applied to the device defaults on startup, such
3405  * as the updates some vendors provide to undocumented registers.
3406  *
3407  * The caller must ensure that this function cannot be called
3408  * concurrently with either itself or regcache_sync().
3409  */
regmap_register_patch(struct regmap * map,const struct reg_sequence * regs,int num_regs)3410 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3411 			  int num_regs)
3412 {
3413 	struct reg_sequence *p;
3414 	int ret;
3415 	bool bypass;
3416 
3417 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3418 	    num_regs))
3419 		return 0;
3420 
3421 	p = krealloc(map->patch,
3422 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3423 		     GFP_KERNEL);
3424 	if (p) {
3425 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3426 		map->patch = p;
3427 		map->patch_regs += num_regs;
3428 	} else {
3429 		return -ENOMEM;
3430 	}
3431 
3432 	map->lock(map->lock_arg);
3433 
3434 	bypass = map->cache_bypass;
3435 
3436 	map->cache_bypass = true;
3437 	map->async = true;
3438 
3439 	ret = _regmap_multi_reg_write(map, regs, num_regs);
3440 
3441 	map->async = false;
3442 	map->cache_bypass = bypass;
3443 
3444 	map->unlock(map->lock_arg);
3445 
3446 	regmap_async_complete(map);
3447 
3448 	return ret;
3449 }
3450 EXPORT_SYMBOL_GPL(regmap_register_patch);
3451 
3452 /**
3453  * regmap_get_val_bytes() - Report the size of a register value
3454  *
3455  * @map: Register map to operate on.
3456  *
3457  * Report the size of a register value, mainly intended to for use by
3458  * generic infrastructure built on top of regmap.
3459  */
regmap_get_val_bytes(struct regmap * map)3460 int regmap_get_val_bytes(struct regmap *map)
3461 {
3462 	if (map->format.format_write)
3463 		return -EINVAL;
3464 
3465 	return map->format.val_bytes;
3466 }
3467 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3468 
3469 /**
3470  * regmap_get_max_register() - Report the max register value
3471  *
3472  * @map: Register map to operate on.
3473  *
3474  * Report the max register value, mainly intended to for use by
3475  * generic infrastructure built on top of regmap.
3476  */
regmap_get_max_register(struct regmap * map)3477 int regmap_get_max_register(struct regmap *map)
3478 {
3479 	return map->max_register ? map->max_register : -EINVAL;
3480 }
3481 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3482 
3483 /**
3484  * regmap_get_reg_stride() - Report the register address stride
3485  *
3486  * @map: Register map to operate on.
3487  *
3488  * Report the register address stride, mainly intended to for use by
3489  * generic infrastructure built on top of regmap.
3490  */
regmap_get_reg_stride(struct regmap * map)3491 int regmap_get_reg_stride(struct regmap *map)
3492 {
3493 	return map->reg_stride;
3494 }
3495 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3496 
regmap_parse_val(struct regmap * map,const void * buf,unsigned int * val)3497 int regmap_parse_val(struct regmap *map, const void *buf,
3498 			unsigned int *val)
3499 {
3500 	if (!map->format.parse_val)
3501 		return -EINVAL;
3502 
3503 	*val = map->format.parse_val(buf);
3504 
3505 	return 0;
3506 }
3507 EXPORT_SYMBOL_GPL(regmap_parse_val);
3508 
regmap_initcall(void)3509 static int __init regmap_initcall(void)
3510 {
3511 	regmap_debugfs_initcall();
3512 
3513 	return 0;
3514 }
3515 postcore_initcall(regmap_initcall);
3516