• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32 
33 #include "dummy.h"
34 #include "internal.h"
35 
36 static DEFINE_WW_CLASS(regulator_ww_class);
37 static DEFINE_MUTEX(regulator_nesting_mutex);
38 static DEFINE_MUTEX(regulator_list_mutex);
39 static LIST_HEAD(regulator_map_list);
40 static LIST_HEAD(regulator_ena_gpio_list);
41 static LIST_HEAD(regulator_supply_alias_list);
42 static LIST_HEAD(regulator_coupler_list);
43 static bool has_full_constraints;
44 
45 static struct dentry *debugfs_root;
46 
47 /*
48  * struct regulator_map
49  *
50  * Used to provide symbolic supply names to devices.
51  */
52 struct regulator_map {
53 	struct list_head list;
54 	const char *dev_name;   /* The dev_name() for the consumer */
55 	const char *supply;
56 	struct regulator_dev *regulator;
57 };
58 
59 /*
60  * struct regulator_enable_gpio
61  *
62  * Management for shared enable GPIO pin
63  */
64 struct regulator_enable_gpio {
65 	struct list_head list;
66 	struct gpio_desc *gpiod;
67 	u32 enable_count;	/* a number of enabled shared GPIO */
68 	u32 request_count;	/* a number of requested shared GPIO */
69 };
70 
71 /*
72  * struct regulator_supply_alias
73  *
74  * Used to map lookups for a supply onto an alternative device.
75  */
76 struct regulator_supply_alias {
77 	struct list_head list;
78 	struct device *src_dev;
79 	const char *src_supply;
80 	struct device *alias_dev;
81 	const char *alias_supply;
82 };
83 
84 static int _regulator_is_enabled(struct regulator_dev *rdev);
85 static int _regulator_disable(struct regulator *regulator);
86 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
87 static int _regulator_get_current_limit(struct regulator_dev *rdev);
88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89 static int _notifier_call_chain(struct regulator_dev *rdev,
90 				  unsigned long event, void *data);
91 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92 				     int min_uV, int max_uV);
93 static int regulator_balance_voltage(struct regulator_dev *rdev,
94 				     suspend_state_t state);
95 static struct regulator *create_regulator(struct regulator_dev *rdev,
96 					  struct device *dev,
97 					  const char *supply_name);
98 static void destroy_regulator(struct regulator *regulator);
99 static void _regulator_put(struct regulator *regulator);
100 
rdev_get_name(struct regulator_dev * rdev)101 const char *rdev_get_name(struct regulator_dev *rdev)
102 {
103 	if (rdev->constraints && rdev->constraints->name)
104 		return rdev->constraints->name;
105 	else if (rdev->desc->name)
106 		return rdev->desc->name;
107 	else
108 		return "";
109 }
110 EXPORT_SYMBOL_GPL(rdev_get_name);
111 
have_full_constraints(void)112 static bool have_full_constraints(void)
113 {
114 	return has_full_constraints || of_have_populated_dt();
115 }
116 
regulator_ops_is_valid(struct regulator_dev * rdev,int ops)117 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
118 {
119 	if (!rdev->constraints) {
120 		rdev_err(rdev, "no constraints\n");
121 		return false;
122 	}
123 
124 	if (rdev->constraints->valid_ops_mask & ops)
125 		return true;
126 
127 	return false;
128 }
129 
130 /**
131  * regulator_lock_nested - lock a single regulator
132  * @rdev:		regulator source
133  * @ww_ctx:		w/w mutex acquire context
134  *
135  * This function can be called many times by one task on
136  * a single regulator and its mutex will be locked only
137  * once. If a task, which is calling this function is other
138  * than the one, which initially locked the mutex, it will
139  * wait on mutex.
140  */
regulator_lock_nested(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)141 static inline int regulator_lock_nested(struct regulator_dev *rdev,
142 					struct ww_acquire_ctx *ww_ctx)
143 {
144 	bool lock = false;
145 	int ret = 0;
146 
147 	mutex_lock(&regulator_nesting_mutex);
148 
149 	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
150 		if (rdev->mutex_owner == current)
151 			rdev->ref_cnt++;
152 		else
153 			lock = true;
154 
155 		if (lock) {
156 			mutex_unlock(&regulator_nesting_mutex);
157 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
158 			mutex_lock(&regulator_nesting_mutex);
159 		}
160 	} else {
161 		lock = true;
162 	}
163 
164 	if (lock && ret != -EDEADLK) {
165 		rdev->ref_cnt++;
166 		rdev->mutex_owner = current;
167 	}
168 
169 	mutex_unlock(&regulator_nesting_mutex);
170 
171 	return ret;
172 }
173 
174 /**
175  * regulator_lock - lock a single regulator
176  * @rdev:		regulator source
177  *
178  * This function can be called many times by one task on
179  * a single regulator and its mutex will be locked only
180  * once. If a task, which is calling this function is other
181  * than the one, which initially locked the mutex, it will
182  * wait on mutex.
183  */
regulator_lock(struct regulator_dev * rdev)184 static void regulator_lock(struct regulator_dev *rdev)
185 {
186 	regulator_lock_nested(rdev, NULL);
187 }
188 
189 /**
190  * regulator_unlock - unlock a single regulator
191  * @rdev:		regulator_source
192  *
193  * This function unlocks the mutex when the
194  * reference counter reaches 0.
195  */
regulator_unlock(struct regulator_dev * rdev)196 static void regulator_unlock(struct regulator_dev *rdev)
197 {
198 	mutex_lock(&regulator_nesting_mutex);
199 
200 	if (--rdev->ref_cnt == 0) {
201 		rdev->mutex_owner = NULL;
202 		ww_mutex_unlock(&rdev->mutex);
203 	}
204 
205 	WARN_ON_ONCE(rdev->ref_cnt < 0);
206 
207 	mutex_unlock(&regulator_nesting_mutex);
208 }
209 
210 /**
211  * regulator_lock_two - lock two regulators
212  * @rdev1:		first regulator
213  * @rdev2:		second regulator
214  * @ww_ctx:		w/w mutex acquire context
215  *
216  * Locks both rdevs using the regulator_ww_class.
217  */
regulator_lock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)218 static void regulator_lock_two(struct regulator_dev *rdev1,
219 			       struct regulator_dev *rdev2,
220 			       struct ww_acquire_ctx *ww_ctx)
221 {
222 	struct regulator_dev *tmp;
223 	int ret;
224 
225 	ww_acquire_init(ww_ctx, &regulator_ww_class);
226 
227 	/* Try to just grab both of them */
228 	ret = regulator_lock_nested(rdev1, ww_ctx);
229 	WARN_ON(ret);
230 	ret = regulator_lock_nested(rdev2, ww_ctx);
231 	if (ret != -EDEADLOCK) {
232 		WARN_ON(ret);
233 		goto exit;
234 	}
235 
236 	while (true) {
237 		/*
238 		 * Start of loop: rdev1 was locked and rdev2 was contended.
239 		 * Need to unlock rdev1, slowly lock rdev2, then try rdev1
240 		 * again.
241 		 */
242 		regulator_unlock(rdev1);
243 
244 		ww_mutex_lock_slow(&rdev2->mutex, ww_ctx);
245 		rdev2->ref_cnt++;
246 		rdev2->mutex_owner = current;
247 		ret = regulator_lock_nested(rdev1, ww_ctx);
248 
249 		if (ret == -EDEADLOCK) {
250 			/* More contention; swap which needs to be slow */
251 			tmp = rdev1;
252 			rdev1 = rdev2;
253 			rdev2 = tmp;
254 		} else {
255 			WARN_ON(ret);
256 			break;
257 		}
258 	}
259 
260 exit:
261 	ww_acquire_done(ww_ctx);
262 }
263 
264 /**
265  * regulator_unlock_two - unlock two regulators
266  * @rdev1:		first regulator
267  * @rdev2:		second regulator
268  * @ww_ctx:		w/w mutex acquire context
269  *
270  * The inverse of regulator_lock_two().
271  */
272 
regulator_unlock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)273 static void regulator_unlock_two(struct regulator_dev *rdev1,
274 				 struct regulator_dev *rdev2,
275 				 struct ww_acquire_ctx *ww_ctx)
276 {
277 	regulator_unlock(rdev2);
278 	regulator_unlock(rdev1);
279 	ww_acquire_fini(ww_ctx);
280 }
281 
regulator_supply_is_couple(struct regulator_dev * rdev)282 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
283 {
284 	struct regulator_dev *c_rdev;
285 	int i;
286 
287 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
288 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
289 
290 		if (rdev->supply->rdev == c_rdev)
291 			return true;
292 	}
293 
294 	return false;
295 }
296 
regulator_unlock_recursive(struct regulator_dev * rdev,unsigned int n_coupled)297 static void regulator_unlock_recursive(struct regulator_dev *rdev,
298 				       unsigned int n_coupled)
299 {
300 	struct regulator_dev *c_rdev, *supply_rdev;
301 	int i, supply_n_coupled;
302 
303 	for (i = n_coupled; i > 0; i--) {
304 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
305 
306 		if (!c_rdev)
307 			continue;
308 
309 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
310 			supply_rdev = c_rdev->supply->rdev;
311 			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
312 
313 			regulator_unlock_recursive(supply_rdev,
314 						   supply_n_coupled);
315 		}
316 
317 		regulator_unlock(c_rdev);
318 	}
319 }
320 
regulator_lock_recursive(struct regulator_dev * rdev,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev,struct ww_acquire_ctx * ww_ctx)321 static int regulator_lock_recursive(struct regulator_dev *rdev,
322 				    struct regulator_dev **new_contended_rdev,
323 				    struct regulator_dev **old_contended_rdev,
324 				    struct ww_acquire_ctx *ww_ctx)
325 {
326 	struct regulator_dev *c_rdev;
327 	int i, err;
328 
329 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
330 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
331 
332 		if (!c_rdev)
333 			continue;
334 
335 		if (c_rdev != *old_contended_rdev) {
336 			err = regulator_lock_nested(c_rdev, ww_ctx);
337 			if (err) {
338 				if (err == -EDEADLK) {
339 					*new_contended_rdev = c_rdev;
340 					goto err_unlock;
341 				}
342 
343 				/* shouldn't happen */
344 				WARN_ON_ONCE(err != -EALREADY);
345 			}
346 		} else {
347 			*old_contended_rdev = NULL;
348 		}
349 
350 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
351 			err = regulator_lock_recursive(c_rdev->supply->rdev,
352 						       new_contended_rdev,
353 						       old_contended_rdev,
354 						       ww_ctx);
355 			if (err) {
356 				regulator_unlock(c_rdev);
357 				goto err_unlock;
358 			}
359 		}
360 	}
361 
362 	return 0;
363 
364 err_unlock:
365 	regulator_unlock_recursive(rdev, i);
366 
367 	return err;
368 }
369 
370 /**
371  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
372  *				regulators
373  * @rdev:			regulator source
374  * @ww_ctx:			w/w mutex acquire context
375  *
376  * Unlock all regulators related with rdev by coupling or supplying.
377  */
regulator_unlock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)378 static void regulator_unlock_dependent(struct regulator_dev *rdev,
379 				       struct ww_acquire_ctx *ww_ctx)
380 {
381 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
382 	ww_acquire_fini(ww_ctx);
383 }
384 
385 /**
386  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
387  * @rdev:			regulator source
388  * @ww_ctx:			w/w mutex acquire context
389  *
390  * This function as a wrapper on regulator_lock_recursive(), which locks
391  * all regulators related with rdev by coupling or supplying.
392  */
regulator_lock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)393 static void regulator_lock_dependent(struct regulator_dev *rdev,
394 				     struct ww_acquire_ctx *ww_ctx)
395 {
396 	struct regulator_dev *new_contended_rdev = NULL;
397 	struct regulator_dev *old_contended_rdev = NULL;
398 	int err;
399 
400 	mutex_lock(&regulator_list_mutex);
401 
402 	ww_acquire_init(ww_ctx, &regulator_ww_class);
403 
404 	do {
405 		if (new_contended_rdev) {
406 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
407 			old_contended_rdev = new_contended_rdev;
408 			old_contended_rdev->ref_cnt++;
409 			old_contended_rdev->mutex_owner = current;
410 		}
411 
412 		err = regulator_lock_recursive(rdev,
413 					       &new_contended_rdev,
414 					       &old_contended_rdev,
415 					       ww_ctx);
416 
417 		if (old_contended_rdev)
418 			regulator_unlock(old_contended_rdev);
419 
420 	} while (err == -EDEADLK);
421 
422 	ww_acquire_done(ww_ctx);
423 
424 	mutex_unlock(&regulator_list_mutex);
425 }
426 
427 /**
428  * of_get_child_regulator - get a child regulator device node
429  * based on supply name
430  * @parent: Parent device node
431  * @prop_name: Combination regulator supply name and "-supply"
432  *
433  * Traverse all child nodes.
434  * Extract the child regulator device node corresponding to the supply name.
435  * returns the device node corresponding to the regulator if found, else
436  * returns NULL.
437  */
of_get_child_regulator(struct device_node * parent,const char * prop_name)438 static struct device_node *of_get_child_regulator(struct device_node *parent,
439 						  const char *prop_name)
440 {
441 	struct device_node *regnode = NULL;
442 	struct device_node *child = NULL;
443 
444 	for_each_child_of_node(parent, child) {
445 		regnode = of_parse_phandle(child, prop_name, 0);
446 
447 		if (!regnode) {
448 			regnode = of_get_child_regulator(child, prop_name);
449 			if (regnode)
450 				goto err_node_put;
451 		} else {
452 			goto err_node_put;
453 		}
454 	}
455 	return NULL;
456 
457 err_node_put:
458 	of_node_put(child);
459 	return regnode;
460 }
461 
462 /**
463  * of_get_regulator - get a regulator device node based on supply name
464  * @dev: Device pointer for the consumer (of regulator) device
465  * @supply: regulator supply name
466  *
467  * Extract the regulator device node corresponding to the supply name.
468  * returns the device node corresponding to the regulator if found, else
469  * returns NULL.
470  */
of_get_regulator(struct device * dev,const char * supply)471 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
472 {
473 	struct device_node *regnode = NULL;
474 	char prop_name[64]; /* 64 is max size of property name */
475 
476 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
477 
478 	snprintf(prop_name, 64, "%s-supply", supply);
479 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
480 
481 	if (!regnode) {
482 		regnode = of_get_child_regulator(dev->of_node, prop_name);
483 		if (regnode)
484 			return regnode;
485 
486 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
487 				prop_name, dev->of_node);
488 		return NULL;
489 	}
490 	return regnode;
491 }
492 
493 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)494 int regulator_check_voltage(struct regulator_dev *rdev,
495 			    int *min_uV, int *max_uV)
496 {
497 	BUG_ON(*min_uV > *max_uV);
498 
499 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
500 		rdev_err(rdev, "voltage operation not allowed\n");
501 		return -EPERM;
502 	}
503 
504 	if (*max_uV > rdev->constraints->max_uV)
505 		*max_uV = rdev->constraints->max_uV;
506 	if (*min_uV < rdev->constraints->min_uV)
507 		*min_uV = rdev->constraints->min_uV;
508 
509 	if (*min_uV > *max_uV) {
510 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
511 			 *min_uV, *max_uV);
512 		return -EINVAL;
513 	}
514 
515 	return 0;
516 }
517 
518 /* return 0 if the state is valid */
regulator_check_states(suspend_state_t state)519 static int regulator_check_states(suspend_state_t state)
520 {
521 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
522 }
523 
524 /* Make sure we select a voltage that suits the needs of all
525  * regulator consumers
526  */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV,suspend_state_t state)527 int regulator_check_consumers(struct regulator_dev *rdev,
528 			      int *min_uV, int *max_uV,
529 			      suspend_state_t state)
530 {
531 	struct regulator *regulator;
532 	struct regulator_voltage *voltage;
533 
534 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
535 		voltage = &regulator->voltage[state];
536 		/*
537 		 * Assume consumers that didn't say anything are OK
538 		 * with anything in the constraint range.
539 		 */
540 		if (!voltage->min_uV && !voltage->max_uV)
541 			continue;
542 
543 		if (*max_uV > voltage->max_uV)
544 			*max_uV = voltage->max_uV;
545 		if (*min_uV < voltage->min_uV)
546 			*min_uV = voltage->min_uV;
547 	}
548 
549 	if (*min_uV > *max_uV) {
550 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
551 			*min_uV, *max_uV);
552 		return -EINVAL;
553 	}
554 
555 	return 0;
556 }
557 
558 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)559 static int regulator_check_current_limit(struct regulator_dev *rdev,
560 					int *min_uA, int *max_uA)
561 {
562 	BUG_ON(*min_uA > *max_uA);
563 
564 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
565 		rdev_err(rdev, "current operation not allowed\n");
566 		return -EPERM;
567 	}
568 
569 	if (*max_uA > rdev->constraints->max_uA)
570 		*max_uA = rdev->constraints->max_uA;
571 	if (*min_uA < rdev->constraints->min_uA)
572 		*min_uA = rdev->constraints->min_uA;
573 
574 	if (*min_uA > *max_uA) {
575 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
576 			 *min_uA, *max_uA);
577 		return -EINVAL;
578 	}
579 
580 	return 0;
581 }
582 
583 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,unsigned int * mode)584 static int regulator_mode_constrain(struct regulator_dev *rdev,
585 				    unsigned int *mode)
586 {
587 	switch (*mode) {
588 	case REGULATOR_MODE_FAST:
589 	case REGULATOR_MODE_NORMAL:
590 	case REGULATOR_MODE_IDLE:
591 	case REGULATOR_MODE_STANDBY:
592 		break;
593 	default:
594 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
595 		return -EINVAL;
596 	}
597 
598 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
599 		rdev_err(rdev, "mode operation not allowed\n");
600 		return -EPERM;
601 	}
602 
603 	/* The modes are bitmasks, the most power hungry modes having
604 	 * the lowest values. If the requested mode isn't supported
605 	 * try higher modes.
606 	 */
607 	while (*mode) {
608 		if (rdev->constraints->valid_modes_mask & *mode)
609 			return 0;
610 		*mode /= 2;
611 	}
612 
613 	return -EINVAL;
614 }
615 
616 static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev * rdev,suspend_state_t state)617 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
618 {
619 	if (rdev->constraints == NULL)
620 		return NULL;
621 
622 	switch (state) {
623 	case PM_SUSPEND_STANDBY:
624 		return &rdev->constraints->state_standby;
625 	case PM_SUSPEND_MEM:
626 		return &rdev->constraints->state_mem;
627 	case PM_SUSPEND_MAX:
628 		return &rdev->constraints->state_disk;
629 	default:
630 		return NULL;
631 	}
632 }
633 
634 static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev * rdev,suspend_state_t state)635 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
636 {
637 	const struct regulator_state *rstate;
638 
639 	rstate = regulator_get_suspend_state(rdev, state);
640 	if (rstate == NULL)
641 		return NULL;
642 
643 	/* If we have no suspend mode configuration don't set anything;
644 	 * only warn if the driver implements set_suspend_voltage or
645 	 * set_suspend_mode callback.
646 	 */
647 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
648 	    rstate->enabled != DISABLE_IN_SUSPEND) {
649 		if (rdev->desc->ops->set_suspend_voltage ||
650 		    rdev->desc->ops->set_suspend_mode)
651 			rdev_warn(rdev, "No configuration\n");
652 		return NULL;
653 	}
654 
655 	return rstate;
656 }
657 
microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)658 static ssize_t microvolts_show(struct device *dev,
659 			       struct device_attribute *attr, char *buf)
660 {
661 	struct regulator_dev *rdev = dev_get_drvdata(dev);
662 	int uV;
663 
664 	regulator_lock(rdev);
665 	uV = regulator_get_voltage_rdev(rdev);
666 	regulator_unlock(rdev);
667 
668 	if (uV < 0)
669 		return uV;
670 	return sprintf(buf, "%d\n", uV);
671 }
672 static DEVICE_ATTR_RO(microvolts);
673 
microamps_show(struct device * dev,struct device_attribute * attr,char * buf)674 static ssize_t microamps_show(struct device *dev,
675 			      struct device_attribute *attr, char *buf)
676 {
677 	struct regulator_dev *rdev = dev_get_drvdata(dev);
678 
679 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
680 }
681 static DEVICE_ATTR_RO(microamps);
682 
name_show(struct device * dev,struct device_attribute * attr,char * buf)683 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
684 			 char *buf)
685 {
686 	struct regulator_dev *rdev = dev_get_drvdata(dev);
687 
688 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
689 }
690 static DEVICE_ATTR_RO(name);
691 
regulator_opmode_to_str(int mode)692 static const char *regulator_opmode_to_str(int mode)
693 {
694 	switch (mode) {
695 	case REGULATOR_MODE_FAST:
696 		return "fast";
697 	case REGULATOR_MODE_NORMAL:
698 		return "normal";
699 	case REGULATOR_MODE_IDLE:
700 		return "idle";
701 	case REGULATOR_MODE_STANDBY:
702 		return "standby";
703 	}
704 	return "unknown";
705 }
706 
regulator_print_opmode(char * buf,int mode)707 static ssize_t regulator_print_opmode(char *buf, int mode)
708 {
709 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
710 }
711 
opmode_show(struct device * dev,struct device_attribute * attr,char * buf)712 static ssize_t opmode_show(struct device *dev,
713 			   struct device_attribute *attr, char *buf)
714 {
715 	struct regulator_dev *rdev = dev_get_drvdata(dev);
716 
717 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
718 }
719 static DEVICE_ATTR_RO(opmode);
720 
regulator_print_state(char * buf,int state)721 static ssize_t regulator_print_state(char *buf, int state)
722 {
723 	if (state > 0)
724 		return sprintf(buf, "enabled\n");
725 	else if (state == 0)
726 		return sprintf(buf, "disabled\n");
727 	else
728 		return sprintf(buf, "unknown\n");
729 }
730 
state_show(struct device * dev,struct device_attribute * attr,char * buf)731 static ssize_t state_show(struct device *dev,
732 			  struct device_attribute *attr, char *buf)
733 {
734 	struct regulator_dev *rdev = dev_get_drvdata(dev);
735 	ssize_t ret;
736 
737 	regulator_lock(rdev);
738 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
739 	regulator_unlock(rdev);
740 
741 	return ret;
742 }
743 static DEVICE_ATTR_RO(state);
744 
status_show(struct device * dev,struct device_attribute * attr,char * buf)745 static ssize_t status_show(struct device *dev,
746 			   struct device_attribute *attr, char *buf)
747 {
748 	struct regulator_dev *rdev = dev_get_drvdata(dev);
749 	int status;
750 	char *label;
751 
752 	status = rdev->desc->ops->get_status(rdev);
753 	if (status < 0)
754 		return status;
755 
756 	switch (status) {
757 	case REGULATOR_STATUS_OFF:
758 		label = "off";
759 		break;
760 	case REGULATOR_STATUS_ON:
761 		label = "on";
762 		break;
763 	case REGULATOR_STATUS_ERROR:
764 		label = "error";
765 		break;
766 	case REGULATOR_STATUS_FAST:
767 		label = "fast";
768 		break;
769 	case REGULATOR_STATUS_NORMAL:
770 		label = "normal";
771 		break;
772 	case REGULATOR_STATUS_IDLE:
773 		label = "idle";
774 		break;
775 	case REGULATOR_STATUS_STANDBY:
776 		label = "standby";
777 		break;
778 	case REGULATOR_STATUS_BYPASS:
779 		label = "bypass";
780 		break;
781 	case REGULATOR_STATUS_UNDEFINED:
782 		label = "undefined";
783 		break;
784 	default:
785 		return -ERANGE;
786 	}
787 
788 	return sprintf(buf, "%s\n", label);
789 }
790 static DEVICE_ATTR_RO(status);
791 
min_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)792 static ssize_t min_microamps_show(struct device *dev,
793 				  struct device_attribute *attr, char *buf)
794 {
795 	struct regulator_dev *rdev = dev_get_drvdata(dev);
796 
797 	if (!rdev->constraints)
798 		return sprintf(buf, "constraint not defined\n");
799 
800 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
801 }
802 static DEVICE_ATTR_RO(min_microamps);
803 
max_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)804 static ssize_t max_microamps_show(struct device *dev,
805 				  struct device_attribute *attr, char *buf)
806 {
807 	struct regulator_dev *rdev = dev_get_drvdata(dev);
808 
809 	if (!rdev->constraints)
810 		return sprintf(buf, "constraint not defined\n");
811 
812 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
813 }
814 static DEVICE_ATTR_RO(max_microamps);
815 
min_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)816 static ssize_t min_microvolts_show(struct device *dev,
817 				   struct device_attribute *attr, char *buf)
818 {
819 	struct regulator_dev *rdev = dev_get_drvdata(dev);
820 
821 	if (!rdev->constraints)
822 		return sprintf(buf, "constraint not defined\n");
823 
824 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
825 }
826 static DEVICE_ATTR_RO(min_microvolts);
827 
max_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)828 static ssize_t max_microvolts_show(struct device *dev,
829 				   struct device_attribute *attr, char *buf)
830 {
831 	struct regulator_dev *rdev = dev_get_drvdata(dev);
832 
833 	if (!rdev->constraints)
834 		return sprintf(buf, "constraint not defined\n");
835 
836 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
837 }
838 static DEVICE_ATTR_RO(max_microvolts);
839 
requested_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)840 static ssize_t requested_microamps_show(struct device *dev,
841 					struct device_attribute *attr, char *buf)
842 {
843 	struct regulator_dev *rdev = dev_get_drvdata(dev);
844 	struct regulator *regulator;
845 	int uA = 0;
846 
847 	regulator_lock(rdev);
848 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
849 		if (regulator->enable_count)
850 			uA += regulator->uA_load;
851 	}
852 	regulator_unlock(rdev);
853 	return sprintf(buf, "%d\n", uA);
854 }
855 static DEVICE_ATTR_RO(requested_microamps);
856 
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)857 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
858 			      char *buf)
859 {
860 	struct regulator_dev *rdev = dev_get_drvdata(dev);
861 	return sprintf(buf, "%d\n", rdev->use_count);
862 }
863 static DEVICE_ATTR_RO(num_users);
864 
type_show(struct device * dev,struct device_attribute * attr,char * buf)865 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
866 			 char *buf)
867 {
868 	struct regulator_dev *rdev = dev_get_drvdata(dev);
869 
870 	switch (rdev->desc->type) {
871 	case REGULATOR_VOLTAGE:
872 		return sprintf(buf, "voltage\n");
873 	case REGULATOR_CURRENT:
874 		return sprintf(buf, "current\n");
875 	}
876 	return sprintf(buf, "unknown\n");
877 }
878 static DEVICE_ATTR_RO(type);
879 
suspend_mem_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)880 static ssize_t suspend_mem_microvolts_show(struct device *dev,
881 					   struct device_attribute *attr, char *buf)
882 {
883 	struct regulator_dev *rdev = dev_get_drvdata(dev);
884 
885 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
886 }
887 static DEVICE_ATTR_RO(suspend_mem_microvolts);
888 
suspend_disk_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)889 static ssize_t suspend_disk_microvolts_show(struct device *dev,
890 					    struct device_attribute *attr, char *buf)
891 {
892 	struct regulator_dev *rdev = dev_get_drvdata(dev);
893 
894 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
895 }
896 static DEVICE_ATTR_RO(suspend_disk_microvolts);
897 
suspend_standby_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)898 static ssize_t suspend_standby_microvolts_show(struct device *dev,
899 					       struct device_attribute *attr, char *buf)
900 {
901 	struct regulator_dev *rdev = dev_get_drvdata(dev);
902 
903 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
904 }
905 static DEVICE_ATTR_RO(suspend_standby_microvolts);
906 
suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)907 static ssize_t suspend_mem_mode_show(struct device *dev,
908 				     struct device_attribute *attr, char *buf)
909 {
910 	struct regulator_dev *rdev = dev_get_drvdata(dev);
911 
912 	return regulator_print_opmode(buf,
913 		rdev->constraints->state_mem.mode);
914 }
915 static DEVICE_ATTR_RO(suspend_mem_mode);
916 
suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)917 static ssize_t suspend_disk_mode_show(struct device *dev,
918 				      struct device_attribute *attr, char *buf)
919 {
920 	struct regulator_dev *rdev = dev_get_drvdata(dev);
921 
922 	return regulator_print_opmode(buf,
923 		rdev->constraints->state_disk.mode);
924 }
925 static DEVICE_ATTR_RO(suspend_disk_mode);
926 
suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)927 static ssize_t suspend_standby_mode_show(struct device *dev,
928 					 struct device_attribute *attr, char *buf)
929 {
930 	struct regulator_dev *rdev = dev_get_drvdata(dev);
931 
932 	return regulator_print_opmode(buf,
933 		rdev->constraints->state_standby.mode);
934 }
935 static DEVICE_ATTR_RO(suspend_standby_mode);
936 
suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)937 static ssize_t suspend_mem_state_show(struct device *dev,
938 				      struct device_attribute *attr, char *buf)
939 {
940 	struct regulator_dev *rdev = dev_get_drvdata(dev);
941 
942 	return regulator_print_state(buf,
943 			rdev->constraints->state_mem.enabled);
944 }
945 static DEVICE_ATTR_RO(suspend_mem_state);
946 
suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)947 static ssize_t suspend_disk_state_show(struct device *dev,
948 				       struct device_attribute *attr, char *buf)
949 {
950 	struct regulator_dev *rdev = dev_get_drvdata(dev);
951 
952 	return regulator_print_state(buf,
953 			rdev->constraints->state_disk.enabled);
954 }
955 static DEVICE_ATTR_RO(suspend_disk_state);
956 
suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)957 static ssize_t suspend_standby_state_show(struct device *dev,
958 					  struct device_attribute *attr, char *buf)
959 {
960 	struct regulator_dev *rdev = dev_get_drvdata(dev);
961 
962 	return regulator_print_state(buf,
963 			rdev->constraints->state_standby.enabled);
964 }
965 static DEVICE_ATTR_RO(suspend_standby_state);
966 
bypass_show(struct device * dev,struct device_attribute * attr,char * buf)967 static ssize_t bypass_show(struct device *dev,
968 			   struct device_attribute *attr, char *buf)
969 {
970 	struct regulator_dev *rdev = dev_get_drvdata(dev);
971 	const char *report;
972 	bool bypass;
973 	int ret;
974 
975 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
976 
977 	if (ret != 0)
978 		report = "unknown";
979 	else if (bypass)
980 		report = "enabled";
981 	else
982 		report = "disabled";
983 
984 	return sprintf(buf, "%s\n", report);
985 }
986 static DEVICE_ATTR_RO(bypass);
987 
988 #define REGULATOR_ERROR_ATTR(name, bit)							\
989 	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
990 				   char *buf)						\
991 	{										\
992 		int ret;								\
993 		unsigned int flags;							\
994 		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
995 		ret = _regulator_get_error_flags(rdev, &flags);				\
996 		if (ret)								\
997 			return ret;							\
998 		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
999 	}										\
1000 	static DEVICE_ATTR_RO(name)
1001 
1002 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
1003 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
1004 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
1005 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
1006 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1007 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1008 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1009 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1010 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1011 
1012 /* Calculate the new optimum regulator operating mode based on the new total
1013  * consumer load. All locks held by caller
1014  */
drms_uA_update(struct regulator_dev * rdev)1015 static int drms_uA_update(struct regulator_dev *rdev)
1016 {
1017 	struct regulator *sibling;
1018 	int current_uA = 0, output_uV, input_uV, err;
1019 	unsigned int mode;
1020 
1021 	/*
1022 	 * first check to see if we can set modes at all, otherwise just
1023 	 * tell the consumer everything is OK.
1024 	 */
1025 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1026 		rdev_dbg(rdev, "DRMS operation not allowed\n");
1027 		return 0;
1028 	}
1029 
1030 	if (!rdev->desc->ops->get_optimum_mode &&
1031 	    !rdev->desc->ops->set_load)
1032 		return 0;
1033 
1034 	if (!rdev->desc->ops->set_mode &&
1035 	    !rdev->desc->ops->set_load)
1036 		return -EINVAL;
1037 
1038 	/* calc total requested load */
1039 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
1040 		if (sibling->enable_count)
1041 			current_uA += sibling->uA_load;
1042 	}
1043 
1044 	current_uA += rdev->constraints->system_load;
1045 
1046 	if (rdev->desc->ops->set_load) {
1047 		/* set the optimum mode for our new total regulator load */
1048 		err = rdev->desc->ops->set_load(rdev, current_uA);
1049 		if (err < 0)
1050 			rdev_err(rdev, "failed to set load %d: %pe\n",
1051 				 current_uA, ERR_PTR(err));
1052 	} else {
1053 		/*
1054 		 * Unfortunately in some cases the constraints->valid_ops has
1055 		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1056 		 * That's not really legit but we won't consider it a fatal
1057 		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1058 		 * wasn't set.
1059 		 */
1060 		if (!rdev->constraints->valid_modes_mask) {
1061 			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1062 			return 0;
1063 		}
1064 
1065 		/* get output voltage */
1066 		output_uV = regulator_get_voltage_rdev(rdev);
1067 
1068 		/*
1069 		 * Don't return an error; if regulator driver cares about
1070 		 * output_uV then it's up to the driver to validate.
1071 		 */
1072 		if (output_uV <= 0)
1073 			rdev_dbg(rdev, "invalid output voltage found\n");
1074 
1075 		/* get input voltage */
1076 		input_uV = 0;
1077 		if (rdev->supply)
1078 			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1079 		if (input_uV <= 0)
1080 			input_uV = rdev->constraints->input_uV;
1081 
1082 		/*
1083 		 * Don't return an error; if regulator driver cares about
1084 		 * input_uV then it's up to the driver to validate.
1085 		 */
1086 		if (input_uV <= 0)
1087 			rdev_dbg(rdev, "invalid input voltage found\n");
1088 
1089 		/* now get the optimum mode for our new total regulator load */
1090 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1091 							 output_uV, current_uA);
1092 
1093 		/* check the new mode is allowed */
1094 		err = regulator_mode_constrain(rdev, &mode);
1095 		if (err < 0) {
1096 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1097 				 current_uA, input_uV, output_uV, ERR_PTR(err));
1098 			return err;
1099 		}
1100 
1101 		err = rdev->desc->ops->set_mode(rdev, mode);
1102 		if (err < 0)
1103 			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1104 				 mode, ERR_PTR(err));
1105 	}
1106 
1107 	return err;
1108 }
1109 
__suspend_set_state(struct regulator_dev * rdev,const struct regulator_state * rstate)1110 static int __suspend_set_state(struct regulator_dev *rdev,
1111 			       const struct regulator_state *rstate)
1112 {
1113 	int ret = 0;
1114 
1115 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1116 		rdev->desc->ops->set_suspend_enable)
1117 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1118 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1119 		rdev->desc->ops->set_suspend_disable)
1120 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1121 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1122 		ret = 0;
1123 
1124 	if (ret < 0) {
1125 		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1126 		return ret;
1127 	}
1128 
1129 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1130 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1131 		if (ret < 0) {
1132 			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1133 			return ret;
1134 		}
1135 	}
1136 
1137 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1138 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1139 		if (ret < 0) {
1140 			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1141 			return ret;
1142 		}
1143 	}
1144 
1145 	return ret;
1146 }
1147 
suspend_set_initial_state(struct regulator_dev * rdev)1148 static int suspend_set_initial_state(struct regulator_dev *rdev)
1149 {
1150 	const struct regulator_state *rstate;
1151 
1152 	rstate = regulator_get_suspend_state_check(rdev,
1153 			rdev->constraints->initial_state);
1154 	if (!rstate)
1155 		return 0;
1156 
1157 	return __suspend_set_state(rdev, rstate);
1158 }
1159 
1160 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
print_constraints_debug(struct regulator_dev * rdev)1161 static void print_constraints_debug(struct regulator_dev *rdev)
1162 {
1163 	struct regulation_constraints *constraints = rdev->constraints;
1164 	char buf[160] = "";
1165 	size_t len = sizeof(buf) - 1;
1166 	int count = 0;
1167 	int ret;
1168 
1169 	if (constraints->min_uV && constraints->max_uV) {
1170 		if (constraints->min_uV == constraints->max_uV)
1171 			count += scnprintf(buf + count, len - count, "%d mV ",
1172 					   constraints->min_uV / 1000);
1173 		else
1174 			count += scnprintf(buf + count, len - count,
1175 					   "%d <--> %d mV ",
1176 					   constraints->min_uV / 1000,
1177 					   constraints->max_uV / 1000);
1178 	}
1179 
1180 	if (!constraints->min_uV ||
1181 	    constraints->min_uV != constraints->max_uV) {
1182 		ret = regulator_get_voltage_rdev(rdev);
1183 		if (ret > 0)
1184 			count += scnprintf(buf + count, len - count,
1185 					   "at %d mV ", ret / 1000);
1186 	}
1187 
1188 	if (constraints->uV_offset)
1189 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1190 				   constraints->uV_offset / 1000);
1191 
1192 	if (constraints->min_uA && constraints->max_uA) {
1193 		if (constraints->min_uA == constraints->max_uA)
1194 			count += scnprintf(buf + count, len - count, "%d mA ",
1195 					   constraints->min_uA / 1000);
1196 		else
1197 			count += scnprintf(buf + count, len - count,
1198 					   "%d <--> %d mA ",
1199 					   constraints->min_uA / 1000,
1200 					   constraints->max_uA / 1000);
1201 	}
1202 
1203 	if (!constraints->min_uA ||
1204 	    constraints->min_uA != constraints->max_uA) {
1205 		ret = _regulator_get_current_limit(rdev);
1206 		if (ret > 0)
1207 			count += scnprintf(buf + count, len - count,
1208 					   "at %d mA ", ret / 1000);
1209 	}
1210 
1211 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1212 		count += scnprintf(buf + count, len - count, "fast ");
1213 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1214 		count += scnprintf(buf + count, len - count, "normal ");
1215 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1216 		count += scnprintf(buf + count, len - count, "idle ");
1217 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1218 		count += scnprintf(buf + count, len - count, "standby ");
1219 
1220 	if (!count)
1221 		count = scnprintf(buf, len, "no parameters");
1222 	else
1223 		--count;
1224 
1225 	count += scnprintf(buf + count, len - count, ", %s",
1226 		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1227 
1228 	rdev_dbg(rdev, "%s\n", buf);
1229 }
1230 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
print_constraints_debug(struct regulator_dev * rdev)1231 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1232 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1233 
print_constraints(struct regulator_dev * rdev)1234 static void print_constraints(struct regulator_dev *rdev)
1235 {
1236 	struct regulation_constraints *constraints = rdev->constraints;
1237 
1238 	print_constraints_debug(rdev);
1239 
1240 	if ((constraints->min_uV != constraints->max_uV) &&
1241 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1242 		rdev_warn(rdev,
1243 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1244 }
1245 
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)1246 static int machine_constraints_voltage(struct regulator_dev *rdev,
1247 	struct regulation_constraints *constraints)
1248 {
1249 	const struct regulator_ops *ops = rdev->desc->ops;
1250 	int ret;
1251 
1252 	/* do we need to apply the constraint voltage */
1253 	if (rdev->constraints->apply_uV &&
1254 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1255 		int target_min, target_max;
1256 		int current_uV = regulator_get_voltage_rdev(rdev);
1257 
1258 		if (current_uV == -ENOTRECOVERABLE) {
1259 			/* This regulator can't be read and must be initialized */
1260 			rdev_info(rdev, "Setting %d-%duV\n",
1261 				  rdev->constraints->min_uV,
1262 				  rdev->constraints->max_uV);
1263 			_regulator_do_set_voltage(rdev,
1264 						  rdev->constraints->min_uV,
1265 						  rdev->constraints->max_uV);
1266 			current_uV = regulator_get_voltage_rdev(rdev);
1267 		}
1268 
1269 		if (current_uV < 0) {
1270 			if (current_uV != -EPROBE_DEFER)
1271 				rdev_err(rdev,
1272 					 "failed to get the current voltage: %pe\n",
1273 					 ERR_PTR(current_uV));
1274 			return current_uV;
1275 		}
1276 
1277 		/*
1278 		 * If we're below the minimum voltage move up to the
1279 		 * minimum voltage, if we're above the maximum voltage
1280 		 * then move down to the maximum.
1281 		 */
1282 		target_min = current_uV;
1283 		target_max = current_uV;
1284 
1285 		if (current_uV < rdev->constraints->min_uV) {
1286 			target_min = rdev->constraints->min_uV;
1287 			target_max = rdev->constraints->min_uV;
1288 		}
1289 
1290 		if (current_uV > rdev->constraints->max_uV) {
1291 			target_min = rdev->constraints->max_uV;
1292 			target_max = rdev->constraints->max_uV;
1293 		}
1294 
1295 		if (target_min != current_uV || target_max != current_uV) {
1296 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1297 				  current_uV, target_min, target_max);
1298 			ret = _regulator_do_set_voltage(
1299 				rdev, target_min, target_max);
1300 			if (ret < 0) {
1301 				rdev_err(rdev,
1302 					"failed to apply %d-%duV constraint: %pe\n",
1303 					target_min, target_max, ERR_PTR(ret));
1304 				return ret;
1305 			}
1306 		}
1307 	}
1308 
1309 	/* constrain machine-level voltage specs to fit
1310 	 * the actual range supported by this regulator.
1311 	 */
1312 	if (ops->list_voltage && rdev->desc->n_voltages) {
1313 		int	count = rdev->desc->n_voltages;
1314 		int	i;
1315 		int	min_uV = INT_MAX;
1316 		int	max_uV = INT_MIN;
1317 		int	cmin = constraints->min_uV;
1318 		int	cmax = constraints->max_uV;
1319 
1320 		/* it's safe to autoconfigure fixed-voltage supplies
1321 		 * and the constraints are used by list_voltage.
1322 		 */
1323 		if (count == 1 && !cmin) {
1324 			cmin = 1;
1325 			cmax = INT_MAX;
1326 			constraints->min_uV = cmin;
1327 			constraints->max_uV = cmax;
1328 		}
1329 
1330 		/* voltage constraints are optional */
1331 		if ((cmin == 0) && (cmax == 0))
1332 			return 0;
1333 
1334 		/* else require explicit machine-level constraints */
1335 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1336 			rdev_err(rdev, "invalid voltage constraints\n");
1337 			return -EINVAL;
1338 		}
1339 
1340 		/* no need to loop voltages if range is continuous */
1341 		if (rdev->desc->continuous_voltage_range)
1342 			return 0;
1343 
1344 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1345 		for (i = 0; i < count; i++) {
1346 			int	value;
1347 
1348 			value = ops->list_voltage(rdev, i);
1349 			if (value <= 0)
1350 				continue;
1351 
1352 			/* maybe adjust [min_uV..max_uV] */
1353 			if (value >= cmin && value < min_uV)
1354 				min_uV = value;
1355 			if (value <= cmax && value > max_uV)
1356 				max_uV = value;
1357 		}
1358 
1359 		/* final: [min_uV..max_uV] valid iff constraints valid */
1360 		if (max_uV < min_uV) {
1361 			rdev_err(rdev,
1362 				 "unsupportable voltage constraints %u-%uuV\n",
1363 				 min_uV, max_uV);
1364 			return -EINVAL;
1365 		}
1366 
1367 		/* use regulator's subset of machine constraints */
1368 		if (constraints->min_uV < min_uV) {
1369 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1370 				 constraints->min_uV, min_uV);
1371 			constraints->min_uV = min_uV;
1372 		}
1373 		if (constraints->max_uV > max_uV) {
1374 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1375 				 constraints->max_uV, max_uV);
1376 			constraints->max_uV = max_uV;
1377 		}
1378 	}
1379 
1380 	return 0;
1381 }
1382 
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)1383 static int machine_constraints_current(struct regulator_dev *rdev,
1384 	struct regulation_constraints *constraints)
1385 {
1386 	const struct regulator_ops *ops = rdev->desc->ops;
1387 	int ret;
1388 
1389 	if (!constraints->min_uA && !constraints->max_uA)
1390 		return 0;
1391 
1392 	if (constraints->min_uA > constraints->max_uA) {
1393 		rdev_err(rdev, "Invalid current constraints\n");
1394 		return -EINVAL;
1395 	}
1396 
1397 	if (!ops->set_current_limit || !ops->get_current_limit) {
1398 		rdev_warn(rdev, "Operation of current configuration missing\n");
1399 		return 0;
1400 	}
1401 
1402 	/* Set regulator current in constraints range */
1403 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1404 			constraints->max_uA);
1405 	if (ret < 0) {
1406 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1407 		return ret;
1408 	}
1409 
1410 	return 0;
1411 }
1412 
1413 static int _regulator_do_enable(struct regulator_dev *rdev);
1414 
notif_set_limit(struct regulator_dev * rdev,int (* set)(struct regulator_dev *,int,int,bool),int limit,int severity)1415 static int notif_set_limit(struct regulator_dev *rdev,
1416 			   int (*set)(struct regulator_dev *, int, int, bool),
1417 			   int limit, int severity)
1418 {
1419 	bool enable;
1420 
1421 	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1422 		enable = false;
1423 		limit = 0;
1424 	} else {
1425 		enable = true;
1426 	}
1427 
1428 	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1429 		limit = 0;
1430 
1431 	return set(rdev, limit, severity, enable);
1432 }
1433 
handle_notify_limits(struct regulator_dev * rdev,int (* set)(struct regulator_dev *,int,int,bool),struct notification_limit * limits)1434 static int handle_notify_limits(struct regulator_dev *rdev,
1435 			int (*set)(struct regulator_dev *, int, int, bool),
1436 			struct notification_limit *limits)
1437 {
1438 	int ret = 0;
1439 
1440 	if (!set)
1441 		return -EOPNOTSUPP;
1442 
1443 	if (limits->prot)
1444 		ret = notif_set_limit(rdev, set, limits->prot,
1445 				      REGULATOR_SEVERITY_PROT);
1446 	if (ret)
1447 		return ret;
1448 
1449 	if (limits->err)
1450 		ret = notif_set_limit(rdev, set, limits->err,
1451 				      REGULATOR_SEVERITY_ERR);
1452 	if (ret)
1453 		return ret;
1454 
1455 	if (limits->warn)
1456 		ret = notif_set_limit(rdev, set, limits->warn,
1457 				      REGULATOR_SEVERITY_WARN);
1458 
1459 	return ret;
1460 }
1461 /**
1462  * set_machine_constraints - sets regulator constraints
1463  * @rdev: regulator source
1464  *
1465  * Allows platform initialisation code to define and constrain
1466  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1467  * Constraints *must* be set by platform code in order for some
1468  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1469  * set_mode.
1470  */
set_machine_constraints(struct regulator_dev * rdev)1471 static int set_machine_constraints(struct regulator_dev *rdev)
1472 {
1473 	int ret = 0;
1474 	const struct regulator_ops *ops = rdev->desc->ops;
1475 
1476 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1477 	if (ret != 0)
1478 		return ret;
1479 
1480 	ret = machine_constraints_current(rdev, rdev->constraints);
1481 	if (ret != 0)
1482 		return ret;
1483 
1484 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1485 		ret = ops->set_input_current_limit(rdev,
1486 						   rdev->constraints->ilim_uA);
1487 		if (ret < 0) {
1488 			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1489 			return ret;
1490 		}
1491 	}
1492 
1493 	/* do we need to setup our suspend state */
1494 	if (rdev->constraints->initial_state) {
1495 		ret = suspend_set_initial_state(rdev);
1496 		if (ret < 0) {
1497 			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1498 			return ret;
1499 		}
1500 	}
1501 
1502 	if (rdev->constraints->initial_mode) {
1503 		if (!ops->set_mode) {
1504 			rdev_err(rdev, "no set_mode operation\n");
1505 			return -EINVAL;
1506 		}
1507 
1508 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1509 		if (ret < 0) {
1510 			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1511 			return ret;
1512 		}
1513 	} else if (rdev->constraints->system_load) {
1514 		/*
1515 		 * We'll only apply the initial system load if an
1516 		 * initial mode wasn't specified.
1517 		 */
1518 		drms_uA_update(rdev);
1519 	}
1520 
1521 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1522 		&& ops->set_ramp_delay) {
1523 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1524 		if (ret < 0) {
1525 			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1526 			return ret;
1527 		}
1528 	}
1529 
1530 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1531 		ret = ops->set_pull_down(rdev);
1532 		if (ret < 0) {
1533 			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1534 			return ret;
1535 		}
1536 	}
1537 
1538 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1539 		ret = ops->set_soft_start(rdev);
1540 		if (ret < 0) {
1541 			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1542 			return ret;
1543 		}
1544 	}
1545 
1546 	/*
1547 	 * Existing logic does not warn if over_current_protection is given as
1548 	 * a constraint but driver does not support that. I think we should
1549 	 * warn about this type of issues as it is possible someone changes
1550 	 * PMIC on board to another type - and the another PMIC's driver does
1551 	 * not support setting protection. Board composer may happily believe
1552 	 * the DT limits are respected - especially if the new PMIC HW also
1553 	 * supports protection but the driver does not. I won't change the logic
1554 	 * without hearing more experienced opinion on this though.
1555 	 *
1556 	 * If warning is seen as a good idea then we can merge handling the
1557 	 * over-curret protection and detection and get rid of this special
1558 	 * handling.
1559 	 */
1560 	if (rdev->constraints->over_current_protection
1561 		&& ops->set_over_current_protection) {
1562 		int lim = rdev->constraints->over_curr_limits.prot;
1563 
1564 		ret = ops->set_over_current_protection(rdev, lim,
1565 						       REGULATOR_SEVERITY_PROT,
1566 						       true);
1567 		if (ret < 0) {
1568 			rdev_err(rdev, "failed to set over current protection: %pe\n",
1569 				 ERR_PTR(ret));
1570 			return ret;
1571 		}
1572 	}
1573 
1574 	if (rdev->constraints->over_current_detection)
1575 		ret = handle_notify_limits(rdev,
1576 					   ops->set_over_current_protection,
1577 					   &rdev->constraints->over_curr_limits);
1578 	if (ret) {
1579 		if (ret != -EOPNOTSUPP) {
1580 			rdev_err(rdev, "failed to set over current limits: %pe\n",
1581 				 ERR_PTR(ret));
1582 			return ret;
1583 		}
1584 		rdev_warn(rdev,
1585 			  "IC does not support requested over-current limits\n");
1586 	}
1587 
1588 	if (rdev->constraints->over_voltage_detection)
1589 		ret = handle_notify_limits(rdev,
1590 					   ops->set_over_voltage_protection,
1591 					   &rdev->constraints->over_voltage_limits);
1592 	if (ret) {
1593 		if (ret != -EOPNOTSUPP) {
1594 			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1595 				 ERR_PTR(ret));
1596 			return ret;
1597 		}
1598 		rdev_warn(rdev,
1599 			  "IC does not support requested over voltage limits\n");
1600 	}
1601 
1602 	if (rdev->constraints->under_voltage_detection)
1603 		ret = handle_notify_limits(rdev,
1604 					   ops->set_under_voltage_protection,
1605 					   &rdev->constraints->under_voltage_limits);
1606 	if (ret) {
1607 		if (ret != -EOPNOTSUPP) {
1608 			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1609 				 ERR_PTR(ret));
1610 			return ret;
1611 		}
1612 		rdev_warn(rdev,
1613 			  "IC does not support requested under voltage limits\n");
1614 	}
1615 
1616 	if (rdev->constraints->over_temp_detection)
1617 		ret = handle_notify_limits(rdev,
1618 					   ops->set_thermal_protection,
1619 					   &rdev->constraints->temp_limits);
1620 	if (ret) {
1621 		if (ret != -EOPNOTSUPP) {
1622 			rdev_err(rdev, "failed to set temperature limits %pe\n",
1623 				 ERR_PTR(ret));
1624 			return ret;
1625 		}
1626 		rdev_warn(rdev,
1627 			  "IC does not support requested temperature limits\n");
1628 	}
1629 
1630 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1631 		bool ad_state = (rdev->constraints->active_discharge ==
1632 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1633 
1634 		ret = ops->set_active_discharge(rdev, ad_state);
1635 		if (ret < 0) {
1636 			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1637 			return ret;
1638 		}
1639 	}
1640 
1641 	/*
1642 	 * If there is no mechanism for controlling the regulator then
1643 	 * flag it as always_on so we don't end up duplicating checks
1644 	 * for this so much.  Note that we could control the state of
1645 	 * a supply to control the output on a regulator that has no
1646 	 * direct control.
1647 	 */
1648 	if (!rdev->ena_pin && !ops->enable) {
1649 		if (rdev->supply_name && !rdev->supply)
1650 			return -EPROBE_DEFER;
1651 
1652 		if (rdev->supply)
1653 			rdev->constraints->always_on =
1654 				rdev->supply->rdev->constraints->always_on;
1655 		else
1656 			rdev->constraints->always_on = true;
1657 	}
1658 
1659 	/* If the constraints say the regulator should be on at this point
1660 	 * and we have control then make sure it is enabled.
1661 	 */
1662 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1663 		/* If we want to enable this regulator, make sure that we know
1664 		 * the supplying regulator.
1665 		 */
1666 		if (rdev->supply_name && !rdev->supply)
1667 			return -EPROBE_DEFER;
1668 
1669 		/* If supplying regulator has already been enabled,
1670 		 * it's not intended to have use_count increment
1671 		 * when rdev is only boot-on.
1672 		 */
1673 		if (rdev->supply &&
1674 		    (rdev->constraints->always_on ||
1675 		     !regulator_is_enabled(rdev->supply))) {
1676 			ret = regulator_enable(rdev->supply);
1677 			if (ret < 0) {
1678 				_regulator_put(rdev->supply);
1679 				rdev->supply = NULL;
1680 				return ret;
1681 			}
1682 		}
1683 
1684 		ret = _regulator_do_enable(rdev);
1685 		if (ret < 0 && ret != -EINVAL) {
1686 			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1687 			return ret;
1688 		}
1689 
1690 		if (rdev->constraints->always_on)
1691 			rdev->use_count++;
1692 	} else if (rdev->desc->off_on_delay) {
1693 		rdev->last_off = ktime_get();
1694 	}
1695 
1696 	print_constraints(rdev);
1697 	return 0;
1698 }
1699 
1700 /**
1701  * set_supply - set regulator supply regulator
1702  * @rdev: regulator (locked)
1703  * @supply_rdev: supply regulator (locked))
1704  *
1705  * Called by platform initialisation code to set the supply regulator for this
1706  * regulator. This ensures that a regulators supply will also be enabled by the
1707  * core if it's child is enabled.
1708  */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1709 static int set_supply(struct regulator_dev *rdev,
1710 		      struct regulator_dev *supply_rdev)
1711 {
1712 	int err;
1713 
1714 	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1715 
1716 	if (!try_module_get(supply_rdev->owner))
1717 		return -ENODEV;
1718 
1719 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1720 	if (rdev->supply == NULL) {
1721 		module_put(supply_rdev->owner);
1722 		err = -ENOMEM;
1723 		return err;
1724 	}
1725 	supply_rdev->open_count++;
1726 
1727 	return 0;
1728 }
1729 
1730 /**
1731  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1732  * @rdev:         regulator source
1733  * @consumer_dev_name: dev_name() string for device supply applies to
1734  * @supply:       symbolic name for supply
1735  *
1736  * Allows platform initialisation code to map physical regulator
1737  * sources to symbolic names for supplies for use by devices.  Devices
1738  * should use these symbolic names to request regulators, avoiding the
1739  * need to provide board-specific regulator names as platform data.
1740  */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1741 static int set_consumer_device_supply(struct regulator_dev *rdev,
1742 				      const char *consumer_dev_name,
1743 				      const char *supply)
1744 {
1745 	struct regulator_map *node, *new_node;
1746 	int has_dev;
1747 
1748 	if (supply == NULL)
1749 		return -EINVAL;
1750 
1751 	if (consumer_dev_name != NULL)
1752 		has_dev = 1;
1753 	else
1754 		has_dev = 0;
1755 
1756 	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1757 	if (new_node == NULL)
1758 		return -ENOMEM;
1759 
1760 	new_node->regulator = rdev;
1761 	new_node->supply = supply;
1762 
1763 	if (has_dev) {
1764 		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1765 		if (new_node->dev_name == NULL) {
1766 			kfree(new_node);
1767 			return -ENOMEM;
1768 		}
1769 	}
1770 
1771 	mutex_lock(&regulator_list_mutex);
1772 	list_for_each_entry(node, &regulator_map_list, list) {
1773 		if (node->dev_name && consumer_dev_name) {
1774 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1775 				continue;
1776 		} else if (node->dev_name || consumer_dev_name) {
1777 			continue;
1778 		}
1779 
1780 		if (strcmp(node->supply, supply) != 0)
1781 			continue;
1782 
1783 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1784 			 consumer_dev_name,
1785 			 dev_name(&node->regulator->dev),
1786 			 node->regulator->desc->name,
1787 			 supply,
1788 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1789 		goto fail;
1790 	}
1791 
1792 	list_add(&new_node->list, &regulator_map_list);
1793 	mutex_unlock(&regulator_list_mutex);
1794 
1795 	return 0;
1796 
1797 fail:
1798 	mutex_unlock(&regulator_list_mutex);
1799 	kfree(new_node->dev_name);
1800 	kfree(new_node);
1801 	return -EBUSY;
1802 }
1803 
unset_regulator_supplies(struct regulator_dev * rdev)1804 static void unset_regulator_supplies(struct regulator_dev *rdev)
1805 {
1806 	struct regulator_map *node, *n;
1807 
1808 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1809 		if (rdev == node->regulator) {
1810 			list_del(&node->list);
1811 			kfree(node->dev_name);
1812 			kfree(node);
1813 		}
1814 	}
1815 }
1816 
1817 #ifdef CONFIG_DEBUG_FS
constraint_flags_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1818 static ssize_t constraint_flags_read_file(struct file *file,
1819 					  char __user *user_buf,
1820 					  size_t count, loff_t *ppos)
1821 {
1822 	const struct regulator *regulator = file->private_data;
1823 	const struct regulation_constraints *c = regulator->rdev->constraints;
1824 	char *buf;
1825 	ssize_t ret;
1826 
1827 	if (!c)
1828 		return 0;
1829 
1830 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1831 	if (!buf)
1832 		return -ENOMEM;
1833 
1834 	ret = snprintf(buf, PAGE_SIZE,
1835 			"always_on: %u\n"
1836 			"boot_on: %u\n"
1837 			"apply_uV: %u\n"
1838 			"ramp_disable: %u\n"
1839 			"soft_start: %u\n"
1840 			"pull_down: %u\n"
1841 			"over_current_protection: %u\n",
1842 			c->always_on,
1843 			c->boot_on,
1844 			c->apply_uV,
1845 			c->ramp_disable,
1846 			c->soft_start,
1847 			c->pull_down,
1848 			c->over_current_protection);
1849 
1850 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1851 	kfree(buf);
1852 
1853 	return ret;
1854 }
1855 
1856 #endif
1857 
1858 static const struct file_operations constraint_flags_fops = {
1859 #ifdef CONFIG_DEBUG_FS
1860 	.open = simple_open,
1861 	.read = constraint_flags_read_file,
1862 	.llseek = default_llseek,
1863 #endif
1864 };
1865 
1866 #define REG_STR_SIZE	64
1867 
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1868 static struct regulator *create_regulator(struct regulator_dev *rdev,
1869 					  struct device *dev,
1870 					  const char *supply_name)
1871 {
1872 	struct regulator *regulator;
1873 	int err = 0;
1874 
1875 	lockdep_assert_held_once(&rdev->mutex.base);
1876 
1877 	if (dev) {
1878 		char buf[REG_STR_SIZE];
1879 		int size;
1880 
1881 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1882 				dev->kobj.name, supply_name);
1883 		if (size >= REG_STR_SIZE)
1884 			return NULL;
1885 
1886 		supply_name = kstrdup(buf, GFP_KERNEL);
1887 		if (supply_name == NULL)
1888 			return NULL;
1889 	} else {
1890 		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1891 		if (supply_name == NULL)
1892 			return NULL;
1893 	}
1894 
1895 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1896 	if (regulator == NULL) {
1897 		kfree_const(supply_name);
1898 		return NULL;
1899 	}
1900 
1901 	regulator->rdev = rdev;
1902 	regulator->supply_name = supply_name;
1903 
1904 	list_add(&regulator->list, &rdev->consumer_list);
1905 
1906 	if (dev) {
1907 		regulator->dev = dev;
1908 
1909 		/* Add a link to the device sysfs entry */
1910 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1911 					       supply_name);
1912 		if (err) {
1913 			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1914 				  dev->kobj.name, ERR_PTR(err));
1915 			/* non-fatal */
1916 		}
1917 	}
1918 
1919 	if (err != -EEXIST)
1920 		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1921 	if (IS_ERR(regulator->debugfs))
1922 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1923 
1924 	debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1925 			   &regulator->uA_load);
1926 	debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1927 			   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1928 	debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1929 			   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1930 	debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1931 			    regulator, &constraint_flags_fops);
1932 
1933 	/*
1934 	 * Check now if the regulator is an always on regulator - if
1935 	 * it is then we don't need to do nearly so much work for
1936 	 * enable/disable calls.
1937 	 */
1938 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1939 	    _regulator_is_enabled(rdev))
1940 		regulator->always_on = true;
1941 
1942 	return regulator;
1943 }
1944 
_regulator_get_enable_time(struct regulator_dev * rdev)1945 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1946 {
1947 	if (rdev->constraints && rdev->constraints->enable_time)
1948 		return rdev->constraints->enable_time;
1949 	if (rdev->desc->ops->enable_time)
1950 		return rdev->desc->ops->enable_time(rdev);
1951 	return rdev->desc->enable_time;
1952 }
1953 
regulator_find_supply_alias(struct device * dev,const char * supply)1954 static struct regulator_supply_alias *regulator_find_supply_alias(
1955 		struct device *dev, const char *supply)
1956 {
1957 	struct regulator_supply_alias *map;
1958 
1959 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1960 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1961 			return map;
1962 
1963 	return NULL;
1964 }
1965 
regulator_supply_alias(struct device ** dev,const char ** supply)1966 static void regulator_supply_alias(struct device **dev, const char **supply)
1967 {
1968 	struct regulator_supply_alias *map;
1969 
1970 	map = regulator_find_supply_alias(*dev, *supply);
1971 	if (map) {
1972 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1973 				*supply, map->alias_supply,
1974 				dev_name(map->alias_dev));
1975 		*dev = map->alias_dev;
1976 		*supply = map->alias_supply;
1977 	}
1978 }
1979 
regulator_match(struct device * dev,const void * data)1980 static int regulator_match(struct device *dev, const void *data)
1981 {
1982 	struct regulator_dev *r = dev_to_rdev(dev);
1983 
1984 	return strcmp(rdev_get_name(r), data) == 0;
1985 }
1986 
regulator_lookup_by_name(const char * name)1987 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1988 {
1989 	struct device *dev;
1990 
1991 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1992 
1993 	return dev ? dev_to_rdev(dev) : NULL;
1994 }
1995 
1996 /**
1997  * regulator_dev_lookup - lookup a regulator device.
1998  * @dev: device for regulator "consumer".
1999  * @supply: Supply name or regulator ID.
2000  *
2001  * If successful, returns a struct regulator_dev that corresponds to the name
2002  * @supply and with the embedded struct device refcount incremented by one.
2003  * The refcount must be dropped by calling put_device().
2004  * On failure one of the following ERR-PTR-encoded values is returned:
2005  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
2006  * in the future.
2007  */
regulator_dev_lookup(struct device * dev,const char * supply)2008 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2009 						  const char *supply)
2010 {
2011 	struct regulator_dev *r = NULL;
2012 	struct device_node *node;
2013 	struct regulator_map *map;
2014 	const char *devname = NULL;
2015 
2016 	regulator_supply_alias(&dev, &supply);
2017 
2018 	/* first do a dt based lookup */
2019 	if (dev && dev->of_node) {
2020 		node = of_get_regulator(dev, supply);
2021 		if (node) {
2022 			r = of_find_regulator_by_node(node);
2023 			of_node_put(node);
2024 			if (r)
2025 				return r;
2026 
2027 			/*
2028 			 * We have a node, but there is no device.
2029 			 * assume it has not registered yet.
2030 			 */
2031 			return ERR_PTR(-EPROBE_DEFER);
2032 		}
2033 	}
2034 
2035 	/* if not found, try doing it non-dt way */
2036 	if (dev)
2037 		devname = dev_name(dev);
2038 
2039 	mutex_lock(&regulator_list_mutex);
2040 	list_for_each_entry(map, &regulator_map_list, list) {
2041 		/* If the mapping has a device set up it must match */
2042 		if (map->dev_name &&
2043 		    (!devname || strcmp(map->dev_name, devname)))
2044 			continue;
2045 
2046 		if (strcmp(map->supply, supply) == 0 &&
2047 		    get_device(&map->regulator->dev)) {
2048 			r = map->regulator;
2049 			break;
2050 		}
2051 	}
2052 	mutex_unlock(&regulator_list_mutex);
2053 
2054 	if (r)
2055 		return r;
2056 
2057 	r = regulator_lookup_by_name(supply);
2058 	if (r)
2059 		return r;
2060 
2061 	return ERR_PTR(-ENODEV);
2062 }
2063 
regulator_resolve_supply(struct regulator_dev * rdev)2064 static int regulator_resolve_supply(struct regulator_dev *rdev)
2065 {
2066 	struct regulator_dev *r;
2067 	struct device *dev = rdev->dev.parent;
2068 	struct ww_acquire_ctx ww_ctx;
2069 	int ret = 0;
2070 
2071 	/* No supply to resolve? */
2072 	if (!rdev->supply_name)
2073 		return 0;
2074 
2075 	/* Supply already resolved? (fast-path without locking contention) */
2076 	if (rdev->supply)
2077 		return 0;
2078 
2079 	r = regulator_dev_lookup(dev, rdev->supply_name);
2080 	if (IS_ERR(r)) {
2081 		ret = PTR_ERR(r);
2082 
2083 		/* Did the lookup explicitly defer for us? */
2084 		if (ret == -EPROBE_DEFER)
2085 			goto out;
2086 
2087 		if (have_full_constraints()) {
2088 			r = dummy_regulator_rdev;
2089 			get_device(&r->dev);
2090 		} else {
2091 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
2092 				rdev->supply_name, rdev->desc->name);
2093 			ret = -EPROBE_DEFER;
2094 			goto out;
2095 		}
2096 	}
2097 
2098 	if (r == rdev) {
2099 		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2100 			rdev->desc->name, rdev->supply_name);
2101 		if (!have_full_constraints()) {
2102 			ret = -EINVAL;
2103 			goto out;
2104 		}
2105 		r = dummy_regulator_rdev;
2106 		get_device(&r->dev);
2107 	}
2108 
2109 	/*
2110 	 * If the supply's parent device is not the same as the
2111 	 * regulator's parent device, then ensure the parent device
2112 	 * is bound before we resolve the supply, in case the parent
2113 	 * device get probe deferred and unregisters the supply.
2114 	 */
2115 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2116 		if (!device_is_bound(r->dev.parent)) {
2117 			put_device(&r->dev);
2118 			ret = -EPROBE_DEFER;
2119 			goto out;
2120 		}
2121 	}
2122 
2123 	/* Recursively resolve the supply of the supply */
2124 	ret = regulator_resolve_supply(r);
2125 	if (ret < 0) {
2126 		put_device(&r->dev);
2127 		goto out;
2128 	}
2129 
2130 	/*
2131 	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2132 	 * between rdev->supply null check and setting rdev->supply in
2133 	 * set_supply() from concurrent tasks.
2134 	 */
2135 	regulator_lock_two(rdev, r, &ww_ctx);
2136 
2137 	/* Supply just resolved by a concurrent task? */
2138 	if (rdev->supply) {
2139 		regulator_unlock_two(rdev, r, &ww_ctx);
2140 		put_device(&r->dev);
2141 		goto out;
2142 	}
2143 
2144 	ret = set_supply(rdev, r);
2145 	if (ret < 0) {
2146 		regulator_unlock_two(rdev, r, &ww_ctx);
2147 		put_device(&r->dev);
2148 		goto out;
2149 	}
2150 
2151 	regulator_unlock_two(rdev, r, &ww_ctx);
2152 
2153 	/*
2154 	 * In set_machine_constraints() we may have turned this regulator on
2155 	 * but we couldn't propagate to the supply if it hadn't been resolved
2156 	 * yet.  Do it now.
2157 	 */
2158 	if (rdev->use_count) {
2159 		ret = regulator_enable(rdev->supply);
2160 		if (ret < 0) {
2161 			_regulator_put(rdev->supply);
2162 			rdev->supply = NULL;
2163 			goto out;
2164 		}
2165 	}
2166 
2167 out:
2168 	return ret;
2169 }
2170 
2171 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,enum regulator_get_type get_type)2172 struct regulator *_regulator_get(struct device *dev, const char *id,
2173 				 enum regulator_get_type get_type)
2174 {
2175 	struct regulator_dev *rdev;
2176 	struct regulator *regulator;
2177 	struct device_link *link;
2178 	int ret;
2179 
2180 	if (get_type >= MAX_GET_TYPE) {
2181 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2182 		return ERR_PTR(-EINVAL);
2183 	}
2184 
2185 	if (id == NULL) {
2186 		pr_err("get() with no identifier\n");
2187 		return ERR_PTR(-EINVAL);
2188 	}
2189 
2190 	rdev = regulator_dev_lookup(dev, id);
2191 	if (IS_ERR(rdev)) {
2192 		ret = PTR_ERR(rdev);
2193 
2194 		/*
2195 		 * If regulator_dev_lookup() fails with error other
2196 		 * than -ENODEV our job here is done, we simply return it.
2197 		 */
2198 		if (ret != -ENODEV)
2199 			return ERR_PTR(ret);
2200 
2201 		if (!have_full_constraints()) {
2202 			dev_warn(dev,
2203 				 "incomplete constraints, dummy supplies not allowed\n");
2204 			return ERR_PTR(-ENODEV);
2205 		}
2206 
2207 		switch (get_type) {
2208 		case NORMAL_GET:
2209 			/*
2210 			 * Assume that a regulator is physically present and
2211 			 * enabled, even if it isn't hooked up, and just
2212 			 * provide a dummy.
2213 			 */
2214 			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2215 			rdev = dummy_regulator_rdev;
2216 			get_device(&rdev->dev);
2217 			break;
2218 
2219 		case EXCLUSIVE_GET:
2220 			dev_warn(dev,
2221 				 "dummy supplies not allowed for exclusive requests\n");
2222 			fallthrough;
2223 
2224 		default:
2225 			return ERR_PTR(-ENODEV);
2226 		}
2227 	}
2228 
2229 	if (rdev->exclusive) {
2230 		regulator = ERR_PTR(-EPERM);
2231 		put_device(&rdev->dev);
2232 		return regulator;
2233 	}
2234 
2235 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2236 		regulator = ERR_PTR(-EBUSY);
2237 		put_device(&rdev->dev);
2238 		return regulator;
2239 	}
2240 
2241 	mutex_lock(&regulator_list_mutex);
2242 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2243 	mutex_unlock(&regulator_list_mutex);
2244 
2245 	if (ret != 0) {
2246 		regulator = ERR_PTR(-EPROBE_DEFER);
2247 		put_device(&rdev->dev);
2248 		return regulator;
2249 	}
2250 
2251 	ret = regulator_resolve_supply(rdev);
2252 	if (ret < 0) {
2253 		regulator = ERR_PTR(ret);
2254 		put_device(&rdev->dev);
2255 		return regulator;
2256 	}
2257 
2258 	if (!try_module_get(rdev->owner)) {
2259 		regulator = ERR_PTR(-EPROBE_DEFER);
2260 		put_device(&rdev->dev);
2261 		return regulator;
2262 	}
2263 
2264 	regulator_lock(rdev);
2265 	regulator = create_regulator(rdev, dev, id);
2266 	regulator_unlock(rdev);
2267 	if (regulator == NULL) {
2268 		regulator = ERR_PTR(-ENOMEM);
2269 		module_put(rdev->owner);
2270 		put_device(&rdev->dev);
2271 		return regulator;
2272 	}
2273 
2274 	rdev->open_count++;
2275 	if (get_type == EXCLUSIVE_GET) {
2276 		rdev->exclusive = 1;
2277 
2278 		ret = _regulator_is_enabled(rdev);
2279 		if (ret > 0) {
2280 			rdev->use_count = 1;
2281 			regulator->enable_count = 1;
2282 		} else {
2283 			rdev->use_count = 0;
2284 			regulator->enable_count = 0;
2285 		}
2286 	}
2287 
2288 	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2289 	if (!IS_ERR_OR_NULL(link))
2290 		regulator->device_link = true;
2291 
2292 	return regulator;
2293 }
2294 
2295 /**
2296  * regulator_get - lookup and obtain a reference to a regulator.
2297  * @dev: device for regulator "consumer"
2298  * @id: Supply name or regulator ID.
2299  *
2300  * Returns a struct regulator corresponding to the regulator producer,
2301  * or IS_ERR() condition containing errno.
2302  *
2303  * Use of supply names configured via set_consumer_device_supply() is
2304  * strongly encouraged.  It is recommended that the supply name used
2305  * should match the name used for the supply and/or the relevant
2306  * device pins in the datasheet.
2307  */
regulator_get(struct device * dev,const char * id)2308 struct regulator *regulator_get(struct device *dev, const char *id)
2309 {
2310 	return _regulator_get(dev, id, NORMAL_GET);
2311 }
2312 EXPORT_SYMBOL_GPL(regulator_get);
2313 
2314 /**
2315  * regulator_get_exclusive - obtain exclusive access to a regulator.
2316  * @dev: device for regulator "consumer"
2317  * @id: Supply name or regulator ID.
2318  *
2319  * Returns a struct regulator corresponding to the regulator producer,
2320  * or IS_ERR() condition containing errno.  Other consumers will be
2321  * unable to obtain this regulator while this reference is held and the
2322  * use count for the regulator will be initialised to reflect the current
2323  * state of the regulator.
2324  *
2325  * This is intended for use by consumers which cannot tolerate shared
2326  * use of the regulator such as those which need to force the
2327  * regulator off for correct operation of the hardware they are
2328  * controlling.
2329  *
2330  * Use of supply names configured via set_consumer_device_supply() is
2331  * strongly encouraged.  It is recommended that the supply name used
2332  * should match the name used for the supply and/or the relevant
2333  * device pins in the datasheet.
2334  */
regulator_get_exclusive(struct device * dev,const char * id)2335 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2336 {
2337 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2338 }
2339 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2340 
2341 /**
2342  * regulator_get_optional - obtain optional access to a regulator.
2343  * @dev: device for regulator "consumer"
2344  * @id: Supply name or regulator ID.
2345  *
2346  * Returns a struct regulator corresponding to the regulator producer,
2347  * or IS_ERR() condition containing errno.
2348  *
2349  * This is intended for use by consumers for devices which can have
2350  * some supplies unconnected in normal use, such as some MMC devices.
2351  * It can allow the regulator core to provide stub supplies for other
2352  * supplies requested using normal regulator_get() calls without
2353  * disrupting the operation of drivers that can handle absent
2354  * supplies.
2355  *
2356  * Use of supply names configured via set_consumer_device_supply() is
2357  * strongly encouraged.  It is recommended that the supply name used
2358  * should match the name used for the supply and/or the relevant
2359  * device pins in the datasheet.
2360  */
regulator_get_optional(struct device * dev,const char * id)2361 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2362 {
2363 	return _regulator_get(dev, id, OPTIONAL_GET);
2364 }
2365 EXPORT_SYMBOL_GPL(regulator_get_optional);
2366 
destroy_regulator(struct regulator * regulator)2367 static void destroy_regulator(struct regulator *regulator)
2368 {
2369 	struct regulator_dev *rdev = regulator->rdev;
2370 
2371 	debugfs_remove_recursive(regulator->debugfs);
2372 
2373 	if (regulator->dev) {
2374 		if (regulator->device_link)
2375 			device_link_remove(regulator->dev, &rdev->dev);
2376 
2377 		/* remove any sysfs entries */
2378 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2379 	}
2380 
2381 	regulator_lock(rdev);
2382 	list_del(&regulator->list);
2383 
2384 	rdev->open_count--;
2385 	rdev->exclusive = 0;
2386 	regulator_unlock(rdev);
2387 
2388 	kfree_const(regulator->supply_name);
2389 	kfree(regulator);
2390 }
2391 
2392 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)2393 static void _regulator_put(struct regulator *regulator)
2394 {
2395 	struct regulator_dev *rdev;
2396 
2397 	if (IS_ERR_OR_NULL(regulator))
2398 		return;
2399 
2400 	lockdep_assert_held_once(&regulator_list_mutex);
2401 
2402 	/* Docs say you must disable before calling regulator_put() */
2403 	WARN_ON(regulator->enable_count);
2404 
2405 	rdev = regulator->rdev;
2406 
2407 	destroy_regulator(regulator);
2408 
2409 	module_put(rdev->owner);
2410 	put_device(&rdev->dev);
2411 }
2412 
2413 /**
2414  * regulator_put - "free" the regulator source
2415  * @regulator: regulator source
2416  *
2417  * Note: drivers must ensure that all regulator_enable calls made on this
2418  * regulator source are balanced by regulator_disable calls prior to calling
2419  * this function.
2420  */
regulator_put(struct regulator * regulator)2421 void regulator_put(struct regulator *regulator)
2422 {
2423 	mutex_lock(&regulator_list_mutex);
2424 	_regulator_put(regulator);
2425 	mutex_unlock(&regulator_list_mutex);
2426 }
2427 EXPORT_SYMBOL_GPL(regulator_put);
2428 
2429 /**
2430  * regulator_register_supply_alias - Provide device alias for supply lookup
2431  *
2432  * @dev: device that will be given as the regulator "consumer"
2433  * @id: Supply name or regulator ID
2434  * @alias_dev: device that should be used to lookup the supply
2435  * @alias_id: Supply name or regulator ID that should be used to lookup the
2436  * supply
2437  *
2438  * All lookups for id on dev will instead be conducted for alias_id on
2439  * alias_dev.
2440  */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)2441 int regulator_register_supply_alias(struct device *dev, const char *id,
2442 				    struct device *alias_dev,
2443 				    const char *alias_id)
2444 {
2445 	struct regulator_supply_alias *map;
2446 
2447 	map = regulator_find_supply_alias(dev, id);
2448 	if (map)
2449 		return -EEXIST;
2450 
2451 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2452 	if (!map)
2453 		return -ENOMEM;
2454 
2455 	map->src_dev = dev;
2456 	map->src_supply = id;
2457 	map->alias_dev = alias_dev;
2458 	map->alias_supply = alias_id;
2459 
2460 	list_add(&map->list, &regulator_supply_alias_list);
2461 
2462 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2463 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2464 
2465 	return 0;
2466 }
2467 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2468 
2469 /**
2470  * regulator_unregister_supply_alias - Remove device alias
2471  *
2472  * @dev: device that will be given as the regulator "consumer"
2473  * @id: Supply name or regulator ID
2474  *
2475  * Remove a lookup alias if one exists for id on dev.
2476  */
regulator_unregister_supply_alias(struct device * dev,const char * id)2477 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2478 {
2479 	struct regulator_supply_alias *map;
2480 
2481 	map = regulator_find_supply_alias(dev, id);
2482 	if (map) {
2483 		list_del(&map->list);
2484 		kfree(map);
2485 	}
2486 }
2487 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2488 
2489 /**
2490  * regulator_bulk_register_supply_alias - register multiple aliases
2491  *
2492  * @dev: device that will be given as the regulator "consumer"
2493  * @id: List of supply names or regulator IDs
2494  * @alias_dev: device that should be used to lookup the supply
2495  * @alias_id: List of supply names or regulator IDs that should be used to
2496  * lookup the supply
2497  * @num_id: Number of aliases to register
2498  *
2499  * @return 0 on success, an errno on failure.
2500  *
2501  * This helper function allows drivers to register several supply
2502  * aliases in one operation.  If any of the aliases cannot be
2503  * registered any aliases that were registered will be removed
2504  * before returning to the caller.
2505  */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)2506 int regulator_bulk_register_supply_alias(struct device *dev,
2507 					 const char *const *id,
2508 					 struct device *alias_dev,
2509 					 const char *const *alias_id,
2510 					 int num_id)
2511 {
2512 	int i;
2513 	int ret;
2514 
2515 	for (i = 0; i < num_id; ++i) {
2516 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2517 						      alias_id[i]);
2518 		if (ret < 0)
2519 			goto err;
2520 	}
2521 
2522 	return 0;
2523 
2524 err:
2525 	dev_err(dev,
2526 		"Failed to create supply alias %s,%s -> %s,%s\n",
2527 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2528 
2529 	while (--i >= 0)
2530 		regulator_unregister_supply_alias(dev, id[i]);
2531 
2532 	return ret;
2533 }
2534 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2535 
2536 /**
2537  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2538  *
2539  * @dev: device that will be given as the regulator "consumer"
2540  * @id: List of supply names or regulator IDs
2541  * @num_id: Number of aliases to unregister
2542  *
2543  * This helper function allows drivers to unregister several supply
2544  * aliases in one operation.
2545  */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)2546 void regulator_bulk_unregister_supply_alias(struct device *dev,
2547 					    const char *const *id,
2548 					    int num_id)
2549 {
2550 	int i;
2551 
2552 	for (i = 0; i < num_id; ++i)
2553 		regulator_unregister_supply_alias(dev, id[i]);
2554 }
2555 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2556 
2557 
2558 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)2559 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2560 				const struct regulator_config *config)
2561 {
2562 	struct regulator_enable_gpio *pin, *new_pin;
2563 	struct gpio_desc *gpiod;
2564 
2565 	gpiod = config->ena_gpiod;
2566 	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2567 
2568 	mutex_lock(&regulator_list_mutex);
2569 
2570 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2571 		if (pin->gpiod == gpiod) {
2572 			rdev_dbg(rdev, "GPIO is already used\n");
2573 			goto update_ena_gpio_to_rdev;
2574 		}
2575 	}
2576 
2577 	if (new_pin == NULL) {
2578 		mutex_unlock(&regulator_list_mutex);
2579 		return -ENOMEM;
2580 	}
2581 
2582 	pin = new_pin;
2583 	new_pin = NULL;
2584 
2585 	pin->gpiod = gpiod;
2586 	list_add(&pin->list, &regulator_ena_gpio_list);
2587 
2588 update_ena_gpio_to_rdev:
2589 	pin->request_count++;
2590 	rdev->ena_pin = pin;
2591 
2592 	mutex_unlock(&regulator_list_mutex);
2593 	kfree(new_pin);
2594 
2595 	return 0;
2596 }
2597 
regulator_ena_gpio_free(struct regulator_dev * rdev)2598 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2599 {
2600 	struct regulator_enable_gpio *pin, *n;
2601 
2602 	if (!rdev->ena_pin)
2603 		return;
2604 
2605 	/* Free the GPIO only in case of no use */
2606 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2607 		if (pin != rdev->ena_pin)
2608 			continue;
2609 
2610 		if (--pin->request_count)
2611 			break;
2612 
2613 		gpiod_put(pin->gpiod);
2614 		list_del(&pin->list);
2615 		kfree(pin);
2616 		break;
2617 	}
2618 
2619 	rdev->ena_pin = NULL;
2620 }
2621 
2622 /**
2623  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2624  * @rdev: regulator_dev structure
2625  * @enable: enable GPIO at initial use?
2626  *
2627  * GPIO is enabled in case of initial use. (enable_count is 0)
2628  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2629  */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)2630 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2631 {
2632 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2633 
2634 	if (!pin)
2635 		return -EINVAL;
2636 
2637 	if (enable) {
2638 		/* Enable GPIO at initial use */
2639 		if (pin->enable_count == 0)
2640 			gpiod_set_value_cansleep(pin->gpiod, 1);
2641 
2642 		pin->enable_count++;
2643 	} else {
2644 		if (pin->enable_count > 1) {
2645 			pin->enable_count--;
2646 			return 0;
2647 		}
2648 
2649 		/* Disable GPIO if not used */
2650 		if (pin->enable_count <= 1) {
2651 			gpiod_set_value_cansleep(pin->gpiod, 0);
2652 			pin->enable_count = 0;
2653 		}
2654 	}
2655 
2656 	return 0;
2657 }
2658 
2659 /**
2660  * _regulator_delay_helper - a delay helper function
2661  * @delay: time to delay in microseconds
2662  *
2663  * Delay for the requested amount of time as per the guidelines in:
2664  *
2665  *     Documentation/timers/timers-howto.rst
2666  *
2667  * The assumption here is that these regulator operations will never used in
2668  * atomic context and therefore sleeping functions can be used.
2669  */
_regulator_delay_helper(unsigned int delay)2670 static void _regulator_delay_helper(unsigned int delay)
2671 {
2672 	unsigned int ms = delay / 1000;
2673 	unsigned int us = delay % 1000;
2674 
2675 	if (ms > 0) {
2676 		/*
2677 		 * For small enough values, handle super-millisecond
2678 		 * delays in the usleep_range() call below.
2679 		 */
2680 		if (ms < 20)
2681 			us += ms * 1000;
2682 		else
2683 			msleep(ms);
2684 	}
2685 
2686 	/*
2687 	 * Give the scheduler some room to coalesce with any other
2688 	 * wakeup sources. For delays shorter than 10 us, don't even
2689 	 * bother setting up high-resolution timers and just busy-
2690 	 * loop.
2691 	 */
2692 	if (us >= 10)
2693 		usleep_range(us, us + 100);
2694 	else
2695 		udelay(us);
2696 }
2697 
2698 /**
2699  * _regulator_check_status_enabled
2700  *
2701  * A helper function to check if the regulator status can be interpreted
2702  * as 'regulator is enabled'.
2703  * @rdev: the regulator device to check
2704  *
2705  * Return:
2706  * * 1			- if status shows regulator is in enabled state
2707  * * 0			- if not enabled state
2708  * * Error Value	- as received from ops->get_status()
2709  */
_regulator_check_status_enabled(struct regulator_dev * rdev)2710 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2711 {
2712 	int ret = rdev->desc->ops->get_status(rdev);
2713 
2714 	if (ret < 0) {
2715 		rdev_info(rdev, "get_status returned error: %d\n", ret);
2716 		return ret;
2717 	}
2718 
2719 	switch (ret) {
2720 	case REGULATOR_STATUS_OFF:
2721 	case REGULATOR_STATUS_ERROR:
2722 	case REGULATOR_STATUS_UNDEFINED:
2723 		return 0;
2724 	default:
2725 		return 1;
2726 	}
2727 }
2728 
_regulator_do_enable(struct regulator_dev * rdev)2729 static int _regulator_do_enable(struct regulator_dev *rdev)
2730 {
2731 	int ret, delay;
2732 
2733 	/* Query before enabling in case configuration dependent.  */
2734 	ret = _regulator_get_enable_time(rdev);
2735 	if (ret >= 0) {
2736 		delay = ret;
2737 	} else {
2738 		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2739 		delay = 0;
2740 	}
2741 
2742 	trace_regulator_enable(rdev_get_name(rdev));
2743 
2744 	if (rdev->desc->off_on_delay) {
2745 		/* if needed, keep a distance of off_on_delay from last time
2746 		 * this regulator was disabled.
2747 		 */
2748 		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2749 		s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2750 
2751 		if (remaining > 0)
2752 			_regulator_delay_helper(remaining);
2753 	}
2754 
2755 	if (rdev->ena_pin) {
2756 		if (!rdev->ena_gpio_state) {
2757 			ret = regulator_ena_gpio_ctrl(rdev, true);
2758 			if (ret < 0)
2759 				return ret;
2760 			rdev->ena_gpio_state = 1;
2761 		}
2762 	} else if (rdev->desc->ops->enable) {
2763 		ret = rdev->desc->ops->enable(rdev);
2764 		if (ret < 0)
2765 			return ret;
2766 	} else {
2767 		return -EINVAL;
2768 	}
2769 
2770 	/* Allow the regulator to ramp; it would be useful to extend
2771 	 * this for bulk operations so that the regulators can ramp
2772 	 * together.
2773 	 */
2774 	trace_regulator_enable_delay(rdev_get_name(rdev));
2775 
2776 	/* If poll_enabled_time is set, poll upto the delay calculated
2777 	 * above, delaying poll_enabled_time uS to check if the regulator
2778 	 * actually got enabled.
2779 	 * If the regulator isn't enabled after our delay helper has expired,
2780 	 * return -ETIMEDOUT.
2781 	 */
2782 	if (rdev->desc->poll_enabled_time) {
2783 		int time_remaining = delay;
2784 
2785 		while (time_remaining > 0) {
2786 			_regulator_delay_helper(rdev->desc->poll_enabled_time);
2787 
2788 			if (rdev->desc->ops->get_status) {
2789 				ret = _regulator_check_status_enabled(rdev);
2790 				if (ret < 0)
2791 					return ret;
2792 				else if (ret)
2793 					break;
2794 			} else if (rdev->desc->ops->is_enabled(rdev))
2795 				break;
2796 
2797 			time_remaining -= rdev->desc->poll_enabled_time;
2798 		}
2799 
2800 		if (time_remaining <= 0) {
2801 			rdev_err(rdev, "Enabled check timed out\n");
2802 			return -ETIMEDOUT;
2803 		}
2804 	} else {
2805 		_regulator_delay_helper(delay);
2806 	}
2807 
2808 	trace_regulator_enable_complete(rdev_get_name(rdev));
2809 
2810 	return 0;
2811 }
2812 
2813 /**
2814  * _regulator_handle_consumer_enable - handle that a consumer enabled
2815  * @regulator: regulator source
2816  *
2817  * Some things on a regulator consumer (like the contribution towards total
2818  * load on the regulator) only have an effect when the consumer wants the
2819  * regulator enabled.  Explained in example with two consumers of the same
2820  * regulator:
2821  *   consumer A: set_load(100);       => total load = 0
2822  *   consumer A: regulator_enable();  => total load = 100
2823  *   consumer B: set_load(1000);      => total load = 100
2824  *   consumer B: regulator_enable();  => total load = 1100
2825  *   consumer A: regulator_disable(); => total_load = 1000
2826  *
2827  * This function (together with _regulator_handle_consumer_disable) is
2828  * responsible for keeping track of the refcount for a given regulator consumer
2829  * and applying / unapplying these things.
2830  *
2831  * Returns 0 upon no error; -error upon error.
2832  */
_regulator_handle_consumer_enable(struct regulator * regulator)2833 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2834 {
2835 	int ret;
2836 	struct regulator_dev *rdev = regulator->rdev;
2837 
2838 	lockdep_assert_held_once(&rdev->mutex.base);
2839 
2840 	regulator->enable_count++;
2841 	if (regulator->uA_load && regulator->enable_count == 1) {
2842 		ret = drms_uA_update(rdev);
2843 		if (ret)
2844 			regulator->enable_count--;
2845 		return ret;
2846 	}
2847 
2848 	return 0;
2849 }
2850 
2851 /**
2852  * _regulator_handle_consumer_disable - handle that a consumer disabled
2853  * @regulator: regulator source
2854  *
2855  * The opposite of _regulator_handle_consumer_enable().
2856  *
2857  * Returns 0 upon no error; -error upon error.
2858  */
_regulator_handle_consumer_disable(struct regulator * regulator)2859 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2860 {
2861 	struct regulator_dev *rdev = regulator->rdev;
2862 
2863 	lockdep_assert_held_once(&rdev->mutex.base);
2864 
2865 	if (!regulator->enable_count) {
2866 		rdev_err(rdev, "Underflow of regulator enable count\n");
2867 		return -EINVAL;
2868 	}
2869 
2870 	regulator->enable_count--;
2871 	if (regulator->uA_load && regulator->enable_count == 0)
2872 		return drms_uA_update(rdev);
2873 
2874 	return 0;
2875 }
2876 
2877 /* locks held by regulator_enable() */
_regulator_enable(struct regulator * regulator)2878 static int _regulator_enable(struct regulator *regulator)
2879 {
2880 	struct regulator_dev *rdev = regulator->rdev;
2881 	int ret;
2882 
2883 	lockdep_assert_held_once(&rdev->mutex.base);
2884 
2885 	if (rdev->use_count == 0 && rdev->supply) {
2886 		ret = _regulator_enable(rdev->supply);
2887 		if (ret < 0)
2888 			return ret;
2889 	}
2890 
2891 	/* balance only if there are regulators coupled */
2892 	if (rdev->coupling_desc.n_coupled > 1) {
2893 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2894 		if (ret < 0)
2895 			goto err_disable_supply;
2896 	}
2897 
2898 	ret = _regulator_handle_consumer_enable(regulator);
2899 	if (ret < 0)
2900 		goto err_disable_supply;
2901 
2902 	if (rdev->use_count == 0) {
2903 		/*
2904 		 * The regulator may already be enabled if it's not switchable
2905 		 * or was left on
2906 		 */
2907 		ret = _regulator_is_enabled(rdev);
2908 		if (ret == -EINVAL || ret == 0) {
2909 			if (!regulator_ops_is_valid(rdev,
2910 					REGULATOR_CHANGE_STATUS)) {
2911 				ret = -EPERM;
2912 				goto err_consumer_disable;
2913 			}
2914 
2915 			ret = _regulator_do_enable(rdev);
2916 			if (ret < 0)
2917 				goto err_consumer_disable;
2918 
2919 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2920 					     NULL);
2921 		} else if (ret < 0) {
2922 			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2923 			goto err_consumer_disable;
2924 		}
2925 		/* Fallthrough on positive return values - already enabled */
2926 	}
2927 
2928 	if (regulator->enable_count == 1)
2929 		rdev->use_count++;
2930 
2931 	return 0;
2932 
2933 err_consumer_disable:
2934 	_regulator_handle_consumer_disable(regulator);
2935 
2936 err_disable_supply:
2937 	if (rdev->use_count == 0 && rdev->supply)
2938 		_regulator_disable(rdev->supply);
2939 
2940 	return ret;
2941 }
2942 
2943 /**
2944  * regulator_enable - enable regulator output
2945  * @regulator: regulator source
2946  *
2947  * Request that the regulator be enabled with the regulator output at
2948  * the predefined voltage or current value.  Calls to regulator_enable()
2949  * must be balanced with calls to regulator_disable().
2950  *
2951  * NOTE: the output value can be set by other drivers, boot loader or may be
2952  * hardwired in the regulator.
2953  */
regulator_enable(struct regulator * regulator)2954 int regulator_enable(struct regulator *regulator)
2955 {
2956 	struct regulator_dev *rdev = regulator->rdev;
2957 	struct ww_acquire_ctx ww_ctx;
2958 	int ret;
2959 
2960 	regulator_lock_dependent(rdev, &ww_ctx);
2961 	ret = _regulator_enable(regulator);
2962 	regulator_unlock_dependent(rdev, &ww_ctx);
2963 
2964 	return ret;
2965 }
2966 EXPORT_SYMBOL_GPL(regulator_enable);
2967 
_regulator_do_disable(struct regulator_dev * rdev)2968 static int _regulator_do_disable(struct regulator_dev *rdev)
2969 {
2970 	int ret;
2971 
2972 	trace_regulator_disable(rdev_get_name(rdev));
2973 
2974 	if (rdev->ena_pin) {
2975 		if (rdev->ena_gpio_state) {
2976 			ret = regulator_ena_gpio_ctrl(rdev, false);
2977 			if (ret < 0)
2978 				return ret;
2979 			rdev->ena_gpio_state = 0;
2980 		}
2981 
2982 	} else if (rdev->desc->ops->disable) {
2983 		ret = rdev->desc->ops->disable(rdev);
2984 		if (ret != 0)
2985 			return ret;
2986 	}
2987 
2988 	if (rdev->desc->off_on_delay)
2989 		rdev->last_off = ktime_get_boottime();
2990 
2991 	trace_regulator_disable_complete(rdev_get_name(rdev));
2992 
2993 	return 0;
2994 }
2995 
2996 /* locks held by regulator_disable() */
_regulator_disable(struct regulator * regulator)2997 static int _regulator_disable(struct regulator *regulator)
2998 {
2999 	struct regulator_dev *rdev = regulator->rdev;
3000 	int ret = 0;
3001 
3002 	lockdep_assert_held_once(&rdev->mutex.base);
3003 
3004 	if (WARN(regulator->enable_count == 0,
3005 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3006 		return -EIO;
3007 
3008 	if (regulator->enable_count == 1) {
3009 	/* disabling last enable_count from this regulator */
3010 		/* are we the last user and permitted to disable ? */
3011 		if (rdev->use_count == 1 &&
3012 		    (rdev->constraints && !rdev->constraints->always_on)) {
3013 
3014 			/* we are last user */
3015 			if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3016 				ret = _notifier_call_chain(rdev,
3017 							   REGULATOR_EVENT_PRE_DISABLE,
3018 							   NULL);
3019 				if (ret & NOTIFY_STOP_MASK)
3020 					return -EINVAL;
3021 
3022 				ret = _regulator_do_disable(rdev);
3023 				if (ret < 0) {
3024 					rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3025 					_notifier_call_chain(rdev,
3026 							REGULATOR_EVENT_ABORT_DISABLE,
3027 							NULL);
3028 					return ret;
3029 				}
3030 				_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3031 						NULL);
3032 			}
3033 
3034 			rdev->use_count = 0;
3035 		} else if (rdev->use_count > 1) {
3036 			rdev->use_count--;
3037 		}
3038 	}
3039 
3040 	if (ret == 0)
3041 		ret = _regulator_handle_consumer_disable(regulator);
3042 
3043 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3044 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3045 
3046 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3047 		ret = _regulator_disable(rdev->supply);
3048 
3049 	return ret;
3050 }
3051 
3052 /**
3053  * regulator_disable - disable regulator output
3054  * @regulator: regulator source
3055  *
3056  * Disable the regulator output voltage or current.  Calls to
3057  * regulator_enable() must be balanced with calls to
3058  * regulator_disable().
3059  *
3060  * NOTE: this will only disable the regulator output if no other consumer
3061  * devices have it enabled, the regulator device supports disabling and
3062  * machine constraints permit this operation.
3063  */
regulator_disable(struct regulator * regulator)3064 int regulator_disable(struct regulator *regulator)
3065 {
3066 	struct regulator_dev *rdev = regulator->rdev;
3067 	struct ww_acquire_ctx ww_ctx;
3068 	int ret;
3069 
3070 	regulator_lock_dependent(rdev, &ww_ctx);
3071 	ret = _regulator_disable(regulator);
3072 	regulator_unlock_dependent(rdev, &ww_ctx);
3073 
3074 	return ret;
3075 }
3076 EXPORT_SYMBOL_GPL(regulator_disable);
3077 
3078 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)3079 static int _regulator_force_disable(struct regulator_dev *rdev)
3080 {
3081 	int ret = 0;
3082 
3083 	lockdep_assert_held_once(&rdev->mutex.base);
3084 
3085 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3086 			REGULATOR_EVENT_PRE_DISABLE, NULL);
3087 	if (ret & NOTIFY_STOP_MASK)
3088 		return -EINVAL;
3089 
3090 	ret = _regulator_do_disable(rdev);
3091 	if (ret < 0) {
3092 		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3093 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3094 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3095 		return ret;
3096 	}
3097 
3098 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3099 			REGULATOR_EVENT_DISABLE, NULL);
3100 
3101 	return 0;
3102 }
3103 
3104 /**
3105  * regulator_force_disable - force disable regulator output
3106  * @regulator: regulator source
3107  *
3108  * Forcibly disable the regulator output voltage or current.
3109  * NOTE: this *will* disable the regulator output even if other consumer
3110  * devices have it enabled. This should be used for situations when device
3111  * damage will likely occur if the regulator is not disabled (e.g. over temp).
3112  */
regulator_force_disable(struct regulator * regulator)3113 int regulator_force_disable(struct regulator *regulator)
3114 {
3115 	struct regulator_dev *rdev = regulator->rdev;
3116 	struct ww_acquire_ctx ww_ctx;
3117 	int ret;
3118 
3119 	regulator_lock_dependent(rdev, &ww_ctx);
3120 
3121 	ret = _regulator_force_disable(regulator->rdev);
3122 
3123 	if (rdev->coupling_desc.n_coupled > 1)
3124 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3125 
3126 	if (regulator->uA_load) {
3127 		regulator->uA_load = 0;
3128 		ret = drms_uA_update(rdev);
3129 	}
3130 
3131 	if (rdev->use_count != 0 && rdev->supply)
3132 		_regulator_disable(rdev->supply);
3133 
3134 	regulator_unlock_dependent(rdev, &ww_ctx);
3135 
3136 	return ret;
3137 }
3138 EXPORT_SYMBOL_GPL(regulator_force_disable);
3139 
regulator_disable_work(struct work_struct * work)3140 static void regulator_disable_work(struct work_struct *work)
3141 {
3142 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3143 						  disable_work.work);
3144 	struct ww_acquire_ctx ww_ctx;
3145 	int count, i, ret;
3146 	struct regulator *regulator;
3147 	int total_count = 0;
3148 
3149 	regulator_lock_dependent(rdev, &ww_ctx);
3150 
3151 	/*
3152 	 * Workqueue functions queue the new work instance while the previous
3153 	 * work instance is being processed. Cancel the queued work instance
3154 	 * as the work instance under processing does the job of the queued
3155 	 * work instance.
3156 	 */
3157 	cancel_delayed_work(&rdev->disable_work);
3158 
3159 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3160 		count = regulator->deferred_disables;
3161 
3162 		if (!count)
3163 			continue;
3164 
3165 		total_count += count;
3166 		regulator->deferred_disables = 0;
3167 
3168 		for (i = 0; i < count; i++) {
3169 			ret = _regulator_disable(regulator);
3170 			if (ret != 0)
3171 				rdev_err(rdev, "Deferred disable failed: %pe\n",
3172 					 ERR_PTR(ret));
3173 		}
3174 	}
3175 	WARN_ON(!total_count);
3176 
3177 	if (rdev->coupling_desc.n_coupled > 1)
3178 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3179 
3180 	regulator_unlock_dependent(rdev, &ww_ctx);
3181 }
3182 
3183 /**
3184  * regulator_disable_deferred - disable regulator output with delay
3185  * @regulator: regulator source
3186  * @ms: milliseconds until the regulator is disabled
3187  *
3188  * Execute regulator_disable() on the regulator after a delay.  This
3189  * is intended for use with devices that require some time to quiesce.
3190  *
3191  * NOTE: this will only disable the regulator output if no other consumer
3192  * devices have it enabled, the regulator device supports disabling and
3193  * machine constraints permit this operation.
3194  */
regulator_disable_deferred(struct regulator * regulator,int ms)3195 int regulator_disable_deferred(struct regulator *regulator, int ms)
3196 {
3197 	struct regulator_dev *rdev = regulator->rdev;
3198 
3199 	if (!ms)
3200 		return regulator_disable(regulator);
3201 
3202 	regulator_lock(rdev);
3203 	regulator->deferred_disables++;
3204 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3205 			 msecs_to_jiffies(ms));
3206 	regulator_unlock(rdev);
3207 
3208 	return 0;
3209 }
3210 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3211 
_regulator_is_enabled(struct regulator_dev * rdev)3212 static int _regulator_is_enabled(struct regulator_dev *rdev)
3213 {
3214 	/* A GPIO control always takes precedence */
3215 	if (rdev->ena_pin)
3216 		return rdev->ena_gpio_state;
3217 
3218 	/* If we don't know then assume that the regulator is always on */
3219 	if (!rdev->desc->ops->is_enabled)
3220 		return 1;
3221 
3222 	return rdev->desc->ops->is_enabled(rdev);
3223 }
3224 
_regulator_list_voltage(struct regulator_dev * rdev,unsigned selector,int lock)3225 static int _regulator_list_voltage(struct regulator_dev *rdev,
3226 				   unsigned selector, int lock)
3227 {
3228 	const struct regulator_ops *ops = rdev->desc->ops;
3229 	int ret;
3230 
3231 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3232 		return rdev->desc->fixed_uV;
3233 
3234 	if (ops->list_voltage) {
3235 		if (selector >= rdev->desc->n_voltages)
3236 			return -EINVAL;
3237 		if (selector < rdev->desc->linear_min_sel)
3238 			return 0;
3239 		if (lock)
3240 			regulator_lock(rdev);
3241 		ret = ops->list_voltage(rdev, selector);
3242 		if (lock)
3243 			regulator_unlock(rdev);
3244 	} else if (rdev->is_switch && rdev->supply) {
3245 		ret = _regulator_list_voltage(rdev->supply->rdev,
3246 					      selector, lock);
3247 	} else {
3248 		return -EINVAL;
3249 	}
3250 
3251 	if (ret > 0) {
3252 		if (ret < rdev->constraints->min_uV)
3253 			ret = 0;
3254 		else if (ret > rdev->constraints->max_uV)
3255 			ret = 0;
3256 	}
3257 
3258 	return ret;
3259 }
3260 
3261 /**
3262  * regulator_is_enabled - is the regulator output enabled
3263  * @regulator: regulator source
3264  *
3265  * Returns positive if the regulator driver backing the source/client
3266  * has requested that the device be enabled, zero if it hasn't, else a
3267  * negative errno code.
3268  *
3269  * Note that the device backing this regulator handle can have multiple
3270  * users, so it might be enabled even if regulator_enable() was never
3271  * called for this particular source.
3272  */
regulator_is_enabled(struct regulator * regulator)3273 int regulator_is_enabled(struct regulator *regulator)
3274 {
3275 	int ret;
3276 
3277 	if (regulator->always_on)
3278 		return 1;
3279 
3280 	regulator_lock(regulator->rdev);
3281 	ret = _regulator_is_enabled(regulator->rdev);
3282 	regulator_unlock(regulator->rdev);
3283 
3284 	return ret;
3285 }
3286 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3287 
3288 /**
3289  * regulator_count_voltages - count regulator_list_voltage() selectors
3290  * @regulator: regulator source
3291  *
3292  * Returns number of selectors, or negative errno.  Selectors are
3293  * numbered starting at zero, and typically correspond to bitfields
3294  * in hardware registers.
3295  */
regulator_count_voltages(struct regulator * regulator)3296 int regulator_count_voltages(struct regulator *regulator)
3297 {
3298 	struct regulator_dev	*rdev = regulator->rdev;
3299 
3300 	if (rdev->desc->n_voltages)
3301 		return rdev->desc->n_voltages;
3302 
3303 	if (!rdev->is_switch || !rdev->supply)
3304 		return -EINVAL;
3305 
3306 	return regulator_count_voltages(rdev->supply);
3307 }
3308 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3309 
3310 /**
3311  * regulator_list_voltage - enumerate supported voltages
3312  * @regulator: regulator source
3313  * @selector: identify voltage to list
3314  * Context: can sleep
3315  *
3316  * Returns a voltage that can be passed to @regulator_set_voltage(),
3317  * zero if this selector code can't be used on this system, or a
3318  * negative errno.
3319  */
regulator_list_voltage(struct regulator * regulator,unsigned selector)3320 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3321 {
3322 	return _regulator_list_voltage(regulator->rdev, selector, 1);
3323 }
3324 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3325 
3326 /**
3327  * regulator_get_regmap - get the regulator's register map
3328  * @regulator: regulator source
3329  *
3330  * Returns the register map for the given regulator, or an ERR_PTR value
3331  * if the regulator doesn't use regmap.
3332  */
regulator_get_regmap(struct regulator * regulator)3333 struct regmap *regulator_get_regmap(struct regulator *regulator)
3334 {
3335 	struct regmap *map = regulator->rdev->regmap;
3336 
3337 	return map ? map : ERR_PTR(-EOPNOTSUPP);
3338 }
3339 
3340 /**
3341  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3342  * @regulator: regulator source
3343  * @vsel_reg: voltage selector register, output parameter
3344  * @vsel_mask: mask for voltage selector bitfield, output parameter
3345  *
3346  * Returns the hardware register offset and bitmask used for setting the
3347  * regulator voltage. This might be useful when configuring voltage-scaling
3348  * hardware or firmware that can make I2C requests behind the kernel's back,
3349  * for example.
3350  *
3351  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3352  * and 0 is returned, otherwise a negative errno is returned.
3353  */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)3354 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3355 					 unsigned *vsel_reg,
3356 					 unsigned *vsel_mask)
3357 {
3358 	struct regulator_dev *rdev = regulator->rdev;
3359 	const struct regulator_ops *ops = rdev->desc->ops;
3360 
3361 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3362 		return -EOPNOTSUPP;
3363 
3364 	*vsel_reg = rdev->desc->vsel_reg;
3365 	*vsel_mask = rdev->desc->vsel_mask;
3366 
3367 	return 0;
3368 }
3369 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3370 
3371 /**
3372  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3373  * @regulator: regulator source
3374  * @selector: identify voltage to list
3375  *
3376  * Converts the selector to a hardware-specific voltage selector that can be
3377  * directly written to the regulator registers. The address of the voltage
3378  * register can be determined by calling @regulator_get_hardware_vsel_register.
3379  *
3380  * On error a negative errno is returned.
3381  */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)3382 int regulator_list_hardware_vsel(struct regulator *regulator,
3383 				 unsigned selector)
3384 {
3385 	struct regulator_dev *rdev = regulator->rdev;
3386 	const struct regulator_ops *ops = rdev->desc->ops;
3387 
3388 	if (selector >= rdev->desc->n_voltages)
3389 		return -EINVAL;
3390 	if (selector < rdev->desc->linear_min_sel)
3391 		return 0;
3392 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3393 		return -EOPNOTSUPP;
3394 
3395 	return selector;
3396 }
3397 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3398 
3399 /**
3400  * regulator_get_linear_step - return the voltage step size between VSEL values
3401  * @regulator: regulator source
3402  *
3403  * Returns the voltage step size between VSEL values for linear
3404  * regulators, or return 0 if the regulator isn't a linear regulator.
3405  */
regulator_get_linear_step(struct regulator * regulator)3406 unsigned int regulator_get_linear_step(struct regulator *regulator)
3407 {
3408 	struct regulator_dev *rdev = regulator->rdev;
3409 
3410 	return rdev->desc->uV_step;
3411 }
3412 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3413 
3414 /**
3415  * regulator_is_supported_voltage - check if a voltage range can be supported
3416  *
3417  * @regulator: Regulator to check.
3418  * @min_uV: Minimum required voltage in uV.
3419  * @max_uV: Maximum required voltage in uV.
3420  *
3421  * Returns a boolean.
3422  */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)3423 int regulator_is_supported_voltage(struct regulator *regulator,
3424 				   int min_uV, int max_uV)
3425 {
3426 	struct regulator_dev *rdev = regulator->rdev;
3427 	int i, voltages, ret;
3428 
3429 	/* If we can't change voltage check the current voltage */
3430 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3431 		ret = regulator_get_voltage(regulator);
3432 		if (ret >= 0)
3433 			return min_uV <= ret && ret <= max_uV;
3434 		else
3435 			return ret;
3436 	}
3437 
3438 	/* Any voltage within constrains range is fine? */
3439 	if (rdev->desc->continuous_voltage_range)
3440 		return min_uV >= rdev->constraints->min_uV &&
3441 				max_uV <= rdev->constraints->max_uV;
3442 
3443 	ret = regulator_count_voltages(regulator);
3444 	if (ret < 0)
3445 		return 0;
3446 	voltages = ret;
3447 
3448 	for (i = 0; i < voltages; i++) {
3449 		ret = regulator_list_voltage(regulator, i);
3450 
3451 		if (ret >= min_uV && ret <= max_uV)
3452 			return 1;
3453 	}
3454 
3455 	return 0;
3456 }
3457 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3458 
regulator_map_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3459 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3460 				 int max_uV)
3461 {
3462 	const struct regulator_desc *desc = rdev->desc;
3463 
3464 	if (desc->ops->map_voltage)
3465 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3466 
3467 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3468 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3469 
3470 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3471 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3472 
3473 	if (desc->ops->list_voltage ==
3474 		regulator_list_voltage_pickable_linear_range)
3475 		return regulator_map_voltage_pickable_linear_range(rdev,
3476 							min_uV, max_uV);
3477 
3478 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3479 }
3480 
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)3481 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3482 				       int min_uV, int max_uV,
3483 				       unsigned *selector)
3484 {
3485 	struct pre_voltage_change_data data;
3486 	int ret;
3487 
3488 	data.old_uV = regulator_get_voltage_rdev(rdev);
3489 	data.min_uV = min_uV;
3490 	data.max_uV = max_uV;
3491 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3492 				   &data);
3493 	if (ret & NOTIFY_STOP_MASK)
3494 		return -EINVAL;
3495 
3496 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3497 	if (ret >= 0)
3498 		return ret;
3499 
3500 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3501 			     (void *)data.old_uV);
3502 
3503 	return ret;
3504 }
3505 
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)3506 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3507 					   int uV, unsigned selector)
3508 {
3509 	struct pre_voltage_change_data data;
3510 	int ret;
3511 
3512 	data.old_uV = regulator_get_voltage_rdev(rdev);
3513 	data.min_uV = uV;
3514 	data.max_uV = uV;
3515 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3516 				   &data);
3517 	if (ret & NOTIFY_STOP_MASK)
3518 		return -EINVAL;
3519 
3520 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3521 	if (ret >= 0)
3522 		return ret;
3523 
3524 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3525 			     (void *)data.old_uV);
3526 
3527 	return ret;
3528 }
3529 
_regulator_set_voltage_sel_step(struct regulator_dev * rdev,int uV,int new_selector)3530 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3531 					   int uV, int new_selector)
3532 {
3533 	const struct regulator_ops *ops = rdev->desc->ops;
3534 	int diff, old_sel, curr_sel, ret;
3535 
3536 	/* Stepping is only needed if the regulator is enabled. */
3537 	if (!_regulator_is_enabled(rdev))
3538 		goto final_set;
3539 
3540 	if (!ops->get_voltage_sel)
3541 		return -EINVAL;
3542 
3543 	old_sel = ops->get_voltage_sel(rdev);
3544 	if (old_sel < 0)
3545 		return old_sel;
3546 
3547 	diff = new_selector - old_sel;
3548 	if (diff == 0)
3549 		return 0; /* No change needed. */
3550 
3551 	if (diff > 0) {
3552 		/* Stepping up. */
3553 		for (curr_sel = old_sel + rdev->desc->vsel_step;
3554 		     curr_sel < new_selector;
3555 		     curr_sel += rdev->desc->vsel_step) {
3556 			/*
3557 			 * Call the callback directly instead of using
3558 			 * _regulator_call_set_voltage_sel() as we don't
3559 			 * want to notify anyone yet. Same in the branch
3560 			 * below.
3561 			 */
3562 			ret = ops->set_voltage_sel(rdev, curr_sel);
3563 			if (ret)
3564 				goto try_revert;
3565 		}
3566 	} else {
3567 		/* Stepping down. */
3568 		for (curr_sel = old_sel - rdev->desc->vsel_step;
3569 		     curr_sel > new_selector;
3570 		     curr_sel -= rdev->desc->vsel_step) {
3571 			ret = ops->set_voltage_sel(rdev, curr_sel);
3572 			if (ret)
3573 				goto try_revert;
3574 		}
3575 	}
3576 
3577 final_set:
3578 	/* The final selector will trigger the notifiers. */
3579 	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3580 
3581 try_revert:
3582 	/*
3583 	 * At least try to return to the previous voltage if setting a new
3584 	 * one failed.
3585 	 */
3586 	(void)ops->set_voltage_sel(rdev, old_sel);
3587 	return ret;
3588 }
3589 
_regulator_set_voltage_time(struct regulator_dev * rdev,int old_uV,int new_uV)3590 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3591 				       int old_uV, int new_uV)
3592 {
3593 	unsigned int ramp_delay = 0;
3594 
3595 	if (rdev->constraints->ramp_delay)
3596 		ramp_delay = rdev->constraints->ramp_delay;
3597 	else if (rdev->desc->ramp_delay)
3598 		ramp_delay = rdev->desc->ramp_delay;
3599 	else if (rdev->constraints->settling_time)
3600 		return rdev->constraints->settling_time;
3601 	else if (rdev->constraints->settling_time_up &&
3602 		 (new_uV > old_uV))
3603 		return rdev->constraints->settling_time_up;
3604 	else if (rdev->constraints->settling_time_down &&
3605 		 (new_uV < old_uV))
3606 		return rdev->constraints->settling_time_down;
3607 
3608 	if (ramp_delay == 0)
3609 		return 0;
3610 
3611 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3612 }
3613 
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3614 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3615 				     int min_uV, int max_uV)
3616 {
3617 	int ret;
3618 	int delay = 0;
3619 	int best_val = 0;
3620 	unsigned int selector;
3621 	int old_selector = -1;
3622 	const struct regulator_ops *ops = rdev->desc->ops;
3623 	int old_uV = regulator_get_voltage_rdev(rdev);
3624 
3625 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3626 
3627 	min_uV += rdev->constraints->uV_offset;
3628 	max_uV += rdev->constraints->uV_offset;
3629 
3630 	/*
3631 	 * If we can't obtain the old selector there is not enough
3632 	 * info to call set_voltage_time_sel().
3633 	 */
3634 	if (_regulator_is_enabled(rdev) &&
3635 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3636 		old_selector = ops->get_voltage_sel(rdev);
3637 		if (old_selector < 0)
3638 			return old_selector;
3639 	}
3640 
3641 	if (ops->set_voltage) {
3642 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3643 						  &selector);
3644 
3645 		if (ret >= 0) {
3646 			if (ops->list_voltage)
3647 				best_val = ops->list_voltage(rdev,
3648 							     selector);
3649 			else
3650 				best_val = regulator_get_voltage_rdev(rdev);
3651 		}
3652 
3653 	} else if (ops->set_voltage_sel) {
3654 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3655 		if (ret >= 0) {
3656 			best_val = ops->list_voltage(rdev, ret);
3657 			if (min_uV <= best_val && max_uV >= best_val) {
3658 				selector = ret;
3659 				if (old_selector == selector)
3660 					ret = 0;
3661 				else if (rdev->desc->vsel_step)
3662 					ret = _regulator_set_voltage_sel_step(
3663 						rdev, best_val, selector);
3664 				else
3665 					ret = _regulator_call_set_voltage_sel(
3666 						rdev, best_val, selector);
3667 			} else {
3668 				ret = -EINVAL;
3669 			}
3670 		}
3671 	} else {
3672 		ret = -EINVAL;
3673 	}
3674 
3675 	if (ret)
3676 		goto out;
3677 
3678 	if (ops->set_voltage_time_sel) {
3679 		/*
3680 		 * Call set_voltage_time_sel if successfully obtained
3681 		 * old_selector
3682 		 */
3683 		if (old_selector >= 0 && old_selector != selector)
3684 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3685 							  selector);
3686 	} else {
3687 		if (old_uV != best_val) {
3688 			if (ops->set_voltage_time)
3689 				delay = ops->set_voltage_time(rdev, old_uV,
3690 							      best_val);
3691 			else
3692 				delay = _regulator_set_voltage_time(rdev,
3693 								    old_uV,
3694 								    best_val);
3695 		}
3696 	}
3697 
3698 	if (delay < 0) {
3699 		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3700 		delay = 0;
3701 	}
3702 
3703 	/* Insert any necessary delays */
3704 	_regulator_delay_helper(delay);
3705 
3706 	if (best_val >= 0) {
3707 		unsigned long data = best_val;
3708 
3709 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3710 				     (void *)data);
3711 	}
3712 
3713 out:
3714 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3715 
3716 	return ret;
3717 }
3718 
_regulator_do_set_suspend_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3719 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3720 				  int min_uV, int max_uV, suspend_state_t state)
3721 {
3722 	struct regulator_state *rstate;
3723 	int uV, sel;
3724 
3725 	rstate = regulator_get_suspend_state(rdev, state);
3726 	if (rstate == NULL)
3727 		return -EINVAL;
3728 
3729 	if (min_uV < rstate->min_uV)
3730 		min_uV = rstate->min_uV;
3731 	if (max_uV > rstate->max_uV)
3732 		max_uV = rstate->max_uV;
3733 
3734 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3735 	if (sel < 0)
3736 		return sel;
3737 
3738 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3739 	if (uV >= min_uV && uV <= max_uV)
3740 		rstate->uV = uV;
3741 
3742 	return 0;
3743 }
3744 
regulator_set_voltage_unlocked(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3745 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3746 					  int min_uV, int max_uV,
3747 					  suspend_state_t state)
3748 {
3749 	struct regulator_dev *rdev = regulator->rdev;
3750 	struct regulator_voltage *voltage = &regulator->voltage[state];
3751 	int ret = 0;
3752 	int old_min_uV, old_max_uV;
3753 	int current_uV;
3754 
3755 	/* If we're setting the same range as last time the change
3756 	 * should be a noop (some cpufreq implementations use the same
3757 	 * voltage for multiple frequencies, for example).
3758 	 */
3759 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3760 		goto out;
3761 
3762 	/* If we're trying to set a range that overlaps the current voltage,
3763 	 * return successfully even though the regulator does not support
3764 	 * changing the voltage.
3765 	 */
3766 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3767 		current_uV = regulator_get_voltage_rdev(rdev);
3768 		if (min_uV <= current_uV && current_uV <= max_uV) {
3769 			voltage->min_uV = min_uV;
3770 			voltage->max_uV = max_uV;
3771 			goto out;
3772 		}
3773 	}
3774 
3775 	/* sanity check */
3776 	if (!rdev->desc->ops->set_voltage &&
3777 	    !rdev->desc->ops->set_voltage_sel) {
3778 		ret = -EINVAL;
3779 		goto out;
3780 	}
3781 
3782 	/* constraints check */
3783 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3784 	if (ret < 0)
3785 		goto out;
3786 
3787 	/* restore original values in case of error */
3788 	old_min_uV = voltage->min_uV;
3789 	old_max_uV = voltage->max_uV;
3790 	voltage->min_uV = min_uV;
3791 	voltage->max_uV = max_uV;
3792 
3793 	/* for not coupled regulators this will just set the voltage */
3794 	ret = regulator_balance_voltage(rdev, state);
3795 	if (ret < 0) {
3796 		voltage->min_uV = old_min_uV;
3797 		voltage->max_uV = old_max_uV;
3798 	}
3799 
3800 out:
3801 	return ret;
3802 }
3803 
regulator_set_voltage_rdev(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3804 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3805 			       int max_uV, suspend_state_t state)
3806 {
3807 	int best_supply_uV = 0;
3808 	int supply_change_uV = 0;
3809 	int ret;
3810 
3811 	if (rdev->supply &&
3812 	    regulator_ops_is_valid(rdev->supply->rdev,
3813 				   REGULATOR_CHANGE_VOLTAGE) &&
3814 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3815 					   rdev->desc->ops->get_voltage_sel))) {
3816 		int current_supply_uV;
3817 		int selector;
3818 
3819 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3820 		if (selector < 0) {
3821 			ret = selector;
3822 			goto out;
3823 		}
3824 
3825 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3826 		if (best_supply_uV < 0) {
3827 			ret = best_supply_uV;
3828 			goto out;
3829 		}
3830 
3831 		best_supply_uV += rdev->desc->min_dropout_uV;
3832 
3833 		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3834 		if (current_supply_uV < 0) {
3835 			ret = current_supply_uV;
3836 			goto out;
3837 		}
3838 
3839 		supply_change_uV = best_supply_uV - current_supply_uV;
3840 	}
3841 
3842 	if (supply_change_uV > 0) {
3843 		ret = regulator_set_voltage_unlocked(rdev->supply,
3844 				best_supply_uV, INT_MAX, state);
3845 		if (ret) {
3846 			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3847 				ERR_PTR(ret));
3848 			goto out;
3849 		}
3850 	}
3851 
3852 	if (state == PM_SUSPEND_ON)
3853 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3854 	else
3855 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3856 							max_uV, state);
3857 	if (ret < 0)
3858 		goto out;
3859 
3860 	if (supply_change_uV < 0) {
3861 		ret = regulator_set_voltage_unlocked(rdev->supply,
3862 				best_supply_uV, INT_MAX, state);
3863 		if (ret)
3864 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3865 				 ERR_PTR(ret));
3866 		/* No need to fail here */
3867 		ret = 0;
3868 	}
3869 
3870 out:
3871 	return ret;
3872 }
3873 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3874 
regulator_limit_voltage_step(struct regulator_dev * rdev,int * current_uV,int * min_uV)3875 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3876 					int *current_uV, int *min_uV)
3877 {
3878 	struct regulation_constraints *constraints = rdev->constraints;
3879 
3880 	/* Limit voltage change only if necessary */
3881 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3882 		return 1;
3883 
3884 	if (*current_uV < 0) {
3885 		*current_uV = regulator_get_voltage_rdev(rdev);
3886 
3887 		if (*current_uV < 0)
3888 			return *current_uV;
3889 	}
3890 
3891 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3892 		return 1;
3893 
3894 	/* Clamp target voltage within the given step */
3895 	if (*current_uV < *min_uV)
3896 		*min_uV = min(*current_uV + constraints->max_uV_step,
3897 			      *min_uV);
3898 	else
3899 		*min_uV = max(*current_uV - constraints->max_uV_step,
3900 			      *min_uV);
3901 
3902 	return 0;
3903 }
3904 
regulator_get_optimal_voltage(struct regulator_dev * rdev,int * current_uV,int * min_uV,int * max_uV,suspend_state_t state,int n_coupled)3905 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3906 					 int *current_uV,
3907 					 int *min_uV, int *max_uV,
3908 					 suspend_state_t state,
3909 					 int n_coupled)
3910 {
3911 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3912 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3913 	struct regulation_constraints *constraints = rdev->constraints;
3914 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3915 	int max_current_uV = 0, min_current_uV = INT_MAX;
3916 	int highest_min_uV = 0, target_uV, possible_uV;
3917 	int i, ret, max_spread;
3918 	bool done;
3919 
3920 	*current_uV = -1;
3921 
3922 	/*
3923 	 * If there are no coupled regulators, simply set the voltage
3924 	 * demanded by consumers.
3925 	 */
3926 	if (n_coupled == 1) {
3927 		/*
3928 		 * If consumers don't provide any demands, set voltage
3929 		 * to min_uV
3930 		 */
3931 		desired_min_uV = constraints->min_uV;
3932 		desired_max_uV = constraints->max_uV;
3933 
3934 		ret = regulator_check_consumers(rdev,
3935 						&desired_min_uV,
3936 						&desired_max_uV, state);
3937 		if (ret < 0)
3938 			return ret;
3939 
3940 		possible_uV = desired_min_uV;
3941 		done = true;
3942 
3943 		goto finish;
3944 	}
3945 
3946 	/* Find highest min desired voltage */
3947 	for (i = 0; i < n_coupled; i++) {
3948 		int tmp_min = 0;
3949 		int tmp_max = INT_MAX;
3950 
3951 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3952 
3953 		ret = regulator_check_consumers(c_rdevs[i],
3954 						&tmp_min,
3955 						&tmp_max, state);
3956 		if (ret < 0)
3957 			return ret;
3958 
3959 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3960 		if (ret < 0)
3961 			return ret;
3962 
3963 		highest_min_uV = max(highest_min_uV, tmp_min);
3964 
3965 		if (i == 0) {
3966 			desired_min_uV = tmp_min;
3967 			desired_max_uV = tmp_max;
3968 		}
3969 	}
3970 
3971 	max_spread = constraints->max_spread[0];
3972 
3973 	/*
3974 	 * Let target_uV be equal to the desired one if possible.
3975 	 * If not, set it to minimum voltage, allowed by other coupled
3976 	 * regulators.
3977 	 */
3978 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3979 
3980 	/*
3981 	 * Find min and max voltages, which currently aren't violating
3982 	 * max_spread.
3983 	 */
3984 	for (i = 1; i < n_coupled; i++) {
3985 		int tmp_act;
3986 
3987 		if (!_regulator_is_enabled(c_rdevs[i]))
3988 			continue;
3989 
3990 		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3991 		if (tmp_act < 0)
3992 			return tmp_act;
3993 
3994 		min_current_uV = min(tmp_act, min_current_uV);
3995 		max_current_uV = max(tmp_act, max_current_uV);
3996 	}
3997 
3998 	/* There aren't any other regulators enabled */
3999 	if (max_current_uV == 0) {
4000 		possible_uV = target_uV;
4001 	} else {
4002 		/*
4003 		 * Correct target voltage, so as it currently isn't
4004 		 * violating max_spread
4005 		 */
4006 		possible_uV = max(target_uV, max_current_uV - max_spread);
4007 		possible_uV = min(possible_uV, min_current_uV + max_spread);
4008 	}
4009 
4010 	if (possible_uV > desired_max_uV)
4011 		return -EINVAL;
4012 
4013 	done = (possible_uV == target_uV);
4014 	desired_min_uV = possible_uV;
4015 
4016 finish:
4017 	/* Apply max_uV_step constraint if necessary */
4018 	if (state == PM_SUSPEND_ON) {
4019 		ret = regulator_limit_voltage_step(rdev, current_uV,
4020 						   &desired_min_uV);
4021 		if (ret < 0)
4022 			return ret;
4023 
4024 		if (ret == 0)
4025 			done = false;
4026 	}
4027 
4028 	/* Set current_uV if wasn't done earlier in the code and if necessary */
4029 	if (n_coupled > 1 && *current_uV == -1) {
4030 
4031 		if (_regulator_is_enabled(rdev)) {
4032 			ret = regulator_get_voltage_rdev(rdev);
4033 			if (ret < 0)
4034 				return ret;
4035 
4036 			*current_uV = ret;
4037 		} else {
4038 			*current_uV = desired_min_uV;
4039 		}
4040 	}
4041 
4042 	*min_uV = desired_min_uV;
4043 	*max_uV = desired_max_uV;
4044 
4045 	return done;
4046 }
4047 
regulator_do_balance_voltage(struct regulator_dev * rdev,suspend_state_t state,bool skip_coupled)4048 int regulator_do_balance_voltage(struct regulator_dev *rdev,
4049 				 suspend_state_t state, bool skip_coupled)
4050 {
4051 	struct regulator_dev **c_rdevs;
4052 	struct regulator_dev *best_rdev;
4053 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4054 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4055 	unsigned int delta, best_delta;
4056 	unsigned long c_rdev_done = 0;
4057 	bool best_c_rdev_done;
4058 
4059 	c_rdevs = c_desc->coupled_rdevs;
4060 	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4061 
4062 	/*
4063 	 * Find the best possible voltage change on each loop. Leave the loop
4064 	 * if there isn't any possible change.
4065 	 */
4066 	do {
4067 		best_c_rdev_done = false;
4068 		best_delta = 0;
4069 		best_min_uV = 0;
4070 		best_max_uV = 0;
4071 		best_c_rdev = 0;
4072 		best_rdev = NULL;
4073 
4074 		/*
4075 		 * Find highest difference between optimal voltage
4076 		 * and current voltage.
4077 		 */
4078 		for (i = 0; i < n_coupled; i++) {
4079 			/*
4080 			 * optimal_uV is the best voltage that can be set for
4081 			 * i-th regulator at the moment without violating
4082 			 * max_spread constraint in order to balance
4083 			 * the coupled voltages.
4084 			 */
4085 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4086 
4087 			if (test_bit(i, &c_rdev_done))
4088 				continue;
4089 
4090 			ret = regulator_get_optimal_voltage(c_rdevs[i],
4091 							    &current_uV,
4092 							    &optimal_uV,
4093 							    &optimal_max_uV,
4094 							    state, n_coupled);
4095 			if (ret < 0)
4096 				goto out;
4097 
4098 			delta = abs(optimal_uV - current_uV);
4099 
4100 			if (delta && best_delta <= delta) {
4101 				best_c_rdev_done = ret;
4102 				best_delta = delta;
4103 				best_rdev = c_rdevs[i];
4104 				best_min_uV = optimal_uV;
4105 				best_max_uV = optimal_max_uV;
4106 				best_c_rdev = i;
4107 			}
4108 		}
4109 
4110 		/* Nothing to change, return successfully */
4111 		if (!best_rdev) {
4112 			ret = 0;
4113 			goto out;
4114 		}
4115 
4116 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4117 						 best_max_uV, state);
4118 
4119 		if (ret < 0)
4120 			goto out;
4121 
4122 		if (best_c_rdev_done)
4123 			set_bit(best_c_rdev, &c_rdev_done);
4124 
4125 	} while (n_coupled > 1);
4126 
4127 out:
4128 	return ret;
4129 }
4130 
regulator_balance_voltage(struct regulator_dev * rdev,suspend_state_t state)4131 static int regulator_balance_voltage(struct regulator_dev *rdev,
4132 				     suspend_state_t state)
4133 {
4134 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4135 	struct regulator_coupler *coupler = c_desc->coupler;
4136 	bool skip_coupled = false;
4137 
4138 	/*
4139 	 * If system is in a state other than PM_SUSPEND_ON, don't check
4140 	 * other coupled regulators.
4141 	 */
4142 	if (state != PM_SUSPEND_ON)
4143 		skip_coupled = true;
4144 
4145 	if (c_desc->n_resolved < c_desc->n_coupled) {
4146 		rdev_err(rdev, "Not all coupled regulators registered\n");
4147 		return -EPERM;
4148 	}
4149 
4150 	/* Invoke custom balancer for customized couplers */
4151 	if (coupler && coupler->balance_voltage)
4152 		return coupler->balance_voltage(coupler, rdev, state);
4153 
4154 	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4155 }
4156 
4157 /**
4158  * regulator_set_voltage - set regulator output voltage
4159  * @regulator: regulator source
4160  * @min_uV: Minimum required voltage in uV
4161  * @max_uV: Maximum acceptable voltage in uV
4162  *
4163  * Sets a voltage regulator to the desired output voltage. This can be set
4164  * during any regulator state. IOW, regulator can be disabled or enabled.
4165  *
4166  * If the regulator is enabled then the voltage will change to the new value
4167  * immediately otherwise if the regulator is disabled the regulator will
4168  * output at the new voltage when enabled.
4169  *
4170  * NOTE: If the regulator is shared between several devices then the lowest
4171  * request voltage that meets the system constraints will be used.
4172  * Regulator system constraints must be set for this regulator before
4173  * calling this function otherwise this call will fail.
4174  */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)4175 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4176 {
4177 	struct ww_acquire_ctx ww_ctx;
4178 	int ret;
4179 
4180 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4181 
4182 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4183 					     PM_SUSPEND_ON);
4184 
4185 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4186 
4187 	return ret;
4188 }
4189 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4190 
regulator_suspend_toggle(struct regulator_dev * rdev,suspend_state_t state,bool en)4191 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4192 					   suspend_state_t state, bool en)
4193 {
4194 	struct regulator_state *rstate;
4195 
4196 	rstate = regulator_get_suspend_state(rdev, state);
4197 	if (rstate == NULL)
4198 		return -EINVAL;
4199 
4200 	if (!rstate->changeable)
4201 		return -EPERM;
4202 
4203 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4204 
4205 	return 0;
4206 }
4207 
regulator_suspend_enable(struct regulator_dev * rdev,suspend_state_t state)4208 int regulator_suspend_enable(struct regulator_dev *rdev,
4209 				    suspend_state_t state)
4210 {
4211 	return regulator_suspend_toggle(rdev, state, true);
4212 }
4213 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4214 
regulator_suspend_disable(struct regulator_dev * rdev,suspend_state_t state)4215 int regulator_suspend_disable(struct regulator_dev *rdev,
4216 				     suspend_state_t state)
4217 {
4218 	struct regulator *regulator;
4219 	struct regulator_voltage *voltage;
4220 
4221 	/*
4222 	 * if any consumer wants this regulator device keeping on in
4223 	 * suspend states, don't set it as disabled.
4224 	 */
4225 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4226 		voltage = &regulator->voltage[state];
4227 		if (voltage->min_uV || voltage->max_uV)
4228 			return 0;
4229 	}
4230 
4231 	return regulator_suspend_toggle(rdev, state, false);
4232 }
4233 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4234 
_regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4235 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4236 					  int min_uV, int max_uV,
4237 					  suspend_state_t state)
4238 {
4239 	struct regulator_dev *rdev = regulator->rdev;
4240 	struct regulator_state *rstate;
4241 
4242 	rstate = regulator_get_suspend_state(rdev, state);
4243 	if (rstate == NULL)
4244 		return -EINVAL;
4245 
4246 	if (rstate->min_uV == rstate->max_uV) {
4247 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4248 		return -EPERM;
4249 	}
4250 
4251 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4252 }
4253 
regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4254 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4255 				  int max_uV, suspend_state_t state)
4256 {
4257 	struct ww_acquire_ctx ww_ctx;
4258 	int ret;
4259 
4260 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4261 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4262 		return -EINVAL;
4263 
4264 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4265 
4266 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4267 					     max_uV, state);
4268 
4269 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4270 
4271 	return ret;
4272 }
4273 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4274 
4275 /**
4276  * regulator_set_voltage_time - get raise/fall time
4277  * @regulator: regulator source
4278  * @old_uV: starting voltage in microvolts
4279  * @new_uV: target voltage in microvolts
4280  *
4281  * Provided with the starting and ending voltage, this function attempts to
4282  * calculate the time in microseconds required to rise or fall to this new
4283  * voltage.
4284  */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)4285 int regulator_set_voltage_time(struct regulator *regulator,
4286 			       int old_uV, int new_uV)
4287 {
4288 	struct regulator_dev *rdev = regulator->rdev;
4289 	const struct regulator_ops *ops = rdev->desc->ops;
4290 	int old_sel = -1;
4291 	int new_sel = -1;
4292 	int voltage;
4293 	int i;
4294 
4295 	if (ops->set_voltage_time)
4296 		return ops->set_voltage_time(rdev, old_uV, new_uV);
4297 	else if (!ops->set_voltage_time_sel)
4298 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4299 
4300 	/* Currently requires operations to do this */
4301 	if (!ops->list_voltage || !rdev->desc->n_voltages)
4302 		return -EINVAL;
4303 
4304 	for (i = 0; i < rdev->desc->n_voltages; i++) {
4305 		/* We only look for exact voltage matches here */
4306 		if (i < rdev->desc->linear_min_sel)
4307 			continue;
4308 
4309 		if (old_sel >= 0 && new_sel >= 0)
4310 			break;
4311 
4312 		voltage = regulator_list_voltage(regulator, i);
4313 		if (voltage < 0)
4314 			return -EINVAL;
4315 		if (voltage == 0)
4316 			continue;
4317 		if (voltage == old_uV)
4318 			old_sel = i;
4319 		if (voltage == new_uV)
4320 			new_sel = i;
4321 	}
4322 
4323 	if (old_sel < 0 || new_sel < 0)
4324 		return -EINVAL;
4325 
4326 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4327 }
4328 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4329 
4330 /**
4331  * regulator_set_voltage_time_sel - get raise/fall time
4332  * @rdev: regulator source device
4333  * @old_selector: selector for starting voltage
4334  * @new_selector: selector for target voltage
4335  *
4336  * Provided with the starting and target voltage selectors, this function
4337  * returns time in microseconds required to rise or fall to this new voltage
4338  *
4339  * Drivers providing ramp_delay in regulation_constraints can use this as their
4340  * set_voltage_time_sel() operation.
4341  */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)4342 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4343 				   unsigned int old_selector,
4344 				   unsigned int new_selector)
4345 {
4346 	int old_volt, new_volt;
4347 
4348 	/* sanity check */
4349 	if (!rdev->desc->ops->list_voltage)
4350 		return -EINVAL;
4351 
4352 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4353 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4354 
4355 	if (rdev->desc->ops->set_voltage_time)
4356 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4357 							 new_volt);
4358 	else
4359 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4360 }
4361 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4362 
regulator_sync_voltage_rdev(struct regulator_dev * rdev)4363 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4364 {
4365 	int ret;
4366 
4367 	regulator_lock(rdev);
4368 
4369 	if (!rdev->desc->ops->set_voltage &&
4370 	    !rdev->desc->ops->set_voltage_sel) {
4371 		ret = -EINVAL;
4372 		goto out;
4373 	}
4374 
4375 	/* balance only, if regulator is coupled */
4376 	if (rdev->coupling_desc.n_coupled > 1)
4377 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4378 	else
4379 		ret = -EOPNOTSUPP;
4380 
4381 out:
4382 	regulator_unlock(rdev);
4383 	return ret;
4384 }
4385 
4386 /**
4387  * regulator_sync_voltage - re-apply last regulator output voltage
4388  * @regulator: regulator source
4389  *
4390  * Re-apply the last configured voltage.  This is intended to be used
4391  * where some external control source the consumer is cooperating with
4392  * has caused the configured voltage to change.
4393  */
regulator_sync_voltage(struct regulator * regulator)4394 int regulator_sync_voltage(struct regulator *regulator)
4395 {
4396 	struct regulator_dev *rdev = regulator->rdev;
4397 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4398 	int ret, min_uV, max_uV;
4399 
4400 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4401 		return 0;
4402 
4403 	regulator_lock(rdev);
4404 
4405 	if (!rdev->desc->ops->set_voltage &&
4406 	    !rdev->desc->ops->set_voltage_sel) {
4407 		ret = -EINVAL;
4408 		goto out;
4409 	}
4410 
4411 	/* This is only going to work if we've had a voltage configured. */
4412 	if (!voltage->min_uV && !voltage->max_uV) {
4413 		ret = -EINVAL;
4414 		goto out;
4415 	}
4416 
4417 	min_uV = voltage->min_uV;
4418 	max_uV = voltage->max_uV;
4419 
4420 	/* This should be a paranoia check... */
4421 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4422 	if (ret < 0)
4423 		goto out;
4424 
4425 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4426 	if (ret < 0)
4427 		goto out;
4428 
4429 	/* balance only, if regulator is coupled */
4430 	if (rdev->coupling_desc.n_coupled > 1)
4431 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4432 	else
4433 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4434 
4435 out:
4436 	regulator_unlock(rdev);
4437 	return ret;
4438 }
4439 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4440 
regulator_get_voltage_rdev(struct regulator_dev * rdev)4441 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4442 {
4443 	int sel, ret;
4444 	bool bypassed;
4445 
4446 	if (rdev->desc->ops->get_bypass) {
4447 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4448 		if (ret < 0)
4449 			return ret;
4450 		if (bypassed) {
4451 			/* if bypassed the regulator must have a supply */
4452 			if (!rdev->supply) {
4453 				rdev_err(rdev,
4454 					 "bypassed regulator has no supply!\n");
4455 				return -EPROBE_DEFER;
4456 			}
4457 
4458 			return regulator_get_voltage_rdev(rdev->supply->rdev);
4459 		}
4460 	}
4461 
4462 	if (rdev->desc->ops->get_voltage_sel) {
4463 		sel = rdev->desc->ops->get_voltage_sel(rdev);
4464 		if (sel < 0)
4465 			return sel;
4466 		ret = rdev->desc->ops->list_voltage(rdev, sel);
4467 	} else if (rdev->desc->ops->get_voltage) {
4468 		ret = rdev->desc->ops->get_voltage(rdev);
4469 	} else if (rdev->desc->ops->list_voltage) {
4470 		ret = rdev->desc->ops->list_voltage(rdev, 0);
4471 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4472 		ret = rdev->desc->fixed_uV;
4473 	} else if (rdev->supply) {
4474 		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4475 	} else if (rdev->supply_name) {
4476 		return -EPROBE_DEFER;
4477 	} else {
4478 		return -EINVAL;
4479 	}
4480 
4481 	if (ret < 0)
4482 		return ret;
4483 	return ret - rdev->constraints->uV_offset;
4484 }
4485 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4486 
4487 /**
4488  * regulator_get_voltage - get regulator output voltage
4489  * @regulator: regulator source
4490  *
4491  * This returns the current regulator voltage in uV.
4492  *
4493  * NOTE: If the regulator is disabled it will return the voltage value. This
4494  * function should not be used to determine regulator state.
4495  */
regulator_get_voltage(struct regulator * regulator)4496 int regulator_get_voltage(struct regulator *regulator)
4497 {
4498 	struct ww_acquire_ctx ww_ctx;
4499 	int ret;
4500 
4501 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4502 	ret = regulator_get_voltage_rdev(regulator->rdev);
4503 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4504 
4505 	return ret;
4506 }
4507 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4508 
4509 /**
4510  * regulator_set_current_limit - set regulator output current limit
4511  * @regulator: regulator source
4512  * @min_uA: Minimum supported current in uA
4513  * @max_uA: Maximum supported current in uA
4514  *
4515  * Sets current sink to the desired output current. This can be set during
4516  * any regulator state. IOW, regulator can be disabled or enabled.
4517  *
4518  * If the regulator is enabled then the current will change to the new value
4519  * immediately otherwise if the regulator is disabled the regulator will
4520  * output at the new current when enabled.
4521  *
4522  * NOTE: Regulator system constraints must be set for this regulator before
4523  * calling this function otherwise this call will fail.
4524  */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)4525 int regulator_set_current_limit(struct regulator *regulator,
4526 			       int min_uA, int max_uA)
4527 {
4528 	struct regulator_dev *rdev = regulator->rdev;
4529 	int ret;
4530 
4531 	regulator_lock(rdev);
4532 
4533 	/* sanity check */
4534 	if (!rdev->desc->ops->set_current_limit) {
4535 		ret = -EINVAL;
4536 		goto out;
4537 	}
4538 
4539 	/* constraints check */
4540 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4541 	if (ret < 0)
4542 		goto out;
4543 
4544 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4545 out:
4546 	regulator_unlock(rdev);
4547 	return ret;
4548 }
4549 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4550 
_regulator_get_current_limit_unlocked(struct regulator_dev * rdev)4551 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4552 {
4553 	/* sanity check */
4554 	if (!rdev->desc->ops->get_current_limit)
4555 		return -EINVAL;
4556 
4557 	return rdev->desc->ops->get_current_limit(rdev);
4558 }
4559 
_regulator_get_current_limit(struct regulator_dev * rdev)4560 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4561 {
4562 	int ret;
4563 
4564 	regulator_lock(rdev);
4565 	ret = _regulator_get_current_limit_unlocked(rdev);
4566 	regulator_unlock(rdev);
4567 
4568 	return ret;
4569 }
4570 
4571 /**
4572  * regulator_get_current_limit - get regulator output current
4573  * @regulator: regulator source
4574  *
4575  * This returns the current supplied by the specified current sink in uA.
4576  *
4577  * NOTE: If the regulator is disabled it will return the current value. This
4578  * function should not be used to determine regulator state.
4579  */
regulator_get_current_limit(struct regulator * regulator)4580 int regulator_get_current_limit(struct regulator *regulator)
4581 {
4582 	return _regulator_get_current_limit(regulator->rdev);
4583 }
4584 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4585 
4586 /**
4587  * regulator_set_mode - set regulator operating mode
4588  * @regulator: regulator source
4589  * @mode: operating mode - one of the REGULATOR_MODE constants
4590  *
4591  * Set regulator operating mode to increase regulator efficiency or improve
4592  * regulation performance.
4593  *
4594  * NOTE: Regulator system constraints must be set for this regulator before
4595  * calling this function otherwise this call will fail.
4596  */
regulator_set_mode(struct regulator * regulator,unsigned int mode)4597 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4598 {
4599 	struct regulator_dev *rdev = regulator->rdev;
4600 	int ret;
4601 	int regulator_curr_mode;
4602 
4603 	regulator_lock(rdev);
4604 
4605 	/* sanity check */
4606 	if (!rdev->desc->ops->set_mode) {
4607 		ret = -EINVAL;
4608 		goto out;
4609 	}
4610 
4611 	/* return if the same mode is requested */
4612 	if (rdev->desc->ops->get_mode) {
4613 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4614 		if (regulator_curr_mode == mode) {
4615 			ret = 0;
4616 			goto out;
4617 		}
4618 	}
4619 
4620 	/* constraints check */
4621 	ret = regulator_mode_constrain(rdev, &mode);
4622 	if (ret < 0)
4623 		goto out;
4624 
4625 	ret = rdev->desc->ops->set_mode(rdev, mode);
4626 out:
4627 	regulator_unlock(rdev);
4628 	return ret;
4629 }
4630 EXPORT_SYMBOL_GPL(regulator_set_mode);
4631 
_regulator_get_mode_unlocked(struct regulator_dev * rdev)4632 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4633 {
4634 	/* sanity check */
4635 	if (!rdev->desc->ops->get_mode)
4636 		return -EINVAL;
4637 
4638 	return rdev->desc->ops->get_mode(rdev);
4639 }
4640 
_regulator_get_mode(struct regulator_dev * rdev)4641 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4642 {
4643 	int ret;
4644 
4645 	regulator_lock(rdev);
4646 	ret = _regulator_get_mode_unlocked(rdev);
4647 	regulator_unlock(rdev);
4648 
4649 	return ret;
4650 }
4651 
4652 /**
4653  * regulator_get_mode - get regulator operating mode
4654  * @regulator: regulator source
4655  *
4656  * Get the current regulator operating mode.
4657  */
regulator_get_mode(struct regulator * regulator)4658 unsigned int regulator_get_mode(struct regulator *regulator)
4659 {
4660 	return _regulator_get_mode(regulator->rdev);
4661 }
4662 EXPORT_SYMBOL_GPL(regulator_get_mode);
4663 
rdev_get_cached_err_flags(struct regulator_dev * rdev)4664 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4665 {
4666 	int ret = 0;
4667 
4668 	if (rdev->use_cached_err) {
4669 		spin_lock(&rdev->err_lock);
4670 		ret = rdev->cached_err;
4671 		spin_unlock(&rdev->err_lock);
4672 	}
4673 	return ret;
4674 }
4675 
_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)4676 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4677 					unsigned int *flags)
4678 {
4679 	int cached_flags, ret = 0;
4680 
4681 	regulator_lock(rdev);
4682 
4683 	cached_flags = rdev_get_cached_err_flags(rdev);
4684 
4685 	if (rdev->desc->ops->get_error_flags)
4686 		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4687 	else if (!rdev->use_cached_err)
4688 		ret = -EINVAL;
4689 
4690 	*flags |= cached_flags;
4691 
4692 	regulator_unlock(rdev);
4693 
4694 	return ret;
4695 }
4696 
4697 /**
4698  * regulator_get_error_flags - get regulator error information
4699  * @regulator: regulator source
4700  * @flags: pointer to store error flags
4701  *
4702  * Get the current regulator error information.
4703  */
regulator_get_error_flags(struct regulator * regulator,unsigned int * flags)4704 int regulator_get_error_flags(struct regulator *regulator,
4705 				unsigned int *flags)
4706 {
4707 	return _regulator_get_error_flags(regulator->rdev, flags);
4708 }
4709 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4710 
4711 /**
4712  * regulator_set_load - set regulator load
4713  * @regulator: regulator source
4714  * @uA_load: load current
4715  *
4716  * Notifies the regulator core of a new device load. This is then used by
4717  * DRMS (if enabled by constraints) to set the most efficient regulator
4718  * operating mode for the new regulator loading.
4719  *
4720  * Consumer devices notify their supply regulator of the maximum power
4721  * they will require (can be taken from device datasheet in the power
4722  * consumption tables) when they change operational status and hence power
4723  * state. Examples of operational state changes that can affect power
4724  * consumption are :-
4725  *
4726  *    o Device is opened / closed.
4727  *    o Device I/O is about to begin or has just finished.
4728  *    o Device is idling in between work.
4729  *
4730  * This information is also exported via sysfs to userspace.
4731  *
4732  * DRMS will sum the total requested load on the regulator and change
4733  * to the most efficient operating mode if platform constraints allow.
4734  *
4735  * NOTE: when a regulator consumer requests to have a regulator
4736  * disabled then any load that consumer requested no longer counts
4737  * toward the total requested load.  If the regulator is re-enabled
4738  * then the previously requested load will start counting again.
4739  *
4740  * If a regulator is an always-on regulator then an individual consumer's
4741  * load will still be removed if that consumer is fully disabled.
4742  *
4743  * On error a negative errno is returned.
4744  */
regulator_set_load(struct regulator * regulator,int uA_load)4745 int regulator_set_load(struct regulator *regulator, int uA_load)
4746 {
4747 	struct regulator_dev *rdev = regulator->rdev;
4748 	int old_uA_load;
4749 	int ret = 0;
4750 
4751 	regulator_lock(rdev);
4752 	old_uA_load = regulator->uA_load;
4753 	regulator->uA_load = uA_load;
4754 	if (regulator->enable_count && old_uA_load != uA_load) {
4755 		ret = drms_uA_update(rdev);
4756 		if (ret < 0)
4757 			regulator->uA_load = old_uA_load;
4758 	}
4759 	regulator_unlock(rdev);
4760 
4761 	return ret;
4762 }
4763 EXPORT_SYMBOL_GPL(regulator_set_load);
4764 
4765 /**
4766  * regulator_allow_bypass - allow the regulator to go into bypass mode
4767  *
4768  * @regulator: Regulator to configure
4769  * @enable: enable or disable bypass mode
4770  *
4771  * Allow the regulator to go into bypass mode if all other consumers
4772  * for the regulator also enable bypass mode and the machine
4773  * constraints allow this.  Bypass mode means that the regulator is
4774  * simply passing the input directly to the output with no regulation.
4775  */
regulator_allow_bypass(struct regulator * regulator,bool enable)4776 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4777 {
4778 	struct regulator_dev *rdev = regulator->rdev;
4779 	const char *name = rdev_get_name(rdev);
4780 	int ret = 0;
4781 
4782 	if (!rdev->desc->ops->set_bypass)
4783 		return 0;
4784 
4785 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4786 		return 0;
4787 
4788 	regulator_lock(rdev);
4789 
4790 	if (enable && !regulator->bypass) {
4791 		rdev->bypass_count++;
4792 
4793 		if (rdev->bypass_count == rdev->open_count) {
4794 			trace_regulator_bypass_enable(name);
4795 
4796 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4797 			if (ret != 0)
4798 				rdev->bypass_count--;
4799 			else
4800 				trace_regulator_bypass_enable_complete(name);
4801 		}
4802 
4803 	} else if (!enable && regulator->bypass) {
4804 		rdev->bypass_count--;
4805 
4806 		if (rdev->bypass_count != rdev->open_count) {
4807 			trace_regulator_bypass_disable(name);
4808 
4809 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4810 			if (ret != 0)
4811 				rdev->bypass_count++;
4812 			else
4813 				trace_regulator_bypass_disable_complete(name);
4814 		}
4815 	}
4816 
4817 	if (ret == 0)
4818 		regulator->bypass = enable;
4819 
4820 	regulator_unlock(rdev);
4821 
4822 	return ret;
4823 }
4824 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4825 
4826 /**
4827  * regulator_register_notifier - register regulator event notifier
4828  * @regulator: regulator source
4829  * @nb: notifier block
4830  *
4831  * Register notifier block to receive regulator events.
4832  */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)4833 int regulator_register_notifier(struct regulator *regulator,
4834 			      struct notifier_block *nb)
4835 {
4836 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4837 						nb);
4838 }
4839 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4840 
4841 /**
4842  * regulator_unregister_notifier - unregister regulator event notifier
4843  * @regulator: regulator source
4844  * @nb: notifier block
4845  *
4846  * Unregister regulator event notifier block.
4847  */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)4848 int regulator_unregister_notifier(struct regulator *regulator,
4849 				struct notifier_block *nb)
4850 {
4851 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4852 						  nb);
4853 }
4854 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4855 
4856 /* notify regulator consumers and downstream regulator consumers.
4857  * Note mutex must be held by caller.
4858  */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)4859 static int _notifier_call_chain(struct regulator_dev *rdev,
4860 				  unsigned long event, void *data)
4861 {
4862 	/* call rdev chain first */
4863 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4864 }
4865 
4866 /**
4867  * regulator_bulk_get - get multiple regulator consumers
4868  *
4869  * @dev:           Device to supply
4870  * @num_consumers: Number of consumers to register
4871  * @consumers:     Configuration of consumers; clients are stored here.
4872  *
4873  * @return 0 on success, an errno on failure.
4874  *
4875  * This helper function allows drivers to get several regulator
4876  * consumers in one operation.  If any of the regulators cannot be
4877  * acquired then any regulators that were allocated will be freed
4878  * before returning to the caller.
4879  */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)4880 int regulator_bulk_get(struct device *dev, int num_consumers,
4881 		       struct regulator_bulk_data *consumers)
4882 {
4883 	int i;
4884 	int ret;
4885 
4886 	for (i = 0; i < num_consumers; i++)
4887 		consumers[i].consumer = NULL;
4888 
4889 	for (i = 0; i < num_consumers; i++) {
4890 		consumers[i].consumer = regulator_get(dev,
4891 						      consumers[i].supply);
4892 		if (IS_ERR(consumers[i].consumer)) {
4893 			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4894 					    "Failed to get supply '%s'",
4895 					    consumers[i].supply);
4896 			consumers[i].consumer = NULL;
4897 			goto err;
4898 		}
4899 
4900 		if (consumers[i].init_load_uA > 0) {
4901 			ret = regulator_set_load(consumers[i].consumer,
4902 						 consumers[i].init_load_uA);
4903 			if (ret) {
4904 				i++;
4905 				goto err;
4906 			}
4907 		}
4908 	}
4909 
4910 	return 0;
4911 
4912 err:
4913 	while (--i >= 0)
4914 		regulator_put(consumers[i].consumer);
4915 
4916 	return ret;
4917 }
4918 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4919 
regulator_bulk_enable_async(void * data,async_cookie_t cookie)4920 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4921 {
4922 	struct regulator_bulk_data *bulk = data;
4923 
4924 	bulk->ret = regulator_enable(bulk->consumer);
4925 }
4926 
4927 /**
4928  * regulator_bulk_enable - enable multiple regulator consumers
4929  *
4930  * @num_consumers: Number of consumers
4931  * @consumers:     Consumer data; clients are stored here.
4932  * @return         0 on success, an errno on failure
4933  *
4934  * This convenience API allows consumers to enable multiple regulator
4935  * clients in a single API call.  If any consumers cannot be enabled
4936  * then any others that were enabled will be disabled again prior to
4937  * return.
4938  */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)4939 int regulator_bulk_enable(int num_consumers,
4940 			  struct regulator_bulk_data *consumers)
4941 {
4942 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4943 	int i;
4944 	int ret = 0;
4945 
4946 	for (i = 0; i < num_consumers; i++) {
4947 		async_schedule_domain(regulator_bulk_enable_async,
4948 				      &consumers[i], &async_domain);
4949 	}
4950 
4951 	async_synchronize_full_domain(&async_domain);
4952 
4953 	/* If any consumer failed we need to unwind any that succeeded */
4954 	for (i = 0; i < num_consumers; i++) {
4955 		if (consumers[i].ret != 0) {
4956 			ret = consumers[i].ret;
4957 			goto err;
4958 		}
4959 	}
4960 
4961 	return 0;
4962 
4963 err:
4964 	for (i = 0; i < num_consumers; i++) {
4965 		if (consumers[i].ret < 0)
4966 			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4967 			       ERR_PTR(consumers[i].ret));
4968 		else
4969 			regulator_disable(consumers[i].consumer);
4970 	}
4971 
4972 	return ret;
4973 }
4974 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4975 
4976 /**
4977  * regulator_bulk_disable - disable multiple regulator consumers
4978  *
4979  * @num_consumers: Number of consumers
4980  * @consumers:     Consumer data; clients are stored here.
4981  * @return         0 on success, an errno on failure
4982  *
4983  * This convenience API allows consumers to disable multiple regulator
4984  * clients in a single API call.  If any consumers cannot be disabled
4985  * then any others that were disabled will be enabled again prior to
4986  * return.
4987  */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)4988 int regulator_bulk_disable(int num_consumers,
4989 			   struct regulator_bulk_data *consumers)
4990 {
4991 	int i;
4992 	int ret, r;
4993 
4994 	for (i = num_consumers - 1; i >= 0; --i) {
4995 		ret = regulator_disable(consumers[i].consumer);
4996 		if (ret != 0)
4997 			goto err;
4998 	}
4999 
5000 	return 0;
5001 
5002 err:
5003 	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5004 	for (++i; i < num_consumers; ++i) {
5005 		r = regulator_enable(consumers[i].consumer);
5006 		if (r != 0)
5007 			pr_err("Failed to re-enable %s: %pe\n",
5008 			       consumers[i].supply, ERR_PTR(r));
5009 	}
5010 
5011 	return ret;
5012 }
5013 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5014 
5015 /**
5016  * regulator_bulk_force_disable - force disable multiple regulator consumers
5017  *
5018  * @num_consumers: Number of consumers
5019  * @consumers:     Consumer data; clients are stored here.
5020  * @return         0 on success, an errno on failure
5021  *
5022  * This convenience API allows consumers to forcibly disable multiple regulator
5023  * clients in a single API call.
5024  * NOTE: This should be used for situations when device damage will
5025  * likely occur if the regulators are not disabled (e.g. over temp).
5026  * Although regulator_force_disable function call for some consumers can
5027  * return error numbers, the function is called for all consumers.
5028  */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)5029 int regulator_bulk_force_disable(int num_consumers,
5030 			   struct regulator_bulk_data *consumers)
5031 {
5032 	int i;
5033 	int ret = 0;
5034 
5035 	for (i = 0; i < num_consumers; i++) {
5036 		consumers[i].ret =
5037 			    regulator_force_disable(consumers[i].consumer);
5038 
5039 		/* Store first error for reporting */
5040 		if (consumers[i].ret && !ret)
5041 			ret = consumers[i].ret;
5042 	}
5043 
5044 	return ret;
5045 }
5046 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5047 
5048 /**
5049  * regulator_bulk_free - free multiple regulator consumers
5050  *
5051  * @num_consumers: Number of consumers
5052  * @consumers:     Consumer data; clients are stored here.
5053  *
5054  * This convenience API allows consumers to free multiple regulator
5055  * clients in a single API call.
5056  */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)5057 void regulator_bulk_free(int num_consumers,
5058 			 struct regulator_bulk_data *consumers)
5059 {
5060 	int i;
5061 
5062 	for (i = 0; i < num_consumers; i++) {
5063 		regulator_put(consumers[i].consumer);
5064 		consumers[i].consumer = NULL;
5065 	}
5066 }
5067 EXPORT_SYMBOL_GPL(regulator_bulk_free);
5068 
5069 /**
5070  * regulator_notifier_call_chain - call regulator event notifier
5071  * @rdev: regulator source
5072  * @event: notifier block
5073  * @data: callback-specific data.
5074  *
5075  * Called by regulator drivers to notify clients a regulator event has
5076  * occurred.
5077  */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)5078 int regulator_notifier_call_chain(struct regulator_dev *rdev,
5079 				  unsigned long event, void *data)
5080 {
5081 	_notifier_call_chain(rdev, event, data);
5082 	return NOTIFY_DONE;
5083 
5084 }
5085 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5086 
5087 /**
5088  * regulator_mode_to_status - convert a regulator mode into a status
5089  *
5090  * @mode: Mode to convert
5091  *
5092  * Convert a regulator mode into a status.
5093  */
regulator_mode_to_status(unsigned int mode)5094 int regulator_mode_to_status(unsigned int mode)
5095 {
5096 	switch (mode) {
5097 	case REGULATOR_MODE_FAST:
5098 		return REGULATOR_STATUS_FAST;
5099 	case REGULATOR_MODE_NORMAL:
5100 		return REGULATOR_STATUS_NORMAL;
5101 	case REGULATOR_MODE_IDLE:
5102 		return REGULATOR_STATUS_IDLE;
5103 	case REGULATOR_MODE_STANDBY:
5104 		return REGULATOR_STATUS_STANDBY;
5105 	default:
5106 		return REGULATOR_STATUS_UNDEFINED;
5107 	}
5108 }
5109 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5110 
5111 static struct attribute *regulator_dev_attrs[] = {
5112 	&dev_attr_name.attr,
5113 	&dev_attr_num_users.attr,
5114 	&dev_attr_type.attr,
5115 	&dev_attr_microvolts.attr,
5116 	&dev_attr_microamps.attr,
5117 	&dev_attr_opmode.attr,
5118 	&dev_attr_state.attr,
5119 	&dev_attr_status.attr,
5120 	&dev_attr_bypass.attr,
5121 	&dev_attr_requested_microamps.attr,
5122 	&dev_attr_min_microvolts.attr,
5123 	&dev_attr_max_microvolts.attr,
5124 	&dev_attr_min_microamps.attr,
5125 	&dev_attr_max_microamps.attr,
5126 	&dev_attr_under_voltage.attr,
5127 	&dev_attr_over_current.attr,
5128 	&dev_attr_regulation_out.attr,
5129 	&dev_attr_fail.attr,
5130 	&dev_attr_over_temp.attr,
5131 	&dev_attr_under_voltage_warn.attr,
5132 	&dev_attr_over_current_warn.attr,
5133 	&dev_attr_over_voltage_warn.attr,
5134 	&dev_attr_over_temp_warn.attr,
5135 	&dev_attr_suspend_standby_state.attr,
5136 	&dev_attr_suspend_mem_state.attr,
5137 	&dev_attr_suspend_disk_state.attr,
5138 	&dev_attr_suspend_standby_microvolts.attr,
5139 	&dev_attr_suspend_mem_microvolts.attr,
5140 	&dev_attr_suspend_disk_microvolts.attr,
5141 	&dev_attr_suspend_standby_mode.attr,
5142 	&dev_attr_suspend_mem_mode.attr,
5143 	&dev_attr_suspend_disk_mode.attr,
5144 	NULL
5145 };
5146 
5147 /*
5148  * To avoid cluttering sysfs (and memory) with useless state, only
5149  * create attributes that can be meaningfully displayed.
5150  */
regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)5151 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5152 					 struct attribute *attr, int idx)
5153 {
5154 	struct device *dev = kobj_to_dev(kobj);
5155 	struct regulator_dev *rdev = dev_to_rdev(dev);
5156 	const struct regulator_ops *ops = rdev->desc->ops;
5157 	umode_t mode = attr->mode;
5158 
5159 	/* these three are always present */
5160 	if (attr == &dev_attr_name.attr ||
5161 	    attr == &dev_attr_num_users.attr ||
5162 	    attr == &dev_attr_type.attr)
5163 		return mode;
5164 
5165 	/* some attributes need specific methods to be displayed */
5166 	if (attr == &dev_attr_microvolts.attr) {
5167 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5168 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5169 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5170 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5171 			return mode;
5172 		return 0;
5173 	}
5174 
5175 	if (attr == &dev_attr_microamps.attr)
5176 		return ops->get_current_limit ? mode : 0;
5177 
5178 	if (attr == &dev_attr_opmode.attr)
5179 		return ops->get_mode ? mode : 0;
5180 
5181 	if (attr == &dev_attr_state.attr)
5182 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5183 
5184 	if (attr == &dev_attr_status.attr)
5185 		return ops->get_status ? mode : 0;
5186 
5187 	if (attr == &dev_attr_bypass.attr)
5188 		return ops->get_bypass ? mode : 0;
5189 
5190 	if (attr == &dev_attr_under_voltage.attr ||
5191 	    attr == &dev_attr_over_current.attr ||
5192 	    attr == &dev_attr_regulation_out.attr ||
5193 	    attr == &dev_attr_fail.attr ||
5194 	    attr == &dev_attr_over_temp.attr ||
5195 	    attr == &dev_attr_under_voltage_warn.attr ||
5196 	    attr == &dev_attr_over_current_warn.attr ||
5197 	    attr == &dev_attr_over_voltage_warn.attr ||
5198 	    attr == &dev_attr_over_temp_warn.attr)
5199 		return ops->get_error_flags ? mode : 0;
5200 
5201 	/* constraints need specific supporting methods */
5202 	if (attr == &dev_attr_min_microvolts.attr ||
5203 	    attr == &dev_attr_max_microvolts.attr)
5204 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5205 
5206 	if (attr == &dev_attr_min_microamps.attr ||
5207 	    attr == &dev_attr_max_microamps.attr)
5208 		return ops->set_current_limit ? mode : 0;
5209 
5210 	if (attr == &dev_attr_suspend_standby_state.attr ||
5211 	    attr == &dev_attr_suspend_mem_state.attr ||
5212 	    attr == &dev_attr_suspend_disk_state.attr)
5213 		return mode;
5214 
5215 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5216 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5217 	    attr == &dev_attr_suspend_disk_microvolts.attr)
5218 		return ops->set_suspend_voltage ? mode : 0;
5219 
5220 	if (attr == &dev_attr_suspend_standby_mode.attr ||
5221 	    attr == &dev_attr_suspend_mem_mode.attr ||
5222 	    attr == &dev_attr_suspend_disk_mode.attr)
5223 		return ops->set_suspend_mode ? mode : 0;
5224 
5225 	return mode;
5226 }
5227 
5228 static const struct attribute_group regulator_dev_group = {
5229 	.attrs = regulator_dev_attrs,
5230 	.is_visible = regulator_attr_is_visible,
5231 };
5232 
5233 static const struct attribute_group *regulator_dev_groups[] = {
5234 	&regulator_dev_group,
5235 	NULL
5236 };
5237 
regulator_dev_release(struct device * dev)5238 static void regulator_dev_release(struct device *dev)
5239 {
5240 	struct regulator_dev *rdev = dev_get_drvdata(dev);
5241 
5242 	debugfs_remove_recursive(rdev->debugfs);
5243 	kfree(rdev->constraints);
5244 	of_node_put(rdev->dev.of_node);
5245 	kfree(rdev);
5246 }
5247 
rdev_init_debugfs(struct regulator_dev * rdev)5248 static void rdev_init_debugfs(struct regulator_dev *rdev)
5249 {
5250 	struct device *parent = rdev->dev.parent;
5251 	const char *rname = rdev_get_name(rdev);
5252 	char name[NAME_MAX];
5253 
5254 	/* Avoid duplicate debugfs directory names */
5255 	if (parent && rname == rdev->desc->name) {
5256 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5257 			 rname);
5258 		rname = name;
5259 	}
5260 
5261 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5262 	if (IS_ERR(rdev->debugfs))
5263 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
5264 
5265 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5266 			   &rdev->use_count);
5267 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5268 			   &rdev->open_count);
5269 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5270 			   &rdev->bypass_count);
5271 }
5272 
regulator_register_resolve_supply(struct device * dev,void * data)5273 static int regulator_register_resolve_supply(struct device *dev, void *data)
5274 {
5275 	struct regulator_dev *rdev = dev_to_rdev(dev);
5276 
5277 	if (regulator_resolve_supply(rdev))
5278 		rdev_dbg(rdev, "unable to resolve supply\n");
5279 
5280 	return 0;
5281 }
5282 
regulator_coupler_register(struct regulator_coupler * coupler)5283 int regulator_coupler_register(struct regulator_coupler *coupler)
5284 {
5285 	mutex_lock(&regulator_list_mutex);
5286 	list_add_tail(&coupler->list, &regulator_coupler_list);
5287 	mutex_unlock(&regulator_list_mutex);
5288 
5289 	return 0;
5290 }
5291 
5292 static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev * rdev)5293 regulator_find_coupler(struct regulator_dev *rdev)
5294 {
5295 	struct regulator_coupler *coupler;
5296 	int err;
5297 
5298 	/*
5299 	 * Note that regulators are appended to the list and the generic
5300 	 * coupler is registered first, hence it will be attached at last
5301 	 * if nobody cared.
5302 	 */
5303 	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5304 		err = coupler->attach_regulator(coupler, rdev);
5305 		if (!err) {
5306 			if (!coupler->balance_voltage &&
5307 			    rdev->coupling_desc.n_coupled > 2)
5308 				goto err_unsupported;
5309 
5310 			return coupler;
5311 		}
5312 
5313 		if (err < 0)
5314 			return ERR_PTR(err);
5315 
5316 		if (err == 1)
5317 			continue;
5318 
5319 		break;
5320 	}
5321 
5322 	return ERR_PTR(-EINVAL);
5323 
5324 err_unsupported:
5325 	if (coupler->detach_regulator)
5326 		coupler->detach_regulator(coupler, rdev);
5327 
5328 	rdev_err(rdev,
5329 		"Voltage balancing for multiple regulator couples is unimplemented\n");
5330 
5331 	return ERR_PTR(-EPERM);
5332 }
5333 
regulator_resolve_coupling(struct regulator_dev * rdev)5334 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5335 {
5336 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5337 	struct coupling_desc *c_desc = &rdev->coupling_desc;
5338 	int n_coupled = c_desc->n_coupled;
5339 	struct regulator_dev *c_rdev;
5340 	int i;
5341 
5342 	for (i = 1; i < n_coupled; i++) {
5343 		/* already resolved */
5344 		if (c_desc->coupled_rdevs[i])
5345 			continue;
5346 
5347 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5348 
5349 		if (!c_rdev)
5350 			continue;
5351 
5352 		if (c_rdev->coupling_desc.coupler != coupler) {
5353 			rdev_err(rdev, "coupler mismatch with %s\n",
5354 				 rdev_get_name(c_rdev));
5355 			return;
5356 		}
5357 
5358 		c_desc->coupled_rdevs[i] = c_rdev;
5359 		c_desc->n_resolved++;
5360 
5361 		regulator_resolve_coupling(c_rdev);
5362 	}
5363 }
5364 
regulator_remove_coupling(struct regulator_dev * rdev)5365 static void regulator_remove_coupling(struct regulator_dev *rdev)
5366 {
5367 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5368 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5369 	struct regulator_dev *__c_rdev, *c_rdev;
5370 	unsigned int __n_coupled, n_coupled;
5371 	int i, k;
5372 	int err;
5373 
5374 	n_coupled = c_desc->n_coupled;
5375 
5376 	for (i = 1; i < n_coupled; i++) {
5377 		c_rdev = c_desc->coupled_rdevs[i];
5378 
5379 		if (!c_rdev)
5380 			continue;
5381 
5382 		regulator_lock(c_rdev);
5383 
5384 		__c_desc = &c_rdev->coupling_desc;
5385 		__n_coupled = __c_desc->n_coupled;
5386 
5387 		for (k = 1; k < __n_coupled; k++) {
5388 			__c_rdev = __c_desc->coupled_rdevs[k];
5389 
5390 			if (__c_rdev == rdev) {
5391 				__c_desc->coupled_rdevs[k] = NULL;
5392 				__c_desc->n_resolved--;
5393 				break;
5394 			}
5395 		}
5396 
5397 		regulator_unlock(c_rdev);
5398 
5399 		c_desc->coupled_rdevs[i] = NULL;
5400 		c_desc->n_resolved--;
5401 	}
5402 
5403 	if (coupler && coupler->detach_regulator) {
5404 		err = coupler->detach_regulator(coupler, rdev);
5405 		if (err)
5406 			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5407 				 ERR_PTR(err));
5408 	}
5409 
5410 	kfree(rdev->coupling_desc.coupled_rdevs);
5411 	rdev->coupling_desc.coupled_rdevs = NULL;
5412 }
5413 
regulator_init_coupling(struct regulator_dev * rdev)5414 static int regulator_init_coupling(struct regulator_dev *rdev)
5415 {
5416 	struct regulator_dev **coupled;
5417 	int err, n_phandles;
5418 
5419 	if (!IS_ENABLED(CONFIG_OF))
5420 		n_phandles = 0;
5421 	else
5422 		n_phandles = of_get_n_coupled(rdev);
5423 
5424 	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5425 	if (!coupled)
5426 		return -ENOMEM;
5427 
5428 	rdev->coupling_desc.coupled_rdevs = coupled;
5429 
5430 	/*
5431 	 * Every regulator should always have coupling descriptor filled with
5432 	 * at least pointer to itself.
5433 	 */
5434 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5435 	rdev->coupling_desc.n_coupled = n_phandles + 1;
5436 	rdev->coupling_desc.n_resolved++;
5437 
5438 	/* regulator isn't coupled */
5439 	if (n_phandles == 0)
5440 		return 0;
5441 
5442 	if (!of_check_coupling_data(rdev))
5443 		return -EPERM;
5444 
5445 	mutex_lock(&regulator_list_mutex);
5446 	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5447 	mutex_unlock(&regulator_list_mutex);
5448 
5449 	if (IS_ERR(rdev->coupling_desc.coupler)) {
5450 		err = PTR_ERR(rdev->coupling_desc.coupler);
5451 		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5452 		return err;
5453 	}
5454 
5455 	return 0;
5456 }
5457 
generic_coupler_attach(struct regulator_coupler * coupler,struct regulator_dev * rdev)5458 static int generic_coupler_attach(struct regulator_coupler *coupler,
5459 				  struct regulator_dev *rdev)
5460 {
5461 	if (rdev->coupling_desc.n_coupled > 2) {
5462 		rdev_err(rdev,
5463 			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5464 		return -EPERM;
5465 	}
5466 
5467 	if (!rdev->constraints->always_on) {
5468 		rdev_err(rdev,
5469 			 "Coupling of a non always-on regulator is unimplemented\n");
5470 		return -ENOTSUPP;
5471 	}
5472 
5473 	return 0;
5474 }
5475 
5476 static struct regulator_coupler generic_regulator_coupler = {
5477 	.attach_regulator = generic_coupler_attach,
5478 };
5479 
5480 /**
5481  * regulator_register - register regulator
5482  * @dev: the device that drive the regulator
5483  * @regulator_desc: regulator to register
5484  * @cfg: runtime configuration for regulator
5485  *
5486  * Called by regulator drivers to register a regulator.
5487  * Returns a valid pointer to struct regulator_dev on success
5488  * or an ERR_PTR() on error.
5489  */
5490 struct regulator_dev *
regulator_register(struct device * dev,const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)5491 regulator_register(struct device *dev,
5492 		   const struct regulator_desc *regulator_desc,
5493 		   const struct regulator_config *cfg)
5494 {
5495 	const struct regulator_init_data *init_data;
5496 	struct regulator_config *config = NULL;
5497 	static atomic_t regulator_no = ATOMIC_INIT(-1);
5498 	struct regulator_dev *rdev;
5499 	bool dangling_cfg_gpiod = false;
5500 	bool dangling_of_gpiod = false;
5501 	int ret, i;
5502 	bool resolved_early = false;
5503 
5504 	if (cfg == NULL)
5505 		return ERR_PTR(-EINVAL);
5506 	if (cfg->ena_gpiod)
5507 		dangling_cfg_gpiod = true;
5508 	if (regulator_desc == NULL) {
5509 		ret = -EINVAL;
5510 		goto rinse;
5511 	}
5512 
5513 	WARN_ON(!dev || !cfg->dev);
5514 
5515 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5516 		ret = -EINVAL;
5517 		goto rinse;
5518 	}
5519 
5520 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5521 	    regulator_desc->type != REGULATOR_CURRENT) {
5522 		ret = -EINVAL;
5523 		goto rinse;
5524 	}
5525 
5526 	/* Only one of each should be implemented */
5527 	WARN_ON(regulator_desc->ops->get_voltage &&
5528 		regulator_desc->ops->get_voltage_sel);
5529 	WARN_ON(regulator_desc->ops->set_voltage &&
5530 		regulator_desc->ops->set_voltage_sel);
5531 
5532 	/* If we're using selectors we must implement list_voltage. */
5533 	if (regulator_desc->ops->get_voltage_sel &&
5534 	    !regulator_desc->ops->list_voltage) {
5535 		ret = -EINVAL;
5536 		goto rinse;
5537 	}
5538 	if (regulator_desc->ops->set_voltage_sel &&
5539 	    !regulator_desc->ops->list_voltage) {
5540 		ret = -EINVAL;
5541 		goto rinse;
5542 	}
5543 
5544 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5545 	if (rdev == NULL) {
5546 		ret = -ENOMEM;
5547 		goto rinse;
5548 	}
5549 	device_initialize(&rdev->dev);
5550 	dev_set_drvdata(&rdev->dev, rdev);
5551 	rdev->dev.class = &regulator_class;
5552 	spin_lock_init(&rdev->err_lock);
5553 
5554 	/*
5555 	 * Duplicate the config so the driver could override it after
5556 	 * parsing init data.
5557 	 */
5558 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5559 	if (config == NULL) {
5560 		ret = -ENOMEM;
5561 		goto clean;
5562 	}
5563 
5564 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5565 					       &rdev->dev.of_node);
5566 
5567 	/*
5568 	 * Sometimes not all resources are probed already so we need to take
5569 	 * that into account. This happens most the time if the ena_gpiod comes
5570 	 * from a gpio extender or something else.
5571 	 */
5572 	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5573 		ret = -EPROBE_DEFER;
5574 		goto clean;
5575 	}
5576 
5577 	/*
5578 	 * We need to keep track of any GPIO descriptor coming from the
5579 	 * device tree until we have handled it over to the core. If the
5580 	 * config that was passed in to this function DOES NOT contain
5581 	 * a descriptor, and the config after this call DOES contain
5582 	 * a descriptor, we definitely got one from parsing the device
5583 	 * tree.
5584 	 */
5585 	if (!cfg->ena_gpiod && config->ena_gpiod)
5586 		dangling_of_gpiod = true;
5587 	if (!init_data) {
5588 		init_data = config->init_data;
5589 		rdev->dev.of_node = of_node_get(config->of_node);
5590 	}
5591 
5592 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5593 	rdev->reg_data = config->driver_data;
5594 	rdev->owner = regulator_desc->owner;
5595 	rdev->desc = regulator_desc;
5596 	if (config->regmap)
5597 		rdev->regmap = config->regmap;
5598 	else if (dev_get_regmap(dev, NULL))
5599 		rdev->regmap = dev_get_regmap(dev, NULL);
5600 	else if (dev->parent)
5601 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5602 	INIT_LIST_HEAD(&rdev->consumer_list);
5603 	INIT_LIST_HEAD(&rdev->list);
5604 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5605 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5606 
5607 	if (init_data && init_data->supply_regulator)
5608 		rdev->supply_name = init_data->supply_regulator;
5609 	else if (regulator_desc->supply_name)
5610 		rdev->supply_name = regulator_desc->supply_name;
5611 
5612 	/* register with sysfs */
5613 	rdev->dev.parent = config->dev;
5614 	dev_set_name(&rdev->dev, "regulator.%lu",
5615 		    (unsigned long) atomic_inc_return(&regulator_no));
5616 
5617 	/* set regulator constraints */
5618 	if (init_data)
5619 		rdev->constraints = kmemdup(&init_data->constraints,
5620 					    sizeof(*rdev->constraints),
5621 					    GFP_KERNEL);
5622 	else
5623 		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5624 					    GFP_KERNEL);
5625 	if (!rdev->constraints) {
5626 		ret = -ENOMEM;
5627 		goto wash;
5628 	}
5629 
5630 	if ((rdev->supply_name && !rdev->supply) &&
5631 		(rdev->constraints->always_on ||
5632 		 rdev->constraints->boot_on)) {
5633 		ret = regulator_resolve_supply(rdev);
5634 		if (ret)
5635 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5636 					 ERR_PTR(ret));
5637 
5638 		resolved_early = true;
5639 	}
5640 
5641 	/* perform any regulator specific init */
5642 	if (init_data && init_data->regulator_init) {
5643 		ret = init_data->regulator_init(rdev->reg_data);
5644 		if (ret < 0)
5645 			goto wash;
5646 	}
5647 
5648 	if (config->ena_gpiod) {
5649 		ret = regulator_ena_gpio_request(rdev, config);
5650 		if (ret != 0) {
5651 			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5652 				 ERR_PTR(ret));
5653 			goto wash;
5654 		}
5655 		/* The regulator core took over the GPIO descriptor */
5656 		dangling_cfg_gpiod = false;
5657 		dangling_of_gpiod = false;
5658 	}
5659 
5660 	ret = set_machine_constraints(rdev);
5661 	if (ret == -EPROBE_DEFER && !resolved_early) {
5662 		/* Regulator might be in bypass mode and so needs its supply
5663 		 * to set the constraints
5664 		 */
5665 		/* FIXME: this currently triggers a chicken-and-egg problem
5666 		 * when creating -SUPPLY symlink in sysfs to a regulator
5667 		 * that is just being created
5668 		 */
5669 		rdev_dbg(rdev, "will resolve supply early: %s\n",
5670 			 rdev->supply_name);
5671 		ret = regulator_resolve_supply(rdev);
5672 		if (!ret)
5673 			ret = set_machine_constraints(rdev);
5674 		else
5675 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5676 				 ERR_PTR(ret));
5677 	}
5678 	if (ret < 0)
5679 		goto wash;
5680 
5681 	ret = regulator_init_coupling(rdev);
5682 	if (ret < 0)
5683 		goto wash;
5684 
5685 	/* add consumers devices */
5686 	if (init_data) {
5687 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5688 			ret = set_consumer_device_supply(rdev,
5689 				init_data->consumer_supplies[i].dev_name,
5690 				init_data->consumer_supplies[i].supply);
5691 			if (ret < 0) {
5692 				dev_err(dev, "Failed to set supply %s\n",
5693 					init_data->consumer_supplies[i].supply);
5694 				goto unset_supplies;
5695 			}
5696 		}
5697 	}
5698 
5699 	if (!rdev->desc->ops->get_voltage &&
5700 	    !rdev->desc->ops->list_voltage &&
5701 	    !rdev->desc->fixed_uV)
5702 		rdev->is_switch = true;
5703 
5704 	ret = device_add(&rdev->dev);
5705 	if (ret != 0)
5706 		goto unset_supplies;
5707 
5708 	rdev_init_debugfs(rdev);
5709 
5710 	/* try to resolve regulators coupling since a new one was registered */
5711 	mutex_lock(&regulator_list_mutex);
5712 	regulator_resolve_coupling(rdev);
5713 	mutex_unlock(&regulator_list_mutex);
5714 
5715 	/* try to resolve regulators supply since a new one was registered */
5716 	class_for_each_device(&regulator_class, NULL, NULL,
5717 			      regulator_register_resolve_supply);
5718 	kfree(config);
5719 	return rdev;
5720 
5721 unset_supplies:
5722 	mutex_lock(&regulator_list_mutex);
5723 	unset_regulator_supplies(rdev);
5724 	regulator_remove_coupling(rdev);
5725 	mutex_unlock(&regulator_list_mutex);
5726 wash:
5727 	regulator_put(rdev->supply);
5728 	kfree(rdev->coupling_desc.coupled_rdevs);
5729 	mutex_lock(&regulator_list_mutex);
5730 	regulator_ena_gpio_free(rdev);
5731 	mutex_unlock(&regulator_list_mutex);
5732 clean:
5733 	if (dangling_of_gpiod)
5734 		gpiod_put(config->ena_gpiod);
5735 	kfree(config);
5736 	put_device(&rdev->dev);
5737 rinse:
5738 	if (dangling_cfg_gpiod)
5739 		gpiod_put(cfg->ena_gpiod);
5740 	return ERR_PTR(ret);
5741 }
5742 EXPORT_SYMBOL_GPL(regulator_register);
5743 
5744 /**
5745  * regulator_unregister - unregister regulator
5746  * @rdev: regulator to unregister
5747  *
5748  * Called by regulator drivers to unregister a regulator.
5749  */
regulator_unregister(struct regulator_dev * rdev)5750 void regulator_unregister(struct regulator_dev *rdev)
5751 {
5752 	if (rdev == NULL)
5753 		return;
5754 
5755 	if (rdev->supply) {
5756 		while (rdev->use_count--)
5757 			regulator_disable(rdev->supply);
5758 		regulator_put(rdev->supply);
5759 	}
5760 
5761 	flush_work(&rdev->disable_work.work);
5762 
5763 	mutex_lock(&regulator_list_mutex);
5764 
5765 	WARN_ON(rdev->open_count);
5766 	regulator_remove_coupling(rdev);
5767 	unset_regulator_supplies(rdev);
5768 	list_del(&rdev->list);
5769 	regulator_ena_gpio_free(rdev);
5770 	device_unregister(&rdev->dev);
5771 
5772 	mutex_unlock(&regulator_list_mutex);
5773 }
5774 EXPORT_SYMBOL_GPL(regulator_unregister);
5775 
5776 #ifdef CONFIG_SUSPEND
5777 /**
5778  * regulator_suspend - prepare regulators for system wide suspend
5779  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5780  *
5781  * Configure each regulator with it's suspend operating parameters for state.
5782  */
regulator_suspend(struct device * dev)5783 static int regulator_suspend(struct device *dev)
5784 {
5785 	struct regulator_dev *rdev = dev_to_rdev(dev);
5786 	suspend_state_t state = pm_suspend_target_state;
5787 	int ret;
5788 	const struct regulator_state *rstate;
5789 
5790 	rstate = regulator_get_suspend_state_check(rdev, state);
5791 	if (!rstate)
5792 		return 0;
5793 
5794 	regulator_lock(rdev);
5795 	ret = __suspend_set_state(rdev, rstate);
5796 	regulator_unlock(rdev);
5797 
5798 	return ret;
5799 }
5800 
regulator_resume(struct device * dev)5801 static int regulator_resume(struct device *dev)
5802 {
5803 	suspend_state_t state = pm_suspend_target_state;
5804 	struct regulator_dev *rdev = dev_to_rdev(dev);
5805 	struct regulator_state *rstate;
5806 	int ret = 0;
5807 
5808 	rstate = regulator_get_suspend_state(rdev, state);
5809 	if (rstate == NULL)
5810 		return 0;
5811 
5812 	/* Avoid grabbing the lock if we don't need to */
5813 	if (!rdev->desc->ops->resume)
5814 		return 0;
5815 
5816 	regulator_lock(rdev);
5817 
5818 	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5819 	    rstate->enabled == DISABLE_IN_SUSPEND)
5820 		ret = rdev->desc->ops->resume(rdev);
5821 
5822 	regulator_unlock(rdev);
5823 
5824 	return ret;
5825 }
5826 #else /* !CONFIG_SUSPEND */
5827 
5828 #define regulator_suspend	NULL
5829 #define regulator_resume	NULL
5830 
5831 #endif /* !CONFIG_SUSPEND */
5832 
5833 #ifdef CONFIG_PM
5834 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5835 	.suspend	= regulator_suspend,
5836 	.resume		= regulator_resume,
5837 };
5838 #endif
5839 
5840 struct class regulator_class = {
5841 	.name = "regulator",
5842 	.dev_release = regulator_dev_release,
5843 	.dev_groups = regulator_dev_groups,
5844 #ifdef CONFIG_PM
5845 	.pm = &regulator_pm_ops,
5846 #endif
5847 };
5848 /**
5849  * regulator_has_full_constraints - the system has fully specified constraints
5850  *
5851  * Calling this function will cause the regulator API to disable all
5852  * regulators which have a zero use count and don't have an always_on
5853  * constraint in a late_initcall.
5854  *
5855  * The intention is that this will become the default behaviour in a
5856  * future kernel release so users are encouraged to use this facility
5857  * now.
5858  */
regulator_has_full_constraints(void)5859 void regulator_has_full_constraints(void)
5860 {
5861 	has_full_constraints = 1;
5862 }
5863 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5864 
5865 /**
5866  * rdev_get_drvdata - get rdev regulator driver data
5867  * @rdev: regulator
5868  *
5869  * Get rdev regulator driver private data. This call can be used in the
5870  * regulator driver context.
5871  */
rdev_get_drvdata(struct regulator_dev * rdev)5872 void *rdev_get_drvdata(struct regulator_dev *rdev)
5873 {
5874 	return rdev->reg_data;
5875 }
5876 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5877 
5878 /**
5879  * regulator_get_drvdata - get regulator driver data
5880  * @regulator: regulator
5881  *
5882  * Get regulator driver private data. This call can be used in the consumer
5883  * driver context when non API regulator specific functions need to be called.
5884  */
regulator_get_drvdata(struct regulator * regulator)5885 void *regulator_get_drvdata(struct regulator *regulator)
5886 {
5887 	return regulator->rdev->reg_data;
5888 }
5889 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5890 
5891 /**
5892  * regulator_set_drvdata - set regulator driver data
5893  * @regulator: regulator
5894  * @data: data
5895  */
regulator_set_drvdata(struct regulator * regulator,void * data)5896 void regulator_set_drvdata(struct regulator *regulator, void *data)
5897 {
5898 	regulator->rdev->reg_data = data;
5899 }
5900 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5901 
5902 /**
5903  * rdev_get_id - get regulator ID
5904  * @rdev: regulator
5905  */
rdev_get_id(struct regulator_dev * rdev)5906 int rdev_get_id(struct regulator_dev *rdev)
5907 {
5908 	return rdev->desc->id;
5909 }
5910 EXPORT_SYMBOL_GPL(rdev_get_id);
5911 
rdev_get_dev(struct regulator_dev * rdev)5912 struct device *rdev_get_dev(struct regulator_dev *rdev)
5913 {
5914 	return &rdev->dev;
5915 }
5916 EXPORT_SYMBOL_GPL(rdev_get_dev);
5917 
rdev_get_regmap(struct regulator_dev * rdev)5918 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5919 {
5920 	return rdev->regmap;
5921 }
5922 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5923 
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)5924 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5925 {
5926 	return reg_init_data->driver_data;
5927 }
5928 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5929 
5930 #ifdef CONFIG_DEBUG_FS
supply_map_show(struct seq_file * sf,void * data)5931 static int supply_map_show(struct seq_file *sf, void *data)
5932 {
5933 	struct regulator_map *map;
5934 
5935 	list_for_each_entry(map, &regulator_map_list, list) {
5936 		seq_printf(sf, "%s -> %s.%s\n",
5937 				rdev_get_name(map->regulator), map->dev_name,
5938 				map->supply);
5939 	}
5940 
5941 	return 0;
5942 }
5943 DEFINE_SHOW_ATTRIBUTE(supply_map);
5944 
5945 struct summary_data {
5946 	struct seq_file *s;
5947 	struct regulator_dev *parent;
5948 	int level;
5949 };
5950 
5951 static void regulator_summary_show_subtree(struct seq_file *s,
5952 					   struct regulator_dev *rdev,
5953 					   int level);
5954 
regulator_summary_show_children(struct device * dev,void * data)5955 static int regulator_summary_show_children(struct device *dev, void *data)
5956 {
5957 	struct regulator_dev *rdev = dev_to_rdev(dev);
5958 	struct summary_data *summary_data = data;
5959 
5960 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5961 		regulator_summary_show_subtree(summary_data->s, rdev,
5962 					       summary_data->level + 1);
5963 
5964 	return 0;
5965 }
5966 
regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)5967 static void regulator_summary_show_subtree(struct seq_file *s,
5968 					   struct regulator_dev *rdev,
5969 					   int level)
5970 {
5971 	struct regulation_constraints *c;
5972 	struct regulator *consumer;
5973 	struct summary_data summary_data;
5974 	unsigned int opmode;
5975 
5976 	if (!rdev)
5977 		return;
5978 
5979 	opmode = _regulator_get_mode_unlocked(rdev);
5980 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5981 		   level * 3 + 1, "",
5982 		   30 - level * 3, rdev_get_name(rdev),
5983 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5984 		   regulator_opmode_to_str(opmode));
5985 
5986 	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5987 	seq_printf(s, "%5dmA ",
5988 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5989 
5990 	c = rdev->constraints;
5991 	if (c) {
5992 		switch (rdev->desc->type) {
5993 		case REGULATOR_VOLTAGE:
5994 			seq_printf(s, "%5dmV %5dmV ",
5995 				   c->min_uV / 1000, c->max_uV / 1000);
5996 			break;
5997 		case REGULATOR_CURRENT:
5998 			seq_printf(s, "%5dmA %5dmA ",
5999 				   c->min_uA / 1000, c->max_uA / 1000);
6000 			break;
6001 		}
6002 	}
6003 
6004 	seq_puts(s, "\n");
6005 
6006 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
6007 		if (consumer->dev && consumer->dev->class == &regulator_class)
6008 			continue;
6009 
6010 		seq_printf(s, "%*s%-*s ",
6011 			   (level + 1) * 3 + 1, "",
6012 			   30 - (level + 1) * 3,
6013 			   consumer->supply_name ? consumer->supply_name :
6014 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
6015 
6016 		switch (rdev->desc->type) {
6017 		case REGULATOR_VOLTAGE:
6018 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6019 				   consumer->enable_count,
6020 				   consumer->uA_load / 1000,
6021 				   consumer->uA_load && !consumer->enable_count ?
6022 				   '*' : ' ',
6023 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6024 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6025 			break;
6026 		case REGULATOR_CURRENT:
6027 			break;
6028 		}
6029 
6030 		seq_puts(s, "\n");
6031 	}
6032 
6033 	summary_data.s = s;
6034 	summary_data.level = level;
6035 	summary_data.parent = rdev;
6036 
6037 	class_for_each_device(&regulator_class, NULL, &summary_data,
6038 			      regulator_summary_show_children);
6039 }
6040 
6041 struct summary_lock_data {
6042 	struct ww_acquire_ctx *ww_ctx;
6043 	struct regulator_dev **new_contended_rdev;
6044 	struct regulator_dev **old_contended_rdev;
6045 };
6046 
regulator_summary_lock_one(struct device * dev,void * data)6047 static int regulator_summary_lock_one(struct device *dev, void *data)
6048 {
6049 	struct regulator_dev *rdev = dev_to_rdev(dev);
6050 	struct summary_lock_data *lock_data = data;
6051 	int ret = 0;
6052 
6053 	if (rdev != *lock_data->old_contended_rdev) {
6054 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6055 
6056 		if (ret == -EDEADLK)
6057 			*lock_data->new_contended_rdev = rdev;
6058 		else
6059 			WARN_ON_ONCE(ret);
6060 	} else {
6061 		*lock_data->old_contended_rdev = NULL;
6062 	}
6063 
6064 	return ret;
6065 }
6066 
regulator_summary_unlock_one(struct device * dev,void * data)6067 static int regulator_summary_unlock_one(struct device *dev, void *data)
6068 {
6069 	struct regulator_dev *rdev = dev_to_rdev(dev);
6070 	struct summary_lock_data *lock_data = data;
6071 
6072 	if (lock_data) {
6073 		if (rdev == *lock_data->new_contended_rdev)
6074 			return -EDEADLK;
6075 	}
6076 
6077 	regulator_unlock(rdev);
6078 
6079 	return 0;
6080 }
6081 
regulator_summary_lock_all(struct ww_acquire_ctx * ww_ctx,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev)6082 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6083 				      struct regulator_dev **new_contended_rdev,
6084 				      struct regulator_dev **old_contended_rdev)
6085 {
6086 	struct summary_lock_data lock_data;
6087 	int ret;
6088 
6089 	lock_data.ww_ctx = ww_ctx;
6090 	lock_data.new_contended_rdev = new_contended_rdev;
6091 	lock_data.old_contended_rdev = old_contended_rdev;
6092 
6093 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6094 				    regulator_summary_lock_one);
6095 	if (ret)
6096 		class_for_each_device(&regulator_class, NULL, &lock_data,
6097 				      regulator_summary_unlock_one);
6098 
6099 	return ret;
6100 }
6101 
regulator_summary_lock(struct ww_acquire_ctx * ww_ctx)6102 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6103 {
6104 	struct regulator_dev *new_contended_rdev = NULL;
6105 	struct regulator_dev *old_contended_rdev = NULL;
6106 	int err;
6107 
6108 	mutex_lock(&regulator_list_mutex);
6109 
6110 	ww_acquire_init(ww_ctx, &regulator_ww_class);
6111 
6112 	do {
6113 		if (new_contended_rdev) {
6114 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6115 			old_contended_rdev = new_contended_rdev;
6116 			old_contended_rdev->ref_cnt++;
6117 			old_contended_rdev->mutex_owner = current;
6118 		}
6119 
6120 		err = regulator_summary_lock_all(ww_ctx,
6121 						 &new_contended_rdev,
6122 						 &old_contended_rdev);
6123 
6124 		if (old_contended_rdev)
6125 			regulator_unlock(old_contended_rdev);
6126 
6127 	} while (err == -EDEADLK);
6128 
6129 	ww_acquire_done(ww_ctx);
6130 }
6131 
regulator_summary_unlock(struct ww_acquire_ctx * ww_ctx)6132 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6133 {
6134 	class_for_each_device(&regulator_class, NULL, NULL,
6135 			      regulator_summary_unlock_one);
6136 	ww_acquire_fini(ww_ctx);
6137 
6138 	mutex_unlock(&regulator_list_mutex);
6139 }
6140 
regulator_summary_show_roots(struct device * dev,void * data)6141 static int regulator_summary_show_roots(struct device *dev, void *data)
6142 {
6143 	struct regulator_dev *rdev = dev_to_rdev(dev);
6144 	struct seq_file *s = data;
6145 
6146 	if (!rdev->supply)
6147 		regulator_summary_show_subtree(s, rdev, 0);
6148 
6149 	return 0;
6150 }
6151 
regulator_summary_show(struct seq_file * s,void * data)6152 static int regulator_summary_show(struct seq_file *s, void *data)
6153 {
6154 	struct ww_acquire_ctx ww_ctx;
6155 
6156 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6157 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6158 
6159 	regulator_summary_lock(&ww_ctx);
6160 
6161 	class_for_each_device(&regulator_class, NULL, s,
6162 			      regulator_summary_show_roots);
6163 
6164 	regulator_summary_unlock(&ww_ctx);
6165 
6166 	return 0;
6167 }
6168 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6169 #endif /* CONFIG_DEBUG_FS */
6170 
regulator_init(void)6171 static int __init regulator_init(void)
6172 {
6173 	int ret;
6174 
6175 	ret = class_register(&regulator_class);
6176 
6177 	debugfs_root = debugfs_create_dir("regulator", NULL);
6178 	if (IS_ERR(debugfs_root))
6179 		pr_debug("regulator: Failed to create debugfs directory\n");
6180 
6181 #ifdef CONFIG_DEBUG_FS
6182 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6183 			    &supply_map_fops);
6184 
6185 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6186 			    NULL, &regulator_summary_fops);
6187 #endif
6188 	regulator_dummy_init();
6189 
6190 	regulator_coupler_register(&generic_regulator_coupler);
6191 
6192 	return ret;
6193 }
6194 
6195 /* init early to allow our consumers to complete system booting */
6196 core_initcall(regulator_init);
6197 
regulator_late_cleanup(struct device * dev,void * data)6198 static int regulator_late_cleanup(struct device *dev, void *data)
6199 {
6200 	struct regulator_dev *rdev = dev_to_rdev(dev);
6201 	struct regulation_constraints *c = rdev->constraints;
6202 	int ret;
6203 
6204 	if (c && c->always_on)
6205 		return 0;
6206 
6207 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6208 		return 0;
6209 
6210 	regulator_lock(rdev);
6211 
6212 	if (rdev->use_count)
6213 		goto unlock;
6214 
6215 	/* If reading the status failed, assume that it's off. */
6216 	if (_regulator_is_enabled(rdev) <= 0)
6217 		goto unlock;
6218 
6219 	if (have_full_constraints()) {
6220 		/* We log since this may kill the system if it goes
6221 		 * wrong.
6222 		 */
6223 		rdev_info(rdev, "disabling\n");
6224 		ret = _regulator_do_disable(rdev);
6225 		if (ret != 0)
6226 			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6227 	} else {
6228 		/* The intention is that in future we will
6229 		 * assume that full constraints are provided
6230 		 * so warn even if we aren't going to do
6231 		 * anything here.
6232 		 */
6233 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6234 	}
6235 
6236 unlock:
6237 	regulator_unlock(rdev);
6238 
6239 	return 0;
6240 }
6241 
regulator_init_complete_work_function(struct work_struct * work)6242 static void regulator_init_complete_work_function(struct work_struct *work)
6243 {
6244 	/*
6245 	 * Regulators may had failed to resolve their input supplies
6246 	 * when were registered, either because the input supply was
6247 	 * not registered yet or because its parent device was not
6248 	 * bound yet. So attempt to resolve the input supplies for
6249 	 * pending regulators before trying to disable unused ones.
6250 	 */
6251 	class_for_each_device(&regulator_class, NULL, NULL,
6252 			      regulator_register_resolve_supply);
6253 
6254 	/* If we have a full configuration then disable any regulators
6255 	 * we have permission to change the status for and which are
6256 	 * not in use or always_on.  This is effectively the default
6257 	 * for DT and ACPI as they have full constraints.
6258 	 */
6259 	class_for_each_device(&regulator_class, NULL, NULL,
6260 			      regulator_late_cleanup);
6261 }
6262 
6263 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6264 			    regulator_init_complete_work_function);
6265 
regulator_init_complete(void)6266 static int __init regulator_init_complete(void)
6267 {
6268 	/*
6269 	 * Since DT doesn't provide an idiomatic mechanism for
6270 	 * enabling full constraints and since it's much more natural
6271 	 * with DT to provide them just assume that a DT enabled
6272 	 * system has full constraints.
6273 	 */
6274 	if (of_have_populated_dt())
6275 		has_full_constraints = true;
6276 
6277 	/*
6278 	 * We punt completion for an arbitrary amount of time since
6279 	 * systems like distros will load many drivers from userspace
6280 	 * so consumers might not always be ready yet, this is
6281 	 * particularly an issue with laptops where this might bounce
6282 	 * the display off then on.  Ideally we'd get a notification
6283 	 * from userspace when this happens but we don't so just wait
6284 	 * a bit and hope we waited long enough.  It'd be better if
6285 	 * we'd only do this on systems that need it, and a kernel
6286 	 * command line option might be useful.
6287 	 */
6288 	schedule_delayed_work(&regulator_init_complete_work,
6289 			      msecs_to_jiffies(30000));
6290 
6291 	return 0;
6292 }
6293 late_initcall_sync(regulator_init_complete);
6294