• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/kernel/power/swap.c
4  *
5  * This file provides functions for reading the suspend image from
6  * and writing it to a swap partition.
7  *
8  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
9  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
10  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
11  */
12 
13 #define pr_fmt(fmt) "PM: " fmt
14 
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/device.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/pm.h>
25 #include <linux/slab.h>
26 #include <linux/lzo.h>
27 #include <linux/vmalloc.h>
28 #include <linux/cpumask.h>
29 #include <linux/atomic.h>
30 #include <linux/kthread.h>
31 #include <linux/crc32.h>
32 #include <linux/ktime.h>
33 #include <trace/hooks/bl_hib.h>
34 
35 #include "power.h"
36 
37 #define HIBERNATE_SIG	"S1SUSPEND"
38 
39 u32 swsusp_hardware_signature;
40 
41 /*
42  * When reading an {un,}compressed image, we may restore pages in place,
43  * in which case some architectures need these pages cleaning before they
44  * can be executed. We don't know which pages these may be, so clean the lot.
45  */
46 static bool clean_pages_on_read;
47 static bool clean_pages_on_decompress;
48 
49 /*
50  *	The swap map is a data structure used for keeping track of each page
51  *	written to a swap partition.  It consists of many swap_map_page
52  *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
53  *	These structures are stored on the swap and linked together with the
54  *	help of the .next_swap member.
55  *
56  *	The swap map is created during suspend.  The swap map pages are
57  *	allocated and populated one at a time, so we only need one memory
58  *	page to set up the entire structure.
59  *
60  *	During resume we pick up all swap_map_page structures into a list.
61  */
62 
63 #define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
64 
65 /*
66  * Number of free pages that are not high.
67  */
low_free_pages(void)68 static inline unsigned long low_free_pages(void)
69 {
70 	return nr_free_pages() - nr_free_highpages();
71 }
72 
73 /*
74  * Number of pages required to be kept free while writing the image. Always
75  * half of all available low pages before the writing starts.
76  */
reqd_free_pages(void)77 static inline unsigned long reqd_free_pages(void)
78 {
79 	return low_free_pages() / 2;
80 }
81 
82 struct swap_map_page {
83 	sector_t entries[MAP_PAGE_ENTRIES];
84 	sector_t next_swap;
85 };
86 
87 struct swap_map_page_list {
88 	struct swap_map_page *map;
89 	struct swap_map_page_list *next;
90 };
91 
92 /*
93  *	The swap_map_handle structure is used for handling swap in
94  *	a file-alike way
95  */
96 
97 struct swap_map_handle {
98 	struct swap_map_page *cur;
99 	struct swap_map_page_list *maps;
100 	sector_t cur_swap;
101 	sector_t first_sector;
102 	unsigned int k;
103 	unsigned long reqd_free_pages;
104 	u32 crc32;
105 };
106 
107 struct swsusp_header {
108 	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
109 	              sizeof(u32) - sizeof(u32)];
110 	u32	hw_sig;
111 	u32	crc32;
112 	sector_t image;
113 	unsigned int flags;	/* Flags to pass to the "boot" kernel */
114 	char	orig_sig[10];
115 	char	sig[10];
116 } __packed;
117 
118 static struct swsusp_header *swsusp_header;
119 
120 /*
121  *	The following functions are used for tracing the allocated
122  *	swap pages, so that they can be freed in case of an error.
123  */
124 
125 struct swsusp_extent {
126 	struct rb_node node;
127 	unsigned long start;
128 	unsigned long end;
129 };
130 
131 static struct rb_root swsusp_extents = RB_ROOT;
132 
swsusp_extents_insert(unsigned long swap_offset)133 static int swsusp_extents_insert(unsigned long swap_offset)
134 {
135 	struct rb_node **new = &(swsusp_extents.rb_node);
136 	struct rb_node *parent = NULL;
137 	struct swsusp_extent *ext;
138 
139 	/* Figure out where to put the new node */
140 	while (*new) {
141 		ext = rb_entry(*new, struct swsusp_extent, node);
142 		parent = *new;
143 		if (swap_offset < ext->start) {
144 			/* Try to merge */
145 			if (swap_offset == ext->start - 1) {
146 				ext->start--;
147 				return 0;
148 			}
149 			new = &((*new)->rb_left);
150 		} else if (swap_offset > ext->end) {
151 			/* Try to merge */
152 			if (swap_offset == ext->end + 1) {
153 				ext->end++;
154 				return 0;
155 			}
156 			new = &((*new)->rb_right);
157 		} else {
158 			/* It already is in the tree */
159 			return -EINVAL;
160 		}
161 	}
162 	/* Add the new node and rebalance the tree. */
163 	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
164 	if (!ext)
165 		return -ENOMEM;
166 
167 	ext->start = swap_offset;
168 	ext->end = swap_offset;
169 	rb_link_node(&ext->node, parent, new);
170 	rb_insert_color(&ext->node, &swsusp_extents);
171 	return 0;
172 }
173 
174 /*
175  *	alloc_swapdev_block - allocate a swap page and register that it has
176  *	been allocated, so that it can be freed in case of an error.
177  */
178 
alloc_swapdev_block(int swap)179 sector_t alloc_swapdev_block(int swap)
180 {
181 	unsigned long offset;
182 
183 	offset = swp_offset(get_swap_page_of_type(swap));
184 	if (offset) {
185 		if (swsusp_extents_insert(offset))
186 			swap_free(swp_entry(swap, offset));
187 		else
188 			return swapdev_block(swap, offset);
189 	}
190 	return 0;
191 }
192 EXPORT_SYMBOL_GPL(alloc_swapdev_block);
193 
194 /*
195  *	free_all_swap_pages - free swap pages allocated for saving image data.
196  *	It also frees the extents used to register which swap entries had been
197  *	allocated.
198  */
199 
free_all_swap_pages(int swap)200 void free_all_swap_pages(int swap)
201 {
202 	struct rb_node *node;
203 
204 	while ((node = swsusp_extents.rb_node)) {
205 		struct swsusp_extent *ext;
206 		unsigned long offset;
207 
208 		ext = rb_entry(node, struct swsusp_extent, node);
209 		rb_erase(node, &swsusp_extents);
210 		for (offset = ext->start; offset <= ext->end; offset++)
211 			swap_free(swp_entry(swap, offset));
212 
213 		kfree(ext);
214 	}
215 }
216 
swsusp_swap_in_use(void)217 int swsusp_swap_in_use(void)
218 {
219 	return (swsusp_extents.rb_node != NULL);
220 }
221 
222 /*
223  * General things
224  */
225 
226 static unsigned short root_swap = 0xffff;
227 static struct block_device *hib_resume_bdev;
228 
229 struct hib_bio_batch {
230 	atomic_t		count;
231 	wait_queue_head_t	wait;
232 	blk_status_t		error;
233 	struct blk_plug		plug;
234 };
235 
hib_init_batch(struct hib_bio_batch * hb)236 static void hib_init_batch(struct hib_bio_batch *hb)
237 {
238 	atomic_set(&hb->count, 0);
239 	init_waitqueue_head(&hb->wait);
240 	hb->error = BLK_STS_OK;
241 	blk_start_plug(&hb->plug);
242 }
243 
hib_finish_batch(struct hib_bio_batch * hb)244 static void hib_finish_batch(struct hib_bio_batch *hb)
245 {
246 	blk_finish_plug(&hb->plug);
247 }
248 
hib_end_io(struct bio * bio)249 static void hib_end_io(struct bio *bio)
250 {
251 	struct hib_bio_batch *hb = bio->bi_private;
252 	struct page *page = bio_first_page_all(bio);
253 
254 	if (bio->bi_status) {
255 		pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
256 			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
257 			 (unsigned long long)bio->bi_iter.bi_sector);
258 	}
259 
260 	if (bio_data_dir(bio) == WRITE)
261 		put_page(page);
262 	else if (clean_pages_on_read)
263 		flush_icache_range((unsigned long)page_address(page),
264 				   (unsigned long)page_address(page) + PAGE_SIZE);
265 
266 	if (bio->bi_status && !hb->error)
267 		hb->error = bio->bi_status;
268 	if (atomic_dec_and_test(&hb->count))
269 		wake_up(&hb->wait);
270 
271 	bio_put(bio);
272 }
273 
hib_submit_io(blk_opf_t opf,pgoff_t page_off,void * addr,struct hib_bio_batch * hb)274 static int hib_submit_io(blk_opf_t opf, pgoff_t page_off, void *addr,
275 			 struct hib_bio_batch *hb)
276 {
277 	struct page *page = virt_to_page(addr);
278 	struct bio *bio;
279 	int error = 0;
280 
281 	bio = bio_alloc(hib_resume_bdev, 1, opf, GFP_NOIO | __GFP_HIGH);
282 	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
283 
284 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
285 		pr_err("Adding page to bio failed at %llu\n",
286 		       (unsigned long long)bio->bi_iter.bi_sector);
287 		bio_put(bio);
288 		return -EFAULT;
289 	}
290 
291 	if (hb) {
292 		bio->bi_end_io = hib_end_io;
293 		bio->bi_private = hb;
294 		atomic_inc(&hb->count);
295 		submit_bio(bio);
296 	} else {
297 		error = submit_bio_wait(bio);
298 		bio_put(bio);
299 	}
300 
301 	return error;
302 }
303 
hib_wait_io(struct hib_bio_batch * hb)304 static int hib_wait_io(struct hib_bio_batch *hb)
305 {
306 	/*
307 	 * We are relying on the behavior of blk_plug that a thread with
308 	 * a plug will flush the plug list before sleeping.
309 	 */
310 	wait_event(hb->wait, atomic_read(&hb->count) == 0);
311 	return blk_status_to_errno(hb->error);
312 }
313 
314 /*
315  * Saving part
316  */
mark_swapfiles(struct swap_map_handle * handle,unsigned int flags)317 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
318 {
319 	int error;
320 
321 	hib_submit_io(REQ_OP_READ, swsusp_resume_block, swsusp_header, NULL);
322 	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
323 	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
324 		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
325 		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
326 		swsusp_header->image = handle->first_sector;
327 		if (swsusp_hardware_signature) {
328 			swsusp_header->hw_sig = swsusp_hardware_signature;
329 			flags |= SF_HW_SIG;
330 		}
331 		swsusp_header->flags = flags;
332 		if (flags & SF_CRC32_MODE)
333 			swsusp_header->crc32 = handle->crc32;
334 		error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
335 				      swsusp_resume_block, swsusp_header, NULL);
336 	} else {
337 		pr_err("Swap header not found!\n");
338 		error = -ENODEV;
339 	}
340 	return error;
341 }
342 
343 /**
344  *	swsusp_swap_check - check if the resume device is a swap device
345  *	and get its index (if so)
346  *
347  *	This is called before saving image
348  */
swsusp_swap_check(void)349 static int swsusp_swap_check(void)
350 {
351 	int res;
352 
353 	if (swsusp_resume_device)
354 		res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
355 	else
356 		res = find_first_swap(&swsusp_resume_device);
357 	if (res < 0)
358 		return res;
359 	root_swap = res;
360 
361 	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device, FMODE_WRITE,
362 			NULL);
363 	if (IS_ERR(hib_resume_bdev))
364 		return PTR_ERR(hib_resume_bdev);
365 
366 	res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
367 	if (res < 0)
368 		blkdev_put(hib_resume_bdev, FMODE_WRITE);
369 
370 	return res;
371 }
372 
373 /**
374  *	write_page - Write one page to given swap location.
375  *	@buf:		Address we're writing.
376  *	@offset:	Offset of the swap page we're writing to.
377  *	@hb:		bio completion batch
378  */
379 
write_page(void * buf,sector_t offset,struct hib_bio_batch * hb)380 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
381 {
382 	void *src;
383 	int ret;
384 
385 	if (!offset)
386 		return -ENOSPC;
387 
388 	if (hb) {
389 		src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
390 		                              __GFP_NORETRY);
391 		if (src) {
392 			copy_page(src, buf);
393 		} else {
394 			ret = hib_wait_io(hb); /* Free pages */
395 			if (ret)
396 				return ret;
397 			src = (void *)__get_free_page(GFP_NOIO |
398 			                              __GFP_NOWARN |
399 			                              __GFP_NORETRY);
400 			if (src) {
401 				copy_page(src, buf);
402 			} else {
403 				WARN_ON_ONCE(1);
404 				hb = NULL;	/* Go synchronous */
405 				src = buf;
406 			}
407 		}
408 	} else {
409 		src = buf;
410 	}
411 	return hib_submit_io(REQ_OP_WRITE | REQ_SYNC, offset, src, hb);
412 }
413 
release_swap_writer(struct swap_map_handle * handle)414 static void release_swap_writer(struct swap_map_handle *handle)
415 {
416 	if (handle->cur)
417 		free_page((unsigned long)handle->cur);
418 	handle->cur = NULL;
419 }
420 
get_swap_writer(struct swap_map_handle * handle)421 static int get_swap_writer(struct swap_map_handle *handle)
422 {
423 	int ret;
424 
425 	ret = swsusp_swap_check();
426 	if (ret) {
427 		if (ret != -ENOSPC)
428 			pr_err("Cannot find swap device, try swapon -a\n");
429 		return ret;
430 	}
431 	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
432 	if (!handle->cur) {
433 		ret = -ENOMEM;
434 		goto err_close;
435 	}
436 	handle->cur_swap = alloc_swapdev_block(root_swap);
437 	if (!handle->cur_swap) {
438 		ret = -ENOSPC;
439 		goto err_rel;
440 	}
441 	handle->k = 0;
442 	handle->reqd_free_pages = reqd_free_pages();
443 	handle->first_sector = handle->cur_swap;
444 	return 0;
445 err_rel:
446 	release_swap_writer(handle);
447 err_close:
448 	swsusp_close(FMODE_WRITE);
449 	return ret;
450 }
451 
swap_write_page(struct swap_map_handle * handle,void * buf,struct hib_bio_batch * hb)452 static int swap_write_page(struct swap_map_handle *handle, void *buf,
453 		struct hib_bio_batch *hb)
454 {
455 	int error = 0;
456 	sector_t offset;
457 	bool skip = false;
458 
459 	if (!handle->cur)
460 		return -EINVAL;
461 	offset = alloc_swapdev_block(root_swap);
462 	error = write_page(buf, offset, hb);
463 	if (error)
464 		return error;
465 	handle->cur->entries[handle->k++] = offset;
466 	if (handle->k >= MAP_PAGE_ENTRIES) {
467 		offset = alloc_swapdev_block(root_swap);
468 		if (!offset)
469 			return -ENOSPC;
470 		handle->cur->next_swap = offset;
471 		trace_android_vh_skip_swap_map_write(&skip);
472 		if (!skip) {
473 			error = write_page(handle->cur, handle->cur_swap, hb);
474 			if (error)
475 				goto out;
476 		}
477 		clear_page(handle->cur);
478 		handle->cur_swap = offset;
479 		handle->k = 0;
480 
481 		if (hb && low_free_pages() <= handle->reqd_free_pages) {
482 			error = hib_wait_io(hb);
483 			if (error)
484 				goto out;
485 			/*
486 			 * Recalculate the number of required free pages, to
487 			 * make sure we never take more than half.
488 			 */
489 			handle->reqd_free_pages = reqd_free_pages();
490 		}
491 	}
492  out:
493 	return error;
494 }
495 
flush_swap_writer(struct swap_map_handle * handle)496 static int flush_swap_writer(struct swap_map_handle *handle)
497 {
498 	if (handle->cur && handle->cur_swap)
499 		return write_page(handle->cur, handle->cur_swap, NULL);
500 	else
501 		return -EINVAL;
502 }
503 
swap_writer_finish(struct swap_map_handle * handle,unsigned int flags,int error)504 static int swap_writer_finish(struct swap_map_handle *handle,
505 		unsigned int flags, int error)
506 {
507 	if (!error) {
508 		pr_info("S");
509 		error = mark_swapfiles(handle, flags);
510 		pr_cont("|\n");
511 		flush_swap_writer(handle);
512 	}
513 
514 	if (error)
515 		free_all_swap_pages(root_swap);
516 	release_swap_writer(handle);
517 	swsusp_close(FMODE_WRITE);
518 
519 	return error;
520 }
521 
522 /* We need to remember how much compressed data we need to read. */
523 #define LZO_HEADER	sizeof(size_t)
524 
525 /* Number of pages/bytes we'll compress at one time. */
526 #define LZO_UNC_PAGES	32
527 #define LZO_UNC_SIZE	(LZO_UNC_PAGES * PAGE_SIZE)
528 
529 /* Number of pages/bytes we need for compressed data (worst case). */
530 #define LZO_CMP_PAGES	DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
531 			             LZO_HEADER, PAGE_SIZE)
532 #define LZO_CMP_SIZE	(LZO_CMP_PAGES * PAGE_SIZE)
533 
534 /* Maximum number of threads for compression/decompression. */
535 #define LZO_THREADS	3
536 
537 /* Minimum/maximum number of pages for read buffering. */
538 #define LZO_MIN_RD_PAGES	1024
539 #define LZO_MAX_RD_PAGES	8192
540 
541 
542 /**
543  *	save_image - save the suspend image data
544  */
545 
save_image(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_write)546 static int save_image(struct swap_map_handle *handle,
547                       struct snapshot_handle *snapshot,
548                       unsigned int nr_to_write)
549 {
550 	unsigned int m;
551 	int ret;
552 	int nr_pages;
553 	int err2;
554 	struct hib_bio_batch hb;
555 	ktime_t start;
556 	ktime_t stop;
557 
558 	hib_init_batch(&hb);
559 
560 	pr_info("Saving image data pages (%u pages)...\n",
561 		nr_to_write);
562 	m = nr_to_write / 10;
563 	if (!m)
564 		m = 1;
565 	nr_pages = 0;
566 	start = ktime_get();
567 	while (1) {
568 		ret = snapshot_read_next(snapshot);
569 		if (ret <= 0)
570 			break;
571 		trace_android_vh_encrypt_page(data_of(*snapshot));
572 		ret = swap_write_page(handle, data_of(*snapshot), &hb);
573 		if (ret)
574 			break;
575 		if (!(nr_pages % m))
576 			pr_info("Image saving progress: %3d%%\n",
577 				nr_pages / m * 10);
578 		nr_pages++;
579 	}
580 	err2 = hib_wait_io(&hb);
581 	hib_finish_batch(&hb);
582 	stop = ktime_get();
583 	if (!ret)
584 		ret = err2;
585 	if (!ret)
586 		pr_info("Image saving done\n");
587 	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
588 	trace_android_vh_post_image_save(root_swap);
589 	return ret;
590 }
591 
592 /**
593  * Structure used for CRC32.
594  */
595 struct crc_data {
596 	struct task_struct *thr;                  /* thread */
597 	atomic_t ready;                           /* ready to start flag */
598 	atomic_t stop;                            /* ready to stop flag */
599 	unsigned run_threads;                     /* nr current threads */
600 	wait_queue_head_t go;                     /* start crc update */
601 	wait_queue_head_t done;                   /* crc update done */
602 	u32 *crc32;                               /* points to handle's crc32 */
603 	size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
604 	unsigned char *unc[LZO_THREADS];          /* uncompressed data */
605 };
606 
607 /**
608  * CRC32 update function that runs in its own thread.
609  */
crc32_threadfn(void * data)610 static int crc32_threadfn(void *data)
611 {
612 	struct crc_data *d = data;
613 	unsigned i;
614 
615 	while (1) {
616 		wait_event(d->go, atomic_read_acquire(&d->ready) ||
617 		                  kthread_should_stop());
618 		if (kthread_should_stop()) {
619 			d->thr = NULL;
620 			atomic_set_release(&d->stop, 1);
621 			wake_up(&d->done);
622 			break;
623 		}
624 		atomic_set(&d->ready, 0);
625 
626 		for (i = 0; i < d->run_threads; i++)
627 			*d->crc32 = crc32_le(*d->crc32,
628 			                     d->unc[i], *d->unc_len[i]);
629 		atomic_set_release(&d->stop, 1);
630 		wake_up(&d->done);
631 	}
632 	return 0;
633 }
634 /**
635  * Structure used for LZO data compression.
636  */
637 struct cmp_data {
638 	struct task_struct *thr;                  /* thread */
639 	atomic_t ready;                           /* ready to start flag */
640 	atomic_t stop;                            /* ready to stop flag */
641 	int ret;                                  /* return code */
642 	wait_queue_head_t go;                     /* start compression */
643 	wait_queue_head_t done;                   /* compression done */
644 	size_t unc_len;                           /* uncompressed length */
645 	size_t cmp_len;                           /* compressed length */
646 	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
647 	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
648 	unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
649 };
650 
651 /**
652  * Compression function that runs in its own thread.
653  */
lzo_compress_threadfn(void * data)654 static int lzo_compress_threadfn(void *data)
655 {
656 	struct cmp_data *d = data;
657 
658 	while (1) {
659 		wait_event(d->go, atomic_read_acquire(&d->ready) ||
660 		                  kthread_should_stop());
661 		if (kthread_should_stop()) {
662 			d->thr = NULL;
663 			d->ret = -1;
664 			atomic_set_release(&d->stop, 1);
665 			wake_up(&d->done);
666 			break;
667 		}
668 		atomic_set(&d->ready, 0);
669 
670 		d->ret = lzo1x_1_compress(d->unc, d->unc_len,
671 		                          d->cmp + LZO_HEADER, &d->cmp_len,
672 		                          d->wrk);
673 		atomic_set_release(&d->stop, 1);
674 		wake_up(&d->done);
675 	}
676 	return 0;
677 }
678 
679 /**
680  * save_image_lzo - Save the suspend image data compressed with LZO.
681  * @handle: Swap map handle to use for saving the image.
682  * @snapshot: Image to read data from.
683  * @nr_to_write: Number of pages to save.
684  */
save_image_lzo(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_write)685 static int save_image_lzo(struct swap_map_handle *handle,
686                           struct snapshot_handle *snapshot,
687                           unsigned int nr_to_write)
688 {
689 	unsigned int m;
690 	int ret = 0;
691 	int nr_pages;
692 	int err2;
693 	struct hib_bio_batch hb;
694 	ktime_t start;
695 	ktime_t stop;
696 	size_t off;
697 	unsigned thr, run_threads, nr_threads;
698 	unsigned char *page = NULL;
699 	struct cmp_data *data = NULL;
700 	struct crc_data *crc = NULL;
701 
702 	hib_init_batch(&hb);
703 
704 	/*
705 	 * We'll limit the number of threads for compression to limit memory
706 	 * footprint.
707 	 */
708 	nr_threads = num_online_cpus() - 1;
709 	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
710 
711 	page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
712 	if (!page) {
713 		pr_err("Failed to allocate LZO page\n");
714 		ret = -ENOMEM;
715 		goto out_clean;
716 	}
717 
718 	data = vzalloc(array_size(nr_threads, sizeof(*data)));
719 	if (!data) {
720 		pr_err("Failed to allocate LZO data\n");
721 		ret = -ENOMEM;
722 		goto out_clean;
723 	}
724 
725 	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
726 	if (!crc) {
727 		pr_err("Failed to allocate crc\n");
728 		ret = -ENOMEM;
729 		goto out_clean;
730 	}
731 
732 	/*
733 	 * Start the compression threads.
734 	 */
735 	for (thr = 0; thr < nr_threads; thr++) {
736 		init_waitqueue_head(&data[thr].go);
737 		init_waitqueue_head(&data[thr].done);
738 
739 		data[thr].thr = kthread_run(lzo_compress_threadfn,
740 		                            &data[thr],
741 		                            "image_compress/%u", thr);
742 		if (IS_ERR(data[thr].thr)) {
743 			data[thr].thr = NULL;
744 			pr_err("Cannot start compression threads\n");
745 			ret = -ENOMEM;
746 			goto out_clean;
747 		}
748 	}
749 
750 	/*
751 	 * Start the CRC32 thread.
752 	 */
753 	init_waitqueue_head(&crc->go);
754 	init_waitqueue_head(&crc->done);
755 
756 	handle->crc32 = 0;
757 	crc->crc32 = &handle->crc32;
758 	for (thr = 0; thr < nr_threads; thr++) {
759 		crc->unc[thr] = data[thr].unc;
760 		crc->unc_len[thr] = &data[thr].unc_len;
761 	}
762 
763 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
764 	if (IS_ERR(crc->thr)) {
765 		crc->thr = NULL;
766 		pr_err("Cannot start CRC32 thread\n");
767 		ret = -ENOMEM;
768 		goto out_clean;
769 	}
770 
771 	/*
772 	 * Adjust the number of required free pages after all allocations have
773 	 * been done. We don't want to run out of pages when writing.
774 	 */
775 	handle->reqd_free_pages = reqd_free_pages();
776 
777 	pr_info("Using %u thread(s) for compression\n", nr_threads);
778 	pr_info("Compressing and saving image data (%u pages)...\n",
779 		nr_to_write);
780 	m = nr_to_write / 10;
781 	if (!m)
782 		m = 1;
783 	nr_pages = 0;
784 	start = ktime_get();
785 	for (;;) {
786 		for (thr = 0; thr < nr_threads; thr++) {
787 			for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
788 				ret = snapshot_read_next(snapshot);
789 				if (ret < 0)
790 					goto out_finish;
791 
792 				if (!ret)
793 					break;
794 
795 				memcpy(data[thr].unc + off,
796 				       data_of(*snapshot), PAGE_SIZE);
797 
798 				if (!(nr_pages % m))
799 					pr_info("Image saving progress: %3d%%\n",
800 						nr_pages / m * 10);
801 				nr_pages++;
802 			}
803 			if (!off)
804 				break;
805 
806 			data[thr].unc_len = off;
807 
808 			atomic_set_release(&data[thr].ready, 1);
809 			wake_up(&data[thr].go);
810 		}
811 
812 		if (!thr)
813 			break;
814 
815 		crc->run_threads = thr;
816 		atomic_set_release(&crc->ready, 1);
817 		wake_up(&crc->go);
818 
819 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
820 			wait_event(data[thr].done,
821 				atomic_read_acquire(&data[thr].stop));
822 			atomic_set(&data[thr].stop, 0);
823 
824 			ret = data[thr].ret;
825 
826 			if (ret < 0) {
827 				pr_err("LZO compression failed\n");
828 				goto out_finish;
829 			}
830 
831 			if (unlikely(!data[thr].cmp_len ||
832 			             data[thr].cmp_len >
833 			             lzo1x_worst_compress(data[thr].unc_len))) {
834 				pr_err("Invalid LZO compressed length\n");
835 				ret = -1;
836 				goto out_finish;
837 			}
838 
839 			*(size_t *)data[thr].cmp = data[thr].cmp_len;
840 
841 			/*
842 			 * Given we are writing one page at a time to disk, we
843 			 * copy that much from the buffer, although the last
844 			 * bit will likely be smaller than full page. This is
845 			 * OK - we saved the length of the compressed data, so
846 			 * any garbage at the end will be discarded when we
847 			 * read it.
848 			 */
849 			for (off = 0;
850 			     off < LZO_HEADER + data[thr].cmp_len;
851 			     off += PAGE_SIZE) {
852 				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
853 
854 				ret = swap_write_page(handle, page, &hb);
855 				if (ret)
856 					goto out_finish;
857 			}
858 		}
859 
860 		wait_event(crc->done, atomic_read_acquire(&crc->stop));
861 		atomic_set(&crc->stop, 0);
862 	}
863 
864 out_finish:
865 	err2 = hib_wait_io(&hb);
866 	stop = ktime_get();
867 	if (!ret)
868 		ret = err2;
869 	if (!ret)
870 		pr_info("Image saving done\n");
871 	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
872 out_clean:
873 	hib_finish_batch(&hb);
874 	if (crc) {
875 		if (crc->thr)
876 			kthread_stop(crc->thr);
877 		kfree(crc);
878 	}
879 	if (data) {
880 		for (thr = 0; thr < nr_threads; thr++)
881 			if (data[thr].thr)
882 				kthread_stop(data[thr].thr);
883 		vfree(data);
884 	}
885 	if (page) free_page((unsigned long)page);
886 
887 	return ret;
888 }
889 
890 /**
891  *	enough_swap - Make sure we have enough swap to save the image.
892  *
893  *	Returns TRUE or FALSE after checking the total amount of swap
894  *	space available from the resume partition.
895  */
896 
enough_swap(unsigned int nr_pages)897 static int enough_swap(unsigned int nr_pages)
898 {
899 	unsigned int free_swap = count_swap_pages(root_swap, 1);
900 	unsigned int required;
901 
902 	pr_debug("Free swap pages: %u\n", free_swap);
903 
904 	required = PAGES_FOR_IO + nr_pages;
905 	return free_swap > required;
906 }
907 
908 /**
909  *	swsusp_write - Write entire image and metadata.
910  *	@flags: flags to pass to the "boot" kernel in the image header
911  *
912  *	It is important _NOT_ to umount filesystems at this point. We want
913  *	them synced (in case something goes wrong) but we DO not want to mark
914  *	filesystem clean: it is not. (And it does not matter, if we resume
915  *	correctly, we'll mark system clean, anyway.)
916  */
917 
swsusp_write(unsigned int flags)918 int swsusp_write(unsigned int flags)
919 {
920 	struct swap_map_handle handle;
921 	struct snapshot_handle snapshot;
922 	struct swsusp_info *header;
923 	unsigned long pages;
924 	int error;
925 
926 	pages = snapshot_get_image_size();
927 	error = get_swap_writer(&handle);
928 	if (error) {
929 		pr_err("Cannot get swap writer\n");
930 		return error;
931 	}
932 	trace_android_vh_init_aes_encrypt(NULL);
933 	if (flags & SF_NOCOMPRESS_MODE) {
934 		if (!enough_swap(pages)) {
935 			pr_err("Not enough free swap\n");
936 			error = -ENOSPC;
937 			goto out_finish;
938 		}
939 	}
940 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
941 	error = snapshot_read_next(&snapshot);
942 	if (error < (int)PAGE_SIZE) {
943 		if (error >= 0)
944 			error = -EFAULT;
945 
946 		goto out_finish;
947 	}
948 	header = (struct swsusp_info *)data_of(snapshot);
949 	error = swap_write_page(&handle, header, NULL);
950 	if (!error) {
951 		error = (flags & SF_NOCOMPRESS_MODE) ?
952 			save_image(&handle, &snapshot, pages - 1) :
953 			save_image_lzo(&handle, &snapshot, pages - 1);
954 	}
955 out_finish:
956 	error = swap_writer_finish(&handle, flags, error);
957 	return error;
958 }
959 
960 /**
961  *	The following functions allow us to read data using a swap map
962  *	in a file-alike way
963  */
964 
release_swap_reader(struct swap_map_handle * handle)965 static void release_swap_reader(struct swap_map_handle *handle)
966 {
967 	struct swap_map_page_list *tmp;
968 
969 	while (handle->maps) {
970 		if (handle->maps->map)
971 			free_page((unsigned long)handle->maps->map);
972 		tmp = handle->maps;
973 		handle->maps = handle->maps->next;
974 		kfree(tmp);
975 	}
976 	handle->cur = NULL;
977 }
978 
get_swap_reader(struct swap_map_handle * handle,unsigned int * flags_p)979 static int get_swap_reader(struct swap_map_handle *handle,
980 		unsigned int *flags_p)
981 {
982 	int error;
983 	struct swap_map_page_list *tmp, *last;
984 	sector_t offset;
985 
986 	*flags_p = swsusp_header->flags;
987 
988 	if (!swsusp_header->image) /* how can this happen? */
989 		return -EINVAL;
990 
991 	handle->cur = NULL;
992 	last = handle->maps = NULL;
993 	offset = swsusp_header->image;
994 	while (offset) {
995 		tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
996 		if (!tmp) {
997 			release_swap_reader(handle);
998 			return -ENOMEM;
999 		}
1000 		if (!handle->maps)
1001 			handle->maps = tmp;
1002 		if (last)
1003 			last->next = tmp;
1004 		last = tmp;
1005 
1006 		tmp->map = (struct swap_map_page *)
1007 			   __get_free_page(GFP_NOIO | __GFP_HIGH);
1008 		if (!tmp->map) {
1009 			release_swap_reader(handle);
1010 			return -ENOMEM;
1011 		}
1012 
1013 		error = hib_submit_io(REQ_OP_READ, offset, tmp->map, NULL);
1014 		if (error) {
1015 			release_swap_reader(handle);
1016 			return error;
1017 		}
1018 		offset = tmp->map->next_swap;
1019 	}
1020 	handle->k = 0;
1021 	handle->cur = handle->maps->map;
1022 	return 0;
1023 }
1024 
swap_read_page(struct swap_map_handle * handle,void * buf,struct hib_bio_batch * hb)1025 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1026 		struct hib_bio_batch *hb)
1027 {
1028 	sector_t offset;
1029 	int error;
1030 	struct swap_map_page_list *tmp;
1031 
1032 	if (!handle->cur)
1033 		return -EINVAL;
1034 	offset = handle->cur->entries[handle->k];
1035 	if (!offset)
1036 		return -EFAULT;
1037 	error = hib_submit_io(REQ_OP_READ, offset, buf, hb);
1038 	if (error)
1039 		return error;
1040 	if (++handle->k >= MAP_PAGE_ENTRIES) {
1041 		handle->k = 0;
1042 		free_page((unsigned long)handle->maps->map);
1043 		tmp = handle->maps;
1044 		handle->maps = handle->maps->next;
1045 		kfree(tmp);
1046 		if (!handle->maps)
1047 			release_swap_reader(handle);
1048 		else
1049 			handle->cur = handle->maps->map;
1050 	}
1051 	return error;
1052 }
1053 
swap_reader_finish(struct swap_map_handle * handle)1054 static int swap_reader_finish(struct swap_map_handle *handle)
1055 {
1056 	release_swap_reader(handle);
1057 
1058 	return 0;
1059 }
1060 
1061 /**
1062  *	load_image - load the image using the swap map handle
1063  *	@handle and the snapshot handle @snapshot
1064  *	(assume there are @nr_pages pages to load)
1065  */
1066 
load_image(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_read)1067 static int load_image(struct swap_map_handle *handle,
1068                       struct snapshot_handle *snapshot,
1069                       unsigned int nr_to_read)
1070 {
1071 	unsigned int m;
1072 	int ret = 0;
1073 	ktime_t start;
1074 	ktime_t stop;
1075 	struct hib_bio_batch hb;
1076 	int err2;
1077 	unsigned nr_pages;
1078 
1079 	hib_init_batch(&hb);
1080 
1081 	clean_pages_on_read = true;
1082 	pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1083 	m = nr_to_read / 10;
1084 	if (!m)
1085 		m = 1;
1086 	nr_pages = 0;
1087 	start = ktime_get();
1088 	for ( ; ; ) {
1089 		ret = snapshot_write_next(snapshot);
1090 		if (ret <= 0)
1091 			break;
1092 		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1093 		if (ret)
1094 			break;
1095 		if (snapshot->sync_read)
1096 			ret = hib_wait_io(&hb);
1097 		if (ret)
1098 			break;
1099 		if (!(nr_pages % m))
1100 			pr_info("Image loading progress: %3d%%\n",
1101 				nr_pages / m * 10);
1102 		nr_pages++;
1103 	}
1104 	err2 = hib_wait_io(&hb);
1105 	hib_finish_batch(&hb);
1106 	stop = ktime_get();
1107 	if (!ret)
1108 		ret = err2;
1109 	if (!ret) {
1110 		pr_info("Image loading done\n");
1111 		snapshot_write_finalize(snapshot);
1112 		if (!snapshot_image_loaded(snapshot))
1113 			ret = -ENODATA;
1114 	}
1115 	swsusp_show_speed(start, stop, nr_to_read, "Read");
1116 	return ret;
1117 }
1118 
1119 /**
1120  * Structure used for LZO data decompression.
1121  */
1122 struct dec_data {
1123 	struct task_struct *thr;                  /* thread */
1124 	atomic_t ready;                           /* ready to start flag */
1125 	atomic_t stop;                            /* ready to stop flag */
1126 	int ret;                                  /* return code */
1127 	wait_queue_head_t go;                     /* start decompression */
1128 	wait_queue_head_t done;                   /* decompression done */
1129 	size_t unc_len;                           /* uncompressed length */
1130 	size_t cmp_len;                           /* compressed length */
1131 	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1132 	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1133 };
1134 
1135 /**
1136  * Decompression function that runs in its own thread.
1137  */
lzo_decompress_threadfn(void * data)1138 static int lzo_decompress_threadfn(void *data)
1139 {
1140 	struct dec_data *d = data;
1141 
1142 	while (1) {
1143 		wait_event(d->go, atomic_read_acquire(&d->ready) ||
1144 		                  kthread_should_stop());
1145 		if (kthread_should_stop()) {
1146 			d->thr = NULL;
1147 			d->ret = -1;
1148 			atomic_set_release(&d->stop, 1);
1149 			wake_up(&d->done);
1150 			break;
1151 		}
1152 		atomic_set(&d->ready, 0);
1153 
1154 		d->unc_len = LZO_UNC_SIZE;
1155 		d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1156 		                               d->unc, &d->unc_len);
1157 		if (clean_pages_on_decompress)
1158 			flush_icache_range((unsigned long)d->unc,
1159 					   (unsigned long)d->unc + d->unc_len);
1160 
1161 		atomic_set_release(&d->stop, 1);
1162 		wake_up(&d->done);
1163 	}
1164 	return 0;
1165 }
1166 
1167 /**
1168  * load_image_lzo - Load compressed image data and decompress them with LZO.
1169  * @handle: Swap map handle to use for loading data.
1170  * @snapshot: Image to copy uncompressed data into.
1171  * @nr_to_read: Number of pages to load.
1172  */
load_image_lzo(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_read)1173 static int load_image_lzo(struct swap_map_handle *handle,
1174                           struct snapshot_handle *snapshot,
1175                           unsigned int nr_to_read)
1176 {
1177 	unsigned int m;
1178 	int ret = 0;
1179 	int eof = 0;
1180 	struct hib_bio_batch hb;
1181 	ktime_t start;
1182 	ktime_t stop;
1183 	unsigned nr_pages;
1184 	size_t off;
1185 	unsigned i, thr, run_threads, nr_threads;
1186 	unsigned ring = 0, pg = 0, ring_size = 0,
1187 	         have = 0, want, need, asked = 0;
1188 	unsigned long read_pages = 0;
1189 	unsigned char **page = NULL;
1190 	struct dec_data *data = NULL;
1191 	struct crc_data *crc = NULL;
1192 
1193 	hib_init_batch(&hb);
1194 
1195 	/*
1196 	 * We'll limit the number of threads for decompression to limit memory
1197 	 * footprint.
1198 	 */
1199 	nr_threads = num_online_cpus() - 1;
1200 	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1201 
1202 	page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page)));
1203 	if (!page) {
1204 		pr_err("Failed to allocate LZO page\n");
1205 		ret = -ENOMEM;
1206 		goto out_clean;
1207 	}
1208 
1209 	data = vzalloc(array_size(nr_threads, sizeof(*data)));
1210 	if (!data) {
1211 		pr_err("Failed to allocate LZO data\n");
1212 		ret = -ENOMEM;
1213 		goto out_clean;
1214 	}
1215 
1216 	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
1217 	if (!crc) {
1218 		pr_err("Failed to allocate crc\n");
1219 		ret = -ENOMEM;
1220 		goto out_clean;
1221 	}
1222 
1223 	clean_pages_on_decompress = true;
1224 
1225 	/*
1226 	 * Start the decompression threads.
1227 	 */
1228 	for (thr = 0; thr < nr_threads; thr++) {
1229 		init_waitqueue_head(&data[thr].go);
1230 		init_waitqueue_head(&data[thr].done);
1231 
1232 		data[thr].thr = kthread_run(lzo_decompress_threadfn,
1233 		                            &data[thr],
1234 		                            "image_decompress/%u", thr);
1235 		if (IS_ERR(data[thr].thr)) {
1236 			data[thr].thr = NULL;
1237 			pr_err("Cannot start decompression threads\n");
1238 			ret = -ENOMEM;
1239 			goto out_clean;
1240 		}
1241 	}
1242 
1243 	/*
1244 	 * Start the CRC32 thread.
1245 	 */
1246 	init_waitqueue_head(&crc->go);
1247 	init_waitqueue_head(&crc->done);
1248 
1249 	handle->crc32 = 0;
1250 	crc->crc32 = &handle->crc32;
1251 	for (thr = 0; thr < nr_threads; thr++) {
1252 		crc->unc[thr] = data[thr].unc;
1253 		crc->unc_len[thr] = &data[thr].unc_len;
1254 	}
1255 
1256 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1257 	if (IS_ERR(crc->thr)) {
1258 		crc->thr = NULL;
1259 		pr_err("Cannot start CRC32 thread\n");
1260 		ret = -ENOMEM;
1261 		goto out_clean;
1262 	}
1263 
1264 	/*
1265 	 * Set the number of pages for read buffering.
1266 	 * This is complete guesswork, because we'll only know the real
1267 	 * picture once prepare_image() is called, which is much later on
1268 	 * during the image load phase. We'll assume the worst case and
1269 	 * say that none of the image pages are from high memory.
1270 	 */
1271 	if (low_free_pages() > snapshot_get_image_size())
1272 		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1273 	read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1274 
1275 	for (i = 0; i < read_pages; i++) {
1276 		page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1277 						  GFP_NOIO | __GFP_HIGH :
1278 						  GFP_NOIO | __GFP_NOWARN |
1279 						  __GFP_NORETRY);
1280 
1281 		if (!page[i]) {
1282 			if (i < LZO_CMP_PAGES) {
1283 				ring_size = i;
1284 				pr_err("Failed to allocate LZO pages\n");
1285 				ret = -ENOMEM;
1286 				goto out_clean;
1287 			} else {
1288 				break;
1289 			}
1290 		}
1291 	}
1292 	want = ring_size = i;
1293 
1294 	pr_info("Using %u thread(s) for decompression\n", nr_threads);
1295 	pr_info("Loading and decompressing image data (%u pages)...\n",
1296 		nr_to_read);
1297 	m = nr_to_read / 10;
1298 	if (!m)
1299 		m = 1;
1300 	nr_pages = 0;
1301 	start = ktime_get();
1302 
1303 	ret = snapshot_write_next(snapshot);
1304 	if (ret <= 0)
1305 		goto out_finish;
1306 
1307 	for(;;) {
1308 		for (i = 0; !eof && i < want; i++) {
1309 			ret = swap_read_page(handle, page[ring], &hb);
1310 			if (ret) {
1311 				/*
1312 				 * On real read error, finish. On end of data,
1313 				 * set EOF flag and just exit the read loop.
1314 				 */
1315 				if (handle->cur &&
1316 				    handle->cur->entries[handle->k]) {
1317 					goto out_finish;
1318 				} else {
1319 					eof = 1;
1320 					break;
1321 				}
1322 			}
1323 			if (++ring >= ring_size)
1324 				ring = 0;
1325 		}
1326 		asked += i;
1327 		want -= i;
1328 
1329 		/*
1330 		 * We are out of data, wait for some more.
1331 		 */
1332 		if (!have) {
1333 			if (!asked)
1334 				break;
1335 
1336 			ret = hib_wait_io(&hb);
1337 			if (ret)
1338 				goto out_finish;
1339 			have += asked;
1340 			asked = 0;
1341 			if (eof)
1342 				eof = 2;
1343 		}
1344 
1345 		if (crc->run_threads) {
1346 			wait_event(crc->done, atomic_read_acquire(&crc->stop));
1347 			atomic_set(&crc->stop, 0);
1348 			crc->run_threads = 0;
1349 		}
1350 
1351 		for (thr = 0; have && thr < nr_threads; thr++) {
1352 			data[thr].cmp_len = *(size_t *)page[pg];
1353 			if (unlikely(!data[thr].cmp_len ||
1354 			             data[thr].cmp_len >
1355 			             lzo1x_worst_compress(LZO_UNC_SIZE))) {
1356 				pr_err("Invalid LZO compressed length\n");
1357 				ret = -1;
1358 				goto out_finish;
1359 			}
1360 
1361 			need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1362 			                    PAGE_SIZE);
1363 			if (need > have) {
1364 				if (eof > 1) {
1365 					ret = -1;
1366 					goto out_finish;
1367 				}
1368 				break;
1369 			}
1370 
1371 			for (off = 0;
1372 			     off < LZO_HEADER + data[thr].cmp_len;
1373 			     off += PAGE_SIZE) {
1374 				memcpy(data[thr].cmp + off,
1375 				       page[pg], PAGE_SIZE);
1376 				have--;
1377 				want++;
1378 				if (++pg >= ring_size)
1379 					pg = 0;
1380 			}
1381 
1382 			atomic_set_release(&data[thr].ready, 1);
1383 			wake_up(&data[thr].go);
1384 		}
1385 
1386 		/*
1387 		 * Wait for more data while we are decompressing.
1388 		 */
1389 		if (have < LZO_CMP_PAGES && asked) {
1390 			ret = hib_wait_io(&hb);
1391 			if (ret)
1392 				goto out_finish;
1393 			have += asked;
1394 			asked = 0;
1395 			if (eof)
1396 				eof = 2;
1397 		}
1398 
1399 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1400 			wait_event(data[thr].done,
1401 				atomic_read_acquire(&data[thr].stop));
1402 			atomic_set(&data[thr].stop, 0);
1403 
1404 			ret = data[thr].ret;
1405 
1406 			if (ret < 0) {
1407 				pr_err("LZO decompression failed\n");
1408 				goto out_finish;
1409 			}
1410 
1411 			if (unlikely(!data[thr].unc_len ||
1412 			             data[thr].unc_len > LZO_UNC_SIZE ||
1413 			             data[thr].unc_len & (PAGE_SIZE - 1))) {
1414 				pr_err("Invalid LZO uncompressed length\n");
1415 				ret = -1;
1416 				goto out_finish;
1417 			}
1418 
1419 			for (off = 0;
1420 			     off < data[thr].unc_len; off += PAGE_SIZE) {
1421 				memcpy(data_of(*snapshot),
1422 				       data[thr].unc + off, PAGE_SIZE);
1423 
1424 				if (!(nr_pages % m))
1425 					pr_info("Image loading progress: %3d%%\n",
1426 						nr_pages / m * 10);
1427 				nr_pages++;
1428 
1429 				ret = snapshot_write_next(snapshot);
1430 				if (ret <= 0) {
1431 					crc->run_threads = thr + 1;
1432 					atomic_set_release(&crc->ready, 1);
1433 					wake_up(&crc->go);
1434 					goto out_finish;
1435 				}
1436 			}
1437 		}
1438 
1439 		crc->run_threads = thr;
1440 		atomic_set_release(&crc->ready, 1);
1441 		wake_up(&crc->go);
1442 	}
1443 
1444 out_finish:
1445 	if (crc->run_threads) {
1446 		wait_event(crc->done, atomic_read_acquire(&crc->stop));
1447 		atomic_set(&crc->stop, 0);
1448 	}
1449 	stop = ktime_get();
1450 	if (!ret) {
1451 		pr_info("Image loading done\n");
1452 		snapshot_write_finalize(snapshot);
1453 		if (!snapshot_image_loaded(snapshot))
1454 			ret = -ENODATA;
1455 		if (!ret) {
1456 			if (swsusp_header->flags & SF_CRC32_MODE) {
1457 				if(handle->crc32 != swsusp_header->crc32) {
1458 					pr_err("Invalid image CRC32!\n");
1459 					ret = -ENODATA;
1460 				}
1461 			}
1462 		}
1463 	}
1464 	swsusp_show_speed(start, stop, nr_to_read, "Read");
1465 out_clean:
1466 	hib_finish_batch(&hb);
1467 	for (i = 0; i < ring_size; i++)
1468 		free_page((unsigned long)page[i]);
1469 	if (crc) {
1470 		if (crc->thr)
1471 			kthread_stop(crc->thr);
1472 		kfree(crc);
1473 	}
1474 	if (data) {
1475 		for (thr = 0; thr < nr_threads; thr++)
1476 			if (data[thr].thr)
1477 				kthread_stop(data[thr].thr);
1478 		vfree(data);
1479 	}
1480 	vfree(page);
1481 
1482 	return ret;
1483 }
1484 
1485 /**
1486  *	swsusp_read - read the hibernation image.
1487  *	@flags_p: flags passed by the "frozen" kernel in the image header should
1488  *		  be written into this memory location
1489  */
1490 
swsusp_read(unsigned int * flags_p)1491 int swsusp_read(unsigned int *flags_p)
1492 {
1493 	int error;
1494 	struct swap_map_handle handle;
1495 	struct snapshot_handle snapshot;
1496 	struct swsusp_info *header;
1497 
1498 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1499 	error = snapshot_write_next(&snapshot);
1500 	if (error < (int)PAGE_SIZE)
1501 		return error < 0 ? error : -EFAULT;
1502 	header = (struct swsusp_info *)data_of(snapshot);
1503 	error = get_swap_reader(&handle, flags_p);
1504 	if (error)
1505 		goto end;
1506 	if (!error)
1507 		error = swap_read_page(&handle, header, NULL);
1508 	if (!error) {
1509 		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1510 			load_image(&handle, &snapshot, header->pages - 1) :
1511 			load_image_lzo(&handle, &snapshot, header->pages - 1);
1512 	}
1513 	swap_reader_finish(&handle);
1514 end:
1515 	if (!error)
1516 		pr_debug("Image successfully loaded\n");
1517 	else
1518 		pr_debug("Error %d resuming\n", error);
1519 	return error;
1520 }
1521 
1522 /**
1523  *      swsusp_check - Check for swsusp signature in the resume device
1524  */
1525 
swsusp_check(void)1526 int swsusp_check(void)
1527 {
1528 	int error;
1529 	void *holder;
1530 	fmode_t mode = FMODE_READ;
1531 
1532 	if (snapshot_test)
1533 		mode |= FMODE_EXCL;
1534 
1535 	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1536 					    mode, &holder);
1537 	if (!IS_ERR(hib_resume_bdev)) {
1538 		set_blocksize(hib_resume_bdev, PAGE_SIZE);
1539 		trace_android_vh_save_hib_resume_bdev(hib_resume_bdev);
1540 		clear_page(swsusp_header);
1541 		error = hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1542 					swsusp_header, NULL);
1543 		if (error)
1544 			goto put;
1545 
1546 		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1547 			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1548 			/* Reset swap signature now */
1549 			error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1550 						swsusp_resume_block,
1551 						swsusp_header, NULL);
1552 		} else {
1553 			error = -EINVAL;
1554 		}
1555 		if (!error && swsusp_header->flags & SF_HW_SIG &&
1556 		    swsusp_header->hw_sig != swsusp_hardware_signature) {
1557 			pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
1558 				swsusp_header->hw_sig, swsusp_hardware_signature);
1559 			error = -EINVAL;
1560 		}
1561 
1562 put:
1563 		if (error)
1564 			blkdev_put(hib_resume_bdev, mode);
1565 		else
1566 			pr_debug("Image signature found, resuming\n");
1567 	} else {
1568 		error = PTR_ERR(hib_resume_bdev);
1569 	}
1570 
1571 	if (error)
1572 		pr_debug("Image not found (code %d)\n", error);
1573 
1574 	return error;
1575 }
1576 
1577 /**
1578  *	swsusp_close - close swap device.
1579  */
1580 
swsusp_close(fmode_t mode)1581 void swsusp_close(fmode_t mode)
1582 {
1583 	if (IS_ERR(hib_resume_bdev)) {
1584 		pr_debug("Image device not initialised\n");
1585 		return;
1586 	}
1587 
1588 	blkdev_put(hib_resume_bdev, mode);
1589 }
1590 
1591 /**
1592  *      swsusp_unmark - Unmark swsusp signature in the resume device
1593  */
1594 
1595 #ifdef CONFIG_SUSPEND
swsusp_unmark(void)1596 int swsusp_unmark(void)
1597 {
1598 	int error;
1599 
1600 	hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1601 			swsusp_header, NULL);
1602 	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1603 		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1604 		error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1605 					swsusp_resume_block,
1606 					swsusp_header, NULL);
1607 	} else {
1608 		pr_err("Cannot find swsusp signature!\n");
1609 		error = -ENODEV;
1610 	}
1611 
1612 	/*
1613 	 * We just returned from suspend, we don't need the image any more.
1614 	 */
1615 	free_all_swap_pages(root_swap);
1616 
1617 	return error;
1618 }
1619 #endif
1620 
swsusp_header_init(void)1621 static int __init swsusp_header_init(void)
1622 {
1623 	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1624 	if (!swsusp_header)
1625 		panic("Could not allocate memory for swsusp_header\n");
1626 	return 0;
1627 }
1628 
1629 core_initcall(swsusp_header_init);
1630