1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Remote Processor Framework
4 *
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
7 *
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Mark Grosen <mgrosen@ti.com>
11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Robert Tivy <rtivy@ti.com>
14 * Armando Uribe De Leon <x0095078@ti.com>
15 */
16
17 #define pr_fmt(fmt) "%s: " fmt, __func__
18
19 #include <linux/delay.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/slab.h>
25 #include <linux/mutex.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/string.h>
29 #include <linux/debugfs.h>
30 #include <linux/rculist.h>
31 #include <linux/remoteproc.h>
32 #include <linux/iommu.h>
33 #include <linux/idr.h>
34 #include <linux/elf.h>
35 #include <linux/crc32.h>
36 #include <linux/of_reserved_mem.h>
37 #include <linux/virtio_ids.h>
38 #include <linux/virtio_ring.h>
39 #include <asm/byteorder.h>
40 #include <linux/platform_device.h>
41 #include <trace/hooks/remoteproc.h>
42
43 #include "remoteproc_internal.h"
44
45 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
46
47 static DEFINE_MUTEX(rproc_list_mutex);
48 static LIST_HEAD(rproc_list);
49 static struct notifier_block rproc_panic_nb;
50
51 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
52 void *, int offset, int avail);
53
54 static int rproc_alloc_carveout(struct rproc *rproc,
55 struct rproc_mem_entry *mem);
56 static int rproc_release_carveout(struct rproc *rproc,
57 struct rproc_mem_entry *mem);
58
59 /* Unique indices for remoteproc devices */
60 static DEFINE_IDA(rproc_dev_index);
61 static struct workqueue_struct *rproc_recovery_wq;
62
63 static const char * const rproc_crash_names[] = {
64 [RPROC_MMUFAULT] = "mmufault",
65 [RPROC_WATCHDOG] = "watchdog",
66 [RPROC_FATAL_ERROR] = "fatal error",
67 };
68
69 /* translate rproc_crash_type to string */
rproc_crash_to_string(enum rproc_crash_type type)70 static const char *rproc_crash_to_string(enum rproc_crash_type type)
71 {
72 if (type < ARRAY_SIZE(rproc_crash_names))
73 return rproc_crash_names[type];
74 return "unknown";
75 }
76
77 /*
78 * This is the IOMMU fault handler we register with the IOMMU API
79 * (when relevant; not all remote processors access memory through
80 * an IOMMU).
81 *
82 * IOMMU core will invoke this handler whenever the remote processor
83 * will try to access an unmapped device address.
84 */
rproc_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags,void * token)85 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
86 unsigned long iova, int flags, void *token)
87 {
88 struct rproc *rproc = token;
89
90 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
91
92 rproc_report_crash(rproc, RPROC_MMUFAULT);
93
94 /*
95 * Let the iommu core know we're not really handling this fault;
96 * we just used it as a recovery trigger.
97 */
98 return -ENOSYS;
99 }
100
rproc_enable_iommu(struct rproc * rproc)101 static int rproc_enable_iommu(struct rproc *rproc)
102 {
103 struct iommu_domain *domain;
104 struct device *dev = rproc->dev.parent;
105 int ret;
106
107 if (!rproc->has_iommu) {
108 dev_dbg(dev, "iommu not present\n");
109 return 0;
110 }
111
112 domain = iommu_domain_alloc(dev->bus);
113 if (!domain) {
114 dev_err(dev, "can't alloc iommu domain\n");
115 return -ENOMEM;
116 }
117
118 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
119
120 ret = iommu_attach_device(domain, dev);
121 if (ret) {
122 dev_err(dev, "can't attach iommu device: %d\n", ret);
123 goto free_domain;
124 }
125
126 rproc->domain = domain;
127
128 return 0;
129
130 free_domain:
131 iommu_domain_free(domain);
132 return ret;
133 }
134
rproc_disable_iommu(struct rproc * rproc)135 static void rproc_disable_iommu(struct rproc *rproc)
136 {
137 struct iommu_domain *domain = rproc->domain;
138 struct device *dev = rproc->dev.parent;
139
140 if (!domain)
141 return;
142
143 iommu_detach_device(domain, dev);
144 iommu_domain_free(domain);
145 }
146
rproc_va_to_pa(void * cpu_addr)147 phys_addr_t rproc_va_to_pa(void *cpu_addr)
148 {
149 /*
150 * Return physical address according to virtual address location
151 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
152 * - in kernel: if region allocated in generic dma memory pool
153 */
154 if (is_vmalloc_addr(cpu_addr)) {
155 return page_to_phys(vmalloc_to_page(cpu_addr)) +
156 offset_in_page(cpu_addr);
157 }
158
159 WARN_ON(!virt_addr_valid(cpu_addr));
160 return virt_to_phys(cpu_addr);
161 }
162 EXPORT_SYMBOL(rproc_va_to_pa);
163
164 /**
165 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
166 * @rproc: handle of a remote processor
167 * @da: remoteproc device address to translate
168 * @len: length of the memory region @da is pointing to
169 * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
170 *
171 * Some remote processors will ask us to allocate them physically contiguous
172 * memory regions (which we call "carveouts"), and map them to specific
173 * device addresses (which are hardcoded in the firmware). They may also have
174 * dedicated memory regions internal to the processors, and use them either
175 * exclusively or alongside carveouts.
176 *
177 * They may then ask us to copy objects into specific device addresses (e.g.
178 * code/data sections) or expose us certain symbols in other device address
179 * (e.g. their trace buffer).
180 *
181 * This function is a helper function with which we can go over the allocated
182 * carveouts and translate specific device addresses to kernel virtual addresses
183 * so we can access the referenced memory. This function also allows to perform
184 * translations on the internal remoteproc memory regions through a platform
185 * implementation specific da_to_va ops, if present.
186 *
187 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
188 * but only on kernel direct mapped RAM memory. Instead, we're just using
189 * here the output of the DMA API for the carveouts, which should be more
190 * correct.
191 *
192 * Return: a valid kernel address on success or NULL on failure
193 */
rproc_da_to_va(struct rproc * rproc,u64 da,size_t len,bool * is_iomem)194 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
195 {
196 struct rproc_mem_entry *carveout;
197 void *ptr = NULL;
198
199 if (rproc->ops->da_to_va) {
200 ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
201 if (ptr)
202 goto out;
203 }
204
205 list_for_each_entry(carveout, &rproc->carveouts, node) {
206 int offset = da - carveout->da;
207
208 /* Verify that carveout is allocated */
209 if (!carveout->va)
210 continue;
211
212 /* try next carveout if da is too small */
213 if (offset < 0)
214 continue;
215
216 /* try next carveout if da is too large */
217 if (offset + len > carveout->len)
218 continue;
219
220 ptr = carveout->va + offset;
221
222 if (is_iomem)
223 *is_iomem = carveout->is_iomem;
224
225 break;
226 }
227
228 out:
229 return ptr;
230 }
231 EXPORT_SYMBOL(rproc_da_to_va);
232
233 /**
234 * rproc_find_carveout_by_name() - lookup the carveout region by a name
235 * @rproc: handle of a remote processor
236 * @name: carveout name to find (format string)
237 * @...: optional parameters matching @name string
238 *
239 * Platform driver has the capability to register some pre-allacoted carveout
240 * (physically contiguous memory regions) before rproc firmware loading and
241 * associated resource table analysis. These regions may be dedicated memory
242 * regions internal to the coprocessor or specified DDR region with specific
243 * attributes
244 *
245 * This function is a helper function with which we can go over the
246 * allocated carveouts and return associated region characteristics like
247 * coprocessor address, length or processor virtual address.
248 *
249 * Return: a valid pointer on carveout entry on success or NULL on failure.
250 */
251 __printf(2, 3)
252 struct rproc_mem_entry *
rproc_find_carveout_by_name(struct rproc * rproc,const char * name,...)253 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
254 {
255 va_list args;
256 char _name[32];
257 struct rproc_mem_entry *carveout, *mem = NULL;
258
259 if (!name)
260 return NULL;
261
262 va_start(args, name);
263 vsnprintf(_name, sizeof(_name), name, args);
264 va_end(args);
265
266 list_for_each_entry(carveout, &rproc->carveouts, node) {
267 /* Compare carveout and requested names */
268 if (!strcmp(carveout->name, _name)) {
269 mem = carveout;
270 break;
271 }
272 }
273
274 return mem;
275 }
276
277 /**
278 * rproc_check_carveout_da() - Check specified carveout da configuration
279 * @rproc: handle of a remote processor
280 * @mem: pointer on carveout to check
281 * @da: area device address
282 * @len: associated area size
283 *
284 * This function is a helper function to verify requested device area (couple
285 * da, len) is part of specified carveout.
286 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
287 * checked.
288 *
289 * Return: 0 if carveout matches request else error
290 */
rproc_check_carveout_da(struct rproc * rproc,struct rproc_mem_entry * mem,u32 da,u32 len)291 static int rproc_check_carveout_da(struct rproc *rproc,
292 struct rproc_mem_entry *mem, u32 da, u32 len)
293 {
294 struct device *dev = &rproc->dev;
295 int delta;
296
297 /* Check requested resource length */
298 if (len > mem->len) {
299 dev_err(dev, "Registered carveout doesn't fit len request\n");
300 return -EINVAL;
301 }
302
303 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
304 /* Address doesn't match registered carveout configuration */
305 return -EINVAL;
306 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
307 delta = da - mem->da;
308
309 /* Check requested resource belongs to registered carveout */
310 if (delta < 0) {
311 dev_err(dev,
312 "Registered carveout doesn't fit da request\n");
313 return -EINVAL;
314 }
315
316 if (delta + len > mem->len) {
317 dev_err(dev,
318 "Registered carveout doesn't fit len request\n");
319 return -EINVAL;
320 }
321 }
322
323 return 0;
324 }
325
rproc_alloc_vring(struct rproc_vdev * rvdev,int i)326 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
327 {
328 struct rproc *rproc = rvdev->rproc;
329 struct device *dev = &rproc->dev;
330 struct rproc_vring *rvring = &rvdev->vring[i];
331 struct fw_rsc_vdev *rsc;
332 int ret, notifyid;
333 struct rproc_mem_entry *mem;
334 size_t size;
335
336 /* actual size of vring (in bytes) */
337 size = PAGE_ALIGN(vring_size(rvring->num, rvring->align));
338
339 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
340
341 /* Search for pre-registered carveout */
342 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
343 i);
344 if (mem) {
345 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
346 return -ENOMEM;
347 } else {
348 /* Register carveout in list */
349 mem = rproc_mem_entry_init(dev, NULL, 0,
350 size, rsc->vring[i].da,
351 rproc_alloc_carveout,
352 rproc_release_carveout,
353 "vdev%dvring%d",
354 rvdev->index, i);
355 if (!mem) {
356 dev_err(dev, "Can't allocate memory entry structure\n");
357 return -ENOMEM;
358 }
359
360 rproc_add_carveout(rproc, mem);
361 }
362
363 /*
364 * Assign an rproc-wide unique index for this vring
365 * TODO: assign a notifyid for rvdev updates as well
366 * TODO: support predefined notifyids (via resource table)
367 */
368 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
369 if (ret < 0) {
370 dev_err(dev, "idr_alloc failed: %d\n", ret);
371 return ret;
372 }
373 notifyid = ret;
374
375 /* Potentially bump max_notifyid */
376 if (notifyid > rproc->max_notifyid)
377 rproc->max_notifyid = notifyid;
378
379 rvring->notifyid = notifyid;
380
381 /* Let the rproc know the notifyid of this vring.*/
382 rsc->vring[i].notifyid = notifyid;
383 return 0;
384 }
385
386 int
rproc_parse_vring(struct rproc_vdev * rvdev,struct fw_rsc_vdev * rsc,int i)387 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
388 {
389 struct rproc *rproc = rvdev->rproc;
390 struct device *dev = &rproc->dev;
391 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
392 struct rproc_vring *rvring = &rvdev->vring[i];
393
394 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
395 i, vring->da, vring->num, vring->align);
396
397 /* verify queue size and vring alignment are sane */
398 if (!vring->num || !vring->align) {
399 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
400 vring->num, vring->align);
401 return -EINVAL;
402 }
403
404 rvring->num = vring->num;
405 rvring->align = vring->align;
406 rvring->rvdev = rvdev;
407
408 return 0;
409 }
410
rproc_free_vring(struct rproc_vring * rvring)411 void rproc_free_vring(struct rproc_vring *rvring)
412 {
413 struct rproc *rproc = rvring->rvdev->rproc;
414 int idx = rvring - rvring->rvdev->vring;
415 struct fw_rsc_vdev *rsc;
416
417 idr_remove(&rproc->notifyids, rvring->notifyid);
418
419 /*
420 * At this point rproc_stop() has been called and the installed resource
421 * table in the remote processor memory may no longer be accessible. As
422 * such and as per rproc_stop(), rproc->table_ptr points to the cached
423 * resource table (rproc->cached_table). The cached resource table is
424 * only available when a remote processor has been booted by the
425 * remoteproc core, otherwise it is NULL.
426 *
427 * Based on the above, reset the virtio device section in the cached
428 * resource table only if there is one to work with.
429 */
430 if (rproc->table_ptr) {
431 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
432 rsc->vring[idx].da = 0;
433 rsc->vring[idx].notifyid = -1;
434 }
435 }
436
rproc_add_rvdev(struct rproc * rproc,struct rproc_vdev * rvdev)437 void rproc_add_rvdev(struct rproc *rproc, struct rproc_vdev *rvdev)
438 {
439 if (rvdev && rproc)
440 list_add_tail(&rvdev->node, &rproc->rvdevs);
441 }
442
rproc_remove_rvdev(struct rproc_vdev * rvdev)443 void rproc_remove_rvdev(struct rproc_vdev *rvdev)
444 {
445 if (rvdev)
446 list_del(&rvdev->node);
447 }
448 /**
449 * rproc_handle_vdev() - handle a vdev fw resource
450 * @rproc: the remote processor
451 * @ptr: the vring resource descriptor
452 * @offset: offset of the resource entry
453 * @avail: size of available data (for sanity checking the image)
454 *
455 * This resource entry requests the host to statically register a virtio
456 * device (vdev), and setup everything needed to support it. It contains
457 * everything needed to make it possible: the virtio device id, virtio
458 * device features, vrings information, virtio config space, etc...
459 *
460 * Before registering the vdev, the vrings are allocated from non-cacheable
461 * physically contiguous memory. Currently we only support two vrings per
462 * remote processor (temporary limitation). We might also want to consider
463 * doing the vring allocation only later when ->find_vqs() is invoked, and
464 * then release them upon ->del_vqs().
465 *
466 * Note: @da is currently not really handled correctly: we dynamically
467 * allocate it using the DMA API, ignoring requested hard coded addresses,
468 * and we don't take care of any required IOMMU programming. This is all
469 * going to be taken care of when the generic iommu-based DMA API will be
470 * merged. Meanwhile, statically-addressed iommu-based firmware images should
471 * use RSC_DEVMEM resource entries to map their required @da to the physical
472 * address of their base CMA region (ouch, hacky!).
473 *
474 * Return: 0 on success, or an appropriate error code otherwise
475 */
rproc_handle_vdev(struct rproc * rproc,void * ptr,int offset,int avail)476 static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
477 int offset, int avail)
478 {
479 struct fw_rsc_vdev *rsc = ptr;
480 struct device *dev = &rproc->dev;
481 struct rproc_vdev *rvdev;
482 size_t rsc_size;
483 struct rproc_vdev_data rvdev_data;
484 struct platform_device *pdev;
485
486 /* make sure resource isn't truncated */
487 rsc_size = struct_size(rsc, vring, rsc->num_of_vrings);
488 if (size_add(rsc_size, rsc->config_len) > avail) {
489 dev_err(dev, "vdev rsc is truncated\n");
490 return -EINVAL;
491 }
492
493 /* make sure reserved bytes are zeroes */
494 if (rsc->reserved[0] || rsc->reserved[1]) {
495 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
496 return -EINVAL;
497 }
498
499 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
500 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
501
502 /* we currently support only two vrings per rvdev */
503 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
504 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
505 return -EINVAL;
506 }
507
508 rvdev_data.id = rsc->id;
509 rvdev_data.index = rproc->nb_vdev++;
510 rvdev_data.rsc_offset = offset;
511 rvdev_data.rsc = rsc;
512
513 /*
514 * When there is more than one remote processor, rproc->nb_vdev number is
515 * same for each separate instances of "rproc". If rvdev_data.index is used
516 * as device id, then we get duplication in sysfs, so need to use
517 * PLATFORM_DEVID_AUTO to auto select device id.
518 */
519 pdev = platform_device_register_data(dev, "rproc-virtio", PLATFORM_DEVID_AUTO, &rvdev_data,
520 sizeof(rvdev_data));
521 if (IS_ERR(pdev)) {
522 dev_err(dev, "failed to create rproc-virtio device\n");
523 return PTR_ERR(pdev);
524 }
525
526 return 0;
527 }
528
529 /**
530 * rproc_handle_trace() - handle a shared trace buffer resource
531 * @rproc: the remote processor
532 * @ptr: the trace resource descriptor
533 * @offset: offset of the resource entry
534 * @avail: size of available data (for sanity checking the image)
535 *
536 * In case the remote processor dumps trace logs into memory,
537 * export it via debugfs.
538 *
539 * Currently, the 'da' member of @rsc should contain the device address
540 * where the remote processor is dumping the traces. Later we could also
541 * support dynamically allocating this address using the generic
542 * DMA API (but currently there isn't a use case for that).
543 *
544 * Return: 0 on success, or an appropriate error code otherwise
545 */
rproc_handle_trace(struct rproc * rproc,void * ptr,int offset,int avail)546 static int rproc_handle_trace(struct rproc *rproc, void *ptr,
547 int offset, int avail)
548 {
549 struct fw_rsc_trace *rsc = ptr;
550 struct rproc_debug_trace *trace;
551 struct device *dev = &rproc->dev;
552 char name[15];
553
554 if (sizeof(*rsc) > avail) {
555 dev_err(dev, "trace rsc is truncated\n");
556 return -EINVAL;
557 }
558
559 /* make sure reserved bytes are zeroes */
560 if (rsc->reserved) {
561 dev_err(dev, "trace rsc has non zero reserved bytes\n");
562 return -EINVAL;
563 }
564
565 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
566 if (!trace)
567 return -ENOMEM;
568
569 /* set the trace buffer dma properties */
570 trace->trace_mem.len = rsc->len;
571 trace->trace_mem.da = rsc->da;
572
573 /* set pointer on rproc device */
574 trace->rproc = rproc;
575
576 /* make sure snprintf always null terminates, even if truncating */
577 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
578
579 /* create the debugfs entry */
580 trace->tfile = rproc_create_trace_file(name, rproc, trace);
581
582 list_add_tail(&trace->node, &rproc->traces);
583
584 rproc->num_traces++;
585
586 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
587 name, rsc->da, rsc->len);
588
589 return 0;
590 }
591
592 /**
593 * rproc_handle_devmem() - handle devmem resource entry
594 * @rproc: remote processor handle
595 * @ptr: the devmem resource entry
596 * @offset: offset of the resource entry
597 * @avail: size of available data (for sanity checking the image)
598 *
599 * Remote processors commonly need to access certain on-chip peripherals.
600 *
601 * Some of these remote processors access memory via an iommu device,
602 * and might require us to configure their iommu before they can access
603 * the on-chip peripherals they need.
604 *
605 * This resource entry is a request to map such a peripheral device.
606 *
607 * These devmem entries will contain the physical address of the device in
608 * the 'pa' member. If a specific device address is expected, then 'da' will
609 * contain it (currently this is the only use case supported). 'len' will
610 * contain the size of the physical region we need to map.
611 *
612 * Currently we just "trust" those devmem entries to contain valid physical
613 * addresses, but this is going to change: we want the implementations to
614 * tell us ranges of physical addresses the firmware is allowed to request,
615 * and not allow firmwares to request access to physical addresses that
616 * are outside those ranges.
617 *
618 * Return: 0 on success, or an appropriate error code otherwise
619 */
rproc_handle_devmem(struct rproc * rproc,void * ptr,int offset,int avail)620 static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
621 int offset, int avail)
622 {
623 struct fw_rsc_devmem *rsc = ptr;
624 struct rproc_mem_entry *mapping;
625 struct device *dev = &rproc->dev;
626 int ret;
627
628 /* no point in handling this resource without a valid iommu domain */
629 if (!rproc->domain)
630 return -EINVAL;
631
632 if (sizeof(*rsc) > avail) {
633 dev_err(dev, "devmem rsc is truncated\n");
634 return -EINVAL;
635 }
636
637 /* make sure reserved bytes are zeroes */
638 if (rsc->reserved) {
639 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
640 return -EINVAL;
641 }
642
643 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
644 if (!mapping)
645 return -ENOMEM;
646
647 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
648 if (ret) {
649 dev_err(dev, "failed to map devmem: %d\n", ret);
650 goto out;
651 }
652
653 /*
654 * We'll need this info later when we'll want to unmap everything
655 * (e.g. on shutdown).
656 *
657 * We can't trust the remote processor not to change the resource
658 * table, so we must maintain this info independently.
659 */
660 mapping->da = rsc->da;
661 mapping->len = rsc->len;
662 list_add_tail(&mapping->node, &rproc->mappings);
663
664 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
665 rsc->pa, rsc->da, rsc->len);
666
667 return 0;
668
669 out:
670 kfree(mapping);
671 return ret;
672 }
673
674 /**
675 * rproc_alloc_carveout() - allocated specified carveout
676 * @rproc: rproc handle
677 * @mem: the memory entry to allocate
678 *
679 * This function allocate specified memory entry @mem using
680 * dma_alloc_coherent() as default allocator
681 *
682 * Return: 0 on success, or an appropriate error code otherwise
683 */
rproc_alloc_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)684 static int rproc_alloc_carveout(struct rproc *rproc,
685 struct rproc_mem_entry *mem)
686 {
687 struct rproc_mem_entry *mapping = NULL;
688 struct device *dev = &rproc->dev;
689 dma_addr_t dma;
690 void *va;
691 int ret;
692
693 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
694 if (!va) {
695 dev_err(dev->parent,
696 "failed to allocate dma memory: len 0x%zx\n",
697 mem->len);
698 return -ENOMEM;
699 }
700
701 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
702 va, &dma, mem->len);
703
704 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
705 /*
706 * Check requested da is equal to dma address
707 * and print a warn message in case of missalignment.
708 * Don't stop rproc_start sequence as coprocessor may
709 * build pa to da translation on its side.
710 */
711 if (mem->da != (u32)dma)
712 dev_warn(dev->parent,
713 "Allocated carveout doesn't fit device address request\n");
714 }
715
716 /*
717 * Ok, this is non-standard.
718 *
719 * Sometimes we can't rely on the generic iommu-based DMA API
720 * to dynamically allocate the device address and then set the IOMMU
721 * tables accordingly, because some remote processors might
722 * _require_ us to use hard coded device addresses that their
723 * firmware was compiled with.
724 *
725 * In this case, we must use the IOMMU API directly and map
726 * the memory to the device address as expected by the remote
727 * processor.
728 *
729 * Obviously such remote processor devices should not be configured
730 * to use the iommu-based DMA API: we expect 'dma' to contain the
731 * physical address in this case.
732 */
733 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
734 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
735 if (!mapping) {
736 ret = -ENOMEM;
737 goto dma_free;
738 }
739
740 ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
741 mem->flags);
742 if (ret) {
743 dev_err(dev, "iommu_map failed: %d\n", ret);
744 goto free_mapping;
745 }
746
747 /*
748 * We'll need this info later when we'll want to unmap
749 * everything (e.g. on shutdown).
750 *
751 * We can't trust the remote processor not to change the
752 * resource table, so we must maintain this info independently.
753 */
754 mapping->da = mem->da;
755 mapping->len = mem->len;
756 list_add_tail(&mapping->node, &rproc->mappings);
757
758 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
759 mem->da, &dma);
760 }
761
762 if (mem->da == FW_RSC_ADDR_ANY) {
763 /* Update device address as undefined by requester */
764 if ((u64)dma & HIGH_BITS_MASK)
765 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
766
767 mem->da = (u32)dma;
768 }
769
770 mem->dma = dma;
771 mem->va = va;
772
773 return 0;
774
775 free_mapping:
776 kfree(mapping);
777 dma_free:
778 dma_free_coherent(dev->parent, mem->len, va, dma);
779 return ret;
780 }
781
782 /**
783 * rproc_release_carveout() - release acquired carveout
784 * @rproc: rproc handle
785 * @mem: the memory entry to release
786 *
787 * This function releases specified memory entry @mem allocated via
788 * rproc_alloc_carveout() function by @rproc.
789 *
790 * Return: 0 on success, or an appropriate error code otherwise
791 */
rproc_release_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)792 static int rproc_release_carveout(struct rproc *rproc,
793 struct rproc_mem_entry *mem)
794 {
795 struct device *dev = &rproc->dev;
796
797 /* clean up carveout allocations */
798 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
799 return 0;
800 }
801
802 /**
803 * rproc_handle_carveout() - handle phys contig memory allocation requests
804 * @rproc: rproc handle
805 * @ptr: the resource entry
806 * @offset: offset of the resource entry
807 * @avail: size of available data (for image validation)
808 *
809 * This function will handle firmware requests for allocation of physically
810 * contiguous memory regions.
811 *
812 * These request entries should come first in the firmware's resource table,
813 * as other firmware entries might request placing other data objects inside
814 * these memory regions (e.g. data/code segments, trace resource entries, ...).
815 *
816 * Allocating memory this way helps utilizing the reserved physical memory
817 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
818 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
819 * pressure is important; it may have a substantial impact on performance.
820 *
821 * Return: 0 on success, or an appropriate error code otherwise
822 */
rproc_handle_carveout(struct rproc * rproc,void * ptr,int offset,int avail)823 static int rproc_handle_carveout(struct rproc *rproc,
824 void *ptr, int offset, int avail)
825 {
826 struct fw_rsc_carveout *rsc = ptr;
827 struct rproc_mem_entry *carveout;
828 struct device *dev = &rproc->dev;
829
830 if (sizeof(*rsc) > avail) {
831 dev_err(dev, "carveout rsc is truncated\n");
832 return -EINVAL;
833 }
834
835 /* make sure reserved bytes are zeroes */
836 if (rsc->reserved) {
837 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
838 return -EINVAL;
839 }
840
841 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
842 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
843
844 /*
845 * Check carveout rsc already part of a registered carveout,
846 * Search by name, then check the da and length
847 */
848 carveout = rproc_find_carveout_by_name(rproc, rsc->name);
849
850 if (carveout) {
851 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
852 dev_err(dev,
853 "Carveout already associated to resource table\n");
854 return -ENOMEM;
855 }
856
857 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
858 return -ENOMEM;
859
860 /* Update memory carveout with resource table info */
861 carveout->rsc_offset = offset;
862 carveout->flags = rsc->flags;
863
864 return 0;
865 }
866
867 /* Register carveout in list */
868 carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
869 rproc_alloc_carveout,
870 rproc_release_carveout, rsc->name);
871 if (!carveout) {
872 dev_err(dev, "Can't allocate memory entry structure\n");
873 return -ENOMEM;
874 }
875
876 carveout->flags = rsc->flags;
877 carveout->rsc_offset = offset;
878 rproc_add_carveout(rproc, carveout);
879
880 return 0;
881 }
882
883 /**
884 * rproc_add_carveout() - register an allocated carveout region
885 * @rproc: rproc handle
886 * @mem: memory entry to register
887 *
888 * This function registers specified memory entry in @rproc carveouts list.
889 * Specified carveout should have been allocated before registering.
890 */
rproc_add_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)891 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
892 {
893 list_add_tail(&mem->node, &rproc->carveouts);
894 }
895 EXPORT_SYMBOL(rproc_add_carveout);
896
897 /**
898 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
899 * @dev: pointer on device struct
900 * @va: virtual address
901 * @dma: dma address
902 * @len: memory carveout length
903 * @da: device address
904 * @alloc: memory carveout allocation function
905 * @release: memory carveout release function
906 * @name: carveout name
907 *
908 * This function allocates a rproc_mem_entry struct and fill it with parameters
909 * provided by client.
910 *
911 * Return: a valid pointer on success, or NULL on failure
912 */
913 __printf(8, 9)
914 struct rproc_mem_entry *
rproc_mem_entry_init(struct device * dev,void * va,dma_addr_t dma,size_t len,u32 da,int (* alloc)(struct rproc *,struct rproc_mem_entry *),int (* release)(struct rproc *,struct rproc_mem_entry *),const char * name,...)915 rproc_mem_entry_init(struct device *dev,
916 void *va, dma_addr_t dma, size_t len, u32 da,
917 int (*alloc)(struct rproc *, struct rproc_mem_entry *),
918 int (*release)(struct rproc *, struct rproc_mem_entry *),
919 const char *name, ...)
920 {
921 struct rproc_mem_entry *mem;
922 va_list args;
923
924 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
925 if (!mem)
926 return mem;
927
928 mem->va = va;
929 mem->dma = dma;
930 mem->da = da;
931 mem->len = len;
932 mem->alloc = alloc;
933 mem->release = release;
934 mem->rsc_offset = FW_RSC_ADDR_ANY;
935 mem->of_resm_idx = -1;
936
937 va_start(args, name);
938 vsnprintf(mem->name, sizeof(mem->name), name, args);
939 va_end(args);
940
941 return mem;
942 }
943 EXPORT_SYMBOL(rproc_mem_entry_init);
944
945 /**
946 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
947 * from a reserved memory phandle
948 * @dev: pointer on device struct
949 * @of_resm_idx: reserved memory phandle index in "memory-region"
950 * @len: memory carveout length
951 * @da: device address
952 * @name: carveout name
953 *
954 * This function allocates a rproc_mem_entry struct and fill it with parameters
955 * provided by client.
956 *
957 * Return: a valid pointer on success, or NULL on failure
958 */
959 __printf(5, 6)
960 struct rproc_mem_entry *
rproc_of_resm_mem_entry_init(struct device * dev,u32 of_resm_idx,size_t len,u32 da,const char * name,...)961 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
962 u32 da, const char *name, ...)
963 {
964 struct rproc_mem_entry *mem;
965 va_list args;
966
967 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
968 if (!mem)
969 return mem;
970
971 mem->da = da;
972 mem->len = len;
973 mem->rsc_offset = FW_RSC_ADDR_ANY;
974 mem->of_resm_idx = of_resm_idx;
975
976 va_start(args, name);
977 vsnprintf(mem->name, sizeof(mem->name), name, args);
978 va_end(args);
979
980 return mem;
981 }
982 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
983
984 /**
985 * rproc_of_parse_firmware() - parse and return the firmware-name
986 * @dev: pointer on device struct representing a rproc
987 * @index: index to use for the firmware-name retrieval
988 * @fw_name: pointer to a character string, in which the firmware
989 * name is returned on success and unmodified otherwise.
990 *
991 * This is an OF helper function that parses a device's DT node for
992 * the "firmware-name" property and returns the firmware name pointer
993 * in @fw_name on success.
994 *
995 * Return: 0 on success, or an appropriate failure.
996 */
rproc_of_parse_firmware(struct device * dev,int index,const char ** fw_name)997 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
998 {
999 int ret;
1000
1001 ret = of_property_read_string_index(dev->of_node, "firmware-name",
1002 index, fw_name);
1003 return ret ? ret : 0;
1004 }
1005 EXPORT_SYMBOL(rproc_of_parse_firmware);
1006
1007 /*
1008 * A lookup table for resource handlers. The indices are defined in
1009 * enum fw_resource_type.
1010 */
1011 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1012 [RSC_CARVEOUT] = rproc_handle_carveout,
1013 [RSC_DEVMEM] = rproc_handle_devmem,
1014 [RSC_TRACE] = rproc_handle_trace,
1015 [RSC_VDEV] = rproc_handle_vdev,
1016 };
1017
1018 /* handle firmware resource entries before booting the remote processor */
rproc_handle_resources(struct rproc * rproc,rproc_handle_resource_t handlers[RSC_LAST])1019 static int rproc_handle_resources(struct rproc *rproc,
1020 rproc_handle_resource_t handlers[RSC_LAST])
1021 {
1022 struct device *dev = &rproc->dev;
1023 rproc_handle_resource_t handler;
1024 int ret = 0, i;
1025
1026 if (!rproc->table_ptr)
1027 return 0;
1028
1029 for (i = 0; i < rproc->table_ptr->num; i++) {
1030 int offset = rproc->table_ptr->offset[i];
1031 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1032 int avail = rproc->table_sz - offset - sizeof(*hdr);
1033 void *rsc = (void *)hdr + sizeof(*hdr);
1034
1035 /* make sure table isn't truncated */
1036 if (avail < 0) {
1037 dev_err(dev, "rsc table is truncated\n");
1038 return -EINVAL;
1039 }
1040
1041 dev_dbg(dev, "rsc: type %d\n", hdr->type);
1042
1043 if (hdr->type >= RSC_VENDOR_START &&
1044 hdr->type <= RSC_VENDOR_END) {
1045 ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1046 offset + sizeof(*hdr), avail);
1047 if (ret == RSC_HANDLED)
1048 continue;
1049 else if (ret < 0)
1050 break;
1051
1052 dev_warn(dev, "unsupported vendor resource %d\n",
1053 hdr->type);
1054 continue;
1055 }
1056
1057 if (hdr->type >= RSC_LAST) {
1058 dev_warn(dev, "unsupported resource %d\n", hdr->type);
1059 continue;
1060 }
1061
1062 handler = handlers[hdr->type];
1063 if (!handler)
1064 continue;
1065
1066 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1067 if (ret)
1068 break;
1069 }
1070
1071 return ret;
1072 }
1073
rproc_prepare_subdevices(struct rproc * rproc)1074 static int rproc_prepare_subdevices(struct rproc *rproc)
1075 {
1076 struct rproc_subdev *subdev;
1077 int ret;
1078
1079 list_for_each_entry(subdev, &rproc->subdevs, node) {
1080 if (subdev->prepare) {
1081 ret = subdev->prepare(subdev);
1082 if (ret)
1083 goto unroll_preparation;
1084 }
1085 }
1086
1087 return 0;
1088
1089 unroll_preparation:
1090 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1091 if (subdev->unprepare)
1092 subdev->unprepare(subdev);
1093 }
1094
1095 return ret;
1096 }
1097
rproc_start_subdevices(struct rproc * rproc)1098 static int rproc_start_subdevices(struct rproc *rproc)
1099 {
1100 struct rproc_subdev *subdev;
1101 int ret;
1102
1103 list_for_each_entry(subdev, &rproc->subdevs, node) {
1104 if (subdev->start) {
1105 ret = subdev->start(subdev);
1106 if (ret)
1107 goto unroll_registration;
1108 }
1109 }
1110
1111 return 0;
1112
1113 unroll_registration:
1114 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1115 if (subdev->stop)
1116 subdev->stop(subdev, true);
1117 }
1118
1119 return ret;
1120 }
1121
rproc_stop_subdevices(struct rproc * rproc,bool crashed)1122 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1123 {
1124 struct rproc_subdev *subdev;
1125
1126 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1127 if (subdev->stop)
1128 subdev->stop(subdev, crashed);
1129 }
1130 }
1131
rproc_unprepare_subdevices(struct rproc * rproc)1132 static void rproc_unprepare_subdevices(struct rproc *rproc)
1133 {
1134 struct rproc_subdev *subdev;
1135
1136 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1137 if (subdev->unprepare)
1138 subdev->unprepare(subdev);
1139 }
1140 }
1141
1142 /**
1143 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1144 * in the list
1145 * @rproc: the remote processor handle
1146 *
1147 * This function parses registered carveout list, performs allocation
1148 * if alloc() ops registered and updates resource table information
1149 * if rsc_offset set.
1150 *
1151 * Return: 0 on success
1152 */
rproc_alloc_registered_carveouts(struct rproc * rproc)1153 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1154 {
1155 struct rproc_mem_entry *entry, *tmp;
1156 struct fw_rsc_carveout *rsc;
1157 struct device *dev = &rproc->dev;
1158 u64 pa;
1159 int ret;
1160
1161 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1162 if (entry->alloc) {
1163 ret = entry->alloc(rproc, entry);
1164 if (ret) {
1165 dev_err(dev, "Unable to allocate carveout %s: %d\n",
1166 entry->name, ret);
1167 return -ENOMEM;
1168 }
1169 }
1170
1171 if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1172 /* update resource table */
1173 rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1174
1175 /*
1176 * Some remote processors might need to know the pa
1177 * even though they are behind an IOMMU. E.g., OMAP4's
1178 * remote M3 processor needs this so it can control
1179 * on-chip hardware accelerators that are not behind
1180 * the IOMMU, and therefor must know the pa.
1181 *
1182 * Generally we don't want to expose physical addresses
1183 * if we don't have to (remote processors are generally
1184 * _not_ trusted), so we might want to do this only for
1185 * remote processor that _must_ have this (e.g. OMAP4's
1186 * dual M3 subsystem).
1187 *
1188 * Non-IOMMU processors might also want to have this info.
1189 * In this case, the device address and the physical address
1190 * are the same.
1191 */
1192
1193 /* Use va if defined else dma to generate pa */
1194 if (entry->va)
1195 pa = (u64)rproc_va_to_pa(entry->va);
1196 else
1197 pa = (u64)entry->dma;
1198
1199 if (((u64)pa) & HIGH_BITS_MASK)
1200 dev_warn(dev,
1201 "Physical address cast in 32bit to fit resource table format\n");
1202
1203 rsc->pa = (u32)pa;
1204 rsc->da = entry->da;
1205 rsc->len = entry->len;
1206 }
1207 }
1208
1209 return 0;
1210 }
1211
1212
1213 /**
1214 * rproc_resource_cleanup() - clean up and free all acquired resources
1215 * @rproc: rproc handle
1216 *
1217 * This function will free all resources acquired for @rproc, and it
1218 * is called whenever @rproc either shuts down or fails to boot.
1219 */
rproc_resource_cleanup(struct rproc * rproc)1220 void rproc_resource_cleanup(struct rproc *rproc)
1221 {
1222 struct rproc_mem_entry *entry, *tmp;
1223 struct rproc_debug_trace *trace, *ttmp;
1224 struct rproc_vdev *rvdev, *rvtmp;
1225 struct device *dev = &rproc->dev;
1226
1227 /* clean up debugfs trace entries */
1228 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1229 rproc_remove_trace_file(trace->tfile);
1230 rproc->num_traces--;
1231 list_del(&trace->node);
1232 kfree(trace);
1233 }
1234
1235 /* clean up iommu mapping entries */
1236 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1237 size_t unmapped;
1238
1239 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1240 if (unmapped != entry->len) {
1241 /* nothing much to do besides complaining */
1242 dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1243 unmapped);
1244 }
1245
1246 list_del(&entry->node);
1247 kfree(entry);
1248 }
1249
1250 /* clean up carveout allocations */
1251 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1252 if (entry->release)
1253 entry->release(rproc, entry);
1254 list_del(&entry->node);
1255 kfree(entry);
1256 }
1257
1258 /* clean up remote vdev entries */
1259 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1260 platform_device_unregister(rvdev->pdev);
1261
1262 rproc_coredump_cleanup(rproc);
1263 }
1264 EXPORT_SYMBOL(rproc_resource_cleanup);
1265
rproc_start(struct rproc * rproc,const struct firmware * fw)1266 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1267 {
1268 struct resource_table *loaded_table;
1269 struct device *dev = &rproc->dev;
1270 int ret;
1271
1272 /* load the ELF segments to memory */
1273 ret = rproc_load_segments(rproc, fw);
1274 if (ret) {
1275 dev_err(dev, "Failed to load program segments: %d\n", ret);
1276 return ret;
1277 }
1278
1279 /*
1280 * The starting device has been given the rproc->cached_table as the
1281 * resource table. The address of the vring along with the other
1282 * allocated resources (carveouts etc) is stored in cached_table.
1283 * In order to pass this information to the remote device we must copy
1284 * this information to device memory. We also update the table_ptr so
1285 * that any subsequent changes will be applied to the loaded version.
1286 */
1287 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1288 if (loaded_table) {
1289 memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1290 rproc->table_ptr = loaded_table;
1291 }
1292
1293 ret = rproc_prepare_subdevices(rproc);
1294 if (ret) {
1295 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1296 rproc->name, ret);
1297 goto reset_table_ptr;
1298 }
1299
1300 /* power up the remote processor */
1301 ret = rproc->ops->start(rproc);
1302 if (ret) {
1303 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1304 goto unprepare_subdevices;
1305 }
1306
1307 /* Start any subdevices for the remote processor */
1308 ret = rproc_start_subdevices(rproc);
1309 if (ret) {
1310 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1311 rproc->name, ret);
1312 goto stop_rproc;
1313 }
1314
1315 rproc->state = RPROC_RUNNING;
1316
1317 dev_info(dev, "remote processor %s is now up\n", rproc->name);
1318
1319 return 0;
1320
1321 stop_rproc:
1322 rproc->ops->stop(rproc);
1323 unprepare_subdevices:
1324 rproc_unprepare_subdevices(rproc);
1325 reset_table_ptr:
1326 rproc->table_ptr = rproc->cached_table;
1327
1328 return ret;
1329 }
1330
__rproc_attach(struct rproc * rproc)1331 static int __rproc_attach(struct rproc *rproc)
1332 {
1333 struct device *dev = &rproc->dev;
1334 int ret;
1335
1336 ret = rproc_prepare_subdevices(rproc);
1337 if (ret) {
1338 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1339 rproc->name, ret);
1340 goto out;
1341 }
1342
1343 /* Attach to the remote processor */
1344 ret = rproc_attach_device(rproc);
1345 if (ret) {
1346 dev_err(dev, "can't attach to rproc %s: %d\n",
1347 rproc->name, ret);
1348 goto unprepare_subdevices;
1349 }
1350
1351 /* Start any subdevices for the remote processor */
1352 ret = rproc_start_subdevices(rproc);
1353 if (ret) {
1354 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1355 rproc->name, ret);
1356 goto stop_rproc;
1357 }
1358
1359 rproc->state = RPROC_ATTACHED;
1360
1361 dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1362
1363 return 0;
1364
1365 stop_rproc:
1366 rproc->ops->stop(rproc);
1367 unprepare_subdevices:
1368 rproc_unprepare_subdevices(rproc);
1369 out:
1370 return ret;
1371 }
1372
1373 /*
1374 * take a firmware and boot a remote processor with it.
1375 */
rproc_fw_boot(struct rproc * rproc,const struct firmware * fw)1376 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1377 {
1378 struct device *dev = &rproc->dev;
1379 const char *name = rproc->firmware;
1380 int ret;
1381
1382 ret = rproc_fw_sanity_check(rproc, fw);
1383 if (ret)
1384 return ret;
1385
1386 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1387
1388 /*
1389 * if enabling an IOMMU isn't relevant for this rproc, this is
1390 * just a nop
1391 */
1392 ret = rproc_enable_iommu(rproc);
1393 if (ret) {
1394 dev_err(dev, "can't enable iommu: %d\n", ret);
1395 return ret;
1396 }
1397
1398 /* Prepare rproc for firmware loading if needed */
1399 ret = rproc_prepare_device(rproc);
1400 if (ret) {
1401 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1402 goto disable_iommu;
1403 }
1404
1405 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1406
1407 /* Load resource table, core dump segment list etc from the firmware */
1408 ret = rproc_parse_fw(rproc, fw);
1409 if (ret)
1410 goto unprepare_rproc;
1411
1412 /* reset max_notifyid */
1413 rproc->max_notifyid = -1;
1414
1415 /* reset handled vdev */
1416 rproc->nb_vdev = 0;
1417
1418 /* handle fw resources which are required to boot rproc */
1419 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1420 if (ret) {
1421 dev_err(dev, "Failed to process resources: %d\n", ret);
1422 goto clean_up_resources;
1423 }
1424
1425 /* Allocate carveout resources associated to rproc */
1426 ret = rproc_alloc_registered_carveouts(rproc);
1427 if (ret) {
1428 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1429 ret);
1430 goto clean_up_resources;
1431 }
1432
1433 ret = rproc_start(rproc, fw);
1434 if (ret)
1435 goto clean_up_resources;
1436
1437 return 0;
1438
1439 clean_up_resources:
1440 rproc_resource_cleanup(rproc);
1441 kfree(rproc->cached_table);
1442 rproc->cached_table = NULL;
1443 rproc->table_ptr = NULL;
1444 unprepare_rproc:
1445 /* release HW resources if needed */
1446 rproc_unprepare_device(rproc);
1447 disable_iommu:
1448 rproc_disable_iommu(rproc);
1449 return ret;
1450 }
1451
rproc_set_rsc_table(struct rproc * rproc)1452 static int rproc_set_rsc_table(struct rproc *rproc)
1453 {
1454 struct resource_table *table_ptr;
1455 struct device *dev = &rproc->dev;
1456 size_t table_sz;
1457 int ret;
1458
1459 table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1460 if (!table_ptr) {
1461 /* Not having a resource table is acceptable */
1462 return 0;
1463 }
1464
1465 if (IS_ERR(table_ptr)) {
1466 ret = PTR_ERR(table_ptr);
1467 dev_err(dev, "can't load resource table: %d\n", ret);
1468 return ret;
1469 }
1470
1471 /*
1472 * If it is possible to detach the remote processor, keep an untouched
1473 * copy of the resource table. That way we can start fresh again when
1474 * the remote processor is re-attached, that is:
1475 *
1476 * DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1477 *
1478 * Free'd in rproc_reset_rsc_table_on_detach() and
1479 * rproc_reset_rsc_table_on_stop().
1480 */
1481 if (rproc->ops->detach) {
1482 rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1483 if (!rproc->clean_table)
1484 return -ENOMEM;
1485 } else {
1486 rproc->clean_table = NULL;
1487 }
1488
1489 rproc->cached_table = NULL;
1490 rproc->table_ptr = table_ptr;
1491 rproc->table_sz = table_sz;
1492
1493 return 0;
1494 }
1495
rproc_reset_rsc_table_on_detach(struct rproc * rproc)1496 static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1497 {
1498 struct resource_table *table_ptr;
1499
1500 /* A resource table was never retrieved, nothing to do here */
1501 if (!rproc->table_ptr)
1502 return 0;
1503
1504 /*
1505 * If we made it to this point a clean_table _must_ have been
1506 * allocated in rproc_set_rsc_table(). If one isn't present
1507 * something went really wrong and we must complain.
1508 */
1509 if (WARN_ON(!rproc->clean_table))
1510 return -EINVAL;
1511
1512 /* Remember where the external entity installed the resource table */
1513 table_ptr = rproc->table_ptr;
1514
1515 /*
1516 * If we made it here the remote processor was started by another
1517 * entity and a cache table doesn't exist. As such make a copy of
1518 * the resource table currently used by the remote processor and
1519 * use that for the rest of the shutdown process. The memory
1520 * allocated here is free'd in rproc_detach().
1521 */
1522 rproc->cached_table = kmemdup(rproc->table_ptr,
1523 rproc->table_sz, GFP_KERNEL);
1524 if (!rproc->cached_table)
1525 return -ENOMEM;
1526
1527 /*
1528 * Use a copy of the resource table for the remainder of the
1529 * shutdown process.
1530 */
1531 rproc->table_ptr = rproc->cached_table;
1532
1533 /*
1534 * Reset the memory area where the firmware loaded the resource table
1535 * to its original value. That way when we re-attach the remote
1536 * processor the resource table is clean and ready to be used again.
1537 */
1538 memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1539
1540 /*
1541 * The clean resource table is no longer needed. Allocated in
1542 * rproc_set_rsc_table().
1543 */
1544 kfree(rproc->clean_table);
1545
1546 return 0;
1547 }
1548
rproc_reset_rsc_table_on_stop(struct rproc * rproc)1549 static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1550 {
1551 /* A resource table was never retrieved, nothing to do here */
1552 if (!rproc->table_ptr)
1553 return 0;
1554
1555 /*
1556 * If a cache table exists the remote processor was started by
1557 * the remoteproc core. That cache table should be used for
1558 * the rest of the shutdown process.
1559 */
1560 if (rproc->cached_table)
1561 goto out;
1562
1563 /*
1564 * If we made it here the remote processor was started by another
1565 * entity and a cache table doesn't exist. As such make a copy of
1566 * the resource table currently used by the remote processor and
1567 * use that for the rest of the shutdown process. The memory
1568 * allocated here is free'd in rproc_shutdown().
1569 */
1570 rproc->cached_table = kmemdup(rproc->table_ptr,
1571 rproc->table_sz, GFP_KERNEL);
1572 if (!rproc->cached_table)
1573 return -ENOMEM;
1574
1575 /*
1576 * Since the remote processor is being switched off the clean table
1577 * won't be needed. Allocated in rproc_set_rsc_table().
1578 */
1579 kfree(rproc->clean_table);
1580
1581 out:
1582 /*
1583 * Use a copy of the resource table for the remainder of the
1584 * shutdown process.
1585 */
1586 rproc->table_ptr = rproc->cached_table;
1587 return 0;
1588 }
1589
1590 /*
1591 * Attach to remote processor - similar to rproc_fw_boot() but without
1592 * the steps that deal with the firmware image.
1593 */
rproc_attach(struct rproc * rproc)1594 static int rproc_attach(struct rproc *rproc)
1595 {
1596 struct device *dev = &rproc->dev;
1597 int ret;
1598
1599 /*
1600 * if enabling an IOMMU isn't relevant for this rproc, this is
1601 * just a nop
1602 */
1603 ret = rproc_enable_iommu(rproc);
1604 if (ret) {
1605 dev_err(dev, "can't enable iommu: %d\n", ret);
1606 return ret;
1607 }
1608
1609 /* Do anything that is needed to boot the remote processor */
1610 ret = rproc_prepare_device(rproc);
1611 if (ret) {
1612 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1613 goto disable_iommu;
1614 }
1615
1616 ret = rproc_set_rsc_table(rproc);
1617 if (ret) {
1618 dev_err(dev, "can't load resource table: %d\n", ret);
1619 goto unprepare_device;
1620 }
1621
1622 /* reset max_notifyid */
1623 rproc->max_notifyid = -1;
1624
1625 /* reset handled vdev */
1626 rproc->nb_vdev = 0;
1627
1628 /*
1629 * Handle firmware resources required to attach to a remote processor.
1630 * Because we are attaching rather than booting the remote processor,
1631 * we expect the platform driver to properly set rproc->table_ptr.
1632 */
1633 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1634 if (ret) {
1635 dev_err(dev, "Failed to process resources: %d\n", ret);
1636 goto unprepare_device;
1637 }
1638
1639 /* Allocate carveout resources associated to rproc */
1640 ret = rproc_alloc_registered_carveouts(rproc);
1641 if (ret) {
1642 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1643 ret);
1644 goto clean_up_resources;
1645 }
1646
1647 ret = __rproc_attach(rproc);
1648 if (ret)
1649 goto clean_up_resources;
1650
1651 return 0;
1652
1653 clean_up_resources:
1654 rproc_resource_cleanup(rproc);
1655 unprepare_device:
1656 /* release HW resources if needed */
1657 rproc_unprepare_device(rproc);
1658 disable_iommu:
1659 rproc_disable_iommu(rproc);
1660 return ret;
1661 }
1662
1663 /*
1664 * take a firmware and boot it up.
1665 *
1666 * Note: this function is called asynchronously upon registration of the
1667 * remote processor (so we must wait until it completes before we try
1668 * to unregister the device. one other option is just to use kref here,
1669 * that might be cleaner).
1670 */
rproc_auto_boot_callback(const struct firmware * fw,void * context)1671 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1672 {
1673 struct rproc *rproc = context;
1674
1675 rproc_boot(rproc);
1676
1677 release_firmware(fw);
1678 }
1679
rproc_trigger_auto_boot(struct rproc * rproc)1680 static int rproc_trigger_auto_boot(struct rproc *rproc)
1681 {
1682 int ret;
1683
1684 /*
1685 * Since the remote processor is in a detached state, it has already
1686 * been booted by another entity. As such there is no point in waiting
1687 * for a firmware image to be loaded, we can simply initiate the process
1688 * of attaching to it immediately.
1689 */
1690 if (rproc->state == RPROC_DETACHED)
1691 return rproc_boot(rproc);
1692
1693 /*
1694 * We're initiating an asynchronous firmware loading, so we can
1695 * be built-in kernel code, without hanging the boot process.
1696 */
1697 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1698 rproc->firmware, &rproc->dev, GFP_KERNEL,
1699 rproc, rproc_auto_boot_callback);
1700 if (ret < 0)
1701 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1702
1703 return ret;
1704 }
1705
rproc_stop(struct rproc * rproc,bool crashed)1706 static int rproc_stop(struct rproc *rproc, bool crashed)
1707 {
1708 struct device *dev = &rproc->dev;
1709 int ret;
1710
1711 /* No need to continue if a stop() operation has not been provided */
1712 if (!rproc->ops->stop)
1713 return -EINVAL;
1714
1715 /* Stop any subdevices for the remote processor */
1716 rproc_stop_subdevices(rproc, crashed);
1717
1718 /* the installed resource table is no longer accessible */
1719 ret = rproc_reset_rsc_table_on_stop(rproc);
1720 if (ret) {
1721 dev_err(dev, "can't reset resource table: %d\n", ret);
1722 return ret;
1723 }
1724
1725
1726 /* power off the remote processor */
1727 ret = rproc->ops->stop(rproc);
1728 if (ret) {
1729 dev_err(dev, "can't stop rproc: %d\n", ret);
1730 return ret;
1731 }
1732
1733 rproc_unprepare_subdevices(rproc);
1734
1735 rproc->state = RPROC_OFFLINE;
1736
1737 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1738
1739 return 0;
1740 }
1741
1742 /*
1743 * __rproc_detach(): Does the opposite of __rproc_attach()
1744 */
__rproc_detach(struct rproc * rproc)1745 static int __rproc_detach(struct rproc *rproc)
1746 {
1747 struct device *dev = &rproc->dev;
1748 int ret;
1749
1750 /* No need to continue if a detach() operation has not been provided */
1751 if (!rproc->ops->detach)
1752 return -EINVAL;
1753
1754 /* Stop any subdevices for the remote processor */
1755 rproc_stop_subdevices(rproc, false);
1756
1757 /* the installed resource table is no longer accessible */
1758 ret = rproc_reset_rsc_table_on_detach(rproc);
1759 if (ret) {
1760 dev_err(dev, "can't reset resource table: %d\n", ret);
1761 return ret;
1762 }
1763
1764 /* Tell the remote processor the core isn't available anymore */
1765 ret = rproc->ops->detach(rproc);
1766 if (ret) {
1767 dev_err(dev, "can't detach from rproc: %d\n", ret);
1768 return ret;
1769 }
1770
1771 rproc_unprepare_subdevices(rproc);
1772
1773 rproc->state = RPROC_DETACHED;
1774
1775 dev_info(dev, "detached remote processor %s\n", rproc->name);
1776
1777 return 0;
1778 }
1779
rproc_attach_recovery(struct rproc * rproc)1780 static int rproc_attach_recovery(struct rproc *rproc)
1781 {
1782 int ret;
1783
1784 ret = __rproc_detach(rproc);
1785 if (ret)
1786 return ret;
1787
1788 return __rproc_attach(rproc);
1789 }
1790
rproc_boot_recovery(struct rproc * rproc)1791 static int rproc_boot_recovery(struct rproc *rproc)
1792 {
1793 const struct firmware *firmware_p;
1794 struct device *dev = &rproc->dev;
1795 int ret;
1796
1797 ret = rproc_stop(rproc, true);
1798 if (ret)
1799 return ret;
1800
1801 /* generate coredump */
1802 rproc->ops->coredump(rproc);
1803
1804 /* load firmware */
1805 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1806 if (ret < 0) {
1807 dev_err(dev, "request_firmware failed: %d\n", ret);
1808 return ret;
1809 }
1810
1811 /* boot the remote processor up again */
1812 ret = rproc_start(rproc, firmware_p);
1813
1814 release_firmware(firmware_p);
1815
1816 return ret;
1817 }
1818
1819 /**
1820 * rproc_trigger_recovery() - recover a remoteproc
1821 * @rproc: the remote processor
1822 *
1823 * The recovery is done by resetting all the virtio devices, that way all the
1824 * rpmsg drivers will be reseted along with the remote processor making the
1825 * remoteproc functional again.
1826 *
1827 * This function can sleep, so it cannot be called from atomic context.
1828 *
1829 * Return: 0 on success or a negative value upon failure
1830 */
rproc_trigger_recovery(struct rproc * rproc)1831 int rproc_trigger_recovery(struct rproc *rproc)
1832 {
1833 struct device *dev = &rproc->dev;
1834 int ret;
1835
1836 ret = mutex_lock_interruptible(&rproc->lock);
1837 if (ret)
1838 return ret;
1839
1840 /* State could have changed before we got the mutex */
1841 if (rproc->state != RPROC_CRASHED)
1842 goto unlock_mutex;
1843
1844 dev_err(dev, "recovering %s\n", rproc->name);
1845
1846 if (rproc_has_feature(rproc, RPROC_FEAT_ATTACH_ON_RECOVERY))
1847 ret = rproc_attach_recovery(rproc);
1848 else
1849 ret = rproc_boot_recovery(rproc);
1850
1851 unlock_mutex:
1852 mutex_unlock(&rproc->lock);
1853 return ret;
1854 }
1855
1856 /**
1857 * rproc_crash_handler_work() - handle a crash
1858 * @work: work treating the crash
1859 *
1860 * This function needs to handle everything related to a crash, like cpu
1861 * registers and stack dump, information to help to debug the fatal error, etc.
1862 */
rproc_crash_handler_work(struct work_struct * work)1863 static void rproc_crash_handler_work(struct work_struct *work)
1864 {
1865 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1866 struct device *dev = &rproc->dev;
1867
1868 dev_dbg(dev, "enter %s\n", __func__);
1869
1870 mutex_lock(&rproc->lock);
1871
1872 if (rproc->state == RPROC_CRASHED) {
1873 /* handle only the first crash detected */
1874 mutex_unlock(&rproc->lock);
1875 return;
1876 }
1877
1878 if (rproc->state == RPROC_OFFLINE) {
1879 /* Don't recover if the remote processor was stopped */
1880 mutex_unlock(&rproc->lock);
1881 goto out;
1882 }
1883
1884 rproc->state = RPROC_CRASHED;
1885 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1886 rproc->name);
1887
1888 mutex_unlock(&rproc->lock);
1889
1890 if (!rproc->recovery_disabled)
1891 rproc_trigger_recovery(rproc);
1892
1893 out:
1894 trace_android_vh_rproc_recovery(rproc);
1895 pm_relax(rproc->dev.parent);
1896 }
1897
1898 /**
1899 * rproc_boot() - boot a remote processor
1900 * @rproc: handle of a remote processor
1901 *
1902 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1903 *
1904 * If the remote processor is already powered on, this function immediately
1905 * returns (successfully).
1906 *
1907 * Return: 0 on success, and an appropriate error value otherwise
1908 */
rproc_boot(struct rproc * rproc)1909 int rproc_boot(struct rproc *rproc)
1910 {
1911 const struct firmware *firmware_p;
1912 struct device *dev;
1913 int ret;
1914
1915 if (!rproc) {
1916 pr_err("invalid rproc handle\n");
1917 return -EINVAL;
1918 }
1919
1920 dev = &rproc->dev;
1921
1922 ret = mutex_lock_interruptible(&rproc->lock);
1923 if (ret) {
1924 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1925 return ret;
1926 }
1927
1928 if (rproc->state == RPROC_DELETED) {
1929 ret = -ENODEV;
1930 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1931 goto unlock_mutex;
1932 }
1933
1934 /* skip the boot or attach process if rproc is already powered up */
1935 if (atomic_inc_return(&rproc->power) > 1) {
1936 ret = 0;
1937 goto unlock_mutex;
1938 }
1939
1940 if (rproc->state == RPROC_DETACHED) {
1941 dev_info(dev, "attaching to %s\n", rproc->name);
1942
1943 ret = rproc_attach(rproc);
1944 } else {
1945 dev_info(dev, "powering up %s\n", rproc->name);
1946
1947 /* load firmware */
1948 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1949 if (ret < 0) {
1950 dev_err(dev, "request_firmware failed: %d\n", ret);
1951 goto downref_rproc;
1952 }
1953
1954 ret = rproc_fw_boot(rproc, firmware_p);
1955
1956 release_firmware(firmware_p);
1957 }
1958
1959 downref_rproc:
1960 if (ret)
1961 atomic_dec(&rproc->power);
1962 unlock_mutex:
1963 mutex_unlock(&rproc->lock);
1964 return ret;
1965 }
1966 EXPORT_SYMBOL(rproc_boot);
1967
1968 /**
1969 * rproc_shutdown() - power off the remote processor
1970 * @rproc: the remote processor
1971 *
1972 * Power off a remote processor (previously booted with rproc_boot()).
1973 *
1974 * In case @rproc is still being used by an additional user(s), then
1975 * this function will just decrement the power refcount and exit,
1976 * without really powering off the device.
1977 *
1978 * Every call to rproc_boot() must (eventually) be accompanied by a call
1979 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1980 *
1981 * Notes:
1982 * - we're not decrementing the rproc's refcount, only the power refcount.
1983 * which means that the @rproc handle stays valid even after rproc_shutdown()
1984 * returns, and users can still use it with a subsequent rproc_boot(), if
1985 * needed.
1986 *
1987 * Return: 0 on success, and an appropriate error value otherwise
1988 */
rproc_shutdown(struct rproc * rproc)1989 int rproc_shutdown(struct rproc *rproc)
1990 {
1991 struct device *dev = &rproc->dev;
1992 int ret = 0;
1993
1994 ret = mutex_lock_interruptible(&rproc->lock);
1995 if (ret) {
1996 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1997 return ret;
1998 }
1999
2000 if (rproc->state != RPROC_RUNNING &&
2001 rproc->state != RPROC_ATTACHED) {
2002 ret = -EINVAL;
2003 goto out;
2004 }
2005
2006 /* if the remote proc is still needed, bail out */
2007 if (!atomic_dec_and_test(&rproc->power))
2008 goto out;
2009
2010 ret = rproc_stop(rproc, false);
2011 if (ret) {
2012 atomic_inc(&rproc->power);
2013 goto out;
2014 }
2015
2016 /* clean up all acquired resources */
2017 rproc_resource_cleanup(rproc);
2018
2019 /* release HW resources if needed */
2020 rproc_unprepare_device(rproc);
2021
2022 rproc_disable_iommu(rproc);
2023
2024 /* Free the copy of the resource table */
2025 kfree(rproc->cached_table);
2026 rproc->cached_table = NULL;
2027 rproc->table_ptr = NULL;
2028 out:
2029 mutex_unlock(&rproc->lock);
2030 return ret;
2031 }
2032 EXPORT_SYMBOL(rproc_shutdown);
2033
2034 /**
2035 * rproc_detach() - Detach the remote processor from the
2036 * remoteproc core
2037 *
2038 * @rproc: the remote processor
2039 *
2040 * Detach a remote processor (previously attached to with rproc_attach()).
2041 *
2042 * In case @rproc is still being used by an additional user(s), then
2043 * this function will just decrement the power refcount and exit,
2044 * without disconnecting the device.
2045 *
2046 * Function rproc_detach() calls __rproc_detach() in order to let a remote
2047 * processor know that services provided by the application processor are
2048 * no longer available. From there it should be possible to remove the
2049 * platform driver and even power cycle the application processor (if the HW
2050 * supports it) without needing to switch off the remote processor.
2051 *
2052 * Return: 0 on success, and an appropriate error value otherwise
2053 */
rproc_detach(struct rproc * rproc)2054 int rproc_detach(struct rproc *rproc)
2055 {
2056 struct device *dev = &rproc->dev;
2057 int ret;
2058
2059 ret = mutex_lock_interruptible(&rproc->lock);
2060 if (ret) {
2061 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2062 return ret;
2063 }
2064
2065 if (rproc->state != RPROC_ATTACHED) {
2066 ret = -EINVAL;
2067 goto out;
2068 }
2069
2070 /* if the remote proc is still needed, bail out */
2071 if (!atomic_dec_and_test(&rproc->power)) {
2072 ret = 0;
2073 goto out;
2074 }
2075
2076 ret = __rproc_detach(rproc);
2077 if (ret) {
2078 atomic_inc(&rproc->power);
2079 goto out;
2080 }
2081
2082 /* clean up all acquired resources */
2083 rproc_resource_cleanup(rproc);
2084
2085 /* release HW resources if needed */
2086 rproc_unprepare_device(rproc);
2087
2088 rproc_disable_iommu(rproc);
2089
2090 /* Free the copy of the resource table */
2091 kfree(rproc->cached_table);
2092 rproc->cached_table = NULL;
2093 rproc->table_ptr = NULL;
2094 out:
2095 mutex_unlock(&rproc->lock);
2096 return ret;
2097 }
2098 EXPORT_SYMBOL(rproc_detach);
2099
2100 /**
2101 * rproc_get_by_phandle() - find a remote processor by phandle
2102 * @phandle: phandle to the rproc
2103 *
2104 * Finds an rproc handle using the remote processor's phandle, and then
2105 * return a handle to the rproc.
2106 *
2107 * This function increments the remote processor's refcount, so always
2108 * use rproc_put() to decrement it back once rproc isn't needed anymore.
2109 *
2110 * Return: rproc handle on success, and NULL on failure
2111 */
2112 #ifdef CONFIG_OF
rproc_get_by_phandle(phandle phandle)2113 struct rproc *rproc_get_by_phandle(phandle phandle)
2114 {
2115 struct rproc *rproc = NULL, *r;
2116 struct device_node *np;
2117
2118 np = of_find_node_by_phandle(phandle);
2119 if (!np)
2120 return NULL;
2121
2122 rcu_read_lock();
2123 list_for_each_entry_rcu(r, &rproc_list, node) {
2124 if (r->dev.parent && r->dev.parent->of_node == np) {
2125 /* prevent underlying implementation from being removed */
2126 if (!try_module_get(r->dev.parent->driver->owner)) {
2127 dev_err(&r->dev, "can't get owner\n");
2128 break;
2129 }
2130
2131 rproc = r;
2132 get_device(&rproc->dev);
2133 break;
2134 }
2135 }
2136 rcu_read_unlock();
2137
2138 of_node_put(np);
2139
2140 return rproc;
2141 }
2142 #else
rproc_get_by_phandle(phandle phandle)2143 struct rproc *rproc_get_by_phandle(phandle phandle)
2144 {
2145 return NULL;
2146 }
2147 #endif
2148 EXPORT_SYMBOL(rproc_get_by_phandle);
2149
2150 /**
2151 * rproc_set_firmware() - assign a new firmware
2152 * @rproc: rproc handle to which the new firmware is being assigned
2153 * @fw_name: new firmware name to be assigned
2154 *
2155 * This function allows remoteproc drivers or clients to configure a custom
2156 * firmware name that is different from the default name used during remoteproc
2157 * registration. The function does not trigger a remote processor boot,
2158 * only sets the firmware name used for a subsequent boot. This function
2159 * should also be called only when the remote processor is offline.
2160 *
2161 * This allows either the userspace to configure a different name through
2162 * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2163 * a specific firmware when it is controlling the boot and shutdown of the
2164 * remote processor.
2165 *
2166 * Return: 0 on success or a negative value upon failure
2167 */
rproc_set_firmware(struct rproc * rproc,const char * fw_name)2168 int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2169 {
2170 struct device *dev;
2171 int ret, len;
2172 char *p;
2173
2174 if (!rproc || !fw_name)
2175 return -EINVAL;
2176
2177 dev = rproc->dev.parent;
2178
2179 ret = mutex_lock_interruptible(&rproc->lock);
2180 if (ret) {
2181 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2182 return -EINVAL;
2183 }
2184
2185 if (rproc->state != RPROC_OFFLINE) {
2186 dev_err(dev, "can't change firmware while running\n");
2187 ret = -EBUSY;
2188 goto out;
2189 }
2190
2191 len = strcspn(fw_name, "\n");
2192 if (!len) {
2193 dev_err(dev, "can't provide empty string for firmware name\n");
2194 ret = -EINVAL;
2195 goto out;
2196 }
2197
2198 p = kstrndup(fw_name, len, GFP_KERNEL);
2199 if (!p) {
2200 ret = -ENOMEM;
2201 goto out;
2202 }
2203
2204 kfree_const(rproc->firmware);
2205 rproc->firmware = p;
2206
2207 out:
2208 mutex_unlock(&rproc->lock);
2209 return ret;
2210 }
2211 EXPORT_SYMBOL(rproc_set_firmware);
2212
rproc_validate(struct rproc * rproc)2213 static int rproc_validate(struct rproc *rproc)
2214 {
2215 switch (rproc->state) {
2216 case RPROC_OFFLINE:
2217 /*
2218 * An offline processor without a start()
2219 * function makes no sense.
2220 */
2221 if (!rproc->ops->start)
2222 return -EINVAL;
2223 break;
2224 case RPROC_DETACHED:
2225 /*
2226 * A remote processor in a detached state without an
2227 * attach() function makes not sense.
2228 */
2229 if (!rproc->ops->attach)
2230 return -EINVAL;
2231 /*
2232 * When attaching to a remote processor the device memory
2233 * is already available and as such there is no need to have a
2234 * cached table.
2235 */
2236 if (rproc->cached_table)
2237 return -EINVAL;
2238 break;
2239 default:
2240 /*
2241 * When adding a remote processor, the state of the device
2242 * can be offline or detached, nothing else.
2243 */
2244 return -EINVAL;
2245 }
2246
2247 return 0;
2248 }
2249
2250 /**
2251 * rproc_add() - register a remote processor
2252 * @rproc: the remote processor handle to register
2253 *
2254 * Registers @rproc with the remoteproc framework, after it has been
2255 * allocated with rproc_alloc().
2256 *
2257 * This is called by the platform-specific rproc implementation, whenever
2258 * a new remote processor device is probed.
2259 *
2260 * Note: this function initiates an asynchronous firmware loading
2261 * context, which will look for virtio devices supported by the rproc's
2262 * firmware.
2263 *
2264 * If found, those virtio devices will be created and added, so as a result
2265 * of registering this remote processor, additional virtio drivers might be
2266 * probed.
2267 *
2268 * Return: 0 on success and an appropriate error code otherwise
2269 */
rproc_add(struct rproc * rproc)2270 int rproc_add(struct rproc *rproc)
2271 {
2272 struct device *dev = &rproc->dev;
2273 int ret;
2274
2275 ret = rproc_validate(rproc);
2276 if (ret < 0)
2277 return ret;
2278
2279 /* add char device for this remoteproc */
2280 ret = rproc_char_device_add(rproc);
2281 if (ret < 0)
2282 return ret;
2283
2284 ret = device_add(dev);
2285 if (ret < 0) {
2286 put_device(dev);
2287 goto rproc_remove_cdev;
2288 }
2289
2290 dev_info(dev, "%s is available\n", rproc->name);
2291
2292 /* create debugfs entries */
2293 rproc_create_debug_dir(rproc);
2294
2295 /* if rproc is marked always-on, request it to boot */
2296 if (rproc->auto_boot) {
2297 ret = rproc_trigger_auto_boot(rproc);
2298 if (ret < 0)
2299 goto rproc_remove_dev;
2300 }
2301
2302 /* expose to rproc_get_by_phandle users */
2303 mutex_lock(&rproc_list_mutex);
2304 list_add_rcu(&rproc->node, &rproc_list);
2305 mutex_unlock(&rproc_list_mutex);
2306
2307 return 0;
2308
2309 rproc_remove_dev:
2310 rproc_delete_debug_dir(rproc);
2311 device_del(dev);
2312 rproc_remove_cdev:
2313 rproc_char_device_remove(rproc);
2314 return ret;
2315 }
2316 EXPORT_SYMBOL(rproc_add);
2317
devm_rproc_remove(void * rproc)2318 static void devm_rproc_remove(void *rproc)
2319 {
2320 rproc_del(rproc);
2321 }
2322
2323 /**
2324 * devm_rproc_add() - resource managed rproc_add()
2325 * @dev: the underlying device
2326 * @rproc: the remote processor handle to register
2327 *
2328 * This function performs like rproc_add() but the registered rproc device will
2329 * automatically be removed on driver detach.
2330 *
2331 * Return: 0 on success, negative errno on failure
2332 */
devm_rproc_add(struct device * dev,struct rproc * rproc)2333 int devm_rproc_add(struct device *dev, struct rproc *rproc)
2334 {
2335 int err;
2336
2337 err = rproc_add(rproc);
2338 if (err)
2339 return err;
2340
2341 return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2342 }
2343 EXPORT_SYMBOL(devm_rproc_add);
2344
2345 /**
2346 * rproc_type_release() - release a remote processor instance
2347 * @dev: the rproc's device
2348 *
2349 * This function should _never_ be called directly.
2350 *
2351 * It will be called by the driver core when no one holds a valid pointer
2352 * to @dev anymore.
2353 */
rproc_type_release(struct device * dev)2354 static void rproc_type_release(struct device *dev)
2355 {
2356 struct rproc *rproc = container_of(dev, struct rproc, dev);
2357
2358 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2359
2360 idr_destroy(&rproc->notifyids);
2361
2362 if (rproc->index >= 0)
2363 ida_free(&rproc_dev_index, rproc->index);
2364
2365 kfree_const(rproc->firmware);
2366 kfree_const(rproc->name);
2367 kfree(rproc->ops);
2368 kfree(rproc);
2369 }
2370
2371 static const struct device_type rproc_type = {
2372 .name = "remoteproc",
2373 .release = rproc_type_release,
2374 };
2375
rproc_alloc_firmware(struct rproc * rproc,const char * name,const char * firmware)2376 static int rproc_alloc_firmware(struct rproc *rproc,
2377 const char *name, const char *firmware)
2378 {
2379 const char *p;
2380
2381 /*
2382 * Allocate a firmware name if the caller gave us one to work
2383 * with. Otherwise construct a new one using a default pattern.
2384 */
2385 if (firmware)
2386 p = kstrdup_const(firmware, GFP_KERNEL);
2387 else
2388 p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2389
2390 if (!p)
2391 return -ENOMEM;
2392
2393 rproc->firmware = p;
2394
2395 return 0;
2396 }
2397
rproc_alloc_ops(struct rproc * rproc,const struct rproc_ops * ops)2398 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2399 {
2400 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2401 if (!rproc->ops)
2402 return -ENOMEM;
2403
2404 /* Default to rproc_coredump if no coredump function is specified */
2405 if (!rproc->ops->coredump)
2406 rproc->ops->coredump = rproc_coredump;
2407
2408 if (rproc->ops->load)
2409 return 0;
2410
2411 /* Default to ELF loader if no load function is specified */
2412 rproc->ops->load = rproc_elf_load_segments;
2413 rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2414 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2415 rproc->ops->sanity_check = rproc_elf_sanity_check;
2416 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2417
2418 return 0;
2419 }
2420
2421 /**
2422 * rproc_alloc() - allocate a remote processor handle
2423 * @dev: the underlying device
2424 * @name: name of this remote processor
2425 * @ops: platform-specific handlers (mainly start/stop)
2426 * @firmware: name of firmware file to load, can be NULL
2427 * @len: length of private data needed by the rproc driver (in bytes)
2428 *
2429 * Allocates a new remote processor handle, but does not register
2430 * it yet. if @firmware is NULL, a default name is used.
2431 *
2432 * This function should be used by rproc implementations during initialization
2433 * of the remote processor.
2434 *
2435 * After creating an rproc handle using this function, and when ready,
2436 * implementations should then call rproc_add() to complete
2437 * the registration of the remote processor.
2438 *
2439 * Note: _never_ directly deallocate @rproc, even if it was not registered
2440 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2441 *
2442 * Return: new rproc pointer on success, and NULL on failure
2443 */
rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2444 struct rproc *rproc_alloc(struct device *dev, const char *name,
2445 const struct rproc_ops *ops,
2446 const char *firmware, int len)
2447 {
2448 struct rproc *rproc;
2449
2450 if (!dev || !name || !ops)
2451 return NULL;
2452
2453 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2454 if (!rproc)
2455 return NULL;
2456
2457 rproc->priv = &rproc[1];
2458 rproc->auto_boot = true;
2459 rproc->elf_class = ELFCLASSNONE;
2460 rproc->elf_machine = EM_NONE;
2461
2462 device_initialize(&rproc->dev);
2463 rproc->dev.parent = dev;
2464 rproc->dev.type = &rproc_type;
2465 rproc->dev.class = &rproc_class;
2466 rproc->dev.driver_data = rproc;
2467 idr_init(&rproc->notifyids);
2468
2469 rproc->name = kstrdup_const(name, GFP_KERNEL);
2470 if (!rproc->name)
2471 goto put_device;
2472
2473 if (rproc_alloc_firmware(rproc, name, firmware))
2474 goto put_device;
2475
2476 if (rproc_alloc_ops(rproc, ops))
2477 goto put_device;
2478
2479 /* Assign a unique device index and name */
2480 rproc->index = ida_alloc(&rproc_dev_index, GFP_KERNEL);
2481 if (rproc->index < 0) {
2482 dev_err(dev, "ida_alloc failed: %d\n", rproc->index);
2483 goto put_device;
2484 }
2485
2486 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2487
2488 atomic_set(&rproc->power, 0);
2489
2490 mutex_init(&rproc->lock);
2491
2492 INIT_LIST_HEAD(&rproc->carveouts);
2493 INIT_LIST_HEAD(&rproc->mappings);
2494 INIT_LIST_HEAD(&rproc->traces);
2495 INIT_LIST_HEAD(&rproc->rvdevs);
2496 INIT_LIST_HEAD(&rproc->subdevs);
2497 INIT_LIST_HEAD(&rproc->dump_segments);
2498
2499 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2500
2501 rproc->state = RPROC_OFFLINE;
2502
2503 return rproc;
2504
2505 put_device:
2506 put_device(&rproc->dev);
2507 return NULL;
2508 }
2509 EXPORT_SYMBOL(rproc_alloc);
2510
2511 /**
2512 * rproc_free() - unroll rproc_alloc()
2513 * @rproc: the remote processor handle
2514 *
2515 * This function decrements the rproc dev refcount.
2516 *
2517 * If no one holds any reference to rproc anymore, then its refcount would
2518 * now drop to zero, and it would be freed.
2519 */
rproc_free(struct rproc * rproc)2520 void rproc_free(struct rproc *rproc)
2521 {
2522 put_device(&rproc->dev);
2523 }
2524 EXPORT_SYMBOL(rproc_free);
2525
2526 /**
2527 * rproc_put() - release rproc reference
2528 * @rproc: the remote processor handle
2529 *
2530 * This function decrements the rproc dev refcount.
2531 *
2532 * If no one holds any reference to rproc anymore, then its refcount would
2533 * now drop to zero, and it would be freed.
2534 */
rproc_put(struct rproc * rproc)2535 void rproc_put(struct rproc *rproc)
2536 {
2537 module_put(rproc->dev.parent->driver->owner);
2538 put_device(&rproc->dev);
2539 }
2540 EXPORT_SYMBOL(rproc_put);
2541
2542 /**
2543 * rproc_del() - unregister a remote processor
2544 * @rproc: rproc handle to unregister
2545 *
2546 * This function should be called when the platform specific rproc
2547 * implementation decides to remove the rproc device. it should
2548 * _only_ be called if a previous invocation of rproc_add()
2549 * has completed successfully.
2550 *
2551 * After rproc_del() returns, @rproc isn't freed yet, because
2552 * of the outstanding reference created by rproc_alloc. To decrement that
2553 * one last refcount, one still needs to call rproc_free().
2554 *
2555 * Return: 0 on success and -EINVAL if @rproc isn't valid
2556 */
rproc_del(struct rproc * rproc)2557 int rproc_del(struct rproc *rproc)
2558 {
2559 if (!rproc)
2560 return -EINVAL;
2561
2562 /* TODO: make sure this works with rproc->power > 1 */
2563 rproc_shutdown(rproc);
2564
2565 mutex_lock(&rproc->lock);
2566 rproc->state = RPROC_DELETED;
2567 mutex_unlock(&rproc->lock);
2568
2569 rproc_delete_debug_dir(rproc);
2570
2571 /* the rproc is downref'ed as soon as it's removed from the klist */
2572 mutex_lock(&rproc_list_mutex);
2573 list_del_rcu(&rproc->node);
2574 mutex_unlock(&rproc_list_mutex);
2575
2576 /* Ensure that no readers of rproc_list are still active */
2577 synchronize_rcu();
2578
2579 device_del(&rproc->dev);
2580 rproc_char_device_remove(rproc);
2581
2582 return 0;
2583 }
2584 EXPORT_SYMBOL(rproc_del);
2585
devm_rproc_free(struct device * dev,void * res)2586 static void devm_rproc_free(struct device *dev, void *res)
2587 {
2588 rproc_free(*(struct rproc **)res);
2589 }
2590
2591 /**
2592 * devm_rproc_alloc() - resource managed rproc_alloc()
2593 * @dev: the underlying device
2594 * @name: name of this remote processor
2595 * @ops: platform-specific handlers (mainly start/stop)
2596 * @firmware: name of firmware file to load, can be NULL
2597 * @len: length of private data needed by the rproc driver (in bytes)
2598 *
2599 * This function performs like rproc_alloc() but the acquired rproc device will
2600 * automatically be released on driver detach.
2601 *
2602 * Return: new rproc instance, or NULL on failure
2603 */
devm_rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2604 struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2605 const struct rproc_ops *ops,
2606 const char *firmware, int len)
2607 {
2608 struct rproc **ptr, *rproc;
2609
2610 ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2611 if (!ptr)
2612 return NULL;
2613
2614 rproc = rproc_alloc(dev, name, ops, firmware, len);
2615 if (rproc) {
2616 *ptr = rproc;
2617 devres_add(dev, ptr);
2618 } else {
2619 devres_free(ptr);
2620 }
2621
2622 return rproc;
2623 }
2624 EXPORT_SYMBOL(devm_rproc_alloc);
2625
2626 /**
2627 * rproc_add_subdev() - add a subdevice to a remoteproc
2628 * @rproc: rproc handle to add the subdevice to
2629 * @subdev: subdev handle to register
2630 *
2631 * Caller is responsible for populating optional subdevice function pointers.
2632 */
rproc_add_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2633 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2634 {
2635 list_add_tail(&subdev->node, &rproc->subdevs);
2636 }
2637 EXPORT_SYMBOL(rproc_add_subdev);
2638
2639 /**
2640 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2641 * @rproc: rproc handle to remove the subdevice from
2642 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2643 */
rproc_remove_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2644 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2645 {
2646 list_del(&subdev->node);
2647 }
2648 EXPORT_SYMBOL(rproc_remove_subdev);
2649
2650 /**
2651 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2652 * @dev: child device to find ancestor of
2653 *
2654 * Return: the ancestor rproc instance, or NULL if not found
2655 */
rproc_get_by_child(struct device * dev)2656 struct rproc *rproc_get_by_child(struct device *dev)
2657 {
2658 for (dev = dev->parent; dev; dev = dev->parent) {
2659 if (dev->type == &rproc_type)
2660 return dev->driver_data;
2661 }
2662
2663 return NULL;
2664 }
2665 EXPORT_SYMBOL(rproc_get_by_child);
2666
2667 /**
2668 * rproc_report_crash() - rproc crash reporter function
2669 * @rproc: remote processor
2670 * @type: crash type
2671 *
2672 * This function must be called every time a crash is detected by the low-level
2673 * drivers implementing a specific remoteproc. This should not be called from a
2674 * non-remoteproc driver.
2675 *
2676 * This function can be called from atomic/interrupt context.
2677 */
rproc_report_crash(struct rproc * rproc,enum rproc_crash_type type)2678 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2679 {
2680 if (!rproc) {
2681 pr_err("NULL rproc pointer\n");
2682 return;
2683 }
2684
2685 /* Prevent suspend while the remoteproc is being recovered */
2686 pm_stay_awake(rproc->dev.parent);
2687
2688 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2689 rproc->name, rproc_crash_to_string(type));
2690
2691 queue_work(rproc_recovery_wq, &rproc->crash_handler);
2692 }
2693 EXPORT_SYMBOL(rproc_report_crash);
2694
rproc_panic_handler(struct notifier_block * nb,unsigned long event,void * ptr)2695 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2696 void *ptr)
2697 {
2698 unsigned int longest = 0;
2699 struct rproc *rproc;
2700 unsigned int d;
2701
2702 rcu_read_lock();
2703 list_for_each_entry_rcu(rproc, &rproc_list, node) {
2704 if (!rproc->ops->panic)
2705 continue;
2706
2707 if (rproc->state != RPROC_RUNNING &&
2708 rproc->state != RPROC_ATTACHED)
2709 continue;
2710
2711 d = rproc->ops->panic(rproc);
2712 longest = max(longest, d);
2713 }
2714 rcu_read_unlock();
2715
2716 /*
2717 * Delay for the longest requested duration before returning. This can
2718 * be used by the remoteproc drivers to give the remote processor time
2719 * to perform any requested operations (such as flush caches), when
2720 * it's not possible to signal the Linux side due to the panic.
2721 */
2722 mdelay(longest);
2723
2724 return NOTIFY_DONE;
2725 }
2726
rproc_init_panic(void)2727 static void __init rproc_init_panic(void)
2728 {
2729 rproc_panic_nb.notifier_call = rproc_panic_handler;
2730 atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2731 }
2732
rproc_exit_panic(void)2733 static void __exit rproc_exit_panic(void)
2734 {
2735 atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2736 }
2737
remoteproc_init(void)2738 static int __init remoteproc_init(void)
2739 {
2740 rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq",
2741 WQ_UNBOUND | WQ_FREEZABLE, 0);
2742 if (!rproc_recovery_wq) {
2743 pr_err("remoteproc: creation of rproc_recovery_wq failed\n");
2744 return -ENOMEM;
2745 }
2746
2747 rproc_init_sysfs();
2748 rproc_init_debugfs();
2749 rproc_init_cdev();
2750 rproc_init_panic();
2751
2752 return 0;
2753 }
2754 subsys_initcall(remoteproc_init);
2755
remoteproc_exit(void)2756 static void __exit remoteproc_exit(void)
2757 {
2758 ida_destroy(&rproc_dev_index);
2759
2760 if (!rproc_recovery_wq)
2761 return;
2762
2763 rproc_exit_panic();
2764 rproc_exit_debugfs();
2765 rproc_exit_sysfs();
2766 destroy_workqueue(rproc_recovery_wq);
2767 }
2768 module_exit(remoteproc_exit);
2769
2770 MODULE_LICENSE("GPL v2");
2771 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2772