• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French (sfrench@us.ibm.com)
6  *
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #include "dfs_cache.h"
25 #endif
26 #include "fs_context.h"
27 #include "cached_dir.h"
28 
29 extern mempool_t *cifs_sm_req_poolp;
30 extern mempool_t *cifs_req_poolp;
31 
32 /* The xid serves as a useful identifier for each incoming vfs request,
33    in a similar way to the mid which is useful to track each sent smb,
34    and CurrentXid can also provide a running counter (although it
35    will eventually wrap past zero) of the total vfs operations handled
36    since the cifs fs was mounted */
37 
38 unsigned int
_get_xid(void)39 _get_xid(void)
40 {
41 	unsigned int xid;
42 
43 	spin_lock(&GlobalMid_Lock);
44 	GlobalTotalActiveXid++;
45 
46 	/* keep high water mark for number of simultaneous ops in filesystem */
47 	if (GlobalTotalActiveXid > GlobalMaxActiveXid)
48 		GlobalMaxActiveXid = GlobalTotalActiveXid;
49 	if (GlobalTotalActiveXid > 65000)
50 		cifs_dbg(FYI, "warning: more than 65000 requests active\n");
51 	xid = GlobalCurrentXid++;
52 	spin_unlock(&GlobalMid_Lock);
53 	return xid;
54 }
55 
56 void
_free_xid(unsigned int xid)57 _free_xid(unsigned int xid)
58 {
59 	spin_lock(&GlobalMid_Lock);
60 	/* if (GlobalTotalActiveXid == 0)
61 		BUG(); */
62 	GlobalTotalActiveXid--;
63 	spin_unlock(&GlobalMid_Lock);
64 }
65 
66 struct cifs_ses *
sesInfoAlloc(void)67 sesInfoAlloc(void)
68 {
69 	struct cifs_ses *ret_buf;
70 
71 	ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
72 	if (ret_buf) {
73 		atomic_inc(&sesInfoAllocCount);
74 		spin_lock_init(&ret_buf->ses_lock);
75 		ret_buf->ses_status = SES_NEW;
76 		++ret_buf->ses_count;
77 		INIT_LIST_HEAD(&ret_buf->smb_ses_list);
78 		INIT_LIST_HEAD(&ret_buf->tcon_list);
79 		mutex_init(&ret_buf->session_mutex);
80 		spin_lock_init(&ret_buf->iface_lock);
81 		INIT_LIST_HEAD(&ret_buf->iface_list);
82 		spin_lock_init(&ret_buf->chan_lock);
83 	}
84 	return ret_buf;
85 }
86 
87 void
sesInfoFree(struct cifs_ses * buf_to_free)88 sesInfoFree(struct cifs_ses *buf_to_free)
89 {
90 	struct cifs_server_iface *iface = NULL, *niface = NULL;
91 
92 	if (buf_to_free == NULL) {
93 		cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
94 		return;
95 	}
96 
97 	atomic_dec(&sesInfoAllocCount);
98 	kfree(buf_to_free->serverOS);
99 	kfree(buf_to_free->serverDomain);
100 	kfree(buf_to_free->serverNOS);
101 	kfree_sensitive(buf_to_free->password);
102 	kfree(buf_to_free->user_name);
103 	kfree(buf_to_free->domainName);
104 	kfree_sensitive(buf_to_free->auth_key.response);
105 	spin_lock(&buf_to_free->iface_lock);
106 	list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
107 				 iface_head)
108 		kref_put(&iface->refcount, release_iface);
109 	spin_unlock(&buf_to_free->iface_lock);
110 	kfree_sensitive(buf_to_free);
111 }
112 
113 struct cifs_tcon *
tconInfoAlloc(void)114 tconInfoAlloc(void)
115 {
116 	struct cifs_tcon *ret_buf;
117 
118 	ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
119 	if (!ret_buf)
120 		return NULL;
121 	ret_buf->cfids = init_cached_dirs();
122 	if (!ret_buf->cfids) {
123 		kfree(ret_buf);
124 		return NULL;
125 	}
126 
127 	atomic_inc(&tconInfoAllocCount);
128 	ret_buf->status = TID_NEW;
129 	++ret_buf->tc_count;
130 	spin_lock_init(&ret_buf->tc_lock);
131 	INIT_LIST_HEAD(&ret_buf->openFileList);
132 	INIT_LIST_HEAD(&ret_buf->tcon_list);
133 	spin_lock_init(&ret_buf->open_file_lock);
134 	spin_lock_init(&ret_buf->stat_lock);
135 	atomic_set(&ret_buf->num_local_opens, 0);
136 	atomic_set(&ret_buf->num_remote_opens, 0);
137 
138 	return ret_buf;
139 }
140 
141 void
tconInfoFree(struct cifs_tcon * tcon)142 tconInfoFree(struct cifs_tcon *tcon)
143 {
144 	if (tcon == NULL) {
145 		cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
146 		return;
147 	}
148 	free_cached_dirs(tcon->cfids);
149 	atomic_dec(&tconInfoAllocCount);
150 	kfree(tcon->nativeFileSystem);
151 	kfree_sensitive(tcon->password);
152 	kfree(tcon);
153 }
154 
155 struct smb_hdr *
cifs_buf_get(void)156 cifs_buf_get(void)
157 {
158 	struct smb_hdr *ret_buf = NULL;
159 	/*
160 	 * SMB2 header is bigger than CIFS one - no problems to clean some
161 	 * more bytes for CIFS.
162 	 */
163 	size_t buf_size = sizeof(struct smb2_hdr);
164 
165 	/*
166 	 * We could use negotiated size instead of max_msgsize -
167 	 * but it may be more efficient to always alloc same size
168 	 * albeit slightly larger than necessary and maxbuffersize
169 	 * defaults to this and can not be bigger.
170 	 */
171 	ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
172 
173 	/* clear the first few header bytes */
174 	/* for most paths, more is cleared in header_assemble */
175 	memset(ret_buf, 0, buf_size + 3);
176 	atomic_inc(&buf_alloc_count);
177 #ifdef CONFIG_CIFS_STATS2
178 	atomic_inc(&total_buf_alloc_count);
179 #endif /* CONFIG_CIFS_STATS2 */
180 
181 	return ret_buf;
182 }
183 
184 void
cifs_buf_release(void * buf_to_free)185 cifs_buf_release(void *buf_to_free)
186 {
187 	if (buf_to_free == NULL) {
188 		/* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
189 		return;
190 	}
191 	mempool_free(buf_to_free, cifs_req_poolp);
192 
193 	atomic_dec(&buf_alloc_count);
194 	return;
195 }
196 
197 struct smb_hdr *
cifs_small_buf_get(void)198 cifs_small_buf_get(void)
199 {
200 	struct smb_hdr *ret_buf = NULL;
201 
202 /* We could use negotiated size instead of max_msgsize -
203    but it may be more efficient to always alloc same size
204    albeit slightly larger than necessary and maxbuffersize
205    defaults to this and can not be bigger */
206 	ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
207 	/* No need to clear memory here, cleared in header assemble */
208 	/*	memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
209 	atomic_inc(&small_buf_alloc_count);
210 #ifdef CONFIG_CIFS_STATS2
211 	atomic_inc(&total_small_buf_alloc_count);
212 #endif /* CONFIG_CIFS_STATS2 */
213 
214 	return ret_buf;
215 }
216 
217 void
cifs_small_buf_release(void * buf_to_free)218 cifs_small_buf_release(void *buf_to_free)
219 {
220 
221 	if (buf_to_free == NULL) {
222 		cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
223 		return;
224 	}
225 	mempool_free(buf_to_free, cifs_sm_req_poolp);
226 
227 	atomic_dec(&small_buf_alloc_count);
228 	return;
229 }
230 
231 void
free_rsp_buf(int resp_buftype,void * rsp)232 free_rsp_buf(int resp_buftype, void *rsp)
233 {
234 	if (resp_buftype == CIFS_SMALL_BUFFER)
235 		cifs_small_buf_release(rsp);
236 	else if (resp_buftype == CIFS_LARGE_BUFFER)
237 		cifs_buf_release(rsp);
238 }
239 
240 /* NB: MID can not be set if treeCon not passed in, in that
241    case it is responsbility of caller to set the mid */
242 void
header_assemble(struct smb_hdr * buffer,char smb_command,const struct cifs_tcon * treeCon,int word_count)243 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
244 		const struct cifs_tcon *treeCon, int word_count
245 		/* length of fixed section (word count) in two byte units  */)
246 {
247 	char *temp = (char *) buffer;
248 
249 	memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
250 
251 	buffer->smb_buf_length = cpu_to_be32(
252 	    (2 * word_count) + sizeof(struct smb_hdr) -
253 	    4 /*  RFC 1001 length field does not count */  +
254 	    2 /* for bcc field itself */) ;
255 
256 	buffer->Protocol[0] = 0xFF;
257 	buffer->Protocol[1] = 'S';
258 	buffer->Protocol[2] = 'M';
259 	buffer->Protocol[3] = 'B';
260 	buffer->Command = smb_command;
261 	buffer->Flags = 0x00;	/* case sensitive */
262 	buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
263 	buffer->Pid = cpu_to_le16((__u16)current->tgid);
264 	buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
265 	if (treeCon) {
266 		buffer->Tid = treeCon->tid;
267 		if (treeCon->ses) {
268 			if (treeCon->ses->capabilities & CAP_UNICODE)
269 				buffer->Flags2 |= SMBFLG2_UNICODE;
270 			if (treeCon->ses->capabilities & CAP_STATUS32)
271 				buffer->Flags2 |= SMBFLG2_ERR_STATUS;
272 
273 			/* Uid is not converted */
274 			buffer->Uid = treeCon->ses->Suid;
275 			if (treeCon->ses->server)
276 				buffer->Mid = get_next_mid(treeCon->ses->server);
277 		}
278 		if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
279 			buffer->Flags2 |= SMBFLG2_DFS;
280 		if (treeCon->nocase)
281 			buffer->Flags  |= SMBFLG_CASELESS;
282 		if ((treeCon->ses) && (treeCon->ses->server))
283 			if (treeCon->ses->server->sign)
284 				buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
285 	}
286 
287 /*  endian conversion of flags is now done just before sending */
288 	buffer->WordCount = (char) word_count;
289 	return;
290 }
291 
292 static int
check_smb_hdr(struct smb_hdr * smb)293 check_smb_hdr(struct smb_hdr *smb)
294 {
295 	/* does it have the right SMB "signature" ? */
296 	if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
297 		cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
298 			 *(unsigned int *)smb->Protocol);
299 		return 1;
300 	}
301 
302 	/* if it's a response then accept */
303 	if (smb->Flags & SMBFLG_RESPONSE)
304 		return 0;
305 
306 	/* only one valid case where server sends us request */
307 	if (smb->Command == SMB_COM_LOCKING_ANDX)
308 		return 0;
309 
310 	cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
311 		 get_mid(smb));
312 	return 1;
313 }
314 
315 int
checkSMB(char * buf,unsigned int total_read,struct TCP_Server_Info * server)316 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
317 {
318 	struct smb_hdr *smb = (struct smb_hdr *)buf;
319 	__u32 rfclen = be32_to_cpu(smb->smb_buf_length);
320 	__u32 clc_len;  /* calculated length */
321 	cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
322 		 total_read, rfclen);
323 
324 	/* is this frame too small to even get to a BCC? */
325 	if (total_read < 2 + sizeof(struct smb_hdr)) {
326 		if ((total_read >= sizeof(struct smb_hdr) - 1)
327 			    && (smb->Status.CifsError != 0)) {
328 			/* it's an error return */
329 			smb->WordCount = 0;
330 			/* some error cases do not return wct and bcc */
331 			return 0;
332 		} else if ((total_read == sizeof(struct smb_hdr) + 1) &&
333 				(smb->WordCount == 0)) {
334 			char *tmp = (char *)smb;
335 			/* Need to work around a bug in two servers here */
336 			/* First, check if the part of bcc they sent was zero */
337 			if (tmp[sizeof(struct smb_hdr)] == 0) {
338 				/* some servers return only half of bcc
339 				 * on simple responses (wct, bcc both zero)
340 				 * in particular have seen this on
341 				 * ulogoffX and FindClose. This leaves
342 				 * one byte of bcc potentially unitialized
343 				 */
344 				/* zero rest of bcc */
345 				tmp[sizeof(struct smb_hdr)+1] = 0;
346 				return 0;
347 			}
348 			cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
349 		} else {
350 			cifs_dbg(VFS, "Length less than smb header size\n");
351 		}
352 		return -EIO;
353 	} else if (total_read < sizeof(*smb) + 2 * smb->WordCount) {
354 		cifs_dbg(VFS, "%s: can't read BCC due to invalid WordCount(%u)\n",
355 			 __func__, smb->WordCount);
356 		return -EIO;
357 	}
358 
359 	/* otherwise, there is enough to get to the BCC */
360 	if (check_smb_hdr(smb))
361 		return -EIO;
362 	clc_len = smbCalcSize(smb);
363 
364 	if (4 + rfclen != total_read) {
365 		cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
366 			 rfclen);
367 		return -EIO;
368 	}
369 
370 	if (4 + rfclen != clc_len) {
371 		__u16 mid = get_mid(smb);
372 		/* check if bcc wrapped around for large read responses */
373 		if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
374 			/* check if lengths match mod 64K */
375 			if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
376 				return 0; /* bcc wrapped */
377 		}
378 		cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
379 			 clc_len, 4 + rfclen, mid);
380 
381 		if (4 + rfclen < clc_len) {
382 			cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
383 				 rfclen, mid);
384 			return -EIO;
385 		} else if (rfclen > clc_len + 512) {
386 			/*
387 			 * Some servers (Windows XP in particular) send more
388 			 * data than the lengths in the SMB packet would
389 			 * indicate on certain calls (byte range locks and
390 			 * trans2 find first calls in particular). While the
391 			 * client can handle such a frame by ignoring the
392 			 * trailing data, we choose limit the amount of extra
393 			 * data to 512 bytes.
394 			 */
395 			cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
396 				 rfclen, mid);
397 			return -EIO;
398 		}
399 	}
400 	return 0;
401 }
402 
403 bool
is_valid_oplock_break(char * buffer,struct TCP_Server_Info * srv)404 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
405 {
406 	struct smb_hdr *buf = (struct smb_hdr *)buffer;
407 	struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
408 	struct TCP_Server_Info *pserver;
409 	struct cifs_ses *ses;
410 	struct cifs_tcon *tcon;
411 	struct cifsInodeInfo *pCifsInode;
412 	struct cifsFileInfo *netfile;
413 
414 	cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
415 	if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
416 	   (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
417 		struct smb_com_transaction_change_notify_rsp *pSMBr =
418 			(struct smb_com_transaction_change_notify_rsp *)buf;
419 		struct file_notify_information *pnotify;
420 		__u32 data_offset = 0;
421 		size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
422 
423 		if (get_bcc(buf) > sizeof(struct file_notify_information)) {
424 			data_offset = le32_to_cpu(pSMBr->DataOffset);
425 
426 			if (data_offset >
427 			    len - sizeof(struct file_notify_information)) {
428 				cifs_dbg(FYI, "Invalid data_offset %u\n",
429 					 data_offset);
430 				return true;
431 			}
432 			pnotify = (struct file_notify_information *)
433 				((char *)&pSMBr->hdr.Protocol + data_offset);
434 			cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
435 				 pnotify->FileName, pnotify->Action);
436 			/*   cifs_dump_mem("Rcvd notify Data: ",buf,
437 				sizeof(struct smb_hdr)+60); */
438 			return true;
439 		}
440 		if (pSMBr->hdr.Status.CifsError) {
441 			cifs_dbg(FYI, "notify err 0x%x\n",
442 				 pSMBr->hdr.Status.CifsError);
443 			return true;
444 		}
445 		return false;
446 	}
447 	if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
448 		return false;
449 	if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
450 		/* no sense logging error on invalid handle on oplock
451 		   break - harmless race between close request and oplock
452 		   break response is expected from time to time writing out
453 		   large dirty files cached on the client */
454 		if ((NT_STATUS_INVALID_HANDLE) ==
455 		   le32_to_cpu(pSMB->hdr.Status.CifsError)) {
456 			cifs_dbg(FYI, "Invalid handle on oplock break\n");
457 			return true;
458 		} else if (ERRbadfid ==
459 		   le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
460 			return true;
461 		} else {
462 			return false; /* on valid oplock brk we get "request" */
463 		}
464 	}
465 	if (pSMB->hdr.WordCount != 8)
466 		return false;
467 
468 	cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
469 		 pSMB->LockType, pSMB->OplockLevel);
470 	if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
471 		return false;
472 
473 	/* If server is a channel, select the primary channel */
474 	pserver = CIFS_SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
475 
476 	/* look up tcon based on tid & uid */
477 	spin_lock(&cifs_tcp_ses_lock);
478 	list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
479 		list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
480 			if (tcon->tid != buf->Tid)
481 				continue;
482 
483 			cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
484 			spin_lock(&tcon->open_file_lock);
485 			list_for_each_entry(netfile, &tcon->openFileList, tlist) {
486 				if (pSMB->Fid != netfile->fid.netfid)
487 					continue;
488 
489 				cifs_dbg(FYI, "file id match, oplock break\n");
490 				pCifsInode = CIFS_I(d_inode(netfile->dentry));
491 
492 				set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
493 					&pCifsInode->flags);
494 
495 				netfile->oplock_epoch = 0;
496 				netfile->oplock_level = pSMB->OplockLevel;
497 				netfile->oplock_break_cancelled = false;
498 				cifs_queue_oplock_break(netfile);
499 
500 				spin_unlock(&tcon->open_file_lock);
501 				spin_unlock(&cifs_tcp_ses_lock);
502 				return true;
503 			}
504 			spin_unlock(&tcon->open_file_lock);
505 			spin_unlock(&cifs_tcp_ses_lock);
506 			cifs_dbg(FYI, "No matching file for oplock break\n");
507 			return true;
508 		}
509 	}
510 	spin_unlock(&cifs_tcp_ses_lock);
511 	cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
512 	return true;
513 }
514 
515 void
dump_smb(void * buf,int smb_buf_length)516 dump_smb(void *buf, int smb_buf_length)
517 {
518 	if (traceSMB == 0)
519 		return;
520 
521 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
522 		       smb_buf_length, true);
523 }
524 
525 void
cifs_autodisable_serverino(struct cifs_sb_info * cifs_sb)526 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
527 {
528 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
529 		struct cifs_tcon *tcon = NULL;
530 
531 		if (cifs_sb->master_tlink)
532 			tcon = cifs_sb_master_tcon(cifs_sb);
533 
534 		cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
535 		cifs_sb->mnt_cifs_serverino_autodisabled = true;
536 		cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
537 			 tcon ? tcon->tree_name : "new server");
538 		cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
539 		cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
540 
541 	}
542 }
543 
cifs_set_oplock_level(struct cifsInodeInfo * cinode,__u32 oplock)544 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
545 {
546 	oplock &= 0xF;
547 
548 	if (oplock == OPLOCK_EXCLUSIVE) {
549 		cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
550 		cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
551 			 &cinode->netfs.inode);
552 	} else if (oplock == OPLOCK_READ) {
553 		cinode->oplock = CIFS_CACHE_READ_FLG;
554 		cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
555 			 &cinode->netfs.inode);
556 	} else
557 		cinode->oplock = 0;
558 }
559 
560 /*
561  * We wait for oplock breaks to be processed before we attempt to perform
562  * writes.
563  */
cifs_get_writer(struct cifsInodeInfo * cinode)564 int cifs_get_writer(struct cifsInodeInfo *cinode)
565 {
566 	int rc;
567 
568 start:
569 	rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
570 			 TASK_KILLABLE);
571 	if (rc)
572 		return rc;
573 
574 	spin_lock(&cinode->writers_lock);
575 	if (!cinode->writers)
576 		set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
577 	cinode->writers++;
578 	/* Check to see if we have started servicing an oplock break */
579 	if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
580 		cinode->writers--;
581 		if (cinode->writers == 0) {
582 			clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
583 			wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
584 		}
585 		spin_unlock(&cinode->writers_lock);
586 		goto start;
587 	}
588 	spin_unlock(&cinode->writers_lock);
589 	return 0;
590 }
591 
cifs_put_writer(struct cifsInodeInfo * cinode)592 void cifs_put_writer(struct cifsInodeInfo *cinode)
593 {
594 	spin_lock(&cinode->writers_lock);
595 	cinode->writers--;
596 	if (cinode->writers == 0) {
597 		clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
598 		wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
599 	}
600 	spin_unlock(&cinode->writers_lock);
601 }
602 
603 /**
604  * cifs_queue_oplock_break - queue the oplock break handler for cfile
605  * @cfile: The file to break the oplock on
606  *
607  * This function is called from the demultiplex thread when it
608  * receives an oplock break for @cfile.
609  *
610  * Assumes the tcon->open_file_lock is held.
611  * Assumes cfile->file_info_lock is NOT held.
612  */
cifs_queue_oplock_break(struct cifsFileInfo * cfile)613 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
614 {
615 	/*
616 	 * Bump the handle refcount now while we hold the
617 	 * open_file_lock to enforce the validity of it for the oplock
618 	 * break handler. The matching put is done at the end of the
619 	 * handler.
620 	 */
621 	cifsFileInfo_get(cfile);
622 
623 	queue_work(cifsoplockd_wq, &cfile->oplock_break);
624 }
625 
cifs_done_oplock_break(struct cifsInodeInfo * cinode)626 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
627 {
628 	clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
629 	wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
630 }
631 
632 bool
backup_cred(struct cifs_sb_info * cifs_sb)633 backup_cred(struct cifs_sb_info *cifs_sb)
634 {
635 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
636 		if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
637 			return true;
638 	}
639 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
640 		if (in_group_p(cifs_sb->ctx->backupgid))
641 			return true;
642 	}
643 
644 	return false;
645 }
646 
647 void
cifs_del_pending_open(struct cifs_pending_open * open)648 cifs_del_pending_open(struct cifs_pending_open *open)
649 {
650 	spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
651 	list_del(&open->olist);
652 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
653 }
654 
655 void
cifs_add_pending_open_locked(struct cifs_fid * fid,struct tcon_link * tlink,struct cifs_pending_open * open)656 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
657 			     struct cifs_pending_open *open)
658 {
659 	memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
660 	open->oplock = CIFS_OPLOCK_NO_CHANGE;
661 	open->tlink = tlink;
662 	fid->pending_open = open;
663 	list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
664 }
665 
666 void
cifs_add_pending_open(struct cifs_fid * fid,struct tcon_link * tlink,struct cifs_pending_open * open)667 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
668 		      struct cifs_pending_open *open)
669 {
670 	spin_lock(&tlink_tcon(tlink)->open_file_lock);
671 	cifs_add_pending_open_locked(fid, tlink, open);
672 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
673 }
674 
675 /*
676  * Critical section which runs after acquiring deferred_lock.
677  * As there is no reference count on cifs_deferred_close, pdclose
678  * should not be used outside deferred_lock.
679  */
680 bool
cifs_is_deferred_close(struct cifsFileInfo * cfile,struct cifs_deferred_close ** pdclose)681 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
682 {
683 	struct cifs_deferred_close *dclose;
684 
685 	list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
686 		if ((dclose->netfid == cfile->fid.netfid) &&
687 			(dclose->persistent_fid == cfile->fid.persistent_fid) &&
688 			(dclose->volatile_fid == cfile->fid.volatile_fid)) {
689 			*pdclose = dclose;
690 			return true;
691 		}
692 	}
693 	return false;
694 }
695 
696 /*
697  * Critical section which runs after acquiring deferred_lock.
698  */
699 void
cifs_add_deferred_close(struct cifsFileInfo * cfile,struct cifs_deferred_close * dclose)700 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
701 {
702 	bool is_deferred = false;
703 	struct cifs_deferred_close *pdclose;
704 
705 	is_deferred = cifs_is_deferred_close(cfile, &pdclose);
706 	if (is_deferred) {
707 		kfree(dclose);
708 		return;
709 	}
710 
711 	dclose->tlink = cfile->tlink;
712 	dclose->netfid = cfile->fid.netfid;
713 	dclose->persistent_fid = cfile->fid.persistent_fid;
714 	dclose->volatile_fid = cfile->fid.volatile_fid;
715 	list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
716 }
717 
718 /*
719  * Critical section which runs after acquiring deferred_lock.
720  */
721 void
cifs_del_deferred_close(struct cifsFileInfo * cfile)722 cifs_del_deferred_close(struct cifsFileInfo *cfile)
723 {
724 	bool is_deferred = false;
725 	struct cifs_deferred_close *dclose;
726 
727 	is_deferred = cifs_is_deferred_close(cfile, &dclose);
728 	if (!is_deferred)
729 		return;
730 	list_del(&dclose->dlist);
731 	kfree(dclose);
732 }
733 
734 void
cifs_close_deferred_file(struct cifsInodeInfo * cifs_inode)735 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
736 {
737 	struct cifsFileInfo *cfile = NULL;
738 	struct file_list *tmp_list, *tmp_next_list;
739 	struct list_head file_head;
740 
741 	if (cifs_inode == NULL)
742 		return;
743 
744 	INIT_LIST_HEAD(&file_head);
745 	spin_lock(&cifs_inode->open_file_lock);
746 	list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
747 		if (delayed_work_pending(&cfile->deferred)) {
748 			if (cancel_delayed_work(&cfile->deferred)) {
749 				spin_lock(&cifs_inode->deferred_lock);
750 				cifs_del_deferred_close(cfile);
751 				spin_unlock(&cifs_inode->deferred_lock);
752 
753 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
754 				if (tmp_list == NULL)
755 					break;
756 				tmp_list->cfile = cfile;
757 				list_add_tail(&tmp_list->list, &file_head);
758 			}
759 		}
760 	}
761 	spin_unlock(&cifs_inode->open_file_lock);
762 
763 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
764 		_cifsFileInfo_put(tmp_list->cfile, false, false);
765 		list_del(&tmp_list->list);
766 		kfree(tmp_list);
767 	}
768 }
769 
770 void
cifs_close_all_deferred_files(struct cifs_tcon * tcon)771 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
772 {
773 	struct cifsFileInfo *cfile;
774 	struct file_list *tmp_list, *tmp_next_list;
775 	struct list_head file_head;
776 
777 	INIT_LIST_HEAD(&file_head);
778 	spin_lock(&tcon->open_file_lock);
779 	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
780 		if (delayed_work_pending(&cfile->deferred)) {
781 			if (cancel_delayed_work(&cfile->deferred)) {
782 				spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
783 				cifs_del_deferred_close(cfile);
784 				spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
785 
786 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
787 				if (tmp_list == NULL)
788 					break;
789 				tmp_list->cfile = cfile;
790 				list_add_tail(&tmp_list->list, &file_head);
791 			}
792 		}
793 	}
794 	spin_unlock(&tcon->open_file_lock);
795 
796 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
797 		_cifsFileInfo_put(tmp_list->cfile, true, false);
798 		list_del(&tmp_list->list);
799 		kfree(tmp_list);
800 	}
801 }
802 void
cifs_close_deferred_file_under_dentry(struct cifs_tcon * tcon,const char * path)803 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
804 {
805 	struct cifsFileInfo *cfile;
806 	struct file_list *tmp_list, *tmp_next_list;
807 	struct list_head file_head;
808 	void *page;
809 	const char *full_path;
810 
811 	INIT_LIST_HEAD(&file_head);
812 	page = alloc_dentry_path();
813 	spin_lock(&tcon->open_file_lock);
814 	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
815 		full_path = build_path_from_dentry(cfile->dentry, page);
816 		if (strstr(full_path, path)) {
817 			if (delayed_work_pending(&cfile->deferred)) {
818 				if (cancel_delayed_work(&cfile->deferred)) {
819 					spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
820 					cifs_del_deferred_close(cfile);
821 					spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
822 
823 					tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
824 					if (tmp_list == NULL)
825 						break;
826 					tmp_list->cfile = cfile;
827 					list_add_tail(&tmp_list->list, &file_head);
828 				}
829 			}
830 		}
831 	}
832 	spin_unlock(&tcon->open_file_lock);
833 
834 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
835 		_cifsFileInfo_put(tmp_list->cfile, true, false);
836 		list_del(&tmp_list->list);
837 		kfree(tmp_list);
838 	}
839 	free_dentry_path(page);
840 }
841 
842 /* parses DFS referral V3 structure
843  * caller is responsible for freeing target_nodes
844  * returns:
845  * - on success - 0
846  * - on failure - errno
847  */
848 int
parse_dfs_referrals(struct get_dfs_referral_rsp * rsp,u32 rsp_size,unsigned int * num_of_nodes,struct dfs_info3_param ** target_nodes,const struct nls_table * nls_codepage,int remap,const char * searchName,bool is_unicode)849 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
850 		    unsigned int *num_of_nodes,
851 		    struct dfs_info3_param **target_nodes,
852 		    const struct nls_table *nls_codepage, int remap,
853 		    const char *searchName, bool is_unicode)
854 {
855 	int i, rc = 0;
856 	char *data_end;
857 	struct dfs_referral_level_3 *ref;
858 
859 	*num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
860 
861 	if (*num_of_nodes < 1) {
862 		cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
863 			 *num_of_nodes);
864 		rc = -EINVAL;
865 		goto parse_DFS_referrals_exit;
866 	}
867 
868 	ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
869 	if (ref->VersionNumber != cpu_to_le16(3)) {
870 		cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
871 			 le16_to_cpu(ref->VersionNumber));
872 		rc = -EINVAL;
873 		goto parse_DFS_referrals_exit;
874 	}
875 
876 	/* get the upper boundary of the resp buffer */
877 	data_end = (char *)rsp + rsp_size;
878 
879 	cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
880 		 *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
881 
882 	*target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
883 				GFP_KERNEL);
884 	if (*target_nodes == NULL) {
885 		rc = -ENOMEM;
886 		goto parse_DFS_referrals_exit;
887 	}
888 
889 	/* collect necessary data from referrals */
890 	for (i = 0; i < *num_of_nodes; i++) {
891 		char *temp;
892 		int max_len;
893 		struct dfs_info3_param *node = (*target_nodes)+i;
894 
895 		node->flags = le32_to_cpu(rsp->DFSFlags);
896 		if (is_unicode) {
897 			__le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
898 						GFP_KERNEL);
899 			if (tmp == NULL) {
900 				rc = -ENOMEM;
901 				goto parse_DFS_referrals_exit;
902 			}
903 			cifsConvertToUTF16((__le16 *) tmp, searchName,
904 					   PATH_MAX, nls_codepage, remap);
905 			node->path_consumed = cifs_utf16_bytes(tmp,
906 					le16_to_cpu(rsp->PathConsumed),
907 					nls_codepage);
908 			kfree(tmp);
909 		} else
910 			node->path_consumed = le16_to_cpu(rsp->PathConsumed);
911 
912 		node->server_type = le16_to_cpu(ref->ServerType);
913 		node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
914 
915 		/* copy DfsPath */
916 		temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
917 		max_len = data_end - temp;
918 		node->path_name = cifs_strndup_from_utf16(temp, max_len,
919 						is_unicode, nls_codepage);
920 		if (!node->path_name) {
921 			rc = -ENOMEM;
922 			goto parse_DFS_referrals_exit;
923 		}
924 
925 		/* copy link target UNC */
926 		temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
927 		max_len = data_end - temp;
928 		node->node_name = cifs_strndup_from_utf16(temp, max_len,
929 						is_unicode, nls_codepage);
930 		if (!node->node_name) {
931 			rc = -ENOMEM;
932 			goto parse_DFS_referrals_exit;
933 		}
934 
935 		node->ttl = le32_to_cpu(ref->TimeToLive);
936 
937 		ref++;
938 	}
939 
940 parse_DFS_referrals_exit:
941 	if (rc) {
942 		free_dfs_info_array(*target_nodes, *num_of_nodes);
943 		*target_nodes = NULL;
944 		*num_of_nodes = 0;
945 	}
946 	return rc;
947 }
948 
949 struct cifs_aio_ctx *
cifs_aio_ctx_alloc(void)950 cifs_aio_ctx_alloc(void)
951 {
952 	struct cifs_aio_ctx *ctx;
953 
954 	/*
955 	 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
956 	 * to false so that we know when we have to unreference pages within
957 	 * cifs_aio_ctx_release()
958 	 */
959 	ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
960 	if (!ctx)
961 		return NULL;
962 
963 	INIT_LIST_HEAD(&ctx->list);
964 	mutex_init(&ctx->aio_mutex);
965 	init_completion(&ctx->done);
966 	kref_init(&ctx->refcount);
967 	return ctx;
968 }
969 
970 void
cifs_aio_ctx_release(struct kref * refcount)971 cifs_aio_ctx_release(struct kref *refcount)
972 {
973 	struct cifs_aio_ctx *ctx = container_of(refcount,
974 					struct cifs_aio_ctx, refcount);
975 
976 	cifsFileInfo_put(ctx->cfile);
977 
978 	/*
979 	 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
980 	 * which means that iov_iter_get_pages() was a success and thus that
981 	 * we have taken reference on pages.
982 	 */
983 	if (ctx->bv) {
984 		unsigned i;
985 
986 		for (i = 0; i < ctx->npages; i++) {
987 			if (ctx->should_dirty)
988 				set_page_dirty(ctx->bv[i].bv_page);
989 			put_page(ctx->bv[i].bv_page);
990 		}
991 		kvfree(ctx->bv);
992 	}
993 
994 	kfree(ctx);
995 }
996 
997 #define CIFS_AIO_KMALLOC_LIMIT (1024 * 1024)
998 
999 int
setup_aio_ctx_iter(struct cifs_aio_ctx * ctx,struct iov_iter * iter,int rw)1000 setup_aio_ctx_iter(struct cifs_aio_ctx *ctx, struct iov_iter *iter, int rw)
1001 {
1002 	ssize_t rc;
1003 	unsigned int cur_npages;
1004 	unsigned int npages = 0;
1005 	unsigned int i;
1006 	size_t len;
1007 	size_t count = iov_iter_count(iter);
1008 	unsigned int saved_len;
1009 	size_t start;
1010 	unsigned int max_pages = iov_iter_npages(iter, INT_MAX);
1011 	struct page **pages = NULL;
1012 	struct bio_vec *bv = NULL;
1013 
1014 	if (iov_iter_is_kvec(iter)) {
1015 		memcpy(&ctx->iter, iter, sizeof(*iter));
1016 		ctx->len = count;
1017 		iov_iter_advance(iter, count);
1018 		return 0;
1019 	}
1020 
1021 	if (array_size(max_pages, sizeof(*bv)) <= CIFS_AIO_KMALLOC_LIMIT)
1022 		bv = kmalloc_array(max_pages, sizeof(*bv), GFP_KERNEL);
1023 
1024 	if (!bv) {
1025 		bv = vmalloc(array_size(max_pages, sizeof(*bv)));
1026 		if (!bv)
1027 			return -ENOMEM;
1028 	}
1029 
1030 	if (array_size(max_pages, sizeof(*pages)) <= CIFS_AIO_KMALLOC_LIMIT)
1031 		pages = kmalloc_array(max_pages, sizeof(*pages), GFP_KERNEL);
1032 
1033 	if (!pages) {
1034 		pages = vmalloc(array_size(max_pages, sizeof(*pages)));
1035 		if (!pages) {
1036 			kvfree(bv);
1037 			return -ENOMEM;
1038 		}
1039 	}
1040 
1041 	saved_len = count;
1042 
1043 	while (count && npages < max_pages) {
1044 		rc = iov_iter_get_pages2(iter, pages, count, max_pages, &start);
1045 		if (rc < 0) {
1046 			cifs_dbg(VFS, "Couldn't get user pages (rc=%zd)\n", rc);
1047 			break;
1048 		}
1049 
1050 		if (rc > count) {
1051 			cifs_dbg(VFS, "get pages rc=%zd more than %zu\n", rc,
1052 				 count);
1053 			break;
1054 		}
1055 
1056 		count -= rc;
1057 		rc += start;
1058 		cur_npages = DIV_ROUND_UP(rc, PAGE_SIZE);
1059 
1060 		if (npages + cur_npages > max_pages) {
1061 			cifs_dbg(VFS, "out of vec array capacity (%u vs %u)\n",
1062 				 npages + cur_npages, max_pages);
1063 			break;
1064 		}
1065 
1066 		for (i = 0; i < cur_npages; i++) {
1067 			len = rc > PAGE_SIZE ? PAGE_SIZE : rc;
1068 			bv[npages + i].bv_page = pages[i];
1069 			bv[npages + i].bv_offset = start;
1070 			bv[npages + i].bv_len = len - start;
1071 			rc -= len;
1072 			start = 0;
1073 		}
1074 
1075 		npages += cur_npages;
1076 	}
1077 
1078 	kvfree(pages);
1079 	ctx->bv = bv;
1080 	ctx->len = saved_len - count;
1081 	ctx->npages = npages;
1082 	iov_iter_bvec(&ctx->iter, rw, ctx->bv, npages, ctx->len);
1083 	return 0;
1084 }
1085 
1086 /**
1087  * cifs_alloc_hash - allocate hash and hash context together
1088  * @name: The name of the crypto hash algo
1089  * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
1090  *
1091  * The caller has to make sure @sdesc is initialized to either NULL or
1092  * a valid context. It can be freed via cifs_free_hash().
1093  */
1094 int
cifs_alloc_hash(const char * name,struct shash_desc ** sdesc)1095 cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1096 {
1097 	int rc = 0;
1098 	struct crypto_shash *alg = NULL;
1099 
1100 	if (*sdesc)
1101 		return 0;
1102 
1103 	alg = crypto_alloc_shash(name, 0, 0);
1104 	if (IS_ERR(alg)) {
1105 		cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1106 		rc = PTR_ERR(alg);
1107 		*sdesc = NULL;
1108 		return rc;
1109 	}
1110 
1111 	*sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1112 	if (*sdesc == NULL) {
1113 		cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1114 		crypto_free_shash(alg);
1115 		return -ENOMEM;
1116 	}
1117 
1118 	(*sdesc)->tfm = alg;
1119 	return 0;
1120 }
1121 
1122 /**
1123  * cifs_free_hash - free hash and hash context together
1124  * @sdesc: Where to find the pointer to the hash TFM
1125  *
1126  * Freeing a NULL descriptor is safe.
1127  */
1128 void
cifs_free_hash(struct shash_desc ** sdesc)1129 cifs_free_hash(struct shash_desc **sdesc)
1130 {
1131 	if (unlikely(!sdesc) || !*sdesc)
1132 		return;
1133 
1134 	if ((*sdesc)->tfm) {
1135 		crypto_free_shash((*sdesc)->tfm);
1136 		(*sdesc)->tfm = NULL;
1137 	}
1138 
1139 	kfree_sensitive(*sdesc);
1140 	*sdesc = NULL;
1141 }
1142 
1143 /**
1144  * rqst_page_get_length - obtain the length and offset for a page in smb_rqst
1145  * @rqst: The request descriptor
1146  * @page: The index of the page to query
1147  * @len: Where to store the length for this page:
1148  * @offset: Where to store the offset for this page
1149  */
rqst_page_get_length(const struct smb_rqst * rqst,unsigned int page,unsigned int * len,unsigned int * offset)1150 void rqst_page_get_length(const struct smb_rqst *rqst, unsigned int page,
1151 			  unsigned int *len, unsigned int *offset)
1152 {
1153 	*len = rqst->rq_pagesz;
1154 	*offset = (page == 0) ? rqst->rq_offset : 0;
1155 
1156 	if (rqst->rq_npages == 1 || page == rqst->rq_npages-1)
1157 		*len = rqst->rq_tailsz;
1158 	else if (page == 0)
1159 		*len = rqst->rq_pagesz - rqst->rq_offset;
1160 }
1161 
extract_unc_hostname(const char * unc,const char ** h,size_t * len)1162 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1163 {
1164 	const char *end;
1165 
1166 	/* skip initial slashes */
1167 	while (*unc && (*unc == '\\' || *unc == '/'))
1168 		unc++;
1169 
1170 	end = unc;
1171 
1172 	while (*end && !(*end == '\\' || *end == '/'))
1173 		end++;
1174 
1175 	*h = unc;
1176 	*len = end - unc;
1177 }
1178 
1179 /**
1180  * copy_path_name - copy src path to dst, possibly truncating
1181  * @dst: The destination buffer
1182  * @src: The source name
1183  *
1184  * returns number of bytes written (including trailing nul)
1185  */
copy_path_name(char * dst,const char * src)1186 int copy_path_name(char *dst, const char *src)
1187 {
1188 	int name_len;
1189 
1190 	/*
1191 	 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1192 	 * will truncate and strlen(dst) will be PATH_MAX-1
1193 	 */
1194 	name_len = strscpy(dst, src, PATH_MAX);
1195 	if (WARN_ON_ONCE(name_len < 0))
1196 		name_len = PATH_MAX-1;
1197 
1198 	/* we count the trailing nul */
1199 	name_len++;
1200 	return name_len;
1201 }
1202 
1203 struct super_cb_data {
1204 	void *data;
1205 	struct super_block *sb;
1206 };
1207 
tcp_super_cb(struct super_block * sb,void * arg)1208 static void tcp_super_cb(struct super_block *sb, void *arg)
1209 {
1210 	struct super_cb_data *sd = arg;
1211 	struct TCP_Server_Info *server = sd->data;
1212 	struct cifs_sb_info *cifs_sb;
1213 	struct cifs_tcon *tcon;
1214 
1215 	if (sd->sb)
1216 		return;
1217 
1218 	cifs_sb = CIFS_SB(sb);
1219 	tcon = cifs_sb_master_tcon(cifs_sb);
1220 	if (tcon->ses->server == server)
1221 		sd->sb = sb;
1222 }
1223 
__cifs_get_super(void (* f)(struct super_block *,void *),void * data)1224 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1225 					    void *data)
1226 {
1227 	struct super_cb_data sd = {
1228 		.data = data,
1229 		.sb = NULL,
1230 	};
1231 	struct file_system_type **fs_type = (struct file_system_type *[]) {
1232 		&cifs_fs_type, &smb3_fs_type, NULL,
1233 	};
1234 
1235 	for (; *fs_type; fs_type++) {
1236 		iterate_supers_type(*fs_type, f, &sd);
1237 		if (sd.sb) {
1238 			/*
1239 			 * Grab an active reference in order to prevent automounts (DFS links)
1240 			 * of expiring and then freeing up our cifs superblock pointer while
1241 			 * we're doing failover.
1242 			 */
1243 			cifs_sb_active(sd.sb);
1244 			return sd.sb;
1245 		}
1246 	}
1247 	return ERR_PTR(-EINVAL);
1248 }
1249 
__cifs_put_super(struct super_block * sb)1250 static void __cifs_put_super(struct super_block *sb)
1251 {
1252 	if (!IS_ERR_OR_NULL(sb))
1253 		cifs_sb_deactive(sb);
1254 }
1255 
cifs_get_tcp_super(struct TCP_Server_Info * server)1256 struct super_block *cifs_get_tcp_super(struct TCP_Server_Info *server)
1257 {
1258 	return __cifs_get_super(tcp_super_cb, server);
1259 }
1260 
cifs_put_tcp_super(struct super_block * sb)1261 void cifs_put_tcp_super(struct super_block *sb)
1262 {
1263 	__cifs_put_super(sb);
1264 }
1265 
1266 #ifdef CONFIG_CIFS_DFS_UPCALL
match_target_ip(struct TCP_Server_Info * server,const char * share,size_t share_len,bool * result)1267 int match_target_ip(struct TCP_Server_Info *server,
1268 		    const char *share, size_t share_len,
1269 		    bool *result)
1270 {
1271 	int rc;
1272 	char *target, *tip = NULL;
1273 	struct sockaddr tipaddr;
1274 
1275 	*result = false;
1276 
1277 	target = kzalloc(share_len + 3, GFP_KERNEL);
1278 	if (!target) {
1279 		rc = -ENOMEM;
1280 		goto out;
1281 	}
1282 
1283 	scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1284 
1285 	cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1286 
1287 	rc = dns_resolve_server_name_to_ip(target, &tip, NULL);
1288 	if (rc < 0)
1289 		goto out;
1290 
1291 	cifs_dbg(FYI, "%s: target ip: %s\n", __func__, tip);
1292 
1293 	if (!cifs_convert_address(&tipaddr, tip, strlen(tip))) {
1294 		cifs_dbg(VFS, "%s: failed to convert target ip address\n",
1295 			 __func__);
1296 		rc = -EINVAL;
1297 		goto out;
1298 	}
1299 
1300 	*result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr,
1301 				    &tipaddr);
1302 	cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1303 	rc = 0;
1304 
1305 out:
1306 	kfree(target);
1307 	kfree(tip);
1308 
1309 	return rc;
1310 }
1311 
cifs_update_super_prepath(struct cifs_sb_info * cifs_sb,char * prefix)1312 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1313 {
1314 	kfree(cifs_sb->prepath);
1315 
1316 	if (prefix && *prefix) {
1317 		cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC);
1318 		if (!cifs_sb->prepath)
1319 			return -ENOMEM;
1320 
1321 		convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1322 	} else
1323 		cifs_sb->prepath = NULL;
1324 
1325 	cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1326 	return 0;
1327 }
1328 
1329 /*
1330  * Handle weird Windows SMB server behaviour. It responds with
1331  * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for
1332  * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains
1333  * non-ASCII unicode symbols.
1334  */
cifs_inval_name_dfs_link_error(const unsigned int xid,struct cifs_tcon * tcon,struct cifs_sb_info * cifs_sb,const char * full_path,bool * islink)1335 int cifs_inval_name_dfs_link_error(const unsigned int xid,
1336 				   struct cifs_tcon *tcon,
1337 				   struct cifs_sb_info *cifs_sb,
1338 				   const char *full_path,
1339 				   bool *islink)
1340 {
1341 	struct cifs_ses *ses = tcon->ses;
1342 	size_t len;
1343 	char *path;
1344 	char *ref_path;
1345 
1346 	*islink = false;
1347 
1348 	/*
1349 	 * Fast path - skip check when @full_path doesn't have a prefix path to
1350 	 * look up or tcon is not DFS.
1351 	 */
1352 	if (strlen(full_path) < 2 || !cifs_sb ||
1353 	    (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) ||
1354 	    !is_tcon_dfs(tcon) || !ses->server->origin_fullpath)
1355 		return 0;
1356 
1357 	/*
1358 	 * Slow path - tcon is DFS and @full_path has prefix path, so attempt
1359 	 * to get a referral to figure out whether it is an DFS link.
1360 	 */
1361 	len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1;
1362 	path = kmalloc(len, GFP_KERNEL);
1363 	if (!path)
1364 		return -ENOMEM;
1365 
1366 	scnprintf(path, len, "%s%s", tcon->tree_name, full_path);
1367 	ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls,
1368 					    cifs_remap(cifs_sb));
1369 	kfree(path);
1370 
1371 	if (IS_ERR(ref_path)) {
1372 		if (PTR_ERR(ref_path) != -EINVAL)
1373 			return PTR_ERR(ref_path);
1374 	} else {
1375 		struct dfs_info3_param *refs = NULL;
1376 		int num_refs = 0;
1377 
1378 		/*
1379 		 * XXX: we are not using dfs_cache_find() here because we might
1380 		 * end filling all the DFS cache and thus potentially
1381 		 * removing cached DFS targets that the client would eventually
1382 		 * need during failover.
1383 		 */
1384 		if (ses->server->ops->get_dfs_refer &&
1385 		    !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs,
1386 						     &num_refs, cifs_sb->local_nls,
1387 						     cifs_remap(cifs_sb)))
1388 			*islink = refs[0].server_type == DFS_TYPE_LINK;
1389 		free_dfs_info_array(refs, num_refs);
1390 		kfree(ref_path);
1391 	}
1392 	return 0;
1393 }
1394 #endif
1395 
cifs_wait_for_server_reconnect(struct TCP_Server_Info * server,bool retry)1396 int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry)
1397 {
1398 	int timeout = 10;
1399 	int rc;
1400 
1401 	spin_lock(&server->srv_lock);
1402 	if (server->tcpStatus != CifsNeedReconnect) {
1403 		spin_unlock(&server->srv_lock);
1404 		return 0;
1405 	}
1406 	timeout *= server->nr_targets;
1407 	spin_unlock(&server->srv_lock);
1408 
1409 	/*
1410 	 * Give demultiplex thread up to 10 seconds to each target available for
1411 	 * reconnect -- should be greater than cifs socket timeout which is 7
1412 	 * seconds.
1413 	 *
1414 	 * On "soft" mounts we wait once. Hard mounts keep retrying until
1415 	 * process is killed or server comes back on-line.
1416 	 */
1417 	do {
1418 		rc = wait_event_interruptible_timeout(server->response_q,
1419 						      (server->tcpStatus != CifsNeedReconnect),
1420 						      timeout * HZ);
1421 		if (rc < 0) {
1422 			cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n",
1423 				 __func__);
1424 			return -ERESTARTSYS;
1425 		}
1426 
1427 		/* are we still trying to reconnect? */
1428 		spin_lock(&server->srv_lock);
1429 		if (server->tcpStatus != CifsNeedReconnect) {
1430 			spin_unlock(&server->srv_lock);
1431 			return 0;
1432 		}
1433 		spin_unlock(&server->srv_lock);
1434 	} while (retry);
1435 
1436 	cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__);
1437 	return -EHOSTDOWN;
1438 }
1439