1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "export.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "print-tree.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "rcu-string.h"
42 #include "send.h"
43 #include "dev-replace.h"
44 #include "props.h"
45 #include "sysfs.h"
46 #include "qgroup.h"
47 #include "tree-log.h"
48 #include "compression.h"
49 #include "space-info.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "subpage.h"
53
54 #ifdef CONFIG_64BIT
55 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
56 * structures are incorrect, as the timespec structure from userspace
57 * is 4 bytes too small. We define these alternatives here to teach
58 * the kernel about the 32-bit struct packing.
59 */
60 struct btrfs_ioctl_timespec_32 {
61 __u64 sec;
62 __u32 nsec;
63 } __attribute__ ((__packed__));
64
65 struct btrfs_ioctl_received_subvol_args_32 {
66 char uuid[BTRFS_UUID_SIZE]; /* in */
67 __u64 stransid; /* in */
68 __u64 rtransid; /* out */
69 struct btrfs_ioctl_timespec_32 stime; /* in */
70 struct btrfs_ioctl_timespec_32 rtime; /* out */
71 __u64 flags; /* in */
72 __u64 reserved[16]; /* in */
73 } __attribute__ ((__packed__));
74
75 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
76 struct btrfs_ioctl_received_subvol_args_32)
77 #endif
78
79 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
80 struct btrfs_ioctl_send_args_32 {
81 __s64 send_fd; /* in */
82 __u64 clone_sources_count; /* in */
83 compat_uptr_t clone_sources; /* in */
84 __u64 parent_root; /* in */
85 __u64 flags; /* in */
86 __u32 version; /* in */
87 __u8 reserved[28]; /* in */
88 } __attribute__ ((__packed__));
89
90 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
91 struct btrfs_ioctl_send_args_32)
92
93 struct btrfs_ioctl_encoded_io_args_32 {
94 compat_uptr_t iov;
95 compat_ulong_t iovcnt;
96 __s64 offset;
97 __u64 flags;
98 __u64 len;
99 __u64 unencoded_len;
100 __u64 unencoded_offset;
101 __u32 compression;
102 __u32 encryption;
103 __u8 reserved[64];
104 };
105
106 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
107 struct btrfs_ioctl_encoded_io_args_32)
108 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
109 struct btrfs_ioctl_encoded_io_args_32)
110 #endif
111
112 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_fsflags_for_type(struct inode * inode,unsigned int flags)113 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
114 unsigned int flags)
115 {
116 if (S_ISDIR(inode->i_mode))
117 return flags;
118 else if (S_ISREG(inode->i_mode))
119 return flags & ~FS_DIRSYNC_FL;
120 else
121 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
122 }
123
124 /*
125 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
126 * ioctl.
127 */
btrfs_inode_flags_to_fsflags(struct btrfs_inode * binode)128 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
129 {
130 unsigned int iflags = 0;
131 u32 flags = binode->flags;
132 u32 ro_flags = binode->ro_flags;
133
134 if (flags & BTRFS_INODE_SYNC)
135 iflags |= FS_SYNC_FL;
136 if (flags & BTRFS_INODE_IMMUTABLE)
137 iflags |= FS_IMMUTABLE_FL;
138 if (flags & BTRFS_INODE_APPEND)
139 iflags |= FS_APPEND_FL;
140 if (flags & BTRFS_INODE_NODUMP)
141 iflags |= FS_NODUMP_FL;
142 if (flags & BTRFS_INODE_NOATIME)
143 iflags |= FS_NOATIME_FL;
144 if (flags & BTRFS_INODE_DIRSYNC)
145 iflags |= FS_DIRSYNC_FL;
146 if (flags & BTRFS_INODE_NODATACOW)
147 iflags |= FS_NOCOW_FL;
148 if (ro_flags & BTRFS_INODE_RO_VERITY)
149 iflags |= FS_VERITY_FL;
150
151 if (flags & BTRFS_INODE_NOCOMPRESS)
152 iflags |= FS_NOCOMP_FL;
153 else if (flags & BTRFS_INODE_COMPRESS)
154 iflags |= FS_COMPR_FL;
155
156 return iflags;
157 }
158
159 /*
160 * Update inode->i_flags based on the btrfs internal flags.
161 */
btrfs_sync_inode_flags_to_i_flags(struct inode * inode)162 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
163 {
164 struct btrfs_inode *binode = BTRFS_I(inode);
165 unsigned int new_fl = 0;
166
167 if (binode->flags & BTRFS_INODE_SYNC)
168 new_fl |= S_SYNC;
169 if (binode->flags & BTRFS_INODE_IMMUTABLE)
170 new_fl |= S_IMMUTABLE;
171 if (binode->flags & BTRFS_INODE_APPEND)
172 new_fl |= S_APPEND;
173 if (binode->flags & BTRFS_INODE_NOATIME)
174 new_fl |= S_NOATIME;
175 if (binode->flags & BTRFS_INODE_DIRSYNC)
176 new_fl |= S_DIRSYNC;
177 if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
178 new_fl |= S_VERITY;
179
180 set_mask_bits(&inode->i_flags,
181 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
182 S_VERITY, new_fl);
183 }
184
185 /*
186 * Check if @flags are a supported and valid set of FS_*_FL flags and that
187 * the old and new flags are not conflicting
188 */
check_fsflags(unsigned int old_flags,unsigned int flags)189 static int check_fsflags(unsigned int old_flags, unsigned int flags)
190 {
191 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
192 FS_NOATIME_FL | FS_NODUMP_FL | \
193 FS_SYNC_FL | FS_DIRSYNC_FL | \
194 FS_NOCOMP_FL | FS_COMPR_FL |
195 FS_NOCOW_FL))
196 return -EOPNOTSUPP;
197
198 /* COMPR and NOCOMP on new/old are valid */
199 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
200 return -EINVAL;
201
202 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
203 return -EINVAL;
204
205 /* NOCOW and compression options are mutually exclusive */
206 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
207 return -EINVAL;
208 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
209 return -EINVAL;
210
211 return 0;
212 }
213
check_fsflags_compatible(struct btrfs_fs_info * fs_info,unsigned int flags)214 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
215 unsigned int flags)
216 {
217 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
218 return -EPERM;
219
220 return 0;
221 }
222
223 /*
224 * Set flags/xflags from the internal inode flags. The remaining items of
225 * fsxattr are zeroed.
226 */
btrfs_fileattr_get(struct dentry * dentry,struct fileattr * fa)227 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
228 {
229 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
230
231 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
232 return 0;
233 }
234
btrfs_fileattr_set(struct user_namespace * mnt_userns,struct dentry * dentry,struct fileattr * fa)235 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
236 struct dentry *dentry, struct fileattr *fa)
237 {
238 struct inode *inode = d_inode(dentry);
239 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
240 struct btrfs_inode *binode = BTRFS_I(inode);
241 struct btrfs_root *root = binode->root;
242 struct btrfs_trans_handle *trans;
243 unsigned int fsflags, old_fsflags;
244 int ret;
245 const char *comp = NULL;
246 u32 binode_flags;
247
248 if (btrfs_root_readonly(root))
249 return -EROFS;
250
251 if (fileattr_has_fsx(fa))
252 return -EOPNOTSUPP;
253
254 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
255 old_fsflags = btrfs_inode_flags_to_fsflags(binode);
256 ret = check_fsflags(old_fsflags, fsflags);
257 if (ret)
258 return ret;
259
260 ret = check_fsflags_compatible(fs_info, fsflags);
261 if (ret)
262 return ret;
263
264 binode_flags = binode->flags;
265 if (fsflags & FS_SYNC_FL)
266 binode_flags |= BTRFS_INODE_SYNC;
267 else
268 binode_flags &= ~BTRFS_INODE_SYNC;
269 if (fsflags & FS_IMMUTABLE_FL)
270 binode_flags |= BTRFS_INODE_IMMUTABLE;
271 else
272 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
273 if (fsflags & FS_APPEND_FL)
274 binode_flags |= BTRFS_INODE_APPEND;
275 else
276 binode_flags &= ~BTRFS_INODE_APPEND;
277 if (fsflags & FS_NODUMP_FL)
278 binode_flags |= BTRFS_INODE_NODUMP;
279 else
280 binode_flags &= ~BTRFS_INODE_NODUMP;
281 if (fsflags & FS_NOATIME_FL)
282 binode_flags |= BTRFS_INODE_NOATIME;
283 else
284 binode_flags &= ~BTRFS_INODE_NOATIME;
285
286 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
287 if (!fa->flags_valid) {
288 /* 1 item for the inode */
289 trans = btrfs_start_transaction(root, 1);
290 if (IS_ERR(trans))
291 return PTR_ERR(trans);
292 goto update_flags;
293 }
294
295 if (fsflags & FS_DIRSYNC_FL)
296 binode_flags |= BTRFS_INODE_DIRSYNC;
297 else
298 binode_flags &= ~BTRFS_INODE_DIRSYNC;
299 if (fsflags & FS_NOCOW_FL) {
300 if (S_ISREG(inode->i_mode)) {
301 /*
302 * It's safe to turn csums off here, no extents exist.
303 * Otherwise we want the flag to reflect the real COW
304 * status of the file and will not set it.
305 */
306 if (inode->i_size == 0)
307 binode_flags |= BTRFS_INODE_NODATACOW |
308 BTRFS_INODE_NODATASUM;
309 } else {
310 binode_flags |= BTRFS_INODE_NODATACOW;
311 }
312 } else {
313 /*
314 * Revert back under same assumptions as above
315 */
316 if (S_ISREG(inode->i_mode)) {
317 if (inode->i_size == 0)
318 binode_flags &= ~(BTRFS_INODE_NODATACOW |
319 BTRFS_INODE_NODATASUM);
320 } else {
321 binode_flags &= ~BTRFS_INODE_NODATACOW;
322 }
323 }
324
325 /*
326 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
327 * flag may be changed automatically if compression code won't make
328 * things smaller.
329 */
330 if (fsflags & FS_NOCOMP_FL) {
331 binode_flags &= ~BTRFS_INODE_COMPRESS;
332 binode_flags |= BTRFS_INODE_NOCOMPRESS;
333 } else if (fsflags & FS_COMPR_FL) {
334
335 if (IS_SWAPFILE(inode))
336 return -ETXTBSY;
337
338 binode_flags |= BTRFS_INODE_COMPRESS;
339 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
340
341 comp = btrfs_compress_type2str(fs_info->compress_type);
342 if (!comp || comp[0] == 0)
343 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
344 } else {
345 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
346 }
347
348 /*
349 * 1 for inode item
350 * 2 for properties
351 */
352 trans = btrfs_start_transaction(root, 3);
353 if (IS_ERR(trans))
354 return PTR_ERR(trans);
355
356 if (comp) {
357 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
358 strlen(comp), 0);
359 if (ret) {
360 btrfs_abort_transaction(trans, ret);
361 goto out_end_trans;
362 }
363 } else {
364 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
365 0, 0);
366 if (ret && ret != -ENODATA) {
367 btrfs_abort_transaction(trans, ret);
368 goto out_end_trans;
369 }
370 }
371
372 update_flags:
373 binode->flags = binode_flags;
374 btrfs_sync_inode_flags_to_i_flags(inode);
375 inode_inc_iversion(inode);
376 inode->i_ctime = current_time(inode);
377 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
378
379 out_end_trans:
380 btrfs_end_transaction(trans);
381 return ret;
382 }
383
384 /*
385 * Start exclusive operation @type, return true on success
386 */
btrfs_exclop_start(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type)387 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
388 enum btrfs_exclusive_operation type)
389 {
390 bool ret = false;
391
392 spin_lock(&fs_info->super_lock);
393 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
394 fs_info->exclusive_operation = type;
395 ret = true;
396 }
397 spin_unlock(&fs_info->super_lock);
398
399 return ret;
400 }
401
402 /*
403 * Conditionally allow to enter the exclusive operation in case it's compatible
404 * with the running one. This must be paired with btrfs_exclop_start_unlock and
405 * btrfs_exclop_finish.
406 *
407 * Compatibility:
408 * - the same type is already running
409 * - when trying to add a device and balance has been paused
410 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
411 * must check the condition first that would allow none -> @type
412 */
btrfs_exclop_start_try_lock(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type)413 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
414 enum btrfs_exclusive_operation type)
415 {
416 spin_lock(&fs_info->super_lock);
417 if (fs_info->exclusive_operation == type ||
418 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
419 type == BTRFS_EXCLOP_DEV_ADD))
420 return true;
421
422 spin_unlock(&fs_info->super_lock);
423 return false;
424 }
425
btrfs_exclop_start_unlock(struct btrfs_fs_info * fs_info)426 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
427 {
428 spin_unlock(&fs_info->super_lock);
429 }
430
btrfs_exclop_finish(struct btrfs_fs_info * fs_info)431 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
432 {
433 spin_lock(&fs_info->super_lock);
434 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
435 spin_unlock(&fs_info->super_lock);
436 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
437 }
438
btrfs_exclop_balance(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation op)439 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
440 enum btrfs_exclusive_operation op)
441 {
442 switch (op) {
443 case BTRFS_EXCLOP_BALANCE_PAUSED:
444 spin_lock(&fs_info->super_lock);
445 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
446 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
447 fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
448 fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
449 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
450 spin_unlock(&fs_info->super_lock);
451 break;
452 case BTRFS_EXCLOP_BALANCE:
453 spin_lock(&fs_info->super_lock);
454 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
455 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
456 spin_unlock(&fs_info->super_lock);
457 break;
458 default:
459 btrfs_warn(fs_info,
460 "invalid exclop balance operation %d requested", op);
461 }
462 }
463
btrfs_ioctl_getversion(struct inode * inode,int __user * arg)464 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
465 {
466 return put_user(inode->i_generation, arg);
467 }
468
btrfs_ioctl_fitrim(struct btrfs_fs_info * fs_info,void __user * arg)469 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
470 void __user *arg)
471 {
472 struct btrfs_device *device;
473 struct fstrim_range range;
474 u64 minlen = ULLONG_MAX;
475 u64 num_devices = 0;
476 int ret;
477
478 if (!capable(CAP_SYS_ADMIN))
479 return -EPERM;
480
481 /*
482 * btrfs_trim_block_group() depends on space cache, which is not
483 * available in zoned filesystem. So, disallow fitrim on a zoned
484 * filesystem for now.
485 */
486 if (btrfs_is_zoned(fs_info))
487 return -EOPNOTSUPP;
488
489 /*
490 * If the fs is mounted with nologreplay, which requires it to be
491 * mounted in RO mode as well, we can not allow discard on free space
492 * inside block groups, because log trees refer to extents that are not
493 * pinned in a block group's free space cache (pinning the extents is
494 * precisely the first phase of replaying a log tree).
495 */
496 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
497 return -EROFS;
498
499 rcu_read_lock();
500 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
501 dev_list) {
502 if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
503 continue;
504 num_devices++;
505 minlen = min_t(u64, bdev_discard_granularity(device->bdev),
506 minlen);
507 }
508 rcu_read_unlock();
509
510 if (!num_devices)
511 return -EOPNOTSUPP;
512 if (copy_from_user(&range, arg, sizeof(range)))
513 return -EFAULT;
514
515 /*
516 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
517 * block group is in the logical address space, which can be any
518 * sectorsize aligned bytenr in the range [0, U64_MAX].
519 */
520 if (range.len < fs_info->sb->s_blocksize)
521 return -EINVAL;
522
523 range.minlen = max(range.minlen, minlen);
524 ret = btrfs_trim_fs(fs_info, &range);
525 if (ret < 0)
526 return ret;
527
528 if (copy_to_user(arg, &range, sizeof(range)))
529 return -EFAULT;
530
531 return 0;
532 }
533
btrfs_is_empty_uuid(u8 * uuid)534 int __pure btrfs_is_empty_uuid(u8 *uuid)
535 {
536 int i;
537
538 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
539 if (uuid[i])
540 return 0;
541 }
542 return 1;
543 }
544
545 /*
546 * Calculate the number of transaction items to reserve for creating a subvolume
547 * or snapshot, not including the inode, directory entries, or parent directory.
548 */
create_subvol_num_items(struct btrfs_qgroup_inherit * inherit)549 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
550 {
551 /*
552 * 1 to add root block
553 * 1 to add root item
554 * 1 to add root ref
555 * 1 to add root backref
556 * 1 to add UUID item
557 * 1 to add qgroup info
558 * 1 to add qgroup limit
559 *
560 * Ideally the last two would only be accounted if qgroups are enabled,
561 * but that can change between now and the time we would insert them.
562 */
563 unsigned int num_items = 7;
564
565 if (inherit) {
566 /* 2 to add qgroup relations for each inherited qgroup */
567 num_items += 2 * inherit->num_qgroups;
568 }
569 return num_items;
570 }
571
create_subvol(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,struct btrfs_qgroup_inherit * inherit)572 static noinline int create_subvol(struct user_namespace *mnt_userns,
573 struct inode *dir, struct dentry *dentry,
574 struct btrfs_qgroup_inherit *inherit)
575 {
576 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
577 struct btrfs_trans_handle *trans;
578 struct btrfs_key key;
579 struct btrfs_root_item *root_item;
580 struct btrfs_inode_item *inode_item;
581 struct extent_buffer *leaf;
582 struct btrfs_root *root = BTRFS_I(dir)->root;
583 struct btrfs_root *new_root;
584 struct btrfs_block_rsv block_rsv;
585 struct timespec64 cur_time = current_time(dir);
586 struct btrfs_new_inode_args new_inode_args = {
587 .dir = dir,
588 .dentry = dentry,
589 .subvol = true,
590 };
591 unsigned int trans_num_items;
592 int ret;
593 dev_t anon_dev;
594 u64 objectid;
595
596 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
597 if (!root_item)
598 return -ENOMEM;
599
600 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
601 if (ret)
602 goto out_root_item;
603
604 /*
605 * Don't create subvolume whose level is not zero. Or qgroup will be
606 * screwed up since it assumes subvolume qgroup's level to be 0.
607 */
608 if (btrfs_qgroup_level(objectid)) {
609 ret = -ENOSPC;
610 goto out_root_item;
611 }
612
613 ret = get_anon_bdev(&anon_dev);
614 if (ret < 0)
615 goto out_root_item;
616
617 new_inode_args.inode = btrfs_new_subvol_inode(mnt_userns, dir);
618 if (!new_inode_args.inode) {
619 ret = -ENOMEM;
620 goto out_anon_dev;
621 }
622 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
623 if (ret)
624 goto out_inode;
625 trans_num_items += create_subvol_num_items(inherit);
626
627 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
628 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
629 trans_num_items, false);
630 if (ret)
631 goto out_new_inode_args;
632
633 trans = btrfs_start_transaction(root, 0);
634 if (IS_ERR(trans)) {
635 ret = PTR_ERR(trans);
636 btrfs_subvolume_release_metadata(root, &block_rsv);
637 goto out_new_inode_args;
638 }
639 trans->block_rsv = &block_rsv;
640 trans->bytes_reserved = block_rsv.size;
641
642 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
643 if (ret)
644 goto out;
645
646 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
647 BTRFS_NESTING_NORMAL);
648 if (IS_ERR(leaf)) {
649 ret = PTR_ERR(leaf);
650 goto out;
651 }
652
653 btrfs_mark_buffer_dirty(leaf);
654
655 inode_item = &root_item->inode;
656 btrfs_set_stack_inode_generation(inode_item, 1);
657 btrfs_set_stack_inode_size(inode_item, 3);
658 btrfs_set_stack_inode_nlink(inode_item, 1);
659 btrfs_set_stack_inode_nbytes(inode_item,
660 fs_info->nodesize);
661 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
662
663 btrfs_set_root_flags(root_item, 0);
664 btrfs_set_root_limit(root_item, 0);
665 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
666
667 btrfs_set_root_bytenr(root_item, leaf->start);
668 btrfs_set_root_generation(root_item, trans->transid);
669 btrfs_set_root_level(root_item, 0);
670 btrfs_set_root_refs(root_item, 1);
671 btrfs_set_root_used(root_item, leaf->len);
672 btrfs_set_root_last_snapshot(root_item, 0);
673
674 btrfs_set_root_generation_v2(root_item,
675 btrfs_root_generation(root_item));
676 generate_random_guid(root_item->uuid);
677 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
678 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
679 root_item->ctime = root_item->otime;
680 btrfs_set_root_ctransid(root_item, trans->transid);
681 btrfs_set_root_otransid(root_item, trans->transid);
682
683 btrfs_tree_unlock(leaf);
684
685 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
686
687 key.objectid = objectid;
688 key.offset = 0;
689 key.type = BTRFS_ROOT_ITEM_KEY;
690 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
691 root_item);
692 if (ret) {
693 /*
694 * Since we don't abort the transaction in this case, free the
695 * tree block so that we don't leak space and leave the
696 * filesystem in an inconsistent state (an extent item in the
697 * extent tree with a backreference for a root that does not
698 * exists).
699 */
700 btrfs_tree_lock(leaf);
701 btrfs_clean_tree_block(leaf);
702 btrfs_tree_unlock(leaf);
703 btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
704 free_extent_buffer(leaf);
705 goto out;
706 }
707
708 free_extent_buffer(leaf);
709 leaf = NULL;
710
711 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
712 if (IS_ERR(new_root)) {
713 ret = PTR_ERR(new_root);
714 btrfs_abort_transaction(trans, ret);
715 goto out;
716 }
717 /* anon_dev is owned by new_root now. */
718 anon_dev = 0;
719 BTRFS_I(new_inode_args.inode)->root = new_root;
720 /* ... and new_root is owned by new_inode_args.inode now. */
721
722 ret = btrfs_record_root_in_trans(trans, new_root);
723 if (ret) {
724 btrfs_abort_transaction(trans, ret);
725 goto out;
726 }
727
728 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
729 BTRFS_UUID_KEY_SUBVOL, objectid);
730 if (ret) {
731 btrfs_abort_transaction(trans, ret);
732 goto out;
733 }
734
735 ret = btrfs_create_new_inode(trans, &new_inode_args);
736 if (ret) {
737 btrfs_abort_transaction(trans, ret);
738 goto out;
739 }
740
741 d_instantiate_new(dentry, new_inode_args.inode);
742 new_inode_args.inode = NULL;
743
744 out:
745 trans->block_rsv = NULL;
746 trans->bytes_reserved = 0;
747 btrfs_subvolume_release_metadata(root, &block_rsv);
748
749 if (ret)
750 btrfs_end_transaction(trans);
751 else
752 ret = btrfs_commit_transaction(trans);
753 out_new_inode_args:
754 btrfs_new_inode_args_destroy(&new_inode_args);
755 out_inode:
756 iput(new_inode_args.inode);
757 out_anon_dev:
758 if (anon_dev)
759 free_anon_bdev(anon_dev);
760 out_root_item:
761 kfree(root_item);
762 return ret;
763 }
764
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,bool readonly,struct btrfs_qgroup_inherit * inherit)765 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
766 struct dentry *dentry, bool readonly,
767 struct btrfs_qgroup_inherit *inherit)
768 {
769 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
770 struct inode *inode;
771 struct btrfs_pending_snapshot *pending_snapshot;
772 unsigned int trans_num_items;
773 struct btrfs_trans_handle *trans;
774 int ret;
775
776 /* We do not support snapshotting right now. */
777 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
778 btrfs_warn(fs_info,
779 "extent tree v2 doesn't support snapshotting yet");
780 return -EOPNOTSUPP;
781 }
782
783 if (btrfs_root_refs(&root->root_item) == 0)
784 return -ENOENT;
785
786 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
787 return -EINVAL;
788
789 if (atomic_read(&root->nr_swapfiles)) {
790 btrfs_warn(fs_info,
791 "cannot snapshot subvolume with active swapfile");
792 return -ETXTBSY;
793 }
794
795 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
796 if (!pending_snapshot)
797 return -ENOMEM;
798
799 ret = get_anon_bdev(&pending_snapshot->anon_dev);
800 if (ret < 0)
801 goto free_pending;
802 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
803 GFP_KERNEL);
804 pending_snapshot->path = btrfs_alloc_path();
805 if (!pending_snapshot->root_item || !pending_snapshot->path) {
806 ret = -ENOMEM;
807 goto free_pending;
808 }
809
810 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
811 BTRFS_BLOCK_RSV_TEMP);
812 /*
813 * 1 to add dir item
814 * 1 to add dir index
815 * 1 to update parent inode item
816 */
817 trans_num_items = create_subvol_num_items(inherit) + 3;
818 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
819 &pending_snapshot->block_rsv,
820 trans_num_items, false);
821 if (ret)
822 goto free_pending;
823
824 pending_snapshot->dentry = dentry;
825 pending_snapshot->root = root;
826 pending_snapshot->readonly = readonly;
827 pending_snapshot->dir = dir;
828 pending_snapshot->inherit = inherit;
829
830 trans = btrfs_start_transaction(root, 0);
831 if (IS_ERR(trans)) {
832 ret = PTR_ERR(trans);
833 goto fail;
834 }
835
836 trans->pending_snapshot = pending_snapshot;
837
838 ret = btrfs_commit_transaction(trans);
839 if (ret)
840 goto fail;
841
842 ret = pending_snapshot->error;
843 if (ret)
844 goto fail;
845
846 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
847 if (ret)
848 goto fail;
849
850 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
851 if (IS_ERR(inode)) {
852 ret = PTR_ERR(inode);
853 goto fail;
854 }
855
856 d_instantiate(dentry, inode);
857 ret = 0;
858 pending_snapshot->anon_dev = 0;
859 fail:
860 /* Prevent double freeing of anon_dev */
861 if (ret && pending_snapshot->snap)
862 pending_snapshot->snap->anon_dev = 0;
863 btrfs_put_root(pending_snapshot->snap);
864 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
865 free_pending:
866 if (pending_snapshot->anon_dev)
867 free_anon_bdev(pending_snapshot->anon_dev);
868 kfree(pending_snapshot->root_item);
869 btrfs_free_path(pending_snapshot->path);
870 kfree(pending_snapshot);
871
872 return ret;
873 }
874
875 /* copy of may_delete in fs/namei.c()
876 * Check whether we can remove a link victim from directory dir, check
877 * whether the type of victim is right.
878 * 1. We can't do it if dir is read-only (done in permission())
879 * 2. We should have write and exec permissions on dir
880 * 3. We can't remove anything from append-only dir
881 * 4. We can't do anything with immutable dir (done in permission())
882 * 5. If the sticky bit on dir is set we should either
883 * a. be owner of dir, or
884 * b. be owner of victim, or
885 * c. have CAP_FOWNER capability
886 * 6. If the victim is append-only or immutable we can't do anything with
887 * links pointing to it.
888 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
889 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
890 * 9. We can't remove a root or mountpoint.
891 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
892 * nfs_async_unlink().
893 */
894
btrfs_may_delete(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * victim,int isdir)895 static int btrfs_may_delete(struct user_namespace *mnt_userns,
896 struct inode *dir, struct dentry *victim, int isdir)
897 {
898 int error;
899
900 if (d_really_is_negative(victim))
901 return -ENOENT;
902
903 BUG_ON(d_inode(victim->d_parent) != dir);
904 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
905
906 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
907 if (error)
908 return error;
909 if (IS_APPEND(dir))
910 return -EPERM;
911 if (check_sticky(mnt_userns, dir, d_inode(victim)) ||
912 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
913 IS_SWAPFILE(d_inode(victim)))
914 return -EPERM;
915 if (isdir) {
916 if (!d_is_dir(victim))
917 return -ENOTDIR;
918 if (IS_ROOT(victim))
919 return -EBUSY;
920 } else if (d_is_dir(victim))
921 return -EISDIR;
922 if (IS_DEADDIR(dir))
923 return -ENOENT;
924 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
925 return -EBUSY;
926 return 0;
927 }
928
929 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * child)930 static inline int btrfs_may_create(struct user_namespace *mnt_userns,
931 struct inode *dir, struct dentry *child)
932 {
933 if (d_really_is_positive(child))
934 return -EEXIST;
935 if (IS_DEADDIR(dir))
936 return -ENOENT;
937 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
938 return -EOVERFLOW;
939 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
940 }
941
942 /*
943 * Create a new subvolume below @parent. This is largely modeled after
944 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
945 * inside this filesystem so it's quite a bit simpler.
946 */
btrfs_mksubvol(const struct path * parent,struct user_namespace * mnt_userns,const char * name,int namelen,struct btrfs_root * snap_src,bool readonly,struct btrfs_qgroup_inherit * inherit)947 static noinline int btrfs_mksubvol(const struct path *parent,
948 struct user_namespace *mnt_userns,
949 const char *name, int namelen,
950 struct btrfs_root *snap_src,
951 bool readonly,
952 struct btrfs_qgroup_inherit *inherit)
953 {
954 struct inode *dir = d_inode(parent->dentry);
955 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
956 struct dentry *dentry;
957 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
958 int error;
959
960 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
961 if (error == -EINTR)
962 return error;
963
964 dentry = lookup_one(mnt_userns, name, parent->dentry, namelen);
965 error = PTR_ERR(dentry);
966 if (IS_ERR(dentry))
967 goto out_unlock;
968
969 error = btrfs_may_create(mnt_userns, dir, dentry);
970 if (error)
971 goto out_dput;
972
973 /*
974 * even if this name doesn't exist, we may get hash collisions.
975 * check for them now when we can safely fail
976 */
977 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
978 dir->i_ino, &name_str);
979 if (error)
980 goto out_dput;
981
982 down_read(&fs_info->subvol_sem);
983
984 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
985 goto out_up_read;
986
987 if (snap_src)
988 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
989 else
990 error = create_subvol(mnt_userns, dir, dentry, inherit);
991
992 if (!error)
993 fsnotify_mkdir(dir, dentry);
994 out_up_read:
995 up_read(&fs_info->subvol_sem);
996 out_dput:
997 dput(dentry);
998 out_unlock:
999 btrfs_inode_unlock(dir, 0);
1000 return error;
1001 }
1002
btrfs_mksnapshot(const struct path * parent,struct user_namespace * mnt_userns,const char * name,int namelen,struct btrfs_root * root,bool readonly,struct btrfs_qgroup_inherit * inherit)1003 static noinline int btrfs_mksnapshot(const struct path *parent,
1004 struct user_namespace *mnt_userns,
1005 const char *name, int namelen,
1006 struct btrfs_root *root,
1007 bool readonly,
1008 struct btrfs_qgroup_inherit *inherit)
1009 {
1010 int ret;
1011 bool snapshot_force_cow = false;
1012
1013 /*
1014 * Force new buffered writes to reserve space even when NOCOW is
1015 * possible. This is to avoid later writeback (running dealloc) to
1016 * fallback to COW mode and unexpectedly fail with ENOSPC.
1017 */
1018 btrfs_drew_read_lock(&root->snapshot_lock);
1019
1020 ret = btrfs_start_delalloc_snapshot(root, false);
1021 if (ret)
1022 goto out;
1023
1024 /*
1025 * All previous writes have started writeback in NOCOW mode, so now
1026 * we force future writes to fallback to COW mode during snapshot
1027 * creation.
1028 */
1029 atomic_inc(&root->snapshot_force_cow);
1030 snapshot_force_cow = true;
1031
1032 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1033
1034 ret = btrfs_mksubvol(parent, mnt_userns, name, namelen,
1035 root, readonly, inherit);
1036 out:
1037 if (snapshot_force_cow)
1038 atomic_dec(&root->snapshot_force_cow);
1039 btrfs_drew_read_unlock(&root->snapshot_lock);
1040 return ret;
1041 }
1042
1043 /*
1044 * Defrag specific helper to get an extent map.
1045 *
1046 * Differences between this and btrfs_get_extent() are:
1047 *
1048 * - No extent_map will be added to inode->extent_tree
1049 * To reduce memory usage in the long run.
1050 *
1051 * - Extra optimization to skip file extents older than @newer_than
1052 * By using btrfs_search_forward() we can skip entire file ranges that
1053 * have extents created in past transactions, because btrfs_search_forward()
1054 * will not visit leaves and nodes with a generation smaller than given
1055 * minimal generation threshold (@newer_than).
1056 *
1057 * Return valid em if we find a file extent matching the requirement.
1058 * Return NULL if we can not find a file extent matching the requirement.
1059 *
1060 * Return ERR_PTR() for error.
1061 */
defrag_get_extent(struct btrfs_inode * inode,u64 start,u64 newer_than)1062 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
1063 u64 start, u64 newer_than)
1064 {
1065 struct btrfs_root *root = inode->root;
1066 struct btrfs_file_extent_item *fi;
1067 struct btrfs_path path = { 0 };
1068 struct extent_map *em;
1069 struct btrfs_key key;
1070 u64 ino = btrfs_ino(inode);
1071 int ret;
1072
1073 em = alloc_extent_map();
1074 if (!em) {
1075 ret = -ENOMEM;
1076 goto err;
1077 }
1078
1079 key.objectid = ino;
1080 key.type = BTRFS_EXTENT_DATA_KEY;
1081 key.offset = start;
1082
1083 if (newer_than) {
1084 ret = btrfs_search_forward(root, &key, &path, newer_than);
1085 if (ret < 0)
1086 goto err;
1087 /* Can't find anything newer */
1088 if (ret > 0)
1089 goto not_found;
1090 } else {
1091 ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
1092 if (ret < 0)
1093 goto err;
1094 }
1095 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
1096 /*
1097 * If btrfs_search_slot() makes path to point beyond nritems,
1098 * we should not have an empty leaf, as this inode must at
1099 * least have its INODE_ITEM.
1100 */
1101 ASSERT(btrfs_header_nritems(path.nodes[0]));
1102 path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
1103 }
1104 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1105 /* Perfect match, no need to go one slot back */
1106 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
1107 key.offset == start)
1108 goto iterate;
1109
1110 /* We didn't find a perfect match, needs to go one slot back */
1111 if (path.slots[0] > 0) {
1112 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1113 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
1114 path.slots[0]--;
1115 }
1116
1117 iterate:
1118 /* Iterate through the path to find a file extent covering @start */
1119 while (true) {
1120 u64 extent_end;
1121
1122 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
1123 goto next;
1124
1125 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1126
1127 /*
1128 * We may go one slot back to INODE_REF/XATTR item, then
1129 * need to go forward until we reach an EXTENT_DATA.
1130 * But we should still has the correct ino as key.objectid.
1131 */
1132 if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
1133 goto next;
1134
1135 /* It's beyond our target range, definitely not extent found */
1136 if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
1137 goto not_found;
1138
1139 /*
1140 * | |<- File extent ->|
1141 * \- start
1142 *
1143 * This means there is a hole between start and key.offset.
1144 */
1145 if (key.offset > start) {
1146 em->start = start;
1147 em->orig_start = start;
1148 em->block_start = EXTENT_MAP_HOLE;
1149 em->len = key.offset - start;
1150 break;
1151 }
1152
1153 fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
1154 struct btrfs_file_extent_item);
1155 extent_end = btrfs_file_extent_end(&path);
1156
1157 /*
1158 * |<- file extent ->| |
1159 * \- start
1160 *
1161 * We haven't reached start, search next slot.
1162 */
1163 if (extent_end <= start)
1164 goto next;
1165
1166 /* Now this extent covers @start, convert it to em */
1167 btrfs_extent_item_to_extent_map(inode, &path, fi, false, em);
1168 break;
1169 next:
1170 ret = btrfs_next_item(root, &path);
1171 if (ret < 0)
1172 goto err;
1173 if (ret > 0)
1174 goto not_found;
1175 }
1176 btrfs_release_path(&path);
1177 return em;
1178
1179 not_found:
1180 btrfs_release_path(&path);
1181 free_extent_map(em);
1182 return NULL;
1183
1184 err:
1185 btrfs_release_path(&path);
1186 free_extent_map(em);
1187 return ERR_PTR(ret);
1188 }
1189
defrag_lookup_extent(struct inode * inode,u64 start,u64 newer_than,bool locked)1190 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
1191 u64 newer_than, bool locked)
1192 {
1193 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1194 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1195 struct extent_map *em;
1196 const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
1197
1198 /*
1199 * hopefully we have this extent in the tree already, try without
1200 * the full extent lock
1201 */
1202 read_lock(&em_tree->lock);
1203 em = lookup_extent_mapping(em_tree, start, sectorsize);
1204 read_unlock(&em_tree->lock);
1205
1206 /*
1207 * We can get a merged extent, in that case, we need to re-search
1208 * tree to get the original em for defrag.
1209 *
1210 * If @newer_than is 0 or em::generation < newer_than, we can trust
1211 * this em, as either we don't care about the generation, or the
1212 * merged extent map will be rejected anyway.
1213 */
1214 if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) &&
1215 newer_than && em->generation >= newer_than) {
1216 free_extent_map(em);
1217 em = NULL;
1218 }
1219
1220 if (!em) {
1221 struct extent_state *cached = NULL;
1222 u64 end = start + sectorsize - 1;
1223
1224 /* get the big lock and read metadata off disk */
1225 if (!locked)
1226 lock_extent(io_tree, start, end, &cached);
1227 em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
1228 if (!locked)
1229 unlock_extent(io_tree, start, end, &cached);
1230
1231 if (IS_ERR(em))
1232 return NULL;
1233 }
1234
1235 return em;
1236 }
1237
get_extent_max_capacity(const struct btrfs_fs_info * fs_info,const struct extent_map * em)1238 static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
1239 const struct extent_map *em)
1240 {
1241 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1242 return BTRFS_MAX_COMPRESSED;
1243 return fs_info->max_extent_size;
1244 }
1245
defrag_check_next_extent(struct inode * inode,struct extent_map * em,u32 extent_thresh,u64 newer_than,bool locked)1246 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
1247 u32 extent_thresh, u64 newer_than, bool locked)
1248 {
1249 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1250 struct extent_map *next;
1251 bool ret = false;
1252
1253 /* this is the last extent */
1254 if (em->start + em->len >= i_size_read(inode))
1255 return false;
1256
1257 /*
1258 * Here we need to pass @newer_then when checking the next extent, or
1259 * we will hit a case we mark current extent for defrag, but the next
1260 * one will not be a target.
1261 * This will just cause extra IO without really reducing the fragments.
1262 */
1263 next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
1264 /* No more em or hole */
1265 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1266 goto out;
1267 if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags))
1268 goto out;
1269 /*
1270 * If the next extent is at its max capacity, defragging current extent
1271 * makes no sense, as the total number of extents won't change.
1272 */
1273 if (next->len >= get_extent_max_capacity(fs_info, em))
1274 goto out;
1275 /* Skip older extent */
1276 if (next->generation < newer_than)
1277 goto out;
1278 /* Also check extent size */
1279 if (next->len >= extent_thresh)
1280 goto out;
1281
1282 ret = true;
1283 out:
1284 free_extent_map(next);
1285 return ret;
1286 }
1287
1288 /*
1289 * Prepare one page to be defragged.
1290 *
1291 * This will ensure:
1292 *
1293 * - Returned page is locked and has been set up properly.
1294 * - No ordered extent exists in the page.
1295 * - The page is uptodate.
1296 *
1297 * NOTE: Caller should also wait for page writeback after the cluster is
1298 * prepared, here we don't do writeback wait for each page.
1299 */
defrag_prepare_one_page(struct btrfs_inode * inode,pgoff_t index)1300 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode,
1301 pgoff_t index)
1302 {
1303 struct address_space *mapping = inode->vfs_inode.i_mapping;
1304 gfp_t mask = btrfs_alloc_write_mask(mapping);
1305 u64 page_start = (u64)index << PAGE_SHIFT;
1306 u64 page_end = page_start + PAGE_SIZE - 1;
1307 struct extent_state *cached_state = NULL;
1308 struct page *page;
1309 int ret;
1310
1311 again:
1312 page = find_or_create_page(mapping, index, mask);
1313 if (!page)
1314 return ERR_PTR(-ENOMEM);
1315
1316 /*
1317 * Since we can defragment files opened read-only, we can encounter
1318 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
1319 * can't do I/O using huge pages yet, so return an error for now.
1320 * Filesystem transparent huge pages are typically only used for
1321 * executables that explicitly enable them, so this isn't very
1322 * restrictive.
1323 */
1324 if (PageCompound(page)) {
1325 unlock_page(page);
1326 put_page(page);
1327 return ERR_PTR(-ETXTBSY);
1328 }
1329
1330 ret = set_page_extent_mapped(page);
1331 if (ret < 0) {
1332 unlock_page(page);
1333 put_page(page);
1334 return ERR_PTR(ret);
1335 }
1336
1337 /* Wait for any existing ordered extent in the range */
1338 while (1) {
1339 struct btrfs_ordered_extent *ordered;
1340
1341 lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
1342 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
1343 unlock_extent(&inode->io_tree, page_start, page_end,
1344 &cached_state);
1345 if (!ordered)
1346 break;
1347
1348 unlock_page(page);
1349 btrfs_start_ordered_extent(ordered, 1);
1350 btrfs_put_ordered_extent(ordered);
1351 lock_page(page);
1352 /*
1353 * We unlocked the page above, so we need check if it was
1354 * released or not.
1355 */
1356 if (page->mapping != mapping || !PagePrivate(page)) {
1357 unlock_page(page);
1358 put_page(page);
1359 goto again;
1360 }
1361 }
1362
1363 /*
1364 * Now the page range has no ordered extent any more. Read the page to
1365 * make it uptodate.
1366 */
1367 if (!PageUptodate(page)) {
1368 btrfs_read_folio(NULL, page_folio(page));
1369 lock_page(page);
1370 if (page->mapping != mapping || !PagePrivate(page)) {
1371 unlock_page(page);
1372 put_page(page);
1373 goto again;
1374 }
1375 if (!PageUptodate(page)) {
1376 unlock_page(page);
1377 put_page(page);
1378 return ERR_PTR(-EIO);
1379 }
1380 }
1381 return page;
1382 }
1383
1384 struct defrag_target_range {
1385 struct list_head list;
1386 u64 start;
1387 u64 len;
1388 };
1389
1390 /*
1391 * Collect all valid target extents.
1392 *
1393 * @start: file offset to lookup
1394 * @len: length to lookup
1395 * @extent_thresh: file extent size threshold, any extent size >= this value
1396 * will be ignored
1397 * @newer_than: only defrag extents newer than this value
1398 * @do_compress: whether the defrag is doing compression
1399 * if true, @extent_thresh will be ignored and all regular
1400 * file extents meeting @newer_than will be targets.
1401 * @locked: if the range has already held extent lock
1402 * @target_list: list of targets file extents
1403 */
defrag_collect_targets(struct btrfs_inode * inode,u64 start,u64 len,u32 extent_thresh,u64 newer_than,bool do_compress,bool locked,struct list_head * target_list,u64 * last_scanned_ret)1404 static int defrag_collect_targets(struct btrfs_inode *inode,
1405 u64 start, u64 len, u32 extent_thresh,
1406 u64 newer_than, bool do_compress,
1407 bool locked, struct list_head *target_list,
1408 u64 *last_scanned_ret)
1409 {
1410 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1411 bool last_is_target = false;
1412 u64 cur = start;
1413 int ret = 0;
1414
1415 while (cur < start + len) {
1416 struct extent_map *em;
1417 struct defrag_target_range *new;
1418 bool next_mergeable = true;
1419 u64 range_len;
1420
1421 last_is_target = false;
1422 em = defrag_lookup_extent(&inode->vfs_inode, cur,
1423 newer_than, locked);
1424 if (!em)
1425 break;
1426
1427 /*
1428 * If the file extent is an inlined one, we may still want to
1429 * defrag it (fallthrough) if it will cause a regular extent.
1430 * This is for users who want to convert inline extents to
1431 * regular ones through max_inline= mount option.
1432 */
1433 if (em->block_start == EXTENT_MAP_INLINE &&
1434 em->len <= inode->root->fs_info->max_inline)
1435 goto next;
1436
1437 /* Skip hole/delalloc/preallocated extents */
1438 if (em->block_start == EXTENT_MAP_HOLE ||
1439 em->block_start == EXTENT_MAP_DELALLOC ||
1440 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1441 goto next;
1442
1443 /* Skip older extent */
1444 if (em->generation < newer_than)
1445 goto next;
1446
1447 /* This em is under writeback, no need to defrag */
1448 if (em->generation == (u64)-1)
1449 goto next;
1450
1451 /*
1452 * Our start offset might be in the middle of an existing extent
1453 * map, so take that into account.
1454 */
1455 range_len = em->len - (cur - em->start);
1456 /*
1457 * If this range of the extent map is already flagged for delalloc,
1458 * skip it, because:
1459 *
1460 * 1) We could deadlock later, when trying to reserve space for
1461 * delalloc, because in case we can't immediately reserve space
1462 * the flusher can start delalloc and wait for the respective
1463 * ordered extents to complete. The deadlock would happen
1464 * because we do the space reservation while holding the range
1465 * locked, and starting writeback, or finishing an ordered
1466 * extent, requires locking the range;
1467 *
1468 * 2) If there's delalloc there, it means there's dirty pages for
1469 * which writeback has not started yet (we clean the delalloc
1470 * flag when starting writeback and after creating an ordered
1471 * extent). If we mark pages in an adjacent range for defrag,
1472 * then we will have a larger contiguous range for delalloc,
1473 * very likely resulting in a larger extent after writeback is
1474 * triggered (except in a case of free space fragmentation).
1475 */
1476 if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1,
1477 EXTENT_DELALLOC, 0, NULL))
1478 goto next;
1479
1480 /*
1481 * For do_compress case, we want to compress all valid file
1482 * extents, thus no @extent_thresh or mergeable check.
1483 */
1484 if (do_compress)
1485 goto add;
1486
1487 /* Skip too large extent */
1488 if (range_len >= extent_thresh)
1489 goto next;
1490
1491 /*
1492 * Skip extents already at its max capacity, this is mostly for
1493 * compressed extents, which max cap is only 128K.
1494 */
1495 if (em->len >= get_extent_max_capacity(fs_info, em))
1496 goto next;
1497
1498 /*
1499 * Normally there are no more extents after an inline one, thus
1500 * @next_mergeable will normally be false and not defragged.
1501 * So if an inline extent passed all above checks, just add it
1502 * for defrag, and be converted to regular extents.
1503 */
1504 if (em->block_start == EXTENT_MAP_INLINE)
1505 goto add;
1506
1507 next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
1508 extent_thresh, newer_than, locked);
1509 if (!next_mergeable) {
1510 struct defrag_target_range *last;
1511
1512 /* Empty target list, no way to merge with last entry */
1513 if (list_empty(target_list))
1514 goto next;
1515 last = list_entry(target_list->prev,
1516 struct defrag_target_range, list);
1517 /* Not mergeable with last entry */
1518 if (last->start + last->len != cur)
1519 goto next;
1520
1521 /* Mergeable, fall through to add it to @target_list. */
1522 }
1523
1524 add:
1525 last_is_target = true;
1526 range_len = min(extent_map_end(em), start + len) - cur;
1527 /*
1528 * This one is a good target, check if it can be merged into
1529 * last range of the target list.
1530 */
1531 if (!list_empty(target_list)) {
1532 struct defrag_target_range *last;
1533
1534 last = list_entry(target_list->prev,
1535 struct defrag_target_range, list);
1536 ASSERT(last->start + last->len <= cur);
1537 if (last->start + last->len == cur) {
1538 /* Mergeable, enlarge the last entry */
1539 last->len += range_len;
1540 goto next;
1541 }
1542 /* Fall through to allocate a new entry */
1543 }
1544
1545 /* Allocate new defrag_target_range */
1546 new = kmalloc(sizeof(*new), GFP_NOFS);
1547 if (!new) {
1548 free_extent_map(em);
1549 ret = -ENOMEM;
1550 break;
1551 }
1552 new->start = cur;
1553 new->len = range_len;
1554 list_add_tail(&new->list, target_list);
1555
1556 next:
1557 cur = extent_map_end(em);
1558 free_extent_map(em);
1559 }
1560 if (ret < 0) {
1561 struct defrag_target_range *entry;
1562 struct defrag_target_range *tmp;
1563
1564 list_for_each_entry_safe(entry, tmp, target_list, list) {
1565 list_del_init(&entry->list);
1566 kfree(entry);
1567 }
1568 }
1569 if (!ret && last_scanned_ret) {
1570 /*
1571 * If the last extent is not a target, the caller can skip to
1572 * the end of that extent.
1573 * Otherwise, we can only go the end of the specified range.
1574 */
1575 if (!last_is_target)
1576 *last_scanned_ret = max(cur, *last_scanned_ret);
1577 else
1578 *last_scanned_ret = max(start + len, *last_scanned_ret);
1579 }
1580 return ret;
1581 }
1582
1583 #define CLUSTER_SIZE (SZ_256K)
1584 static_assert(IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1585
1586 /*
1587 * Defrag one contiguous target range.
1588 *
1589 * @inode: target inode
1590 * @target: target range to defrag
1591 * @pages: locked pages covering the defrag range
1592 * @nr_pages: number of locked pages
1593 *
1594 * Caller should ensure:
1595 *
1596 * - Pages are prepared
1597 * Pages should be locked, no ordered extent in the pages range,
1598 * no writeback.
1599 *
1600 * - Extent bits are locked
1601 */
defrag_one_locked_target(struct btrfs_inode * inode,struct defrag_target_range * target,struct page ** pages,int nr_pages,struct extent_state ** cached_state)1602 static int defrag_one_locked_target(struct btrfs_inode *inode,
1603 struct defrag_target_range *target,
1604 struct page **pages, int nr_pages,
1605 struct extent_state **cached_state)
1606 {
1607 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1608 struct extent_changeset *data_reserved = NULL;
1609 const u64 start = target->start;
1610 const u64 len = target->len;
1611 unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1612 unsigned long start_index = start >> PAGE_SHIFT;
1613 unsigned long first_index = page_index(pages[0]);
1614 int ret = 0;
1615 int i;
1616
1617 ASSERT(last_index - first_index + 1 <= nr_pages);
1618
1619 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1620 if (ret < 0)
1621 return ret;
1622 clear_extent_bit(&inode->io_tree, start, start + len - 1,
1623 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1624 EXTENT_DEFRAG, cached_state);
1625 set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state);
1626
1627 /* Update the page status */
1628 for (i = start_index - first_index; i <= last_index - first_index; i++) {
1629 ClearPageChecked(pages[i]);
1630 btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
1631 }
1632 btrfs_delalloc_release_extents(inode, len);
1633 extent_changeset_free(data_reserved);
1634
1635 return ret;
1636 }
1637
defrag_one_range(struct btrfs_inode * inode,u64 start,u32 len,u32 extent_thresh,u64 newer_than,bool do_compress,u64 * last_scanned_ret)1638 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1639 u32 extent_thresh, u64 newer_than, bool do_compress,
1640 u64 *last_scanned_ret)
1641 {
1642 struct extent_state *cached_state = NULL;
1643 struct defrag_target_range *entry;
1644 struct defrag_target_range *tmp;
1645 LIST_HEAD(target_list);
1646 struct page **pages;
1647 const u32 sectorsize = inode->root->fs_info->sectorsize;
1648 u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1649 u64 start_index = start >> PAGE_SHIFT;
1650 unsigned int nr_pages = last_index - start_index + 1;
1651 int ret = 0;
1652 int i;
1653
1654 ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1655 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1656
1657 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
1658 if (!pages)
1659 return -ENOMEM;
1660
1661 /* Prepare all pages */
1662 for (i = 0; i < nr_pages; i++) {
1663 pages[i] = defrag_prepare_one_page(inode, start_index + i);
1664 if (IS_ERR(pages[i])) {
1665 ret = PTR_ERR(pages[i]);
1666 pages[i] = NULL;
1667 goto free_pages;
1668 }
1669 }
1670 for (i = 0; i < nr_pages; i++)
1671 wait_on_page_writeback(pages[i]);
1672
1673 /* Lock the pages range */
1674 lock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1675 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1676 &cached_state);
1677 /*
1678 * Now we have a consistent view about the extent map, re-check
1679 * which range really needs to be defragged.
1680 *
1681 * And this time we have extent locked already, pass @locked = true
1682 * so that we won't relock the extent range and cause deadlock.
1683 */
1684 ret = defrag_collect_targets(inode, start, len, extent_thresh,
1685 newer_than, do_compress, true,
1686 &target_list, last_scanned_ret);
1687 if (ret < 0)
1688 goto unlock_extent;
1689
1690 list_for_each_entry(entry, &target_list, list) {
1691 ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
1692 &cached_state);
1693 if (ret < 0)
1694 break;
1695 }
1696
1697 list_for_each_entry_safe(entry, tmp, &target_list, list) {
1698 list_del_init(&entry->list);
1699 kfree(entry);
1700 }
1701 unlock_extent:
1702 unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1703 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1704 &cached_state);
1705 free_pages:
1706 for (i = 0; i < nr_pages; i++) {
1707 if (pages[i]) {
1708 unlock_page(pages[i]);
1709 put_page(pages[i]);
1710 }
1711 }
1712 kfree(pages);
1713 return ret;
1714 }
1715
defrag_one_cluster(struct btrfs_inode * inode,struct file_ra_state * ra,u64 start,u32 len,u32 extent_thresh,u64 newer_than,bool do_compress,unsigned long * sectors_defragged,unsigned long max_sectors,u64 * last_scanned_ret)1716 static int defrag_one_cluster(struct btrfs_inode *inode,
1717 struct file_ra_state *ra,
1718 u64 start, u32 len, u32 extent_thresh,
1719 u64 newer_than, bool do_compress,
1720 unsigned long *sectors_defragged,
1721 unsigned long max_sectors,
1722 u64 *last_scanned_ret)
1723 {
1724 const u32 sectorsize = inode->root->fs_info->sectorsize;
1725 struct defrag_target_range *entry;
1726 struct defrag_target_range *tmp;
1727 LIST_HEAD(target_list);
1728 int ret;
1729
1730 ret = defrag_collect_targets(inode, start, len, extent_thresh,
1731 newer_than, do_compress, false,
1732 &target_list, NULL);
1733 if (ret < 0)
1734 goto out;
1735
1736 list_for_each_entry(entry, &target_list, list) {
1737 u32 range_len = entry->len;
1738
1739 /* Reached or beyond the limit */
1740 if (max_sectors && *sectors_defragged >= max_sectors) {
1741 ret = 1;
1742 break;
1743 }
1744
1745 if (max_sectors)
1746 range_len = min_t(u32, range_len,
1747 (max_sectors - *sectors_defragged) * sectorsize);
1748
1749 /*
1750 * If defrag_one_range() has updated last_scanned_ret,
1751 * our range may already be invalid (e.g. hole punched).
1752 * Skip if our range is before last_scanned_ret, as there is
1753 * no need to defrag the range anymore.
1754 */
1755 if (entry->start + range_len <= *last_scanned_ret)
1756 continue;
1757
1758 if (ra)
1759 page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1760 ra, NULL, entry->start >> PAGE_SHIFT,
1761 ((entry->start + range_len - 1) >> PAGE_SHIFT) -
1762 (entry->start >> PAGE_SHIFT) + 1);
1763 /*
1764 * Here we may not defrag any range if holes are punched before
1765 * we locked the pages.
1766 * But that's fine, it only affects the @sectors_defragged
1767 * accounting.
1768 */
1769 ret = defrag_one_range(inode, entry->start, range_len,
1770 extent_thresh, newer_than, do_compress,
1771 last_scanned_ret);
1772 if (ret < 0)
1773 break;
1774 *sectors_defragged += range_len >>
1775 inode->root->fs_info->sectorsize_bits;
1776 }
1777 out:
1778 list_for_each_entry_safe(entry, tmp, &target_list, list) {
1779 list_del_init(&entry->list);
1780 kfree(entry);
1781 }
1782 if (ret >= 0)
1783 *last_scanned_ret = max(*last_scanned_ret, start + len);
1784 return ret;
1785 }
1786
1787 /*
1788 * Entry point to file defragmentation.
1789 *
1790 * @inode: inode to be defragged
1791 * @ra: readahead state (can be NUL)
1792 * @range: defrag options including range and flags
1793 * @newer_than: minimum transid to defrag
1794 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1795 * will be defragged.
1796 *
1797 * Return <0 for error.
1798 * Return >=0 for the number of sectors defragged, and range->start will be updated
1799 * to indicate the file offset where next defrag should be started at.
1800 * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1801 * defragging all the range).
1802 */
btrfs_defrag_file(struct inode * inode,struct file_ra_state * ra,struct btrfs_ioctl_defrag_range_args * range,u64 newer_than,unsigned long max_to_defrag)1803 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1804 struct btrfs_ioctl_defrag_range_args *range,
1805 u64 newer_than, unsigned long max_to_defrag)
1806 {
1807 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1808 unsigned long sectors_defragged = 0;
1809 u64 isize = i_size_read(inode);
1810 u64 cur;
1811 u64 last_byte;
1812 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1813 bool ra_allocated = false;
1814 int compress_type = BTRFS_COMPRESS_ZLIB;
1815 int ret = 0;
1816 u32 extent_thresh = range->extent_thresh;
1817 pgoff_t start_index;
1818
1819 if (isize == 0)
1820 return 0;
1821
1822 if (range->start >= isize)
1823 return -EINVAL;
1824
1825 if (do_compress) {
1826 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1827 return -EINVAL;
1828 if (range->compress_type)
1829 compress_type = range->compress_type;
1830 }
1831
1832 if (extent_thresh == 0)
1833 extent_thresh = SZ_256K;
1834
1835 if (range->start + range->len > range->start) {
1836 /* Got a specific range */
1837 last_byte = min(isize, range->start + range->len);
1838 } else {
1839 /* Defrag until file end */
1840 last_byte = isize;
1841 }
1842
1843 /* Align the range */
1844 cur = round_down(range->start, fs_info->sectorsize);
1845 last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1846
1847 /*
1848 * If we were not given a ra, allocate a readahead context. As
1849 * readahead is just an optimization, defrag will work without it so
1850 * we don't error out.
1851 */
1852 if (!ra) {
1853 ra_allocated = true;
1854 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1855 if (ra)
1856 file_ra_state_init(ra, inode->i_mapping);
1857 }
1858
1859 /*
1860 * Make writeback start from the beginning of the range, so that the
1861 * defrag range can be written sequentially.
1862 */
1863 start_index = cur >> PAGE_SHIFT;
1864 if (start_index < inode->i_mapping->writeback_index)
1865 inode->i_mapping->writeback_index = start_index;
1866
1867 while (cur < last_byte) {
1868 const unsigned long prev_sectors_defragged = sectors_defragged;
1869 u64 last_scanned = cur;
1870 u64 cluster_end;
1871
1872 if (btrfs_defrag_cancelled(fs_info)) {
1873 ret = -EAGAIN;
1874 break;
1875 }
1876
1877 /* We want the cluster end at page boundary when possible */
1878 cluster_end = (((cur >> PAGE_SHIFT) +
1879 (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1880 cluster_end = min(cluster_end, last_byte);
1881
1882 btrfs_inode_lock(inode, 0);
1883 if (IS_SWAPFILE(inode)) {
1884 ret = -ETXTBSY;
1885 btrfs_inode_unlock(inode, 0);
1886 break;
1887 }
1888 if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1889 btrfs_inode_unlock(inode, 0);
1890 break;
1891 }
1892 if (do_compress)
1893 BTRFS_I(inode)->defrag_compress = compress_type;
1894 ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1895 cluster_end + 1 - cur, extent_thresh,
1896 newer_than, do_compress, §ors_defragged,
1897 max_to_defrag, &last_scanned);
1898
1899 if (sectors_defragged > prev_sectors_defragged)
1900 balance_dirty_pages_ratelimited(inode->i_mapping);
1901
1902 btrfs_inode_unlock(inode, 0);
1903 if (ret < 0)
1904 break;
1905 cur = max(cluster_end + 1, last_scanned);
1906 if (ret > 0) {
1907 ret = 0;
1908 break;
1909 }
1910 cond_resched();
1911 }
1912
1913 if (ra_allocated)
1914 kfree(ra);
1915 /*
1916 * Update range.start for autodefrag, this will indicate where to start
1917 * in next run.
1918 */
1919 range->start = cur;
1920 if (sectors_defragged) {
1921 /*
1922 * We have defragged some sectors, for compression case they
1923 * need to be written back immediately.
1924 */
1925 if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1926 filemap_flush(inode->i_mapping);
1927 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1928 &BTRFS_I(inode)->runtime_flags))
1929 filemap_flush(inode->i_mapping);
1930 }
1931 if (range->compress_type == BTRFS_COMPRESS_LZO)
1932 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1933 else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1934 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1935 ret = sectors_defragged;
1936 }
1937 if (do_compress) {
1938 btrfs_inode_lock(inode, 0);
1939 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1940 btrfs_inode_unlock(inode, 0);
1941 }
1942 return ret;
1943 }
1944
1945 /*
1946 * Try to start exclusive operation @type or cancel it if it's running.
1947 *
1948 * Return:
1949 * 0 - normal mode, newly claimed op started
1950 * >0 - normal mode, something else is running,
1951 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1952 * ECANCELED - cancel mode, successful cancel
1953 * ENOTCONN - cancel mode, operation not running anymore
1954 */
exclop_start_or_cancel_reloc(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type,bool cancel)1955 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1956 enum btrfs_exclusive_operation type, bool cancel)
1957 {
1958 if (!cancel) {
1959 /* Start normal op */
1960 if (!btrfs_exclop_start(fs_info, type))
1961 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1962 /* Exclusive operation is now claimed */
1963 return 0;
1964 }
1965
1966 /* Cancel running op */
1967 if (btrfs_exclop_start_try_lock(fs_info, type)) {
1968 /*
1969 * This blocks any exclop finish from setting it to NONE, so we
1970 * request cancellation. Either it runs and we will wait for it,
1971 * or it has finished and no waiting will happen.
1972 */
1973 atomic_inc(&fs_info->reloc_cancel_req);
1974 btrfs_exclop_start_unlock(fs_info);
1975
1976 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1977 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1978 TASK_INTERRUPTIBLE);
1979
1980 return -ECANCELED;
1981 }
1982
1983 /* Something else is running or none */
1984 return -ENOTCONN;
1985 }
1986
btrfs_ioctl_resize(struct file * file,void __user * arg)1987 static noinline int btrfs_ioctl_resize(struct file *file,
1988 void __user *arg)
1989 {
1990 BTRFS_DEV_LOOKUP_ARGS(args);
1991 struct inode *inode = file_inode(file);
1992 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1993 u64 new_size;
1994 u64 old_size;
1995 u64 devid = 1;
1996 struct btrfs_root *root = BTRFS_I(inode)->root;
1997 struct btrfs_ioctl_vol_args *vol_args;
1998 struct btrfs_trans_handle *trans;
1999 struct btrfs_device *device = NULL;
2000 char *sizestr;
2001 char *retptr;
2002 char *devstr = NULL;
2003 int ret = 0;
2004 int mod = 0;
2005 bool cancel;
2006
2007 if (!capable(CAP_SYS_ADMIN))
2008 return -EPERM;
2009
2010 ret = mnt_want_write_file(file);
2011 if (ret)
2012 return ret;
2013
2014 /*
2015 * Read the arguments before checking exclusivity to be able to
2016 * distinguish regular resize and cancel
2017 */
2018 vol_args = memdup_user(arg, sizeof(*vol_args));
2019 if (IS_ERR(vol_args)) {
2020 ret = PTR_ERR(vol_args);
2021 goto out_drop;
2022 }
2023 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2024 sizestr = vol_args->name;
2025 cancel = (strcmp("cancel", sizestr) == 0);
2026 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
2027 if (ret)
2028 goto out_free;
2029 /* Exclusive operation is now claimed */
2030
2031 devstr = strchr(sizestr, ':');
2032 if (devstr) {
2033 sizestr = devstr + 1;
2034 *devstr = '\0';
2035 devstr = vol_args->name;
2036 ret = kstrtoull(devstr, 10, &devid);
2037 if (ret)
2038 goto out_finish;
2039 if (!devid) {
2040 ret = -EINVAL;
2041 goto out_finish;
2042 }
2043 btrfs_info(fs_info, "resizing devid %llu", devid);
2044 }
2045
2046 args.devid = devid;
2047 device = btrfs_find_device(fs_info->fs_devices, &args);
2048 if (!device) {
2049 btrfs_info(fs_info, "resizer unable to find device %llu",
2050 devid);
2051 ret = -ENODEV;
2052 goto out_finish;
2053 }
2054
2055 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2056 btrfs_info(fs_info,
2057 "resizer unable to apply on readonly device %llu",
2058 devid);
2059 ret = -EPERM;
2060 goto out_finish;
2061 }
2062
2063 if (!strcmp(sizestr, "max"))
2064 new_size = bdev_nr_bytes(device->bdev);
2065 else {
2066 if (sizestr[0] == '-') {
2067 mod = -1;
2068 sizestr++;
2069 } else if (sizestr[0] == '+') {
2070 mod = 1;
2071 sizestr++;
2072 }
2073 new_size = memparse(sizestr, &retptr);
2074 if (*retptr != '\0' || new_size == 0) {
2075 ret = -EINVAL;
2076 goto out_finish;
2077 }
2078 }
2079
2080 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2081 ret = -EPERM;
2082 goto out_finish;
2083 }
2084
2085 old_size = btrfs_device_get_total_bytes(device);
2086
2087 if (mod < 0) {
2088 if (new_size > old_size) {
2089 ret = -EINVAL;
2090 goto out_finish;
2091 }
2092 new_size = old_size - new_size;
2093 } else if (mod > 0) {
2094 if (new_size > ULLONG_MAX - old_size) {
2095 ret = -ERANGE;
2096 goto out_finish;
2097 }
2098 new_size = old_size + new_size;
2099 }
2100
2101 if (new_size < SZ_256M) {
2102 ret = -EINVAL;
2103 goto out_finish;
2104 }
2105 if (new_size > bdev_nr_bytes(device->bdev)) {
2106 ret = -EFBIG;
2107 goto out_finish;
2108 }
2109
2110 new_size = round_down(new_size, fs_info->sectorsize);
2111
2112 if (new_size > old_size) {
2113 trans = btrfs_start_transaction(root, 0);
2114 if (IS_ERR(trans)) {
2115 ret = PTR_ERR(trans);
2116 goto out_finish;
2117 }
2118 ret = btrfs_grow_device(trans, device, new_size);
2119 btrfs_commit_transaction(trans);
2120 } else if (new_size < old_size) {
2121 ret = btrfs_shrink_device(device, new_size);
2122 } /* equal, nothing need to do */
2123
2124 if (ret == 0 && new_size != old_size)
2125 btrfs_info_in_rcu(fs_info,
2126 "resize device %s (devid %llu) from %llu to %llu",
2127 rcu_str_deref(device->name), device->devid,
2128 old_size, new_size);
2129 out_finish:
2130 btrfs_exclop_finish(fs_info);
2131 out_free:
2132 kfree(vol_args);
2133 out_drop:
2134 mnt_drop_write_file(file);
2135 return ret;
2136 }
2137
__btrfs_ioctl_snap_create(struct file * file,struct user_namespace * mnt_userns,const char * name,unsigned long fd,int subvol,bool readonly,struct btrfs_qgroup_inherit * inherit)2138 static noinline int __btrfs_ioctl_snap_create(struct file *file,
2139 struct user_namespace *mnt_userns,
2140 const char *name, unsigned long fd, int subvol,
2141 bool readonly,
2142 struct btrfs_qgroup_inherit *inherit)
2143 {
2144 int namelen;
2145 int ret = 0;
2146
2147 if (!S_ISDIR(file_inode(file)->i_mode))
2148 return -ENOTDIR;
2149
2150 ret = mnt_want_write_file(file);
2151 if (ret)
2152 goto out;
2153
2154 namelen = strlen(name);
2155 if (strchr(name, '/')) {
2156 ret = -EINVAL;
2157 goto out_drop_write;
2158 }
2159
2160 if (name[0] == '.' &&
2161 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
2162 ret = -EEXIST;
2163 goto out_drop_write;
2164 }
2165
2166 if (subvol) {
2167 ret = btrfs_mksubvol(&file->f_path, mnt_userns, name,
2168 namelen, NULL, readonly, inherit);
2169 } else {
2170 struct fd src = fdget(fd);
2171 struct inode *src_inode;
2172 if (!src.file) {
2173 ret = -EINVAL;
2174 goto out_drop_write;
2175 }
2176
2177 src_inode = file_inode(src.file);
2178 if (src_inode->i_sb != file_inode(file)->i_sb) {
2179 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
2180 "Snapshot src from another FS");
2181 ret = -EXDEV;
2182 } else if (!inode_owner_or_capable(mnt_userns, src_inode)) {
2183 /*
2184 * Subvolume creation is not restricted, but snapshots
2185 * are limited to own subvolumes only
2186 */
2187 ret = -EPERM;
2188 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2189 /*
2190 * Snapshots must be made with the src_inode referring
2191 * to the subvolume inode, otherwise the permission
2192 * checking above is useless because we may have
2193 * permission on a lower directory but not the subvol
2194 * itself.
2195 */
2196 ret = -EINVAL;
2197 } else {
2198 ret = btrfs_mksnapshot(&file->f_path, mnt_userns,
2199 name, namelen,
2200 BTRFS_I(src_inode)->root,
2201 readonly, inherit);
2202 }
2203 fdput(src);
2204 }
2205 out_drop_write:
2206 mnt_drop_write_file(file);
2207 out:
2208 return ret;
2209 }
2210
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)2211 static noinline int btrfs_ioctl_snap_create(struct file *file,
2212 void __user *arg, int subvol)
2213 {
2214 struct btrfs_ioctl_vol_args *vol_args;
2215 int ret;
2216
2217 if (!S_ISDIR(file_inode(file)->i_mode))
2218 return -ENOTDIR;
2219
2220 vol_args = memdup_user(arg, sizeof(*vol_args));
2221 if (IS_ERR(vol_args))
2222 return PTR_ERR(vol_args);
2223 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2224
2225 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
2226 vol_args->name, vol_args->fd, subvol,
2227 false, NULL);
2228
2229 kfree(vol_args);
2230 return ret;
2231 }
2232
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)2233 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
2234 void __user *arg, int subvol)
2235 {
2236 struct btrfs_ioctl_vol_args_v2 *vol_args;
2237 int ret;
2238 bool readonly = false;
2239 struct btrfs_qgroup_inherit *inherit = NULL;
2240
2241 if (!S_ISDIR(file_inode(file)->i_mode))
2242 return -ENOTDIR;
2243
2244 vol_args = memdup_user(arg, sizeof(*vol_args));
2245 if (IS_ERR(vol_args))
2246 return PTR_ERR(vol_args);
2247 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2248
2249 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
2250 ret = -EOPNOTSUPP;
2251 goto free_args;
2252 }
2253
2254 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
2255 readonly = true;
2256 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
2257 u64 nums;
2258
2259 if (vol_args->size < sizeof(*inherit) ||
2260 vol_args->size > PAGE_SIZE) {
2261 ret = -EINVAL;
2262 goto free_args;
2263 }
2264 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
2265 if (IS_ERR(inherit)) {
2266 ret = PTR_ERR(inherit);
2267 goto free_args;
2268 }
2269
2270 if (inherit->num_qgroups > PAGE_SIZE ||
2271 inherit->num_ref_copies > PAGE_SIZE ||
2272 inherit->num_excl_copies > PAGE_SIZE) {
2273 ret = -EINVAL;
2274 goto free_inherit;
2275 }
2276
2277 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
2278 2 * inherit->num_excl_copies;
2279 if (vol_args->size != struct_size(inherit, qgroups, nums)) {
2280 ret = -EINVAL;
2281 goto free_inherit;
2282 }
2283 }
2284
2285 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
2286 vol_args->name, vol_args->fd, subvol,
2287 readonly, inherit);
2288 if (ret)
2289 goto free_inherit;
2290 free_inherit:
2291 kfree(inherit);
2292 free_args:
2293 kfree(vol_args);
2294 return ret;
2295 }
2296
btrfs_ioctl_subvol_getflags(struct inode * inode,void __user * arg)2297 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
2298 void __user *arg)
2299 {
2300 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2301 struct btrfs_root *root = BTRFS_I(inode)->root;
2302 int ret = 0;
2303 u64 flags = 0;
2304
2305 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
2306 return -EINVAL;
2307
2308 down_read(&fs_info->subvol_sem);
2309 if (btrfs_root_readonly(root))
2310 flags |= BTRFS_SUBVOL_RDONLY;
2311 up_read(&fs_info->subvol_sem);
2312
2313 if (copy_to_user(arg, &flags, sizeof(flags)))
2314 ret = -EFAULT;
2315
2316 return ret;
2317 }
2318
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)2319 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
2320 void __user *arg)
2321 {
2322 struct inode *inode = file_inode(file);
2323 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2324 struct btrfs_root *root = BTRFS_I(inode)->root;
2325 struct btrfs_trans_handle *trans;
2326 u64 root_flags;
2327 u64 flags;
2328 int ret = 0;
2329
2330 if (!inode_owner_or_capable(file_mnt_user_ns(file), inode))
2331 return -EPERM;
2332
2333 ret = mnt_want_write_file(file);
2334 if (ret)
2335 goto out;
2336
2337 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2338 ret = -EINVAL;
2339 goto out_drop_write;
2340 }
2341
2342 if (copy_from_user(&flags, arg, sizeof(flags))) {
2343 ret = -EFAULT;
2344 goto out_drop_write;
2345 }
2346
2347 if (flags & ~BTRFS_SUBVOL_RDONLY) {
2348 ret = -EOPNOTSUPP;
2349 goto out_drop_write;
2350 }
2351
2352 down_write(&fs_info->subvol_sem);
2353
2354 /* nothing to do */
2355 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2356 goto out_drop_sem;
2357
2358 root_flags = btrfs_root_flags(&root->root_item);
2359 if (flags & BTRFS_SUBVOL_RDONLY) {
2360 btrfs_set_root_flags(&root->root_item,
2361 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2362 } else {
2363 /*
2364 * Block RO -> RW transition if this subvolume is involved in
2365 * send
2366 */
2367 spin_lock(&root->root_item_lock);
2368 if (root->send_in_progress == 0) {
2369 btrfs_set_root_flags(&root->root_item,
2370 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2371 spin_unlock(&root->root_item_lock);
2372 } else {
2373 spin_unlock(&root->root_item_lock);
2374 btrfs_warn(fs_info,
2375 "Attempt to set subvolume %llu read-write during send",
2376 root->root_key.objectid);
2377 ret = -EPERM;
2378 goto out_drop_sem;
2379 }
2380 }
2381
2382 trans = btrfs_start_transaction(root, 1);
2383 if (IS_ERR(trans)) {
2384 ret = PTR_ERR(trans);
2385 goto out_reset;
2386 }
2387
2388 ret = btrfs_update_root(trans, fs_info->tree_root,
2389 &root->root_key, &root->root_item);
2390 if (ret < 0) {
2391 btrfs_end_transaction(trans);
2392 goto out_reset;
2393 }
2394
2395 ret = btrfs_commit_transaction(trans);
2396
2397 out_reset:
2398 if (ret)
2399 btrfs_set_root_flags(&root->root_item, root_flags);
2400 out_drop_sem:
2401 up_write(&fs_info->subvol_sem);
2402 out_drop_write:
2403 mnt_drop_write_file(file);
2404 out:
2405 return ret;
2406 }
2407
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)2408 static noinline int key_in_sk(struct btrfs_key *key,
2409 struct btrfs_ioctl_search_key *sk)
2410 {
2411 struct btrfs_key test;
2412 int ret;
2413
2414 test.objectid = sk->min_objectid;
2415 test.type = sk->min_type;
2416 test.offset = sk->min_offset;
2417
2418 ret = btrfs_comp_cpu_keys(key, &test);
2419 if (ret < 0)
2420 return 0;
2421
2422 test.objectid = sk->max_objectid;
2423 test.type = sk->max_type;
2424 test.offset = sk->max_offset;
2425
2426 ret = btrfs_comp_cpu_keys(key, &test);
2427 if (ret > 0)
2428 return 0;
2429 return 1;
2430 }
2431
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)2432 static noinline int copy_to_sk(struct btrfs_path *path,
2433 struct btrfs_key *key,
2434 struct btrfs_ioctl_search_key *sk,
2435 u64 *buf_size,
2436 char __user *ubuf,
2437 unsigned long *sk_offset,
2438 int *num_found)
2439 {
2440 u64 found_transid;
2441 struct extent_buffer *leaf;
2442 struct btrfs_ioctl_search_header sh;
2443 struct btrfs_key test;
2444 unsigned long item_off;
2445 unsigned long item_len;
2446 int nritems;
2447 int i;
2448 int slot;
2449 int ret = 0;
2450
2451 leaf = path->nodes[0];
2452 slot = path->slots[0];
2453 nritems = btrfs_header_nritems(leaf);
2454
2455 if (btrfs_header_generation(leaf) > sk->max_transid) {
2456 i = nritems;
2457 goto advance_key;
2458 }
2459 found_transid = btrfs_header_generation(leaf);
2460
2461 for (i = slot; i < nritems; i++) {
2462 item_off = btrfs_item_ptr_offset(leaf, i);
2463 item_len = btrfs_item_size(leaf, i);
2464
2465 btrfs_item_key_to_cpu(leaf, key, i);
2466 if (!key_in_sk(key, sk))
2467 continue;
2468
2469 if (sizeof(sh) + item_len > *buf_size) {
2470 if (*num_found) {
2471 ret = 1;
2472 goto out;
2473 }
2474
2475 /*
2476 * return one empty item back for v1, which does not
2477 * handle -EOVERFLOW
2478 */
2479
2480 *buf_size = sizeof(sh) + item_len;
2481 item_len = 0;
2482 ret = -EOVERFLOW;
2483 }
2484
2485 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2486 ret = 1;
2487 goto out;
2488 }
2489
2490 sh.objectid = key->objectid;
2491 sh.offset = key->offset;
2492 sh.type = key->type;
2493 sh.len = item_len;
2494 sh.transid = found_transid;
2495
2496 /*
2497 * Copy search result header. If we fault then loop again so we
2498 * can fault in the pages and -EFAULT there if there's a
2499 * problem. Otherwise we'll fault and then copy the buffer in
2500 * properly this next time through
2501 */
2502 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2503 ret = 0;
2504 goto out;
2505 }
2506
2507 *sk_offset += sizeof(sh);
2508
2509 if (item_len) {
2510 char __user *up = ubuf + *sk_offset;
2511 /*
2512 * Copy the item, same behavior as above, but reset the
2513 * * sk_offset so we copy the full thing again.
2514 */
2515 if (read_extent_buffer_to_user_nofault(leaf, up,
2516 item_off, item_len)) {
2517 ret = 0;
2518 *sk_offset -= sizeof(sh);
2519 goto out;
2520 }
2521
2522 *sk_offset += item_len;
2523 }
2524 (*num_found)++;
2525
2526 if (ret) /* -EOVERFLOW from above */
2527 goto out;
2528
2529 if (*num_found >= sk->nr_items) {
2530 ret = 1;
2531 goto out;
2532 }
2533 }
2534 advance_key:
2535 ret = 0;
2536 test.objectid = sk->max_objectid;
2537 test.type = sk->max_type;
2538 test.offset = sk->max_offset;
2539 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2540 ret = 1;
2541 else if (key->offset < (u64)-1)
2542 key->offset++;
2543 else if (key->type < (u8)-1) {
2544 key->offset = 0;
2545 key->type++;
2546 } else if (key->objectid < (u64)-1) {
2547 key->offset = 0;
2548 key->type = 0;
2549 key->objectid++;
2550 } else
2551 ret = 1;
2552 out:
2553 /*
2554 * 0: all items from this leaf copied, continue with next
2555 * 1: * more items can be copied, but unused buffer is too small
2556 * * all items were found
2557 * Either way, it will stops the loop which iterates to the next
2558 * leaf
2559 * -EOVERFLOW: item was to large for buffer
2560 * -EFAULT: could not copy extent buffer back to userspace
2561 */
2562 return ret;
2563 }
2564
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf)2565 static noinline int search_ioctl(struct inode *inode,
2566 struct btrfs_ioctl_search_key *sk,
2567 u64 *buf_size,
2568 char __user *ubuf)
2569 {
2570 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2571 struct btrfs_root *root;
2572 struct btrfs_key key;
2573 struct btrfs_path *path;
2574 int ret;
2575 int num_found = 0;
2576 unsigned long sk_offset = 0;
2577
2578 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2579 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2580 return -EOVERFLOW;
2581 }
2582
2583 path = btrfs_alloc_path();
2584 if (!path)
2585 return -ENOMEM;
2586
2587 if (sk->tree_id == 0) {
2588 /* search the root of the inode that was passed */
2589 root = btrfs_grab_root(BTRFS_I(inode)->root);
2590 } else {
2591 root = btrfs_get_fs_root(info, sk->tree_id, true);
2592 if (IS_ERR(root)) {
2593 btrfs_free_path(path);
2594 return PTR_ERR(root);
2595 }
2596 }
2597
2598 key.objectid = sk->min_objectid;
2599 key.type = sk->min_type;
2600 key.offset = sk->min_offset;
2601
2602 while (1) {
2603 ret = -EFAULT;
2604 /*
2605 * Ensure that the whole user buffer is faulted in at sub-page
2606 * granularity, otherwise the loop may live-lock.
2607 */
2608 if (fault_in_subpage_writeable(ubuf + sk_offset,
2609 *buf_size - sk_offset))
2610 break;
2611
2612 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2613 if (ret != 0) {
2614 if (ret > 0)
2615 ret = 0;
2616 goto err;
2617 }
2618 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2619 &sk_offset, &num_found);
2620 btrfs_release_path(path);
2621 if (ret)
2622 break;
2623
2624 }
2625 if (ret > 0)
2626 ret = 0;
2627 err:
2628 sk->nr_items = num_found;
2629 btrfs_put_root(root);
2630 btrfs_free_path(path);
2631 return ret;
2632 }
2633
btrfs_ioctl_tree_search(struct inode * inode,void __user * argp)2634 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
2635 void __user *argp)
2636 {
2637 struct btrfs_ioctl_search_args __user *uargs = argp;
2638 struct btrfs_ioctl_search_key sk;
2639 int ret;
2640 u64 buf_size;
2641
2642 if (!capable(CAP_SYS_ADMIN))
2643 return -EPERM;
2644
2645 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2646 return -EFAULT;
2647
2648 buf_size = sizeof(uargs->buf);
2649
2650 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2651
2652 /*
2653 * In the origin implementation an overflow is handled by returning a
2654 * search header with a len of zero, so reset ret.
2655 */
2656 if (ret == -EOVERFLOW)
2657 ret = 0;
2658
2659 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2660 ret = -EFAULT;
2661 return ret;
2662 }
2663
btrfs_ioctl_tree_search_v2(struct inode * inode,void __user * argp)2664 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
2665 void __user *argp)
2666 {
2667 struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
2668 struct btrfs_ioctl_search_args_v2 args;
2669 int ret;
2670 u64 buf_size;
2671 const u64 buf_limit = SZ_16M;
2672
2673 if (!capable(CAP_SYS_ADMIN))
2674 return -EPERM;
2675
2676 /* copy search header and buffer size */
2677 if (copy_from_user(&args, uarg, sizeof(args)))
2678 return -EFAULT;
2679
2680 buf_size = args.buf_size;
2681
2682 /* limit result size to 16MB */
2683 if (buf_size > buf_limit)
2684 buf_size = buf_limit;
2685
2686 ret = search_ioctl(inode, &args.key, &buf_size,
2687 (char __user *)(&uarg->buf[0]));
2688 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2689 ret = -EFAULT;
2690 else if (ret == -EOVERFLOW &&
2691 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2692 ret = -EFAULT;
2693
2694 return ret;
2695 }
2696
2697 /*
2698 * Search INODE_REFs to identify path name of 'dirid' directory
2699 * in a 'tree_id' tree. and sets path name to 'name'.
2700 */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)2701 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2702 u64 tree_id, u64 dirid, char *name)
2703 {
2704 struct btrfs_root *root;
2705 struct btrfs_key key;
2706 char *ptr;
2707 int ret = -1;
2708 int slot;
2709 int len;
2710 int total_len = 0;
2711 struct btrfs_inode_ref *iref;
2712 struct extent_buffer *l;
2713 struct btrfs_path *path;
2714
2715 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2716 name[0]='\0';
2717 return 0;
2718 }
2719
2720 path = btrfs_alloc_path();
2721 if (!path)
2722 return -ENOMEM;
2723
2724 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2725
2726 root = btrfs_get_fs_root(info, tree_id, true);
2727 if (IS_ERR(root)) {
2728 ret = PTR_ERR(root);
2729 root = NULL;
2730 goto out;
2731 }
2732
2733 key.objectid = dirid;
2734 key.type = BTRFS_INODE_REF_KEY;
2735 key.offset = (u64)-1;
2736
2737 while (1) {
2738 ret = btrfs_search_backwards(root, &key, path);
2739 if (ret < 0)
2740 goto out;
2741 else if (ret > 0) {
2742 ret = -ENOENT;
2743 goto out;
2744 }
2745
2746 l = path->nodes[0];
2747 slot = path->slots[0];
2748
2749 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2750 len = btrfs_inode_ref_name_len(l, iref);
2751 ptr -= len + 1;
2752 total_len += len + 1;
2753 if (ptr < name) {
2754 ret = -ENAMETOOLONG;
2755 goto out;
2756 }
2757
2758 *(ptr + len) = '/';
2759 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2760
2761 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2762 break;
2763
2764 btrfs_release_path(path);
2765 key.objectid = key.offset;
2766 key.offset = (u64)-1;
2767 dirid = key.objectid;
2768 }
2769 memmove(name, ptr, total_len);
2770 name[total_len] = '\0';
2771 ret = 0;
2772 out:
2773 btrfs_put_root(root);
2774 btrfs_free_path(path);
2775 return ret;
2776 }
2777
btrfs_search_path_in_tree_user(struct user_namespace * mnt_userns,struct inode * inode,struct btrfs_ioctl_ino_lookup_user_args * args)2778 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns,
2779 struct inode *inode,
2780 struct btrfs_ioctl_ino_lookup_user_args *args)
2781 {
2782 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2783 struct super_block *sb = inode->i_sb;
2784 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2785 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2786 u64 dirid = args->dirid;
2787 unsigned long item_off;
2788 unsigned long item_len;
2789 struct btrfs_inode_ref *iref;
2790 struct btrfs_root_ref *rref;
2791 struct btrfs_root *root = NULL;
2792 struct btrfs_path *path;
2793 struct btrfs_key key, key2;
2794 struct extent_buffer *leaf;
2795 struct inode *temp_inode;
2796 char *ptr;
2797 int slot;
2798 int len;
2799 int total_len = 0;
2800 int ret;
2801
2802 path = btrfs_alloc_path();
2803 if (!path)
2804 return -ENOMEM;
2805
2806 /*
2807 * If the bottom subvolume does not exist directly under upper_limit,
2808 * construct the path in from the bottom up.
2809 */
2810 if (dirid != upper_limit.objectid) {
2811 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2812
2813 root = btrfs_get_fs_root(fs_info, treeid, true);
2814 if (IS_ERR(root)) {
2815 ret = PTR_ERR(root);
2816 goto out;
2817 }
2818
2819 key.objectid = dirid;
2820 key.type = BTRFS_INODE_REF_KEY;
2821 key.offset = (u64)-1;
2822 while (1) {
2823 ret = btrfs_search_backwards(root, &key, path);
2824 if (ret < 0)
2825 goto out_put;
2826 else if (ret > 0) {
2827 ret = -ENOENT;
2828 goto out_put;
2829 }
2830
2831 leaf = path->nodes[0];
2832 slot = path->slots[0];
2833
2834 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2835 len = btrfs_inode_ref_name_len(leaf, iref);
2836 ptr -= len + 1;
2837 total_len += len + 1;
2838 if (ptr < args->path) {
2839 ret = -ENAMETOOLONG;
2840 goto out_put;
2841 }
2842
2843 *(ptr + len) = '/';
2844 read_extent_buffer(leaf, ptr,
2845 (unsigned long)(iref + 1), len);
2846
2847 /* Check the read+exec permission of this directory */
2848 ret = btrfs_previous_item(root, path, dirid,
2849 BTRFS_INODE_ITEM_KEY);
2850 if (ret < 0) {
2851 goto out_put;
2852 } else if (ret > 0) {
2853 ret = -ENOENT;
2854 goto out_put;
2855 }
2856
2857 leaf = path->nodes[0];
2858 slot = path->slots[0];
2859 btrfs_item_key_to_cpu(leaf, &key2, slot);
2860 if (key2.objectid != dirid) {
2861 ret = -ENOENT;
2862 goto out_put;
2863 }
2864
2865 /*
2866 * We don't need the path anymore, so release it and
2867 * avoid deadlocks and lockdep warnings in case
2868 * btrfs_iget() needs to lookup the inode from its root
2869 * btree and lock the same leaf.
2870 */
2871 btrfs_release_path(path);
2872 temp_inode = btrfs_iget(sb, key2.objectid, root);
2873 if (IS_ERR(temp_inode)) {
2874 ret = PTR_ERR(temp_inode);
2875 goto out_put;
2876 }
2877 ret = inode_permission(mnt_userns, temp_inode,
2878 MAY_READ | MAY_EXEC);
2879 iput(temp_inode);
2880 if (ret) {
2881 ret = -EACCES;
2882 goto out_put;
2883 }
2884
2885 if (key.offset == upper_limit.objectid)
2886 break;
2887 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2888 ret = -EACCES;
2889 goto out_put;
2890 }
2891
2892 key.objectid = key.offset;
2893 key.offset = (u64)-1;
2894 dirid = key.objectid;
2895 }
2896
2897 memmove(args->path, ptr, total_len);
2898 args->path[total_len] = '\0';
2899 btrfs_put_root(root);
2900 root = NULL;
2901 btrfs_release_path(path);
2902 }
2903
2904 /* Get the bottom subvolume's name from ROOT_REF */
2905 key.objectid = treeid;
2906 key.type = BTRFS_ROOT_REF_KEY;
2907 key.offset = args->treeid;
2908 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2909 if (ret < 0) {
2910 goto out;
2911 } else if (ret > 0) {
2912 ret = -ENOENT;
2913 goto out;
2914 }
2915
2916 leaf = path->nodes[0];
2917 slot = path->slots[0];
2918 btrfs_item_key_to_cpu(leaf, &key, slot);
2919
2920 item_off = btrfs_item_ptr_offset(leaf, slot);
2921 item_len = btrfs_item_size(leaf, slot);
2922 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2923 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2924 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2925 ret = -EINVAL;
2926 goto out;
2927 }
2928
2929 /* Copy subvolume's name */
2930 item_off += sizeof(struct btrfs_root_ref);
2931 item_len -= sizeof(struct btrfs_root_ref);
2932 read_extent_buffer(leaf, args->name, item_off, item_len);
2933 args->name[item_len] = 0;
2934
2935 out_put:
2936 btrfs_put_root(root);
2937 out:
2938 btrfs_free_path(path);
2939 return ret;
2940 }
2941
btrfs_ioctl_ino_lookup(struct btrfs_root * root,void __user * argp)2942 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2943 void __user *argp)
2944 {
2945 struct btrfs_ioctl_ino_lookup_args *args;
2946 int ret = 0;
2947
2948 args = memdup_user(argp, sizeof(*args));
2949 if (IS_ERR(args))
2950 return PTR_ERR(args);
2951
2952 /*
2953 * Unprivileged query to obtain the containing subvolume root id. The
2954 * path is reset so it's consistent with btrfs_search_path_in_tree.
2955 */
2956 if (args->treeid == 0)
2957 args->treeid = root->root_key.objectid;
2958
2959 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2960 args->name[0] = 0;
2961 goto out;
2962 }
2963
2964 if (!capable(CAP_SYS_ADMIN)) {
2965 ret = -EPERM;
2966 goto out;
2967 }
2968
2969 ret = btrfs_search_path_in_tree(root->fs_info,
2970 args->treeid, args->objectid,
2971 args->name);
2972
2973 out:
2974 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2975 ret = -EFAULT;
2976
2977 kfree(args);
2978 return ret;
2979 }
2980
2981 /*
2982 * Version of ino_lookup ioctl (unprivileged)
2983 *
2984 * The main differences from ino_lookup ioctl are:
2985 *
2986 * 1. Read + Exec permission will be checked using inode_permission() during
2987 * path construction. -EACCES will be returned in case of failure.
2988 * 2. Path construction will be stopped at the inode number which corresponds
2989 * to the fd with which this ioctl is called. If constructed path does not
2990 * exist under fd's inode, -EACCES will be returned.
2991 * 3. The name of bottom subvolume is also searched and filled.
2992 */
btrfs_ioctl_ino_lookup_user(struct file * file,void __user * argp)2993 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2994 {
2995 struct btrfs_ioctl_ino_lookup_user_args *args;
2996 struct inode *inode;
2997 int ret;
2998
2999 args = memdup_user(argp, sizeof(*args));
3000 if (IS_ERR(args))
3001 return PTR_ERR(args);
3002
3003 inode = file_inode(file);
3004
3005 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
3006 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
3007 /*
3008 * The subvolume does not exist under fd with which this is
3009 * called
3010 */
3011 kfree(args);
3012 return -EACCES;
3013 }
3014
3015 ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args);
3016
3017 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
3018 ret = -EFAULT;
3019
3020 kfree(args);
3021 return ret;
3022 }
3023
3024 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
btrfs_ioctl_get_subvol_info(struct inode * inode,void __user * argp)3025 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
3026 {
3027 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
3028 struct btrfs_fs_info *fs_info;
3029 struct btrfs_root *root;
3030 struct btrfs_path *path;
3031 struct btrfs_key key;
3032 struct btrfs_root_item *root_item;
3033 struct btrfs_root_ref *rref;
3034 struct extent_buffer *leaf;
3035 unsigned long item_off;
3036 unsigned long item_len;
3037 int slot;
3038 int ret = 0;
3039
3040 path = btrfs_alloc_path();
3041 if (!path)
3042 return -ENOMEM;
3043
3044 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
3045 if (!subvol_info) {
3046 btrfs_free_path(path);
3047 return -ENOMEM;
3048 }
3049
3050 fs_info = BTRFS_I(inode)->root->fs_info;
3051
3052 /* Get root_item of inode's subvolume */
3053 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
3054 root = btrfs_get_fs_root(fs_info, key.objectid, true);
3055 if (IS_ERR(root)) {
3056 ret = PTR_ERR(root);
3057 goto out_free;
3058 }
3059 root_item = &root->root_item;
3060
3061 subvol_info->treeid = key.objectid;
3062
3063 subvol_info->generation = btrfs_root_generation(root_item);
3064 subvol_info->flags = btrfs_root_flags(root_item);
3065
3066 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
3067 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
3068 BTRFS_UUID_SIZE);
3069 memcpy(subvol_info->received_uuid, root_item->received_uuid,
3070 BTRFS_UUID_SIZE);
3071
3072 subvol_info->ctransid = btrfs_root_ctransid(root_item);
3073 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
3074 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
3075
3076 subvol_info->otransid = btrfs_root_otransid(root_item);
3077 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
3078 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
3079
3080 subvol_info->stransid = btrfs_root_stransid(root_item);
3081 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
3082 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
3083
3084 subvol_info->rtransid = btrfs_root_rtransid(root_item);
3085 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
3086 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
3087
3088 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
3089 /* Search root tree for ROOT_BACKREF of this subvolume */
3090 key.type = BTRFS_ROOT_BACKREF_KEY;
3091 key.offset = 0;
3092 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3093 if (ret < 0) {
3094 goto out;
3095 } else if (path->slots[0] >=
3096 btrfs_header_nritems(path->nodes[0])) {
3097 ret = btrfs_next_leaf(fs_info->tree_root, path);
3098 if (ret < 0) {
3099 goto out;
3100 } else if (ret > 0) {
3101 ret = -EUCLEAN;
3102 goto out;
3103 }
3104 }
3105
3106 leaf = path->nodes[0];
3107 slot = path->slots[0];
3108 btrfs_item_key_to_cpu(leaf, &key, slot);
3109 if (key.objectid == subvol_info->treeid &&
3110 key.type == BTRFS_ROOT_BACKREF_KEY) {
3111 subvol_info->parent_id = key.offset;
3112
3113 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
3114 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
3115
3116 item_off = btrfs_item_ptr_offset(leaf, slot)
3117 + sizeof(struct btrfs_root_ref);
3118 item_len = btrfs_item_size(leaf, slot)
3119 - sizeof(struct btrfs_root_ref);
3120 read_extent_buffer(leaf, subvol_info->name,
3121 item_off, item_len);
3122 } else {
3123 ret = -ENOENT;
3124 goto out;
3125 }
3126 }
3127
3128 btrfs_free_path(path);
3129 path = NULL;
3130 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
3131 ret = -EFAULT;
3132
3133 out:
3134 btrfs_put_root(root);
3135 out_free:
3136 btrfs_free_path(path);
3137 kfree(subvol_info);
3138 return ret;
3139 }
3140
3141 /*
3142 * Return ROOT_REF information of the subvolume containing this inode
3143 * except the subvolume name.
3144 */
btrfs_ioctl_get_subvol_rootref(struct btrfs_root * root,void __user * argp)3145 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
3146 void __user *argp)
3147 {
3148 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
3149 struct btrfs_root_ref *rref;
3150 struct btrfs_path *path;
3151 struct btrfs_key key;
3152 struct extent_buffer *leaf;
3153 u64 objectid;
3154 int slot;
3155 int ret;
3156 u8 found;
3157
3158 path = btrfs_alloc_path();
3159 if (!path)
3160 return -ENOMEM;
3161
3162 rootrefs = memdup_user(argp, sizeof(*rootrefs));
3163 if (IS_ERR(rootrefs)) {
3164 btrfs_free_path(path);
3165 return PTR_ERR(rootrefs);
3166 }
3167
3168 objectid = root->root_key.objectid;
3169 key.objectid = objectid;
3170 key.type = BTRFS_ROOT_REF_KEY;
3171 key.offset = rootrefs->min_treeid;
3172 found = 0;
3173
3174 root = root->fs_info->tree_root;
3175 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3176 if (ret < 0) {
3177 goto out;
3178 } else if (path->slots[0] >=
3179 btrfs_header_nritems(path->nodes[0])) {
3180 ret = btrfs_next_leaf(root, path);
3181 if (ret < 0) {
3182 goto out;
3183 } else if (ret > 0) {
3184 ret = -EUCLEAN;
3185 goto out;
3186 }
3187 }
3188 while (1) {
3189 leaf = path->nodes[0];
3190 slot = path->slots[0];
3191
3192 btrfs_item_key_to_cpu(leaf, &key, slot);
3193 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
3194 ret = 0;
3195 goto out;
3196 }
3197
3198 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
3199 ret = -EOVERFLOW;
3200 goto out;
3201 }
3202
3203 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
3204 rootrefs->rootref[found].treeid = key.offset;
3205 rootrefs->rootref[found].dirid =
3206 btrfs_root_ref_dirid(leaf, rref);
3207 found++;
3208
3209 ret = btrfs_next_item(root, path);
3210 if (ret < 0) {
3211 goto out;
3212 } else if (ret > 0) {
3213 ret = -EUCLEAN;
3214 goto out;
3215 }
3216 }
3217
3218 out:
3219 btrfs_free_path(path);
3220
3221 if (!ret || ret == -EOVERFLOW) {
3222 rootrefs->num_items = found;
3223 /* update min_treeid for next search */
3224 if (found)
3225 rootrefs->min_treeid =
3226 rootrefs->rootref[found - 1].treeid + 1;
3227 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
3228 ret = -EFAULT;
3229 }
3230
3231 kfree(rootrefs);
3232
3233 return ret;
3234 }
3235
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg,bool destroy_v2)3236 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
3237 void __user *arg,
3238 bool destroy_v2)
3239 {
3240 struct dentry *parent = file->f_path.dentry;
3241 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
3242 struct dentry *dentry;
3243 struct inode *dir = d_inode(parent);
3244 struct inode *inode;
3245 struct btrfs_root *root = BTRFS_I(dir)->root;
3246 struct btrfs_root *dest = NULL;
3247 struct btrfs_ioctl_vol_args *vol_args = NULL;
3248 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
3249 struct user_namespace *mnt_userns = file_mnt_user_ns(file);
3250 char *subvol_name, *subvol_name_ptr = NULL;
3251 int subvol_namelen;
3252 int err = 0;
3253 bool destroy_parent = false;
3254
3255 /* We don't support snapshots with extent tree v2 yet. */
3256 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3257 btrfs_err(fs_info,
3258 "extent tree v2 doesn't support snapshot deletion yet");
3259 return -EOPNOTSUPP;
3260 }
3261
3262 if (destroy_v2) {
3263 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
3264 if (IS_ERR(vol_args2))
3265 return PTR_ERR(vol_args2);
3266
3267 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
3268 err = -EOPNOTSUPP;
3269 goto out;
3270 }
3271
3272 /*
3273 * If SPEC_BY_ID is not set, we are looking for the subvolume by
3274 * name, same as v1 currently does.
3275 */
3276 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
3277 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
3278 subvol_name = vol_args2->name;
3279
3280 err = mnt_want_write_file(file);
3281 if (err)
3282 goto out;
3283 } else {
3284 struct inode *old_dir;
3285
3286 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
3287 err = -EINVAL;
3288 goto out;
3289 }
3290
3291 err = mnt_want_write_file(file);
3292 if (err)
3293 goto out;
3294
3295 dentry = btrfs_get_dentry(fs_info->sb,
3296 BTRFS_FIRST_FREE_OBJECTID,
3297 vol_args2->subvolid, 0, 0);
3298 if (IS_ERR(dentry)) {
3299 err = PTR_ERR(dentry);
3300 goto out_drop_write;
3301 }
3302
3303 /*
3304 * Change the default parent since the subvolume being
3305 * deleted can be outside of the current mount point.
3306 */
3307 parent = btrfs_get_parent(dentry);
3308
3309 /*
3310 * At this point dentry->d_name can point to '/' if the
3311 * subvolume we want to destroy is outsite of the
3312 * current mount point, so we need to release the
3313 * current dentry and execute the lookup to return a new
3314 * one with ->d_name pointing to the
3315 * <mount point>/subvol_name.
3316 */
3317 dput(dentry);
3318 if (IS_ERR(parent)) {
3319 err = PTR_ERR(parent);
3320 goto out_drop_write;
3321 }
3322 old_dir = dir;
3323 dir = d_inode(parent);
3324
3325 /*
3326 * If v2 was used with SPEC_BY_ID, a new parent was
3327 * allocated since the subvolume can be outside of the
3328 * current mount point. Later on we need to release this
3329 * new parent dentry.
3330 */
3331 destroy_parent = true;
3332
3333 /*
3334 * On idmapped mounts, deletion via subvolid is
3335 * restricted to subvolumes that are immediate
3336 * ancestors of the inode referenced by the file
3337 * descriptor in the ioctl. Otherwise the idmapping
3338 * could potentially be abused to delete subvolumes
3339 * anywhere in the filesystem the user wouldn't be able
3340 * to delete without an idmapped mount.
3341 */
3342 if (old_dir != dir && mnt_userns != &init_user_ns) {
3343 err = -EOPNOTSUPP;
3344 goto free_parent;
3345 }
3346
3347 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
3348 fs_info, vol_args2->subvolid);
3349 if (IS_ERR(subvol_name_ptr)) {
3350 err = PTR_ERR(subvol_name_ptr);
3351 goto free_parent;
3352 }
3353 /* subvol_name_ptr is already nul terminated */
3354 subvol_name = (char *)kbasename(subvol_name_ptr);
3355 }
3356 } else {
3357 vol_args = memdup_user(arg, sizeof(*vol_args));
3358 if (IS_ERR(vol_args))
3359 return PTR_ERR(vol_args);
3360
3361 vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
3362 subvol_name = vol_args->name;
3363
3364 err = mnt_want_write_file(file);
3365 if (err)
3366 goto out;
3367 }
3368
3369 subvol_namelen = strlen(subvol_name);
3370
3371 if (strchr(subvol_name, '/') ||
3372 strncmp(subvol_name, "..", subvol_namelen) == 0) {
3373 err = -EINVAL;
3374 goto free_subvol_name;
3375 }
3376
3377 if (!S_ISDIR(dir->i_mode)) {
3378 err = -ENOTDIR;
3379 goto free_subvol_name;
3380 }
3381
3382 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3383 if (err == -EINTR)
3384 goto free_subvol_name;
3385 dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen);
3386 if (IS_ERR(dentry)) {
3387 err = PTR_ERR(dentry);
3388 goto out_unlock_dir;
3389 }
3390
3391 if (d_really_is_negative(dentry)) {
3392 err = -ENOENT;
3393 goto out_dput;
3394 }
3395
3396 inode = d_inode(dentry);
3397 dest = BTRFS_I(inode)->root;
3398 if (!capable(CAP_SYS_ADMIN)) {
3399 /*
3400 * Regular user. Only allow this with a special mount
3401 * option, when the user has write+exec access to the
3402 * subvol root, and when rmdir(2) would have been
3403 * allowed.
3404 *
3405 * Note that this is _not_ check that the subvol is
3406 * empty or doesn't contain data that we wouldn't
3407 * otherwise be able to delete.
3408 *
3409 * Users who want to delete empty subvols should try
3410 * rmdir(2).
3411 */
3412 err = -EPERM;
3413 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3414 goto out_dput;
3415
3416 /*
3417 * Do not allow deletion if the parent dir is the same
3418 * as the dir to be deleted. That means the ioctl
3419 * must be called on the dentry referencing the root
3420 * of the subvol, not a random directory contained
3421 * within it.
3422 */
3423 err = -EINVAL;
3424 if (root == dest)
3425 goto out_dput;
3426
3427 err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC);
3428 if (err)
3429 goto out_dput;
3430 }
3431
3432 /* check if subvolume may be deleted by a user */
3433 err = btrfs_may_delete(mnt_userns, dir, dentry, 1);
3434 if (err)
3435 goto out_dput;
3436
3437 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3438 err = -EINVAL;
3439 goto out_dput;
3440 }
3441
3442 btrfs_inode_lock(inode, 0);
3443 err = btrfs_delete_subvolume(dir, dentry);
3444 btrfs_inode_unlock(inode, 0);
3445 if (!err)
3446 d_delete_notify(dir, dentry);
3447
3448 out_dput:
3449 dput(dentry);
3450 out_unlock_dir:
3451 btrfs_inode_unlock(dir, 0);
3452 free_subvol_name:
3453 kfree(subvol_name_ptr);
3454 free_parent:
3455 if (destroy_parent)
3456 dput(parent);
3457 out_drop_write:
3458 mnt_drop_write_file(file);
3459 out:
3460 kfree(vol_args2);
3461 kfree(vol_args);
3462 return err;
3463 }
3464
btrfs_ioctl_defrag(struct file * file,void __user * argp)3465 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3466 {
3467 struct inode *inode = file_inode(file);
3468 struct btrfs_root *root = BTRFS_I(inode)->root;
3469 struct btrfs_ioctl_defrag_range_args range = {0};
3470 int ret;
3471
3472 ret = mnt_want_write_file(file);
3473 if (ret)
3474 return ret;
3475
3476 if (btrfs_root_readonly(root)) {
3477 ret = -EROFS;
3478 goto out;
3479 }
3480
3481 switch (inode->i_mode & S_IFMT) {
3482 case S_IFDIR:
3483 if (!capable(CAP_SYS_ADMIN)) {
3484 ret = -EPERM;
3485 goto out;
3486 }
3487 ret = btrfs_defrag_root(root);
3488 break;
3489 case S_IFREG:
3490 /*
3491 * Note that this does not check the file descriptor for write
3492 * access. This prevents defragmenting executables that are
3493 * running and allows defrag on files open in read-only mode.
3494 */
3495 if (!capable(CAP_SYS_ADMIN) &&
3496 inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3497 ret = -EPERM;
3498 goto out;
3499 }
3500
3501 if (argp) {
3502 if (copy_from_user(&range, argp, sizeof(range))) {
3503 ret = -EFAULT;
3504 goto out;
3505 }
3506 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
3507 ret = -EOPNOTSUPP;
3508 goto out;
3509 }
3510 /* compression requires us to start the IO */
3511 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3512 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
3513 range.extent_thresh = (u32)-1;
3514 }
3515 } else {
3516 /* the rest are all set to zero by kzalloc */
3517 range.len = (u64)-1;
3518 }
3519 ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
3520 &range, BTRFS_OLDEST_GENERATION, 0);
3521 if (ret > 0)
3522 ret = 0;
3523 break;
3524 default:
3525 ret = -EINVAL;
3526 }
3527 out:
3528 mnt_drop_write_file(file);
3529 return ret;
3530 }
3531
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)3532 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3533 {
3534 struct btrfs_ioctl_vol_args *vol_args;
3535 bool restore_op = false;
3536 int ret;
3537
3538 if (!capable(CAP_SYS_ADMIN))
3539 return -EPERM;
3540
3541 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3542 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
3543 return -EINVAL;
3544 }
3545
3546 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
3547 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
3548 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3549
3550 /*
3551 * We can do the device add because we have a paused balanced,
3552 * change the exclusive op type and remember we should bring
3553 * back the paused balance
3554 */
3555 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
3556 btrfs_exclop_start_unlock(fs_info);
3557 restore_op = true;
3558 }
3559
3560 vol_args = memdup_user(arg, sizeof(*vol_args));
3561 if (IS_ERR(vol_args)) {
3562 ret = PTR_ERR(vol_args);
3563 goto out;
3564 }
3565
3566 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3567 ret = btrfs_init_new_device(fs_info, vol_args->name);
3568
3569 if (!ret)
3570 btrfs_info(fs_info, "disk added %s", vol_args->name);
3571
3572 kfree(vol_args);
3573 out:
3574 if (restore_op)
3575 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
3576 else
3577 btrfs_exclop_finish(fs_info);
3578 return ret;
3579 }
3580
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)3581 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3582 {
3583 BTRFS_DEV_LOOKUP_ARGS(args);
3584 struct inode *inode = file_inode(file);
3585 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3586 struct btrfs_ioctl_vol_args_v2 *vol_args;
3587 struct block_device *bdev = NULL;
3588 fmode_t mode;
3589 int ret;
3590 bool cancel = false;
3591
3592 if (!capable(CAP_SYS_ADMIN))
3593 return -EPERM;
3594
3595 vol_args = memdup_user(arg, sizeof(*vol_args));
3596 if (IS_ERR(vol_args))
3597 return PTR_ERR(vol_args);
3598
3599 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3600 ret = -EOPNOTSUPP;
3601 goto out;
3602 }
3603
3604 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3605 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3606 args.devid = vol_args->devid;
3607 } else if (!strcmp("cancel", vol_args->name)) {
3608 cancel = true;
3609 } else {
3610 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3611 if (ret)
3612 goto out;
3613 }
3614
3615 ret = mnt_want_write_file(file);
3616 if (ret)
3617 goto out;
3618
3619 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3620 cancel);
3621 if (ret)
3622 goto err_drop;
3623
3624 /* Exclusive operation is now claimed */
3625 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3626
3627 btrfs_exclop_finish(fs_info);
3628
3629 if (!ret) {
3630 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3631 btrfs_info(fs_info, "device deleted: id %llu",
3632 vol_args->devid);
3633 else
3634 btrfs_info(fs_info, "device deleted: %s",
3635 vol_args->name);
3636 }
3637 err_drop:
3638 mnt_drop_write_file(file);
3639 if (bdev)
3640 blkdev_put(bdev, mode);
3641 out:
3642 btrfs_put_dev_args_from_path(&args);
3643 kfree(vol_args);
3644 return ret;
3645 }
3646
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)3647 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3648 {
3649 BTRFS_DEV_LOOKUP_ARGS(args);
3650 struct inode *inode = file_inode(file);
3651 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3652 struct btrfs_ioctl_vol_args *vol_args;
3653 struct block_device *bdev = NULL;
3654 fmode_t mode;
3655 int ret;
3656 bool cancel = false;
3657
3658 if (!capable(CAP_SYS_ADMIN))
3659 return -EPERM;
3660
3661 vol_args = memdup_user(arg, sizeof(*vol_args));
3662 if (IS_ERR(vol_args))
3663 return PTR_ERR(vol_args);
3664
3665 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3666 if (!strcmp("cancel", vol_args->name)) {
3667 cancel = true;
3668 } else {
3669 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3670 if (ret)
3671 goto out;
3672 }
3673
3674 ret = mnt_want_write_file(file);
3675 if (ret)
3676 goto out;
3677
3678 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3679 cancel);
3680 if (ret == 0) {
3681 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3682 if (!ret)
3683 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3684 btrfs_exclop_finish(fs_info);
3685 }
3686
3687 mnt_drop_write_file(file);
3688 if (bdev)
3689 blkdev_put(bdev, mode);
3690 out:
3691 btrfs_put_dev_args_from_path(&args);
3692 kfree(vol_args);
3693 return ret;
3694 }
3695
btrfs_ioctl_fs_info(struct btrfs_fs_info * fs_info,void __user * arg)3696 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3697 void __user *arg)
3698 {
3699 struct btrfs_ioctl_fs_info_args *fi_args;
3700 struct btrfs_device *device;
3701 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3702 u64 flags_in;
3703 int ret = 0;
3704
3705 fi_args = memdup_user(arg, sizeof(*fi_args));
3706 if (IS_ERR(fi_args))
3707 return PTR_ERR(fi_args);
3708
3709 flags_in = fi_args->flags;
3710 memset(fi_args, 0, sizeof(*fi_args));
3711
3712 rcu_read_lock();
3713 fi_args->num_devices = fs_devices->num_devices;
3714
3715 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3716 if (device->devid > fi_args->max_id)
3717 fi_args->max_id = device->devid;
3718 }
3719 rcu_read_unlock();
3720
3721 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3722 fi_args->nodesize = fs_info->nodesize;
3723 fi_args->sectorsize = fs_info->sectorsize;
3724 fi_args->clone_alignment = fs_info->sectorsize;
3725
3726 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3727 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3728 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3729 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3730 }
3731
3732 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3733 fi_args->generation = fs_info->generation;
3734 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3735 }
3736
3737 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3738 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3739 sizeof(fi_args->metadata_uuid));
3740 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3741 }
3742
3743 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3744 ret = -EFAULT;
3745
3746 kfree(fi_args);
3747 return ret;
3748 }
3749
btrfs_ioctl_dev_info(struct btrfs_fs_info * fs_info,void __user * arg)3750 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3751 void __user *arg)
3752 {
3753 BTRFS_DEV_LOOKUP_ARGS(args);
3754 struct btrfs_ioctl_dev_info_args *di_args;
3755 struct btrfs_device *dev;
3756 int ret = 0;
3757
3758 di_args = memdup_user(arg, sizeof(*di_args));
3759 if (IS_ERR(di_args))
3760 return PTR_ERR(di_args);
3761
3762 args.devid = di_args->devid;
3763 if (!btrfs_is_empty_uuid(di_args->uuid))
3764 args.uuid = di_args->uuid;
3765
3766 rcu_read_lock();
3767 dev = btrfs_find_device(fs_info->fs_devices, &args);
3768 if (!dev) {
3769 ret = -ENODEV;
3770 goto out;
3771 }
3772
3773 di_args->devid = dev->devid;
3774 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3775 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3776 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3777 if (dev->name)
3778 strscpy(di_args->path, rcu_str_deref(dev->name), sizeof(di_args->path));
3779 else
3780 di_args->path[0] = '\0';
3781
3782 out:
3783 rcu_read_unlock();
3784 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3785 ret = -EFAULT;
3786
3787 kfree(di_args);
3788 return ret;
3789 }
3790
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)3791 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3792 {
3793 struct inode *inode = file_inode(file);
3794 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3795 struct btrfs_root *root = BTRFS_I(inode)->root;
3796 struct btrfs_root *new_root;
3797 struct btrfs_dir_item *di;
3798 struct btrfs_trans_handle *trans;
3799 struct btrfs_path *path = NULL;
3800 struct btrfs_disk_key disk_key;
3801 struct fscrypt_str name = FSTR_INIT("default", 7);
3802 u64 objectid = 0;
3803 u64 dir_id;
3804 int ret;
3805
3806 if (!capable(CAP_SYS_ADMIN))
3807 return -EPERM;
3808
3809 ret = mnt_want_write_file(file);
3810 if (ret)
3811 return ret;
3812
3813 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3814 ret = -EFAULT;
3815 goto out;
3816 }
3817
3818 if (!objectid)
3819 objectid = BTRFS_FS_TREE_OBJECTID;
3820
3821 new_root = btrfs_get_fs_root(fs_info, objectid, true);
3822 if (IS_ERR(new_root)) {
3823 ret = PTR_ERR(new_root);
3824 goto out;
3825 }
3826 if (!is_fstree(new_root->root_key.objectid)) {
3827 ret = -ENOENT;
3828 goto out_free;
3829 }
3830
3831 path = btrfs_alloc_path();
3832 if (!path) {
3833 ret = -ENOMEM;
3834 goto out_free;
3835 }
3836
3837 trans = btrfs_start_transaction(root, 1);
3838 if (IS_ERR(trans)) {
3839 ret = PTR_ERR(trans);
3840 goto out_free;
3841 }
3842
3843 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3844 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3845 dir_id, &name, 1);
3846 if (IS_ERR_OR_NULL(di)) {
3847 btrfs_release_path(path);
3848 btrfs_end_transaction(trans);
3849 btrfs_err(fs_info,
3850 "Umm, you don't have the default diritem, this isn't going to work");
3851 ret = -ENOENT;
3852 goto out_free;
3853 }
3854
3855 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3856 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3857 btrfs_mark_buffer_dirty(path->nodes[0]);
3858 btrfs_release_path(path);
3859
3860 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3861 btrfs_end_transaction(trans);
3862 out_free:
3863 btrfs_put_root(new_root);
3864 btrfs_free_path(path);
3865 out:
3866 mnt_drop_write_file(file);
3867 return ret;
3868 }
3869
get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)3870 static void get_block_group_info(struct list_head *groups_list,
3871 struct btrfs_ioctl_space_info *space)
3872 {
3873 struct btrfs_block_group *block_group;
3874
3875 space->total_bytes = 0;
3876 space->used_bytes = 0;
3877 space->flags = 0;
3878 list_for_each_entry(block_group, groups_list, list) {
3879 space->flags = block_group->flags;
3880 space->total_bytes += block_group->length;
3881 space->used_bytes += block_group->used;
3882 }
3883 }
3884
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)3885 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3886 void __user *arg)
3887 {
3888 struct btrfs_ioctl_space_args space_args = { 0 };
3889 struct btrfs_ioctl_space_info space;
3890 struct btrfs_ioctl_space_info *dest;
3891 struct btrfs_ioctl_space_info *dest_orig;
3892 struct btrfs_ioctl_space_info __user *user_dest;
3893 struct btrfs_space_info *info;
3894 static const u64 types[] = {
3895 BTRFS_BLOCK_GROUP_DATA,
3896 BTRFS_BLOCK_GROUP_SYSTEM,
3897 BTRFS_BLOCK_GROUP_METADATA,
3898 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3899 };
3900 int num_types = 4;
3901 int alloc_size;
3902 int ret = 0;
3903 u64 slot_count = 0;
3904 int i, c;
3905
3906 if (copy_from_user(&space_args,
3907 (struct btrfs_ioctl_space_args __user *)arg,
3908 sizeof(space_args)))
3909 return -EFAULT;
3910
3911 for (i = 0; i < num_types; i++) {
3912 struct btrfs_space_info *tmp;
3913
3914 info = NULL;
3915 list_for_each_entry(tmp, &fs_info->space_info, list) {
3916 if (tmp->flags == types[i]) {
3917 info = tmp;
3918 break;
3919 }
3920 }
3921
3922 if (!info)
3923 continue;
3924
3925 down_read(&info->groups_sem);
3926 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3927 if (!list_empty(&info->block_groups[c]))
3928 slot_count++;
3929 }
3930 up_read(&info->groups_sem);
3931 }
3932
3933 /*
3934 * Global block reserve, exported as a space_info
3935 */
3936 slot_count++;
3937
3938 /* space_slots == 0 means they are asking for a count */
3939 if (space_args.space_slots == 0) {
3940 space_args.total_spaces = slot_count;
3941 goto out;
3942 }
3943
3944 slot_count = min_t(u64, space_args.space_slots, slot_count);
3945
3946 alloc_size = sizeof(*dest) * slot_count;
3947
3948 /* we generally have at most 6 or so space infos, one for each raid
3949 * level. So, a whole page should be more than enough for everyone
3950 */
3951 if (alloc_size > PAGE_SIZE)
3952 return -ENOMEM;
3953
3954 space_args.total_spaces = 0;
3955 dest = kmalloc(alloc_size, GFP_KERNEL);
3956 if (!dest)
3957 return -ENOMEM;
3958 dest_orig = dest;
3959
3960 /* now we have a buffer to copy into */
3961 for (i = 0; i < num_types; i++) {
3962 struct btrfs_space_info *tmp;
3963
3964 if (!slot_count)
3965 break;
3966
3967 info = NULL;
3968 list_for_each_entry(tmp, &fs_info->space_info, list) {
3969 if (tmp->flags == types[i]) {
3970 info = tmp;
3971 break;
3972 }
3973 }
3974
3975 if (!info)
3976 continue;
3977 down_read(&info->groups_sem);
3978 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3979 if (!list_empty(&info->block_groups[c])) {
3980 get_block_group_info(&info->block_groups[c],
3981 &space);
3982 memcpy(dest, &space, sizeof(space));
3983 dest++;
3984 space_args.total_spaces++;
3985 slot_count--;
3986 }
3987 if (!slot_count)
3988 break;
3989 }
3990 up_read(&info->groups_sem);
3991 }
3992
3993 /*
3994 * Add global block reserve
3995 */
3996 if (slot_count) {
3997 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3998
3999 spin_lock(&block_rsv->lock);
4000 space.total_bytes = block_rsv->size;
4001 space.used_bytes = block_rsv->size - block_rsv->reserved;
4002 spin_unlock(&block_rsv->lock);
4003 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4004 memcpy(dest, &space, sizeof(space));
4005 space_args.total_spaces++;
4006 }
4007
4008 user_dest = (struct btrfs_ioctl_space_info __user *)
4009 (arg + sizeof(struct btrfs_ioctl_space_args));
4010
4011 if (copy_to_user(user_dest, dest_orig, alloc_size))
4012 ret = -EFAULT;
4013
4014 kfree(dest_orig);
4015 out:
4016 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4017 ret = -EFAULT;
4018
4019 return ret;
4020 }
4021
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)4022 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4023 void __user *argp)
4024 {
4025 struct btrfs_trans_handle *trans;
4026 u64 transid;
4027
4028 trans = btrfs_attach_transaction_barrier(root);
4029 if (IS_ERR(trans)) {
4030 if (PTR_ERR(trans) != -ENOENT)
4031 return PTR_ERR(trans);
4032
4033 /* No running transaction, don't bother */
4034 transid = root->fs_info->last_trans_committed;
4035 goto out;
4036 }
4037 transid = trans->transid;
4038 btrfs_commit_transaction_async(trans);
4039 out:
4040 if (argp)
4041 if (copy_to_user(argp, &transid, sizeof(transid)))
4042 return -EFAULT;
4043 return 0;
4044 }
4045
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)4046 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4047 void __user *argp)
4048 {
4049 u64 transid;
4050
4051 if (argp) {
4052 if (copy_from_user(&transid, argp, sizeof(transid)))
4053 return -EFAULT;
4054 } else {
4055 transid = 0; /* current trans */
4056 }
4057 return btrfs_wait_for_commit(fs_info, transid);
4058 }
4059
btrfs_ioctl_scrub(struct file * file,void __user * arg)4060 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4061 {
4062 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4063 struct btrfs_ioctl_scrub_args *sa;
4064 int ret;
4065
4066 if (!capable(CAP_SYS_ADMIN))
4067 return -EPERM;
4068
4069 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
4070 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
4071 return -EINVAL;
4072 }
4073
4074 sa = memdup_user(arg, sizeof(*sa));
4075 if (IS_ERR(sa))
4076 return PTR_ERR(sa);
4077
4078 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
4079 ret = -EOPNOTSUPP;
4080 goto out;
4081 }
4082
4083 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4084 ret = mnt_want_write_file(file);
4085 if (ret)
4086 goto out;
4087 }
4088
4089 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4090 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4091 0);
4092
4093 /*
4094 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
4095 * error. This is important as it allows user space to know how much
4096 * progress scrub has done. For example, if scrub is canceled we get
4097 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
4098 * space. Later user space can inspect the progress from the structure
4099 * btrfs_ioctl_scrub_args and resume scrub from where it left off
4100 * previously (btrfs-progs does this).
4101 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
4102 * then return -EFAULT to signal the structure was not copied or it may
4103 * be corrupt and unreliable due to a partial copy.
4104 */
4105 if (copy_to_user(arg, sa, sizeof(*sa)))
4106 ret = -EFAULT;
4107
4108 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4109 mnt_drop_write_file(file);
4110 out:
4111 kfree(sa);
4112 return ret;
4113 }
4114
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)4115 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4116 {
4117 if (!capable(CAP_SYS_ADMIN))
4118 return -EPERM;
4119
4120 return btrfs_scrub_cancel(fs_info);
4121 }
4122
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)4123 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4124 void __user *arg)
4125 {
4126 struct btrfs_ioctl_scrub_args *sa;
4127 int ret;
4128
4129 if (!capable(CAP_SYS_ADMIN))
4130 return -EPERM;
4131
4132 sa = memdup_user(arg, sizeof(*sa));
4133 if (IS_ERR(sa))
4134 return PTR_ERR(sa);
4135
4136 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4137
4138 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4139 ret = -EFAULT;
4140
4141 kfree(sa);
4142 return ret;
4143 }
4144
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)4145 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4146 void __user *arg)
4147 {
4148 struct btrfs_ioctl_get_dev_stats *sa;
4149 int ret;
4150
4151 sa = memdup_user(arg, sizeof(*sa));
4152 if (IS_ERR(sa))
4153 return PTR_ERR(sa);
4154
4155 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4156 kfree(sa);
4157 return -EPERM;
4158 }
4159
4160 ret = btrfs_get_dev_stats(fs_info, sa);
4161
4162 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4163 ret = -EFAULT;
4164
4165 kfree(sa);
4166 return ret;
4167 }
4168
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)4169 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4170 void __user *arg)
4171 {
4172 struct btrfs_ioctl_dev_replace_args *p;
4173 int ret;
4174
4175 if (!capable(CAP_SYS_ADMIN))
4176 return -EPERM;
4177
4178 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
4179 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
4180 return -EINVAL;
4181 }
4182
4183 p = memdup_user(arg, sizeof(*p));
4184 if (IS_ERR(p))
4185 return PTR_ERR(p);
4186
4187 switch (p->cmd) {
4188 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4189 if (sb_rdonly(fs_info->sb)) {
4190 ret = -EROFS;
4191 goto out;
4192 }
4193 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
4194 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4195 } else {
4196 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4197 btrfs_exclop_finish(fs_info);
4198 }
4199 break;
4200 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4201 btrfs_dev_replace_status(fs_info, p);
4202 ret = 0;
4203 break;
4204 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4205 p->result = btrfs_dev_replace_cancel(fs_info);
4206 ret = 0;
4207 break;
4208 default:
4209 ret = -EINVAL;
4210 break;
4211 }
4212
4213 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
4214 ret = -EFAULT;
4215 out:
4216 kfree(p);
4217 return ret;
4218 }
4219
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)4220 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4221 {
4222 int ret = 0;
4223 int i;
4224 u64 rel_ptr;
4225 int size;
4226 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4227 struct inode_fs_paths *ipath = NULL;
4228 struct btrfs_path *path;
4229
4230 if (!capable(CAP_DAC_READ_SEARCH))
4231 return -EPERM;
4232
4233 path = btrfs_alloc_path();
4234 if (!path) {
4235 ret = -ENOMEM;
4236 goto out;
4237 }
4238
4239 ipa = memdup_user(arg, sizeof(*ipa));
4240 if (IS_ERR(ipa)) {
4241 ret = PTR_ERR(ipa);
4242 ipa = NULL;
4243 goto out;
4244 }
4245
4246 size = min_t(u32, ipa->size, 4096);
4247 ipath = init_ipath(size, root, path);
4248 if (IS_ERR(ipath)) {
4249 ret = PTR_ERR(ipath);
4250 ipath = NULL;
4251 goto out;
4252 }
4253
4254 ret = paths_from_inode(ipa->inum, ipath);
4255 if (ret < 0)
4256 goto out;
4257
4258 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4259 rel_ptr = ipath->fspath->val[i] -
4260 (u64)(unsigned long)ipath->fspath->val;
4261 ipath->fspath->val[i] = rel_ptr;
4262 }
4263
4264 btrfs_free_path(path);
4265 path = NULL;
4266 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4267 ipath->fspath, size);
4268 if (ret) {
4269 ret = -EFAULT;
4270 goto out;
4271 }
4272
4273 out:
4274 btrfs_free_path(path);
4275 free_ipath(ipath);
4276 kfree(ipa);
4277
4278 return ret;
4279 }
4280
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg,int version)4281 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4282 void __user *arg, int version)
4283 {
4284 int ret = 0;
4285 int size;
4286 struct btrfs_ioctl_logical_ino_args *loi;
4287 struct btrfs_data_container *inodes = NULL;
4288 struct btrfs_path *path = NULL;
4289 bool ignore_offset;
4290
4291 if (!capable(CAP_SYS_ADMIN))
4292 return -EPERM;
4293
4294 loi = memdup_user(arg, sizeof(*loi));
4295 if (IS_ERR(loi))
4296 return PTR_ERR(loi);
4297
4298 if (version == 1) {
4299 ignore_offset = false;
4300 size = min_t(u32, loi->size, SZ_64K);
4301 } else {
4302 /* All reserved bits must be 0 for now */
4303 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4304 ret = -EINVAL;
4305 goto out_loi;
4306 }
4307 /* Only accept flags we have defined so far */
4308 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4309 ret = -EINVAL;
4310 goto out_loi;
4311 }
4312 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4313 size = min_t(u32, loi->size, SZ_16M);
4314 }
4315
4316 inodes = init_data_container(size);
4317 if (IS_ERR(inodes)) {
4318 ret = PTR_ERR(inodes);
4319 goto out_loi;
4320 }
4321
4322 path = btrfs_alloc_path();
4323 if (!path) {
4324 ret = -ENOMEM;
4325 goto out;
4326 }
4327 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4328 inodes, ignore_offset);
4329 btrfs_free_path(path);
4330 if (ret == -EINVAL)
4331 ret = -ENOENT;
4332 if (ret < 0)
4333 goto out;
4334
4335 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4336 size);
4337 if (ret)
4338 ret = -EFAULT;
4339
4340 out:
4341 kvfree(inodes);
4342 out_loi:
4343 kfree(loi);
4344
4345 return ret;
4346 }
4347
btrfs_update_ioctl_balance_args(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_balance_args * bargs)4348 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
4349 struct btrfs_ioctl_balance_args *bargs)
4350 {
4351 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4352
4353 bargs->flags = bctl->flags;
4354
4355 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4356 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4357 if (atomic_read(&fs_info->balance_pause_req))
4358 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4359 if (atomic_read(&fs_info->balance_cancel_req))
4360 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4361
4362 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4363 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4364 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4365
4366 spin_lock(&fs_info->balance_lock);
4367 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4368 spin_unlock(&fs_info->balance_lock);
4369 }
4370
4371 /**
4372 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
4373 * required.
4374 *
4375 * @fs_info: the filesystem
4376 * @excl_acquired: ptr to boolean value which is set to false in case balance
4377 * is being resumed
4378 *
4379 * Return 0 on success in which case both fs_info::balance is acquired as well
4380 * as exclusive ops are blocked. In case of failure return an error code.
4381 */
btrfs_try_lock_balance(struct btrfs_fs_info * fs_info,bool * excl_acquired)4382 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
4383 {
4384 int ret;
4385
4386 /*
4387 * Exclusive operation is locked. Three possibilities:
4388 * (1) some other op is running
4389 * (2) balance is running
4390 * (3) balance is paused -- special case (think resume)
4391 */
4392 while (1) {
4393 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4394 *excl_acquired = true;
4395 mutex_lock(&fs_info->balance_mutex);
4396 return 0;
4397 }
4398
4399 mutex_lock(&fs_info->balance_mutex);
4400 if (fs_info->balance_ctl) {
4401 /* This is either (2) or (3) */
4402 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4403 /* This is (2) */
4404 ret = -EINPROGRESS;
4405 goto out_failure;
4406
4407 } else {
4408 mutex_unlock(&fs_info->balance_mutex);
4409 /*
4410 * Lock released to allow other waiters to
4411 * continue, we'll reexamine the status again.
4412 */
4413 mutex_lock(&fs_info->balance_mutex);
4414
4415 if (fs_info->balance_ctl &&
4416 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4417 /* This is (3) */
4418 *excl_acquired = false;
4419 return 0;
4420 }
4421 }
4422 } else {
4423 /* This is (1) */
4424 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4425 goto out_failure;
4426 }
4427
4428 mutex_unlock(&fs_info->balance_mutex);
4429 }
4430
4431 out_failure:
4432 mutex_unlock(&fs_info->balance_mutex);
4433 *excl_acquired = false;
4434 return ret;
4435 }
4436
btrfs_ioctl_balance(struct file * file,void __user * arg)4437 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4438 {
4439 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4440 struct btrfs_fs_info *fs_info = root->fs_info;
4441 struct btrfs_ioctl_balance_args *bargs;
4442 struct btrfs_balance_control *bctl;
4443 bool need_unlock = true;
4444 int ret;
4445
4446 if (!capable(CAP_SYS_ADMIN))
4447 return -EPERM;
4448
4449 ret = mnt_want_write_file(file);
4450 if (ret)
4451 return ret;
4452
4453 bargs = memdup_user(arg, sizeof(*bargs));
4454 if (IS_ERR(bargs)) {
4455 ret = PTR_ERR(bargs);
4456 bargs = NULL;
4457 goto out;
4458 }
4459
4460 ret = btrfs_try_lock_balance(fs_info, &need_unlock);
4461 if (ret)
4462 goto out;
4463
4464 lockdep_assert_held(&fs_info->balance_mutex);
4465
4466 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4467 if (!fs_info->balance_ctl) {
4468 ret = -ENOTCONN;
4469 goto out_unlock;
4470 }
4471
4472 bctl = fs_info->balance_ctl;
4473 spin_lock(&fs_info->balance_lock);
4474 bctl->flags |= BTRFS_BALANCE_RESUME;
4475 spin_unlock(&fs_info->balance_lock);
4476 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
4477
4478 goto do_balance;
4479 }
4480
4481 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4482 ret = -EINVAL;
4483 goto out_unlock;
4484 }
4485
4486 if (fs_info->balance_ctl) {
4487 ret = -EINPROGRESS;
4488 goto out_unlock;
4489 }
4490
4491 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4492 if (!bctl) {
4493 ret = -ENOMEM;
4494 goto out_unlock;
4495 }
4496
4497 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4498 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4499 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4500
4501 bctl->flags = bargs->flags;
4502 do_balance:
4503 /*
4504 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4505 * bctl is freed in reset_balance_state, or, if restriper was paused
4506 * all the way until unmount, in free_fs_info. The flag should be
4507 * cleared after reset_balance_state.
4508 */
4509 need_unlock = false;
4510
4511 ret = btrfs_balance(fs_info, bctl, bargs);
4512 bctl = NULL;
4513
4514 if (ret == 0 || ret == -ECANCELED) {
4515 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4516 ret = -EFAULT;
4517 }
4518
4519 kfree(bctl);
4520 out_unlock:
4521 mutex_unlock(&fs_info->balance_mutex);
4522 if (need_unlock)
4523 btrfs_exclop_finish(fs_info);
4524 out:
4525 mnt_drop_write_file(file);
4526 kfree(bargs);
4527 return ret;
4528 }
4529
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)4530 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4531 {
4532 if (!capable(CAP_SYS_ADMIN))
4533 return -EPERM;
4534
4535 switch (cmd) {
4536 case BTRFS_BALANCE_CTL_PAUSE:
4537 return btrfs_pause_balance(fs_info);
4538 case BTRFS_BALANCE_CTL_CANCEL:
4539 return btrfs_cancel_balance(fs_info);
4540 }
4541
4542 return -EINVAL;
4543 }
4544
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)4545 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4546 void __user *arg)
4547 {
4548 struct btrfs_ioctl_balance_args *bargs;
4549 int ret = 0;
4550
4551 if (!capable(CAP_SYS_ADMIN))
4552 return -EPERM;
4553
4554 mutex_lock(&fs_info->balance_mutex);
4555 if (!fs_info->balance_ctl) {
4556 ret = -ENOTCONN;
4557 goto out;
4558 }
4559
4560 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4561 if (!bargs) {
4562 ret = -ENOMEM;
4563 goto out;
4564 }
4565
4566 btrfs_update_ioctl_balance_args(fs_info, bargs);
4567
4568 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4569 ret = -EFAULT;
4570
4571 kfree(bargs);
4572 out:
4573 mutex_unlock(&fs_info->balance_mutex);
4574 return ret;
4575 }
4576
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)4577 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4578 {
4579 struct inode *inode = file_inode(file);
4580 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4581 struct btrfs_ioctl_quota_ctl_args *sa;
4582 int ret;
4583
4584 if (!capable(CAP_SYS_ADMIN))
4585 return -EPERM;
4586
4587 ret = mnt_want_write_file(file);
4588 if (ret)
4589 return ret;
4590
4591 sa = memdup_user(arg, sizeof(*sa));
4592 if (IS_ERR(sa)) {
4593 ret = PTR_ERR(sa);
4594 goto drop_write;
4595 }
4596
4597 down_write(&fs_info->subvol_sem);
4598
4599 switch (sa->cmd) {
4600 case BTRFS_QUOTA_CTL_ENABLE:
4601 ret = btrfs_quota_enable(fs_info);
4602 break;
4603 case BTRFS_QUOTA_CTL_DISABLE:
4604 ret = btrfs_quota_disable(fs_info);
4605 break;
4606 default:
4607 ret = -EINVAL;
4608 break;
4609 }
4610
4611 kfree(sa);
4612 up_write(&fs_info->subvol_sem);
4613 drop_write:
4614 mnt_drop_write_file(file);
4615 return ret;
4616 }
4617
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)4618 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4619 {
4620 struct inode *inode = file_inode(file);
4621 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4622 struct btrfs_root *root = BTRFS_I(inode)->root;
4623 struct btrfs_ioctl_qgroup_assign_args *sa;
4624 struct btrfs_trans_handle *trans;
4625 int ret;
4626 int err;
4627
4628 if (!capable(CAP_SYS_ADMIN))
4629 return -EPERM;
4630
4631 ret = mnt_want_write_file(file);
4632 if (ret)
4633 return ret;
4634
4635 sa = memdup_user(arg, sizeof(*sa));
4636 if (IS_ERR(sa)) {
4637 ret = PTR_ERR(sa);
4638 goto drop_write;
4639 }
4640
4641 trans = btrfs_join_transaction(root);
4642 if (IS_ERR(trans)) {
4643 ret = PTR_ERR(trans);
4644 goto out;
4645 }
4646
4647 if (sa->assign) {
4648 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4649 } else {
4650 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4651 }
4652
4653 /* update qgroup status and info */
4654 mutex_lock(&fs_info->qgroup_ioctl_lock);
4655 err = btrfs_run_qgroups(trans);
4656 mutex_unlock(&fs_info->qgroup_ioctl_lock);
4657 if (err < 0)
4658 btrfs_handle_fs_error(fs_info, err,
4659 "failed to update qgroup status and info");
4660 err = btrfs_end_transaction(trans);
4661 if (err && !ret)
4662 ret = err;
4663
4664 out:
4665 kfree(sa);
4666 drop_write:
4667 mnt_drop_write_file(file);
4668 return ret;
4669 }
4670
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)4671 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4672 {
4673 struct inode *inode = file_inode(file);
4674 struct btrfs_root *root = BTRFS_I(inode)->root;
4675 struct btrfs_ioctl_qgroup_create_args *sa;
4676 struct btrfs_trans_handle *trans;
4677 int ret;
4678 int err;
4679
4680 if (!capable(CAP_SYS_ADMIN))
4681 return -EPERM;
4682
4683 ret = mnt_want_write_file(file);
4684 if (ret)
4685 return ret;
4686
4687 sa = memdup_user(arg, sizeof(*sa));
4688 if (IS_ERR(sa)) {
4689 ret = PTR_ERR(sa);
4690 goto drop_write;
4691 }
4692
4693 if (!sa->qgroupid) {
4694 ret = -EINVAL;
4695 goto out;
4696 }
4697
4698 if (sa->create && is_fstree(sa->qgroupid)) {
4699 ret = -EINVAL;
4700 goto out;
4701 }
4702
4703 trans = btrfs_join_transaction(root);
4704 if (IS_ERR(trans)) {
4705 ret = PTR_ERR(trans);
4706 goto out;
4707 }
4708
4709 if (sa->create) {
4710 ret = btrfs_create_qgroup(trans, sa->qgroupid);
4711 } else {
4712 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4713 }
4714
4715 err = btrfs_end_transaction(trans);
4716 if (err && !ret)
4717 ret = err;
4718
4719 out:
4720 kfree(sa);
4721 drop_write:
4722 mnt_drop_write_file(file);
4723 return ret;
4724 }
4725
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)4726 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4727 {
4728 struct inode *inode = file_inode(file);
4729 struct btrfs_root *root = BTRFS_I(inode)->root;
4730 struct btrfs_ioctl_qgroup_limit_args *sa;
4731 struct btrfs_trans_handle *trans;
4732 int ret;
4733 int err;
4734 u64 qgroupid;
4735
4736 if (!capable(CAP_SYS_ADMIN))
4737 return -EPERM;
4738
4739 ret = mnt_want_write_file(file);
4740 if (ret)
4741 return ret;
4742
4743 sa = memdup_user(arg, sizeof(*sa));
4744 if (IS_ERR(sa)) {
4745 ret = PTR_ERR(sa);
4746 goto drop_write;
4747 }
4748
4749 trans = btrfs_join_transaction(root);
4750 if (IS_ERR(trans)) {
4751 ret = PTR_ERR(trans);
4752 goto out;
4753 }
4754
4755 qgroupid = sa->qgroupid;
4756 if (!qgroupid) {
4757 /* take the current subvol as qgroup */
4758 qgroupid = root->root_key.objectid;
4759 }
4760
4761 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4762
4763 err = btrfs_end_transaction(trans);
4764 if (err && !ret)
4765 ret = err;
4766
4767 out:
4768 kfree(sa);
4769 drop_write:
4770 mnt_drop_write_file(file);
4771 return ret;
4772 }
4773
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)4774 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4775 {
4776 struct inode *inode = file_inode(file);
4777 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4778 struct btrfs_ioctl_quota_rescan_args *qsa;
4779 int ret;
4780
4781 if (!capable(CAP_SYS_ADMIN))
4782 return -EPERM;
4783
4784 ret = mnt_want_write_file(file);
4785 if (ret)
4786 return ret;
4787
4788 qsa = memdup_user(arg, sizeof(*qsa));
4789 if (IS_ERR(qsa)) {
4790 ret = PTR_ERR(qsa);
4791 goto drop_write;
4792 }
4793
4794 if (qsa->flags) {
4795 ret = -EINVAL;
4796 goto out;
4797 }
4798
4799 ret = btrfs_qgroup_rescan(fs_info);
4800
4801 out:
4802 kfree(qsa);
4803 drop_write:
4804 mnt_drop_write_file(file);
4805 return ret;
4806 }
4807
btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info * fs_info,void __user * arg)4808 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4809 void __user *arg)
4810 {
4811 struct btrfs_ioctl_quota_rescan_args qsa = {0};
4812
4813 if (!capable(CAP_SYS_ADMIN))
4814 return -EPERM;
4815
4816 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4817 qsa.flags = 1;
4818 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4819 }
4820
4821 if (copy_to_user(arg, &qsa, sizeof(qsa)))
4822 return -EFAULT;
4823
4824 return 0;
4825 }
4826
btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info * fs_info,void __user * arg)4827 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4828 void __user *arg)
4829 {
4830 if (!capable(CAP_SYS_ADMIN))
4831 return -EPERM;
4832
4833 return btrfs_qgroup_wait_for_completion(fs_info, true);
4834 }
4835
_btrfs_ioctl_set_received_subvol(struct file * file,struct user_namespace * mnt_userns,struct btrfs_ioctl_received_subvol_args * sa)4836 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4837 struct user_namespace *mnt_userns,
4838 struct btrfs_ioctl_received_subvol_args *sa)
4839 {
4840 struct inode *inode = file_inode(file);
4841 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4842 struct btrfs_root *root = BTRFS_I(inode)->root;
4843 struct btrfs_root_item *root_item = &root->root_item;
4844 struct btrfs_trans_handle *trans;
4845 struct timespec64 ct = current_time(inode);
4846 int ret = 0;
4847 int received_uuid_changed;
4848
4849 if (!inode_owner_or_capable(mnt_userns, inode))
4850 return -EPERM;
4851
4852 ret = mnt_want_write_file(file);
4853 if (ret < 0)
4854 return ret;
4855
4856 down_write(&fs_info->subvol_sem);
4857
4858 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4859 ret = -EINVAL;
4860 goto out;
4861 }
4862
4863 if (btrfs_root_readonly(root)) {
4864 ret = -EROFS;
4865 goto out;
4866 }
4867
4868 /*
4869 * 1 - root item
4870 * 2 - uuid items (received uuid + subvol uuid)
4871 */
4872 trans = btrfs_start_transaction(root, 3);
4873 if (IS_ERR(trans)) {
4874 ret = PTR_ERR(trans);
4875 trans = NULL;
4876 goto out;
4877 }
4878
4879 sa->rtransid = trans->transid;
4880 sa->rtime.sec = ct.tv_sec;
4881 sa->rtime.nsec = ct.tv_nsec;
4882
4883 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4884 BTRFS_UUID_SIZE);
4885 if (received_uuid_changed &&
4886 !btrfs_is_empty_uuid(root_item->received_uuid)) {
4887 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4888 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4889 root->root_key.objectid);
4890 if (ret && ret != -ENOENT) {
4891 btrfs_abort_transaction(trans, ret);
4892 btrfs_end_transaction(trans);
4893 goto out;
4894 }
4895 }
4896 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4897 btrfs_set_root_stransid(root_item, sa->stransid);
4898 btrfs_set_root_rtransid(root_item, sa->rtransid);
4899 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4900 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4901 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4902 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4903
4904 ret = btrfs_update_root(trans, fs_info->tree_root,
4905 &root->root_key, &root->root_item);
4906 if (ret < 0) {
4907 btrfs_end_transaction(trans);
4908 goto out;
4909 }
4910 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4911 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4912 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4913 root->root_key.objectid);
4914 if (ret < 0 && ret != -EEXIST) {
4915 btrfs_abort_transaction(trans, ret);
4916 btrfs_end_transaction(trans);
4917 goto out;
4918 }
4919 }
4920 ret = btrfs_commit_transaction(trans);
4921 out:
4922 up_write(&fs_info->subvol_sem);
4923 mnt_drop_write_file(file);
4924 return ret;
4925 }
4926
4927 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)4928 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4929 void __user *arg)
4930 {
4931 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4932 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4933 int ret = 0;
4934
4935 args32 = memdup_user(arg, sizeof(*args32));
4936 if (IS_ERR(args32))
4937 return PTR_ERR(args32);
4938
4939 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4940 if (!args64) {
4941 ret = -ENOMEM;
4942 goto out;
4943 }
4944
4945 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4946 args64->stransid = args32->stransid;
4947 args64->rtransid = args32->rtransid;
4948 args64->stime.sec = args32->stime.sec;
4949 args64->stime.nsec = args32->stime.nsec;
4950 args64->rtime.sec = args32->rtime.sec;
4951 args64->rtime.nsec = args32->rtime.nsec;
4952 args64->flags = args32->flags;
4953
4954 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64);
4955 if (ret)
4956 goto out;
4957
4958 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4959 args32->stransid = args64->stransid;
4960 args32->rtransid = args64->rtransid;
4961 args32->stime.sec = args64->stime.sec;
4962 args32->stime.nsec = args64->stime.nsec;
4963 args32->rtime.sec = args64->rtime.sec;
4964 args32->rtime.nsec = args64->rtime.nsec;
4965 args32->flags = args64->flags;
4966
4967 ret = copy_to_user(arg, args32, sizeof(*args32));
4968 if (ret)
4969 ret = -EFAULT;
4970
4971 out:
4972 kfree(args32);
4973 kfree(args64);
4974 return ret;
4975 }
4976 #endif
4977
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)4978 static long btrfs_ioctl_set_received_subvol(struct file *file,
4979 void __user *arg)
4980 {
4981 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4982 int ret = 0;
4983
4984 sa = memdup_user(arg, sizeof(*sa));
4985 if (IS_ERR(sa))
4986 return PTR_ERR(sa);
4987
4988 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa);
4989
4990 if (ret)
4991 goto out;
4992
4993 ret = copy_to_user(arg, sa, sizeof(*sa));
4994 if (ret)
4995 ret = -EFAULT;
4996
4997 out:
4998 kfree(sa);
4999 return ret;
5000 }
5001
btrfs_ioctl_get_fslabel(struct btrfs_fs_info * fs_info,void __user * arg)5002 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
5003 void __user *arg)
5004 {
5005 size_t len;
5006 int ret;
5007 char label[BTRFS_LABEL_SIZE];
5008
5009 spin_lock(&fs_info->super_lock);
5010 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5011 spin_unlock(&fs_info->super_lock);
5012
5013 len = strnlen(label, BTRFS_LABEL_SIZE);
5014
5015 if (len == BTRFS_LABEL_SIZE) {
5016 btrfs_warn(fs_info,
5017 "label is too long, return the first %zu bytes",
5018 --len);
5019 }
5020
5021 ret = copy_to_user(arg, label, len);
5022
5023 return ret ? -EFAULT : 0;
5024 }
5025
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)5026 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5027 {
5028 struct inode *inode = file_inode(file);
5029 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5030 struct btrfs_root *root = BTRFS_I(inode)->root;
5031 struct btrfs_super_block *super_block = fs_info->super_copy;
5032 struct btrfs_trans_handle *trans;
5033 char label[BTRFS_LABEL_SIZE];
5034 int ret;
5035
5036 if (!capable(CAP_SYS_ADMIN))
5037 return -EPERM;
5038
5039 if (copy_from_user(label, arg, sizeof(label)))
5040 return -EFAULT;
5041
5042 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5043 btrfs_err(fs_info,
5044 "unable to set label with more than %d bytes",
5045 BTRFS_LABEL_SIZE - 1);
5046 return -EINVAL;
5047 }
5048
5049 ret = mnt_want_write_file(file);
5050 if (ret)
5051 return ret;
5052
5053 trans = btrfs_start_transaction(root, 0);
5054 if (IS_ERR(trans)) {
5055 ret = PTR_ERR(trans);
5056 goto out_unlock;
5057 }
5058
5059 spin_lock(&fs_info->super_lock);
5060 strcpy(super_block->label, label);
5061 spin_unlock(&fs_info->super_lock);
5062 ret = btrfs_commit_transaction(trans);
5063
5064 out_unlock:
5065 mnt_drop_write_file(file);
5066 return ret;
5067 }
5068
5069 #define INIT_FEATURE_FLAGS(suffix) \
5070 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5071 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5072 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5073
btrfs_ioctl_get_supported_features(void __user * arg)5074 int btrfs_ioctl_get_supported_features(void __user *arg)
5075 {
5076 static const struct btrfs_ioctl_feature_flags features[3] = {
5077 INIT_FEATURE_FLAGS(SUPP),
5078 INIT_FEATURE_FLAGS(SAFE_SET),
5079 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5080 };
5081
5082 if (copy_to_user(arg, &features, sizeof(features)))
5083 return -EFAULT;
5084
5085 return 0;
5086 }
5087
btrfs_ioctl_get_features(struct btrfs_fs_info * fs_info,void __user * arg)5088 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
5089 void __user *arg)
5090 {
5091 struct btrfs_super_block *super_block = fs_info->super_copy;
5092 struct btrfs_ioctl_feature_flags features;
5093
5094 features.compat_flags = btrfs_super_compat_flags(super_block);
5095 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5096 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5097
5098 if (copy_to_user(arg, &features, sizeof(features)))
5099 return -EFAULT;
5100
5101 return 0;
5102 }
5103
check_feature_bits(struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)5104 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5105 enum btrfs_feature_set set,
5106 u64 change_mask, u64 flags, u64 supported_flags,
5107 u64 safe_set, u64 safe_clear)
5108 {
5109 const char *type = btrfs_feature_set_name(set);
5110 char *names;
5111 u64 disallowed, unsupported;
5112 u64 set_mask = flags & change_mask;
5113 u64 clear_mask = ~flags & change_mask;
5114
5115 unsupported = set_mask & ~supported_flags;
5116 if (unsupported) {
5117 names = btrfs_printable_features(set, unsupported);
5118 if (names) {
5119 btrfs_warn(fs_info,
5120 "this kernel does not support the %s feature bit%s",
5121 names, strchr(names, ',') ? "s" : "");
5122 kfree(names);
5123 } else
5124 btrfs_warn(fs_info,
5125 "this kernel does not support %s bits 0x%llx",
5126 type, unsupported);
5127 return -EOPNOTSUPP;
5128 }
5129
5130 disallowed = set_mask & ~safe_set;
5131 if (disallowed) {
5132 names = btrfs_printable_features(set, disallowed);
5133 if (names) {
5134 btrfs_warn(fs_info,
5135 "can't set the %s feature bit%s while mounted",
5136 names, strchr(names, ',') ? "s" : "");
5137 kfree(names);
5138 } else
5139 btrfs_warn(fs_info,
5140 "can't set %s bits 0x%llx while mounted",
5141 type, disallowed);
5142 return -EPERM;
5143 }
5144
5145 disallowed = clear_mask & ~safe_clear;
5146 if (disallowed) {
5147 names = btrfs_printable_features(set, disallowed);
5148 if (names) {
5149 btrfs_warn(fs_info,
5150 "can't clear the %s feature bit%s while mounted",
5151 names, strchr(names, ',') ? "s" : "");
5152 kfree(names);
5153 } else
5154 btrfs_warn(fs_info,
5155 "can't clear %s bits 0x%llx while mounted",
5156 type, disallowed);
5157 return -EPERM;
5158 }
5159
5160 return 0;
5161 }
5162
5163 #define check_feature(fs_info, change_mask, flags, mask_base) \
5164 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
5165 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5166 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5167 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5168
btrfs_ioctl_set_features(struct file * file,void __user * arg)5169 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5170 {
5171 struct inode *inode = file_inode(file);
5172 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5173 struct btrfs_root *root = BTRFS_I(inode)->root;
5174 struct btrfs_super_block *super_block = fs_info->super_copy;
5175 struct btrfs_ioctl_feature_flags flags[2];
5176 struct btrfs_trans_handle *trans;
5177 u64 newflags;
5178 int ret;
5179
5180 if (!capable(CAP_SYS_ADMIN))
5181 return -EPERM;
5182
5183 if (copy_from_user(flags, arg, sizeof(flags)))
5184 return -EFAULT;
5185
5186 /* Nothing to do */
5187 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5188 !flags[0].incompat_flags)
5189 return 0;
5190
5191 ret = check_feature(fs_info, flags[0].compat_flags,
5192 flags[1].compat_flags, COMPAT);
5193 if (ret)
5194 return ret;
5195
5196 ret = check_feature(fs_info, flags[0].compat_ro_flags,
5197 flags[1].compat_ro_flags, COMPAT_RO);
5198 if (ret)
5199 return ret;
5200
5201 ret = check_feature(fs_info, flags[0].incompat_flags,
5202 flags[1].incompat_flags, INCOMPAT);
5203 if (ret)
5204 return ret;
5205
5206 ret = mnt_want_write_file(file);
5207 if (ret)
5208 return ret;
5209
5210 trans = btrfs_start_transaction(root, 0);
5211 if (IS_ERR(trans)) {
5212 ret = PTR_ERR(trans);
5213 goto out_drop_write;
5214 }
5215
5216 spin_lock(&fs_info->super_lock);
5217 newflags = btrfs_super_compat_flags(super_block);
5218 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5219 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5220 btrfs_set_super_compat_flags(super_block, newflags);
5221
5222 newflags = btrfs_super_compat_ro_flags(super_block);
5223 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5224 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5225 btrfs_set_super_compat_ro_flags(super_block, newflags);
5226
5227 newflags = btrfs_super_incompat_flags(super_block);
5228 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5229 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5230 btrfs_set_super_incompat_flags(super_block, newflags);
5231 spin_unlock(&fs_info->super_lock);
5232
5233 ret = btrfs_commit_transaction(trans);
5234 out_drop_write:
5235 mnt_drop_write_file(file);
5236
5237 return ret;
5238 }
5239
_btrfs_ioctl_send(struct inode * inode,void __user * argp,bool compat)5240 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
5241 {
5242 struct btrfs_ioctl_send_args *arg;
5243 int ret;
5244
5245 if (compat) {
5246 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5247 struct btrfs_ioctl_send_args_32 args32 = { 0 };
5248
5249 ret = copy_from_user(&args32, argp, sizeof(args32));
5250 if (ret)
5251 return -EFAULT;
5252 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5253 if (!arg)
5254 return -ENOMEM;
5255 arg->send_fd = args32.send_fd;
5256 arg->clone_sources_count = args32.clone_sources_count;
5257 arg->clone_sources = compat_ptr(args32.clone_sources);
5258 arg->parent_root = args32.parent_root;
5259 arg->flags = args32.flags;
5260 arg->version = args32.version;
5261 memcpy(arg->reserved, args32.reserved,
5262 sizeof(args32.reserved));
5263 #else
5264 return -ENOTTY;
5265 #endif
5266 } else {
5267 arg = memdup_user(argp, sizeof(*arg));
5268 if (IS_ERR(arg))
5269 return PTR_ERR(arg);
5270 }
5271 ret = btrfs_ioctl_send(inode, arg);
5272 kfree(arg);
5273 return ret;
5274 }
5275
btrfs_ioctl_encoded_read(struct file * file,void __user * argp,bool compat)5276 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
5277 bool compat)
5278 {
5279 struct btrfs_ioctl_encoded_io_args args = { 0 };
5280 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
5281 flags);
5282 size_t copy_end;
5283 struct iovec iovstack[UIO_FASTIOV];
5284 struct iovec *iov = iovstack;
5285 struct iov_iter iter;
5286 loff_t pos;
5287 struct kiocb kiocb;
5288 ssize_t ret;
5289
5290 if (!capable(CAP_SYS_ADMIN)) {
5291 ret = -EPERM;
5292 goto out_acct;
5293 }
5294
5295 if (compat) {
5296 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5297 struct btrfs_ioctl_encoded_io_args_32 args32;
5298
5299 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
5300 flags);
5301 if (copy_from_user(&args32, argp, copy_end)) {
5302 ret = -EFAULT;
5303 goto out_acct;
5304 }
5305 args.iov = compat_ptr(args32.iov);
5306 args.iovcnt = args32.iovcnt;
5307 args.offset = args32.offset;
5308 args.flags = args32.flags;
5309 #else
5310 return -ENOTTY;
5311 #endif
5312 } else {
5313 copy_end = copy_end_kernel;
5314 if (copy_from_user(&args, argp, copy_end)) {
5315 ret = -EFAULT;
5316 goto out_acct;
5317 }
5318 }
5319 if (args.flags != 0) {
5320 ret = -EINVAL;
5321 goto out_acct;
5322 }
5323
5324 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
5325 &iov, &iter);
5326 if (ret < 0)
5327 goto out_acct;
5328
5329 if (iov_iter_count(&iter) == 0) {
5330 ret = 0;
5331 goto out_iov;
5332 }
5333 pos = args.offset;
5334 ret = rw_verify_area(READ, file, &pos, args.len);
5335 if (ret < 0)
5336 goto out_iov;
5337
5338 init_sync_kiocb(&kiocb, file);
5339 kiocb.ki_pos = pos;
5340
5341 ret = btrfs_encoded_read(&kiocb, &iter, &args);
5342 if (ret >= 0) {
5343 fsnotify_access(file);
5344 if (copy_to_user(argp + copy_end,
5345 (char *)&args + copy_end_kernel,
5346 sizeof(args) - copy_end_kernel))
5347 ret = -EFAULT;
5348 }
5349
5350 out_iov:
5351 kfree(iov);
5352 out_acct:
5353 if (ret > 0)
5354 add_rchar(current, ret);
5355 inc_syscr(current);
5356 return ret;
5357 }
5358
btrfs_ioctl_encoded_write(struct file * file,void __user * argp,bool compat)5359 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
5360 {
5361 struct btrfs_ioctl_encoded_io_args args;
5362 struct iovec iovstack[UIO_FASTIOV];
5363 struct iovec *iov = iovstack;
5364 struct iov_iter iter;
5365 loff_t pos;
5366 struct kiocb kiocb;
5367 ssize_t ret;
5368
5369 if (!capable(CAP_SYS_ADMIN)) {
5370 ret = -EPERM;
5371 goto out_acct;
5372 }
5373
5374 if (!(file->f_mode & FMODE_WRITE)) {
5375 ret = -EBADF;
5376 goto out_acct;
5377 }
5378
5379 if (compat) {
5380 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5381 struct btrfs_ioctl_encoded_io_args_32 args32;
5382
5383 if (copy_from_user(&args32, argp, sizeof(args32))) {
5384 ret = -EFAULT;
5385 goto out_acct;
5386 }
5387 args.iov = compat_ptr(args32.iov);
5388 args.iovcnt = args32.iovcnt;
5389 args.offset = args32.offset;
5390 args.flags = args32.flags;
5391 args.len = args32.len;
5392 args.unencoded_len = args32.unencoded_len;
5393 args.unencoded_offset = args32.unencoded_offset;
5394 args.compression = args32.compression;
5395 args.encryption = args32.encryption;
5396 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
5397 #else
5398 return -ENOTTY;
5399 #endif
5400 } else {
5401 if (copy_from_user(&args, argp, sizeof(args))) {
5402 ret = -EFAULT;
5403 goto out_acct;
5404 }
5405 }
5406
5407 ret = -EINVAL;
5408 if (args.flags != 0)
5409 goto out_acct;
5410 if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
5411 goto out_acct;
5412 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
5413 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
5414 goto out_acct;
5415 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
5416 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
5417 goto out_acct;
5418 if (args.unencoded_offset > args.unencoded_len)
5419 goto out_acct;
5420 if (args.len > args.unencoded_len - args.unencoded_offset)
5421 goto out_acct;
5422
5423 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
5424 &iov, &iter);
5425 if (ret < 0)
5426 goto out_acct;
5427
5428 file_start_write(file);
5429
5430 if (iov_iter_count(&iter) == 0) {
5431 ret = 0;
5432 goto out_end_write;
5433 }
5434 pos = args.offset;
5435 ret = rw_verify_area(WRITE, file, &pos, args.len);
5436 if (ret < 0)
5437 goto out_end_write;
5438
5439 init_sync_kiocb(&kiocb, file);
5440 ret = kiocb_set_rw_flags(&kiocb, 0);
5441 if (ret)
5442 goto out_end_write;
5443 kiocb.ki_pos = pos;
5444
5445 ret = btrfs_do_write_iter(&kiocb, &iter, &args);
5446 if (ret > 0)
5447 fsnotify_modify(file);
5448
5449 out_end_write:
5450 file_end_write(file);
5451 kfree(iov);
5452 out_acct:
5453 if (ret > 0)
5454 add_wchar(current, ret);
5455 inc_syscw(current);
5456 return ret;
5457 }
5458
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5459 long btrfs_ioctl(struct file *file, unsigned int
5460 cmd, unsigned long arg)
5461 {
5462 struct inode *inode = file_inode(file);
5463 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5464 struct btrfs_root *root = BTRFS_I(inode)->root;
5465 void __user *argp = (void __user *)arg;
5466
5467 switch (cmd) {
5468 case FS_IOC_GETVERSION:
5469 return btrfs_ioctl_getversion(inode, argp);
5470 case FS_IOC_GETFSLABEL:
5471 return btrfs_ioctl_get_fslabel(fs_info, argp);
5472 case FS_IOC_SETFSLABEL:
5473 return btrfs_ioctl_set_fslabel(file, argp);
5474 case FITRIM:
5475 return btrfs_ioctl_fitrim(fs_info, argp);
5476 case BTRFS_IOC_SNAP_CREATE:
5477 return btrfs_ioctl_snap_create(file, argp, 0);
5478 case BTRFS_IOC_SNAP_CREATE_V2:
5479 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5480 case BTRFS_IOC_SUBVOL_CREATE:
5481 return btrfs_ioctl_snap_create(file, argp, 1);
5482 case BTRFS_IOC_SUBVOL_CREATE_V2:
5483 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5484 case BTRFS_IOC_SNAP_DESTROY:
5485 return btrfs_ioctl_snap_destroy(file, argp, false);
5486 case BTRFS_IOC_SNAP_DESTROY_V2:
5487 return btrfs_ioctl_snap_destroy(file, argp, true);
5488 case BTRFS_IOC_SUBVOL_GETFLAGS:
5489 return btrfs_ioctl_subvol_getflags(inode, argp);
5490 case BTRFS_IOC_SUBVOL_SETFLAGS:
5491 return btrfs_ioctl_subvol_setflags(file, argp);
5492 case BTRFS_IOC_DEFAULT_SUBVOL:
5493 return btrfs_ioctl_default_subvol(file, argp);
5494 case BTRFS_IOC_DEFRAG:
5495 return btrfs_ioctl_defrag(file, NULL);
5496 case BTRFS_IOC_DEFRAG_RANGE:
5497 return btrfs_ioctl_defrag(file, argp);
5498 case BTRFS_IOC_RESIZE:
5499 return btrfs_ioctl_resize(file, argp);
5500 case BTRFS_IOC_ADD_DEV:
5501 return btrfs_ioctl_add_dev(fs_info, argp);
5502 case BTRFS_IOC_RM_DEV:
5503 return btrfs_ioctl_rm_dev(file, argp);
5504 case BTRFS_IOC_RM_DEV_V2:
5505 return btrfs_ioctl_rm_dev_v2(file, argp);
5506 case BTRFS_IOC_FS_INFO:
5507 return btrfs_ioctl_fs_info(fs_info, argp);
5508 case BTRFS_IOC_DEV_INFO:
5509 return btrfs_ioctl_dev_info(fs_info, argp);
5510 case BTRFS_IOC_TREE_SEARCH:
5511 return btrfs_ioctl_tree_search(inode, argp);
5512 case BTRFS_IOC_TREE_SEARCH_V2:
5513 return btrfs_ioctl_tree_search_v2(inode, argp);
5514 case BTRFS_IOC_INO_LOOKUP:
5515 return btrfs_ioctl_ino_lookup(root, argp);
5516 case BTRFS_IOC_INO_PATHS:
5517 return btrfs_ioctl_ino_to_path(root, argp);
5518 case BTRFS_IOC_LOGICAL_INO:
5519 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5520 case BTRFS_IOC_LOGICAL_INO_V2:
5521 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5522 case BTRFS_IOC_SPACE_INFO:
5523 return btrfs_ioctl_space_info(fs_info, argp);
5524 case BTRFS_IOC_SYNC: {
5525 int ret;
5526
5527 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5528 if (ret)
5529 return ret;
5530 ret = btrfs_sync_fs(inode->i_sb, 1);
5531 /*
5532 * The transaction thread may want to do more work,
5533 * namely it pokes the cleaner kthread that will start
5534 * processing uncleaned subvols.
5535 */
5536 wake_up_process(fs_info->transaction_kthread);
5537 return ret;
5538 }
5539 case BTRFS_IOC_START_SYNC:
5540 return btrfs_ioctl_start_sync(root, argp);
5541 case BTRFS_IOC_WAIT_SYNC:
5542 return btrfs_ioctl_wait_sync(fs_info, argp);
5543 case BTRFS_IOC_SCRUB:
5544 return btrfs_ioctl_scrub(file, argp);
5545 case BTRFS_IOC_SCRUB_CANCEL:
5546 return btrfs_ioctl_scrub_cancel(fs_info);
5547 case BTRFS_IOC_SCRUB_PROGRESS:
5548 return btrfs_ioctl_scrub_progress(fs_info, argp);
5549 case BTRFS_IOC_BALANCE_V2:
5550 return btrfs_ioctl_balance(file, argp);
5551 case BTRFS_IOC_BALANCE_CTL:
5552 return btrfs_ioctl_balance_ctl(fs_info, arg);
5553 case BTRFS_IOC_BALANCE_PROGRESS:
5554 return btrfs_ioctl_balance_progress(fs_info, argp);
5555 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5556 return btrfs_ioctl_set_received_subvol(file, argp);
5557 #ifdef CONFIG_64BIT
5558 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5559 return btrfs_ioctl_set_received_subvol_32(file, argp);
5560 #endif
5561 case BTRFS_IOC_SEND:
5562 return _btrfs_ioctl_send(inode, argp, false);
5563 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5564 case BTRFS_IOC_SEND_32:
5565 return _btrfs_ioctl_send(inode, argp, true);
5566 #endif
5567 case BTRFS_IOC_GET_DEV_STATS:
5568 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5569 case BTRFS_IOC_QUOTA_CTL:
5570 return btrfs_ioctl_quota_ctl(file, argp);
5571 case BTRFS_IOC_QGROUP_ASSIGN:
5572 return btrfs_ioctl_qgroup_assign(file, argp);
5573 case BTRFS_IOC_QGROUP_CREATE:
5574 return btrfs_ioctl_qgroup_create(file, argp);
5575 case BTRFS_IOC_QGROUP_LIMIT:
5576 return btrfs_ioctl_qgroup_limit(file, argp);
5577 case BTRFS_IOC_QUOTA_RESCAN:
5578 return btrfs_ioctl_quota_rescan(file, argp);
5579 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5580 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5581 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5582 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5583 case BTRFS_IOC_DEV_REPLACE:
5584 return btrfs_ioctl_dev_replace(fs_info, argp);
5585 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5586 return btrfs_ioctl_get_supported_features(argp);
5587 case BTRFS_IOC_GET_FEATURES:
5588 return btrfs_ioctl_get_features(fs_info, argp);
5589 case BTRFS_IOC_SET_FEATURES:
5590 return btrfs_ioctl_set_features(file, argp);
5591 case BTRFS_IOC_GET_SUBVOL_INFO:
5592 return btrfs_ioctl_get_subvol_info(inode, argp);
5593 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5594 return btrfs_ioctl_get_subvol_rootref(root, argp);
5595 case BTRFS_IOC_INO_LOOKUP_USER:
5596 return btrfs_ioctl_ino_lookup_user(file, argp);
5597 case FS_IOC_ENABLE_VERITY:
5598 return fsverity_ioctl_enable(file, (const void __user *)argp);
5599 case FS_IOC_MEASURE_VERITY:
5600 return fsverity_ioctl_measure(file, argp);
5601 case BTRFS_IOC_ENCODED_READ:
5602 return btrfs_ioctl_encoded_read(file, argp, false);
5603 case BTRFS_IOC_ENCODED_WRITE:
5604 return btrfs_ioctl_encoded_write(file, argp, false);
5605 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5606 case BTRFS_IOC_ENCODED_READ_32:
5607 return btrfs_ioctl_encoded_read(file, argp, true);
5608 case BTRFS_IOC_ENCODED_WRITE_32:
5609 return btrfs_ioctl_encoded_write(file, argp, true);
5610 #endif
5611 }
5612
5613 return -ENOTTY;
5614 }
5615
5616 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5617 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5618 {
5619 /*
5620 * These all access 32-bit values anyway so no further
5621 * handling is necessary.
5622 */
5623 switch (cmd) {
5624 case FS_IOC32_GETVERSION:
5625 cmd = FS_IOC_GETVERSION;
5626 break;
5627 }
5628
5629 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5630 }
5631 #endif
5632