• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "export.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "print-tree.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "rcu-string.h"
42 #include "send.h"
43 #include "dev-replace.h"
44 #include "props.h"
45 #include "sysfs.h"
46 #include "qgroup.h"
47 #include "tree-log.h"
48 #include "compression.h"
49 #include "space-info.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "subpage.h"
53 
54 #ifdef CONFIG_64BIT
55 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
56  * structures are incorrect, as the timespec structure from userspace
57  * is 4 bytes too small. We define these alternatives here to teach
58  * the kernel about the 32-bit struct packing.
59  */
60 struct btrfs_ioctl_timespec_32 {
61 	__u64 sec;
62 	__u32 nsec;
63 } __attribute__ ((__packed__));
64 
65 struct btrfs_ioctl_received_subvol_args_32 {
66 	char	uuid[BTRFS_UUID_SIZE];	/* in */
67 	__u64	stransid;		/* in */
68 	__u64	rtransid;		/* out */
69 	struct btrfs_ioctl_timespec_32 stime; /* in */
70 	struct btrfs_ioctl_timespec_32 rtime; /* out */
71 	__u64	flags;			/* in */
72 	__u64	reserved[16];		/* in */
73 } __attribute__ ((__packed__));
74 
75 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
76 				struct btrfs_ioctl_received_subvol_args_32)
77 #endif
78 
79 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
80 struct btrfs_ioctl_send_args_32 {
81 	__s64 send_fd;			/* in */
82 	__u64 clone_sources_count;	/* in */
83 	compat_uptr_t clone_sources;	/* in */
84 	__u64 parent_root;		/* in */
85 	__u64 flags;			/* in */
86 	__u32 version;			/* in */
87 	__u8  reserved[28];		/* in */
88 } __attribute__ ((__packed__));
89 
90 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
91 			       struct btrfs_ioctl_send_args_32)
92 
93 struct btrfs_ioctl_encoded_io_args_32 {
94 	compat_uptr_t iov;
95 	compat_ulong_t iovcnt;
96 	__s64 offset;
97 	__u64 flags;
98 	__u64 len;
99 	__u64 unencoded_len;
100 	__u64 unencoded_offset;
101 	__u32 compression;
102 	__u32 encryption;
103 	__u8 reserved[64];
104 };
105 
106 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
107 				       struct btrfs_ioctl_encoded_io_args_32)
108 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
109 					struct btrfs_ioctl_encoded_io_args_32)
110 #endif
111 
112 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_fsflags_for_type(struct inode * inode,unsigned int flags)113 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
114 		unsigned int flags)
115 {
116 	if (S_ISDIR(inode->i_mode))
117 		return flags;
118 	else if (S_ISREG(inode->i_mode))
119 		return flags & ~FS_DIRSYNC_FL;
120 	else
121 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
122 }
123 
124 /*
125  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
126  * ioctl.
127  */
btrfs_inode_flags_to_fsflags(struct btrfs_inode * binode)128 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
129 {
130 	unsigned int iflags = 0;
131 	u32 flags = binode->flags;
132 	u32 ro_flags = binode->ro_flags;
133 
134 	if (flags & BTRFS_INODE_SYNC)
135 		iflags |= FS_SYNC_FL;
136 	if (flags & BTRFS_INODE_IMMUTABLE)
137 		iflags |= FS_IMMUTABLE_FL;
138 	if (flags & BTRFS_INODE_APPEND)
139 		iflags |= FS_APPEND_FL;
140 	if (flags & BTRFS_INODE_NODUMP)
141 		iflags |= FS_NODUMP_FL;
142 	if (flags & BTRFS_INODE_NOATIME)
143 		iflags |= FS_NOATIME_FL;
144 	if (flags & BTRFS_INODE_DIRSYNC)
145 		iflags |= FS_DIRSYNC_FL;
146 	if (flags & BTRFS_INODE_NODATACOW)
147 		iflags |= FS_NOCOW_FL;
148 	if (ro_flags & BTRFS_INODE_RO_VERITY)
149 		iflags |= FS_VERITY_FL;
150 
151 	if (flags & BTRFS_INODE_NOCOMPRESS)
152 		iflags |= FS_NOCOMP_FL;
153 	else if (flags & BTRFS_INODE_COMPRESS)
154 		iflags |= FS_COMPR_FL;
155 
156 	return iflags;
157 }
158 
159 /*
160  * Update inode->i_flags based on the btrfs internal flags.
161  */
btrfs_sync_inode_flags_to_i_flags(struct inode * inode)162 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
163 {
164 	struct btrfs_inode *binode = BTRFS_I(inode);
165 	unsigned int new_fl = 0;
166 
167 	if (binode->flags & BTRFS_INODE_SYNC)
168 		new_fl |= S_SYNC;
169 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
170 		new_fl |= S_IMMUTABLE;
171 	if (binode->flags & BTRFS_INODE_APPEND)
172 		new_fl |= S_APPEND;
173 	if (binode->flags & BTRFS_INODE_NOATIME)
174 		new_fl |= S_NOATIME;
175 	if (binode->flags & BTRFS_INODE_DIRSYNC)
176 		new_fl |= S_DIRSYNC;
177 	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
178 		new_fl |= S_VERITY;
179 
180 	set_mask_bits(&inode->i_flags,
181 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
182 		      S_VERITY, new_fl);
183 }
184 
185 /*
186  * Check if @flags are a supported and valid set of FS_*_FL flags and that
187  * the old and new flags are not conflicting
188  */
check_fsflags(unsigned int old_flags,unsigned int flags)189 static int check_fsflags(unsigned int old_flags, unsigned int flags)
190 {
191 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
192 		      FS_NOATIME_FL | FS_NODUMP_FL | \
193 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
194 		      FS_NOCOMP_FL | FS_COMPR_FL |
195 		      FS_NOCOW_FL))
196 		return -EOPNOTSUPP;
197 
198 	/* COMPR and NOCOMP on new/old are valid */
199 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
200 		return -EINVAL;
201 
202 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
203 		return -EINVAL;
204 
205 	/* NOCOW and compression options are mutually exclusive */
206 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
207 		return -EINVAL;
208 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
209 		return -EINVAL;
210 
211 	return 0;
212 }
213 
check_fsflags_compatible(struct btrfs_fs_info * fs_info,unsigned int flags)214 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
215 				    unsigned int flags)
216 {
217 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
218 		return -EPERM;
219 
220 	return 0;
221 }
222 
223 /*
224  * Set flags/xflags from the internal inode flags. The remaining items of
225  * fsxattr are zeroed.
226  */
btrfs_fileattr_get(struct dentry * dentry,struct fileattr * fa)227 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
228 {
229 	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
230 
231 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
232 	return 0;
233 }
234 
btrfs_fileattr_set(struct user_namespace * mnt_userns,struct dentry * dentry,struct fileattr * fa)235 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
236 		       struct dentry *dentry, struct fileattr *fa)
237 {
238 	struct inode *inode = d_inode(dentry);
239 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
240 	struct btrfs_inode *binode = BTRFS_I(inode);
241 	struct btrfs_root *root = binode->root;
242 	struct btrfs_trans_handle *trans;
243 	unsigned int fsflags, old_fsflags;
244 	int ret;
245 	const char *comp = NULL;
246 	u32 binode_flags;
247 
248 	if (btrfs_root_readonly(root))
249 		return -EROFS;
250 
251 	if (fileattr_has_fsx(fa))
252 		return -EOPNOTSUPP;
253 
254 	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
255 	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
256 	ret = check_fsflags(old_fsflags, fsflags);
257 	if (ret)
258 		return ret;
259 
260 	ret = check_fsflags_compatible(fs_info, fsflags);
261 	if (ret)
262 		return ret;
263 
264 	binode_flags = binode->flags;
265 	if (fsflags & FS_SYNC_FL)
266 		binode_flags |= BTRFS_INODE_SYNC;
267 	else
268 		binode_flags &= ~BTRFS_INODE_SYNC;
269 	if (fsflags & FS_IMMUTABLE_FL)
270 		binode_flags |= BTRFS_INODE_IMMUTABLE;
271 	else
272 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
273 	if (fsflags & FS_APPEND_FL)
274 		binode_flags |= BTRFS_INODE_APPEND;
275 	else
276 		binode_flags &= ~BTRFS_INODE_APPEND;
277 	if (fsflags & FS_NODUMP_FL)
278 		binode_flags |= BTRFS_INODE_NODUMP;
279 	else
280 		binode_flags &= ~BTRFS_INODE_NODUMP;
281 	if (fsflags & FS_NOATIME_FL)
282 		binode_flags |= BTRFS_INODE_NOATIME;
283 	else
284 		binode_flags &= ~BTRFS_INODE_NOATIME;
285 
286 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
287 	if (!fa->flags_valid) {
288 		/* 1 item for the inode */
289 		trans = btrfs_start_transaction(root, 1);
290 		if (IS_ERR(trans))
291 			return PTR_ERR(trans);
292 		goto update_flags;
293 	}
294 
295 	if (fsflags & FS_DIRSYNC_FL)
296 		binode_flags |= BTRFS_INODE_DIRSYNC;
297 	else
298 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
299 	if (fsflags & FS_NOCOW_FL) {
300 		if (S_ISREG(inode->i_mode)) {
301 			/*
302 			 * It's safe to turn csums off here, no extents exist.
303 			 * Otherwise we want the flag to reflect the real COW
304 			 * status of the file and will not set it.
305 			 */
306 			if (inode->i_size == 0)
307 				binode_flags |= BTRFS_INODE_NODATACOW |
308 						BTRFS_INODE_NODATASUM;
309 		} else {
310 			binode_flags |= BTRFS_INODE_NODATACOW;
311 		}
312 	} else {
313 		/*
314 		 * Revert back under same assumptions as above
315 		 */
316 		if (S_ISREG(inode->i_mode)) {
317 			if (inode->i_size == 0)
318 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
319 						  BTRFS_INODE_NODATASUM);
320 		} else {
321 			binode_flags &= ~BTRFS_INODE_NODATACOW;
322 		}
323 	}
324 
325 	/*
326 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
327 	 * flag may be changed automatically if compression code won't make
328 	 * things smaller.
329 	 */
330 	if (fsflags & FS_NOCOMP_FL) {
331 		binode_flags &= ~BTRFS_INODE_COMPRESS;
332 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
333 	} else if (fsflags & FS_COMPR_FL) {
334 
335 		if (IS_SWAPFILE(inode))
336 			return -ETXTBSY;
337 
338 		binode_flags |= BTRFS_INODE_COMPRESS;
339 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
340 
341 		comp = btrfs_compress_type2str(fs_info->compress_type);
342 		if (!comp || comp[0] == 0)
343 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
344 	} else {
345 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
346 	}
347 
348 	/*
349 	 * 1 for inode item
350 	 * 2 for properties
351 	 */
352 	trans = btrfs_start_transaction(root, 3);
353 	if (IS_ERR(trans))
354 		return PTR_ERR(trans);
355 
356 	if (comp) {
357 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
358 				     strlen(comp), 0);
359 		if (ret) {
360 			btrfs_abort_transaction(trans, ret);
361 			goto out_end_trans;
362 		}
363 	} else {
364 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
365 				     0, 0);
366 		if (ret && ret != -ENODATA) {
367 			btrfs_abort_transaction(trans, ret);
368 			goto out_end_trans;
369 		}
370 	}
371 
372 update_flags:
373 	binode->flags = binode_flags;
374 	btrfs_sync_inode_flags_to_i_flags(inode);
375 	inode_inc_iversion(inode);
376 	inode->i_ctime = current_time(inode);
377 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
378 
379  out_end_trans:
380 	btrfs_end_transaction(trans);
381 	return ret;
382 }
383 
384 /*
385  * Start exclusive operation @type, return true on success
386  */
btrfs_exclop_start(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type)387 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
388 			enum btrfs_exclusive_operation type)
389 {
390 	bool ret = false;
391 
392 	spin_lock(&fs_info->super_lock);
393 	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
394 		fs_info->exclusive_operation = type;
395 		ret = true;
396 	}
397 	spin_unlock(&fs_info->super_lock);
398 
399 	return ret;
400 }
401 
402 /*
403  * Conditionally allow to enter the exclusive operation in case it's compatible
404  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
405  * btrfs_exclop_finish.
406  *
407  * Compatibility:
408  * - the same type is already running
409  * - when trying to add a device and balance has been paused
410  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
411  *   must check the condition first that would allow none -> @type
412  */
btrfs_exclop_start_try_lock(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type)413 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
414 				 enum btrfs_exclusive_operation type)
415 {
416 	spin_lock(&fs_info->super_lock);
417 	if (fs_info->exclusive_operation == type ||
418 	    (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
419 	     type == BTRFS_EXCLOP_DEV_ADD))
420 		return true;
421 
422 	spin_unlock(&fs_info->super_lock);
423 	return false;
424 }
425 
btrfs_exclop_start_unlock(struct btrfs_fs_info * fs_info)426 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
427 {
428 	spin_unlock(&fs_info->super_lock);
429 }
430 
btrfs_exclop_finish(struct btrfs_fs_info * fs_info)431 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
432 {
433 	spin_lock(&fs_info->super_lock);
434 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
435 	spin_unlock(&fs_info->super_lock);
436 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
437 }
438 
btrfs_exclop_balance(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation op)439 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
440 			  enum btrfs_exclusive_operation op)
441 {
442 	switch (op) {
443 	case BTRFS_EXCLOP_BALANCE_PAUSED:
444 		spin_lock(&fs_info->super_lock);
445 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
446 		       fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
447 		       fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
448 		       fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
449 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
450 		spin_unlock(&fs_info->super_lock);
451 		break;
452 	case BTRFS_EXCLOP_BALANCE:
453 		spin_lock(&fs_info->super_lock);
454 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
455 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
456 		spin_unlock(&fs_info->super_lock);
457 		break;
458 	default:
459 		btrfs_warn(fs_info,
460 			"invalid exclop balance operation %d requested", op);
461 	}
462 }
463 
btrfs_ioctl_getversion(struct inode * inode,int __user * arg)464 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
465 {
466 	return put_user(inode->i_generation, arg);
467 }
468 
btrfs_ioctl_fitrim(struct btrfs_fs_info * fs_info,void __user * arg)469 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
470 					void __user *arg)
471 {
472 	struct btrfs_device *device;
473 	struct fstrim_range range;
474 	u64 minlen = ULLONG_MAX;
475 	u64 num_devices = 0;
476 	int ret;
477 
478 	if (!capable(CAP_SYS_ADMIN))
479 		return -EPERM;
480 
481 	/*
482 	 * btrfs_trim_block_group() depends on space cache, which is not
483 	 * available in zoned filesystem. So, disallow fitrim on a zoned
484 	 * filesystem for now.
485 	 */
486 	if (btrfs_is_zoned(fs_info))
487 		return -EOPNOTSUPP;
488 
489 	/*
490 	 * If the fs is mounted with nologreplay, which requires it to be
491 	 * mounted in RO mode as well, we can not allow discard on free space
492 	 * inside block groups, because log trees refer to extents that are not
493 	 * pinned in a block group's free space cache (pinning the extents is
494 	 * precisely the first phase of replaying a log tree).
495 	 */
496 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
497 		return -EROFS;
498 
499 	rcu_read_lock();
500 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
501 				dev_list) {
502 		if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
503 			continue;
504 		num_devices++;
505 		minlen = min_t(u64, bdev_discard_granularity(device->bdev),
506 				    minlen);
507 	}
508 	rcu_read_unlock();
509 
510 	if (!num_devices)
511 		return -EOPNOTSUPP;
512 	if (copy_from_user(&range, arg, sizeof(range)))
513 		return -EFAULT;
514 
515 	/*
516 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
517 	 * block group is in the logical address space, which can be any
518 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
519 	 */
520 	if (range.len < fs_info->sb->s_blocksize)
521 		return -EINVAL;
522 
523 	range.minlen = max(range.minlen, minlen);
524 	ret = btrfs_trim_fs(fs_info, &range);
525 	if (ret < 0)
526 		return ret;
527 
528 	if (copy_to_user(arg, &range, sizeof(range)))
529 		return -EFAULT;
530 
531 	return 0;
532 }
533 
btrfs_is_empty_uuid(u8 * uuid)534 int __pure btrfs_is_empty_uuid(u8 *uuid)
535 {
536 	int i;
537 
538 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
539 		if (uuid[i])
540 			return 0;
541 	}
542 	return 1;
543 }
544 
545 /*
546  * Calculate the number of transaction items to reserve for creating a subvolume
547  * or snapshot, not including the inode, directory entries, or parent directory.
548  */
create_subvol_num_items(struct btrfs_qgroup_inherit * inherit)549 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
550 {
551 	/*
552 	 * 1 to add root block
553 	 * 1 to add root item
554 	 * 1 to add root ref
555 	 * 1 to add root backref
556 	 * 1 to add UUID item
557 	 * 1 to add qgroup info
558 	 * 1 to add qgroup limit
559 	 *
560 	 * Ideally the last two would only be accounted if qgroups are enabled,
561 	 * but that can change between now and the time we would insert them.
562 	 */
563 	unsigned int num_items = 7;
564 
565 	if (inherit) {
566 		/* 2 to add qgroup relations for each inherited qgroup */
567 		num_items += 2 * inherit->num_qgroups;
568 	}
569 	return num_items;
570 }
571 
create_subvol(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,struct btrfs_qgroup_inherit * inherit)572 static noinline int create_subvol(struct user_namespace *mnt_userns,
573 				  struct inode *dir, struct dentry *dentry,
574 				  struct btrfs_qgroup_inherit *inherit)
575 {
576 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
577 	struct btrfs_trans_handle *trans;
578 	struct btrfs_key key;
579 	struct btrfs_root_item *root_item;
580 	struct btrfs_inode_item *inode_item;
581 	struct extent_buffer *leaf;
582 	struct btrfs_root *root = BTRFS_I(dir)->root;
583 	struct btrfs_root *new_root;
584 	struct btrfs_block_rsv block_rsv;
585 	struct timespec64 cur_time = current_time(dir);
586 	struct btrfs_new_inode_args new_inode_args = {
587 		.dir = dir,
588 		.dentry = dentry,
589 		.subvol = true,
590 	};
591 	unsigned int trans_num_items;
592 	int ret;
593 	dev_t anon_dev;
594 	u64 objectid;
595 
596 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
597 	if (!root_item)
598 		return -ENOMEM;
599 
600 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
601 	if (ret)
602 		goto out_root_item;
603 
604 	/*
605 	 * Don't create subvolume whose level is not zero. Or qgroup will be
606 	 * screwed up since it assumes subvolume qgroup's level to be 0.
607 	 */
608 	if (btrfs_qgroup_level(objectid)) {
609 		ret = -ENOSPC;
610 		goto out_root_item;
611 	}
612 
613 	ret = get_anon_bdev(&anon_dev);
614 	if (ret < 0)
615 		goto out_root_item;
616 
617 	new_inode_args.inode = btrfs_new_subvol_inode(mnt_userns, dir);
618 	if (!new_inode_args.inode) {
619 		ret = -ENOMEM;
620 		goto out_anon_dev;
621 	}
622 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
623 	if (ret)
624 		goto out_inode;
625 	trans_num_items += create_subvol_num_items(inherit);
626 
627 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
628 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
629 					       trans_num_items, false);
630 	if (ret)
631 		goto out_new_inode_args;
632 
633 	trans = btrfs_start_transaction(root, 0);
634 	if (IS_ERR(trans)) {
635 		ret = PTR_ERR(trans);
636 		btrfs_subvolume_release_metadata(root, &block_rsv);
637 		goto out_new_inode_args;
638 	}
639 	trans->block_rsv = &block_rsv;
640 	trans->bytes_reserved = block_rsv.size;
641 
642 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
643 	if (ret)
644 		goto out;
645 
646 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
647 				      BTRFS_NESTING_NORMAL);
648 	if (IS_ERR(leaf)) {
649 		ret = PTR_ERR(leaf);
650 		goto out;
651 	}
652 
653 	btrfs_mark_buffer_dirty(leaf);
654 
655 	inode_item = &root_item->inode;
656 	btrfs_set_stack_inode_generation(inode_item, 1);
657 	btrfs_set_stack_inode_size(inode_item, 3);
658 	btrfs_set_stack_inode_nlink(inode_item, 1);
659 	btrfs_set_stack_inode_nbytes(inode_item,
660 				     fs_info->nodesize);
661 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
662 
663 	btrfs_set_root_flags(root_item, 0);
664 	btrfs_set_root_limit(root_item, 0);
665 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
666 
667 	btrfs_set_root_bytenr(root_item, leaf->start);
668 	btrfs_set_root_generation(root_item, trans->transid);
669 	btrfs_set_root_level(root_item, 0);
670 	btrfs_set_root_refs(root_item, 1);
671 	btrfs_set_root_used(root_item, leaf->len);
672 	btrfs_set_root_last_snapshot(root_item, 0);
673 
674 	btrfs_set_root_generation_v2(root_item,
675 			btrfs_root_generation(root_item));
676 	generate_random_guid(root_item->uuid);
677 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
678 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
679 	root_item->ctime = root_item->otime;
680 	btrfs_set_root_ctransid(root_item, trans->transid);
681 	btrfs_set_root_otransid(root_item, trans->transid);
682 
683 	btrfs_tree_unlock(leaf);
684 
685 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
686 
687 	key.objectid = objectid;
688 	key.offset = 0;
689 	key.type = BTRFS_ROOT_ITEM_KEY;
690 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
691 				root_item);
692 	if (ret) {
693 		/*
694 		 * Since we don't abort the transaction in this case, free the
695 		 * tree block so that we don't leak space and leave the
696 		 * filesystem in an inconsistent state (an extent item in the
697 		 * extent tree with a backreference for a root that does not
698 		 * exists).
699 		 */
700 		btrfs_tree_lock(leaf);
701 		btrfs_clean_tree_block(leaf);
702 		btrfs_tree_unlock(leaf);
703 		btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
704 		free_extent_buffer(leaf);
705 		goto out;
706 	}
707 
708 	free_extent_buffer(leaf);
709 	leaf = NULL;
710 
711 	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
712 	if (IS_ERR(new_root)) {
713 		ret = PTR_ERR(new_root);
714 		btrfs_abort_transaction(trans, ret);
715 		goto out;
716 	}
717 	/* anon_dev is owned by new_root now. */
718 	anon_dev = 0;
719 	BTRFS_I(new_inode_args.inode)->root = new_root;
720 	/* ... and new_root is owned by new_inode_args.inode now. */
721 
722 	ret = btrfs_record_root_in_trans(trans, new_root);
723 	if (ret) {
724 		btrfs_abort_transaction(trans, ret);
725 		goto out;
726 	}
727 
728 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
729 				  BTRFS_UUID_KEY_SUBVOL, objectid);
730 	if (ret) {
731 		btrfs_abort_transaction(trans, ret);
732 		goto out;
733 	}
734 
735 	ret = btrfs_create_new_inode(trans, &new_inode_args);
736 	if (ret) {
737 		btrfs_abort_transaction(trans, ret);
738 		goto out;
739 	}
740 
741 	d_instantiate_new(dentry, new_inode_args.inode);
742 	new_inode_args.inode = NULL;
743 
744 out:
745 	trans->block_rsv = NULL;
746 	trans->bytes_reserved = 0;
747 	btrfs_subvolume_release_metadata(root, &block_rsv);
748 
749 	if (ret)
750 		btrfs_end_transaction(trans);
751 	else
752 		ret = btrfs_commit_transaction(trans);
753 out_new_inode_args:
754 	btrfs_new_inode_args_destroy(&new_inode_args);
755 out_inode:
756 	iput(new_inode_args.inode);
757 out_anon_dev:
758 	if (anon_dev)
759 		free_anon_bdev(anon_dev);
760 out_root_item:
761 	kfree(root_item);
762 	return ret;
763 }
764 
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,bool readonly,struct btrfs_qgroup_inherit * inherit)765 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
766 			   struct dentry *dentry, bool readonly,
767 			   struct btrfs_qgroup_inherit *inherit)
768 {
769 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
770 	struct inode *inode;
771 	struct btrfs_pending_snapshot *pending_snapshot;
772 	unsigned int trans_num_items;
773 	struct btrfs_trans_handle *trans;
774 	int ret;
775 
776 	/* We do not support snapshotting right now. */
777 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
778 		btrfs_warn(fs_info,
779 			   "extent tree v2 doesn't support snapshotting yet");
780 		return -EOPNOTSUPP;
781 	}
782 
783 	if (btrfs_root_refs(&root->root_item) == 0)
784 		return -ENOENT;
785 
786 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
787 		return -EINVAL;
788 
789 	if (atomic_read(&root->nr_swapfiles)) {
790 		btrfs_warn(fs_info,
791 			   "cannot snapshot subvolume with active swapfile");
792 		return -ETXTBSY;
793 	}
794 
795 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
796 	if (!pending_snapshot)
797 		return -ENOMEM;
798 
799 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
800 	if (ret < 0)
801 		goto free_pending;
802 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
803 			GFP_KERNEL);
804 	pending_snapshot->path = btrfs_alloc_path();
805 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
806 		ret = -ENOMEM;
807 		goto free_pending;
808 	}
809 
810 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
811 			     BTRFS_BLOCK_RSV_TEMP);
812 	/*
813 	 * 1 to add dir item
814 	 * 1 to add dir index
815 	 * 1 to update parent inode item
816 	 */
817 	trans_num_items = create_subvol_num_items(inherit) + 3;
818 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
819 					       &pending_snapshot->block_rsv,
820 					       trans_num_items, false);
821 	if (ret)
822 		goto free_pending;
823 
824 	pending_snapshot->dentry = dentry;
825 	pending_snapshot->root = root;
826 	pending_snapshot->readonly = readonly;
827 	pending_snapshot->dir = dir;
828 	pending_snapshot->inherit = inherit;
829 
830 	trans = btrfs_start_transaction(root, 0);
831 	if (IS_ERR(trans)) {
832 		ret = PTR_ERR(trans);
833 		goto fail;
834 	}
835 
836 	trans->pending_snapshot = pending_snapshot;
837 
838 	ret = btrfs_commit_transaction(trans);
839 	if (ret)
840 		goto fail;
841 
842 	ret = pending_snapshot->error;
843 	if (ret)
844 		goto fail;
845 
846 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
847 	if (ret)
848 		goto fail;
849 
850 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
851 	if (IS_ERR(inode)) {
852 		ret = PTR_ERR(inode);
853 		goto fail;
854 	}
855 
856 	d_instantiate(dentry, inode);
857 	ret = 0;
858 	pending_snapshot->anon_dev = 0;
859 fail:
860 	/* Prevent double freeing of anon_dev */
861 	if (ret && pending_snapshot->snap)
862 		pending_snapshot->snap->anon_dev = 0;
863 	btrfs_put_root(pending_snapshot->snap);
864 	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
865 free_pending:
866 	if (pending_snapshot->anon_dev)
867 		free_anon_bdev(pending_snapshot->anon_dev);
868 	kfree(pending_snapshot->root_item);
869 	btrfs_free_path(pending_snapshot->path);
870 	kfree(pending_snapshot);
871 
872 	return ret;
873 }
874 
875 /*  copy of may_delete in fs/namei.c()
876  *	Check whether we can remove a link victim from directory dir, check
877  *  whether the type of victim is right.
878  *  1. We can't do it if dir is read-only (done in permission())
879  *  2. We should have write and exec permissions on dir
880  *  3. We can't remove anything from append-only dir
881  *  4. We can't do anything with immutable dir (done in permission())
882  *  5. If the sticky bit on dir is set we should either
883  *	a. be owner of dir, or
884  *	b. be owner of victim, or
885  *	c. have CAP_FOWNER capability
886  *  6. If the victim is append-only or immutable we can't do anything with
887  *     links pointing to it.
888  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
889  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
890  *  9. We can't remove a root or mountpoint.
891  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
892  *     nfs_async_unlink().
893  */
894 
btrfs_may_delete(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * victim,int isdir)895 static int btrfs_may_delete(struct user_namespace *mnt_userns,
896 			    struct inode *dir, struct dentry *victim, int isdir)
897 {
898 	int error;
899 
900 	if (d_really_is_negative(victim))
901 		return -ENOENT;
902 
903 	BUG_ON(d_inode(victim->d_parent) != dir);
904 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
905 
906 	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
907 	if (error)
908 		return error;
909 	if (IS_APPEND(dir))
910 		return -EPERM;
911 	if (check_sticky(mnt_userns, dir, d_inode(victim)) ||
912 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
913 	    IS_SWAPFILE(d_inode(victim)))
914 		return -EPERM;
915 	if (isdir) {
916 		if (!d_is_dir(victim))
917 			return -ENOTDIR;
918 		if (IS_ROOT(victim))
919 			return -EBUSY;
920 	} else if (d_is_dir(victim))
921 		return -EISDIR;
922 	if (IS_DEADDIR(dir))
923 		return -ENOENT;
924 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
925 		return -EBUSY;
926 	return 0;
927 }
928 
929 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * child)930 static inline int btrfs_may_create(struct user_namespace *mnt_userns,
931 				   struct inode *dir, struct dentry *child)
932 {
933 	if (d_really_is_positive(child))
934 		return -EEXIST;
935 	if (IS_DEADDIR(dir))
936 		return -ENOENT;
937 	if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
938 		return -EOVERFLOW;
939 	return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
940 }
941 
942 /*
943  * Create a new subvolume below @parent.  This is largely modeled after
944  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
945  * inside this filesystem so it's quite a bit simpler.
946  */
btrfs_mksubvol(const struct path * parent,struct user_namespace * mnt_userns,const char * name,int namelen,struct btrfs_root * snap_src,bool readonly,struct btrfs_qgroup_inherit * inherit)947 static noinline int btrfs_mksubvol(const struct path *parent,
948 				   struct user_namespace *mnt_userns,
949 				   const char *name, int namelen,
950 				   struct btrfs_root *snap_src,
951 				   bool readonly,
952 				   struct btrfs_qgroup_inherit *inherit)
953 {
954 	struct inode *dir = d_inode(parent->dentry);
955 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
956 	struct dentry *dentry;
957 	struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
958 	int error;
959 
960 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
961 	if (error == -EINTR)
962 		return error;
963 
964 	dentry = lookup_one(mnt_userns, name, parent->dentry, namelen);
965 	error = PTR_ERR(dentry);
966 	if (IS_ERR(dentry))
967 		goto out_unlock;
968 
969 	error = btrfs_may_create(mnt_userns, dir, dentry);
970 	if (error)
971 		goto out_dput;
972 
973 	/*
974 	 * even if this name doesn't exist, we may get hash collisions.
975 	 * check for them now when we can safely fail
976 	 */
977 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
978 					       dir->i_ino, &name_str);
979 	if (error)
980 		goto out_dput;
981 
982 	down_read(&fs_info->subvol_sem);
983 
984 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
985 		goto out_up_read;
986 
987 	if (snap_src)
988 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
989 	else
990 		error = create_subvol(mnt_userns, dir, dentry, inherit);
991 
992 	if (!error)
993 		fsnotify_mkdir(dir, dentry);
994 out_up_read:
995 	up_read(&fs_info->subvol_sem);
996 out_dput:
997 	dput(dentry);
998 out_unlock:
999 	btrfs_inode_unlock(dir, 0);
1000 	return error;
1001 }
1002 
btrfs_mksnapshot(const struct path * parent,struct user_namespace * mnt_userns,const char * name,int namelen,struct btrfs_root * root,bool readonly,struct btrfs_qgroup_inherit * inherit)1003 static noinline int btrfs_mksnapshot(const struct path *parent,
1004 				   struct user_namespace *mnt_userns,
1005 				   const char *name, int namelen,
1006 				   struct btrfs_root *root,
1007 				   bool readonly,
1008 				   struct btrfs_qgroup_inherit *inherit)
1009 {
1010 	int ret;
1011 	bool snapshot_force_cow = false;
1012 
1013 	/*
1014 	 * Force new buffered writes to reserve space even when NOCOW is
1015 	 * possible. This is to avoid later writeback (running dealloc) to
1016 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
1017 	 */
1018 	btrfs_drew_read_lock(&root->snapshot_lock);
1019 
1020 	ret = btrfs_start_delalloc_snapshot(root, false);
1021 	if (ret)
1022 		goto out;
1023 
1024 	/*
1025 	 * All previous writes have started writeback in NOCOW mode, so now
1026 	 * we force future writes to fallback to COW mode during snapshot
1027 	 * creation.
1028 	 */
1029 	atomic_inc(&root->snapshot_force_cow);
1030 	snapshot_force_cow = true;
1031 
1032 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1033 
1034 	ret = btrfs_mksubvol(parent, mnt_userns, name, namelen,
1035 			     root, readonly, inherit);
1036 out:
1037 	if (snapshot_force_cow)
1038 		atomic_dec(&root->snapshot_force_cow);
1039 	btrfs_drew_read_unlock(&root->snapshot_lock);
1040 	return ret;
1041 }
1042 
1043 /*
1044  * Defrag specific helper to get an extent map.
1045  *
1046  * Differences between this and btrfs_get_extent() are:
1047  *
1048  * - No extent_map will be added to inode->extent_tree
1049  *   To reduce memory usage in the long run.
1050  *
1051  * - Extra optimization to skip file extents older than @newer_than
1052  *   By using btrfs_search_forward() we can skip entire file ranges that
1053  *   have extents created in past transactions, because btrfs_search_forward()
1054  *   will not visit leaves and nodes with a generation smaller than given
1055  *   minimal generation threshold (@newer_than).
1056  *
1057  * Return valid em if we find a file extent matching the requirement.
1058  * Return NULL if we can not find a file extent matching the requirement.
1059  *
1060  * Return ERR_PTR() for error.
1061  */
defrag_get_extent(struct btrfs_inode * inode,u64 start,u64 newer_than)1062 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
1063 					    u64 start, u64 newer_than)
1064 {
1065 	struct btrfs_root *root = inode->root;
1066 	struct btrfs_file_extent_item *fi;
1067 	struct btrfs_path path = { 0 };
1068 	struct extent_map *em;
1069 	struct btrfs_key key;
1070 	u64 ino = btrfs_ino(inode);
1071 	int ret;
1072 
1073 	em = alloc_extent_map();
1074 	if (!em) {
1075 		ret = -ENOMEM;
1076 		goto err;
1077 	}
1078 
1079 	key.objectid = ino;
1080 	key.type = BTRFS_EXTENT_DATA_KEY;
1081 	key.offset = start;
1082 
1083 	if (newer_than) {
1084 		ret = btrfs_search_forward(root, &key, &path, newer_than);
1085 		if (ret < 0)
1086 			goto err;
1087 		/* Can't find anything newer */
1088 		if (ret > 0)
1089 			goto not_found;
1090 	} else {
1091 		ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
1092 		if (ret < 0)
1093 			goto err;
1094 	}
1095 	if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
1096 		/*
1097 		 * If btrfs_search_slot() makes path to point beyond nritems,
1098 		 * we should not have an empty leaf, as this inode must at
1099 		 * least have its INODE_ITEM.
1100 		 */
1101 		ASSERT(btrfs_header_nritems(path.nodes[0]));
1102 		path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
1103 	}
1104 	btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1105 	/* Perfect match, no need to go one slot back */
1106 	if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
1107 	    key.offset == start)
1108 		goto iterate;
1109 
1110 	/* We didn't find a perfect match, needs to go one slot back */
1111 	if (path.slots[0] > 0) {
1112 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1113 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
1114 			path.slots[0]--;
1115 	}
1116 
1117 iterate:
1118 	/* Iterate through the path to find a file extent covering @start */
1119 	while (true) {
1120 		u64 extent_end;
1121 
1122 		if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
1123 			goto next;
1124 
1125 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1126 
1127 		/*
1128 		 * We may go one slot back to INODE_REF/XATTR item, then
1129 		 * need to go forward until we reach an EXTENT_DATA.
1130 		 * But we should still has the correct ino as key.objectid.
1131 		 */
1132 		if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
1133 			goto next;
1134 
1135 		/* It's beyond our target range, definitely not extent found */
1136 		if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
1137 			goto not_found;
1138 
1139 		/*
1140 		 *	|	|<- File extent ->|
1141 		 *	\- start
1142 		 *
1143 		 * This means there is a hole between start and key.offset.
1144 		 */
1145 		if (key.offset > start) {
1146 			em->start = start;
1147 			em->orig_start = start;
1148 			em->block_start = EXTENT_MAP_HOLE;
1149 			em->len = key.offset - start;
1150 			break;
1151 		}
1152 
1153 		fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
1154 				    struct btrfs_file_extent_item);
1155 		extent_end = btrfs_file_extent_end(&path);
1156 
1157 		/*
1158 		 *	|<- file extent ->|	|
1159 		 *				\- start
1160 		 *
1161 		 * We haven't reached start, search next slot.
1162 		 */
1163 		if (extent_end <= start)
1164 			goto next;
1165 
1166 		/* Now this extent covers @start, convert it to em */
1167 		btrfs_extent_item_to_extent_map(inode, &path, fi, false, em);
1168 		break;
1169 next:
1170 		ret = btrfs_next_item(root, &path);
1171 		if (ret < 0)
1172 			goto err;
1173 		if (ret > 0)
1174 			goto not_found;
1175 	}
1176 	btrfs_release_path(&path);
1177 	return em;
1178 
1179 not_found:
1180 	btrfs_release_path(&path);
1181 	free_extent_map(em);
1182 	return NULL;
1183 
1184 err:
1185 	btrfs_release_path(&path);
1186 	free_extent_map(em);
1187 	return ERR_PTR(ret);
1188 }
1189 
defrag_lookup_extent(struct inode * inode,u64 start,u64 newer_than,bool locked)1190 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
1191 					       u64 newer_than, bool locked)
1192 {
1193 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1194 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1195 	struct extent_map *em;
1196 	const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
1197 
1198 	/*
1199 	 * hopefully we have this extent in the tree already, try without
1200 	 * the full extent lock
1201 	 */
1202 	read_lock(&em_tree->lock);
1203 	em = lookup_extent_mapping(em_tree, start, sectorsize);
1204 	read_unlock(&em_tree->lock);
1205 
1206 	/*
1207 	 * We can get a merged extent, in that case, we need to re-search
1208 	 * tree to get the original em for defrag.
1209 	 *
1210 	 * If @newer_than is 0 or em::generation < newer_than, we can trust
1211 	 * this em, as either we don't care about the generation, or the
1212 	 * merged extent map will be rejected anyway.
1213 	 */
1214 	if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) &&
1215 	    newer_than && em->generation >= newer_than) {
1216 		free_extent_map(em);
1217 		em = NULL;
1218 	}
1219 
1220 	if (!em) {
1221 		struct extent_state *cached = NULL;
1222 		u64 end = start + sectorsize - 1;
1223 
1224 		/* get the big lock and read metadata off disk */
1225 		if (!locked)
1226 			lock_extent(io_tree, start, end, &cached);
1227 		em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
1228 		if (!locked)
1229 			unlock_extent(io_tree, start, end, &cached);
1230 
1231 		if (IS_ERR(em))
1232 			return NULL;
1233 	}
1234 
1235 	return em;
1236 }
1237 
get_extent_max_capacity(const struct btrfs_fs_info * fs_info,const struct extent_map * em)1238 static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
1239 				   const struct extent_map *em)
1240 {
1241 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1242 		return BTRFS_MAX_COMPRESSED;
1243 	return fs_info->max_extent_size;
1244 }
1245 
defrag_check_next_extent(struct inode * inode,struct extent_map * em,u32 extent_thresh,u64 newer_than,bool locked)1246 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
1247 				     u32 extent_thresh, u64 newer_than, bool locked)
1248 {
1249 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1250 	struct extent_map *next;
1251 	bool ret = false;
1252 
1253 	/* this is the last extent */
1254 	if (em->start + em->len >= i_size_read(inode))
1255 		return false;
1256 
1257 	/*
1258 	 * Here we need to pass @newer_then when checking the next extent, or
1259 	 * we will hit a case we mark current extent for defrag, but the next
1260 	 * one will not be a target.
1261 	 * This will just cause extra IO without really reducing the fragments.
1262 	 */
1263 	next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
1264 	/* No more em or hole */
1265 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1266 		goto out;
1267 	if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags))
1268 		goto out;
1269 	/*
1270 	 * If the next extent is at its max capacity, defragging current extent
1271 	 * makes no sense, as the total number of extents won't change.
1272 	 */
1273 	if (next->len >= get_extent_max_capacity(fs_info, em))
1274 		goto out;
1275 	/* Skip older extent */
1276 	if (next->generation < newer_than)
1277 		goto out;
1278 	/* Also check extent size */
1279 	if (next->len >= extent_thresh)
1280 		goto out;
1281 
1282 	ret = true;
1283 out:
1284 	free_extent_map(next);
1285 	return ret;
1286 }
1287 
1288 /*
1289  * Prepare one page to be defragged.
1290  *
1291  * This will ensure:
1292  *
1293  * - Returned page is locked and has been set up properly.
1294  * - No ordered extent exists in the page.
1295  * - The page is uptodate.
1296  *
1297  * NOTE: Caller should also wait for page writeback after the cluster is
1298  * prepared, here we don't do writeback wait for each page.
1299  */
defrag_prepare_one_page(struct btrfs_inode * inode,pgoff_t index)1300 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode,
1301 					    pgoff_t index)
1302 {
1303 	struct address_space *mapping = inode->vfs_inode.i_mapping;
1304 	gfp_t mask = btrfs_alloc_write_mask(mapping);
1305 	u64 page_start = (u64)index << PAGE_SHIFT;
1306 	u64 page_end = page_start + PAGE_SIZE - 1;
1307 	struct extent_state *cached_state = NULL;
1308 	struct page *page;
1309 	int ret;
1310 
1311 again:
1312 	page = find_or_create_page(mapping, index, mask);
1313 	if (!page)
1314 		return ERR_PTR(-ENOMEM);
1315 
1316 	/*
1317 	 * Since we can defragment files opened read-only, we can encounter
1318 	 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
1319 	 * can't do I/O using huge pages yet, so return an error for now.
1320 	 * Filesystem transparent huge pages are typically only used for
1321 	 * executables that explicitly enable them, so this isn't very
1322 	 * restrictive.
1323 	 */
1324 	if (PageCompound(page)) {
1325 		unlock_page(page);
1326 		put_page(page);
1327 		return ERR_PTR(-ETXTBSY);
1328 	}
1329 
1330 	ret = set_page_extent_mapped(page);
1331 	if (ret < 0) {
1332 		unlock_page(page);
1333 		put_page(page);
1334 		return ERR_PTR(ret);
1335 	}
1336 
1337 	/* Wait for any existing ordered extent in the range */
1338 	while (1) {
1339 		struct btrfs_ordered_extent *ordered;
1340 
1341 		lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
1342 		ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
1343 		unlock_extent(&inode->io_tree, page_start, page_end,
1344 			      &cached_state);
1345 		if (!ordered)
1346 			break;
1347 
1348 		unlock_page(page);
1349 		btrfs_start_ordered_extent(ordered, 1);
1350 		btrfs_put_ordered_extent(ordered);
1351 		lock_page(page);
1352 		/*
1353 		 * We unlocked the page above, so we need check if it was
1354 		 * released or not.
1355 		 */
1356 		if (page->mapping != mapping || !PagePrivate(page)) {
1357 			unlock_page(page);
1358 			put_page(page);
1359 			goto again;
1360 		}
1361 	}
1362 
1363 	/*
1364 	 * Now the page range has no ordered extent any more.  Read the page to
1365 	 * make it uptodate.
1366 	 */
1367 	if (!PageUptodate(page)) {
1368 		btrfs_read_folio(NULL, page_folio(page));
1369 		lock_page(page);
1370 		if (page->mapping != mapping || !PagePrivate(page)) {
1371 			unlock_page(page);
1372 			put_page(page);
1373 			goto again;
1374 		}
1375 		if (!PageUptodate(page)) {
1376 			unlock_page(page);
1377 			put_page(page);
1378 			return ERR_PTR(-EIO);
1379 		}
1380 	}
1381 	return page;
1382 }
1383 
1384 struct defrag_target_range {
1385 	struct list_head list;
1386 	u64 start;
1387 	u64 len;
1388 };
1389 
1390 /*
1391  * Collect all valid target extents.
1392  *
1393  * @start:	   file offset to lookup
1394  * @len:	   length to lookup
1395  * @extent_thresh: file extent size threshold, any extent size >= this value
1396  *		   will be ignored
1397  * @newer_than:    only defrag extents newer than this value
1398  * @do_compress:   whether the defrag is doing compression
1399  *		   if true, @extent_thresh will be ignored and all regular
1400  *		   file extents meeting @newer_than will be targets.
1401  * @locked:	   if the range has already held extent lock
1402  * @target_list:   list of targets file extents
1403  */
defrag_collect_targets(struct btrfs_inode * inode,u64 start,u64 len,u32 extent_thresh,u64 newer_than,bool do_compress,bool locked,struct list_head * target_list,u64 * last_scanned_ret)1404 static int defrag_collect_targets(struct btrfs_inode *inode,
1405 				  u64 start, u64 len, u32 extent_thresh,
1406 				  u64 newer_than, bool do_compress,
1407 				  bool locked, struct list_head *target_list,
1408 				  u64 *last_scanned_ret)
1409 {
1410 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1411 	bool last_is_target = false;
1412 	u64 cur = start;
1413 	int ret = 0;
1414 
1415 	while (cur < start + len) {
1416 		struct extent_map *em;
1417 		struct defrag_target_range *new;
1418 		bool next_mergeable = true;
1419 		u64 range_len;
1420 
1421 		last_is_target = false;
1422 		em = defrag_lookup_extent(&inode->vfs_inode, cur,
1423 					  newer_than, locked);
1424 		if (!em)
1425 			break;
1426 
1427 		/*
1428 		 * If the file extent is an inlined one, we may still want to
1429 		 * defrag it (fallthrough) if it will cause a regular extent.
1430 		 * This is for users who want to convert inline extents to
1431 		 * regular ones through max_inline= mount option.
1432 		 */
1433 		if (em->block_start == EXTENT_MAP_INLINE &&
1434 		    em->len <= inode->root->fs_info->max_inline)
1435 			goto next;
1436 
1437 		/* Skip hole/delalloc/preallocated extents */
1438 		if (em->block_start == EXTENT_MAP_HOLE ||
1439 		    em->block_start == EXTENT_MAP_DELALLOC ||
1440 		    test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1441 			goto next;
1442 
1443 		/* Skip older extent */
1444 		if (em->generation < newer_than)
1445 			goto next;
1446 
1447 		/* This em is under writeback, no need to defrag */
1448 		if (em->generation == (u64)-1)
1449 			goto next;
1450 
1451 		/*
1452 		 * Our start offset might be in the middle of an existing extent
1453 		 * map, so take that into account.
1454 		 */
1455 		range_len = em->len - (cur - em->start);
1456 		/*
1457 		 * If this range of the extent map is already flagged for delalloc,
1458 		 * skip it, because:
1459 		 *
1460 		 * 1) We could deadlock later, when trying to reserve space for
1461 		 *    delalloc, because in case we can't immediately reserve space
1462 		 *    the flusher can start delalloc and wait for the respective
1463 		 *    ordered extents to complete. The deadlock would happen
1464 		 *    because we do the space reservation while holding the range
1465 		 *    locked, and starting writeback, or finishing an ordered
1466 		 *    extent, requires locking the range;
1467 		 *
1468 		 * 2) If there's delalloc there, it means there's dirty pages for
1469 		 *    which writeback has not started yet (we clean the delalloc
1470 		 *    flag when starting writeback and after creating an ordered
1471 		 *    extent). If we mark pages in an adjacent range for defrag,
1472 		 *    then we will have a larger contiguous range for delalloc,
1473 		 *    very likely resulting in a larger extent after writeback is
1474 		 *    triggered (except in a case of free space fragmentation).
1475 		 */
1476 		if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1,
1477 				   EXTENT_DELALLOC, 0, NULL))
1478 			goto next;
1479 
1480 		/*
1481 		 * For do_compress case, we want to compress all valid file
1482 		 * extents, thus no @extent_thresh or mergeable check.
1483 		 */
1484 		if (do_compress)
1485 			goto add;
1486 
1487 		/* Skip too large extent */
1488 		if (range_len >= extent_thresh)
1489 			goto next;
1490 
1491 		/*
1492 		 * Skip extents already at its max capacity, this is mostly for
1493 		 * compressed extents, which max cap is only 128K.
1494 		 */
1495 		if (em->len >= get_extent_max_capacity(fs_info, em))
1496 			goto next;
1497 
1498 		/*
1499 		 * Normally there are no more extents after an inline one, thus
1500 		 * @next_mergeable will normally be false and not defragged.
1501 		 * So if an inline extent passed all above checks, just add it
1502 		 * for defrag, and be converted to regular extents.
1503 		 */
1504 		if (em->block_start == EXTENT_MAP_INLINE)
1505 			goto add;
1506 
1507 		next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
1508 						extent_thresh, newer_than, locked);
1509 		if (!next_mergeable) {
1510 			struct defrag_target_range *last;
1511 
1512 			/* Empty target list, no way to merge with last entry */
1513 			if (list_empty(target_list))
1514 				goto next;
1515 			last = list_entry(target_list->prev,
1516 					  struct defrag_target_range, list);
1517 			/* Not mergeable with last entry */
1518 			if (last->start + last->len != cur)
1519 				goto next;
1520 
1521 			/* Mergeable, fall through to add it to @target_list. */
1522 		}
1523 
1524 add:
1525 		last_is_target = true;
1526 		range_len = min(extent_map_end(em), start + len) - cur;
1527 		/*
1528 		 * This one is a good target, check if it can be merged into
1529 		 * last range of the target list.
1530 		 */
1531 		if (!list_empty(target_list)) {
1532 			struct defrag_target_range *last;
1533 
1534 			last = list_entry(target_list->prev,
1535 					  struct defrag_target_range, list);
1536 			ASSERT(last->start + last->len <= cur);
1537 			if (last->start + last->len == cur) {
1538 				/* Mergeable, enlarge the last entry */
1539 				last->len += range_len;
1540 				goto next;
1541 			}
1542 			/* Fall through to allocate a new entry */
1543 		}
1544 
1545 		/* Allocate new defrag_target_range */
1546 		new = kmalloc(sizeof(*new), GFP_NOFS);
1547 		if (!new) {
1548 			free_extent_map(em);
1549 			ret = -ENOMEM;
1550 			break;
1551 		}
1552 		new->start = cur;
1553 		new->len = range_len;
1554 		list_add_tail(&new->list, target_list);
1555 
1556 next:
1557 		cur = extent_map_end(em);
1558 		free_extent_map(em);
1559 	}
1560 	if (ret < 0) {
1561 		struct defrag_target_range *entry;
1562 		struct defrag_target_range *tmp;
1563 
1564 		list_for_each_entry_safe(entry, tmp, target_list, list) {
1565 			list_del_init(&entry->list);
1566 			kfree(entry);
1567 		}
1568 	}
1569 	if (!ret && last_scanned_ret) {
1570 		/*
1571 		 * If the last extent is not a target, the caller can skip to
1572 		 * the end of that extent.
1573 		 * Otherwise, we can only go the end of the specified range.
1574 		 */
1575 		if (!last_is_target)
1576 			*last_scanned_ret = max(cur, *last_scanned_ret);
1577 		else
1578 			*last_scanned_ret = max(start + len, *last_scanned_ret);
1579 	}
1580 	return ret;
1581 }
1582 
1583 #define CLUSTER_SIZE	(SZ_256K)
1584 static_assert(IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1585 
1586 /*
1587  * Defrag one contiguous target range.
1588  *
1589  * @inode:	target inode
1590  * @target:	target range to defrag
1591  * @pages:	locked pages covering the defrag range
1592  * @nr_pages:	number of locked pages
1593  *
1594  * Caller should ensure:
1595  *
1596  * - Pages are prepared
1597  *   Pages should be locked, no ordered extent in the pages range,
1598  *   no writeback.
1599  *
1600  * - Extent bits are locked
1601  */
defrag_one_locked_target(struct btrfs_inode * inode,struct defrag_target_range * target,struct page ** pages,int nr_pages,struct extent_state ** cached_state)1602 static int defrag_one_locked_target(struct btrfs_inode *inode,
1603 				    struct defrag_target_range *target,
1604 				    struct page **pages, int nr_pages,
1605 				    struct extent_state **cached_state)
1606 {
1607 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1608 	struct extent_changeset *data_reserved = NULL;
1609 	const u64 start = target->start;
1610 	const u64 len = target->len;
1611 	unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1612 	unsigned long start_index = start >> PAGE_SHIFT;
1613 	unsigned long first_index = page_index(pages[0]);
1614 	int ret = 0;
1615 	int i;
1616 
1617 	ASSERT(last_index - first_index + 1 <= nr_pages);
1618 
1619 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1620 	if (ret < 0)
1621 		return ret;
1622 	clear_extent_bit(&inode->io_tree, start, start + len - 1,
1623 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1624 			 EXTENT_DEFRAG, cached_state);
1625 	set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state);
1626 
1627 	/* Update the page status */
1628 	for (i = start_index - first_index; i <= last_index - first_index; i++) {
1629 		ClearPageChecked(pages[i]);
1630 		btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
1631 	}
1632 	btrfs_delalloc_release_extents(inode, len);
1633 	extent_changeset_free(data_reserved);
1634 
1635 	return ret;
1636 }
1637 
defrag_one_range(struct btrfs_inode * inode,u64 start,u32 len,u32 extent_thresh,u64 newer_than,bool do_compress,u64 * last_scanned_ret)1638 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1639 			    u32 extent_thresh, u64 newer_than, bool do_compress,
1640 			    u64 *last_scanned_ret)
1641 {
1642 	struct extent_state *cached_state = NULL;
1643 	struct defrag_target_range *entry;
1644 	struct defrag_target_range *tmp;
1645 	LIST_HEAD(target_list);
1646 	struct page **pages;
1647 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1648 	u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1649 	u64 start_index = start >> PAGE_SHIFT;
1650 	unsigned int nr_pages = last_index - start_index + 1;
1651 	int ret = 0;
1652 	int i;
1653 
1654 	ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1655 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1656 
1657 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
1658 	if (!pages)
1659 		return -ENOMEM;
1660 
1661 	/* Prepare all pages */
1662 	for (i = 0; i < nr_pages; i++) {
1663 		pages[i] = defrag_prepare_one_page(inode, start_index + i);
1664 		if (IS_ERR(pages[i])) {
1665 			ret = PTR_ERR(pages[i]);
1666 			pages[i] = NULL;
1667 			goto free_pages;
1668 		}
1669 	}
1670 	for (i = 0; i < nr_pages; i++)
1671 		wait_on_page_writeback(pages[i]);
1672 
1673 	/* Lock the pages range */
1674 	lock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1675 		    (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1676 		    &cached_state);
1677 	/*
1678 	 * Now we have a consistent view about the extent map, re-check
1679 	 * which range really needs to be defragged.
1680 	 *
1681 	 * And this time we have extent locked already, pass @locked = true
1682 	 * so that we won't relock the extent range and cause deadlock.
1683 	 */
1684 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1685 				     newer_than, do_compress, true,
1686 				     &target_list, last_scanned_ret);
1687 	if (ret < 0)
1688 		goto unlock_extent;
1689 
1690 	list_for_each_entry(entry, &target_list, list) {
1691 		ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
1692 					       &cached_state);
1693 		if (ret < 0)
1694 			break;
1695 	}
1696 
1697 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1698 		list_del_init(&entry->list);
1699 		kfree(entry);
1700 	}
1701 unlock_extent:
1702 	unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1703 		      (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1704 		      &cached_state);
1705 free_pages:
1706 	for (i = 0; i < nr_pages; i++) {
1707 		if (pages[i]) {
1708 			unlock_page(pages[i]);
1709 			put_page(pages[i]);
1710 		}
1711 	}
1712 	kfree(pages);
1713 	return ret;
1714 }
1715 
defrag_one_cluster(struct btrfs_inode * inode,struct file_ra_state * ra,u64 start,u32 len,u32 extent_thresh,u64 newer_than,bool do_compress,unsigned long * sectors_defragged,unsigned long max_sectors,u64 * last_scanned_ret)1716 static int defrag_one_cluster(struct btrfs_inode *inode,
1717 			      struct file_ra_state *ra,
1718 			      u64 start, u32 len, u32 extent_thresh,
1719 			      u64 newer_than, bool do_compress,
1720 			      unsigned long *sectors_defragged,
1721 			      unsigned long max_sectors,
1722 			      u64 *last_scanned_ret)
1723 {
1724 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1725 	struct defrag_target_range *entry;
1726 	struct defrag_target_range *tmp;
1727 	LIST_HEAD(target_list);
1728 	int ret;
1729 
1730 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1731 				     newer_than, do_compress, false,
1732 				     &target_list, NULL);
1733 	if (ret < 0)
1734 		goto out;
1735 
1736 	list_for_each_entry(entry, &target_list, list) {
1737 		u32 range_len = entry->len;
1738 
1739 		/* Reached or beyond the limit */
1740 		if (max_sectors && *sectors_defragged >= max_sectors) {
1741 			ret = 1;
1742 			break;
1743 		}
1744 
1745 		if (max_sectors)
1746 			range_len = min_t(u32, range_len,
1747 				(max_sectors - *sectors_defragged) * sectorsize);
1748 
1749 		/*
1750 		 * If defrag_one_range() has updated last_scanned_ret,
1751 		 * our range may already be invalid (e.g. hole punched).
1752 		 * Skip if our range is before last_scanned_ret, as there is
1753 		 * no need to defrag the range anymore.
1754 		 */
1755 		if (entry->start + range_len <= *last_scanned_ret)
1756 			continue;
1757 
1758 		if (ra)
1759 			page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1760 				ra, NULL, entry->start >> PAGE_SHIFT,
1761 				((entry->start + range_len - 1) >> PAGE_SHIFT) -
1762 				(entry->start >> PAGE_SHIFT) + 1);
1763 		/*
1764 		 * Here we may not defrag any range if holes are punched before
1765 		 * we locked the pages.
1766 		 * But that's fine, it only affects the @sectors_defragged
1767 		 * accounting.
1768 		 */
1769 		ret = defrag_one_range(inode, entry->start, range_len,
1770 				       extent_thresh, newer_than, do_compress,
1771 				       last_scanned_ret);
1772 		if (ret < 0)
1773 			break;
1774 		*sectors_defragged += range_len >>
1775 				      inode->root->fs_info->sectorsize_bits;
1776 	}
1777 out:
1778 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1779 		list_del_init(&entry->list);
1780 		kfree(entry);
1781 	}
1782 	if (ret >= 0)
1783 		*last_scanned_ret = max(*last_scanned_ret, start + len);
1784 	return ret;
1785 }
1786 
1787 /*
1788  * Entry point to file defragmentation.
1789  *
1790  * @inode:	   inode to be defragged
1791  * @ra:		   readahead state (can be NUL)
1792  * @range:	   defrag options including range and flags
1793  * @newer_than:	   minimum transid to defrag
1794  * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1795  *		   will be defragged.
1796  *
1797  * Return <0 for error.
1798  * Return >=0 for the number of sectors defragged, and range->start will be updated
1799  * to indicate the file offset where next defrag should be started at.
1800  * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1801  *  defragging all the range).
1802  */
btrfs_defrag_file(struct inode * inode,struct file_ra_state * ra,struct btrfs_ioctl_defrag_range_args * range,u64 newer_than,unsigned long max_to_defrag)1803 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1804 		      struct btrfs_ioctl_defrag_range_args *range,
1805 		      u64 newer_than, unsigned long max_to_defrag)
1806 {
1807 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1808 	unsigned long sectors_defragged = 0;
1809 	u64 isize = i_size_read(inode);
1810 	u64 cur;
1811 	u64 last_byte;
1812 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1813 	bool ra_allocated = false;
1814 	int compress_type = BTRFS_COMPRESS_ZLIB;
1815 	int ret = 0;
1816 	u32 extent_thresh = range->extent_thresh;
1817 	pgoff_t start_index;
1818 
1819 	if (isize == 0)
1820 		return 0;
1821 
1822 	if (range->start >= isize)
1823 		return -EINVAL;
1824 
1825 	if (do_compress) {
1826 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1827 			return -EINVAL;
1828 		if (range->compress_type)
1829 			compress_type = range->compress_type;
1830 	}
1831 
1832 	if (extent_thresh == 0)
1833 		extent_thresh = SZ_256K;
1834 
1835 	if (range->start + range->len > range->start) {
1836 		/* Got a specific range */
1837 		last_byte = min(isize, range->start + range->len);
1838 	} else {
1839 		/* Defrag until file end */
1840 		last_byte = isize;
1841 	}
1842 
1843 	/* Align the range */
1844 	cur = round_down(range->start, fs_info->sectorsize);
1845 	last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1846 
1847 	/*
1848 	 * If we were not given a ra, allocate a readahead context. As
1849 	 * readahead is just an optimization, defrag will work without it so
1850 	 * we don't error out.
1851 	 */
1852 	if (!ra) {
1853 		ra_allocated = true;
1854 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1855 		if (ra)
1856 			file_ra_state_init(ra, inode->i_mapping);
1857 	}
1858 
1859 	/*
1860 	 * Make writeback start from the beginning of the range, so that the
1861 	 * defrag range can be written sequentially.
1862 	 */
1863 	start_index = cur >> PAGE_SHIFT;
1864 	if (start_index < inode->i_mapping->writeback_index)
1865 		inode->i_mapping->writeback_index = start_index;
1866 
1867 	while (cur < last_byte) {
1868 		const unsigned long prev_sectors_defragged = sectors_defragged;
1869 		u64 last_scanned = cur;
1870 		u64 cluster_end;
1871 
1872 		if (btrfs_defrag_cancelled(fs_info)) {
1873 			ret = -EAGAIN;
1874 			break;
1875 		}
1876 
1877 		/* We want the cluster end at page boundary when possible */
1878 		cluster_end = (((cur >> PAGE_SHIFT) +
1879 			       (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1880 		cluster_end = min(cluster_end, last_byte);
1881 
1882 		btrfs_inode_lock(inode, 0);
1883 		if (IS_SWAPFILE(inode)) {
1884 			ret = -ETXTBSY;
1885 			btrfs_inode_unlock(inode, 0);
1886 			break;
1887 		}
1888 		if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1889 			btrfs_inode_unlock(inode, 0);
1890 			break;
1891 		}
1892 		if (do_compress)
1893 			BTRFS_I(inode)->defrag_compress = compress_type;
1894 		ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1895 				cluster_end + 1 - cur, extent_thresh,
1896 				newer_than, do_compress, &sectors_defragged,
1897 				max_to_defrag, &last_scanned);
1898 
1899 		if (sectors_defragged > prev_sectors_defragged)
1900 			balance_dirty_pages_ratelimited(inode->i_mapping);
1901 
1902 		btrfs_inode_unlock(inode, 0);
1903 		if (ret < 0)
1904 			break;
1905 		cur = max(cluster_end + 1, last_scanned);
1906 		if (ret > 0) {
1907 			ret = 0;
1908 			break;
1909 		}
1910 		cond_resched();
1911 	}
1912 
1913 	if (ra_allocated)
1914 		kfree(ra);
1915 	/*
1916 	 * Update range.start for autodefrag, this will indicate where to start
1917 	 * in next run.
1918 	 */
1919 	range->start = cur;
1920 	if (sectors_defragged) {
1921 		/*
1922 		 * We have defragged some sectors, for compression case they
1923 		 * need to be written back immediately.
1924 		 */
1925 		if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1926 			filemap_flush(inode->i_mapping);
1927 			if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1928 				     &BTRFS_I(inode)->runtime_flags))
1929 				filemap_flush(inode->i_mapping);
1930 		}
1931 		if (range->compress_type == BTRFS_COMPRESS_LZO)
1932 			btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1933 		else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1934 			btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1935 		ret = sectors_defragged;
1936 	}
1937 	if (do_compress) {
1938 		btrfs_inode_lock(inode, 0);
1939 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1940 		btrfs_inode_unlock(inode, 0);
1941 	}
1942 	return ret;
1943 }
1944 
1945 /*
1946  * Try to start exclusive operation @type or cancel it if it's running.
1947  *
1948  * Return:
1949  *   0        - normal mode, newly claimed op started
1950  *  >0        - normal mode, something else is running,
1951  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1952  * ECANCELED  - cancel mode, successful cancel
1953  * ENOTCONN   - cancel mode, operation not running anymore
1954  */
exclop_start_or_cancel_reloc(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type,bool cancel)1955 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1956 			enum btrfs_exclusive_operation type, bool cancel)
1957 {
1958 	if (!cancel) {
1959 		/* Start normal op */
1960 		if (!btrfs_exclop_start(fs_info, type))
1961 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1962 		/* Exclusive operation is now claimed */
1963 		return 0;
1964 	}
1965 
1966 	/* Cancel running op */
1967 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1968 		/*
1969 		 * This blocks any exclop finish from setting it to NONE, so we
1970 		 * request cancellation. Either it runs and we will wait for it,
1971 		 * or it has finished and no waiting will happen.
1972 		 */
1973 		atomic_inc(&fs_info->reloc_cancel_req);
1974 		btrfs_exclop_start_unlock(fs_info);
1975 
1976 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1977 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1978 				    TASK_INTERRUPTIBLE);
1979 
1980 		return -ECANCELED;
1981 	}
1982 
1983 	/* Something else is running or none */
1984 	return -ENOTCONN;
1985 }
1986 
btrfs_ioctl_resize(struct file * file,void __user * arg)1987 static noinline int btrfs_ioctl_resize(struct file *file,
1988 					void __user *arg)
1989 {
1990 	BTRFS_DEV_LOOKUP_ARGS(args);
1991 	struct inode *inode = file_inode(file);
1992 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1993 	u64 new_size;
1994 	u64 old_size;
1995 	u64 devid = 1;
1996 	struct btrfs_root *root = BTRFS_I(inode)->root;
1997 	struct btrfs_ioctl_vol_args *vol_args;
1998 	struct btrfs_trans_handle *trans;
1999 	struct btrfs_device *device = NULL;
2000 	char *sizestr;
2001 	char *retptr;
2002 	char *devstr = NULL;
2003 	int ret = 0;
2004 	int mod = 0;
2005 	bool cancel;
2006 
2007 	if (!capable(CAP_SYS_ADMIN))
2008 		return -EPERM;
2009 
2010 	ret = mnt_want_write_file(file);
2011 	if (ret)
2012 		return ret;
2013 
2014 	/*
2015 	 * Read the arguments before checking exclusivity to be able to
2016 	 * distinguish regular resize and cancel
2017 	 */
2018 	vol_args = memdup_user(arg, sizeof(*vol_args));
2019 	if (IS_ERR(vol_args)) {
2020 		ret = PTR_ERR(vol_args);
2021 		goto out_drop;
2022 	}
2023 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2024 	sizestr = vol_args->name;
2025 	cancel = (strcmp("cancel", sizestr) == 0);
2026 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
2027 	if (ret)
2028 		goto out_free;
2029 	/* Exclusive operation is now claimed */
2030 
2031 	devstr = strchr(sizestr, ':');
2032 	if (devstr) {
2033 		sizestr = devstr + 1;
2034 		*devstr = '\0';
2035 		devstr = vol_args->name;
2036 		ret = kstrtoull(devstr, 10, &devid);
2037 		if (ret)
2038 			goto out_finish;
2039 		if (!devid) {
2040 			ret = -EINVAL;
2041 			goto out_finish;
2042 		}
2043 		btrfs_info(fs_info, "resizing devid %llu", devid);
2044 	}
2045 
2046 	args.devid = devid;
2047 	device = btrfs_find_device(fs_info->fs_devices, &args);
2048 	if (!device) {
2049 		btrfs_info(fs_info, "resizer unable to find device %llu",
2050 			   devid);
2051 		ret = -ENODEV;
2052 		goto out_finish;
2053 	}
2054 
2055 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2056 		btrfs_info(fs_info,
2057 			   "resizer unable to apply on readonly device %llu",
2058 		       devid);
2059 		ret = -EPERM;
2060 		goto out_finish;
2061 	}
2062 
2063 	if (!strcmp(sizestr, "max"))
2064 		new_size = bdev_nr_bytes(device->bdev);
2065 	else {
2066 		if (sizestr[0] == '-') {
2067 			mod = -1;
2068 			sizestr++;
2069 		} else if (sizestr[0] == '+') {
2070 			mod = 1;
2071 			sizestr++;
2072 		}
2073 		new_size = memparse(sizestr, &retptr);
2074 		if (*retptr != '\0' || new_size == 0) {
2075 			ret = -EINVAL;
2076 			goto out_finish;
2077 		}
2078 	}
2079 
2080 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2081 		ret = -EPERM;
2082 		goto out_finish;
2083 	}
2084 
2085 	old_size = btrfs_device_get_total_bytes(device);
2086 
2087 	if (mod < 0) {
2088 		if (new_size > old_size) {
2089 			ret = -EINVAL;
2090 			goto out_finish;
2091 		}
2092 		new_size = old_size - new_size;
2093 	} else if (mod > 0) {
2094 		if (new_size > ULLONG_MAX - old_size) {
2095 			ret = -ERANGE;
2096 			goto out_finish;
2097 		}
2098 		new_size = old_size + new_size;
2099 	}
2100 
2101 	if (new_size < SZ_256M) {
2102 		ret = -EINVAL;
2103 		goto out_finish;
2104 	}
2105 	if (new_size > bdev_nr_bytes(device->bdev)) {
2106 		ret = -EFBIG;
2107 		goto out_finish;
2108 	}
2109 
2110 	new_size = round_down(new_size, fs_info->sectorsize);
2111 
2112 	if (new_size > old_size) {
2113 		trans = btrfs_start_transaction(root, 0);
2114 		if (IS_ERR(trans)) {
2115 			ret = PTR_ERR(trans);
2116 			goto out_finish;
2117 		}
2118 		ret = btrfs_grow_device(trans, device, new_size);
2119 		btrfs_commit_transaction(trans);
2120 	} else if (new_size < old_size) {
2121 		ret = btrfs_shrink_device(device, new_size);
2122 	} /* equal, nothing need to do */
2123 
2124 	if (ret == 0 && new_size != old_size)
2125 		btrfs_info_in_rcu(fs_info,
2126 			"resize device %s (devid %llu) from %llu to %llu",
2127 			rcu_str_deref(device->name), device->devid,
2128 			old_size, new_size);
2129 out_finish:
2130 	btrfs_exclop_finish(fs_info);
2131 out_free:
2132 	kfree(vol_args);
2133 out_drop:
2134 	mnt_drop_write_file(file);
2135 	return ret;
2136 }
2137 
__btrfs_ioctl_snap_create(struct file * file,struct user_namespace * mnt_userns,const char * name,unsigned long fd,int subvol,bool readonly,struct btrfs_qgroup_inherit * inherit)2138 static noinline int __btrfs_ioctl_snap_create(struct file *file,
2139 				struct user_namespace *mnt_userns,
2140 				const char *name, unsigned long fd, int subvol,
2141 				bool readonly,
2142 				struct btrfs_qgroup_inherit *inherit)
2143 {
2144 	int namelen;
2145 	int ret = 0;
2146 
2147 	if (!S_ISDIR(file_inode(file)->i_mode))
2148 		return -ENOTDIR;
2149 
2150 	ret = mnt_want_write_file(file);
2151 	if (ret)
2152 		goto out;
2153 
2154 	namelen = strlen(name);
2155 	if (strchr(name, '/')) {
2156 		ret = -EINVAL;
2157 		goto out_drop_write;
2158 	}
2159 
2160 	if (name[0] == '.' &&
2161 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
2162 		ret = -EEXIST;
2163 		goto out_drop_write;
2164 	}
2165 
2166 	if (subvol) {
2167 		ret = btrfs_mksubvol(&file->f_path, mnt_userns, name,
2168 				     namelen, NULL, readonly, inherit);
2169 	} else {
2170 		struct fd src = fdget(fd);
2171 		struct inode *src_inode;
2172 		if (!src.file) {
2173 			ret = -EINVAL;
2174 			goto out_drop_write;
2175 		}
2176 
2177 		src_inode = file_inode(src.file);
2178 		if (src_inode->i_sb != file_inode(file)->i_sb) {
2179 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
2180 				   "Snapshot src from another FS");
2181 			ret = -EXDEV;
2182 		} else if (!inode_owner_or_capable(mnt_userns, src_inode)) {
2183 			/*
2184 			 * Subvolume creation is not restricted, but snapshots
2185 			 * are limited to own subvolumes only
2186 			 */
2187 			ret = -EPERM;
2188 		} else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2189 			/*
2190 			 * Snapshots must be made with the src_inode referring
2191 			 * to the subvolume inode, otherwise the permission
2192 			 * checking above is useless because we may have
2193 			 * permission on a lower directory but not the subvol
2194 			 * itself.
2195 			 */
2196 			ret = -EINVAL;
2197 		} else {
2198 			ret = btrfs_mksnapshot(&file->f_path, mnt_userns,
2199 					       name, namelen,
2200 					       BTRFS_I(src_inode)->root,
2201 					       readonly, inherit);
2202 		}
2203 		fdput(src);
2204 	}
2205 out_drop_write:
2206 	mnt_drop_write_file(file);
2207 out:
2208 	return ret;
2209 }
2210 
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)2211 static noinline int btrfs_ioctl_snap_create(struct file *file,
2212 					    void __user *arg, int subvol)
2213 {
2214 	struct btrfs_ioctl_vol_args *vol_args;
2215 	int ret;
2216 
2217 	if (!S_ISDIR(file_inode(file)->i_mode))
2218 		return -ENOTDIR;
2219 
2220 	vol_args = memdup_user(arg, sizeof(*vol_args));
2221 	if (IS_ERR(vol_args))
2222 		return PTR_ERR(vol_args);
2223 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2224 
2225 	ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
2226 					vol_args->name, vol_args->fd, subvol,
2227 					false, NULL);
2228 
2229 	kfree(vol_args);
2230 	return ret;
2231 }
2232 
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)2233 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
2234 					       void __user *arg, int subvol)
2235 {
2236 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2237 	int ret;
2238 	bool readonly = false;
2239 	struct btrfs_qgroup_inherit *inherit = NULL;
2240 
2241 	if (!S_ISDIR(file_inode(file)->i_mode))
2242 		return -ENOTDIR;
2243 
2244 	vol_args = memdup_user(arg, sizeof(*vol_args));
2245 	if (IS_ERR(vol_args))
2246 		return PTR_ERR(vol_args);
2247 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2248 
2249 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
2250 		ret = -EOPNOTSUPP;
2251 		goto free_args;
2252 	}
2253 
2254 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
2255 		readonly = true;
2256 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
2257 		u64 nums;
2258 
2259 		if (vol_args->size < sizeof(*inherit) ||
2260 		    vol_args->size > PAGE_SIZE) {
2261 			ret = -EINVAL;
2262 			goto free_args;
2263 		}
2264 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
2265 		if (IS_ERR(inherit)) {
2266 			ret = PTR_ERR(inherit);
2267 			goto free_args;
2268 		}
2269 
2270 		if (inherit->num_qgroups > PAGE_SIZE ||
2271 		    inherit->num_ref_copies > PAGE_SIZE ||
2272 		    inherit->num_excl_copies > PAGE_SIZE) {
2273 			ret = -EINVAL;
2274 			goto free_inherit;
2275 		}
2276 
2277 		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
2278 		       2 * inherit->num_excl_copies;
2279 		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
2280 			ret = -EINVAL;
2281 			goto free_inherit;
2282 		}
2283 	}
2284 
2285 	ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
2286 					vol_args->name, vol_args->fd, subvol,
2287 					readonly, inherit);
2288 	if (ret)
2289 		goto free_inherit;
2290 free_inherit:
2291 	kfree(inherit);
2292 free_args:
2293 	kfree(vol_args);
2294 	return ret;
2295 }
2296 
btrfs_ioctl_subvol_getflags(struct inode * inode,void __user * arg)2297 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
2298 						void __user *arg)
2299 {
2300 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2301 	struct btrfs_root *root = BTRFS_I(inode)->root;
2302 	int ret = 0;
2303 	u64 flags = 0;
2304 
2305 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
2306 		return -EINVAL;
2307 
2308 	down_read(&fs_info->subvol_sem);
2309 	if (btrfs_root_readonly(root))
2310 		flags |= BTRFS_SUBVOL_RDONLY;
2311 	up_read(&fs_info->subvol_sem);
2312 
2313 	if (copy_to_user(arg, &flags, sizeof(flags)))
2314 		ret = -EFAULT;
2315 
2316 	return ret;
2317 }
2318 
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)2319 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
2320 					      void __user *arg)
2321 {
2322 	struct inode *inode = file_inode(file);
2323 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2324 	struct btrfs_root *root = BTRFS_I(inode)->root;
2325 	struct btrfs_trans_handle *trans;
2326 	u64 root_flags;
2327 	u64 flags;
2328 	int ret = 0;
2329 
2330 	if (!inode_owner_or_capable(file_mnt_user_ns(file), inode))
2331 		return -EPERM;
2332 
2333 	ret = mnt_want_write_file(file);
2334 	if (ret)
2335 		goto out;
2336 
2337 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2338 		ret = -EINVAL;
2339 		goto out_drop_write;
2340 	}
2341 
2342 	if (copy_from_user(&flags, arg, sizeof(flags))) {
2343 		ret = -EFAULT;
2344 		goto out_drop_write;
2345 	}
2346 
2347 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
2348 		ret = -EOPNOTSUPP;
2349 		goto out_drop_write;
2350 	}
2351 
2352 	down_write(&fs_info->subvol_sem);
2353 
2354 	/* nothing to do */
2355 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2356 		goto out_drop_sem;
2357 
2358 	root_flags = btrfs_root_flags(&root->root_item);
2359 	if (flags & BTRFS_SUBVOL_RDONLY) {
2360 		btrfs_set_root_flags(&root->root_item,
2361 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2362 	} else {
2363 		/*
2364 		 * Block RO -> RW transition if this subvolume is involved in
2365 		 * send
2366 		 */
2367 		spin_lock(&root->root_item_lock);
2368 		if (root->send_in_progress == 0) {
2369 			btrfs_set_root_flags(&root->root_item,
2370 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2371 			spin_unlock(&root->root_item_lock);
2372 		} else {
2373 			spin_unlock(&root->root_item_lock);
2374 			btrfs_warn(fs_info,
2375 				   "Attempt to set subvolume %llu read-write during send",
2376 				   root->root_key.objectid);
2377 			ret = -EPERM;
2378 			goto out_drop_sem;
2379 		}
2380 	}
2381 
2382 	trans = btrfs_start_transaction(root, 1);
2383 	if (IS_ERR(trans)) {
2384 		ret = PTR_ERR(trans);
2385 		goto out_reset;
2386 	}
2387 
2388 	ret = btrfs_update_root(trans, fs_info->tree_root,
2389 				&root->root_key, &root->root_item);
2390 	if (ret < 0) {
2391 		btrfs_end_transaction(trans);
2392 		goto out_reset;
2393 	}
2394 
2395 	ret = btrfs_commit_transaction(trans);
2396 
2397 out_reset:
2398 	if (ret)
2399 		btrfs_set_root_flags(&root->root_item, root_flags);
2400 out_drop_sem:
2401 	up_write(&fs_info->subvol_sem);
2402 out_drop_write:
2403 	mnt_drop_write_file(file);
2404 out:
2405 	return ret;
2406 }
2407 
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)2408 static noinline int key_in_sk(struct btrfs_key *key,
2409 			      struct btrfs_ioctl_search_key *sk)
2410 {
2411 	struct btrfs_key test;
2412 	int ret;
2413 
2414 	test.objectid = sk->min_objectid;
2415 	test.type = sk->min_type;
2416 	test.offset = sk->min_offset;
2417 
2418 	ret = btrfs_comp_cpu_keys(key, &test);
2419 	if (ret < 0)
2420 		return 0;
2421 
2422 	test.objectid = sk->max_objectid;
2423 	test.type = sk->max_type;
2424 	test.offset = sk->max_offset;
2425 
2426 	ret = btrfs_comp_cpu_keys(key, &test);
2427 	if (ret > 0)
2428 		return 0;
2429 	return 1;
2430 }
2431 
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)2432 static noinline int copy_to_sk(struct btrfs_path *path,
2433 			       struct btrfs_key *key,
2434 			       struct btrfs_ioctl_search_key *sk,
2435 			       u64 *buf_size,
2436 			       char __user *ubuf,
2437 			       unsigned long *sk_offset,
2438 			       int *num_found)
2439 {
2440 	u64 found_transid;
2441 	struct extent_buffer *leaf;
2442 	struct btrfs_ioctl_search_header sh;
2443 	struct btrfs_key test;
2444 	unsigned long item_off;
2445 	unsigned long item_len;
2446 	int nritems;
2447 	int i;
2448 	int slot;
2449 	int ret = 0;
2450 
2451 	leaf = path->nodes[0];
2452 	slot = path->slots[0];
2453 	nritems = btrfs_header_nritems(leaf);
2454 
2455 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2456 		i = nritems;
2457 		goto advance_key;
2458 	}
2459 	found_transid = btrfs_header_generation(leaf);
2460 
2461 	for (i = slot; i < nritems; i++) {
2462 		item_off = btrfs_item_ptr_offset(leaf, i);
2463 		item_len = btrfs_item_size(leaf, i);
2464 
2465 		btrfs_item_key_to_cpu(leaf, key, i);
2466 		if (!key_in_sk(key, sk))
2467 			continue;
2468 
2469 		if (sizeof(sh) + item_len > *buf_size) {
2470 			if (*num_found) {
2471 				ret = 1;
2472 				goto out;
2473 			}
2474 
2475 			/*
2476 			 * return one empty item back for v1, which does not
2477 			 * handle -EOVERFLOW
2478 			 */
2479 
2480 			*buf_size = sizeof(sh) + item_len;
2481 			item_len = 0;
2482 			ret = -EOVERFLOW;
2483 		}
2484 
2485 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2486 			ret = 1;
2487 			goto out;
2488 		}
2489 
2490 		sh.objectid = key->objectid;
2491 		sh.offset = key->offset;
2492 		sh.type = key->type;
2493 		sh.len = item_len;
2494 		sh.transid = found_transid;
2495 
2496 		/*
2497 		 * Copy search result header. If we fault then loop again so we
2498 		 * can fault in the pages and -EFAULT there if there's a
2499 		 * problem. Otherwise we'll fault and then copy the buffer in
2500 		 * properly this next time through
2501 		 */
2502 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2503 			ret = 0;
2504 			goto out;
2505 		}
2506 
2507 		*sk_offset += sizeof(sh);
2508 
2509 		if (item_len) {
2510 			char __user *up = ubuf + *sk_offset;
2511 			/*
2512 			 * Copy the item, same behavior as above, but reset the
2513 			 * * sk_offset so we copy the full thing again.
2514 			 */
2515 			if (read_extent_buffer_to_user_nofault(leaf, up,
2516 						item_off, item_len)) {
2517 				ret = 0;
2518 				*sk_offset -= sizeof(sh);
2519 				goto out;
2520 			}
2521 
2522 			*sk_offset += item_len;
2523 		}
2524 		(*num_found)++;
2525 
2526 		if (ret) /* -EOVERFLOW from above */
2527 			goto out;
2528 
2529 		if (*num_found >= sk->nr_items) {
2530 			ret = 1;
2531 			goto out;
2532 		}
2533 	}
2534 advance_key:
2535 	ret = 0;
2536 	test.objectid = sk->max_objectid;
2537 	test.type = sk->max_type;
2538 	test.offset = sk->max_offset;
2539 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2540 		ret = 1;
2541 	else if (key->offset < (u64)-1)
2542 		key->offset++;
2543 	else if (key->type < (u8)-1) {
2544 		key->offset = 0;
2545 		key->type++;
2546 	} else if (key->objectid < (u64)-1) {
2547 		key->offset = 0;
2548 		key->type = 0;
2549 		key->objectid++;
2550 	} else
2551 		ret = 1;
2552 out:
2553 	/*
2554 	 *  0: all items from this leaf copied, continue with next
2555 	 *  1: * more items can be copied, but unused buffer is too small
2556 	 *     * all items were found
2557 	 *     Either way, it will stops the loop which iterates to the next
2558 	 *     leaf
2559 	 *  -EOVERFLOW: item was to large for buffer
2560 	 *  -EFAULT: could not copy extent buffer back to userspace
2561 	 */
2562 	return ret;
2563 }
2564 
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf)2565 static noinline int search_ioctl(struct inode *inode,
2566 				 struct btrfs_ioctl_search_key *sk,
2567 				 u64 *buf_size,
2568 				 char __user *ubuf)
2569 {
2570 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2571 	struct btrfs_root *root;
2572 	struct btrfs_key key;
2573 	struct btrfs_path *path;
2574 	int ret;
2575 	int num_found = 0;
2576 	unsigned long sk_offset = 0;
2577 
2578 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2579 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2580 		return -EOVERFLOW;
2581 	}
2582 
2583 	path = btrfs_alloc_path();
2584 	if (!path)
2585 		return -ENOMEM;
2586 
2587 	if (sk->tree_id == 0) {
2588 		/* search the root of the inode that was passed */
2589 		root = btrfs_grab_root(BTRFS_I(inode)->root);
2590 	} else {
2591 		root = btrfs_get_fs_root(info, sk->tree_id, true);
2592 		if (IS_ERR(root)) {
2593 			btrfs_free_path(path);
2594 			return PTR_ERR(root);
2595 		}
2596 	}
2597 
2598 	key.objectid = sk->min_objectid;
2599 	key.type = sk->min_type;
2600 	key.offset = sk->min_offset;
2601 
2602 	while (1) {
2603 		ret = -EFAULT;
2604 		/*
2605 		 * Ensure that the whole user buffer is faulted in at sub-page
2606 		 * granularity, otherwise the loop may live-lock.
2607 		 */
2608 		if (fault_in_subpage_writeable(ubuf + sk_offset,
2609 					       *buf_size - sk_offset))
2610 			break;
2611 
2612 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2613 		if (ret != 0) {
2614 			if (ret > 0)
2615 				ret = 0;
2616 			goto err;
2617 		}
2618 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2619 				 &sk_offset, &num_found);
2620 		btrfs_release_path(path);
2621 		if (ret)
2622 			break;
2623 
2624 	}
2625 	if (ret > 0)
2626 		ret = 0;
2627 err:
2628 	sk->nr_items = num_found;
2629 	btrfs_put_root(root);
2630 	btrfs_free_path(path);
2631 	return ret;
2632 }
2633 
btrfs_ioctl_tree_search(struct inode * inode,void __user * argp)2634 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
2635 					    void __user *argp)
2636 {
2637 	struct btrfs_ioctl_search_args __user *uargs = argp;
2638 	struct btrfs_ioctl_search_key sk;
2639 	int ret;
2640 	u64 buf_size;
2641 
2642 	if (!capable(CAP_SYS_ADMIN))
2643 		return -EPERM;
2644 
2645 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2646 		return -EFAULT;
2647 
2648 	buf_size = sizeof(uargs->buf);
2649 
2650 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2651 
2652 	/*
2653 	 * In the origin implementation an overflow is handled by returning a
2654 	 * search header with a len of zero, so reset ret.
2655 	 */
2656 	if (ret == -EOVERFLOW)
2657 		ret = 0;
2658 
2659 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2660 		ret = -EFAULT;
2661 	return ret;
2662 }
2663 
btrfs_ioctl_tree_search_v2(struct inode * inode,void __user * argp)2664 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
2665 					       void __user *argp)
2666 {
2667 	struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
2668 	struct btrfs_ioctl_search_args_v2 args;
2669 	int ret;
2670 	u64 buf_size;
2671 	const u64 buf_limit = SZ_16M;
2672 
2673 	if (!capable(CAP_SYS_ADMIN))
2674 		return -EPERM;
2675 
2676 	/* copy search header and buffer size */
2677 	if (copy_from_user(&args, uarg, sizeof(args)))
2678 		return -EFAULT;
2679 
2680 	buf_size = args.buf_size;
2681 
2682 	/* limit result size to 16MB */
2683 	if (buf_size > buf_limit)
2684 		buf_size = buf_limit;
2685 
2686 	ret = search_ioctl(inode, &args.key, &buf_size,
2687 			   (char __user *)(&uarg->buf[0]));
2688 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2689 		ret = -EFAULT;
2690 	else if (ret == -EOVERFLOW &&
2691 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2692 		ret = -EFAULT;
2693 
2694 	return ret;
2695 }
2696 
2697 /*
2698  * Search INODE_REFs to identify path name of 'dirid' directory
2699  * in a 'tree_id' tree. and sets path name to 'name'.
2700  */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)2701 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2702 				u64 tree_id, u64 dirid, char *name)
2703 {
2704 	struct btrfs_root *root;
2705 	struct btrfs_key key;
2706 	char *ptr;
2707 	int ret = -1;
2708 	int slot;
2709 	int len;
2710 	int total_len = 0;
2711 	struct btrfs_inode_ref *iref;
2712 	struct extent_buffer *l;
2713 	struct btrfs_path *path;
2714 
2715 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2716 		name[0]='\0';
2717 		return 0;
2718 	}
2719 
2720 	path = btrfs_alloc_path();
2721 	if (!path)
2722 		return -ENOMEM;
2723 
2724 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2725 
2726 	root = btrfs_get_fs_root(info, tree_id, true);
2727 	if (IS_ERR(root)) {
2728 		ret = PTR_ERR(root);
2729 		root = NULL;
2730 		goto out;
2731 	}
2732 
2733 	key.objectid = dirid;
2734 	key.type = BTRFS_INODE_REF_KEY;
2735 	key.offset = (u64)-1;
2736 
2737 	while (1) {
2738 		ret = btrfs_search_backwards(root, &key, path);
2739 		if (ret < 0)
2740 			goto out;
2741 		else if (ret > 0) {
2742 			ret = -ENOENT;
2743 			goto out;
2744 		}
2745 
2746 		l = path->nodes[0];
2747 		slot = path->slots[0];
2748 
2749 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2750 		len = btrfs_inode_ref_name_len(l, iref);
2751 		ptr -= len + 1;
2752 		total_len += len + 1;
2753 		if (ptr < name) {
2754 			ret = -ENAMETOOLONG;
2755 			goto out;
2756 		}
2757 
2758 		*(ptr + len) = '/';
2759 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2760 
2761 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2762 			break;
2763 
2764 		btrfs_release_path(path);
2765 		key.objectid = key.offset;
2766 		key.offset = (u64)-1;
2767 		dirid = key.objectid;
2768 	}
2769 	memmove(name, ptr, total_len);
2770 	name[total_len] = '\0';
2771 	ret = 0;
2772 out:
2773 	btrfs_put_root(root);
2774 	btrfs_free_path(path);
2775 	return ret;
2776 }
2777 
btrfs_search_path_in_tree_user(struct user_namespace * mnt_userns,struct inode * inode,struct btrfs_ioctl_ino_lookup_user_args * args)2778 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns,
2779 				struct inode *inode,
2780 				struct btrfs_ioctl_ino_lookup_user_args *args)
2781 {
2782 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2783 	struct super_block *sb = inode->i_sb;
2784 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2785 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2786 	u64 dirid = args->dirid;
2787 	unsigned long item_off;
2788 	unsigned long item_len;
2789 	struct btrfs_inode_ref *iref;
2790 	struct btrfs_root_ref *rref;
2791 	struct btrfs_root *root = NULL;
2792 	struct btrfs_path *path;
2793 	struct btrfs_key key, key2;
2794 	struct extent_buffer *leaf;
2795 	struct inode *temp_inode;
2796 	char *ptr;
2797 	int slot;
2798 	int len;
2799 	int total_len = 0;
2800 	int ret;
2801 
2802 	path = btrfs_alloc_path();
2803 	if (!path)
2804 		return -ENOMEM;
2805 
2806 	/*
2807 	 * If the bottom subvolume does not exist directly under upper_limit,
2808 	 * construct the path in from the bottom up.
2809 	 */
2810 	if (dirid != upper_limit.objectid) {
2811 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2812 
2813 		root = btrfs_get_fs_root(fs_info, treeid, true);
2814 		if (IS_ERR(root)) {
2815 			ret = PTR_ERR(root);
2816 			goto out;
2817 		}
2818 
2819 		key.objectid = dirid;
2820 		key.type = BTRFS_INODE_REF_KEY;
2821 		key.offset = (u64)-1;
2822 		while (1) {
2823 			ret = btrfs_search_backwards(root, &key, path);
2824 			if (ret < 0)
2825 				goto out_put;
2826 			else if (ret > 0) {
2827 				ret = -ENOENT;
2828 				goto out_put;
2829 			}
2830 
2831 			leaf = path->nodes[0];
2832 			slot = path->slots[0];
2833 
2834 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2835 			len = btrfs_inode_ref_name_len(leaf, iref);
2836 			ptr -= len + 1;
2837 			total_len += len + 1;
2838 			if (ptr < args->path) {
2839 				ret = -ENAMETOOLONG;
2840 				goto out_put;
2841 			}
2842 
2843 			*(ptr + len) = '/';
2844 			read_extent_buffer(leaf, ptr,
2845 					(unsigned long)(iref + 1), len);
2846 
2847 			/* Check the read+exec permission of this directory */
2848 			ret = btrfs_previous_item(root, path, dirid,
2849 						  BTRFS_INODE_ITEM_KEY);
2850 			if (ret < 0) {
2851 				goto out_put;
2852 			} else if (ret > 0) {
2853 				ret = -ENOENT;
2854 				goto out_put;
2855 			}
2856 
2857 			leaf = path->nodes[0];
2858 			slot = path->slots[0];
2859 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2860 			if (key2.objectid != dirid) {
2861 				ret = -ENOENT;
2862 				goto out_put;
2863 			}
2864 
2865 			/*
2866 			 * We don't need the path anymore, so release it and
2867 			 * avoid deadlocks and lockdep warnings in case
2868 			 * btrfs_iget() needs to lookup the inode from its root
2869 			 * btree and lock the same leaf.
2870 			 */
2871 			btrfs_release_path(path);
2872 			temp_inode = btrfs_iget(sb, key2.objectid, root);
2873 			if (IS_ERR(temp_inode)) {
2874 				ret = PTR_ERR(temp_inode);
2875 				goto out_put;
2876 			}
2877 			ret = inode_permission(mnt_userns, temp_inode,
2878 					       MAY_READ | MAY_EXEC);
2879 			iput(temp_inode);
2880 			if (ret) {
2881 				ret = -EACCES;
2882 				goto out_put;
2883 			}
2884 
2885 			if (key.offset == upper_limit.objectid)
2886 				break;
2887 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2888 				ret = -EACCES;
2889 				goto out_put;
2890 			}
2891 
2892 			key.objectid = key.offset;
2893 			key.offset = (u64)-1;
2894 			dirid = key.objectid;
2895 		}
2896 
2897 		memmove(args->path, ptr, total_len);
2898 		args->path[total_len] = '\0';
2899 		btrfs_put_root(root);
2900 		root = NULL;
2901 		btrfs_release_path(path);
2902 	}
2903 
2904 	/* Get the bottom subvolume's name from ROOT_REF */
2905 	key.objectid = treeid;
2906 	key.type = BTRFS_ROOT_REF_KEY;
2907 	key.offset = args->treeid;
2908 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2909 	if (ret < 0) {
2910 		goto out;
2911 	} else if (ret > 0) {
2912 		ret = -ENOENT;
2913 		goto out;
2914 	}
2915 
2916 	leaf = path->nodes[0];
2917 	slot = path->slots[0];
2918 	btrfs_item_key_to_cpu(leaf, &key, slot);
2919 
2920 	item_off = btrfs_item_ptr_offset(leaf, slot);
2921 	item_len = btrfs_item_size(leaf, slot);
2922 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2923 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2924 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2925 		ret = -EINVAL;
2926 		goto out;
2927 	}
2928 
2929 	/* Copy subvolume's name */
2930 	item_off += sizeof(struct btrfs_root_ref);
2931 	item_len -= sizeof(struct btrfs_root_ref);
2932 	read_extent_buffer(leaf, args->name, item_off, item_len);
2933 	args->name[item_len] = 0;
2934 
2935 out_put:
2936 	btrfs_put_root(root);
2937 out:
2938 	btrfs_free_path(path);
2939 	return ret;
2940 }
2941 
btrfs_ioctl_ino_lookup(struct btrfs_root * root,void __user * argp)2942 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2943 					   void __user *argp)
2944 {
2945 	struct btrfs_ioctl_ino_lookup_args *args;
2946 	int ret = 0;
2947 
2948 	args = memdup_user(argp, sizeof(*args));
2949 	if (IS_ERR(args))
2950 		return PTR_ERR(args);
2951 
2952 	/*
2953 	 * Unprivileged query to obtain the containing subvolume root id. The
2954 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2955 	 */
2956 	if (args->treeid == 0)
2957 		args->treeid = root->root_key.objectid;
2958 
2959 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2960 		args->name[0] = 0;
2961 		goto out;
2962 	}
2963 
2964 	if (!capable(CAP_SYS_ADMIN)) {
2965 		ret = -EPERM;
2966 		goto out;
2967 	}
2968 
2969 	ret = btrfs_search_path_in_tree(root->fs_info,
2970 					args->treeid, args->objectid,
2971 					args->name);
2972 
2973 out:
2974 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2975 		ret = -EFAULT;
2976 
2977 	kfree(args);
2978 	return ret;
2979 }
2980 
2981 /*
2982  * Version of ino_lookup ioctl (unprivileged)
2983  *
2984  * The main differences from ino_lookup ioctl are:
2985  *
2986  *   1. Read + Exec permission will be checked using inode_permission() during
2987  *      path construction. -EACCES will be returned in case of failure.
2988  *   2. Path construction will be stopped at the inode number which corresponds
2989  *      to the fd with which this ioctl is called. If constructed path does not
2990  *      exist under fd's inode, -EACCES will be returned.
2991  *   3. The name of bottom subvolume is also searched and filled.
2992  */
btrfs_ioctl_ino_lookup_user(struct file * file,void __user * argp)2993 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2994 {
2995 	struct btrfs_ioctl_ino_lookup_user_args *args;
2996 	struct inode *inode;
2997 	int ret;
2998 
2999 	args = memdup_user(argp, sizeof(*args));
3000 	if (IS_ERR(args))
3001 		return PTR_ERR(args);
3002 
3003 	inode = file_inode(file);
3004 
3005 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
3006 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
3007 		/*
3008 		 * The subvolume does not exist under fd with which this is
3009 		 * called
3010 		 */
3011 		kfree(args);
3012 		return -EACCES;
3013 	}
3014 
3015 	ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args);
3016 
3017 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
3018 		ret = -EFAULT;
3019 
3020 	kfree(args);
3021 	return ret;
3022 }
3023 
3024 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
btrfs_ioctl_get_subvol_info(struct inode * inode,void __user * argp)3025 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
3026 {
3027 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
3028 	struct btrfs_fs_info *fs_info;
3029 	struct btrfs_root *root;
3030 	struct btrfs_path *path;
3031 	struct btrfs_key key;
3032 	struct btrfs_root_item *root_item;
3033 	struct btrfs_root_ref *rref;
3034 	struct extent_buffer *leaf;
3035 	unsigned long item_off;
3036 	unsigned long item_len;
3037 	int slot;
3038 	int ret = 0;
3039 
3040 	path = btrfs_alloc_path();
3041 	if (!path)
3042 		return -ENOMEM;
3043 
3044 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
3045 	if (!subvol_info) {
3046 		btrfs_free_path(path);
3047 		return -ENOMEM;
3048 	}
3049 
3050 	fs_info = BTRFS_I(inode)->root->fs_info;
3051 
3052 	/* Get root_item of inode's subvolume */
3053 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
3054 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
3055 	if (IS_ERR(root)) {
3056 		ret = PTR_ERR(root);
3057 		goto out_free;
3058 	}
3059 	root_item = &root->root_item;
3060 
3061 	subvol_info->treeid = key.objectid;
3062 
3063 	subvol_info->generation = btrfs_root_generation(root_item);
3064 	subvol_info->flags = btrfs_root_flags(root_item);
3065 
3066 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
3067 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
3068 						    BTRFS_UUID_SIZE);
3069 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
3070 						    BTRFS_UUID_SIZE);
3071 
3072 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
3073 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
3074 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
3075 
3076 	subvol_info->otransid = btrfs_root_otransid(root_item);
3077 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
3078 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
3079 
3080 	subvol_info->stransid = btrfs_root_stransid(root_item);
3081 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
3082 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
3083 
3084 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
3085 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
3086 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
3087 
3088 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
3089 		/* Search root tree for ROOT_BACKREF of this subvolume */
3090 		key.type = BTRFS_ROOT_BACKREF_KEY;
3091 		key.offset = 0;
3092 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3093 		if (ret < 0) {
3094 			goto out;
3095 		} else if (path->slots[0] >=
3096 			   btrfs_header_nritems(path->nodes[0])) {
3097 			ret = btrfs_next_leaf(fs_info->tree_root, path);
3098 			if (ret < 0) {
3099 				goto out;
3100 			} else if (ret > 0) {
3101 				ret = -EUCLEAN;
3102 				goto out;
3103 			}
3104 		}
3105 
3106 		leaf = path->nodes[0];
3107 		slot = path->slots[0];
3108 		btrfs_item_key_to_cpu(leaf, &key, slot);
3109 		if (key.objectid == subvol_info->treeid &&
3110 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
3111 			subvol_info->parent_id = key.offset;
3112 
3113 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
3114 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
3115 
3116 			item_off = btrfs_item_ptr_offset(leaf, slot)
3117 					+ sizeof(struct btrfs_root_ref);
3118 			item_len = btrfs_item_size(leaf, slot)
3119 					- sizeof(struct btrfs_root_ref);
3120 			read_extent_buffer(leaf, subvol_info->name,
3121 					   item_off, item_len);
3122 		} else {
3123 			ret = -ENOENT;
3124 			goto out;
3125 		}
3126 	}
3127 
3128 	btrfs_free_path(path);
3129 	path = NULL;
3130 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
3131 		ret = -EFAULT;
3132 
3133 out:
3134 	btrfs_put_root(root);
3135 out_free:
3136 	btrfs_free_path(path);
3137 	kfree(subvol_info);
3138 	return ret;
3139 }
3140 
3141 /*
3142  * Return ROOT_REF information of the subvolume containing this inode
3143  * except the subvolume name.
3144  */
btrfs_ioctl_get_subvol_rootref(struct btrfs_root * root,void __user * argp)3145 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
3146 					  void __user *argp)
3147 {
3148 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
3149 	struct btrfs_root_ref *rref;
3150 	struct btrfs_path *path;
3151 	struct btrfs_key key;
3152 	struct extent_buffer *leaf;
3153 	u64 objectid;
3154 	int slot;
3155 	int ret;
3156 	u8 found;
3157 
3158 	path = btrfs_alloc_path();
3159 	if (!path)
3160 		return -ENOMEM;
3161 
3162 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
3163 	if (IS_ERR(rootrefs)) {
3164 		btrfs_free_path(path);
3165 		return PTR_ERR(rootrefs);
3166 	}
3167 
3168 	objectid = root->root_key.objectid;
3169 	key.objectid = objectid;
3170 	key.type = BTRFS_ROOT_REF_KEY;
3171 	key.offset = rootrefs->min_treeid;
3172 	found = 0;
3173 
3174 	root = root->fs_info->tree_root;
3175 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3176 	if (ret < 0) {
3177 		goto out;
3178 	} else if (path->slots[0] >=
3179 		   btrfs_header_nritems(path->nodes[0])) {
3180 		ret = btrfs_next_leaf(root, path);
3181 		if (ret < 0) {
3182 			goto out;
3183 		} else if (ret > 0) {
3184 			ret = -EUCLEAN;
3185 			goto out;
3186 		}
3187 	}
3188 	while (1) {
3189 		leaf = path->nodes[0];
3190 		slot = path->slots[0];
3191 
3192 		btrfs_item_key_to_cpu(leaf, &key, slot);
3193 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
3194 			ret = 0;
3195 			goto out;
3196 		}
3197 
3198 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
3199 			ret = -EOVERFLOW;
3200 			goto out;
3201 		}
3202 
3203 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
3204 		rootrefs->rootref[found].treeid = key.offset;
3205 		rootrefs->rootref[found].dirid =
3206 				  btrfs_root_ref_dirid(leaf, rref);
3207 		found++;
3208 
3209 		ret = btrfs_next_item(root, path);
3210 		if (ret < 0) {
3211 			goto out;
3212 		} else if (ret > 0) {
3213 			ret = -EUCLEAN;
3214 			goto out;
3215 		}
3216 	}
3217 
3218 out:
3219 	btrfs_free_path(path);
3220 
3221 	if (!ret || ret == -EOVERFLOW) {
3222 		rootrefs->num_items = found;
3223 		/* update min_treeid for next search */
3224 		if (found)
3225 			rootrefs->min_treeid =
3226 				rootrefs->rootref[found - 1].treeid + 1;
3227 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
3228 			ret = -EFAULT;
3229 	}
3230 
3231 	kfree(rootrefs);
3232 
3233 	return ret;
3234 }
3235 
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg,bool destroy_v2)3236 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
3237 					     void __user *arg,
3238 					     bool destroy_v2)
3239 {
3240 	struct dentry *parent = file->f_path.dentry;
3241 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
3242 	struct dentry *dentry;
3243 	struct inode *dir = d_inode(parent);
3244 	struct inode *inode;
3245 	struct btrfs_root *root = BTRFS_I(dir)->root;
3246 	struct btrfs_root *dest = NULL;
3247 	struct btrfs_ioctl_vol_args *vol_args = NULL;
3248 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
3249 	struct user_namespace *mnt_userns = file_mnt_user_ns(file);
3250 	char *subvol_name, *subvol_name_ptr = NULL;
3251 	int subvol_namelen;
3252 	int err = 0;
3253 	bool destroy_parent = false;
3254 
3255 	/* We don't support snapshots with extent tree v2 yet. */
3256 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3257 		btrfs_err(fs_info,
3258 			  "extent tree v2 doesn't support snapshot deletion yet");
3259 		return -EOPNOTSUPP;
3260 	}
3261 
3262 	if (destroy_v2) {
3263 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
3264 		if (IS_ERR(vol_args2))
3265 			return PTR_ERR(vol_args2);
3266 
3267 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
3268 			err = -EOPNOTSUPP;
3269 			goto out;
3270 		}
3271 
3272 		/*
3273 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
3274 		 * name, same as v1 currently does.
3275 		 */
3276 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
3277 			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
3278 			subvol_name = vol_args2->name;
3279 
3280 			err = mnt_want_write_file(file);
3281 			if (err)
3282 				goto out;
3283 		} else {
3284 			struct inode *old_dir;
3285 
3286 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
3287 				err = -EINVAL;
3288 				goto out;
3289 			}
3290 
3291 			err = mnt_want_write_file(file);
3292 			if (err)
3293 				goto out;
3294 
3295 			dentry = btrfs_get_dentry(fs_info->sb,
3296 					BTRFS_FIRST_FREE_OBJECTID,
3297 					vol_args2->subvolid, 0, 0);
3298 			if (IS_ERR(dentry)) {
3299 				err = PTR_ERR(dentry);
3300 				goto out_drop_write;
3301 			}
3302 
3303 			/*
3304 			 * Change the default parent since the subvolume being
3305 			 * deleted can be outside of the current mount point.
3306 			 */
3307 			parent = btrfs_get_parent(dentry);
3308 
3309 			/*
3310 			 * At this point dentry->d_name can point to '/' if the
3311 			 * subvolume we want to destroy is outsite of the
3312 			 * current mount point, so we need to release the
3313 			 * current dentry and execute the lookup to return a new
3314 			 * one with ->d_name pointing to the
3315 			 * <mount point>/subvol_name.
3316 			 */
3317 			dput(dentry);
3318 			if (IS_ERR(parent)) {
3319 				err = PTR_ERR(parent);
3320 				goto out_drop_write;
3321 			}
3322 			old_dir = dir;
3323 			dir = d_inode(parent);
3324 
3325 			/*
3326 			 * If v2 was used with SPEC_BY_ID, a new parent was
3327 			 * allocated since the subvolume can be outside of the
3328 			 * current mount point. Later on we need to release this
3329 			 * new parent dentry.
3330 			 */
3331 			destroy_parent = true;
3332 
3333 			/*
3334 			 * On idmapped mounts, deletion via subvolid is
3335 			 * restricted to subvolumes that are immediate
3336 			 * ancestors of the inode referenced by the file
3337 			 * descriptor in the ioctl. Otherwise the idmapping
3338 			 * could potentially be abused to delete subvolumes
3339 			 * anywhere in the filesystem the user wouldn't be able
3340 			 * to delete without an idmapped mount.
3341 			 */
3342 			if (old_dir != dir && mnt_userns != &init_user_ns) {
3343 				err = -EOPNOTSUPP;
3344 				goto free_parent;
3345 			}
3346 
3347 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
3348 						fs_info, vol_args2->subvolid);
3349 			if (IS_ERR(subvol_name_ptr)) {
3350 				err = PTR_ERR(subvol_name_ptr);
3351 				goto free_parent;
3352 			}
3353 			/* subvol_name_ptr is already nul terminated */
3354 			subvol_name = (char *)kbasename(subvol_name_ptr);
3355 		}
3356 	} else {
3357 		vol_args = memdup_user(arg, sizeof(*vol_args));
3358 		if (IS_ERR(vol_args))
3359 			return PTR_ERR(vol_args);
3360 
3361 		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
3362 		subvol_name = vol_args->name;
3363 
3364 		err = mnt_want_write_file(file);
3365 		if (err)
3366 			goto out;
3367 	}
3368 
3369 	subvol_namelen = strlen(subvol_name);
3370 
3371 	if (strchr(subvol_name, '/') ||
3372 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
3373 		err = -EINVAL;
3374 		goto free_subvol_name;
3375 	}
3376 
3377 	if (!S_ISDIR(dir->i_mode)) {
3378 		err = -ENOTDIR;
3379 		goto free_subvol_name;
3380 	}
3381 
3382 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3383 	if (err == -EINTR)
3384 		goto free_subvol_name;
3385 	dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen);
3386 	if (IS_ERR(dentry)) {
3387 		err = PTR_ERR(dentry);
3388 		goto out_unlock_dir;
3389 	}
3390 
3391 	if (d_really_is_negative(dentry)) {
3392 		err = -ENOENT;
3393 		goto out_dput;
3394 	}
3395 
3396 	inode = d_inode(dentry);
3397 	dest = BTRFS_I(inode)->root;
3398 	if (!capable(CAP_SYS_ADMIN)) {
3399 		/*
3400 		 * Regular user.  Only allow this with a special mount
3401 		 * option, when the user has write+exec access to the
3402 		 * subvol root, and when rmdir(2) would have been
3403 		 * allowed.
3404 		 *
3405 		 * Note that this is _not_ check that the subvol is
3406 		 * empty or doesn't contain data that we wouldn't
3407 		 * otherwise be able to delete.
3408 		 *
3409 		 * Users who want to delete empty subvols should try
3410 		 * rmdir(2).
3411 		 */
3412 		err = -EPERM;
3413 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3414 			goto out_dput;
3415 
3416 		/*
3417 		 * Do not allow deletion if the parent dir is the same
3418 		 * as the dir to be deleted.  That means the ioctl
3419 		 * must be called on the dentry referencing the root
3420 		 * of the subvol, not a random directory contained
3421 		 * within it.
3422 		 */
3423 		err = -EINVAL;
3424 		if (root == dest)
3425 			goto out_dput;
3426 
3427 		err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC);
3428 		if (err)
3429 			goto out_dput;
3430 	}
3431 
3432 	/* check if subvolume may be deleted by a user */
3433 	err = btrfs_may_delete(mnt_userns, dir, dentry, 1);
3434 	if (err)
3435 		goto out_dput;
3436 
3437 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3438 		err = -EINVAL;
3439 		goto out_dput;
3440 	}
3441 
3442 	btrfs_inode_lock(inode, 0);
3443 	err = btrfs_delete_subvolume(dir, dentry);
3444 	btrfs_inode_unlock(inode, 0);
3445 	if (!err)
3446 		d_delete_notify(dir, dentry);
3447 
3448 out_dput:
3449 	dput(dentry);
3450 out_unlock_dir:
3451 	btrfs_inode_unlock(dir, 0);
3452 free_subvol_name:
3453 	kfree(subvol_name_ptr);
3454 free_parent:
3455 	if (destroy_parent)
3456 		dput(parent);
3457 out_drop_write:
3458 	mnt_drop_write_file(file);
3459 out:
3460 	kfree(vol_args2);
3461 	kfree(vol_args);
3462 	return err;
3463 }
3464 
btrfs_ioctl_defrag(struct file * file,void __user * argp)3465 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3466 {
3467 	struct inode *inode = file_inode(file);
3468 	struct btrfs_root *root = BTRFS_I(inode)->root;
3469 	struct btrfs_ioctl_defrag_range_args range = {0};
3470 	int ret;
3471 
3472 	ret = mnt_want_write_file(file);
3473 	if (ret)
3474 		return ret;
3475 
3476 	if (btrfs_root_readonly(root)) {
3477 		ret = -EROFS;
3478 		goto out;
3479 	}
3480 
3481 	switch (inode->i_mode & S_IFMT) {
3482 	case S_IFDIR:
3483 		if (!capable(CAP_SYS_ADMIN)) {
3484 			ret = -EPERM;
3485 			goto out;
3486 		}
3487 		ret = btrfs_defrag_root(root);
3488 		break;
3489 	case S_IFREG:
3490 		/*
3491 		 * Note that this does not check the file descriptor for write
3492 		 * access. This prevents defragmenting executables that are
3493 		 * running and allows defrag on files open in read-only mode.
3494 		 */
3495 		if (!capable(CAP_SYS_ADMIN) &&
3496 		    inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3497 			ret = -EPERM;
3498 			goto out;
3499 		}
3500 
3501 		if (argp) {
3502 			if (copy_from_user(&range, argp, sizeof(range))) {
3503 				ret = -EFAULT;
3504 				goto out;
3505 			}
3506 			if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
3507 				ret = -EOPNOTSUPP;
3508 				goto out;
3509 			}
3510 			/* compression requires us to start the IO */
3511 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3512 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
3513 				range.extent_thresh = (u32)-1;
3514 			}
3515 		} else {
3516 			/* the rest are all set to zero by kzalloc */
3517 			range.len = (u64)-1;
3518 		}
3519 		ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
3520 					&range, BTRFS_OLDEST_GENERATION, 0);
3521 		if (ret > 0)
3522 			ret = 0;
3523 		break;
3524 	default:
3525 		ret = -EINVAL;
3526 	}
3527 out:
3528 	mnt_drop_write_file(file);
3529 	return ret;
3530 }
3531 
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)3532 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3533 {
3534 	struct btrfs_ioctl_vol_args *vol_args;
3535 	bool restore_op = false;
3536 	int ret;
3537 
3538 	if (!capable(CAP_SYS_ADMIN))
3539 		return -EPERM;
3540 
3541 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3542 		btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
3543 		return -EINVAL;
3544 	}
3545 
3546 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
3547 		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
3548 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3549 
3550 		/*
3551 		 * We can do the device add because we have a paused balanced,
3552 		 * change the exclusive op type and remember we should bring
3553 		 * back the paused balance
3554 		 */
3555 		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
3556 		btrfs_exclop_start_unlock(fs_info);
3557 		restore_op = true;
3558 	}
3559 
3560 	vol_args = memdup_user(arg, sizeof(*vol_args));
3561 	if (IS_ERR(vol_args)) {
3562 		ret = PTR_ERR(vol_args);
3563 		goto out;
3564 	}
3565 
3566 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3567 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3568 
3569 	if (!ret)
3570 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3571 
3572 	kfree(vol_args);
3573 out:
3574 	if (restore_op)
3575 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
3576 	else
3577 		btrfs_exclop_finish(fs_info);
3578 	return ret;
3579 }
3580 
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)3581 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3582 {
3583 	BTRFS_DEV_LOOKUP_ARGS(args);
3584 	struct inode *inode = file_inode(file);
3585 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3586 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3587 	struct block_device *bdev = NULL;
3588 	fmode_t mode;
3589 	int ret;
3590 	bool cancel = false;
3591 
3592 	if (!capable(CAP_SYS_ADMIN))
3593 		return -EPERM;
3594 
3595 	vol_args = memdup_user(arg, sizeof(*vol_args));
3596 	if (IS_ERR(vol_args))
3597 		return PTR_ERR(vol_args);
3598 
3599 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3600 		ret = -EOPNOTSUPP;
3601 		goto out;
3602 	}
3603 
3604 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3605 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3606 		args.devid = vol_args->devid;
3607 	} else if (!strcmp("cancel", vol_args->name)) {
3608 		cancel = true;
3609 	} else {
3610 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3611 		if (ret)
3612 			goto out;
3613 	}
3614 
3615 	ret = mnt_want_write_file(file);
3616 	if (ret)
3617 		goto out;
3618 
3619 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3620 					   cancel);
3621 	if (ret)
3622 		goto err_drop;
3623 
3624 	/* Exclusive operation is now claimed */
3625 	ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3626 
3627 	btrfs_exclop_finish(fs_info);
3628 
3629 	if (!ret) {
3630 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3631 			btrfs_info(fs_info, "device deleted: id %llu",
3632 					vol_args->devid);
3633 		else
3634 			btrfs_info(fs_info, "device deleted: %s",
3635 					vol_args->name);
3636 	}
3637 err_drop:
3638 	mnt_drop_write_file(file);
3639 	if (bdev)
3640 		blkdev_put(bdev, mode);
3641 out:
3642 	btrfs_put_dev_args_from_path(&args);
3643 	kfree(vol_args);
3644 	return ret;
3645 }
3646 
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)3647 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3648 {
3649 	BTRFS_DEV_LOOKUP_ARGS(args);
3650 	struct inode *inode = file_inode(file);
3651 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3652 	struct btrfs_ioctl_vol_args *vol_args;
3653 	struct block_device *bdev = NULL;
3654 	fmode_t mode;
3655 	int ret;
3656 	bool cancel = false;
3657 
3658 	if (!capable(CAP_SYS_ADMIN))
3659 		return -EPERM;
3660 
3661 	vol_args = memdup_user(arg, sizeof(*vol_args));
3662 	if (IS_ERR(vol_args))
3663 		return PTR_ERR(vol_args);
3664 
3665 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3666 	if (!strcmp("cancel", vol_args->name)) {
3667 		cancel = true;
3668 	} else {
3669 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3670 		if (ret)
3671 			goto out;
3672 	}
3673 
3674 	ret = mnt_want_write_file(file);
3675 	if (ret)
3676 		goto out;
3677 
3678 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3679 					   cancel);
3680 	if (ret == 0) {
3681 		ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3682 		if (!ret)
3683 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3684 		btrfs_exclop_finish(fs_info);
3685 	}
3686 
3687 	mnt_drop_write_file(file);
3688 	if (bdev)
3689 		blkdev_put(bdev, mode);
3690 out:
3691 	btrfs_put_dev_args_from_path(&args);
3692 	kfree(vol_args);
3693 	return ret;
3694 }
3695 
btrfs_ioctl_fs_info(struct btrfs_fs_info * fs_info,void __user * arg)3696 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3697 				void __user *arg)
3698 {
3699 	struct btrfs_ioctl_fs_info_args *fi_args;
3700 	struct btrfs_device *device;
3701 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3702 	u64 flags_in;
3703 	int ret = 0;
3704 
3705 	fi_args = memdup_user(arg, sizeof(*fi_args));
3706 	if (IS_ERR(fi_args))
3707 		return PTR_ERR(fi_args);
3708 
3709 	flags_in = fi_args->flags;
3710 	memset(fi_args, 0, sizeof(*fi_args));
3711 
3712 	rcu_read_lock();
3713 	fi_args->num_devices = fs_devices->num_devices;
3714 
3715 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3716 		if (device->devid > fi_args->max_id)
3717 			fi_args->max_id = device->devid;
3718 	}
3719 	rcu_read_unlock();
3720 
3721 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3722 	fi_args->nodesize = fs_info->nodesize;
3723 	fi_args->sectorsize = fs_info->sectorsize;
3724 	fi_args->clone_alignment = fs_info->sectorsize;
3725 
3726 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3727 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3728 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3729 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3730 	}
3731 
3732 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3733 		fi_args->generation = fs_info->generation;
3734 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3735 	}
3736 
3737 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3738 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3739 		       sizeof(fi_args->metadata_uuid));
3740 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3741 	}
3742 
3743 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3744 		ret = -EFAULT;
3745 
3746 	kfree(fi_args);
3747 	return ret;
3748 }
3749 
btrfs_ioctl_dev_info(struct btrfs_fs_info * fs_info,void __user * arg)3750 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3751 				 void __user *arg)
3752 {
3753 	BTRFS_DEV_LOOKUP_ARGS(args);
3754 	struct btrfs_ioctl_dev_info_args *di_args;
3755 	struct btrfs_device *dev;
3756 	int ret = 0;
3757 
3758 	di_args = memdup_user(arg, sizeof(*di_args));
3759 	if (IS_ERR(di_args))
3760 		return PTR_ERR(di_args);
3761 
3762 	args.devid = di_args->devid;
3763 	if (!btrfs_is_empty_uuid(di_args->uuid))
3764 		args.uuid = di_args->uuid;
3765 
3766 	rcu_read_lock();
3767 	dev = btrfs_find_device(fs_info->fs_devices, &args);
3768 	if (!dev) {
3769 		ret = -ENODEV;
3770 		goto out;
3771 	}
3772 
3773 	di_args->devid = dev->devid;
3774 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3775 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3776 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3777 	if (dev->name)
3778 		strscpy(di_args->path, rcu_str_deref(dev->name), sizeof(di_args->path));
3779 	else
3780 		di_args->path[0] = '\0';
3781 
3782 out:
3783 	rcu_read_unlock();
3784 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3785 		ret = -EFAULT;
3786 
3787 	kfree(di_args);
3788 	return ret;
3789 }
3790 
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)3791 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3792 {
3793 	struct inode *inode = file_inode(file);
3794 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3795 	struct btrfs_root *root = BTRFS_I(inode)->root;
3796 	struct btrfs_root *new_root;
3797 	struct btrfs_dir_item *di;
3798 	struct btrfs_trans_handle *trans;
3799 	struct btrfs_path *path = NULL;
3800 	struct btrfs_disk_key disk_key;
3801 	struct fscrypt_str name = FSTR_INIT("default", 7);
3802 	u64 objectid = 0;
3803 	u64 dir_id;
3804 	int ret;
3805 
3806 	if (!capable(CAP_SYS_ADMIN))
3807 		return -EPERM;
3808 
3809 	ret = mnt_want_write_file(file);
3810 	if (ret)
3811 		return ret;
3812 
3813 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3814 		ret = -EFAULT;
3815 		goto out;
3816 	}
3817 
3818 	if (!objectid)
3819 		objectid = BTRFS_FS_TREE_OBJECTID;
3820 
3821 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
3822 	if (IS_ERR(new_root)) {
3823 		ret = PTR_ERR(new_root);
3824 		goto out;
3825 	}
3826 	if (!is_fstree(new_root->root_key.objectid)) {
3827 		ret = -ENOENT;
3828 		goto out_free;
3829 	}
3830 
3831 	path = btrfs_alloc_path();
3832 	if (!path) {
3833 		ret = -ENOMEM;
3834 		goto out_free;
3835 	}
3836 
3837 	trans = btrfs_start_transaction(root, 1);
3838 	if (IS_ERR(trans)) {
3839 		ret = PTR_ERR(trans);
3840 		goto out_free;
3841 	}
3842 
3843 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3844 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3845 				   dir_id, &name, 1);
3846 	if (IS_ERR_OR_NULL(di)) {
3847 		btrfs_release_path(path);
3848 		btrfs_end_transaction(trans);
3849 		btrfs_err(fs_info,
3850 			  "Umm, you don't have the default diritem, this isn't going to work");
3851 		ret = -ENOENT;
3852 		goto out_free;
3853 	}
3854 
3855 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3856 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3857 	btrfs_mark_buffer_dirty(path->nodes[0]);
3858 	btrfs_release_path(path);
3859 
3860 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3861 	btrfs_end_transaction(trans);
3862 out_free:
3863 	btrfs_put_root(new_root);
3864 	btrfs_free_path(path);
3865 out:
3866 	mnt_drop_write_file(file);
3867 	return ret;
3868 }
3869 
get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)3870 static void get_block_group_info(struct list_head *groups_list,
3871 				 struct btrfs_ioctl_space_info *space)
3872 {
3873 	struct btrfs_block_group *block_group;
3874 
3875 	space->total_bytes = 0;
3876 	space->used_bytes = 0;
3877 	space->flags = 0;
3878 	list_for_each_entry(block_group, groups_list, list) {
3879 		space->flags = block_group->flags;
3880 		space->total_bytes += block_group->length;
3881 		space->used_bytes += block_group->used;
3882 	}
3883 }
3884 
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)3885 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3886 				   void __user *arg)
3887 {
3888 	struct btrfs_ioctl_space_args space_args = { 0 };
3889 	struct btrfs_ioctl_space_info space;
3890 	struct btrfs_ioctl_space_info *dest;
3891 	struct btrfs_ioctl_space_info *dest_orig;
3892 	struct btrfs_ioctl_space_info __user *user_dest;
3893 	struct btrfs_space_info *info;
3894 	static const u64 types[] = {
3895 		BTRFS_BLOCK_GROUP_DATA,
3896 		BTRFS_BLOCK_GROUP_SYSTEM,
3897 		BTRFS_BLOCK_GROUP_METADATA,
3898 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3899 	};
3900 	int num_types = 4;
3901 	int alloc_size;
3902 	int ret = 0;
3903 	u64 slot_count = 0;
3904 	int i, c;
3905 
3906 	if (copy_from_user(&space_args,
3907 			   (struct btrfs_ioctl_space_args __user *)arg,
3908 			   sizeof(space_args)))
3909 		return -EFAULT;
3910 
3911 	for (i = 0; i < num_types; i++) {
3912 		struct btrfs_space_info *tmp;
3913 
3914 		info = NULL;
3915 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3916 			if (tmp->flags == types[i]) {
3917 				info = tmp;
3918 				break;
3919 			}
3920 		}
3921 
3922 		if (!info)
3923 			continue;
3924 
3925 		down_read(&info->groups_sem);
3926 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3927 			if (!list_empty(&info->block_groups[c]))
3928 				slot_count++;
3929 		}
3930 		up_read(&info->groups_sem);
3931 	}
3932 
3933 	/*
3934 	 * Global block reserve, exported as a space_info
3935 	 */
3936 	slot_count++;
3937 
3938 	/* space_slots == 0 means they are asking for a count */
3939 	if (space_args.space_slots == 0) {
3940 		space_args.total_spaces = slot_count;
3941 		goto out;
3942 	}
3943 
3944 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3945 
3946 	alloc_size = sizeof(*dest) * slot_count;
3947 
3948 	/* we generally have at most 6 or so space infos, one for each raid
3949 	 * level.  So, a whole page should be more than enough for everyone
3950 	 */
3951 	if (alloc_size > PAGE_SIZE)
3952 		return -ENOMEM;
3953 
3954 	space_args.total_spaces = 0;
3955 	dest = kmalloc(alloc_size, GFP_KERNEL);
3956 	if (!dest)
3957 		return -ENOMEM;
3958 	dest_orig = dest;
3959 
3960 	/* now we have a buffer to copy into */
3961 	for (i = 0; i < num_types; i++) {
3962 		struct btrfs_space_info *tmp;
3963 
3964 		if (!slot_count)
3965 			break;
3966 
3967 		info = NULL;
3968 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3969 			if (tmp->flags == types[i]) {
3970 				info = tmp;
3971 				break;
3972 			}
3973 		}
3974 
3975 		if (!info)
3976 			continue;
3977 		down_read(&info->groups_sem);
3978 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3979 			if (!list_empty(&info->block_groups[c])) {
3980 				get_block_group_info(&info->block_groups[c],
3981 						     &space);
3982 				memcpy(dest, &space, sizeof(space));
3983 				dest++;
3984 				space_args.total_spaces++;
3985 				slot_count--;
3986 			}
3987 			if (!slot_count)
3988 				break;
3989 		}
3990 		up_read(&info->groups_sem);
3991 	}
3992 
3993 	/*
3994 	 * Add global block reserve
3995 	 */
3996 	if (slot_count) {
3997 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3998 
3999 		spin_lock(&block_rsv->lock);
4000 		space.total_bytes = block_rsv->size;
4001 		space.used_bytes = block_rsv->size - block_rsv->reserved;
4002 		spin_unlock(&block_rsv->lock);
4003 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4004 		memcpy(dest, &space, sizeof(space));
4005 		space_args.total_spaces++;
4006 	}
4007 
4008 	user_dest = (struct btrfs_ioctl_space_info __user *)
4009 		(arg + sizeof(struct btrfs_ioctl_space_args));
4010 
4011 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4012 		ret = -EFAULT;
4013 
4014 	kfree(dest_orig);
4015 out:
4016 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4017 		ret = -EFAULT;
4018 
4019 	return ret;
4020 }
4021 
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)4022 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4023 					    void __user *argp)
4024 {
4025 	struct btrfs_trans_handle *trans;
4026 	u64 transid;
4027 
4028 	trans = btrfs_attach_transaction_barrier(root);
4029 	if (IS_ERR(trans)) {
4030 		if (PTR_ERR(trans) != -ENOENT)
4031 			return PTR_ERR(trans);
4032 
4033 		/* No running transaction, don't bother */
4034 		transid = root->fs_info->last_trans_committed;
4035 		goto out;
4036 	}
4037 	transid = trans->transid;
4038 	btrfs_commit_transaction_async(trans);
4039 out:
4040 	if (argp)
4041 		if (copy_to_user(argp, &transid, sizeof(transid)))
4042 			return -EFAULT;
4043 	return 0;
4044 }
4045 
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)4046 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4047 					   void __user *argp)
4048 {
4049 	u64 transid;
4050 
4051 	if (argp) {
4052 		if (copy_from_user(&transid, argp, sizeof(transid)))
4053 			return -EFAULT;
4054 	} else {
4055 		transid = 0;  /* current trans */
4056 	}
4057 	return btrfs_wait_for_commit(fs_info, transid);
4058 }
4059 
btrfs_ioctl_scrub(struct file * file,void __user * arg)4060 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4061 {
4062 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4063 	struct btrfs_ioctl_scrub_args *sa;
4064 	int ret;
4065 
4066 	if (!capable(CAP_SYS_ADMIN))
4067 		return -EPERM;
4068 
4069 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
4070 		btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
4071 		return -EINVAL;
4072 	}
4073 
4074 	sa = memdup_user(arg, sizeof(*sa));
4075 	if (IS_ERR(sa))
4076 		return PTR_ERR(sa);
4077 
4078 	if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
4079 		ret = -EOPNOTSUPP;
4080 		goto out;
4081 	}
4082 
4083 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4084 		ret = mnt_want_write_file(file);
4085 		if (ret)
4086 			goto out;
4087 	}
4088 
4089 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4090 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4091 			      0);
4092 
4093 	/*
4094 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
4095 	 * error. This is important as it allows user space to know how much
4096 	 * progress scrub has done. For example, if scrub is canceled we get
4097 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
4098 	 * space. Later user space can inspect the progress from the structure
4099 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
4100 	 * previously (btrfs-progs does this).
4101 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
4102 	 * then return -EFAULT to signal the structure was not copied or it may
4103 	 * be corrupt and unreliable due to a partial copy.
4104 	 */
4105 	if (copy_to_user(arg, sa, sizeof(*sa)))
4106 		ret = -EFAULT;
4107 
4108 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4109 		mnt_drop_write_file(file);
4110 out:
4111 	kfree(sa);
4112 	return ret;
4113 }
4114 
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)4115 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4116 {
4117 	if (!capable(CAP_SYS_ADMIN))
4118 		return -EPERM;
4119 
4120 	return btrfs_scrub_cancel(fs_info);
4121 }
4122 
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)4123 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4124 				       void __user *arg)
4125 {
4126 	struct btrfs_ioctl_scrub_args *sa;
4127 	int ret;
4128 
4129 	if (!capable(CAP_SYS_ADMIN))
4130 		return -EPERM;
4131 
4132 	sa = memdup_user(arg, sizeof(*sa));
4133 	if (IS_ERR(sa))
4134 		return PTR_ERR(sa);
4135 
4136 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4137 
4138 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4139 		ret = -EFAULT;
4140 
4141 	kfree(sa);
4142 	return ret;
4143 }
4144 
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)4145 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4146 				      void __user *arg)
4147 {
4148 	struct btrfs_ioctl_get_dev_stats *sa;
4149 	int ret;
4150 
4151 	sa = memdup_user(arg, sizeof(*sa));
4152 	if (IS_ERR(sa))
4153 		return PTR_ERR(sa);
4154 
4155 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4156 		kfree(sa);
4157 		return -EPERM;
4158 	}
4159 
4160 	ret = btrfs_get_dev_stats(fs_info, sa);
4161 
4162 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4163 		ret = -EFAULT;
4164 
4165 	kfree(sa);
4166 	return ret;
4167 }
4168 
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)4169 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4170 				    void __user *arg)
4171 {
4172 	struct btrfs_ioctl_dev_replace_args *p;
4173 	int ret;
4174 
4175 	if (!capable(CAP_SYS_ADMIN))
4176 		return -EPERM;
4177 
4178 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
4179 		btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
4180 		return -EINVAL;
4181 	}
4182 
4183 	p = memdup_user(arg, sizeof(*p));
4184 	if (IS_ERR(p))
4185 		return PTR_ERR(p);
4186 
4187 	switch (p->cmd) {
4188 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4189 		if (sb_rdonly(fs_info->sb)) {
4190 			ret = -EROFS;
4191 			goto out;
4192 		}
4193 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
4194 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4195 		} else {
4196 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4197 			btrfs_exclop_finish(fs_info);
4198 		}
4199 		break;
4200 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4201 		btrfs_dev_replace_status(fs_info, p);
4202 		ret = 0;
4203 		break;
4204 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4205 		p->result = btrfs_dev_replace_cancel(fs_info);
4206 		ret = 0;
4207 		break;
4208 	default:
4209 		ret = -EINVAL;
4210 		break;
4211 	}
4212 
4213 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
4214 		ret = -EFAULT;
4215 out:
4216 	kfree(p);
4217 	return ret;
4218 }
4219 
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)4220 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4221 {
4222 	int ret = 0;
4223 	int i;
4224 	u64 rel_ptr;
4225 	int size;
4226 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4227 	struct inode_fs_paths *ipath = NULL;
4228 	struct btrfs_path *path;
4229 
4230 	if (!capable(CAP_DAC_READ_SEARCH))
4231 		return -EPERM;
4232 
4233 	path = btrfs_alloc_path();
4234 	if (!path) {
4235 		ret = -ENOMEM;
4236 		goto out;
4237 	}
4238 
4239 	ipa = memdup_user(arg, sizeof(*ipa));
4240 	if (IS_ERR(ipa)) {
4241 		ret = PTR_ERR(ipa);
4242 		ipa = NULL;
4243 		goto out;
4244 	}
4245 
4246 	size = min_t(u32, ipa->size, 4096);
4247 	ipath = init_ipath(size, root, path);
4248 	if (IS_ERR(ipath)) {
4249 		ret = PTR_ERR(ipath);
4250 		ipath = NULL;
4251 		goto out;
4252 	}
4253 
4254 	ret = paths_from_inode(ipa->inum, ipath);
4255 	if (ret < 0)
4256 		goto out;
4257 
4258 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4259 		rel_ptr = ipath->fspath->val[i] -
4260 			  (u64)(unsigned long)ipath->fspath->val;
4261 		ipath->fspath->val[i] = rel_ptr;
4262 	}
4263 
4264 	btrfs_free_path(path);
4265 	path = NULL;
4266 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4267 			   ipath->fspath, size);
4268 	if (ret) {
4269 		ret = -EFAULT;
4270 		goto out;
4271 	}
4272 
4273 out:
4274 	btrfs_free_path(path);
4275 	free_ipath(ipath);
4276 	kfree(ipa);
4277 
4278 	return ret;
4279 }
4280 
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg,int version)4281 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4282 					void __user *arg, int version)
4283 {
4284 	int ret = 0;
4285 	int size;
4286 	struct btrfs_ioctl_logical_ino_args *loi;
4287 	struct btrfs_data_container *inodes = NULL;
4288 	struct btrfs_path *path = NULL;
4289 	bool ignore_offset;
4290 
4291 	if (!capable(CAP_SYS_ADMIN))
4292 		return -EPERM;
4293 
4294 	loi = memdup_user(arg, sizeof(*loi));
4295 	if (IS_ERR(loi))
4296 		return PTR_ERR(loi);
4297 
4298 	if (version == 1) {
4299 		ignore_offset = false;
4300 		size = min_t(u32, loi->size, SZ_64K);
4301 	} else {
4302 		/* All reserved bits must be 0 for now */
4303 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4304 			ret = -EINVAL;
4305 			goto out_loi;
4306 		}
4307 		/* Only accept flags we have defined so far */
4308 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4309 			ret = -EINVAL;
4310 			goto out_loi;
4311 		}
4312 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4313 		size = min_t(u32, loi->size, SZ_16M);
4314 	}
4315 
4316 	inodes = init_data_container(size);
4317 	if (IS_ERR(inodes)) {
4318 		ret = PTR_ERR(inodes);
4319 		goto out_loi;
4320 	}
4321 
4322 	path = btrfs_alloc_path();
4323 	if (!path) {
4324 		ret = -ENOMEM;
4325 		goto out;
4326 	}
4327 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4328 					  inodes, ignore_offset);
4329 	btrfs_free_path(path);
4330 	if (ret == -EINVAL)
4331 		ret = -ENOENT;
4332 	if (ret < 0)
4333 		goto out;
4334 
4335 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4336 			   size);
4337 	if (ret)
4338 		ret = -EFAULT;
4339 
4340 out:
4341 	kvfree(inodes);
4342 out_loi:
4343 	kfree(loi);
4344 
4345 	return ret;
4346 }
4347 
btrfs_update_ioctl_balance_args(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_balance_args * bargs)4348 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
4349 			       struct btrfs_ioctl_balance_args *bargs)
4350 {
4351 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4352 
4353 	bargs->flags = bctl->flags;
4354 
4355 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4356 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4357 	if (atomic_read(&fs_info->balance_pause_req))
4358 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4359 	if (atomic_read(&fs_info->balance_cancel_req))
4360 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4361 
4362 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4363 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4364 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4365 
4366 	spin_lock(&fs_info->balance_lock);
4367 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4368 	spin_unlock(&fs_info->balance_lock);
4369 }
4370 
4371 /**
4372  * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
4373  * required.
4374  *
4375  * @fs_info:       the filesystem
4376  * @excl_acquired: ptr to boolean value which is set to false in case balance
4377  *                 is being resumed
4378  *
4379  * Return 0 on success in which case both fs_info::balance is acquired as well
4380  * as exclusive ops are blocked. In case of failure return an error code.
4381  */
btrfs_try_lock_balance(struct btrfs_fs_info * fs_info,bool * excl_acquired)4382 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
4383 {
4384 	int ret;
4385 
4386 	/*
4387 	 * Exclusive operation is locked. Three possibilities:
4388 	 *   (1) some other op is running
4389 	 *   (2) balance is running
4390 	 *   (3) balance is paused -- special case (think resume)
4391 	 */
4392 	while (1) {
4393 		if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4394 			*excl_acquired = true;
4395 			mutex_lock(&fs_info->balance_mutex);
4396 			return 0;
4397 		}
4398 
4399 		mutex_lock(&fs_info->balance_mutex);
4400 		if (fs_info->balance_ctl) {
4401 			/* This is either (2) or (3) */
4402 			if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4403 				/* This is (2) */
4404 				ret = -EINPROGRESS;
4405 				goto out_failure;
4406 
4407 			} else {
4408 				mutex_unlock(&fs_info->balance_mutex);
4409 				/*
4410 				 * Lock released to allow other waiters to
4411 				 * continue, we'll reexamine the status again.
4412 				 */
4413 				mutex_lock(&fs_info->balance_mutex);
4414 
4415 				if (fs_info->balance_ctl &&
4416 				    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4417 					/* This is (3) */
4418 					*excl_acquired = false;
4419 					return 0;
4420 				}
4421 			}
4422 		} else {
4423 			/* This is (1) */
4424 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4425 			goto out_failure;
4426 		}
4427 
4428 		mutex_unlock(&fs_info->balance_mutex);
4429 	}
4430 
4431 out_failure:
4432 	mutex_unlock(&fs_info->balance_mutex);
4433 	*excl_acquired = false;
4434 	return ret;
4435 }
4436 
btrfs_ioctl_balance(struct file * file,void __user * arg)4437 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4438 {
4439 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4440 	struct btrfs_fs_info *fs_info = root->fs_info;
4441 	struct btrfs_ioctl_balance_args *bargs;
4442 	struct btrfs_balance_control *bctl;
4443 	bool need_unlock = true;
4444 	int ret;
4445 
4446 	if (!capable(CAP_SYS_ADMIN))
4447 		return -EPERM;
4448 
4449 	ret = mnt_want_write_file(file);
4450 	if (ret)
4451 		return ret;
4452 
4453 	bargs = memdup_user(arg, sizeof(*bargs));
4454 	if (IS_ERR(bargs)) {
4455 		ret = PTR_ERR(bargs);
4456 		bargs = NULL;
4457 		goto out;
4458 	}
4459 
4460 	ret = btrfs_try_lock_balance(fs_info, &need_unlock);
4461 	if (ret)
4462 		goto out;
4463 
4464 	lockdep_assert_held(&fs_info->balance_mutex);
4465 
4466 	if (bargs->flags & BTRFS_BALANCE_RESUME) {
4467 		if (!fs_info->balance_ctl) {
4468 			ret = -ENOTCONN;
4469 			goto out_unlock;
4470 		}
4471 
4472 		bctl = fs_info->balance_ctl;
4473 		spin_lock(&fs_info->balance_lock);
4474 		bctl->flags |= BTRFS_BALANCE_RESUME;
4475 		spin_unlock(&fs_info->balance_lock);
4476 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
4477 
4478 		goto do_balance;
4479 	}
4480 
4481 	if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4482 		ret = -EINVAL;
4483 		goto out_unlock;
4484 	}
4485 
4486 	if (fs_info->balance_ctl) {
4487 		ret = -EINPROGRESS;
4488 		goto out_unlock;
4489 	}
4490 
4491 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4492 	if (!bctl) {
4493 		ret = -ENOMEM;
4494 		goto out_unlock;
4495 	}
4496 
4497 	memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4498 	memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4499 	memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4500 
4501 	bctl->flags = bargs->flags;
4502 do_balance:
4503 	/*
4504 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4505 	 * bctl is freed in reset_balance_state, or, if restriper was paused
4506 	 * all the way until unmount, in free_fs_info.  The flag should be
4507 	 * cleared after reset_balance_state.
4508 	 */
4509 	need_unlock = false;
4510 
4511 	ret = btrfs_balance(fs_info, bctl, bargs);
4512 	bctl = NULL;
4513 
4514 	if (ret == 0 || ret == -ECANCELED) {
4515 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4516 			ret = -EFAULT;
4517 	}
4518 
4519 	kfree(bctl);
4520 out_unlock:
4521 	mutex_unlock(&fs_info->balance_mutex);
4522 	if (need_unlock)
4523 		btrfs_exclop_finish(fs_info);
4524 out:
4525 	mnt_drop_write_file(file);
4526 	kfree(bargs);
4527 	return ret;
4528 }
4529 
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)4530 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4531 {
4532 	if (!capable(CAP_SYS_ADMIN))
4533 		return -EPERM;
4534 
4535 	switch (cmd) {
4536 	case BTRFS_BALANCE_CTL_PAUSE:
4537 		return btrfs_pause_balance(fs_info);
4538 	case BTRFS_BALANCE_CTL_CANCEL:
4539 		return btrfs_cancel_balance(fs_info);
4540 	}
4541 
4542 	return -EINVAL;
4543 }
4544 
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)4545 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4546 					 void __user *arg)
4547 {
4548 	struct btrfs_ioctl_balance_args *bargs;
4549 	int ret = 0;
4550 
4551 	if (!capable(CAP_SYS_ADMIN))
4552 		return -EPERM;
4553 
4554 	mutex_lock(&fs_info->balance_mutex);
4555 	if (!fs_info->balance_ctl) {
4556 		ret = -ENOTCONN;
4557 		goto out;
4558 	}
4559 
4560 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4561 	if (!bargs) {
4562 		ret = -ENOMEM;
4563 		goto out;
4564 	}
4565 
4566 	btrfs_update_ioctl_balance_args(fs_info, bargs);
4567 
4568 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4569 		ret = -EFAULT;
4570 
4571 	kfree(bargs);
4572 out:
4573 	mutex_unlock(&fs_info->balance_mutex);
4574 	return ret;
4575 }
4576 
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)4577 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4578 {
4579 	struct inode *inode = file_inode(file);
4580 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4581 	struct btrfs_ioctl_quota_ctl_args *sa;
4582 	int ret;
4583 
4584 	if (!capable(CAP_SYS_ADMIN))
4585 		return -EPERM;
4586 
4587 	ret = mnt_want_write_file(file);
4588 	if (ret)
4589 		return ret;
4590 
4591 	sa = memdup_user(arg, sizeof(*sa));
4592 	if (IS_ERR(sa)) {
4593 		ret = PTR_ERR(sa);
4594 		goto drop_write;
4595 	}
4596 
4597 	down_write(&fs_info->subvol_sem);
4598 
4599 	switch (sa->cmd) {
4600 	case BTRFS_QUOTA_CTL_ENABLE:
4601 		ret = btrfs_quota_enable(fs_info);
4602 		break;
4603 	case BTRFS_QUOTA_CTL_DISABLE:
4604 		ret = btrfs_quota_disable(fs_info);
4605 		break;
4606 	default:
4607 		ret = -EINVAL;
4608 		break;
4609 	}
4610 
4611 	kfree(sa);
4612 	up_write(&fs_info->subvol_sem);
4613 drop_write:
4614 	mnt_drop_write_file(file);
4615 	return ret;
4616 }
4617 
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)4618 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4619 {
4620 	struct inode *inode = file_inode(file);
4621 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4622 	struct btrfs_root *root = BTRFS_I(inode)->root;
4623 	struct btrfs_ioctl_qgroup_assign_args *sa;
4624 	struct btrfs_trans_handle *trans;
4625 	int ret;
4626 	int err;
4627 
4628 	if (!capable(CAP_SYS_ADMIN))
4629 		return -EPERM;
4630 
4631 	ret = mnt_want_write_file(file);
4632 	if (ret)
4633 		return ret;
4634 
4635 	sa = memdup_user(arg, sizeof(*sa));
4636 	if (IS_ERR(sa)) {
4637 		ret = PTR_ERR(sa);
4638 		goto drop_write;
4639 	}
4640 
4641 	trans = btrfs_join_transaction(root);
4642 	if (IS_ERR(trans)) {
4643 		ret = PTR_ERR(trans);
4644 		goto out;
4645 	}
4646 
4647 	if (sa->assign) {
4648 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4649 	} else {
4650 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4651 	}
4652 
4653 	/* update qgroup status and info */
4654 	mutex_lock(&fs_info->qgroup_ioctl_lock);
4655 	err = btrfs_run_qgroups(trans);
4656 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
4657 	if (err < 0)
4658 		btrfs_handle_fs_error(fs_info, err,
4659 				      "failed to update qgroup status and info");
4660 	err = btrfs_end_transaction(trans);
4661 	if (err && !ret)
4662 		ret = err;
4663 
4664 out:
4665 	kfree(sa);
4666 drop_write:
4667 	mnt_drop_write_file(file);
4668 	return ret;
4669 }
4670 
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)4671 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4672 {
4673 	struct inode *inode = file_inode(file);
4674 	struct btrfs_root *root = BTRFS_I(inode)->root;
4675 	struct btrfs_ioctl_qgroup_create_args *sa;
4676 	struct btrfs_trans_handle *trans;
4677 	int ret;
4678 	int err;
4679 
4680 	if (!capable(CAP_SYS_ADMIN))
4681 		return -EPERM;
4682 
4683 	ret = mnt_want_write_file(file);
4684 	if (ret)
4685 		return ret;
4686 
4687 	sa = memdup_user(arg, sizeof(*sa));
4688 	if (IS_ERR(sa)) {
4689 		ret = PTR_ERR(sa);
4690 		goto drop_write;
4691 	}
4692 
4693 	if (!sa->qgroupid) {
4694 		ret = -EINVAL;
4695 		goto out;
4696 	}
4697 
4698 	if (sa->create && is_fstree(sa->qgroupid)) {
4699 		ret = -EINVAL;
4700 		goto out;
4701 	}
4702 
4703 	trans = btrfs_join_transaction(root);
4704 	if (IS_ERR(trans)) {
4705 		ret = PTR_ERR(trans);
4706 		goto out;
4707 	}
4708 
4709 	if (sa->create) {
4710 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4711 	} else {
4712 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4713 	}
4714 
4715 	err = btrfs_end_transaction(trans);
4716 	if (err && !ret)
4717 		ret = err;
4718 
4719 out:
4720 	kfree(sa);
4721 drop_write:
4722 	mnt_drop_write_file(file);
4723 	return ret;
4724 }
4725 
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)4726 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4727 {
4728 	struct inode *inode = file_inode(file);
4729 	struct btrfs_root *root = BTRFS_I(inode)->root;
4730 	struct btrfs_ioctl_qgroup_limit_args *sa;
4731 	struct btrfs_trans_handle *trans;
4732 	int ret;
4733 	int err;
4734 	u64 qgroupid;
4735 
4736 	if (!capable(CAP_SYS_ADMIN))
4737 		return -EPERM;
4738 
4739 	ret = mnt_want_write_file(file);
4740 	if (ret)
4741 		return ret;
4742 
4743 	sa = memdup_user(arg, sizeof(*sa));
4744 	if (IS_ERR(sa)) {
4745 		ret = PTR_ERR(sa);
4746 		goto drop_write;
4747 	}
4748 
4749 	trans = btrfs_join_transaction(root);
4750 	if (IS_ERR(trans)) {
4751 		ret = PTR_ERR(trans);
4752 		goto out;
4753 	}
4754 
4755 	qgroupid = sa->qgroupid;
4756 	if (!qgroupid) {
4757 		/* take the current subvol as qgroup */
4758 		qgroupid = root->root_key.objectid;
4759 	}
4760 
4761 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4762 
4763 	err = btrfs_end_transaction(trans);
4764 	if (err && !ret)
4765 		ret = err;
4766 
4767 out:
4768 	kfree(sa);
4769 drop_write:
4770 	mnt_drop_write_file(file);
4771 	return ret;
4772 }
4773 
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)4774 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4775 {
4776 	struct inode *inode = file_inode(file);
4777 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4778 	struct btrfs_ioctl_quota_rescan_args *qsa;
4779 	int ret;
4780 
4781 	if (!capable(CAP_SYS_ADMIN))
4782 		return -EPERM;
4783 
4784 	ret = mnt_want_write_file(file);
4785 	if (ret)
4786 		return ret;
4787 
4788 	qsa = memdup_user(arg, sizeof(*qsa));
4789 	if (IS_ERR(qsa)) {
4790 		ret = PTR_ERR(qsa);
4791 		goto drop_write;
4792 	}
4793 
4794 	if (qsa->flags) {
4795 		ret = -EINVAL;
4796 		goto out;
4797 	}
4798 
4799 	ret = btrfs_qgroup_rescan(fs_info);
4800 
4801 out:
4802 	kfree(qsa);
4803 drop_write:
4804 	mnt_drop_write_file(file);
4805 	return ret;
4806 }
4807 
btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info * fs_info,void __user * arg)4808 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4809 						void __user *arg)
4810 {
4811 	struct btrfs_ioctl_quota_rescan_args qsa = {0};
4812 
4813 	if (!capable(CAP_SYS_ADMIN))
4814 		return -EPERM;
4815 
4816 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4817 		qsa.flags = 1;
4818 		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4819 	}
4820 
4821 	if (copy_to_user(arg, &qsa, sizeof(qsa)))
4822 		return -EFAULT;
4823 
4824 	return 0;
4825 }
4826 
btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info * fs_info,void __user * arg)4827 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4828 						void __user *arg)
4829 {
4830 	if (!capable(CAP_SYS_ADMIN))
4831 		return -EPERM;
4832 
4833 	return btrfs_qgroup_wait_for_completion(fs_info, true);
4834 }
4835 
_btrfs_ioctl_set_received_subvol(struct file * file,struct user_namespace * mnt_userns,struct btrfs_ioctl_received_subvol_args * sa)4836 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4837 					    struct user_namespace *mnt_userns,
4838 					    struct btrfs_ioctl_received_subvol_args *sa)
4839 {
4840 	struct inode *inode = file_inode(file);
4841 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4842 	struct btrfs_root *root = BTRFS_I(inode)->root;
4843 	struct btrfs_root_item *root_item = &root->root_item;
4844 	struct btrfs_trans_handle *trans;
4845 	struct timespec64 ct = current_time(inode);
4846 	int ret = 0;
4847 	int received_uuid_changed;
4848 
4849 	if (!inode_owner_or_capable(mnt_userns, inode))
4850 		return -EPERM;
4851 
4852 	ret = mnt_want_write_file(file);
4853 	if (ret < 0)
4854 		return ret;
4855 
4856 	down_write(&fs_info->subvol_sem);
4857 
4858 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4859 		ret = -EINVAL;
4860 		goto out;
4861 	}
4862 
4863 	if (btrfs_root_readonly(root)) {
4864 		ret = -EROFS;
4865 		goto out;
4866 	}
4867 
4868 	/*
4869 	 * 1 - root item
4870 	 * 2 - uuid items (received uuid + subvol uuid)
4871 	 */
4872 	trans = btrfs_start_transaction(root, 3);
4873 	if (IS_ERR(trans)) {
4874 		ret = PTR_ERR(trans);
4875 		trans = NULL;
4876 		goto out;
4877 	}
4878 
4879 	sa->rtransid = trans->transid;
4880 	sa->rtime.sec = ct.tv_sec;
4881 	sa->rtime.nsec = ct.tv_nsec;
4882 
4883 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4884 				       BTRFS_UUID_SIZE);
4885 	if (received_uuid_changed &&
4886 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4887 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4888 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4889 					  root->root_key.objectid);
4890 		if (ret && ret != -ENOENT) {
4891 		        btrfs_abort_transaction(trans, ret);
4892 		        btrfs_end_transaction(trans);
4893 		        goto out;
4894 		}
4895 	}
4896 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4897 	btrfs_set_root_stransid(root_item, sa->stransid);
4898 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4899 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4900 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4901 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4902 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4903 
4904 	ret = btrfs_update_root(trans, fs_info->tree_root,
4905 				&root->root_key, &root->root_item);
4906 	if (ret < 0) {
4907 		btrfs_end_transaction(trans);
4908 		goto out;
4909 	}
4910 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4911 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4912 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4913 					  root->root_key.objectid);
4914 		if (ret < 0 && ret != -EEXIST) {
4915 			btrfs_abort_transaction(trans, ret);
4916 			btrfs_end_transaction(trans);
4917 			goto out;
4918 		}
4919 	}
4920 	ret = btrfs_commit_transaction(trans);
4921 out:
4922 	up_write(&fs_info->subvol_sem);
4923 	mnt_drop_write_file(file);
4924 	return ret;
4925 }
4926 
4927 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)4928 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4929 						void __user *arg)
4930 {
4931 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4932 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4933 	int ret = 0;
4934 
4935 	args32 = memdup_user(arg, sizeof(*args32));
4936 	if (IS_ERR(args32))
4937 		return PTR_ERR(args32);
4938 
4939 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4940 	if (!args64) {
4941 		ret = -ENOMEM;
4942 		goto out;
4943 	}
4944 
4945 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4946 	args64->stransid = args32->stransid;
4947 	args64->rtransid = args32->rtransid;
4948 	args64->stime.sec = args32->stime.sec;
4949 	args64->stime.nsec = args32->stime.nsec;
4950 	args64->rtime.sec = args32->rtime.sec;
4951 	args64->rtime.nsec = args32->rtime.nsec;
4952 	args64->flags = args32->flags;
4953 
4954 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64);
4955 	if (ret)
4956 		goto out;
4957 
4958 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4959 	args32->stransid = args64->stransid;
4960 	args32->rtransid = args64->rtransid;
4961 	args32->stime.sec = args64->stime.sec;
4962 	args32->stime.nsec = args64->stime.nsec;
4963 	args32->rtime.sec = args64->rtime.sec;
4964 	args32->rtime.nsec = args64->rtime.nsec;
4965 	args32->flags = args64->flags;
4966 
4967 	ret = copy_to_user(arg, args32, sizeof(*args32));
4968 	if (ret)
4969 		ret = -EFAULT;
4970 
4971 out:
4972 	kfree(args32);
4973 	kfree(args64);
4974 	return ret;
4975 }
4976 #endif
4977 
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)4978 static long btrfs_ioctl_set_received_subvol(struct file *file,
4979 					    void __user *arg)
4980 {
4981 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4982 	int ret = 0;
4983 
4984 	sa = memdup_user(arg, sizeof(*sa));
4985 	if (IS_ERR(sa))
4986 		return PTR_ERR(sa);
4987 
4988 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa);
4989 
4990 	if (ret)
4991 		goto out;
4992 
4993 	ret = copy_to_user(arg, sa, sizeof(*sa));
4994 	if (ret)
4995 		ret = -EFAULT;
4996 
4997 out:
4998 	kfree(sa);
4999 	return ret;
5000 }
5001 
btrfs_ioctl_get_fslabel(struct btrfs_fs_info * fs_info,void __user * arg)5002 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
5003 					void __user *arg)
5004 {
5005 	size_t len;
5006 	int ret;
5007 	char label[BTRFS_LABEL_SIZE];
5008 
5009 	spin_lock(&fs_info->super_lock);
5010 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5011 	spin_unlock(&fs_info->super_lock);
5012 
5013 	len = strnlen(label, BTRFS_LABEL_SIZE);
5014 
5015 	if (len == BTRFS_LABEL_SIZE) {
5016 		btrfs_warn(fs_info,
5017 			   "label is too long, return the first %zu bytes",
5018 			   --len);
5019 	}
5020 
5021 	ret = copy_to_user(arg, label, len);
5022 
5023 	return ret ? -EFAULT : 0;
5024 }
5025 
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)5026 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5027 {
5028 	struct inode *inode = file_inode(file);
5029 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5030 	struct btrfs_root *root = BTRFS_I(inode)->root;
5031 	struct btrfs_super_block *super_block = fs_info->super_copy;
5032 	struct btrfs_trans_handle *trans;
5033 	char label[BTRFS_LABEL_SIZE];
5034 	int ret;
5035 
5036 	if (!capable(CAP_SYS_ADMIN))
5037 		return -EPERM;
5038 
5039 	if (copy_from_user(label, arg, sizeof(label)))
5040 		return -EFAULT;
5041 
5042 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5043 		btrfs_err(fs_info,
5044 			  "unable to set label with more than %d bytes",
5045 			  BTRFS_LABEL_SIZE - 1);
5046 		return -EINVAL;
5047 	}
5048 
5049 	ret = mnt_want_write_file(file);
5050 	if (ret)
5051 		return ret;
5052 
5053 	trans = btrfs_start_transaction(root, 0);
5054 	if (IS_ERR(trans)) {
5055 		ret = PTR_ERR(trans);
5056 		goto out_unlock;
5057 	}
5058 
5059 	spin_lock(&fs_info->super_lock);
5060 	strcpy(super_block->label, label);
5061 	spin_unlock(&fs_info->super_lock);
5062 	ret = btrfs_commit_transaction(trans);
5063 
5064 out_unlock:
5065 	mnt_drop_write_file(file);
5066 	return ret;
5067 }
5068 
5069 #define INIT_FEATURE_FLAGS(suffix) \
5070 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5071 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5072 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5073 
btrfs_ioctl_get_supported_features(void __user * arg)5074 int btrfs_ioctl_get_supported_features(void __user *arg)
5075 {
5076 	static const struct btrfs_ioctl_feature_flags features[3] = {
5077 		INIT_FEATURE_FLAGS(SUPP),
5078 		INIT_FEATURE_FLAGS(SAFE_SET),
5079 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5080 	};
5081 
5082 	if (copy_to_user(arg, &features, sizeof(features)))
5083 		return -EFAULT;
5084 
5085 	return 0;
5086 }
5087 
btrfs_ioctl_get_features(struct btrfs_fs_info * fs_info,void __user * arg)5088 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
5089 					void __user *arg)
5090 {
5091 	struct btrfs_super_block *super_block = fs_info->super_copy;
5092 	struct btrfs_ioctl_feature_flags features;
5093 
5094 	features.compat_flags = btrfs_super_compat_flags(super_block);
5095 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5096 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5097 
5098 	if (copy_to_user(arg, &features, sizeof(features)))
5099 		return -EFAULT;
5100 
5101 	return 0;
5102 }
5103 
check_feature_bits(struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)5104 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5105 			      enum btrfs_feature_set set,
5106 			      u64 change_mask, u64 flags, u64 supported_flags,
5107 			      u64 safe_set, u64 safe_clear)
5108 {
5109 	const char *type = btrfs_feature_set_name(set);
5110 	char *names;
5111 	u64 disallowed, unsupported;
5112 	u64 set_mask = flags & change_mask;
5113 	u64 clear_mask = ~flags & change_mask;
5114 
5115 	unsupported = set_mask & ~supported_flags;
5116 	if (unsupported) {
5117 		names = btrfs_printable_features(set, unsupported);
5118 		if (names) {
5119 			btrfs_warn(fs_info,
5120 				   "this kernel does not support the %s feature bit%s",
5121 				   names, strchr(names, ',') ? "s" : "");
5122 			kfree(names);
5123 		} else
5124 			btrfs_warn(fs_info,
5125 				   "this kernel does not support %s bits 0x%llx",
5126 				   type, unsupported);
5127 		return -EOPNOTSUPP;
5128 	}
5129 
5130 	disallowed = set_mask & ~safe_set;
5131 	if (disallowed) {
5132 		names = btrfs_printable_features(set, disallowed);
5133 		if (names) {
5134 			btrfs_warn(fs_info,
5135 				   "can't set the %s feature bit%s while mounted",
5136 				   names, strchr(names, ',') ? "s" : "");
5137 			kfree(names);
5138 		} else
5139 			btrfs_warn(fs_info,
5140 				   "can't set %s bits 0x%llx while mounted",
5141 				   type, disallowed);
5142 		return -EPERM;
5143 	}
5144 
5145 	disallowed = clear_mask & ~safe_clear;
5146 	if (disallowed) {
5147 		names = btrfs_printable_features(set, disallowed);
5148 		if (names) {
5149 			btrfs_warn(fs_info,
5150 				   "can't clear the %s feature bit%s while mounted",
5151 				   names, strchr(names, ',') ? "s" : "");
5152 			kfree(names);
5153 		} else
5154 			btrfs_warn(fs_info,
5155 				   "can't clear %s bits 0x%llx while mounted",
5156 				   type, disallowed);
5157 		return -EPERM;
5158 	}
5159 
5160 	return 0;
5161 }
5162 
5163 #define check_feature(fs_info, change_mask, flags, mask_base)	\
5164 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
5165 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5166 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5167 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5168 
btrfs_ioctl_set_features(struct file * file,void __user * arg)5169 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5170 {
5171 	struct inode *inode = file_inode(file);
5172 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5173 	struct btrfs_root *root = BTRFS_I(inode)->root;
5174 	struct btrfs_super_block *super_block = fs_info->super_copy;
5175 	struct btrfs_ioctl_feature_flags flags[2];
5176 	struct btrfs_trans_handle *trans;
5177 	u64 newflags;
5178 	int ret;
5179 
5180 	if (!capable(CAP_SYS_ADMIN))
5181 		return -EPERM;
5182 
5183 	if (copy_from_user(flags, arg, sizeof(flags)))
5184 		return -EFAULT;
5185 
5186 	/* Nothing to do */
5187 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5188 	    !flags[0].incompat_flags)
5189 		return 0;
5190 
5191 	ret = check_feature(fs_info, flags[0].compat_flags,
5192 			    flags[1].compat_flags, COMPAT);
5193 	if (ret)
5194 		return ret;
5195 
5196 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
5197 			    flags[1].compat_ro_flags, COMPAT_RO);
5198 	if (ret)
5199 		return ret;
5200 
5201 	ret = check_feature(fs_info, flags[0].incompat_flags,
5202 			    flags[1].incompat_flags, INCOMPAT);
5203 	if (ret)
5204 		return ret;
5205 
5206 	ret = mnt_want_write_file(file);
5207 	if (ret)
5208 		return ret;
5209 
5210 	trans = btrfs_start_transaction(root, 0);
5211 	if (IS_ERR(trans)) {
5212 		ret = PTR_ERR(trans);
5213 		goto out_drop_write;
5214 	}
5215 
5216 	spin_lock(&fs_info->super_lock);
5217 	newflags = btrfs_super_compat_flags(super_block);
5218 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5219 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5220 	btrfs_set_super_compat_flags(super_block, newflags);
5221 
5222 	newflags = btrfs_super_compat_ro_flags(super_block);
5223 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5224 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5225 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5226 
5227 	newflags = btrfs_super_incompat_flags(super_block);
5228 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5229 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5230 	btrfs_set_super_incompat_flags(super_block, newflags);
5231 	spin_unlock(&fs_info->super_lock);
5232 
5233 	ret = btrfs_commit_transaction(trans);
5234 out_drop_write:
5235 	mnt_drop_write_file(file);
5236 
5237 	return ret;
5238 }
5239 
_btrfs_ioctl_send(struct inode * inode,void __user * argp,bool compat)5240 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
5241 {
5242 	struct btrfs_ioctl_send_args *arg;
5243 	int ret;
5244 
5245 	if (compat) {
5246 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5247 		struct btrfs_ioctl_send_args_32 args32 = { 0 };
5248 
5249 		ret = copy_from_user(&args32, argp, sizeof(args32));
5250 		if (ret)
5251 			return -EFAULT;
5252 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5253 		if (!arg)
5254 			return -ENOMEM;
5255 		arg->send_fd = args32.send_fd;
5256 		arg->clone_sources_count = args32.clone_sources_count;
5257 		arg->clone_sources = compat_ptr(args32.clone_sources);
5258 		arg->parent_root = args32.parent_root;
5259 		arg->flags = args32.flags;
5260 		arg->version = args32.version;
5261 		memcpy(arg->reserved, args32.reserved,
5262 		       sizeof(args32.reserved));
5263 #else
5264 		return -ENOTTY;
5265 #endif
5266 	} else {
5267 		arg = memdup_user(argp, sizeof(*arg));
5268 		if (IS_ERR(arg))
5269 			return PTR_ERR(arg);
5270 	}
5271 	ret = btrfs_ioctl_send(inode, arg);
5272 	kfree(arg);
5273 	return ret;
5274 }
5275 
btrfs_ioctl_encoded_read(struct file * file,void __user * argp,bool compat)5276 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
5277 				    bool compat)
5278 {
5279 	struct btrfs_ioctl_encoded_io_args args = { 0 };
5280 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
5281 					     flags);
5282 	size_t copy_end;
5283 	struct iovec iovstack[UIO_FASTIOV];
5284 	struct iovec *iov = iovstack;
5285 	struct iov_iter iter;
5286 	loff_t pos;
5287 	struct kiocb kiocb;
5288 	ssize_t ret;
5289 
5290 	if (!capable(CAP_SYS_ADMIN)) {
5291 		ret = -EPERM;
5292 		goto out_acct;
5293 	}
5294 
5295 	if (compat) {
5296 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5297 		struct btrfs_ioctl_encoded_io_args_32 args32;
5298 
5299 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
5300 				       flags);
5301 		if (copy_from_user(&args32, argp, copy_end)) {
5302 			ret = -EFAULT;
5303 			goto out_acct;
5304 		}
5305 		args.iov = compat_ptr(args32.iov);
5306 		args.iovcnt = args32.iovcnt;
5307 		args.offset = args32.offset;
5308 		args.flags = args32.flags;
5309 #else
5310 		return -ENOTTY;
5311 #endif
5312 	} else {
5313 		copy_end = copy_end_kernel;
5314 		if (copy_from_user(&args, argp, copy_end)) {
5315 			ret = -EFAULT;
5316 			goto out_acct;
5317 		}
5318 	}
5319 	if (args.flags != 0) {
5320 		ret = -EINVAL;
5321 		goto out_acct;
5322 	}
5323 
5324 	ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
5325 			   &iov, &iter);
5326 	if (ret < 0)
5327 		goto out_acct;
5328 
5329 	if (iov_iter_count(&iter) == 0) {
5330 		ret = 0;
5331 		goto out_iov;
5332 	}
5333 	pos = args.offset;
5334 	ret = rw_verify_area(READ, file, &pos, args.len);
5335 	if (ret < 0)
5336 		goto out_iov;
5337 
5338 	init_sync_kiocb(&kiocb, file);
5339 	kiocb.ki_pos = pos;
5340 
5341 	ret = btrfs_encoded_read(&kiocb, &iter, &args);
5342 	if (ret >= 0) {
5343 		fsnotify_access(file);
5344 		if (copy_to_user(argp + copy_end,
5345 				 (char *)&args + copy_end_kernel,
5346 				 sizeof(args) - copy_end_kernel))
5347 			ret = -EFAULT;
5348 	}
5349 
5350 out_iov:
5351 	kfree(iov);
5352 out_acct:
5353 	if (ret > 0)
5354 		add_rchar(current, ret);
5355 	inc_syscr(current);
5356 	return ret;
5357 }
5358 
btrfs_ioctl_encoded_write(struct file * file,void __user * argp,bool compat)5359 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
5360 {
5361 	struct btrfs_ioctl_encoded_io_args args;
5362 	struct iovec iovstack[UIO_FASTIOV];
5363 	struct iovec *iov = iovstack;
5364 	struct iov_iter iter;
5365 	loff_t pos;
5366 	struct kiocb kiocb;
5367 	ssize_t ret;
5368 
5369 	if (!capable(CAP_SYS_ADMIN)) {
5370 		ret = -EPERM;
5371 		goto out_acct;
5372 	}
5373 
5374 	if (!(file->f_mode & FMODE_WRITE)) {
5375 		ret = -EBADF;
5376 		goto out_acct;
5377 	}
5378 
5379 	if (compat) {
5380 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5381 		struct btrfs_ioctl_encoded_io_args_32 args32;
5382 
5383 		if (copy_from_user(&args32, argp, sizeof(args32))) {
5384 			ret = -EFAULT;
5385 			goto out_acct;
5386 		}
5387 		args.iov = compat_ptr(args32.iov);
5388 		args.iovcnt = args32.iovcnt;
5389 		args.offset = args32.offset;
5390 		args.flags = args32.flags;
5391 		args.len = args32.len;
5392 		args.unencoded_len = args32.unencoded_len;
5393 		args.unencoded_offset = args32.unencoded_offset;
5394 		args.compression = args32.compression;
5395 		args.encryption = args32.encryption;
5396 		memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
5397 #else
5398 		return -ENOTTY;
5399 #endif
5400 	} else {
5401 		if (copy_from_user(&args, argp, sizeof(args))) {
5402 			ret = -EFAULT;
5403 			goto out_acct;
5404 		}
5405 	}
5406 
5407 	ret = -EINVAL;
5408 	if (args.flags != 0)
5409 		goto out_acct;
5410 	if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
5411 		goto out_acct;
5412 	if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
5413 	    args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
5414 		goto out_acct;
5415 	if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
5416 	    args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
5417 		goto out_acct;
5418 	if (args.unencoded_offset > args.unencoded_len)
5419 		goto out_acct;
5420 	if (args.len > args.unencoded_len - args.unencoded_offset)
5421 		goto out_acct;
5422 
5423 	ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
5424 			   &iov, &iter);
5425 	if (ret < 0)
5426 		goto out_acct;
5427 
5428 	file_start_write(file);
5429 
5430 	if (iov_iter_count(&iter) == 0) {
5431 		ret = 0;
5432 		goto out_end_write;
5433 	}
5434 	pos = args.offset;
5435 	ret = rw_verify_area(WRITE, file, &pos, args.len);
5436 	if (ret < 0)
5437 		goto out_end_write;
5438 
5439 	init_sync_kiocb(&kiocb, file);
5440 	ret = kiocb_set_rw_flags(&kiocb, 0);
5441 	if (ret)
5442 		goto out_end_write;
5443 	kiocb.ki_pos = pos;
5444 
5445 	ret = btrfs_do_write_iter(&kiocb, &iter, &args);
5446 	if (ret > 0)
5447 		fsnotify_modify(file);
5448 
5449 out_end_write:
5450 	file_end_write(file);
5451 	kfree(iov);
5452 out_acct:
5453 	if (ret > 0)
5454 		add_wchar(current, ret);
5455 	inc_syscw(current);
5456 	return ret;
5457 }
5458 
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5459 long btrfs_ioctl(struct file *file, unsigned int
5460 		cmd, unsigned long arg)
5461 {
5462 	struct inode *inode = file_inode(file);
5463 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5464 	struct btrfs_root *root = BTRFS_I(inode)->root;
5465 	void __user *argp = (void __user *)arg;
5466 
5467 	switch (cmd) {
5468 	case FS_IOC_GETVERSION:
5469 		return btrfs_ioctl_getversion(inode, argp);
5470 	case FS_IOC_GETFSLABEL:
5471 		return btrfs_ioctl_get_fslabel(fs_info, argp);
5472 	case FS_IOC_SETFSLABEL:
5473 		return btrfs_ioctl_set_fslabel(file, argp);
5474 	case FITRIM:
5475 		return btrfs_ioctl_fitrim(fs_info, argp);
5476 	case BTRFS_IOC_SNAP_CREATE:
5477 		return btrfs_ioctl_snap_create(file, argp, 0);
5478 	case BTRFS_IOC_SNAP_CREATE_V2:
5479 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5480 	case BTRFS_IOC_SUBVOL_CREATE:
5481 		return btrfs_ioctl_snap_create(file, argp, 1);
5482 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5483 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5484 	case BTRFS_IOC_SNAP_DESTROY:
5485 		return btrfs_ioctl_snap_destroy(file, argp, false);
5486 	case BTRFS_IOC_SNAP_DESTROY_V2:
5487 		return btrfs_ioctl_snap_destroy(file, argp, true);
5488 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5489 		return btrfs_ioctl_subvol_getflags(inode, argp);
5490 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5491 		return btrfs_ioctl_subvol_setflags(file, argp);
5492 	case BTRFS_IOC_DEFAULT_SUBVOL:
5493 		return btrfs_ioctl_default_subvol(file, argp);
5494 	case BTRFS_IOC_DEFRAG:
5495 		return btrfs_ioctl_defrag(file, NULL);
5496 	case BTRFS_IOC_DEFRAG_RANGE:
5497 		return btrfs_ioctl_defrag(file, argp);
5498 	case BTRFS_IOC_RESIZE:
5499 		return btrfs_ioctl_resize(file, argp);
5500 	case BTRFS_IOC_ADD_DEV:
5501 		return btrfs_ioctl_add_dev(fs_info, argp);
5502 	case BTRFS_IOC_RM_DEV:
5503 		return btrfs_ioctl_rm_dev(file, argp);
5504 	case BTRFS_IOC_RM_DEV_V2:
5505 		return btrfs_ioctl_rm_dev_v2(file, argp);
5506 	case BTRFS_IOC_FS_INFO:
5507 		return btrfs_ioctl_fs_info(fs_info, argp);
5508 	case BTRFS_IOC_DEV_INFO:
5509 		return btrfs_ioctl_dev_info(fs_info, argp);
5510 	case BTRFS_IOC_TREE_SEARCH:
5511 		return btrfs_ioctl_tree_search(inode, argp);
5512 	case BTRFS_IOC_TREE_SEARCH_V2:
5513 		return btrfs_ioctl_tree_search_v2(inode, argp);
5514 	case BTRFS_IOC_INO_LOOKUP:
5515 		return btrfs_ioctl_ino_lookup(root, argp);
5516 	case BTRFS_IOC_INO_PATHS:
5517 		return btrfs_ioctl_ino_to_path(root, argp);
5518 	case BTRFS_IOC_LOGICAL_INO:
5519 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5520 	case BTRFS_IOC_LOGICAL_INO_V2:
5521 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5522 	case BTRFS_IOC_SPACE_INFO:
5523 		return btrfs_ioctl_space_info(fs_info, argp);
5524 	case BTRFS_IOC_SYNC: {
5525 		int ret;
5526 
5527 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5528 		if (ret)
5529 			return ret;
5530 		ret = btrfs_sync_fs(inode->i_sb, 1);
5531 		/*
5532 		 * The transaction thread may want to do more work,
5533 		 * namely it pokes the cleaner kthread that will start
5534 		 * processing uncleaned subvols.
5535 		 */
5536 		wake_up_process(fs_info->transaction_kthread);
5537 		return ret;
5538 	}
5539 	case BTRFS_IOC_START_SYNC:
5540 		return btrfs_ioctl_start_sync(root, argp);
5541 	case BTRFS_IOC_WAIT_SYNC:
5542 		return btrfs_ioctl_wait_sync(fs_info, argp);
5543 	case BTRFS_IOC_SCRUB:
5544 		return btrfs_ioctl_scrub(file, argp);
5545 	case BTRFS_IOC_SCRUB_CANCEL:
5546 		return btrfs_ioctl_scrub_cancel(fs_info);
5547 	case BTRFS_IOC_SCRUB_PROGRESS:
5548 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5549 	case BTRFS_IOC_BALANCE_V2:
5550 		return btrfs_ioctl_balance(file, argp);
5551 	case BTRFS_IOC_BALANCE_CTL:
5552 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5553 	case BTRFS_IOC_BALANCE_PROGRESS:
5554 		return btrfs_ioctl_balance_progress(fs_info, argp);
5555 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5556 		return btrfs_ioctl_set_received_subvol(file, argp);
5557 #ifdef CONFIG_64BIT
5558 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5559 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5560 #endif
5561 	case BTRFS_IOC_SEND:
5562 		return _btrfs_ioctl_send(inode, argp, false);
5563 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5564 	case BTRFS_IOC_SEND_32:
5565 		return _btrfs_ioctl_send(inode, argp, true);
5566 #endif
5567 	case BTRFS_IOC_GET_DEV_STATS:
5568 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5569 	case BTRFS_IOC_QUOTA_CTL:
5570 		return btrfs_ioctl_quota_ctl(file, argp);
5571 	case BTRFS_IOC_QGROUP_ASSIGN:
5572 		return btrfs_ioctl_qgroup_assign(file, argp);
5573 	case BTRFS_IOC_QGROUP_CREATE:
5574 		return btrfs_ioctl_qgroup_create(file, argp);
5575 	case BTRFS_IOC_QGROUP_LIMIT:
5576 		return btrfs_ioctl_qgroup_limit(file, argp);
5577 	case BTRFS_IOC_QUOTA_RESCAN:
5578 		return btrfs_ioctl_quota_rescan(file, argp);
5579 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5580 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5581 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5582 		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5583 	case BTRFS_IOC_DEV_REPLACE:
5584 		return btrfs_ioctl_dev_replace(fs_info, argp);
5585 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5586 		return btrfs_ioctl_get_supported_features(argp);
5587 	case BTRFS_IOC_GET_FEATURES:
5588 		return btrfs_ioctl_get_features(fs_info, argp);
5589 	case BTRFS_IOC_SET_FEATURES:
5590 		return btrfs_ioctl_set_features(file, argp);
5591 	case BTRFS_IOC_GET_SUBVOL_INFO:
5592 		return btrfs_ioctl_get_subvol_info(inode, argp);
5593 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5594 		return btrfs_ioctl_get_subvol_rootref(root, argp);
5595 	case BTRFS_IOC_INO_LOOKUP_USER:
5596 		return btrfs_ioctl_ino_lookup_user(file, argp);
5597 	case FS_IOC_ENABLE_VERITY:
5598 		return fsverity_ioctl_enable(file, (const void __user *)argp);
5599 	case FS_IOC_MEASURE_VERITY:
5600 		return fsverity_ioctl_measure(file, argp);
5601 	case BTRFS_IOC_ENCODED_READ:
5602 		return btrfs_ioctl_encoded_read(file, argp, false);
5603 	case BTRFS_IOC_ENCODED_WRITE:
5604 		return btrfs_ioctl_encoded_write(file, argp, false);
5605 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5606 	case BTRFS_IOC_ENCODED_READ_32:
5607 		return btrfs_ioctl_encoded_read(file, argp, true);
5608 	case BTRFS_IOC_ENCODED_WRITE_32:
5609 		return btrfs_ioctl_encoded_write(file, argp, true);
5610 #endif
5611 	}
5612 
5613 	return -ENOTTY;
5614 }
5615 
5616 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5617 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5618 {
5619 	/*
5620 	 * These all access 32-bit values anyway so no further
5621 	 * handling is necessary.
5622 	 */
5623 	switch (cmd) {
5624 	case FS_IOC32_GETVERSION:
5625 		cmd = FS_IOC_GETVERSION;
5626 		break;
5627 	}
5628 
5629 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5630 }
5631 #endif
5632