1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * SATA specific part of ATA helper library
4 *
5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2004 Jeff Garzik
7 * Copyright 2006 Tejun Heo <htejun@gmail.com>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <scsi/scsi_cmnd.h>
13 #include <scsi/scsi_device.h>
14 #include <linux/libata.h>
15
16 #include "libata.h"
17 #include "libata-transport.h"
18
19 /* debounce timing parameters in msecs { interval, duration, timeout } */
20 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
21 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
22 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
23 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
24 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
25 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
26
27 /**
28 * sata_scr_valid - test whether SCRs are accessible
29 * @link: ATA link to test SCR accessibility for
30 *
31 * Test whether SCRs are accessible for @link.
32 *
33 * LOCKING:
34 * None.
35 *
36 * RETURNS:
37 * 1 if SCRs are accessible, 0 otherwise.
38 */
sata_scr_valid(struct ata_link * link)39 int sata_scr_valid(struct ata_link *link)
40 {
41 struct ata_port *ap = link->ap;
42
43 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
44 }
45 EXPORT_SYMBOL_GPL(sata_scr_valid);
46
47 /**
48 * sata_scr_read - read SCR register of the specified port
49 * @link: ATA link to read SCR for
50 * @reg: SCR to read
51 * @val: Place to store read value
52 *
53 * Read SCR register @reg of @link into *@val. This function is
54 * guaranteed to succeed if @link is ap->link, the cable type of
55 * the port is SATA and the port implements ->scr_read.
56 *
57 * LOCKING:
58 * None if @link is ap->link. Kernel thread context otherwise.
59 *
60 * RETURNS:
61 * 0 on success, negative errno on failure.
62 */
sata_scr_read(struct ata_link * link,int reg,u32 * val)63 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
64 {
65 if (ata_is_host_link(link)) {
66 if (sata_scr_valid(link))
67 return link->ap->ops->scr_read(link, reg, val);
68 return -EOPNOTSUPP;
69 }
70
71 return sata_pmp_scr_read(link, reg, val);
72 }
73 EXPORT_SYMBOL_GPL(sata_scr_read);
74
75 /**
76 * sata_scr_write - write SCR register of the specified port
77 * @link: ATA link to write SCR for
78 * @reg: SCR to write
79 * @val: value to write
80 *
81 * Write @val to SCR register @reg of @link. This function is
82 * guaranteed to succeed if @link is ap->link, the cable type of
83 * the port is SATA and the port implements ->scr_read.
84 *
85 * LOCKING:
86 * None if @link is ap->link. Kernel thread context otherwise.
87 *
88 * RETURNS:
89 * 0 on success, negative errno on failure.
90 */
sata_scr_write(struct ata_link * link,int reg,u32 val)91 int sata_scr_write(struct ata_link *link, int reg, u32 val)
92 {
93 if (ata_is_host_link(link)) {
94 if (sata_scr_valid(link))
95 return link->ap->ops->scr_write(link, reg, val);
96 return -EOPNOTSUPP;
97 }
98
99 return sata_pmp_scr_write(link, reg, val);
100 }
101 EXPORT_SYMBOL_GPL(sata_scr_write);
102
103 /**
104 * sata_scr_write_flush - write SCR register of the specified port and flush
105 * @link: ATA link to write SCR for
106 * @reg: SCR to write
107 * @val: value to write
108 *
109 * This function is identical to sata_scr_write() except that this
110 * function performs flush after writing to the register.
111 *
112 * LOCKING:
113 * None if @link is ap->link. Kernel thread context otherwise.
114 *
115 * RETURNS:
116 * 0 on success, negative errno on failure.
117 */
sata_scr_write_flush(struct ata_link * link,int reg,u32 val)118 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
119 {
120 if (ata_is_host_link(link)) {
121 int rc;
122
123 if (sata_scr_valid(link)) {
124 rc = link->ap->ops->scr_write(link, reg, val);
125 if (rc == 0)
126 rc = link->ap->ops->scr_read(link, reg, &val);
127 return rc;
128 }
129 return -EOPNOTSUPP;
130 }
131
132 return sata_pmp_scr_write(link, reg, val);
133 }
134 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
135
136 /**
137 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
138 * @tf: Taskfile to convert
139 * @pmp: Port multiplier port
140 * @is_cmd: This FIS is for command
141 * @fis: Buffer into which data will output
142 *
143 * Converts a standard ATA taskfile to a Serial ATA
144 * FIS structure (Register - Host to Device).
145 *
146 * LOCKING:
147 * Inherited from caller.
148 */
ata_tf_to_fis(const struct ata_taskfile * tf,u8 pmp,int is_cmd,u8 * fis)149 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
150 {
151 fis[0] = 0x27; /* Register - Host to Device FIS */
152 fis[1] = pmp & 0xf; /* Port multiplier number*/
153 if (is_cmd)
154 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
155
156 fis[2] = tf->command;
157 fis[3] = tf->feature;
158
159 fis[4] = tf->lbal;
160 fis[5] = tf->lbam;
161 fis[6] = tf->lbah;
162 fis[7] = tf->device;
163
164 fis[8] = tf->hob_lbal;
165 fis[9] = tf->hob_lbam;
166 fis[10] = tf->hob_lbah;
167 fis[11] = tf->hob_feature;
168
169 fis[12] = tf->nsect;
170 fis[13] = tf->hob_nsect;
171 fis[14] = 0;
172 fis[15] = tf->ctl;
173
174 fis[16] = tf->auxiliary & 0xff;
175 fis[17] = (tf->auxiliary >> 8) & 0xff;
176 fis[18] = (tf->auxiliary >> 16) & 0xff;
177 fis[19] = (tf->auxiliary >> 24) & 0xff;
178 }
179 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
180
181 /**
182 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
183 * @fis: Buffer from which data will be input
184 * @tf: Taskfile to output
185 *
186 * Converts a serial ATA FIS structure to a standard ATA taskfile.
187 *
188 * LOCKING:
189 * Inherited from caller.
190 */
191
ata_tf_from_fis(const u8 * fis,struct ata_taskfile * tf)192 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
193 {
194 tf->status = fis[2];
195 tf->error = fis[3];
196
197 tf->lbal = fis[4];
198 tf->lbam = fis[5];
199 tf->lbah = fis[6];
200 tf->device = fis[7];
201
202 tf->hob_lbal = fis[8];
203 tf->hob_lbam = fis[9];
204 tf->hob_lbah = fis[10];
205
206 tf->nsect = fis[12];
207 tf->hob_nsect = fis[13];
208 }
209 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
210
211 /**
212 * sata_link_debounce - debounce SATA phy status
213 * @link: ATA link to debounce SATA phy status for
214 * @params: timing parameters { interval, duration, timeout } in msec
215 * @deadline: deadline jiffies for the operation
216 *
217 * Make sure SStatus of @link reaches stable state, determined by
218 * holding the same value where DET is not 1 for @duration polled
219 * every @interval, before @timeout. Timeout constraints the
220 * beginning of the stable state. Because DET gets stuck at 1 on
221 * some controllers after hot unplugging, this functions waits
222 * until timeout then returns 0 if DET is stable at 1.
223 *
224 * @timeout is further limited by @deadline. The sooner of the
225 * two is used.
226 *
227 * LOCKING:
228 * Kernel thread context (may sleep)
229 *
230 * RETURNS:
231 * 0 on success, -errno on failure.
232 */
sata_link_debounce(struct ata_link * link,const unsigned long * params,unsigned long deadline)233 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
234 unsigned long deadline)
235 {
236 unsigned long interval = params[0];
237 unsigned long duration = params[1];
238 unsigned long last_jiffies, t;
239 u32 last, cur;
240 int rc;
241
242 t = ata_deadline(jiffies, params[2]);
243 if (time_before(t, deadline))
244 deadline = t;
245
246 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
247 return rc;
248 cur &= 0xf;
249
250 last = cur;
251 last_jiffies = jiffies;
252
253 while (1) {
254 ata_msleep(link->ap, interval);
255 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
256 return rc;
257 cur &= 0xf;
258
259 /* DET stable? */
260 if (cur == last) {
261 if (cur == 1 && time_before(jiffies, deadline))
262 continue;
263 if (time_after(jiffies,
264 ata_deadline(last_jiffies, duration)))
265 return 0;
266 continue;
267 }
268
269 /* unstable, start over */
270 last = cur;
271 last_jiffies = jiffies;
272
273 /* Check deadline. If debouncing failed, return
274 * -EPIPE to tell upper layer to lower link speed.
275 */
276 if (time_after(jiffies, deadline))
277 return -EPIPE;
278 }
279 }
280 EXPORT_SYMBOL_GPL(sata_link_debounce);
281
282 /**
283 * sata_link_resume - resume SATA link
284 * @link: ATA link to resume SATA
285 * @params: timing parameters { interval, duration, timeout } in msec
286 * @deadline: deadline jiffies for the operation
287 *
288 * Resume SATA phy @link and debounce it.
289 *
290 * LOCKING:
291 * Kernel thread context (may sleep)
292 *
293 * RETURNS:
294 * 0 on success, -errno on failure.
295 */
sata_link_resume(struct ata_link * link,const unsigned long * params,unsigned long deadline)296 int sata_link_resume(struct ata_link *link, const unsigned long *params,
297 unsigned long deadline)
298 {
299 int tries = ATA_LINK_RESUME_TRIES;
300 u32 scontrol, serror;
301 int rc;
302
303 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
304 return rc;
305
306 /*
307 * Writes to SControl sometimes get ignored under certain
308 * controllers (ata_piix SIDPR). Make sure DET actually is
309 * cleared.
310 */
311 do {
312 scontrol = (scontrol & 0x0f0) | 0x300;
313 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
314 return rc;
315 /*
316 * Some PHYs react badly if SStatus is pounded
317 * immediately after resuming. Delay 200ms before
318 * debouncing.
319 */
320 if (!(link->flags & ATA_LFLAG_NO_DEBOUNCE_DELAY))
321 ata_msleep(link->ap, 200);
322
323 /* is SControl restored correctly? */
324 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
325 return rc;
326 } while ((scontrol & 0xf0f) != 0x300 && --tries);
327
328 if ((scontrol & 0xf0f) != 0x300) {
329 ata_link_warn(link, "failed to resume link (SControl %X)\n",
330 scontrol);
331 return 0;
332 }
333
334 if (tries < ATA_LINK_RESUME_TRIES)
335 ata_link_warn(link, "link resume succeeded after %d retries\n",
336 ATA_LINK_RESUME_TRIES - tries);
337
338 if ((rc = sata_link_debounce(link, params, deadline)))
339 return rc;
340
341 /* clear SError, some PHYs require this even for SRST to work */
342 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
343 rc = sata_scr_write(link, SCR_ERROR, serror);
344
345 return rc != -EINVAL ? rc : 0;
346 }
347 EXPORT_SYMBOL_GPL(sata_link_resume);
348
349 /**
350 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
351 * @link: ATA link to manipulate SControl for
352 * @policy: LPM policy to configure
353 * @spm_wakeup: initiate LPM transition to active state
354 *
355 * Manipulate the IPM field of the SControl register of @link
356 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
357 * @spm_wakeup is %true, the SPM field is manipulated to wake up
358 * the link. This function also clears PHYRDY_CHG before
359 * returning.
360 *
361 * LOCKING:
362 * EH context.
363 *
364 * RETURNS:
365 * 0 on success, -errno otherwise.
366 */
sata_link_scr_lpm(struct ata_link * link,enum ata_lpm_policy policy,bool spm_wakeup)367 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
368 bool spm_wakeup)
369 {
370 struct ata_eh_context *ehc = &link->eh_context;
371 bool woken_up = false;
372 u32 scontrol;
373 int rc;
374
375 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
376 if (rc)
377 return rc;
378
379 switch (policy) {
380 case ATA_LPM_MAX_POWER:
381 /* disable all LPM transitions */
382 scontrol |= (0x7 << 8);
383 /* initiate transition to active state */
384 if (spm_wakeup) {
385 scontrol |= (0x4 << 12);
386 woken_up = true;
387 }
388 break;
389 case ATA_LPM_MED_POWER:
390 /* allow LPM to PARTIAL */
391 scontrol &= ~(0x1 << 8);
392 scontrol |= (0x6 << 8);
393 break;
394 case ATA_LPM_MED_POWER_WITH_DIPM:
395 case ATA_LPM_MIN_POWER_WITH_PARTIAL:
396 case ATA_LPM_MIN_POWER:
397 if (ata_link_nr_enabled(link) > 0) {
398 /* assume no restrictions on LPM transitions */
399 scontrol &= ~(0x7 << 8);
400
401 /*
402 * If the controller does not support partial, slumber,
403 * or devsleep, then disallow these transitions.
404 */
405 if (link->ap->host->flags & ATA_HOST_NO_PART)
406 scontrol |= (0x1 << 8);
407
408 if (link->ap->host->flags & ATA_HOST_NO_SSC)
409 scontrol |= (0x2 << 8);
410
411 if (link->ap->host->flags & ATA_HOST_NO_DEVSLP)
412 scontrol |= (0x4 << 8);
413 } else {
414 /* empty port, power off */
415 scontrol &= ~0xf;
416 scontrol |= (0x1 << 2);
417 }
418 break;
419 default:
420 WARN_ON(1);
421 }
422
423 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
424 if (rc)
425 return rc;
426
427 /* give the link time to transit out of LPM state */
428 if (woken_up)
429 msleep(10);
430
431 /* clear PHYRDY_CHG from SError */
432 ehc->i.serror &= ~SERR_PHYRDY_CHG;
433 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
434 }
435 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
436
__sata_set_spd_needed(struct ata_link * link,u32 * scontrol)437 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
438 {
439 struct ata_link *host_link = &link->ap->link;
440 u32 limit, target, spd;
441
442 limit = link->sata_spd_limit;
443
444 /* Don't configure downstream link faster than upstream link.
445 * It doesn't speed up anything and some PMPs choke on such
446 * configuration.
447 */
448 if (!ata_is_host_link(link) && host_link->sata_spd)
449 limit &= (1 << host_link->sata_spd) - 1;
450
451 if (limit == UINT_MAX)
452 target = 0;
453 else
454 target = fls(limit);
455
456 spd = (*scontrol >> 4) & 0xf;
457 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
458
459 return spd != target;
460 }
461
462 /**
463 * sata_set_spd_needed - is SATA spd configuration needed
464 * @link: Link in question
465 *
466 * Test whether the spd limit in SControl matches
467 * @link->sata_spd_limit. This function is used to determine
468 * whether hardreset is necessary to apply SATA spd
469 * configuration.
470 *
471 * LOCKING:
472 * Inherited from caller.
473 *
474 * RETURNS:
475 * 1 if SATA spd configuration is needed, 0 otherwise.
476 */
sata_set_spd_needed(struct ata_link * link)477 static int sata_set_spd_needed(struct ata_link *link)
478 {
479 u32 scontrol;
480
481 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
482 return 1;
483
484 return __sata_set_spd_needed(link, &scontrol);
485 }
486
487 /**
488 * sata_set_spd - set SATA spd according to spd limit
489 * @link: Link to set SATA spd for
490 *
491 * Set SATA spd of @link according to sata_spd_limit.
492 *
493 * LOCKING:
494 * Inherited from caller.
495 *
496 * RETURNS:
497 * 0 if spd doesn't need to be changed, 1 if spd has been
498 * changed. Negative errno if SCR registers are inaccessible.
499 */
sata_set_spd(struct ata_link * link)500 int sata_set_spd(struct ata_link *link)
501 {
502 u32 scontrol;
503 int rc;
504
505 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
506 return rc;
507
508 if (!__sata_set_spd_needed(link, &scontrol))
509 return 0;
510
511 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
512 return rc;
513
514 return 1;
515 }
516 EXPORT_SYMBOL_GPL(sata_set_spd);
517
518 /**
519 * sata_link_hardreset - reset link via SATA phy reset
520 * @link: link to reset
521 * @timing: timing parameters { interval, duration, timeout } in msec
522 * @deadline: deadline jiffies for the operation
523 * @online: optional out parameter indicating link onlineness
524 * @check_ready: optional callback to check link readiness
525 *
526 * SATA phy-reset @link using DET bits of SControl register.
527 * After hardreset, link readiness is waited upon using
528 * ata_wait_ready() if @check_ready is specified. LLDs are
529 * allowed to not specify @check_ready and wait itself after this
530 * function returns. Device classification is LLD's
531 * responsibility.
532 *
533 * *@online is set to one iff reset succeeded and @link is online
534 * after reset.
535 *
536 * LOCKING:
537 * Kernel thread context (may sleep)
538 *
539 * RETURNS:
540 * 0 on success, -errno otherwise.
541 */
sata_link_hardreset(struct ata_link * link,const unsigned long * timing,unsigned long deadline,bool * online,int (* check_ready)(struct ata_link *))542 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
543 unsigned long deadline,
544 bool *online, int (*check_ready)(struct ata_link *))
545 {
546 u32 scontrol;
547 int rc;
548
549 if (online)
550 *online = false;
551
552 if (sata_set_spd_needed(link)) {
553 /* SATA spec says nothing about how to reconfigure
554 * spd. To be on the safe side, turn off phy during
555 * reconfiguration. This works for at least ICH7 AHCI
556 * and Sil3124.
557 */
558 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
559 goto out;
560
561 scontrol = (scontrol & 0x0f0) | 0x304;
562
563 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
564 goto out;
565
566 sata_set_spd(link);
567 }
568
569 /* issue phy wake/reset */
570 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
571 goto out;
572
573 scontrol = (scontrol & 0x0f0) | 0x301;
574
575 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
576 goto out;
577
578 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
579 * 10.4.2 says at least 1 ms.
580 */
581 ata_msleep(link->ap, 1);
582
583 /* bring link back */
584 rc = sata_link_resume(link, timing, deadline);
585 if (rc)
586 goto out;
587 /* if link is offline nothing more to do */
588 if (ata_phys_link_offline(link))
589 goto out;
590
591 /* Link is online. From this point, -ENODEV too is an error. */
592 if (online)
593 *online = true;
594
595 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
596 /* If PMP is supported, we have to do follow-up SRST.
597 * Some PMPs don't send D2H Reg FIS after hardreset if
598 * the first port is empty. Wait only for
599 * ATA_TMOUT_PMP_SRST_WAIT.
600 */
601 if (check_ready) {
602 unsigned long pmp_deadline;
603
604 pmp_deadline = ata_deadline(jiffies,
605 ATA_TMOUT_PMP_SRST_WAIT);
606 if (time_after(pmp_deadline, deadline))
607 pmp_deadline = deadline;
608 ata_wait_ready(link, pmp_deadline, check_ready);
609 }
610 rc = -EAGAIN;
611 goto out;
612 }
613
614 rc = 0;
615 if (check_ready)
616 rc = ata_wait_ready(link, deadline, check_ready);
617 out:
618 if (rc && rc != -EAGAIN) {
619 /* online is set iff link is online && reset succeeded */
620 if (online)
621 *online = false;
622 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
623 }
624 return rc;
625 }
626 EXPORT_SYMBOL_GPL(sata_link_hardreset);
627
628 /**
629 * ata_qc_complete_multiple - Complete multiple qcs successfully
630 * @ap: port in question
631 * @qc_active: new qc_active mask
632 *
633 * Complete in-flight commands. This functions is meant to be
634 * called from low-level driver's interrupt routine to complete
635 * requests normally. ap->qc_active and @qc_active is compared
636 * and commands are completed accordingly.
637 *
638 * Always use this function when completing multiple NCQ commands
639 * from IRQ handlers instead of calling ata_qc_complete()
640 * multiple times to keep IRQ expect status properly in sync.
641 *
642 * LOCKING:
643 * spin_lock_irqsave(host lock)
644 *
645 * RETURNS:
646 * Number of completed commands on success, -errno otherwise.
647 */
ata_qc_complete_multiple(struct ata_port * ap,u64 qc_active)648 int ata_qc_complete_multiple(struct ata_port *ap, u64 qc_active)
649 {
650 u64 done_mask, ap_qc_active = ap->qc_active;
651 int nr_done = 0;
652
653 /*
654 * If the internal tag is set on ap->qc_active, then we care about
655 * bit0 on the passed in qc_active mask. Move that bit up to match
656 * the internal tag.
657 */
658 if (ap_qc_active & (1ULL << ATA_TAG_INTERNAL)) {
659 qc_active |= (qc_active & 0x01) << ATA_TAG_INTERNAL;
660 qc_active ^= qc_active & 0x01;
661 }
662
663 done_mask = ap_qc_active ^ qc_active;
664
665 if (unlikely(done_mask & qc_active)) {
666 ata_port_err(ap, "illegal qc_active transition (%08llx->%08llx)\n",
667 ap->qc_active, qc_active);
668 return -EINVAL;
669 }
670
671 while (done_mask) {
672 struct ata_queued_cmd *qc;
673 unsigned int tag = __ffs64(done_mask);
674
675 qc = ata_qc_from_tag(ap, tag);
676 if (qc) {
677 ata_qc_complete(qc);
678 nr_done++;
679 }
680 done_mask &= ~(1ULL << tag);
681 }
682
683 return nr_done;
684 }
685 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
686
687 /**
688 * ata_slave_link_init - initialize slave link
689 * @ap: port to initialize slave link for
690 *
691 * Create and initialize slave link for @ap. This enables slave
692 * link handling on the port.
693 *
694 * In libata, a port contains links and a link contains devices.
695 * There is single host link but if a PMP is attached to it,
696 * there can be multiple fan-out links. On SATA, there's usually
697 * a single device connected to a link but PATA and SATA
698 * controllers emulating TF based interface can have two - master
699 * and slave.
700 *
701 * However, there are a few controllers which don't fit into this
702 * abstraction too well - SATA controllers which emulate TF
703 * interface with both master and slave devices but also have
704 * separate SCR register sets for each device. These controllers
705 * need separate links for physical link handling
706 * (e.g. onlineness, link speed) but should be treated like a
707 * traditional M/S controller for everything else (e.g. command
708 * issue, softreset).
709 *
710 * slave_link is libata's way of handling this class of
711 * controllers without impacting core layer too much. For
712 * anything other than physical link handling, the default host
713 * link is used for both master and slave. For physical link
714 * handling, separate @ap->slave_link is used. All dirty details
715 * are implemented inside libata core layer. From LLD's POV, the
716 * only difference is that prereset, hardreset and postreset are
717 * called once more for the slave link, so the reset sequence
718 * looks like the following.
719 *
720 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
721 * softreset(M) -> postreset(M) -> postreset(S)
722 *
723 * Note that softreset is called only for the master. Softreset
724 * resets both M/S by definition, so SRST on master should handle
725 * both (the standard method will work just fine).
726 *
727 * LOCKING:
728 * Should be called before host is registered.
729 *
730 * RETURNS:
731 * 0 on success, -errno on failure.
732 */
ata_slave_link_init(struct ata_port * ap)733 int ata_slave_link_init(struct ata_port *ap)
734 {
735 struct ata_link *link;
736
737 WARN_ON(ap->slave_link);
738 WARN_ON(ap->flags & ATA_FLAG_PMP);
739
740 link = kzalloc(sizeof(*link), GFP_KERNEL);
741 if (!link)
742 return -ENOMEM;
743
744 ata_link_init(ap, link, 1);
745 ap->slave_link = link;
746 return 0;
747 }
748 EXPORT_SYMBOL_GPL(ata_slave_link_init);
749
750 /**
751 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
752 * @link: Link receiving the event
753 *
754 * Test whether the received PHY event has to be ignored or not.
755 *
756 * LOCKING:
757 * None:
758 *
759 * RETURNS:
760 * True if the event has to be ignored.
761 */
sata_lpm_ignore_phy_events(struct ata_link * link)762 bool sata_lpm_ignore_phy_events(struct ata_link *link)
763 {
764 unsigned long lpm_timeout = link->last_lpm_change +
765 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
766
767 /* if LPM is enabled, PHYRDY doesn't mean anything */
768 if (link->lpm_policy > ATA_LPM_MAX_POWER)
769 return true;
770
771 /* ignore the first PHY event after the LPM policy changed
772 * as it is might be spurious
773 */
774 if ((link->flags & ATA_LFLAG_CHANGED) &&
775 time_before(jiffies, lpm_timeout))
776 return true;
777
778 return false;
779 }
780 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
781
782 static const char *ata_lpm_policy_names[] = {
783 [ATA_LPM_UNKNOWN] = "max_performance",
784 [ATA_LPM_MAX_POWER] = "max_performance",
785 [ATA_LPM_MED_POWER] = "medium_power",
786 [ATA_LPM_MED_POWER_WITH_DIPM] = "med_power_with_dipm",
787 [ATA_LPM_MIN_POWER_WITH_PARTIAL] = "min_power_with_partial",
788 [ATA_LPM_MIN_POWER] = "min_power",
789 };
790
ata_scsi_lpm_store(struct device * device,struct device_attribute * attr,const char * buf,size_t count)791 static ssize_t ata_scsi_lpm_store(struct device *device,
792 struct device_attribute *attr,
793 const char *buf, size_t count)
794 {
795 struct Scsi_Host *shost = class_to_shost(device);
796 struct ata_port *ap = ata_shost_to_port(shost);
797 struct ata_link *link;
798 struct ata_device *dev;
799 enum ata_lpm_policy policy;
800 unsigned long flags;
801
802 /* UNKNOWN is internal state, iterate from MAX_POWER */
803 for (policy = ATA_LPM_MAX_POWER;
804 policy < ARRAY_SIZE(ata_lpm_policy_names); policy++) {
805 const char *name = ata_lpm_policy_names[policy];
806
807 if (strncmp(name, buf, strlen(name)) == 0)
808 break;
809 }
810 if (policy == ARRAY_SIZE(ata_lpm_policy_names))
811 return -EINVAL;
812
813 spin_lock_irqsave(ap->lock, flags);
814
815 ata_for_each_link(link, ap, EDGE) {
816 ata_for_each_dev(dev, &ap->link, ENABLED) {
817 if (dev->horkage & ATA_HORKAGE_NOLPM) {
818 count = -EOPNOTSUPP;
819 goto out_unlock;
820 }
821 }
822 }
823
824 ap->target_lpm_policy = policy;
825 ata_port_schedule_eh(ap);
826 out_unlock:
827 spin_unlock_irqrestore(ap->lock, flags);
828 return count;
829 }
830
ata_scsi_lpm_show(struct device * dev,struct device_attribute * attr,char * buf)831 static ssize_t ata_scsi_lpm_show(struct device *dev,
832 struct device_attribute *attr, char *buf)
833 {
834 struct Scsi_Host *shost = class_to_shost(dev);
835 struct ata_port *ap = ata_shost_to_port(shost);
836
837 if (ap->target_lpm_policy >= ARRAY_SIZE(ata_lpm_policy_names))
838 return -EINVAL;
839
840 return sysfs_emit(buf, "%s\n",
841 ata_lpm_policy_names[ap->target_lpm_policy]);
842 }
843 DEVICE_ATTR(link_power_management_policy, S_IRUGO | S_IWUSR,
844 ata_scsi_lpm_show, ata_scsi_lpm_store);
845 EXPORT_SYMBOL_GPL(dev_attr_link_power_management_policy);
846
ata_ncq_prio_supported_show(struct device * device,struct device_attribute * attr,char * buf)847 static ssize_t ata_ncq_prio_supported_show(struct device *device,
848 struct device_attribute *attr,
849 char *buf)
850 {
851 struct scsi_device *sdev = to_scsi_device(device);
852 struct ata_port *ap = ata_shost_to_port(sdev->host);
853 struct ata_device *dev;
854 bool ncq_prio_supported;
855 int rc = 0;
856
857 spin_lock_irq(ap->lock);
858 dev = ata_scsi_find_dev(ap, sdev);
859 if (!dev)
860 rc = -ENODEV;
861 else
862 ncq_prio_supported = dev->flags & ATA_DFLAG_NCQ_PRIO;
863 spin_unlock_irq(ap->lock);
864
865 return rc ? rc : sysfs_emit(buf, "%u\n", ncq_prio_supported);
866 }
867
868 DEVICE_ATTR(ncq_prio_supported, S_IRUGO, ata_ncq_prio_supported_show, NULL);
869 EXPORT_SYMBOL_GPL(dev_attr_ncq_prio_supported);
870
ata_ncq_prio_enable_show(struct device * device,struct device_attribute * attr,char * buf)871 static ssize_t ata_ncq_prio_enable_show(struct device *device,
872 struct device_attribute *attr,
873 char *buf)
874 {
875 struct scsi_device *sdev = to_scsi_device(device);
876 struct ata_port *ap = ata_shost_to_port(sdev->host);
877 struct ata_device *dev;
878 bool ncq_prio_enable;
879 int rc = 0;
880
881 spin_lock_irq(ap->lock);
882 dev = ata_scsi_find_dev(ap, sdev);
883 if (!dev)
884 rc = -ENODEV;
885 else
886 ncq_prio_enable = dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED;
887 spin_unlock_irq(ap->lock);
888
889 return rc ? rc : sysfs_emit(buf, "%u\n", ncq_prio_enable);
890 }
891
ata_ncq_prio_enable_store(struct device * device,struct device_attribute * attr,const char * buf,size_t len)892 static ssize_t ata_ncq_prio_enable_store(struct device *device,
893 struct device_attribute *attr,
894 const char *buf, size_t len)
895 {
896 struct scsi_device *sdev = to_scsi_device(device);
897 struct ata_port *ap;
898 struct ata_device *dev;
899 long int input;
900 int rc = 0;
901
902 rc = kstrtol(buf, 10, &input);
903 if (rc)
904 return rc;
905 if ((input < 0) || (input > 1))
906 return -EINVAL;
907
908 ap = ata_shost_to_port(sdev->host);
909 dev = ata_scsi_find_dev(ap, sdev);
910 if (unlikely(!dev))
911 return -ENODEV;
912
913 spin_lock_irq(ap->lock);
914
915 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO)) {
916 rc = -EINVAL;
917 goto unlock;
918 }
919
920 if (input)
921 dev->flags |= ATA_DFLAG_NCQ_PRIO_ENABLED;
922 else
923 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
924
925 unlock:
926 spin_unlock_irq(ap->lock);
927
928 return rc ? rc : len;
929 }
930
931 DEVICE_ATTR(ncq_prio_enable, S_IRUGO | S_IWUSR,
932 ata_ncq_prio_enable_show, ata_ncq_prio_enable_store);
933 EXPORT_SYMBOL_GPL(dev_attr_ncq_prio_enable);
934
935 static struct attribute *ata_ncq_sdev_attrs[] = {
936 &dev_attr_unload_heads.attr,
937 &dev_attr_ncq_prio_enable.attr,
938 &dev_attr_ncq_prio_supported.attr,
939 NULL
940 };
941
942 static const struct attribute_group ata_ncq_sdev_attr_group = {
943 .attrs = ata_ncq_sdev_attrs
944 };
945
946 const struct attribute_group *ata_ncq_sdev_groups[] = {
947 &ata_ncq_sdev_attr_group,
948 NULL
949 };
950 EXPORT_SYMBOL_GPL(ata_ncq_sdev_groups);
951
952 static ssize_t
ata_scsi_em_message_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)953 ata_scsi_em_message_store(struct device *dev, struct device_attribute *attr,
954 const char *buf, size_t count)
955 {
956 struct Scsi_Host *shost = class_to_shost(dev);
957 struct ata_port *ap = ata_shost_to_port(shost);
958 if (ap->ops->em_store && (ap->flags & ATA_FLAG_EM))
959 return ap->ops->em_store(ap, buf, count);
960 return -EINVAL;
961 }
962
963 static ssize_t
ata_scsi_em_message_show(struct device * dev,struct device_attribute * attr,char * buf)964 ata_scsi_em_message_show(struct device *dev, struct device_attribute *attr,
965 char *buf)
966 {
967 struct Scsi_Host *shost = class_to_shost(dev);
968 struct ata_port *ap = ata_shost_to_port(shost);
969
970 if (ap->ops->em_show && (ap->flags & ATA_FLAG_EM))
971 return ap->ops->em_show(ap, buf);
972 return -EINVAL;
973 }
974 DEVICE_ATTR(em_message, S_IRUGO | S_IWUSR,
975 ata_scsi_em_message_show, ata_scsi_em_message_store);
976 EXPORT_SYMBOL_GPL(dev_attr_em_message);
977
978 static ssize_t
ata_scsi_em_message_type_show(struct device * dev,struct device_attribute * attr,char * buf)979 ata_scsi_em_message_type_show(struct device *dev, struct device_attribute *attr,
980 char *buf)
981 {
982 struct Scsi_Host *shost = class_to_shost(dev);
983 struct ata_port *ap = ata_shost_to_port(shost);
984
985 return sysfs_emit(buf, "%d\n", ap->em_message_type);
986 }
987 DEVICE_ATTR(em_message_type, S_IRUGO,
988 ata_scsi_em_message_type_show, NULL);
989 EXPORT_SYMBOL_GPL(dev_attr_em_message_type);
990
991 static ssize_t
ata_scsi_activity_show(struct device * dev,struct device_attribute * attr,char * buf)992 ata_scsi_activity_show(struct device *dev, struct device_attribute *attr,
993 char *buf)
994 {
995 struct scsi_device *sdev = to_scsi_device(dev);
996 struct ata_port *ap = ata_shost_to_port(sdev->host);
997 struct ata_device *atadev = ata_scsi_find_dev(ap, sdev);
998
999 if (atadev && ap->ops->sw_activity_show &&
1000 (ap->flags & ATA_FLAG_SW_ACTIVITY))
1001 return ap->ops->sw_activity_show(atadev, buf);
1002 return -EINVAL;
1003 }
1004
1005 static ssize_t
ata_scsi_activity_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1006 ata_scsi_activity_store(struct device *dev, struct device_attribute *attr,
1007 const char *buf, size_t count)
1008 {
1009 struct scsi_device *sdev = to_scsi_device(dev);
1010 struct ata_port *ap = ata_shost_to_port(sdev->host);
1011 struct ata_device *atadev = ata_scsi_find_dev(ap, sdev);
1012 enum sw_activity val;
1013 int rc;
1014
1015 if (atadev && ap->ops->sw_activity_store &&
1016 (ap->flags & ATA_FLAG_SW_ACTIVITY)) {
1017 val = simple_strtoul(buf, NULL, 0);
1018 switch (val) {
1019 case OFF: case BLINK_ON: case BLINK_OFF:
1020 rc = ap->ops->sw_activity_store(atadev, val);
1021 if (!rc)
1022 return count;
1023 else
1024 return rc;
1025 }
1026 }
1027 return -EINVAL;
1028 }
1029 DEVICE_ATTR(sw_activity, S_IWUSR | S_IRUGO, ata_scsi_activity_show,
1030 ata_scsi_activity_store);
1031 EXPORT_SYMBOL_GPL(dev_attr_sw_activity);
1032
1033 /**
1034 * ata_change_queue_depth - Set a device maximum queue depth
1035 * @ap: ATA port of the target device
1036 * @dev: target ATA device
1037 * @sdev: SCSI device to configure queue depth for
1038 * @queue_depth: new queue depth
1039 *
1040 * Helper to set a device maximum queue depth, usable with both libsas
1041 * and libata.
1042 *
1043 */
ata_change_queue_depth(struct ata_port * ap,struct ata_device * dev,struct scsi_device * sdev,int queue_depth)1044 int ata_change_queue_depth(struct ata_port *ap, struct ata_device *dev,
1045 struct scsi_device *sdev, int queue_depth)
1046 {
1047 unsigned long flags;
1048
1049 if (!dev || !ata_dev_enabled(dev))
1050 return sdev->queue_depth;
1051
1052 if (queue_depth < 1 || queue_depth == sdev->queue_depth)
1053 return sdev->queue_depth;
1054
1055 /* NCQ enabled? */
1056 spin_lock_irqsave(ap->lock, flags);
1057 dev->flags &= ~ATA_DFLAG_NCQ_OFF;
1058 if (queue_depth == 1 || !ata_ncq_enabled(dev)) {
1059 dev->flags |= ATA_DFLAG_NCQ_OFF;
1060 queue_depth = 1;
1061 }
1062 spin_unlock_irqrestore(ap->lock, flags);
1063
1064 /* limit and apply queue depth */
1065 queue_depth = min(queue_depth, sdev->host->can_queue);
1066 queue_depth = min(queue_depth, ata_id_queue_depth(dev->id));
1067 queue_depth = min(queue_depth, ATA_MAX_QUEUE);
1068
1069 if (sdev->queue_depth == queue_depth)
1070 return -EINVAL;
1071
1072 return scsi_change_queue_depth(sdev, queue_depth);
1073 }
1074 EXPORT_SYMBOL_GPL(ata_change_queue_depth);
1075
1076 /**
1077 * ata_scsi_change_queue_depth - SCSI callback for queue depth config
1078 * @sdev: SCSI device to configure queue depth for
1079 * @queue_depth: new queue depth
1080 *
1081 * This is libata standard hostt->change_queue_depth callback.
1082 * SCSI will call into this callback when user tries to set queue
1083 * depth via sysfs.
1084 *
1085 * LOCKING:
1086 * SCSI layer (we don't care)
1087 *
1088 * RETURNS:
1089 * Newly configured queue depth.
1090 */
ata_scsi_change_queue_depth(struct scsi_device * sdev,int queue_depth)1091 int ata_scsi_change_queue_depth(struct scsi_device *sdev, int queue_depth)
1092 {
1093 struct ata_port *ap = ata_shost_to_port(sdev->host);
1094
1095 return ata_change_queue_depth(ap, ata_scsi_find_dev(ap, sdev),
1096 sdev, queue_depth);
1097 }
1098 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1099
1100 /**
1101 * ata_sas_port_alloc - Allocate port for a SAS attached SATA device
1102 * @host: ATA host container for all SAS ports
1103 * @port_info: Information from low-level host driver
1104 * @shost: SCSI host that the scsi device is attached to
1105 *
1106 * LOCKING:
1107 * PCI/etc. bus probe sem.
1108 *
1109 * RETURNS:
1110 * ata_port pointer on success / NULL on failure.
1111 */
1112
ata_sas_port_alloc(struct ata_host * host,struct ata_port_info * port_info,struct Scsi_Host * shost)1113 struct ata_port *ata_sas_port_alloc(struct ata_host *host,
1114 struct ata_port_info *port_info,
1115 struct Scsi_Host *shost)
1116 {
1117 struct ata_port *ap;
1118
1119 ap = ata_port_alloc(host);
1120 if (!ap)
1121 return NULL;
1122
1123 ap->port_no = 0;
1124 ap->lock = &host->lock;
1125 ap->pio_mask = port_info->pio_mask;
1126 ap->mwdma_mask = port_info->mwdma_mask;
1127 ap->udma_mask = port_info->udma_mask;
1128 ap->flags |= port_info->flags;
1129 ap->ops = port_info->port_ops;
1130 ap->cbl = ATA_CBL_SATA;
1131
1132 return ap;
1133 }
1134 EXPORT_SYMBOL_GPL(ata_sas_port_alloc);
1135
1136 /**
1137 * ata_sas_port_start - Set port up for dma.
1138 * @ap: Port to initialize
1139 *
1140 * Called just after data structures for each port are
1141 * initialized.
1142 *
1143 * May be used as the port_start() entry in ata_port_operations.
1144 *
1145 * LOCKING:
1146 * Inherited from caller.
1147 */
ata_sas_port_start(struct ata_port * ap)1148 int ata_sas_port_start(struct ata_port *ap)
1149 {
1150 /*
1151 * the port is marked as frozen at allocation time, but if we don't
1152 * have new eh, we won't thaw it
1153 */
1154 if (!ap->ops->error_handler)
1155 ap->pflags &= ~ATA_PFLAG_FROZEN;
1156 return 0;
1157 }
1158 EXPORT_SYMBOL_GPL(ata_sas_port_start);
1159
1160 /**
1161 * ata_sas_port_stop - Undo ata_sas_port_start()
1162 * @ap: Port to shut down
1163 *
1164 * May be used as the port_stop() entry in ata_port_operations.
1165 *
1166 * LOCKING:
1167 * Inherited from caller.
1168 */
1169
ata_sas_port_stop(struct ata_port * ap)1170 void ata_sas_port_stop(struct ata_port *ap)
1171 {
1172 }
1173 EXPORT_SYMBOL_GPL(ata_sas_port_stop);
1174
1175 /**
1176 * ata_sas_async_probe - simply schedule probing and return
1177 * @ap: Port to probe
1178 *
1179 * For batch scheduling of probe for sas attached ata devices, assumes
1180 * the port has already been through ata_sas_port_init()
1181 */
ata_sas_async_probe(struct ata_port * ap)1182 void ata_sas_async_probe(struct ata_port *ap)
1183 {
1184 __ata_port_probe(ap);
1185 }
1186 EXPORT_SYMBOL_GPL(ata_sas_async_probe);
1187
ata_sas_sync_probe(struct ata_port * ap)1188 int ata_sas_sync_probe(struct ata_port *ap)
1189 {
1190 return ata_port_probe(ap);
1191 }
1192 EXPORT_SYMBOL_GPL(ata_sas_sync_probe);
1193
1194
1195 /**
1196 * ata_sas_port_init - Initialize a SATA device
1197 * @ap: SATA port to initialize
1198 *
1199 * LOCKING:
1200 * PCI/etc. bus probe sem.
1201 *
1202 * RETURNS:
1203 * Zero on success, non-zero on error.
1204 */
1205
ata_sas_port_init(struct ata_port * ap)1206 int ata_sas_port_init(struct ata_port *ap)
1207 {
1208 int rc = ap->ops->port_start(ap);
1209
1210 if (rc)
1211 return rc;
1212 ap->print_id = atomic_inc_return(&ata_print_id);
1213 return 0;
1214 }
1215 EXPORT_SYMBOL_GPL(ata_sas_port_init);
1216
ata_sas_tport_add(struct device * parent,struct ata_port * ap)1217 int ata_sas_tport_add(struct device *parent, struct ata_port *ap)
1218 {
1219 return ata_tport_add(parent, ap);
1220 }
1221 EXPORT_SYMBOL_GPL(ata_sas_tport_add);
1222
ata_sas_tport_delete(struct ata_port * ap)1223 void ata_sas_tport_delete(struct ata_port *ap)
1224 {
1225 ata_tport_delete(ap);
1226 }
1227 EXPORT_SYMBOL_GPL(ata_sas_tport_delete);
1228
1229 /**
1230 * ata_sas_port_destroy - Destroy a SATA port allocated by ata_sas_port_alloc
1231 * @ap: SATA port to destroy
1232 *
1233 */
1234
ata_sas_port_destroy(struct ata_port * ap)1235 void ata_sas_port_destroy(struct ata_port *ap)
1236 {
1237 if (ap->ops->port_stop)
1238 ap->ops->port_stop(ap);
1239 kfree(ap);
1240 }
1241 EXPORT_SYMBOL_GPL(ata_sas_port_destroy);
1242
1243 /**
1244 * ata_sas_slave_configure - Default slave_config routine for libata devices
1245 * @sdev: SCSI device to configure
1246 * @ap: ATA port to which SCSI device is attached
1247 *
1248 * RETURNS:
1249 * Zero.
1250 */
1251
ata_sas_slave_configure(struct scsi_device * sdev,struct ata_port * ap)1252 int ata_sas_slave_configure(struct scsi_device *sdev, struct ata_port *ap)
1253 {
1254 ata_scsi_sdev_config(sdev);
1255 ata_scsi_dev_config(sdev, ap->link.device);
1256 return 0;
1257 }
1258 EXPORT_SYMBOL_GPL(ata_sas_slave_configure);
1259
1260 /**
1261 * ata_sas_queuecmd - Issue SCSI cdb to libata-managed device
1262 * @cmd: SCSI command to be sent
1263 * @ap: ATA port to which the command is being sent
1264 *
1265 * RETURNS:
1266 * Return value from __ata_scsi_queuecmd() if @cmd can be queued,
1267 * 0 otherwise.
1268 */
1269
ata_sas_queuecmd(struct scsi_cmnd * cmd,struct ata_port * ap)1270 int ata_sas_queuecmd(struct scsi_cmnd *cmd, struct ata_port *ap)
1271 {
1272 int rc = 0;
1273
1274 if (likely(ata_dev_enabled(ap->link.device)))
1275 rc = __ata_scsi_queuecmd(cmd, ap->link.device);
1276 else {
1277 cmd->result = (DID_BAD_TARGET << 16);
1278 scsi_done(cmd);
1279 }
1280 return rc;
1281 }
1282 EXPORT_SYMBOL_GPL(ata_sas_queuecmd);
1283
1284 /**
1285 * sata_async_notification - SATA async notification handler
1286 * @ap: ATA port where async notification is received
1287 *
1288 * Handler to be called when async notification via SDB FIS is
1289 * received. This function schedules EH if necessary.
1290 *
1291 * LOCKING:
1292 * spin_lock_irqsave(host lock)
1293 *
1294 * RETURNS:
1295 * 1 if EH is scheduled, 0 otherwise.
1296 */
sata_async_notification(struct ata_port * ap)1297 int sata_async_notification(struct ata_port *ap)
1298 {
1299 u32 sntf;
1300 int rc;
1301
1302 if (!(ap->flags & ATA_FLAG_AN))
1303 return 0;
1304
1305 rc = sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf);
1306 if (rc == 0)
1307 sata_scr_write(&ap->link, SCR_NOTIFICATION, sntf);
1308
1309 if (!sata_pmp_attached(ap) || rc) {
1310 /* PMP is not attached or SNTF is not available */
1311 if (!sata_pmp_attached(ap)) {
1312 /* PMP is not attached. Check whether ATAPI
1313 * AN is configured. If so, notify media
1314 * change.
1315 */
1316 struct ata_device *dev = ap->link.device;
1317
1318 if ((dev->class == ATA_DEV_ATAPI) &&
1319 (dev->flags & ATA_DFLAG_AN))
1320 ata_scsi_media_change_notify(dev);
1321 return 0;
1322 } else {
1323 /* PMP is attached but SNTF is not available.
1324 * ATAPI async media change notification is
1325 * not used. The PMP must be reporting PHY
1326 * status change, schedule EH.
1327 */
1328 ata_port_schedule_eh(ap);
1329 return 1;
1330 }
1331 } else {
1332 /* PMP is attached and SNTF is available */
1333 struct ata_link *link;
1334
1335 /* check and notify ATAPI AN */
1336 ata_for_each_link(link, ap, EDGE) {
1337 if (!(sntf & (1 << link->pmp)))
1338 continue;
1339
1340 if ((link->device->class == ATA_DEV_ATAPI) &&
1341 (link->device->flags & ATA_DFLAG_AN))
1342 ata_scsi_media_change_notify(link->device);
1343 }
1344
1345 /* If PMP is reporting that PHY status of some
1346 * downstream ports has changed, schedule EH.
1347 */
1348 if (sntf & (1 << SATA_PMP_CTRL_PORT)) {
1349 ata_port_schedule_eh(ap);
1350 return 1;
1351 }
1352
1353 return 0;
1354 }
1355 }
1356 EXPORT_SYMBOL_GPL(sata_async_notification);
1357
1358 /**
1359 * ata_eh_read_log_10h - Read log page 10h for NCQ error details
1360 * @dev: Device to read log page 10h from
1361 * @tag: Resulting tag of the failed command
1362 * @tf: Resulting taskfile registers of the failed command
1363 *
1364 * Read log page 10h to obtain NCQ error details and clear error
1365 * condition.
1366 *
1367 * LOCKING:
1368 * Kernel thread context (may sleep).
1369 *
1370 * RETURNS:
1371 * 0 on success, -errno otherwise.
1372 */
ata_eh_read_log_10h(struct ata_device * dev,int * tag,struct ata_taskfile * tf)1373 static int ata_eh_read_log_10h(struct ata_device *dev,
1374 int *tag, struct ata_taskfile *tf)
1375 {
1376 u8 *buf = dev->link->ap->sector_buf;
1377 unsigned int err_mask;
1378 u8 csum;
1379 int i;
1380
1381 err_mask = ata_read_log_page(dev, ATA_LOG_SATA_NCQ, 0, buf, 1);
1382 if (err_mask)
1383 return -EIO;
1384
1385 csum = 0;
1386 for (i = 0; i < ATA_SECT_SIZE; i++)
1387 csum += buf[i];
1388 if (csum)
1389 ata_dev_warn(dev, "invalid checksum 0x%x on log page 10h\n",
1390 csum);
1391
1392 if (buf[0] & 0x80)
1393 return -ENOENT;
1394
1395 *tag = buf[0] & 0x1f;
1396
1397 tf->status = buf[2];
1398 tf->error = buf[3];
1399 tf->lbal = buf[4];
1400 tf->lbam = buf[5];
1401 tf->lbah = buf[6];
1402 tf->device = buf[7];
1403 tf->hob_lbal = buf[8];
1404 tf->hob_lbam = buf[9];
1405 tf->hob_lbah = buf[10];
1406 tf->nsect = buf[12];
1407 tf->hob_nsect = buf[13];
1408 if (dev->class == ATA_DEV_ZAC && ata_id_has_ncq_autosense(dev->id) &&
1409 (tf->status & ATA_SENSE))
1410 tf->auxiliary = buf[14] << 16 | buf[15] << 8 | buf[16];
1411
1412 return 0;
1413 }
1414
1415 /**
1416 * ata_eh_analyze_ncq_error - analyze NCQ error
1417 * @link: ATA link to analyze NCQ error for
1418 *
1419 * Read log page 10h, determine the offending qc and acquire
1420 * error status TF. For NCQ device errors, all LLDDs have to do
1421 * is setting AC_ERR_DEV in ehi->err_mask. This function takes
1422 * care of the rest.
1423 *
1424 * LOCKING:
1425 * Kernel thread context (may sleep).
1426 */
ata_eh_analyze_ncq_error(struct ata_link * link)1427 void ata_eh_analyze_ncq_error(struct ata_link *link)
1428 {
1429 struct ata_port *ap = link->ap;
1430 struct ata_eh_context *ehc = &link->eh_context;
1431 struct ata_device *dev = link->device;
1432 struct ata_queued_cmd *qc;
1433 struct ata_taskfile tf;
1434 int tag, rc;
1435
1436 /* if frozen, we can't do much */
1437 if (ap->pflags & ATA_PFLAG_FROZEN)
1438 return;
1439
1440 /* is it NCQ device error? */
1441 if (!link->sactive || !(ehc->i.err_mask & AC_ERR_DEV))
1442 return;
1443
1444 /* has LLDD analyzed already? */
1445 ata_qc_for_each_raw(ap, qc, tag) {
1446 if (!(qc->flags & ATA_QCFLAG_FAILED))
1447 continue;
1448
1449 if (qc->err_mask)
1450 return;
1451 }
1452
1453 /* okay, this error is ours */
1454 memset(&tf, 0, sizeof(tf));
1455 rc = ata_eh_read_log_10h(dev, &tag, &tf);
1456 if (rc) {
1457 ata_link_err(link, "failed to read log page 10h (errno=%d)\n",
1458 rc);
1459 return;
1460 }
1461
1462 if (!(link->sactive & (1 << tag))) {
1463 ata_link_err(link, "log page 10h reported inactive tag %d\n",
1464 tag);
1465 return;
1466 }
1467
1468 /* we've got the perpetrator, condemn it */
1469 qc = __ata_qc_from_tag(ap, tag);
1470 memcpy(&qc->result_tf, &tf, sizeof(tf));
1471 qc->result_tf.flags = ATA_TFLAG_ISADDR | ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
1472 qc->err_mask |= AC_ERR_DEV | AC_ERR_NCQ;
1473
1474 /*
1475 * If the device supports NCQ autosense, ata_eh_read_log_10h() will have
1476 * stored the sense data in qc->result_tf.auxiliary.
1477 */
1478 if (qc->result_tf.auxiliary) {
1479 char sense_key, asc, ascq;
1480
1481 sense_key = (qc->result_tf.auxiliary >> 16) & 0xff;
1482 asc = (qc->result_tf.auxiliary >> 8) & 0xff;
1483 ascq = qc->result_tf.auxiliary & 0xff;
1484 ata_scsi_set_sense(dev, qc->scsicmd, sense_key, asc, ascq);
1485 ata_scsi_set_sense_information(dev, qc->scsicmd,
1486 &qc->result_tf);
1487 qc->flags |= ATA_QCFLAG_SENSE_VALID;
1488 }
1489
1490 ehc->i.err_mask &= ~AC_ERR_DEV;
1491 }
1492 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
1493