• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  * redistributing this file, you may do so under either license.
4  *
5  * GPL LICENSE SUMMARY
6  *
7  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21  * The full GNU General Public License is included in this distribution
22  * in the file called LICENSE.GPL.
23  *
24  * BSD LICENSE
25  *
26  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27  * All rights reserved.
28  *
29  * Redistribution and use in source and binary forms, with or without
30  * modification, are permitted provided that the following conditions
31  * are met:
32  *
33  *   * Redistributions of source code must retain the above copyright
34  *     notice, this list of conditions and the following disclaimer.
35  *   * Redistributions in binary form must reproduce the above copyright
36  *     notice, this list of conditions and the following disclaimer in
37  *     the documentation and/or other materials provided with the
38  *     distribution.
39  *   * Neither the name of Intel Corporation nor the names of its
40  *     contributors may be used to endorse or promote products derived
41  *     from this software without specific prior written permission.
42  *
43  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54  */
55 
56 #include "isci.h"
57 #include "host.h"
58 #include "phy.h"
59 #include "scu_event_codes.h"
60 #include "probe_roms.h"
61 
62 #undef C
63 #define C(a) (#a)
phy_state_name(enum sci_phy_states state)64 static const char *phy_state_name(enum sci_phy_states state)
65 {
66 	static const char * const strings[] = PHY_STATES;
67 
68 	return strings[state];
69 }
70 #undef C
71 
72 /* Maximum arbitration wait time in micro-seconds */
73 #define SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME  (700)
74 
sci_phy_linkrate(struct isci_phy * iphy)75 enum sas_linkrate sci_phy_linkrate(struct isci_phy *iphy)
76 {
77 	return iphy->max_negotiated_speed;
78 }
79 
phy_to_host(struct isci_phy * iphy)80 static struct isci_host *phy_to_host(struct isci_phy *iphy)
81 {
82 	struct isci_phy *table = iphy - iphy->phy_index;
83 	struct isci_host *ihost = container_of(table, typeof(*ihost), phys[0]);
84 
85 	return ihost;
86 }
87 
sciphy_to_dev(struct isci_phy * iphy)88 static struct device *sciphy_to_dev(struct isci_phy *iphy)
89 {
90 	return &phy_to_host(iphy)->pdev->dev;
91 }
92 
93 static enum sci_status
sci_phy_transport_layer_initialization(struct isci_phy * iphy,struct scu_transport_layer_registers __iomem * reg)94 sci_phy_transport_layer_initialization(struct isci_phy *iphy,
95 				       struct scu_transport_layer_registers __iomem *reg)
96 {
97 	u32 tl_control;
98 
99 	iphy->transport_layer_registers = reg;
100 
101 	writel(SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX,
102 		&iphy->transport_layer_registers->stp_rni);
103 
104 	/*
105 	 * Hardware team recommends that we enable the STP prefetch for all
106 	 * transports
107 	 */
108 	tl_control = readl(&iphy->transport_layer_registers->control);
109 	tl_control |= SCU_TLCR_GEN_BIT(STP_WRITE_DATA_PREFETCH);
110 	writel(tl_control, &iphy->transport_layer_registers->control);
111 
112 	return SCI_SUCCESS;
113 }
114 
115 static enum sci_status
sci_phy_link_layer_initialization(struct isci_phy * iphy,struct scu_link_layer_registers __iomem * llr)116 sci_phy_link_layer_initialization(struct isci_phy *iphy,
117 				  struct scu_link_layer_registers __iomem *llr)
118 {
119 	struct isci_host *ihost = iphy->owning_port->owning_controller;
120 	struct sci_phy_user_params *phy_user;
121 	struct sci_phy_oem_params *phy_oem;
122 	int phy_idx = iphy->phy_index;
123 	struct sci_phy_cap phy_cap;
124 	u32 phy_configuration;
125 	u32 parity_check = 0;
126 	u32 parity_count = 0;
127 	u32 llctl, link_rate;
128 	u32 clksm_value = 0;
129 	u32 sp_timeouts = 0;
130 
131 	phy_user = &ihost->user_parameters.phys[phy_idx];
132 	phy_oem = &ihost->oem_parameters.phys[phy_idx];
133 	iphy->link_layer_registers = llr;
134 
135 	/* Set our IDENTIFY frame data */
136 	#define SCI_END_DEVICE 0x01
137 
138 	writel(SCU_SAS_TIID_GEN_BIT(SMP_INITIATOR) |
139 	       SCU_SAS_TIID_GEN_BIT(SSP_INITIATOR) |
140 	       SCU_SAS_TIID_GEN_BIT(STP_INITIATOR) |
141 	       SCU_SAS_TIID_GEN_BIT(DA_SATA_HOST) |
142 	       SCU_SAS_TIID_GEN_VAL(DEVICE_TYPE, SCI_END_DEVICE),
143 	       &llr->transmit_identification);
144 
145 	/* Write the device SAS Address */
146 	writel(0xFEDCBA98, &llr->sas_device_name_high);
147 	writel(phy_idx, &llr->sas_device_name_low);
148 
149 	/* Write the source SAS Address */
150 	writel(phy_oem->sas_address.high, &llr->source_sas_address_high);
151 	writel(phy_oem->sas_address.low, &llr->source_sas_address_low);
152 
153 	/* Clear and Set the PHY Identifier */
154 	writel(0, &llr->identify_frame_phy_id);
155 	writel(SCU_SAS_TIPID_GEN_VALUE(ID, phy_idx), &llr->identify_frame_phy_id);
156 
157 	/* Change the initial state of the phy configuration register */
158 	phy_configuration = readl(&llr->phy_configuration);
159 
160 	/* Hold OOB state machine in reset */
161 	phy_configuration |=  SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
162 	writel(phy_configuration, &llr->phy_configuration);
163 
164 	/* Configure the SNW capabilities */
165 	phy_cap.all = 0;
166 	phy_cap.start = 1;
167 	phy_cap.gen3_no_ssc = 1;
168 	phy_cap.gen2_no_ssc = 1;
169 	phy_cap.gen1_no_ssc = 1;
170 	if (ihost->oem_parameters.controller.do_enable_ssc) {
171 		struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
172 		struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_idx];
173 		struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
174 		bool en_sas = false;
175 		bool en_sata = false;
176 		u32 sas_type = 0;
177 		u32 sata_spread = 0x2;
178 		u32 sas_spread = 0x2;
179 
180 		phy_cap.gen3_ssc = 1;
181 		phy_cap.gen2_ssc = 1;
182 		phy_cap.gen1_ssc = 1;
183 
184 		if (pci_info->orom->hdr.version < ISCI_ROM_VER_1_1)
185 			en_sas = en_sata = true;
186 		else {
187 			sata_spread = ihost->oem_parameters.controller.ssc_sata_tx_spread_level;
188 			sas_spread = ihost->oem_parameters.controller.ssc_sas_tx_spread_level;
189 
190 			if (sata_spread)
191 				en_sata = true;
192 
193 			if (sas_spread) {
194 				en_sas = true;
195 				sas_type = ihost->oem_parameters.controller.ssc_sas_tx_type;
196 			}
197 
198 		}
199 
200 		if (en_sas) {
201 			u32 reg;
202 
203 			reg = readl(&xcvr->afe_xcvr_control0);
204 			reg |= (0x00100000 | (sas_type << 19));
205 			writel(reg, &xcvr->afe_xcvr_control0);
206 
207 			reg = readl(&xcvr->afe_tx_ssc_control);
208 			reg |= sas_spread << 8;
209 			writel(reg, &xcvr->afe_tx_ssc_control);
210 		}
211 
212 		if (en_sata) {
213 			u32 reg;
214 
215 			reg = readl(&xcvr->afe_tx_ssc_control);
216 			reg |= sata_spread;
217 			writel(reg, &xcvr->afe_tx_ssc_control);
218 
219 			reg = readl(&llr->stp_control);
220 			reg |= 1 << 12;
221 			writel(reg, &llr->stp_control);
222 		}
223 	}
224 
225 	/* The SAS specification indicates that the phy_capabilities that
226 	 * are transmitted shall have an even parity.  Calculate the parity.
227 	 */
228 	parity_check = phy_cap.all;
229 	while (parity_check != 0) {
230 		if (parity_check & 0x1)
231 			parity_count++;
232 		parity_check >>= 1;
233 	}
234 
235 	/* If parity indicates there are an odd number of bits set, then
236 	 * set the parity bit to 1 in the phy capabilities.
237 	 */
238 	if ((parity_count % 2) != 0)
239 		phy_cap.parity = 1;
240 
241 	writel(phy_cap.all, &llr->phy_capabilities);
242 
243 	/* Set the enable spinup period but disable the ability to send
244 	 * notify enable spinup
245 	 */
246 	writel(SCU_ENSPINUP_GEN_VAL(COUNT,
247 			phy_user->notify_enable_spin_up_insertion_frequency),
248 		&llr->notify_enable_spinup_control);
249 
250 	/* Write the ALIGN Insertion Ferequency for connected phy and
251 	 * inpendent of connected state
252 	 */
253 	clksm_value = SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(CONNECTED,
254 			phy_user->in_connection_align_insertion_frequency);
255 
256 	clksm_value |= SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(GENERAL,
257 			phy_user->align_insertion_frequency);
258 
259 	writel(clksm_value, &llr->clock_skew_management);
260 
261 	if (is_c0(ihost->pdev) || is_c1(ihost->pdev)) {
262 		writel(0x04210400, &llr->afe_lookup_table_control);
263 		writel(0x020A7C05, &llr->sas_primitive_timeout);
264 	} else
265 		writel(0x02108421, &llr->afe_lookup_table_control);
266 
267 	llctl = SCU_SAS_LLCTL_GEN_VAL(NO_OUTBOUND_TASK_TIMEOUT,
268 		(u8)ihost->user_parameters.no_outbound_task_timeout);
269 
270 	switch (phy_user->max_speed_generation) {
271 	case SCIC_SDS_PARM_GEN3_SPEED:
272 		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN3;
273 		break;
274 	case SCIC_SDS_PARM_GEN2_SPEED:
275 		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2;
276 		break;
277 	default:
278 		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1;
279 		break;
280 	}
281 	llctl |= SCU_SAS_LLCTL_GEN_VAL(MAX_LINK_RATE, link_rate);
282 	writel(llctl, &llr->link_layer_control);
283 
284 	sp_timeouts = readl(&llr->sas_phy_timeouts);
285 
286 	/* Clear the default 0x36 (54us) RATE_CHANGE timeout value. */
287 	sp_timeouts &= ~SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0xFF);
288 
289 	/* Set RATE_CHANGE timeout value to 0x3B (59us).  This ensures SCU can
290 	 * lock with 3Gb drive when SCU max rate is set to 1.5Gb.
291 	 */
292 	sp_timeouts |= SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0x3B);
293 
294 	writel(sp_timeouts, &llr->sas_phy_timeouts);
295 
296 	if (is_a2(ihost->pdev)) {
297 		/* Program the max ARB time for the PHY to 700us so we
298 		 * inter-operate with the PMC expander which shuts down
299 		 * PHYs if the expander PHY generates too many breaks.
300 		 * This time value will guarantee that the initiator PHY
301 		 * will generate the break.
302 		 */
303 		writel(SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME,
304 		       &llr->maximum_arbitration_wait_timer_timeout);
305 	}
306 
307 	/* Disable link layer hang detection, rely on the OS timeout for
308 	 * I/O timeouts.
309 	 */
310 	writel(0, &llr->link_layer_hang_detection_timeout);
311 
312 	/* We can exit the initial state to the stopped state */
313 	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
314 
315 	return SCI_SUCCESS;
316 }
317 
phy_sata_timeout(struct timer_list * t)318 static void phy_sata_timeout(struct timer_list *t)
319 {
320 	struct sci_timer *tmr = from_timer(tmr, t, timer);
321 	struct isci_phy *iphy = container_of(tmr, typeof(*iphy), sata_timer);
322 	struct isci_host *ihost = iphy->owning_port->owning_controller;
323 	unsigned long flags;
324 
325 	spin_lock_irqsave(&ihost->scic_lock, flags);
326 
327 	if (tmr->cancel)
328 		goto done;
329 
330 	dev_dbg(sciphy_to_dev(iphy),
331 		 "%s: SCIC SDS Phy 0x%p did not receive signature fis before "
332 		 "timeout.\n",
333 		 __func__,
334 		 iphy);
335 
336 	sci_change_state(&iphy->sm, SCI_PHY_STARTING);
337 done:
338 	spin_unlock_irqrestore(&ihost->scic_lock, flags);
339 }
340 
341 /**
342  * phy_get_non_dummy_port() - This method returns the port currently containing
343  * this phy. If the phy is currently contained by the dummy port, then the phy
344  * is considered to not be part of a port.
345  *
346  * @iphy: This parameter specifies the phy for which to retrieve the
347  *    containing port.
348  *
349  * This method returns a handle to a port that contains the supplied phy.
350  * NULL This value is returned if the phy is not part of a real
351  * port (i.e. it's contained in the dummy port). !NULL All other
352  * values indicate a handle/pointer to the port containing the phy.
353  */
phy_get_non_dummy_port(struct isci_phy * iphy)354 struct isci_port *phy_get_non_dummy_port(struct isci_phy *iphy)
355 {
356 	struct isci_port *iport = iphy->owning_port;
357 
358 	if (iport->physical_port_index == SCIC_SDS_DUMMY_PORT)
359 		return NULL;
360 
361 	return iphy->owning_port;
362 }
363 
364 /*
365  * sci_phy_set_port() - This method will assign a port to the phy object.
366  */
sci_phy_set_port(struct isci_phy * iphy,struct isci_port * iport)367 void sci_phy_set_port(
368 	struct isci_phy *iphy,
369 	struct isci_port *iport)
370 {
371 	iphy->owning_port = iport;
372 
373 	if (iphy->bcn_received_while_port_unassigned) {
374 		iphy->bcn_received_while_port_unassigned = false;
375 		sci_port_broadcast_change_received(iphy->owning_port, iphy);
376 	}
377 }
378 
sci_phy_initialize(struct isci_phy * iphy,struct scu_transport_layer_registers __iomem * tl,struct scu_link_layer_registers __iomem * ll)379 enum sci_status sci_phy_initialize(struct isci_phy *iphy,
380 				   struct scu_transport_layer_registers __iomem *tl,
381 				   struct scu_link_layer_registers __iomem *ll)
382 {
383 	/* Perfrom the initialization of the TL hardware */
384 	sci_phy_transport_layer_initialization(iphy, tl);
385 
386 	/* Perofrm the initialization of the PE hardware */
387 	sci_phy_link_layer_initialization(iphy, ll);
388 
389 	/* There is nothing that needs to be done in this state just
390 	 * transition to the stopped state
391 	 */
392 	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
393 
394 	return SCI_SUCCESS;
395 }
396 
397 /**
398  * sci_phy_setup_transport() - This method assigns the direct attached device ID for this phy.
399  *
400  * @iphy: The phy for which the direct attached device id is to
401  *       be assigned.
402  * @device_id: The direct attached device ID to assign to the phy.
403  *       This will either be the RNi for the device or an invalid RNi if there
404  *       is no current device assigned to the phy.
405  */
sci_phy_setup_transport(struct isci_phy * iphy,u32 device_id)406 void sci_phy_setup_transport(struct isci_phy *iphy, u32 device_id)
407 {
408 	u32 tl_control;
409 
410 	writel(device_id, &iphy->transport_layer_registers->stp_rni);
411 
412 	/*
413 	 * The read should guarantee that the first write gets posted
414 	 * before the next write
415 	 */
416 	tl_control = readl(&iphy->transport_layer_registers->control);
417 	tl_control |= SCU_TLCR_GEN_BIT(CLEAR_TCI_NCQ_MAPPING_TABLE);
418 	writel(tl_control, &iphy->transport_layer_registers->control);
419 }
420 
sci_phy_suspend(struct isci_phy * iphy)421 static void sci_phy_suspend(struct isci_phy *iphy)
422 {
423 	u32 scu_sas_pcfg_value;
424 
425 	scu_sas_pcfg_value =
426 		readl(&iphy->link_layer_registers->phy_configuration);
427 	scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
428 	writel(scu_sas_pcfg_value,
429 		&iphy->link_layer_registers->phy_configuration);
430 
431 	sci_phy_setup_transport(iphy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX);
432 }
433 
sci_phy_resume(struct isci_phy * iphy)434 void sci_phy_resume(struct isci_phy *iphy)
435 {
436 	u32 scu_sas_pcfg_value;
437 
438 	scu_sas_pcfg_value =
439 		readl(&iphy->link_layer_registers->phy_configuration);
440 	scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
441 	writel(scu_sas_pcfg_value,
442 		&iphy->link_layer_registers->phy_configuration);
443 }
444 
sci_phy_get_sas_address(struct isci_phy * iphy,struct sci_sas_address * sas)445 void sci_phy_get_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
446 {
447 	sas->high = readl(&iphy->link_layer_registers->source_sas_address_high);
448 	sas->low = readl(&iphy->link_layer_registers->source_sas_address_low);
449 }
450 
sci_phy_get_attached_sas_address(struct isci_phy * iphy,struct sci_sas_address * sas)451 void sci_phy_get_attached_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
452 {
453 	struct sas_identify_frame *iaf;
454 
455 	iaf = &iphy->frame_rcvd.iaf;
456 	memcpy(sas, iaf->sas_addr, SAS_ADDR_SIZE);
457 }
458 
sci_phy_get_protocols(struct isci_phy * iphy,struct sci_phy_proto * proto)459 void sci_phy_get_protocols(struct isci_phy *iphy, struct sci_phy_proto *proto)
460 {
461 	proto->all = readl(&iphy->link_layer_registers->transmit_identification);
462 }
463 
sci_phy_start(struct isci_phy * iphy)464 enum sci_status sci_phy_start(struct isci_phy *iphy)
465 {
466 	enum sci_phy_states state = iphy->sm.current_state_id;
467 
468 	if (state != SCI_PHY_STOPPED) {
469 		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
470 			__func__, phy_state_name(state));
471 		return SCI_FAILURE_INVALID_STATE;
472 	}
473 
474 	sci_change_state(&iphy->sm, SCI_PHY_STARTING);
475 	return SCI_SUCCESS;
476 }
477 
sci_phy_stop(struct isci_phy * iphy)478 enum sci_status sci_phy_stop(struct isci_phy *iphy)
479 {
480 	enum sci_phy_states state = iphy->sm.current_state_id;
481 
482 	switch (state) {
483 	case SCI_PHY_SUB_INITIAL:
484 	case SCI_PHY_SUB_AWAIT_OSSP_EN:
485 	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
486 	case SCI_PHY_SUB_AWAIT_SAS_POWER:
487 	case SCI_PHY_SUB_AWAIT_SATA_POWER:
488 	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
489 	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
490 	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
491 	case SCI_PHY_SUB_FINAL:
492 	case SCI_PHY_READY:
493 		break;
494 	default:
495 		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
496 			__func__, phy_state_name(state));
497 		return SCI_FAILURE_INVALID_STATE;
498 	}
499 
500 	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
501 	return SCI_SUCCESS;
502 }
503 
sci_phy_reset(struct isci_phy * iphy)504 enum sci_status sci_phy_reset(struct isci_phy *iphy)
505 {
506 	enum sci_phy_states state = iphy->sm.current_state_id;
507 
508 	if (state != SCI_PHY_READY) {
509 		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
510 			__func__, phy_state_name(state));
511 		return SCI_FAILURE_INVALID_STATE;
512 	}
513 
514 	sci_change_state(&iphy->sm, SCI_PHY_RESETTING);
515 	return SCI_SUCCESS;
516 }
517 
sci_phy_consume_power_handler(struct isci_phy * iphy)518 enum sci_status sci_phy_consume_power_handler(struct isci_phy *iphy)
519 {
520 	enum sci_phy_states state = iphy->sm.current_state_id;
521 
522 	switch (state) {
523 	case SCI_PHY_SUB_AWAIT_SAS_POWER: {
524 		u32 enable_spinup;
525 
526 		enable_spinup = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
527 		enable_spinup |= SCU_ENSPINUP_GEN_BIT(ENABLE);
528 		writel(enable_spinup, &iphy->link_layer_registers->notify_enable_spinup_control);
529 
530 		/* Change state to the final state this substate machine has run to completion */
531 		sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
532 
533 		return SCI_SUCCESS;
534 	}
535 	case SCI_PHY_SUB_AWAIT_SATA_POWER: {
536 		u32 scu_sas_pcfg_value;
537 
538 		/* Release the spinup hold state and reset the OOB state machine */
539 		scu_sas_pcfg_value =
540 			readl(&iphy->link_layer_registers->phy_configuration);
541 		scu_sas_pcfg_value &=
542 			~(SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
543 		scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
544 		writel(scu_sas_pcfg_value,
545 			&iphy->link_layer_registers->phy_configuration);
546 
547 		/* Now restart the OOB operation */
548 		scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
549 		scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
550 		writel(scu_sas_pcfg_value,
551 			&iphy->link_layer_registers->phy_configuration);
552 
553 		/* Change state to the final state this substate machine has run to completion */
554 		sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_PHY_EN);
555 
556 		return SCI_SUCCESS;
557 	}
558 	default:
559 		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
560 			__func__, phy_state_name(state));
561 		return SCI_FAILURE_INVALID_STATE;
562 	}
563 }
564 
sci_phy_start_sas_link_training(struct isci_phy * iphy)565 static void sci_phy_start_sas_link_training(struct isci_phy *iphy)
566 {
567 	/* continue the link training for the phy as if it were a SAS PHY
568 	 * instead of a SATA PHY. This is done because the completion queue had a SAS
569 	 * PHY DETECTED event when the state machine was expecting a SATA PHY event.
570 	 */
571 	u32 phy_control;
572 
573 	phy_control = readl(&iphy->link_layer_registers->phy_configuration);
574 	phy_control |= SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD);
575 	writel(phy_control,
576 	       &iphy->link_layer_registers->phy_configuration);
577 
578 	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SAS_SPEED_EN);
579 
580 	iphy->protocol = SAS_PROTOCOL_SSP;
581 }
582 
sci_phy_start_sata_link_training(struct isci_phy * iphy)583 static void sci_phy_start_sata_link_training(struct isci_phy *iphy)
584 {
585 	/* This method continues the link training for the phy as if it were a SATA PHY
586 	 * instead of a SAS PHY.  This is done because the completion queue had a SATA
587 	 * SPINUP HOLD event when the state machine was expecting a SAS PHY event. none
588 	 */
589 	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_POWER);
590 
591 	iphy->protocol = SAS_PROTOCOL_SATA;
592 }
593 
594 /**
595  * sci_phy_complete_link_training - perform processing common to
596  *    all protocols upon completion of link training.
597  * @iphy: This parameter specifies the phy object for which link training
598  *    has completed.
599  * @max_link_rate: This parameter specifies the maximum link rate to be
600  *    associated with this phy.
601  * @next_state: This parameter specifies the next state for the phy's starting
602  *    sub-state machine.
603  *
604  */
sci_phy_complete_link_training(struct isci_phy * iphy,enum sas_linkrate max_link_rate,u32 next_state)605 static void sci_phy_complete_link_training(struct isci_phy *iphy,
606 					   enum sas_linkrate max_link_rate,
607 					   u32 next_state)
608 {
609 	iphy->max_negotiated_speed = max_link_rate;
610 
611 	sci_change_state(&iphy->sm, next_state);
612 }
613 
phy_event_name(u32 event_code)614 static const char *phy_event_name(u32 event_code)
615 {
616 	switch (scu_get_event_code(event_code)) {
617 	case SCU_EVENT_PORT_SELECTOR_DETECTED:
618 		return "port selector";
619 	case SCU_EVENT_SENT_PORT_SELECTION:
620 		return "port selection";
621 	case SCU_EVENT_HARD_RESET_TRANSMITTED:
622 		return "tx hard reset";
623 	case SCU_EVENT_HARD_RESET_RECEIVED:
624 		return "rx hard reset";
625 	case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
626 		return "identify timeout";
627 	case SCU_EVENT_LINK_FAILURE:
628 		return "link fail";
629 	case SCU_EVENT_SATA_SPINUP_HOLD:
630 		return "sata spinup hold";
631 	case SCU_EVENT_SAS_15_SSC:
632 	case SCU_EVENT_SAS_15:
633 		return "sas 1.5";
634 	case SCU_EVENT_SAS_30_SSC:
635 	case SCU_EVENT_SAS_30:
636 		return "sas 3.0";
637 	case SCU_EVENT_SAS_60_SSC:
638 	case SCU_EVENT_SAS_60:
639 		return "sas 6.0";
640 	case SCU_EVENT_SATA_15_SSC:
641 	case SCU_EVENT_SATA_15:
642 		return "sata 1.5";
643 	case SCU_EVENT_SATA_30_SSC:
644 	case SCU_EVENT_SATA_30:
645 		return "sata 3.0";
646 	case SCU_EVENT_SATA_60_SSC:
647 	case SCU_EVENT_SATA_60:
648 		return "sata 6.0";
649 	case SCU_EVENT_SAS_PHY_DETECTED:
650 		return "sas detect";
651 	case SCU_EVENT_SATA_PHY_DETECTED:
652 		return "sata detect";
653 	default:
654 		return "unknown";
655 	}
656 }
657 
658 #define phy_event_dbg(iphy, state, code) \
659 	dev_dbg(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \
660 		phy_to_host(iphy)->id, iphy->phy_index, \
661 		phy_state_name(state), phy_event_name(code), code)
662 
663 #define phy_event_warn(iphy, state, code) \
664 	dev_warn(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \
665 		phy_to_host(iphy)->id, iphy->phy_index, \
666 		phy_state_name(state), phy_event_name(code), code)
667 
668 
scu_link_layer_set_txcomsas_timeout(struct isci_phy * iphy,u32 timeout)669 static void scu_link_layer_set_txcomsas_timeout(struct isci_phy *iphy, u32 timeout)
670 {
671 	u32 val;
672 
673 	/* Extend timeout */
674 	val = readl(&iphy->link_layer_registers->transmit_comsas_signal);
675 	val &= ~SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_MASK);
676 	val |= SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, timeout);
677 
678 	writel(val, &iphy->link_layer_registers->transmit_comsas_signal);
679 }
680 
sci_phy_event_handler(struct isci_phy * iphy,u32 event_code)681 enum sci_status sci_phy_event_handler(struct isci_phy *iphy, u32 event_code)
682 {
683 	enum sci_phy_states state = iphy->sm.current_state_id;
684 
685 	switch (state) {
686 	case SCI_PHY_SUB_AWAIT_OSSP_EN:
687 		switch (scu_get_event_code(event_code)) {
688 		case SCU_EVENT_SAS_PHY_DETECTED:
689 			sci_phy_start_sas_link_training(iphy);
690 			iphy->is_in_link_training = true;
691 			break;
692 		case SCU_EVENT_SATA_SPINUP_HOLD:
693 			sci_phy_start_sata_link_training(iphy);
694 			iphy->is_in_link_training = true;
695 			break;
696 		case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
697 		       /* Extend timeout value */
698 		       scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
699 
700 		       /* Start the oob/sn state machine over again */
701 		       sci_change_state(&iphy->sm, SCI_PHY_STARTING);
702 		       break;
703 		default:
704 			phy_event_dbg(iphy, state, event_code);
705 			return SCI_FAILURE;
706 		}
707 		return SCI_SUCCESS;
708 	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
709 		switch (scu_get_event_code(event_code)) {
710 		case SCU_EVENT_SAS_PHY_DETECTED:
711 			/*
712 			 * Why is this being reported again by the controller?
713 			 * We would re-enter this state so just stay here */
714 			break;
715 		case SCU_EVENT_SAS_15:
716 		case SCU_EVENT_SAS_15_SSC:
717 			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
718 						       SCI_PHY_SUB_AWAIT_IAF_UF);
719 			break;
720 		case SCU_EVENT_SAS_30:
721 		case SCU_EVENT_SAS_30_SSC:
722 			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
723 						       SCI_PHY_SUB_AWAIT_IAF_UF);
724 			break;
725 		case SCU_EVENT_SAS_60:
726 		case SCU_EVENT_SAS_60_SSC:
727 			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
728 						       SCI_PHY_SUB_AWAIT_IAF_UF);
729 			break;
730 		case SCU_EVENT_SATA_SPINUP_HOLD:
731 			/*
732 			 * We were doing SAS PHY link training and received a SATA PHY event
733 			 * continue OOB/SN as if this were a SATA PHY */
734 			sci_phy_start_sata_link_training(iphy);
735 			break;
736 		case SCU_EVENT_LINK_FAILURE:
737 			/* Change the timeout value to default */
738 			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
739 
740 			/* Link failure change state back to the starting state */
741 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
742 			break;
743 		case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
744 		       /* Extend the timeout value */
745 		       scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
746 
747 		       /* Start the oob/sn state machine over again */
748 		       sci_change_state(&iphy->sm, SCI_PHY_STARTING);
749 		       break;
750 		default:
751 			phy_event_warn(iphy, state, event_code);
752 			return SCI_FAILURE;
753 		}
754 		return SCI_SUCCESS;
755 	case SCI_PHY_SUB_AWAIT_IAF_UF:
756 		switch (scu_get_event_code(event_code)) {
757 		case SCU_EVENT_SAS_PHY_DETECTED:
758 			/* Backup the state machine */
759 			sci_phy_start_sas_link_training(iphy);
760 			break;
761 		case SCU_EVENT_SATA_SPINUP_HOLD:
762 			/* We were doing SAS PHY link training and received a
763 			 * SATA PHY event continue OOB/SN as if this were a
764 			 * SATA PHY
765 			 */
766 			sci_phy_start_sata_link_training(iphy);
767 			break;
768 		case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
769 			/* Extend the timeout value */
770 			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
771 
772 			/* Start the oob/sn state machine over again */
773 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
774 			break;
775 		case SCU_EVENT_LINK_FAILURE:
776 			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
777 			fallthrough;
778 		case SCU_EVENT_HARD_RESET_RECEIVED:
779 			/* Start the oob/sn state machine over again */
780 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
781 			break;
782 		default:
783 			phy_event_warn(iphy, state, event_code);
784 			return SCI_FAILURE;
785 		}
786 		return SCI_SUCCESS;
787 	case SCI_PHY_SUB_AWAIT_SAS_POWER:
788 		switch (scu_get_event_code(event_code)) {
789 		case SCU_EVENT_LINK_FAILURE:
790 			/* Change the timeout value to default */
791 			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
792 
793 			/* Link failure change state back to the starting state */
794 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
795 			break;
796 		default:
797 			phy_event_warn(iphy, state, event_code);
798 			return SCI_FAILURE;
799 		}
800 		return SCI_SUCCESS;
801 	case SCI_PHY_SUB_AWAIT_SATA_POWER:
802 		switch (scu_get_event_code(event_code)) {
803 		case SCU_EVENT_LINK_FAILURE:
804 			/* Change the timeout value to default */
805 			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
806 
807 			/* Link failure change state back to the starting state */
808 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
809 			break;
810 		case SCU_EVENT_SATA_SPINUP_HOLD:
811 			/* These events are received every 10ms and are
812 			 * expected while in this state
813 			 */
814 			break;
815 
816 		case SCU_EVENT_SAS_PHY_DETECTED:
817 			/* There has been a change in the phy type before OOB/SN for the
818 			 * SATA finished start down the SAS link traning path.
819 			 */
820 			sci_phy_start_sas_link_training(iphy);
821 			break;
822 
823 		default:
824 			phy_event_warn(iphy, state, event_code);
825 			return SCI_FAILURE;
826 		}
827 		return SCI_SUCCESS;
828 	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
829 		switch (scu_get_event_code(event_code)) {
830 		case SCU_EVENT_LINK_FAILURE:
831 			/* Change the timeout value to default */
832 			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
833 
834 			/* Link failure change state back to the starting state */
835 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
836 			break;
837 		case SCU_EVENT_SATA_SPINUP_HOLD:
838 			/* These events might be received since we dont know how many may be in
839 			 * the completion queue while waiting for power
840 			 */
841 			break;
842 		case SCU_EVENT_SATA_PHY_DETECTED:
843 			iphy->protocol = SAS_PROTOCOL_SATA;
844 
845 			/* We have received the SATA PHY notification change state */
846 			sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
847 			break;
848 		case SCU_EVENT_SAS_PHY_DETECTED:
849 			/* There has been a change in the phy type before OOB/SN for the
850 			 * SATA finished start down the SAS link traning path.
851 			 */
852 			sci_phy_start_sas_link_training(iphy);
853 			break;
854 		default:
855 			phy_event_warn(iphy, state, event_code);
856 			return SCI_FAILURE;
857 		}
858 		return SCI_SUCCESS;
859 	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
860 		switch (scu_get_event_code(event_code)) {
861 		case SCU_EVENT_SATA_PHY_DETECTED:
862 			/*
863 			 * The hardware reports multiple SATA PHY detected events
864 			 * ignore the extras */
865 			break;
866 		case SCU_EVENT_SATA_15:
867 		case SCU_EVENT_SATA_15_SSC:
868 			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
869 						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
870 			break;
871 		case SCU_EVENT_SATA_30:
872 		case SCU_EVENT_SATA_30_SSC:
873 			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
874 						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
875 			break;
876 		case SCU_EVENT_SATA_60:
877 		case SCU_EVENT_SATA_60_SSC:
878 			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
879 						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
880 			break;
881 		case SCU_EVENT_LINK_FAILURE:
882 			/* Change the timeout value to default */
883 			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
884 
885 			/* Link failure change state back to the starting state */
886 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
887 			break;
888 		case SCU_EVENT_SAS_PHY_DETECTED:
889 			/*
890 			 * There has been a change in the phy type before OOB/SN for the
891 			 * SATA finished start down the SAS link traning path. */
892 			sci_phy_start_sas_link_training(iphy);
893 			break;
894 		default:
895 			phy_event_warn(iphy, state, event_code);
896 			return SCI_FAILURE;
897 		}
898 
899 		return SCI_SUCCESS;
900 	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
901 		switch (scu_get_event_code(event_code)) {
902 		case SCU_EVENT_SATA_PHY_DETECTED:
903 			/* Backup the state machine */
904 			sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
905 			break;
906 
907 		case SCU_EVENT_LINK_FAILURE:
908 			/* Change the timeout value to default */
909 			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
910 
911 			/* Link failure change state back to the starting state */
912 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
913 			break;
914 
915 		default:
916 			phy_event_warn(iphy, state, event_code);
917 			return SCI_FAILURE;
918 		}
919 		return SCI_SUCCESS;
920 	case SCI_PHY_READY:
921 		switch (scu_get_event_code(event_code)) {
922 		case SCU_EVENT_LINK_FAILURE:
923 			/* Set default timeout */
924 			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
925 
926 			/* Link failure change state back to the starting state */
927 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
928 			break;
929 		case SCU_EVENT_BROADCAST_CHANGE:
930 		case SCU_EVENT_BROADCAST_SES:
931 		case SCU_EVENT_BROADCAST_RESERVED0:
932 		case SCU_EVENT_BROADCAST_RESERVED1:
933 		case SCU_EVENT_BROADCAST_EXPANDER:
934 		case SCU_EVENT_BROADCAST_AEN:
935 			/* Broadcast change received. Notify the port. */
936 			if (phy_get_non_dummy_port(iphy) != NULL)
937 				sci_port_broadcast_change_received(iphy->owning_port, iphy);
938 			else
939 				iphy->bcn_received_while_port_unassigned = true;
940 			break;
941 		case SCU_EVENT_BROADCAST_RESERVED3:
942 		case SCU_EVENT_BROADCAST_RESERVED4:
943 		default:
944 			phy_event_warn(iphy, state, event_code);
945 			return SCI_FAILURE_INVALID_STATE;
946 		}
947 		return SCI_SUCCESS;
948 	case SCI_PHY_RESETTING:
949 		switch (scu_get_event_code(event_code)) {
950 		case SCU_EVENT_HARD_RESET_TRANSMITTED:
951 			/* Link failure change state back to the starting state */
952 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
953 			break;
954 		default:
955 			phy_event_warn(iphy, state, event_code);
956 			return SCI_FAILURE_INVALID_STATE;
957 		}
958 		return SCI_SUCCESS;
959 	default:
960 		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
961 			__func__, phy_state_name(state));
962 		return SCI_FAILURE_INVALID_STATE;
963 	}
964 }
965 
sci_phy_frame_handler(struct isci_phy * iphy,u32 frame_index)966 enum sci_status sci_phy_frame_handler(struct isci_phy *iphy, u32 frame_index)
967 {
968 	enum sci_phy_states state = iphy->sm.current_state_id;
969 	struct isci_host *ihost = iphy->owning_port->owning_controller;
970 	enum sci_status result;
971 	unsigned long flags;
972 
973 	switch (state) {
974 	case SCI_PHY_SUB_AWAIT_IAF_UF: {
975 		u32 *frame_words;
976 		struct sas_identify_frame iaf;
977 
978 		result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
979 								  frame_index,
980 								  (void **)&frame_words);
981 
982 		if (result != SCI_SUCCESS)
983 			return result;
984 
985 		sci_swab32_cpy(&iaf, frame_words, sizeof(iaf) / sizeof(u32));
986 		if (iaf.frame_type == 0) {
987 			u32 state;
988 
989 			spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
990 			memcpy(&iphy->frame_rcvd.iaf, &iaf, sizeof(iaf));
991 			spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
992 			if (iaf.smp_tport) {
993 				/* We got the IAF for an expander PHY go to the final
994 				 * state since there are no power requirements for
995 				 * expander phys.
996 				 */
997 				state = SCI_PHY_SUB_FINAL;
998 			} else {
999 				/* We got the IAF we can now go to the await spinup
1000 				 * semaphore state
1001 				 */
1002 				state = SCI_PHY_SUB_AWAIT_SAS_POWER;
1003 			}
1004 			sci_change_state(&iphy->sm, state);
1005 			result = SCI_SUCCESS;
1006 		} else
1007 			dev_warn(sciphy_to_dev(iphy),
1008 				"%s: PHY starting substate machine received "
1009 				"unexpected frame id %x\n",
1010 				__func__, frame_index);
1011 
1012 		sci_controller_release_frame(ihost, frame_index);
1013 		return result;
1014 	}
1015 	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: {
1016 		struct dev_to_host_fis *frame_header;
1017 		u32 *fis_frame_data;
1018 
1019 		result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1020 								  frame_index,
1021 								  (void **)&frame_header);
1022 
1023 		if (result != SCI_SUCCESS)
1024 			return result;
1025 
1026 		if ((frame_header->fis_type == FIS_REGD2H) &&
1027 		    !(frame_header->status & ATA_BUSY)) {
1028 			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1029 								 frame_index,
1030 								 (void **)&fis_frame_data);
1031 
1032 			spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
1033 			sci_controller_copy_sata_response(&iphy->frame_rcvd.fis,
1034 							  frame_header,
1035 							  fis_frame_data);
1036 			spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
1037 
1038 			/* got IAF we can now go to the await spinup semaphore state */
1039 			sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
1040 
1041 			result = SCI_SUCCESS;
1042 		} else
1043 			dev_warn(sciphy_to_dev(iphy),
1044 				 "%s: PHY starting substate machine received "
1045 				 "unexpected frame id %x\n",
1046 				 __func__, frame_index);
1047 
1048 		/* Regardless of the result we are done with this frame with it */
1049 		sci_controller_release_frame(ihost, frame_index);
1050 
1051 		return result;
1052 	}
1053 	default:
1054 		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
1055 			__func__, phy_state_name(state));
1056 		return SCI_FAILURE_INVALID_STATE;
1057 	}
1058 
1059 }
1060 
sci_phy_starting_initial_substate_enter(struct sci_base_state_machine * sm)1061 static void sci_phy_starting_initial_substate_enter(struct sci_base_state_machine *sm)
1062 {
1063 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1064 
1065 	/* This is just an temporary state go off to the starting state */
1066 	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_OSSP_EN);
1067 }
1068 
sci_phy_starting_await_sas_power_substate_enter(struct sci_base_state_machine * sm)1069 static void sci_phy_starting_await_sas_power_substate_enter(struct sci_base_state_machine *sm)
1070 {
1071 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1072 	struct isci_host *ihost = iphy->owning_port->owning_controller;
1073 
1074 	sci_controller_power_control_queue_insert(ihost, iphy);
1075 }
1076 
sci_phy_starting_await_sas_power_substate_exit(struct sci_base_state_machine * sm)1077 static void sci_phy_starting_await_sas_power_substate_exit(struct sci_base_state_machine *sm)
1078 {
1079 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1080 	struct isci_host *ihost = iphy->owning_port->owning_controller;
1081 
1082 	sci_controller_power_control_queue_remove(ihost, iphy);
1083 }
1084 
sci_phy_starting_await_sata_power_substate_enter(struct sci_base_state_machine * sm)1085 static void sci_phy_starting_await_sata_power_substate_enter(struct sci_base_state_machine *sm)
1086 {
1087 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1088 	struct isci_host *ihost = iphy->owning_port->owning_controller;
1089 
1090 	sci_controller_power_control_queue_insert(ihost, iphy);
1091 }
1092 
sci_phy_starting_await_sata_power_substate_exit(struct sci_base_state_machine * sm)1093 static void sci_phy_starting_await_sata_power_substate_exit(struct sci_base_state_machine *sm)
1094 {
1095 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1096 	struct isci_host *ihost = iphy->owning_port->owning_controller;
1097 
1098 	sci_controller_power_control_queue_remove(ihost, iphy);
1099 }
1100 
sci_phy_starting_await_sata_phy_substate_enter(struct sci_base_state_machine * sm)1101 static void sci_phy_starting_await_sata_phy_substate_enter(struct sci_base_state_machine *sm)
1102 {
1103 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1104 
1105 	sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
1106 }
1107 
sci_phy_starting_await_sata_phy_substate_exit(struct sci_base_state_machine * sm)1108 static void sci_phy_starting_await_sata_phy_substate_exit(struct sci_base_state_machine *sm)
1109 {
1110 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1111 
1112 	sci_del_timer(&iphy->sata_timer);
1113 }
1114 
sci_phy_starting_await_sata_speed_substate_enter(struct sci_base_state_machine * sm)1115 static void sci_phy_starting_await_sata_speed_substate_enter(struct sci_base_state_machine *sm)
1116 {
1117 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1118 
1119 	sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
1120 }
1121 
sci_phy_starting_await_sata_speed_substate_exit(struct sci_base_state_machine * sm)1122 static void sci_phy_starting_await_sata_speed_substate_exit(struct sci_base_state_machine *sm)
1123 {
1124 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1125 
1126 	sci_del_timer(&iphy->sata_timer);
1127 }
1128 
sci_phy_starting_await_sig_fis_uf_substate_enter(struct sci_base_state_machine * sm)1129 static void sci_phy_starting_await_sig_fis_uf_substate_enter(struct sci_base_state_machine *sm)
1130 {
1131 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1132 
1133 	if (sci_port_link_detected(iphy->owning_port, iphy)) {
1134 
1135 		/*
1136 		 * Clear the PE suspend condition so we can actually
1137 		 * receive SIG FIS
1138 		 * The hardware will not respond to the XRDY until the PE
1139 		 * suspend condition is cleared.
1140 		 */
1141 		sci_phy_resume(iphy);
1142 
1143 		sci_mod_timer(&iphy->sata_timer,
1144 			      SCIC_SDS_SIGNATURE_FIS_TIMEOUT);
1145 	} else
1146 		iphy->is_in_link_training = false;
1147 }
1148 
sci_phy_starting_await_sig_fis_uf_substate_exit(struct sci_base_state_machine * sm)1149 static void sci_phy_starting_await_sig_fis_uf_substate_exit(struct sci_base_state_machine *sm)
1150 {
1151 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1152 
1153 	sci_del_timer(&iphy->sata_timer);
1154 }
1155 
sci_phy_starting_final_substate_enter(struct sci_base_state_machine * sm)1156 static void sci_phy_starting_final_substate_enter(struct sci_base_state_machine *sm)
1157 {
1158 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1159 
1160 	/* State machine has run to completion so exit out and change
1161 	 * the base state machine to the ready state
1162 	 */
1163 	sci_change_state(&iphy->sm, SCI_PHY_READY);
1164 }
1165 
1166 /**
1167  * scu_link_layer_stop_protocol_engine()
1168  * @iphy: This is the struct isci_phy object to stop.
1169  *
1170  * This method will stop the struct isci_phy object. This does not reset the
1171  * protocol engine it just suspends it and places it in a state where it will
1172  * not cause the end device to power up. none
1173  */
scu_link_layer_stop_protocol_engine(struct isci_phy * iphy)1174 static void scu_link_layer_stop_protocol_engine(
1175 	struct isci_phy *iphy)
1176 {
1177 	u32 scu_sas_pcfg_value;
1178 	u32 enable_spinup_value;
1179 
1180 	/* Suspend the protocol engine and place it in a sata spinup hold state */
1181 	scu_sas_pcfg_value =
1182 		readl(&iphy->link_layer_registers->phy_configuration);
1183 	scu_sas_pcfg_value |=
1184 		(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1185 		 SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE) |
1186 		 SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD));
1187 	writel(scu_sas_pcfg_value,
1188 	       &iphy->link_layer_registers->phy_configuration);
1189 
1190 	/* Disable the notify enable spinup primitives */
1191 	enable_spinup_value = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
1192 	enable_spinup_value &= ~SCU_ENSPINUP_GEN_BIT(ENABLE);
1193 	writel(enable_spinup_value, &iphy->link_layer_registers->notify_enable_spinup_control);
1194 }
1195 
scu_link_layer_start_oob(struct isci_phy * iphy)1196 static void scu_link_layer_start_oob(struct isci_phy *iphy)
1197 {
1198 	struct scu_link_layer_registers __iomem *ll = iphy->link_layer_registers;
1199 	u32 val;
1200 
1201 	/** Reset OOB sequence - start */
1202 	val = readl(&ll->phy_configuration);
1203 	val &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1204 		 SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE) |
1205 		 SCU_SAS_PCFG_GEN_BIT(HARD_RESET));
1206 	writel(val, &ll->phy_configuration);
1207 	readl(&ll->phy_configuration); /* flush */
1208 	/** Reset OOB sequence - end */
1209 
1210 	/** Start OOB sequence - start */
1211 	val = readl(&ll->phy_configuration);
1212 	val |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1213 	writel(val, &ll->phy_configuration);
1214 	readl(&ll->phy_configuration); /* flush */
1215 	/** Start OOB sequence - end */
1216 }
1217 
1218 /**
1219  * scu_link_layer_tx_hard_reset()
1220  * @iphy: This is the struct isci_phy object to stop.
1221  *
1222  * This method will transmit a hard reset request on the specified phy. The SCU
1223  * hardware requires that we reset the OOB state machine and set the hard reset
1224  * bit in the phy configuration register. We then must start OOB over with the
1225  * hard reset bit set.
1226  */
scu_link_layer_tx_hard_reset(struct isci_phy * iphy)1227 static void scu_link_layer_tx_hard_reset(
1228 	struct isci_phy *iphy)
1229 {
1230 	u32 phy_configuration_value;
1231 
1232 	/*
1233 	 * SAS Phys must wait for the HARD_RESET_TX event notification to transition
1234 	 * to the starting state. */
1235 	phy_configuration_value =
1236 		readl(&iphy->link_layer_registers->phy_configuration);
1237 	phy_configuration_value &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
1238 	phy_configuration_value |=
1239 		(SCU_SAS_PCFG_GEN_BIT(HARD_RESET) |
1240 		 SCU_SAS_PCFG_GEN_BIT(OOB_RESET));
1241 	writel(phy_configuration_value,
1242 	       &iphy->link_layer_registers->phy_configuration);
1243 
1244 	/* Now take the OOB state machine out of reset */
1245 	phy_configuration_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1246 	phy_configuration_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
1247 	writel(phy_configuration_value,
1248 	       &iphy->link_layer_registers->phy_configuration);
1249 }
1250 
sci_phy_stopped_state_enter(struct sci_base_state_machine * sm)1251 static void sci_phy_stopped_state_enter(struct sci_base_state_machine *sm)
1252 {
1253 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1254 	struct isci_port *iport = iphy->owning_port;
1255 	struct isci_host *ihost = iport->owning_controller;
1256 
1257 	/*
1258 	 * @todo We need to get to the controller to place this PE in a
1259 	 * reset state
1260 	 */
1261 	sci_del_timer(&iphy->sata_timer);
1262 
1263 	scu_link_layer_stop_protocol_engine(iphy);
1264 
1265 	if (iphy->sm.previous_state_id != SCI_PHY_INITIAL)
1266 		sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
1267 }
1268 
sci_phy_starting_state_enter(struct sci_base_state_machine * sm)1269 static void sci_phy_starting_state_enter(struct sci_base_state_machine *sm)
1270 {
1271 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1272 	struct isci_port *iport = iphy->owning_port;
1273 	struct isci_host *ihost = iport->owning_controller;
1274 
1275 	scu_link_layer_stop_protocol_engine(iphy);
1276 	scu_link_layer_start_oob(iphy);
1277 
1278 	/* We don't know what kind of phy we are going to be just yet */
1279 	iphy->protocol = SAS_PROTOCOL_NONE;
1280 	iphy->bcn_received_while_port_unassigned = false;
1281 
1282 	if (iphy->sm.previous_state_id == SCI_PHY_READY)
1283 		sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
1284 
1285 	sci_change_state(&iphy->sm, SCI_PHY_SUB_INITIAL);
1286 }
1287 
sci_phy_ready_state_enter(struct sci_base_state_machine * sm)1288 static void sci_phy_ready_state_enter(struct sci_base_state_machine *sm)
1289 {
1290 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1291 	struct isci_port *iport = iphy->owning_port;
1292 	struct isci_host *ihost = iport->owning_controller;
1293 
1294 	sci_controller_link_up(ihost, phy_get_non_dummy_port(iphy), iphy);
1295 }
1296 
sci_phy_ready_state_exit(struct sci_base_state_machine * sm)1297 static void sci_phy_ready_state_exit(struct sci_base_state_machine *sm)
1298 {
1299 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1300 
1301 	sci_phy_suspend(iphy);
1302 }
1303 
sci_phy_resetting_state_enter(struct sci_base_state_machine * sm)1304 static void sci_phy_resetting_state_enter(struct sci_base_state_machine *sm)
1305 {
1306 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1307 
1308 	/* The phy is being reset, therefore deactivate it from the port.  In
1309 	 * the resetting state we don't notify the user regarding link up and
1310 	 * link down notifications
1311 	 */
1312 	sci_port_deactivate_phy(iphy->owning_port, iphy, false);
1313 
1314 	if (iphy->protocol == SAS_PROTOCOL_SSP) {
1315 		scu_link_layer_tx_hard_reset(iphy);
1316 	} else {
1317 		/* The SCU does not need to have a discrete reset state so
1318 		 * just go back to the starting state.
1319 		 */
1320 		sci_change_state(&iphy->sm, SCI_PHY_STARTING);
1321 	}
1322 }
1323 
1324 static const struct sci_base_state sci_phy_state_table[] = {
1325 	[SCI_PHY_INITIAL] = { },
1326 	[SCI_PHY_STOPPED] = {
1327 		.enter_state = sci_phy_stopped_state_enter,
1328 	},
1329 	[SCI_PHY_STARTING] = {
1330 		.enter_state = sci_phy_starting_state_enter,
1331 	},
1332 	[SCI_PHY_SUB_INITIAL] = {
1333 		.enter_state = sci_phy_starting_initial_substate_enter,
1334 	},
1335 	[SCI_PHY_SUB_AWAIT_OSSP_EN] = { },
1336 	[SCI_PHY_SUB_AWAIT_SAS_SPEED_EN] = { },
1337 	[SCI_PHY_SUB_AWAIT_IAF_UF] = { },
1338 	[SCI_PHY_SUB_AWAIT_SAS_POWER] = {
1339 		.enter_state = sci_phy_starting_await_sas_power_substate_enter,
1340 		.exit_state  = sci_phy_starting_await_sas_power_substate_exit,
1341 	},
1342 	[SCI_PHY_SUB_AWAIT_SATA_POWER] = {
1343 		.enter_state = sci_phy_starting_await_sata_power_substate_enter,
1344 		.exit_state  = sci_phy_starting_await_sata_power_substate_exit
1345 	},
1346 	[SCI_PHY_SUB_AWAIT_SATA_PHY_EN] = {
1347 		.enter_state = sci_phy_starting_await_sata_phy_substate_enter,
1348 		.exit_state  = sci_phy_starting_await_sata_phy_substate_exit
1349 	},
1350 	[SCI_PHY_SUB_AWAIT_SATA_SPEED_EN] = {
1351 		.enter_state = sci_phy_starting_await_sata_speed_substate_enter,
1352 		.exit_state  = sci_phy_starting_await_sata_speed_substate_exit
1353 	},
1354 	[SCI_PHY_SUB_AWAIT_SIG_FIS_UF] = {
1355 		.enter_state = sci_phy_starting_await_sig_fis_uf_substate_enter,
1356 		.exit_state  = sci_phy_starting_await_sig_fis_uf_substate_exit
1357 	},
1358 	[SCI_PHY_SUB_FINAL] = {
1359 		.enter_state = sci_phy_starting_final_substate_enter,
1360 	},
1361 	[SCI_PHY_READY] = {
1362 		.enter_state = sci_phy_ready_state_enter,
1363 		.exit_state = sci_phy_ready_state_exit,
1364 	},
1365 	[SCI_PHY_RESETTING] = {
1366 		.enter_state = sci_phy_resetting_state_enter,
1367 	},
1368 	[SCI_PHY_FINAL] = { },
1369 };
1370 
sci_phy_construct(struct isci_phy * iphy,struct isci_port * iport,u8 phy_index)1371 void sci_phy_construct(struct isci_phy *iphy,
1372 			    struct isci_port *iport, u8 phy_index)
1373 {
1374 	sci_init_sm(&iphy->sm, sci_phy_state_table, SCI_PHY_INITIAL);
1375 
1376 	/* Copy the rest of the input data to our locals */
1377 	iphy->owning_port = iport;
1378 	iphy->phy_index = phy_index;
1379 	iphy->bcn_received_while_port_unassigned = false;
1380 	iphy->protocol = SAS_PROTOCOL_NONE;
1381 	iphy->link_layer_registers = NULL;
1382 	iphy->max_negotiated_speed = SAS_LINK_RATE_UNKNOWN;
1383 
1384 	/* Create the SIGNATURE FIS Timeout timer for this phy */
1385 	sci_init_timer(&iphy->sata_timer, phy_sata_timeout);
1386 }
1387 
isci_phy_init(struct isci_phy * iphy,struct isci_host * ihost,int index)1388 void isci_phy_init(struct isci_phy *iphy, struct isci_host *ihost, int index)
1389 {
1390 	struct sci_oem_params *oem = &ihost->oem_parameters;
1391 	u64 sci_sas_addr;
1392 	__be64 sas_addr;
1393 
1394 	sci_sas_addr = oem->phys[index].sas_address.high;
1395 	sci_sas_addr <<= 32;
1396 	sci_sas_addr |= oem->phys[index].sas_address.low;
1397 	sas_addr = cpu_to_be64(sci_sas_addr);
1398 	memcpy(iphy->sas_addr, &sas_addr, sizeof(sas_addr));
1399 
1400 	iphy->sas_phy.enabled = 0;
1401 	iphy->sas_phy.id = index;
1402 	iphy->sas_phy.sas_addr = &iphy->sas_addr[0];
1403 	iphy->sas_phy.frame_rcvd = (u8 *)&iphy->frame_rcvd;
1404 	iphy->sas_phy.ha = &ihost->sas_ha;
1405 	iphy->sas_phy.lldd_phy = iphy;
1406 	iphy->sas_phy.enabled = 1;
1407 	iphy->sas_phy.class = SAS;
1408 	iphy->sas_phy.iproto = SAS_PROTOCOL_ALL;
1409 	iphy->sas_phy.tproto = 0;
1410 	iphy->sas_phy.type = PHY_TYPE_PHYSICAL;
1411 	iphy->sas_phy.role = PHY_ROLE_INITIATOR;
1412 	iphy->sas_phy.oob_mode = OOB_NOT_CONNECTED;
1413 	iphy->sas_phy.linkrate = SAS_LINK_RATE_UNKNOWN;
1414 	memset(&iphy->frame_rcvd, 0, sizeof(iphy->frame_rcvd));
1415 }
1416 
1417 
1418 /**
1419  * isci_phy_control() - This function is one of the SAS Domain Template
1420  *    functions. This is a phy management function.
1421  * @sas_phy: This parameter specifies the sphy being controlled.
1422  * @func: This parameter specifies the phy control function being invoked.
1423  * @buf: This parameter is specific to the phy function being invoked.
1424  *
1425  * status, zero indicates success.
1426  */
isci_phy_control(struct asd_sas_phy * sas_phy,enum phy_func func,void * buf)1427 int isci_phy_control(struct asd_sas_phy *sas_phy,
1428 		     enum phy_func func,
1429 		     void *buf)
1430 {
1431 	int ret = 0;
1432 	struct isci_phy *iphy = sas_phy->lldd_phy;
1433 	struct asd_sas_port *port = sas_phy->port;
1434 	struct isci_host *ihost = sas_phy->ha->lldd_ha;
1435 	unsigned long flags;
1436 
1437 	dev_dbg(&ihost->pdev->dev,
1438 		"%s: phy %p; func %d; buf %p; isci phy %p, port %p\n",
1439 		__func__, sas_phy, func, buf, iphy, port);
1440 
1441 	switch (func) {
1442 	case PHY_FUNC_DISABLE:
1443 		spin_lock_irqsave(&ihost->scic_lock, flags);
1444 		scu_link_layer_start_oob(iphy);
1445 		sci_phy_stop(iphy);
1446 		spin_unlock_irqrestore(&ihost->scic_lock, flags);
1447 		break;
1448 
1449 	case PHY_FUNC_LINK_RESET:
1450 		spin_lock_irqsave(&ihost->scic_lock, flags);
1451 		scu_link_layer_start_oob(iphy);
1452 		sci_phy_stop(iphy);
1453 		sci_phy_start(iphy);
1454 		spin_unlock_irqrestore(&ihost->scic_lock, flags);
1455 		break;
1456 
1457 	case PHY_FUNC_HARD_RESET:
1458 		if (!port)
1459 			return -ENODEV;
1460 
1461 		ret = isci_port_perform_hard_reset(ihost, port->lldd_port, iphy);
1462 
1463 		break;
1464 	case PHY_FUNC_GET_EVENTS: {
1465 		struct scu_link_layer_registers __iomem *r;
1466 		struct sas_phy *phy = sas_phy->phy;
1467 
1468 		r = iphy->link_layer_registers;
1469 		phy->running_disparity_error_count = readl(&r->running_disparity_error_count);
1470 		phy->loss_of_dword_sync_count = readl(&r->loss_of_sync_error_count);
1471 		phy->phy_reset_problem_count = readl(&r->phy_reset_problem_count);
1472 		phy->invalid_dword_count = readl(&r->invalid_dword_counter);
1473 		break;
1474 	}
1475 
1476 	default:
1477 		dev_dbg(&ihost->pdev->dev,
1478 			   "%s: phy %p; func %d NOT IMPLEMENTED!\n",
1479 			   __func__, sas_phy, func);
1480 		ret = -ENOSYS;
1481 		break;
1482 	}
1483 	return ret;
1484 }
1485