1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 */
10
11 #define pr_fmt(fmt) "LSM: " fmt
12
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/msg.h>
31 #include <net/flow.h>
32
33 #define MAX_LSM_EVM_XATTR 2
34
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37
38 /*
39 * These are descriptions of the reasons that can be passed to the
40 * security_locked_down() LSM hook. Placing this array here allows
41 * all security modules to use the same descriptions for auditing
42 * purposes.
43 */
44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45 [LOCKDOWN_NONE] = "none",
46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49 [LOCKDOWN_KEXEC] = "kexec of unsigned images",
50 [LOCKDOWN_HIBERNATION] = "hibernation",
51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52 [LOCKDOWN_IOPORT] = "raw io port access",
53 [LOCKDOWN_MSR] = "raw MSR access",
54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
56 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
57 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
58 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
59 [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
60 [LOCKDOWN_DEBUGFS] = "debugfs access",
61 [LOCKDOWN_XMON_WR] = "xmon write access",
62 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
63 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
64 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
65 [LOCKDOWN_INTEGRITY_MAX] = "integrity",
66 [LOCKDOWN_KCORE] = "/proc/kcore access",
67 [LOCKDOWN_KPROBES] = "use of kprobes",
68 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
69 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
70 [LOCKDOWN_PERF] = "unsafe use of perf",
71 [LOCKDOWN_TRACEFS] = "use of tracefs",
72 [LOCKDOWN_XMON_RW] = "xmon read and write access",
73 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
74 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
75 };
76
77 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
78 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
79
80 static struct kmem_cache *lsm_file_cache;
81 static struct kmem_cache *lsm_inode_cache;
82
83 char *lsm_names;
84 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
85
86 /* Boot-time LSM user choice */
87 static __initdata const char *chosen_lsm_order;
88 static __initdata const char *chosen_major_lsm;
89
90 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
91
92 /* Ordered list of LSMs to initialize. */
93 static __initdata struct lsm_info **ordered_lsms;
94 static __initdata struct lsm_info *exclusive;
95
96 static __initdata bool debug;
97 #define init_debug(...) \
98 do { \
99 if (debug) \
100 pr_info(__VA_ARGS__); \
101 } while (0)
102
is_enabled(struct lsm_info * lsm)103 static bool __init is_enabled(struct lsm_info *lsm)
104 {
105 if (!lsm->enabled)
106 return false;
107
108 return *lsm->enabled;
109 }
110
111 /* Mark an LSM's enabled flag. */
112 static int lsm_enabled_true __initdata = 1;
113 static int lsm_enabled_false __initdata = 0;
set_enabled(struct lsm_info * lsm,bool enabled)114 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
115 {
116 /*
117 * When an LSM hasn't configured an enable variable, we can use
118 * a hard-coded location for storing the default enabled state.
119 */
120 if (!lsm->enabled) {
121 if (enabled)
122 lsm->enabled = &lsm_enabled_true;
123 else
124 lsm->enabled = &lsm_enabled_false;
125 } else if (lsm->enabled == &lsm_enabled_true) {
126 if (!enabled)
127 lsm->enabled = &lsm_enabled_false;
128 } else if (lsm->enabled == &lsm_enabled_false) {
129 if (enabled)
130 lsm->enabled = &lsm_enabled_true;
131 } else {
132 *lsm->enabled = enabled;
133 }
134 }
135
136 /* Is an LSM already listed in the ordered LSMs list? */
exists_ordered_lsm(struct lsm_info * lsm)137 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
138 {
139 struct lsm_info **check;
140
141 for (check = ordered_lsms; *check; check++)
142 if (*check == lsm)
143 return true;
144
145 return false;
146 }
147
148 /* Append an LSM to the list of ordered LSMs to initialize. */
149 static int last_lsm __initdata;
append_ordered_lsm(struct lsm_info * lsm,const char * from)150 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
151 {
152 /* Ignore duplicate selections. */
153 if (exists_ordered_lsm(lsm))
154 return;
155
156 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
157 return;
158
159 /* Enable this LSM, if it is not already set. */
160 if (!lsm->enabled)
161 lsm->enabled = &lsm_enabled_true;
162 ordered_lsms[last_lsm++] = lsm;
163
164 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
165 is_enabled(lsm) ? "en" : "dis");
166 }
167
168 /* Is an LSM allowed to be initialized? */
lsm_allowed(struct lsm_info * lsm)169 static bool __init lsm_allowed(struct lsm_info *lsm)
170 {
171 /* Skip if the LSM is disabled. */
172 if (!is_enabled(lsm))
173 return false;
174
175 /* Not allowed if another exclusive LSM already initialized. */
176 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
177 init_debug("exclusive disabled: %s\n", lsm->name);
178 return false;
179 }
180
181 return true;
182 }
183
lsm_set_blob_size(int * need,int * lbs)184 static void __init lsm_set_blob_size(int *need, int *lbs)
185 {
186 int offset;
187
188 if (*need > 0) {
189 offset = *lbs;
190 *lbs += *need;
191 *need = offset;
192 }
193 }
194
lsm_set_blob_sizes(struct lsm_blob_sizes * needed)195 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
196 {
197 if (!needed)
198 return;
199
200 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
201 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
202 /*
203 * The inode blob gets an rcu_head in addition to
204 * what the modules might need.
205 */
206 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
207 blob_sizes.lbs_inode = sizeof(struct rcu_head);
208 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
209 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
210 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
211 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
212 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
213 }
214
215 /* Prepare LSM for initialization. */
prepare_lsm(struct lsm_info * lsm)216 static void __init prepare_lsm(struct lsm_info *lsm)
217 {
218 int enabled = lsm_allowed(lsm);
219
220 /* Record enablement (to handle any following exclusive LSMs). */
221 set_enabled(lsm, enabled);
222
223 /* If enabled, do pre-initialization work. */
224 if (enabled) {
225 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
226 exclusive = lsm;
227 init_debug("exclusive chosen: %s\n", lsm->name);
228 }
229
230 lsm_set_blob_sizes(lsm->blobs);
231 }
232 }
233
234 /* Initialize a given LSM, if it is enabled. */
initialize_lsm(struct lsm_info * lsm)235 static void __init initialize_lsm(struct lsm_info *lsm)
236 {
237 if (is_enabled(lsm)) {
238 int ret;
239
240 init_debug("initializing %s\n", lsm->name);
241 ret = lsm->init();
242 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
243 }
244 }
245
246 /* Populate ordered LSMs list from comma-separated LSM name list. */
ordered_lsm_parse(const char * order,const char * origin)247 static void __init ordered_lsm_parse(const char *order, const char *origin)
248 {
249 struct lsm_info *lsm;
250 char *sep, *name, *next;
251
252 /* LSM_ORDER_FIRST is always first. */
253 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
254 if (lsm->order == LSM_ORDER_FIRST)
255 append_ordered_lsm(lsm, "first");
256 }
257
258 /* Process "security=", if given. */
259 if (chosen_major_lsm) {
260 struct lsm_info *major;
261
262 /*
263 * To match the original "security=" behavior, this
264 * explicitly does NOT fallback to another Legacy Major
265 * if the selected one was separately disabled: disable
266 * all non-matching Legacy Major LSMs.
267 */
268 for (major = __start_lsm_info; major < __end_lsm_info;
269 major++) {
270 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
271 strcmp(major->name, chosen_major_lsm) != 0) {
272 set_enabled(major, false);
273 init_debug("security=%s disabled: %s\n",
274 chosen_major_lsm, major->name);
275 }
276 }
277 }
278
279 sep = kstrdup(order, GFP_KERNEL);
280 next = sep;
281 /* Walk the list, looking for matching LSMs. */
282 while ((name = strsep(&next, ",")) != NULL) {
283 bool found = false;
284
285 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
286 if (lsm->order == LSM_ORDER_MUTABLE &&
287 strcmp(lsm->name, name) == 0) {
288 append_ordered_lsm(lsm, origin);
289 found = true;
290 }
291 }
292
293 if (!found)
294 init_debug("%s ignored: %s\n", origin, name);
295 }
296
297 /* Process "security=", if given. */
298 if (chosen_major_lsm) {
299 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
300 if (exists_ordered_lsm(lsm))
301 continue;
302 if (strcmp(lsm->name, chosen_major_lsm) == 0)
303 append_ordered_lsm(lsm, "security=");
304 }
305 }
306
307 /* Disable all LSMs not in the ordered list. */
308 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
309 if (exists_ordered_lsm(lsm))
310 continue;
311 set_enabled(lsm, false);
312 init_debug("%s disabled: %s\n", origin, lsm->name);
313 }
314
315 kfree(sep);
316 }
317
318 static void __init lsm_early_cred(struct cred *cred);
319 static void __init lsm_early_task(struct task_struct *task);
320
321 static int lsm_append(const char *new, char **result);
322
ordered_lsm_init(void)323 static void __init ordered_lsm_init(void)
324 {
325 struct lsm_info **lsm;
326
327 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
328 GFP_KERNEL);
329
330 if (chosen_lsm_order) {
331 if (chosen_major_lsm) {
332 pr_info("security= is ignored because it is superseded by lsm=\n");
333 chosen_major_lsm = NULL;
334 }
335 ordered_lsm_parse(chosen_lsm_order, "cmdline");
336 } else
337 ordered_lsm_parse(builtin_lsm_order, "builtin");
338
339 for (lsm = ordered_lsms; *lsm; lsm++)
340 prepare_lsm(*lsm);
341
342 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
343 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
344 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
345 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
346 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
347 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
348 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
349
350 /*
351 * Create any kmem_caches needed for blobs
352 */
353 if (blob_sizes.lbs_file)
354 lsm_file_cache = kmem_cache_create("lsm_file_cache",
355 blob_sizes.lbs_file, 0,
356 SLAB_PANIC, NULL);
357 if (blob_sizes.lbs_inode)
358 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
359 blob_sizes.lbs_inode, 0,
360 SLAB_PANIC, NULL);
361
362 lsm_early_cred((struct cred *) current->cred);
363 lsm_early_task(current);
364 for (lsm = ordered_lsms; *lsm; lsm++)
365 initialize_lsm(*lsm);
366
367 kfree(ordered_lsms);
368 }
369
early_security_init(void)370 int __init early_security_init(void)
371 {
372 struct lsm_info *lsm;
373
374 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
375 INIT_HLIST_HEAD(&security_hook_heads.NAME);
376 #include "linux/lsm_hook_defs.h"
377 #undef LSM_HOOK
378
379 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
380 if (!lsm->enabled)
381 lsm->enabled = &lsm_enabled_true;
382 prepare_lsm(lsm);
383 initialize_lsm(lsm);
384 }
385
386 return 0;
387 }
388
389 /**
390 * security_init - initializes the security framework
391 *
392 * This should be called early in the kernel initialization sequence.
393 */
security_init(void)394 int __init security_init(void)
395 {
396 struct lsm_info *lsm;
397
398 pr_info("Security Framework initializing\n");
399
400 /*
401 * Append the names of the early LSM modules now that kmalloc() is
402 * available
403 */
404 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
405 if (lsm->enabled)
406 lsm_append(lsm->name, &lsm_names);
407 }
408
409 /* Load LSMs in specified order. */
410 ordered_lsm_init();
411
412 return 0;
413 }
414
415 /* Save user chosen LSM */
choose_major_lsm(char * str)416 static int __init choose_major_lsm(char *str)
417 {
418 chosen_major_lsm = str;
419 return 1;
420 }
421 __setup("security=", choose_major_lsm);
422
423 /* Explicitly choose LSM initialization order. */
choose_lsm_order(char * str)424 static int __init choose_lsm_order(char *str)
425 {
426 chosen_lsm_order = str;
427 return 1;
428 }
429 __setup("lsm=", choose_lsm_order);
430
431 /* Enable LSM order debugging. */
enable_debug(char * str)432 static int __init enable_debug(char *str)
433 {
434 debug = true;
435 return 1;
436 }
437 __setup("lsm.debug", enable_debug);
438
match_last_lsm(const char * list,const char * lsm)439 static bool match_last_lsm(const char *list, const char *lsm)
440 {
441 const char *last;
442
443 if (WARN_ON(!list || !lsm))
444 return false;
445 last = strrchr(list, ',');
446 if (last)
447 /* Pass the comma, strcmp() will check for '\0' */
448 last++;
449 else
450 last = list;
451 return !strcmp(last, lsm);
452 }
453
lsm_append(const char * new,char ** result)454 static int lsm_append(const char *new, char **result)
455 {
456 char *cp;
457
458 if (*result == NULL) {
459 *result = kstrdup(new, GFP_KERNEL);
460 if (*result == NULL)
461 return -ENOMEM;
462 } else {
463 /* Check if it is the last registered name */
464 if (match_last_lsm(*result, new))
465 return 0;
466 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
467 if (cp == NULL)
468 return -ENOMEM;
469 kfree(*result);
470 *result = cp;
471 }
472 return 0;
473 }
474
475 /**
476 * security_add_hooks - Add a modules hooks to the hook lists.
477 * @hooks: the hooks to add
478 * @count: the number of hooks to add
479 * @lsm: the name of the security module
480 *
481 * Each LSM has to register its hooks with the infrastructure.
482 */
security_add_hooks(struct security_hook_list * hooks,int count,const char * lsm)483 void __init security_add_hooks(struct security_hook_list *hooks, int count,
484 const char *lsm)
485 {
486 int i;
487
488 for (i = 0; i < count; i++) {
489 hooks[i].lsm = lsm;
490 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
491 }
492
493 /*
494 * Don't try to append during early_security_init(), we'll come back
495 * and fix this up afterwards.
496 */
497 if (slab_is_available()) {
498 if (lsm_append(lsm, &lsm_names) < 0)
499 panic("%s - Cannot get early memory.\n", __func__);
500 }
501 }
502
call_blocking_lsm_notifier(enum lsm_event event,void * data)503 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
504 {
505 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
506 event, data);
507 }
508 EXPORT_SYMBOL(call_blocking_lsm_notifier);
509
register_blocking_lsm_notifier(struct notifier_block * nb)510 int register_blocking_lsm_notifier(struct notifier_block *nb)
511 {
512 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
513 nb);
514 }
515 EXPORT_SYMBOL(register_blocking_lsm_notifier);
516
unregister_blocking_lsm_notifier(struct notifier_block * nb)517 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
518 {
519 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
520 nb);
521 }
522 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
523
524 /**
525 * lsm_cred_alloc - allocate a composite cred blob
526 * @cred: the cred that needs a blob
527 * @gfp: allocation type
528 *
529 * Allocate the cred blob for all the modules
530 *
531 * Returns 0, or -ENOMEM if memory can't be allocated.
532 */
lsm_cred_alloc(struct cred * cred,gfp_t gfp)533 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
534 {
535 if (blob_sizes.lbs_cred == 0) {
536 cred->security = NULL;
537 return 0;
538 }
539
540 cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
541 if (cred->security == NULL)
542 return -ENOMEM;
543 return 0;
544 }
545
546 /**
547 * lsm_early_cred - during initialization allocate a composite cred blob
548 * @cred: the cred that needs a blob
549 *
550 * Allocate the cred blob for all the modules
551 */
lsm_early_cred(struct cred * cred)552 static void __init lsm_early_cred(struct cred *cred)
553 {
554 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
555
556 if (rc)
557 panic("%s: Early cred alloc failed.\n", __func__);
558 }
559
560 /**
561 * lsm_file_alloc - allocate a composite file blob
562 * @file: the file that needs a blob
563 *
564 * Allocate the file blob for all the modules
565 *
566 * Returns 0, or -ENOMEM if memory can't be allocated.
567 */
lsm_file_alloc(struct file * file)568 static int lsm_file_alloc(struct file *file)
569 {
570 if (!lsm_file_cache) {
571 file->f_security = NULL;
572 return 0;
573 }
574
575 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
576 if (file->f_security == NULL)
577 return -ENOMEM;
578 return 0;
579 }
580
581 /**
582 * lsm_inode_alloc - allocate a composite inode blob
583 * @inode: the inode that needs a blob
584 *
585 * Allocate the inode blob for all the modules
586 *
587 * Returns 0, or -ENOMEM if memory can't be allocated.
588 */
lsm_inode_alloc(struct inode * inode)589 int lsm_inode_alloc(struct inode *inode)
590 {
591 if (!lsm_inode_cache) {
592 inode->i_security = NULL;
593 return 0;
594 }
595
596 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
597 if (inode->i_security == NULL)
598 return -ENOMEM;
599 return 0;
600 }
601
602 /**
603 * lsm_task_alloc - allocate a composite task blob
604 * @task: the task that needs a blob
605 *
606 * Allocate the task blob for all the modules
607 *
608 * Returns 0, or -ENOMEM if memory can't be allocated.
609 */
lsm_task_alloc(struct task_struct * task)610 static int lsm_task_alloc(struct task_struct *task)
611 {
612 if (blob_sizes.lbs_task == 0) {
613 task->security = NULL;
614 return 0;
615 }
616
617 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
618 if (task->security == NULL)
619 return -ENOMEM;
620 return 0;
621 }
622
623 /**
624 * lsm_ipc_alloc - allocate a composite ipc blob
625 * @kip: the ipc that needs a blob
626 *
627 * Allocate the ipc blob for all the modules
628 *
629 * Returns 0, or -ENOMEM if memory can't be allocated.
630 */
lsm_ipc_alloc(struct kern_ipc_perm * kip)631 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
632 {
633 if (blob_sizes.lbs_ipc == 0) {
634 kip->security = NULL;
635 return 0;
636 }
637
638 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
639 if (kip->security == NULL)
640 return -ENOMEM;
641 return 0;
642 }
643
644 /**
645 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
646 * @mp: the msg_msg that needs a blob
647 *
648 * Allocate the ipc blob for all the modules
649 *
650 * Returns 0, or -ENOMEM if memory can't be allocated.
651 */
lsm_msg_msg_alloc(struct msg_msg * mp)652 static int lsm_msg_msg_alloc(struct msg_msg *mp)
653 {
654 if (blob_sizes.lbs_msg_msg == 0) {
655 mp->security = NULL;
656 return 0;
657 }
658
659 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
660 if (mp->security == NULL)
661 return -ENOMEM;
662 return 0;
663 }
664
665 /**
666 * lsm_early_task - during initialization allocate a composite task blob
667 * @task: the task that needs a blob
668 *
669 * Allocate the task blob for all the modules
670 */
lsm_early_task(struct task_struct * task)671 static void __init lsm_early_task(struct task_struct *task)
672 {
673 int rc = lsm_task_alloc(task);
674
675 if (rc)
676 panic("%s: Early task alloc failed.\n", __func__);
677 }
678
679 /**
680 * lsm_superblock_alloc - allocate a composite superblock blob
681 * @sb: the superblock that needs a blob
682 *
683 * Allocate the superblock blob for all the modules
684 *
685 * Returns 0, or -ENOMEM if memory can't be allocated.
686 */
lsm_superblock_alloc(struct super_block * sb)687 static int lsm_superblock_alloc(struct super_block *sb)
688 {
689 if (blob_sizes.lbs_superblock == 0) {
690 sb->s_security = NULL;
691 return 0;
692 }
693
694 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
695 if (sb->s_security == NULL)
696 return -ENOMEM;
697 return 0;
698 }
699
700 /*
701 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
702 * can be accessed with:
703 *
704 * LSM_RET_DEFAULT(<hook_name>)
705 *
706 * The macros below define static constants for the default value of each
707 * LSM hook.
708 */
709 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
710 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
711 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
712 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
713 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
714 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
715
716 #include <linux/lsm_hook_defs.h>
717 #undef LSM_HOOK
718
719 /*
720 * Hook list operation macros.
721 *
722 * call_void_hook:
723 * This is a hook that does not return a value.
724 *
725 * call_int_hook:
726 * This is a hook that returns a value.
727 */
728
729 #define call_void_hook(FUNC, ...) \
730 do { \
731 struct security_hook_list *P; \
732 \
733 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
734 P->hook.FUNC(__VA_ARGS__); \
735 } while (0)
736
737 #define call_int_hook(FUNC, IRC, ...) ({ \
738 int RC = IRC; \
739 do { \
740 struct security_hook_list *P; \
741 \
742 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
743 RC = P->hook.FUNC(__VA_ARGS__); \
744 if (RC != 0) \
745 break; \
746 } \
747 } while (0); \
748 RC; \
749 })
750
751 /* Security operations */
752
security_binder_set_context_mgr(const struct cred * mgr)753 int security_binder_set_context_mgr(const struct cred *mgr)
754 {
755 return call_int_hook(binder_set_context_mgr, 0, mgr);
756 }
757
security_binder_transaction(const struct cred * from,const struct cred * to)758 int security_binder_transaction(const struct cred *from,
759 const struct cred *to)
760 {
761 return call_int_hook(binder_transaction, 0, from, to);
762 }
763
security_binder_transfer_binder(const struct cred * from,const struct cred * to)764 int security_binder_transfer_binder(const struct cred *from,
765 const struct cred *to)
766 {
767 return call_int_hook(binder_transfer_binder, 0, from, to);
768 }
769
security_binder_transfer_file(const struct cred * from,const struct cred * to,struct file * file)770 int security_binder_transfer_file(const struct cred *from,
771 const struct cred *to, struct file *file)
772 {
773 return call_int_hook(binder_transfer_file, 0, from, to, file);
774 }
775
security_ptrace_access_check(struct task_struct * child,unsigned int mode)776 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
777 {
778 return call_int_hook(ptrace_access_check, 0, child, mode);
779 }
780
security_ptrace_traceme(struct task_struct * parent)781 int security_ptrace_traceme(struct task_struct *parent)
782 {
783 return call_int_hook(ptrace_traceme, 0, parent);
784 }
785
security_capget(struct task_struct * target,kernel_cap_t * effective,kernel_cap_t * inheritable,kernel_cap_t * permitted)786 int security_capget(struct task_struct *target,
787 kernel_cap_t *effective,
788 kernel_cap_t *inheritable,
789 kernel_cap_t *permitted)
790 {
791 return call_int_hook(capget, 0, target,
792 effective, inheritable, permitted);
793 }
794
security_capset(struct cred * new,const struct cred * old,const kernel_cap_t * effective,const kernel_cap_t * inheritable,const kernel_cap_t * permitted)795 int security_capset(struct cred *new, const struct cred *old,
796 const kernel_cap_t *effective,
797 const kernel_cap_t *inheritable,
798 const kernel_cap_t *permitted)
799 {
800 return call_int_hook(capset, 0, new, old,
801 effective, inheritable, permitted);
802 }
803
security_capable(const struct cred * cred,struct user_namespace * ns,int cap,unsigned int opts)804 int security_capable(const struct cred *cred,
805 struct user_namespace *ns,
806 int cap,
807 unsigned int opts)
808 {
809 return call_int_hook(capable, 0, cred, ns, cap, opts);
810 }
811
security_quotactl(int cmds,int type,int id,struct super_block * sb)812 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
813 {
814 return call_int_hook(quotactl, 0, cmds, type, id, sb);
815 }
816
security_quota_on(struct dentry * dentry)817 int security_quota_on(struct dentry *dentry)
818 {
819 return call_int_hook(quota_on, 0, dentry);
820 }
821
security_syslog(int type)822 int security_syslog(int type)
823 {
824 return call_int_hook(syslog, 0, type);
825 }
826
security_settime64(const struct timespec64 * ts,const struct timezone * tz)827 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
828 {
829 return call_int_hook(settime, 0, ts, tz);
830 }
831
security_vm_enough_memory_mm(struct mm_struct * mm,long pages)832 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
833 {
834 struct security_hook_list *hp;
835 int cap_sys_admin = 1;
836 int rc;
837
838 /*
839 * The module will respond with a positive value if
840 * it thinks the __vm_enough_memory() call should be
841 * made with the cap_sys_admin set. If all of the modules
842 * agree that it should be set it will. If any module
843 * thinks it should not be set it won't.
844 */
845 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
846 rc = hp->hook.vm_enough_memory(mm, pages);
847 if (rc <= 0) {
848 cap_sys_admin = 0;
849 break;
850 }
851 }
852 return __vm_enough_memory(mm, pages, cap_sys_admin);
853 }
854
security_bprm_creds_for_exec(struct linux_binprm * bprm)855 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
856 {
857 return call_int_hook(bprm_creds_for_exec, 0, bprm);
858 }
859
security_bprm_creds_from_file(struct linux_binprm * bprm,struct file * file)860 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
861 {
862 return call_int_hook(bprm_creds_from_file, 0, bprm, file);
863 }
864
security_bprm_check(struct linux_binprm * bprm)865 int security_bprm_check(struct linux_binprm *bprm)
866 {
867 int ret;
868
869 ret = call_int_hook(bprm_check_security, 0, bprm);
870 if (ret)
871 return ret;
872 return ima_bprm_check(bprm);
873 }
874
security_bprm_committing_creds(struct linux_binprm * bprm)875 void security_bprm_committing_creds(struct linux_binprm *bprm)
876 {
877 call_void_hook(bprm_committing_creds, bprm);
878 }
879
security_bprm_committed_creds(struct linux_binprm * bprm)880 void security_bprm_committed_creds(struct linux_binprm *bprm)
881 {
882 call_void_hook(bprm_committed_creds, bprm);
883 }
884
885 /**
886 * security_fs_context_submount() - Initialise fc->security
887 * @fc: new filesystem context
888 * @reference: dentry reference for submount/remount
889 *
890 * Fill out the ->security field for a new fs_context.
891 *
892 * Return: Returns 0 on success or negative error code on failure.
893 */
security_fs_context_submount(struct fs_context * fc,struct super_block * reference)894 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
895 {
896 return call_int_hook(fs_context_submount, 0, fc, reference);
897 }
898
security_fs_context_dup(struct fs_context * fc,struct fs_context * src_fc)899 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
900 {
901 return call_int_hook(fs_context_dup, 0, fc, src_fc);
902 }
903
security_fs_context_parse_param(struct fs_context * fc,struct fs_parameter * param)904 int security_fs_context_parse_param(struct fs_context *fc,
905 struct fs_parameter *param)
906 {
907 struct security_hook_list *hp;
908 int trc;
909 int rc = -ENOPARAM;
910
911 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
912 list) {
913 trc = hp->hook.fs_context_parse_param(fc, param);
914 if (trc == 0)
915 rc = 0;
916 else if (trc != -ENOPARAM)
917 return trc;
918 }
919 return rc;
920 }
921
security_sb_alloc(struct super_block * sb)922 int security_sb_alloc(struct super_block *sb)
923 {
924 int rc = lsm_superblock_alloc(sb);
925
926 if (unlikely(rc))
927 return rc;
928 rc = call_int_hook(sb_alloc_security, 0, sb);
929 if (unlikely(rc))
930 security_sb_free(sb);
931 return rc;
932 }
933
security_sb_delete(struct super_block * sb)934 void security_sb_delete(struct super_block *sb)
935 {
936 call_void_hook(sb_delete, sb);
937 }
938
security_sb_free(struct super_block * sb)939 void security_sb_free(struct super_block *sb)
940 {
941 call_void_hook(sb_free_security, sb);
942 kfree(sb->s_security);
943 sb->s_security = NULL;
944 }
945
security_free_mnt_opts(void ** mnt_opts)946 void security_free_mnt_opts(void **mnt_opts)
947 {
948 if (!*mnt_opts)
949 return;
950 call_void_hook(sb_free_mnt_opts, *mnt_opts);
951 *mnt_opts = NULL;
952 }
953 EXPORT_SYMBOL(security_free_mnt_opts);
954
security_sb_eat_lsm_opts(char * options,void ** mnt_opts)955 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
956 {
957 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
958 }
959 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
960
security_sb_mnt_opts_compat(struct super_block * sb,void * mnt_opts)961 int security_sb_mnt_opts_compat(struct super_block *sb,
962 void *mnt_opts)
963 {
964 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
965 }
966 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
967
security_sb_remount(struct super_block * sb,void * mnt_opts)968 int security_sb_remount(struct super_block *sb,
969 void *mnt_opts)
970 {
971 return call_int_hook(sb_remount, 0, sb, mnt_opts);
972 }
973 EXPORT_SYMBOL(security_sb_remount);
974
security_sb_kern_mount(struct super_block * sb)975 int security_sb_kern_mount(struct super_block *sb)
976 {
977 return call_int_hook(sb_kern_mount, 0, sb);
978 }
979
security_sb_show_options(struct seq_file * m,struct super_block * sb)980 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
981 {
982 return call_int_hook(sb_show_options, 0, m, sb);
983 }
984
security_sb_statfs(struct dentry * dentry)985 int security_sb_statfs(struct dentry *dentry)
986 {
987 return call_int_hook(sb_statfs, 0, dentry);
988 }
989
security_sb_mount(const char * dev_name,const struct path * path,const char * type,unsigned long flags,void * data)990 int security_sb_mount(const char *dev_name, const struct path *path,
991 const char *type, unsigned long flags, void *data)
992 {
993 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
994 }
995
security_sb_umount(struct vfsmount * mnt,int flags)996 int security_sb_umount(struct vfsmount *mnt, int flags)
997 {
998 return call_int_hook(sb_umount, 0, mnt, flags);
999 }
1000
security_sb_pivotroot(const struct path * old_path,const struct path * new_path)1001 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
1002 {
1003 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
1004 }
1005
security_sb_set_mnt_opts(struct super_block * sb,void * mnt_opts,unsigned long kern_flags,unsigned long * set_kern_flags)1006 int security_sb_set_mnt_opts(struct super_block *sb,
1007 void *mnt_opts,
1008 unsigned long kern_flags,
1009 unsigned long *set_kern_flags)
1010 {
1011 return call_int_hook(sb_set_mnt_opts,
1012 mnt_opts ? -EOPNOTSUPP : 0, sb,
1013 mnt_opts, kern_flags, set_kern_flags);
1014 }
1015 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1016
security_sb_clone_mnt_opts(const struct super_block * oldsb,struct super_block * newsb,unsigned long kern_flags,unsigned long * set_kern_flags)1017 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1018 struct super_block *newsb,
1019 unsigned long kern_flags,
1020 unsigned long *set_kern_flags)
1021 {
1022 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
1023 kern_flags, set_kern_flags);
1024 }
1025 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1026
security_move_mount(const struct path * from_path,const struct path * to_path)1027 int security_move_mount(const struct path *from_path, const struct path *to_path)
1028 {
1029 return call_int_hook(move_mount, 0, from_path, to_path);
1030 }
1031
security_path_notify(const struct path * path,u64 mask,unsigned int obj_type)1032 int security_path_notify(const struct path *path, u64 mask,
1033 unsigned int obj_type)
1034 {
1035 return call_int_hook(path_notify, 0, path, mask, obj_type);
1036 }
1037
security_inode_alloc(struct inode * inode)1038 int security_inode_alloc(struct inode *inode)
1039 {
1040 int rc = lsm_inode_alloc(inode);
1041
1042 if (unlikely(rc))
1043 return rc;
1044 rc = call_int_hook(inode_alloc_security, 0, inode);
1045 if (unlikely(rc))
1046 security_inode_free(inode);
1047 return rc;
1048 }
1049
inode_free_by_rcu(struct rcu_head * head)1050 static void inode_free_by_rcu(struct rcu_head *head)
1051 {
1052 /*
1053 * The rcu head is at the start of the inode blob
1054 */
1055 kmem_cache_free(lsm_inode_cache, head);
1056 }
1057
security_inode_free(struct inode * inode)1058 void security_inode_free(struct inode *inode)
1059 {
1060 integrity_inode_free(inode);
1061 call_void_hook(inode_free_security, inode);
1062 /*
1063 * The inode may still be referenced in a path walk and
1064 * a call to security_inode_permission() can be made
1065 * after inode_free_security() is called. Ideally, the VFS
1066 * wouldn't do this, but fixing that is a much harder
1067 * job. For now, simply free the i_security via RCU, and
1068 * leave the current inode->i_security pointer intact.
1069 * The inode will be freed after the RCU grace period too.
1070 */
1071 if (inode->i_security)
1072 call_rcu((struct rcu_head *)inode->i_security,
1073 inode_free_by_rcu);
1074 }
1075
security_dentry_init_security(struct dentry * dentry,int mode,const struct qstr * name,const char ** xattr_name,void ** ctx,u32 * ctxlen)1076 int security_dentry_init_security(struct dentry *dentry, int mode,
1077 const struct qstr *name,
1078 const char **xattr_name, void **ctx,
1079 u32 *ctxlen)
1080 {
1081 struct security_hook_list *hp;
1082 int rc;
1083
1084 /*
1085 * Only one module will provide a security context.
1086 */
1087 hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, list) {
1088 rc = hp->hook.dentry_init_security(dentry, mode, name,
1089 xattr_name, ctx, ctxlen);
1090 if (rc != LSM_RET_DEFAULT(dentry_init_security))
1091 return rc;
1092 }
1093 return LSM_RET_DEFAULT(dentry_init_security);
1094 }
1095 EXPORT_SYMBOL(security_dentry_init_security);
1096
security_dentry_create_files_as(struct dentry * dentry,int mode,struct qstr * name,const struct cred * old,struct cred * new)1097 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1098 struct qstr *name,
1099 const struct cred *old, struct cred *new)
1100 {
1101 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1102 name, old, new);
1103 }
1104 EXPORT_SYMBOL(security_dentry_create_files_as);
1105
security_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr,const initxattrs initxattrs,void * fs_data)1106 int security_inode_init_security(struct inode *inode, struct inode *dir,
1107 const struct qstr *qstr,
1108 const initxattrs initxattrs, void *fs_data)
1109 {
1110 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1111 struct xattr *lsm_xattr, *evm_xattr, *xattr;
1112 int ret;
1113
1114 if (unlikely(IS_PRIVATE(inode)))
1115 return 0;
1116
1117 if (!initxattrs)
1118 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1119 dir, qstr, NULL, NULL, NULL);
1120 memset(new_xattrs, 0, sizeof(new_xattrs));
1121 lsm_xattr = new_xattrs;
1122 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1123 &lsm_xattr->name,
1124 &lsm_xattr->value,
1125 &lsm_xattr->value_len);
1126 if (ret)
1127 goto out;
1128
1129 evm_xattr = lsm_xattr + 1;
1130 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1131 if (ret)
1132 goto out;
1133 ret = initxattrs(inode, new_xattrs, fs_data);
1134 out:
1135 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1136 kfree(xattr->value);
1137 return (ret == -EOPNOTSUPP) ? 0 : ret;
1138 }
1139 EXPORT_SYMBOL(security_inode_init_security);
1140
security_inode_init_security_anon(struct inode * inode,const struct qstr * name,const struct inode * context_inode)1141 int security_inode_init_security_anon(struct inode *inode,
1142 const struct qstr *name,
1143 const struct inode *context_inode)
1144 {
1145 return call_int_hook(inode_init_security_anon, 0, inode, name,
1146 context_inode);
1147 }
1148
security_old_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr,const char ** name,void ** value,size_t * len)1149 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1150 const struct qstr *qstr, const char **name,
1151 void **value, size_t *len)
1152 {
1153 if (unlikely(IS_PRIVATE(inode)))
1154 return -EOPNOTSUPP;
1155 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1156 qstr, name, value, len);
1157 }
1158 EXPORT_SYMBOL(security_old_inode_init_security);
1159
1160 #ifdef CONFIG_SECURITY_PATH
security_path_mknod(const struct path * dir,struct dentry * dentry,umode_t mode,unsigned int dev)1161 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1162 unsigned int dev)
1163 {
1164 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1165 return 0;
1166 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1167 }
1168 EXPORT_SYMBOL(security_path_mknod);
1169
security_path_mkdir(const struct path * dir,struct dentry * dentry,umode_t mode)1170 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1171 {
1172 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1173 return 0;
1174 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1175 }
1176 EXPORT_SYMBOL(security_path_mkdir);
1177
security_path_rmdir(const struct path * dir,struct dentry * dentry)1178 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1179 {
1180 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1181 return 0;
1182 return call_int_hook(path_rmdir, 0, dir, dentry);
1183 }
1184
security_path_unlink(const struct path * dir,struct dentry * dentry)1185 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1186 {
1187 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1188 return 0;
1189 return call_int_hook(path_unlink, 0, dir, dentry);
1190 }
1191 EXPORT_SYMBOL(security_path_unlink);
1192
security_path_symlink(const struct path * dir,struct dentry * dentry,const char * old_name)1193 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1194 const char *old_name)
1195 {
1196 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1197 return 0;
1198 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1199 }
1200
security_path_link(struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry)1201 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1202 struct dentry *new_dentry)
1203 {
1204 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1205 return 0;
1206 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1207 }
1208
security_path_rename(const struct path * old_dir,struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry,unsigned int flags)1209 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1210 const struct path *new_dir, struct dentry *new_dentry,
1211 unsigned int flags)
1212 {
1213 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1214 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1215 return 0;
1216
1217 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1218 new_dentry, flags);
1219 }
1220 EXPORT_SYMBOL(security_path_rename);
1221
security_path_truncate(const struct path * path)1222 int security_path_truncate(const struct path *path)
1223 {
1224 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1225 return 0;
1226 return call_int_hook(path_truncate, 0, path);
1227 }
1228
security_path_chmod(const struct path * path,umode_t mode)1229 int security_path_chmod(const struct path *path, umode_t mode)
1230 {
1231 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1232 return 0;
1233 return call_int_hook(path_chmod, 0, path, mode);
1234 }
1235
security_path_chown(const struct path * path,kuid_t uid,kgid_t gid)1236 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1237 {
1238 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1239 return 0;
1240 return call_int_hook(path_chown, 0, path, uid, gid);
1241 }
1242
security_path_chroot(const struct path * path)1243 int security_path_chroot(const struct path *path)
1244 {
1245 return call_int_hook(path_chroot, 0, path);
1246 }
1247 #endif
1248
security_inode_create(struct inode * dir,struct dentry * dentry,umode_t mode)1249 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1250 {
1251 if (unlikely(IS_PRIVATE(dir)))
1252 return 0;
1253 return call_int_hook(inode_create, 0, dir, dentry, mode);
1254 }
1255 EXPORT_SYMBOL_GPL(security_inode_create);
1256
security_inode_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)1257 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1258 struct dentry *new_dentry)
1259 {
1260 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1261 return 0;
1262 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1263 }
1264
security_inode_unlink(struct inode * dir,struct dentry * dentry)1265 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1266 {
1267 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1268 return 0;
1269 return call_int_hook(inode_unlink, 0, dir, dentry);
1270 }
1271
security_inode_symlink(struct inode * dir,struct dentry * dentry,const char * old_name)1272 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1273 const char *old_name)
1274 {
1275 if (unlikely(IS_PRIVATE(dir)))
1276 return 0;
1277 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1278 }
1279
security_inode_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1280 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1281 {
1282 if (unlikely(IS_PRIVATE(dir)))
1283 return 0;
1284 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1285 }
1286 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1287
security_inode_rmdir(struct inode * dir,struct dentry * dentry)1288 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1289 {
1290 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1291 return 0;
1292 return call_int_hook(inode_rmdir, 0, dir, dentry);
1293 }
1294
security_inode_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)1295 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1296 {
1297 if (unlikely(IS_PRIVATE(dir)))
1298 return 0;
1299 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1300 }
1301
security_inode_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1302 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1303 struct inode *new_dir, struct dentry *new_dentry,
1304 unsigned int flags)
1305 {
1306 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1307 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1308 return 0;
1309
1310 if (flags & RENAME_EXCHANGE) {
1311 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1312 old_dir, old_dentry);
1313 if (err)
1314 return err;
1315 }
1316
1317 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1318 new_dir, new_dentry);
1319 }
1320
security_inode_readlink(struct dentry * dentry)1321 int security_inode_readlink(struct dentry *dentry)
1322 {
1323 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1324 return 0;
1325 return call_int_hook(inode_readlink, 0, dentry);
1326 }
1327
security_inode_follow_link(struct dentry * dentry,struct inode * inode,bool rcu)1328 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1329 bool rcu)
1330 {
1331 if (unlikely(IS_PRIVATE(inode)))
1332 return 0;
1333 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1334 }
1335
security_inode_permission(struct inode * inode,int mask)1336 int security_inode_permission(struct inode *inode, int mask)
1337 {
1338 if (unlikely(IS_PRIVATE(inode)))
1339 return 0;
1340 return call_int_hook(inode_permission, 0, inode, mask);
1341 }
1342
security_inode_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * attr)1343 int security_inode_setattr(struct user_namespace *mnt_userns,
1344 struct dentry *dentry, struct iattr *attr)
1345 {
1346 int ret;
1347
1348 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1349 return 0;
1350 ret = call_int_hook(inode_setattr, 0, dentry, attr);
1351 if (ret)
1352 return ret;
1353 return evm_inode_setattr(mnt_userns, dentry, attr);
1354 }
1355 EXPORT_SYMBOL_GPL(security_inode_setattr);
1356
security_inode_getattr(const struct path * path)1357 int security_inode_getattr(const struct path *path)
1358 {
1359 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1360 return 0;
1361 return call_int_hook(inode_getattr, 0, path);
1362 }
1363
security_inode_setxattr(struct user_namespace * mnt_userns,struct dentry * dentry,const char * name,const void * value,size_t size,int flags)1364 int security_inode_setxattr(struct user_namespace *mnt_userns,
1365 struct dentry *dentry, const char *name,
1366 const void *value, size_t size, int flags)
1367 {
1368 int ret;
1369
1370 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1371 return 0;
1372 /*
1373 * SELinux and Smack integrate the cap call,
1374 * so assume that all LSMs supplying this call do so.
1375 */
1376 ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1377 size, flags);
1378
1379 if (ret == 1)
1380 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1381 if (ret)
1382 return ret;
1383 ret = ima_inode_setxattr(dentry, name, value, size);
1384 if (ret)
1385 return ret;
1386 return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
1387 }
1388
security_inode_post_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)1389 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1390 const void *value, size_t size, int flags)
1391 {
1392 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1393 return;
1394 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1395 evm_inode_post_setxattr(dentry, name, value, size);
1396 }
1397
security_inode_getxattr(struct dentry * dentry,const char * name)1398 int security_inode_getxattr(struct dentry *dentry, const char *name)
1399 {
1400 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1401 return 0;
1402 return call_int_hook(inode_getxattr, 0, dentry, name);
1403 }
1404
security_inode_listxattr(struct dentry * dentry)1405 int security_inode_listxattr(struct dentry *dentry)
1406 {
1407 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1408 return 0;
1409 return call_int_hook(inode_listxattr, 0, dentry);
1410 }
1411
security_inode_removexattr(struct user_namespace * mnt_userns,struct dentry * dentry,const char * name)1412 int security_inode_removexattr(struct user_namespace *mnt_userns,
1413 struct dentry *dentry, const char *name)
1414 {
1415 int ret;
1416
1417 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1418 return 0;
1419 /*
1420 * SELinux and Smack integrate the cap call,
1421 * so assume that all LSMs supplying this call do so.
1422 */
1423 ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1424 if (ret == 1)
1425 ret = cap_inode_removexattr(mnt_userns, dentry, name);
1426 if (ret)
1427 return ret;
1428 ret = ima_inode_removexattr(dentry, name);
1429 if (ret)
1430 return ret;
1431 return evm_inode_removexattr(mnt_userns, dentry, name);
1432 }
1433
security_inode_need_killpriv(struct dentry * dentry)1434 int security_inode_need_killpriv(struct dentry *dentry)
1435 {
1436 return call_int_hook(inode_need_killpriv, 0, dentry);
1437 }
1438
security_inode_killpriv(struct user_namespace * mnt_userns,struct dentry * dentry)1439 int security_inode_killpriv(struct user_namespace *mnt_userns,
1440 struct dentry *dentry)
1441 {
1442 return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1443 }
1444
security_inode_getsecurity(struct user_namespace * mnt_userns,struct inode * inode,const char * name,void ** buffer,bool alloc)1445 int security_inode_getsecurity(struct user_namespace *mnt_userns,
1446 struct inode *inode, const char *name,
1447 void **buffer, bool alloc)
1448 {
1449 struct security_hook_list *hp;
1450 int rc;
1451
1452 if (unlikely(IS_PRIVATE(inode)))
1453 return LSM_RET_DEFAULT(inode_getsecurity);
1454 /*
1455 * Only one module will provide an attribute with a given name.
1456 */
1457 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1458 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1459 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1460 return rc;
1461 }
1462 return LSM_RET_DEFAULT(inode_getsecurity);
1463 }
1464
security_inode_setsecurity(struct inode * inode,const char * name,const void * value,size_t size,int flags)1465 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1466 {
1467 struct security_hook_list *hp;
1468 int rc;
1469
1470 if (unlikely(IS_PRIVATE(inode)))
1471 return LSM_RET_DEFAULT(inode_setsecurity);
1472 /*
1473 * Only one module will provide an attribute with a given name.
1474 */
1475 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1476 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1477 flags);
1478 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1479 return rc;
1480 }
1481 return LSM_RET_DEFAULT(inode_setsecurity);
1482 }
1483
security_inode_listsecurity(struct inode * inode,char * buffer,size_t buffer_size)1484 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1485 {
1486 if (unlikely(IS_PRIVATE(inode)))
1487 return 0;
1488 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1489 }
1490 EXPORT_SYMBOL(security_inode_listsecurity);
1491
security_inode_getsecid(struct inode * inode,u32 * secid)1492 void security_inode_getsecid(struct inode *inode, u32 *secid)
1493 {
1494 call_void_hook(inode_getsecid, inode, secid);
1495 }
1496
security_inode_copy_up(struct dentry * src,struct cred ** new)1497 int security_inode_copy_up(struct dentry *src, struct cred **new)
1498 {
1499 return call_int_hook(inode_copy_up, 0, src, new);
1500 }
1501 EXPORT_SYMBOL(security_inode_copy_up);
1502
security_inode_copy_up_xattr(const char * name)1503 int security_inode_copy_up_xattr(const char *name)
1504 {
1505 struct security_hook_list *hp;
1506 int rc;
1507
1508 /*
1509 * The implementation can return 0 (accept the xattr), 1 (discard the
1510 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1511 * any other error code incase of an error.
1512 */
1513 hlist_for_each_entry(hp,
1514 &security_hook_heads.inode_copy_up_xattr, list) {
1515 rc = hp->hook.inode_copy_up_xattr(name);
1516 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1517 return rc;
1518 }
1519
1520 return LSM_RET_DEFAULT(inode_copy_up_xattr);
1521 }
1522 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1523
security_kernfs_init_security(struct kernfs_node * kn_dir,struct kernfs_node * kn)1524 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1525 struct kernfs_node *kn)
1526 {
1527 return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1528 }
1529
security_file_permission(struct file * file,int mask)1530 int security_file_permission(struct file *file, int mask)
1531 {
1532 int ret;
1533
1534 ret = call_int_hook(file_permission, 0, file, mask);
1535 if (ret)
1536 return ret;
1537
1538 return fsnotify_perm(file, mask);
1539 }
1540
security_file_alloc(struct file * file)1541 int security_file_alloc(struct file *file)
1542 {
1543 int rc = lsm_file_alloc(file);
1544
1545 if (rc)
1546 return rc;
1547 rc = call_int_hook(file_alloc_security, 0, file);
1548 if (unlikely(rc))
1549 security_file_free(file);
1550 return rc;
1551 }
1552
security_file_free(struct file * file)1553 void security_file_free(struct file *file)
1554 {
1555 void *blob;
1556
1557 call_void_hook(file_free_security, file);
1558
1559 blob = file->f_security;
1560 if (blob) {
1561 file->f_security = NULL;
1562 kmem_cache_free(lsm_file_cache, blob);
1563 }
1564 }
1565
security_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1566 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1567 {
1568 return call_int_hook(file_ioctl, 0, file, cmd, arg);
1569 }
1570 EXPORT_SYMBOL_GPL(security_file_ioctl);
1571
1572 /**
1573 * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
1574 * @file: associated file
1575 * @cmd: ioctl cmd
1576 * @arg: ioctl arguments
1577 *
1578 * Compat version of security_file_ioctl() that correctly handles 32-bit
1579 * processes running on 64-bit kernels.
1580 *
1581 * Return: Returns 0 if permission is granted.
1582 */
security_file_ioctl_compat(struct file * file,unsigned int cmd,unsigned long arg)1583 int security_file_ioctl_compat(struct file *file, unsigned int cmd,
1584 unsigned long arg)
1585 {
1586 return call_int_hook(file_ioctl_compat, 0, file, cmd, arg);
1587 }
1588 EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
1589
mmap_prot(struct file * file,unsigned long prot)1590 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1591 {
1592 /*
1593 * Does we have PROT_READ and does the application expect
1594 * it to imply PROT_EXEC? If not, nothing to talk about...
1595 */
1596 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1597 return prot;
1598 if (!(current->personality & READ_IMPLIES_EXEC))
1599 return prot;
1600 /*
1601 * if that's an anonymous mapping, let it.
1602 */
1603 if (!file)
1604 return prot | PROT_EXEC;
1605 /*
1606 * ditto if it's not on noexec mount, except that on !MMU we need
1607 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1608 */
1609 if (!path_noexec(&file->f_path)) {
1610 #ifndef CONFIG_MMU
1611 if (file->f_op->mmap_capabilities) {
1612 unsigned caps = file->f_op->mmap_capabilities(file);
1613 if (!(caps & NOMMU_MAP_EXEC))
1614 return prot;
1615 }
1616 #endif
1617 return prot | PROT_EXEC;
1618 }
1619 /* anything on noexec mount won't get PROT_EXEC */
1620 return prot;
1621 }
1622
security_mmap_file(struct file * file,unsigned long prot,unsigned long flags)1623 int security_mmap_file(struct file *file, unsigned long prot,
1624 unsigned long flags)
1625 {
1626 unsigned long prot_adj = mmap_prot(file, prot);
1627 int ret;
1628
1629 ret = call_int_hook(mmap_file, 0, file, prot, prot_adj, flags);
1630 if (ret)
1631 return ret;
1632 return ima_file_mmap(file, prot, prot_adj, flags);
1633 }
1634
security_mmap_addr(unsigned long addr)1635 int security_mmap_addr(unsigned long addr)
1636 {
1637 return call_int_hook(mmap_addr, 0, addr);
1638 }
1639
security_file_mprotect(struct vm_area_struct * vma,unsigned long reqprot,unsigned long prot)1640 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1641 unsigned long prot)
1642 {
1643 int ret;
1644
1645 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1646 if (ret)
1647 return ret;
1648 return ima_file_mprotect(vma, prot);
1649 }
1650
security_file_lock(struct file * file,unsigned int cmd)1651 int security_file_lock(struct file *file, unsigned int cmd)
1652 {
1653 return call_int_hook(file_lock, 0, file, cmd);
1654 }
1655
security_file_fcntl(struct file * file,unsigned int cmd,unsigned long arg)1656 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1657 {
1658 return call_int_hook(file_fcntl, 0, file, cmd, arg);
1659 }
1660
security_file_set_fowner(struct file * file)1661 void security_file_set_fowner(struct file *file)
1662 {
1663 call_void_hook(file_set_fowner, file);
1664 }
1665
security_file_send_sigiotask(struct task_struct * tsk,struct fown_struct * fown,int sig)1666 int security_file_send_sigiotask(struct task_struct *tsk,
1667 struct fown_struct *fown, int sig)
1668 {
1669 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1670 }
1671
security_file_receive(struct file * file)1672 int security_file_receive(struct file *file)
1673 {
1674 return call_int_hook(file_receive, 0, file);
1675 }
1676
security_file_open(struct file * file)1677 int security_file_open(struct file *file)
1678 {
1679 int ret;
1680
1681 ret = call_int_hook(file_open, 0, file);
1682 if (ret)
1683 return ret;
1684
1685 return fsnotify_perm(file, MAY_OPEN);
1686 }
1687
security_task_alloc(struct task_struct * task,unsigned long clone_flags)1688 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1689 {
1690 int rc = lsm_task_alloc(task);
1691
1692 if (rc)
1693 return rc;
1694 rc = call_int_hook(task_alloc, 0, task, clone_flags);
1695 if (unlikely(rc))
1696 security_task_free(task);
1697 return rc;
1698 }
1699
security_task_free(struct task_struct * task)1700 void security_task_free(struct task_struct *task)
1701 {
1702 call_void_hook(task_free, task);
1703
1704 kfree(task->security);
1705 task->security = NULL;
1706 }
1707
security_cred_alloc_blank(struct cred * cred,gfp_t gfp)1708 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1709 {
1710 int rc = lsm_cred_alloc(cred, gfp);
1711
1712 if (rc)
1713 return rc;
1714
1715 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1716 if (unlikely(rc))
1717 security_cred_free(cred);
1718 return rc;
1719 }
1720
security_cred_free(struct cred * cred)1721 void security_cred_free(struct cred *cred)
1722 {
1723 /*
1724 * There is a failure case in prepare_creds() that
1725 * may result in a call here with ->security being NULL.
1726 */
1727 if (unlikely(cred->security == NULL))
1728 return;
1729
1730 call_void_hook(cred_free, cred);
1731
1732 kfree(cred->security);
1733 cred->security = NULL;
1734 }
1735
security_prepare_creds(struct cred * new,const struct cred * old,gfp_t gfp)1736 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1737 {
1738 int rc = lsm_cred_alloc(new, gfp);
1739
1740 if (rc)
1741 return rc;
1742
1743 rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1744 if (unlikely(rc))
1745 security_cred_free(new);
1746 return rc;
1747 }
1748
security_transfer_creds(struct cred * new,const struct cred * old)1749 void security_transfer_creds(struct cred *new, const struct cred *old)
1750 {
1751 call_void_hook(cred_transfer, new, old);
1752 }
1753
security_cred_getsecid(const struct cred * c,u32 * secid)1754 void security_cred_getsecid(const struct cred *c, u32 *secid)
1755 {
1756 *secid = 0;
1757 call_void_hook(cred_getsecid, c, secid);
1758 }
1759 EXPORT_SYMBOL(security_cred_getsecid);
1760
security_kernel_act_as(struct cred * new,u32 secid)1761 int security_kernel_act_as(struct cred *new, u32 secid)
1762 {
1763 return call_int_hook(kernel_act_as, 0, new, secid);
1764 }
1765
security_kernel_create_files_as(struct cred * new,struct inode * inode)1766 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1767 {
1768 return call_int_hook(kernel_create_files_as, 0, new, inode);
1769 }
1770
security_kernel_module_request(char * kmod_name)1771 int security_kernel_module_request(char *kmod_name)
1772 {
1773 int ret;
1774
1775 ret = call_int_hook(kernel_module_request, 0, kmod_name);
1776 if (ret)
1777 return ret;
1778 return integrity_kernel_module_request(kmod_name);
1779 }
1780
security_kernel_read_file(struct file * file,enum kernel_read_file_id id,bool contents)1781 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1782 bool contents)
1783 {
1784 int ret;
1785
1786 ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1787 if (ret)
1788 return ret;
1789 return ima_read_file(file, id, contents);
1790 }
1791 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1792
security_kernel_post_read_file(struct file * file,char * buf,loff_t size,enum kernel_read_file_id id)1793 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1794 enum kernel_read_file_id id)
1795 {
1796 int ret;
1797
1798 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1799 if (ret)
1800 return ret;
1801 return ima_post_read_file(file, buf, size, id);
1802 }
1803 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1804
security_kernel_load_data(enum kernel_load_data_id id,bool contents)1805 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1806 {
1807 int ret;
1808
1809 ret = call_int_hook(kernel_load_data, 0, id, contents);
1810 if (ret)
1811 return ret;
1812 return ima_load_data(id, contents);
1813 }
1814 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1815
security_kernel_post_load_data(char * buf,loff_t size,enum kernel_load_data_id id,char * description)1816 int security_kernel_post_load_data(char *buf, loff_t size,
1817 enum kernel_load_data_id id,
1818 char *description)
1819 {
1820 int ret;
1821
1822 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1823 description);
1824 if (ret)
1825 return ret;
1826 return ima_post_load_data(buf, size, id, description);
1827 }
1828 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1829
security_task_fix_setuid(struct cred * new,const struct cred * old,int flags)1830 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1831 int flags)
1832 {
1833 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1834 }
1835
security_task_fix_setgid(struct cred * new,const struct cred * old,int flags)1836 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1837 int flags)
1838 {
1839 return call_int_hook(task_fix_setgid, 0, new, old, flags);
1840 }
1841
security_task_fix_setgroups(struct cred * new,const struct cred * old)1842 int security_task_fix_setgroups(struct cred *new, const struct cred *old)
1843 {
1844 return call_int_hook(task_fix_setgroups, 0, new, old);
1845 }
1846
security_task_setpgid(struct task_struct * p,pid_t pgid)1847 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1848 {
1849 return call_int_hook(task_setpgid, 0, p, pgid);
1850 }
1851
security_task_getpgid(struct task_struct * p)1852 int security_task_getpgid(struct task_struct *p)
1853 {
1854 return call_int_hook(task_getpgid, 0, p);
1855 }
1856
security_task_getsid(struct task_struct * p)1857 int security_task_getsid(struct task_struct *p)
1858 {
1859 return call_int_hook(task_getsid, 0, p);
1860 }
1861
security_current_getsecid_subj(u32 * secid)1862 void security_current_getsecid_subj(u32 *secid)
1863 {
1864 *secid = 0;
1865 call_void_hook(current_getsecid_subj, secid);
1866 }
1867 EXPORT_SYMBOL(security_current_getsecid_subj);
1868
security_task_getsecid_obj(struct task_struct * p,u32 * secid)1869 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1870 {
1871 *secid = 0;
1872 call_void_hook(task_getsecid_obj, p, secid);
1873 }
1874 EXPORT_SYMBOL(security_task_getsecid_obj);
1875
security_task_setnice(struct task_struct * p,int nice)1876 int security_task_setnice(struct task_struct *p, int nice)
1877 {
1878 return call_int_hook(task_setnice, 0, p, nice);
1879 }
1880
security_task_setioprio(struct task_struct * p,int ioprio)1881 int security_task_setioprio(struct task_struct *p, int ioprio)
1882 {
1883 return call_int_hook(task_setioprio, 0, p, ioprio);
1884 }
1885
security_task_getioprio(struct task_struct * p)1886 int security_task_getioprio(struct task_struct *p)
1887 {
1888 return call_int_hook(task_getioprio, 0, p);
1889 }
1890
security_task_prlimit(const struct cred * cred,const struct cred * tcred,unsigned int flags)1891 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1892 unsigned int flags)
1893 {
1894 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1895 }
1896
security_task_setrlimit(struct task_struct * p,unsigned int resource,struct rlimit * new_rlim)1897 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1898 struct rlimit *new_rlim)
1899 {
1900 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1901 }
1902
security_task_setscheduler(struct task_struct * p)1903 int security_task_setscheduler(struct task_struct *p)
1904 {
1905 return call_int_hook(task_setscheduler, 0, p);
1906 }
1907
security_task_getscheduler(struct task_struct * p)1908 int security_task_getscheduler(struct task_struct *p)
1909 {
1910 return call_int_hook(task_getscheduler, 0, p);
1911 }
1912
security_task_movememory(struct task_struct * p)1913 int security_task_movememory(struct task_struct *p)
1914 {
1915 return call_int_hook(task_movememory, 0, p);
1916 }
1917
security_task_kill(struct task_struct * p,struct kernel_siginfo * info,int sig,const struct cred * cred)1918 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1919 int sig, const struct cred *cred)
1920 {
1921 return call_int_hook(task_kill, 0, p, info, sig, cred);
1922 }
1923
security_task_prctl(int option,unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)1924 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1925 unsigned long arg4, unsigned long arg5)
1926 {
1927 int thisrc;
1928 int rc = LSM_RET_DEFAULT(task_prctl);
1929 struct security_hook_list *hp;
1930
1931 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1932 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1933 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1934 rc = thisrc;
1935 if (thisrc != 0)
1936 break;
1937 }
1938 }
1939 return rc;
1940 }
1941
security_task_to_inode(struct task_struct * p,struct inode * inode)1942 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1943 {
1944 call_void_hook(task_to_inode, p, inode);
1945 }
1946
security_create_user_ns(const struct cred * cred)1947 int security_create_user_ns(const struct cred *cred)
1948 {
1949 return call_int_hook(userns_create, 0, cred);
1950 }
1951
security_ipc_permission(struct kern_ipc_perm * ipcp,short flag)1952 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1953 {
1954 return call_int_hook(ipc_permission, 0, ipcp, flag);
1955 }
1956
security_ipc_getsecid(struct kern_ipc_perm * ipcp,u32 * secid)1957 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1958 {
1959 *secid = 0;
1960 call_void_hook(ipc_getsecid, ipcp, secid);
1961 }
1962
security_msg_msg_alloc(struct msg_msg * msg)1963 int security_msg_msg_alloc(struct msg_msg *msg)
1964 {
1965 int rc = lsm_msg_msg_alloc(msg);
1966
1967 if (unlikely(rc))
1968 return rc;
1969 rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1970 if (unlikely(rc))
1971 security_msg_msg_free(msg);
1972 return rc;
1973 }
1974
security_msg_msg_free(struct msg_msg * msg)1975 void security_msg_msg_free(struct msg_msg *msg)
1976 {
1977 call_void_hook(msg_msg_free_security, msg);
1978 kfree(msg->security);
1979 msg->security = NULL;
1980 }
1981
security_msg_queue_alloc(struct kern_ipc_perm * msq)1982 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1983 {
1984 int rc = lsm_ipc_alloc(msq);
1985
1986 if (unlikely(rc))
1987 return rc;
1988 rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1989 if (unlikely(rc))
1990 security_msg_queue_free(msq);
1991 return rc;
1992 }
1993
security_msg_queue_free(struct kern_ipc_perm * msq)1994 void security_msg_queue_free(struct kern_ipc_perm *msq)
1995 {
1996 call_void_hook(msg_queue_free_security, msq);
1997 kfree(msq->security);
1998 msq->security = NULL;
1999 }
2000
security_msg_queue_associate(struct kern_ipc_perm * msq,int msqflg)2001 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
2002 {
2003 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
2004 }
2005
security_msg_queue_msgctl(struct kern_ipc_perm * msq,int cmd)2006 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
2007 {
2008 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
2009 }
2010
security_msg_queue_msgsnd(struct kern_ipc_perm * msq,struct msg_msg * msg,int msqflg)2011 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
2012 struct msg_msg *msg, int msqflg)
2013 {
2014 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
2015 }
2016
security_msg_queue_msgrcv(struct kern_ipc_perm * msq,struct msg_msg * msg,struct task_struct * target,long type,int mode)2017 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
2018 struct task_struct *target, long type, int mode)
2019 {
2020 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
2021 }
2022
security_shm_alloc(struct kern_ipc_perm * shp)2023 int security_shm_alloc(struct kern_ipc_perm *shp)
2024 {
2025 int rc = lsm_ipc_alloc(shp);
2026
2027 if (unlikely(rc))
2028 return rc;
2029 rc = call_int_hook(shm_alloc_security, 0, shp);
2030 if (unlikely(rc))
2031 security_shm_free(shp);
2032 return rc;
2033 }
2034
security_shm_free(struct kern_ipc_perm * shp)2035 void security_shm_free(struct kern_ipc_perm *shp)
2036 {
2037 call_void_hook(shm_free_security, shp);
2038 kfree(shp->security);
2039 shp->security = NULL;
2040 }
2041
security_shm_associate(struct kern_ipc_perm * shp,int shmflg)2042 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
2043 {
2044 return call_int_hook(shm_associate, 0, shp, shmflg);
2045 }
2046
security_shm_shmctl(struct kern_ipc_perm * shp,int cmd)2047 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
2048 {
2049 return call_int_hook(shm_shmctl, 0, shp, cmd);
2050 }
2051
security_shm_shmat(struct kern_ipc_perm * shp,char __user * shmaddr,int shmflg)2052 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
2053 {
2054 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
2055 }
2056
security_sem_alloc(struct kern_ipc_perm * sma)2057 int security_sem_alloc(struct kern_ipc_perm *sma)
2058 {
2059 int rc = lsm_ipc_alloc(sma);
2060
2061 if (unlikely(rc))
2062 return rc;
2063 rc = call_int_hook(sem_alloc_security, 0, sma);
2064 if (unlikely(rc))
2065 security_sem_free(sma);
2066 return rc;
2067 }
2068
security_sem_free(struct kern_ipc_perm * sma)2069 void security_sem_free(struct kern_ipc_perm *sma)
2070 {
2071 call_void_hook(sem_free_security, sma);
2072 kfree(sma->security);
2073 sma->security = NULL;
2074 }
2075
security_sem_associate(struct kern_ipc_perm * sma,int semflg)2076 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2077 {
2078 return call_int_hook(sem_associate, 0, sma, semflg);
2079 }
2080
security_sem_semctl(struct kern_ipc_perm * sma,int cmd)2081 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2082 {
2083 return call_int_hook(sem_semctl, 0, sma, cmd);
2084 }
2085
security_sem_semop(struct kern_ipc_perm * sma,struct sembuf * sops,unsigned nsops,int alter)2086 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2087 unsigned nsops, int alter)
2088 {
2089 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2090 }
2091
security_d_instantiate(struct dentry * dentry,struct inode * inode)2092 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2093 {
2094 if (unlikely(inode && IS_PRIVATE(inode)))
2095 return;
2096 call_void_hook(d_instantiate, dentry, inode);
2097 }
2098 EXPORT_SYMBOL(security_d_instantiate);
2099
security_getprocattr(struct task_struct * p,const char * lsm,const char * name,char ** value)2100 int security_getprocattr(struct task_struct *p, const char *lsm,
2101 const char *name, char **value)
2102 {
2103 struct security_hook_list *hp;
2104
2105 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2106 if (lsm != NULL && strcmp(lsm, hp->lsm))
2107 continue;
2108 return hp->hook.getprocattr(p, name, value);
2109 }
2110 return LSM_RET_DEFAULT(getprocattr);
2111 }
2112
security_setprocattr(const char * lsm,const char * name,void * value,size_t size)2113 int security_setprocattr(const char *lsm, const char *name, void *value,
2114 size_t size)
2115 {
2116 struct security_hook_list *hp;
2117
2118 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2119 if (lsm != NULL && strcmp(lsm, hp->lsm))
2120 continue;
2121 return hp->hook.setprocattr(name, value, size);
2122 }
2123 return LSM_RET_DEFAULT(setprocattr);
2124 }
2125
security_netlink_send(struct sock * sk,struct sk_buff * skb)2126 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2127 {
2128 return call_int_hook(netlink_send, 0, sk, skb);
2129 }
2130
security_ismaclabel(const char * name)2131 int security_ismaclabel(const char *name)
2132 {
2133 return call_int_hook(ismaclabel, 0, name);
2134 }
2135 EXPORT_SYMBOL(security_ismaclabel);
2136
security_secid_to_secctx(u32 secid,char ** secdata,u32 * seclen)2137 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2138 {
2139 struct security_hook_list *hp;
2140 int rc;
2141
2142 /*
2143 * Currently, only one LSM can implement secid_to_secctx (i.e this
2144 * LSM hook is not "stackable").
2145 */
2146 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2147 rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2148 if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2149 return rc;
2150 }
2151
2152 return LSM_RET_DEFAULT(secid_to_secctx);
2153 }
2154 EXPORT_SYMBOL(security_secid_to_secctx);
2155
security_secctx_to_secid(const char * secdata,u32 seclen,u32 * secid)2156 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2157 {
2158 *secid = 0;
2159 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2160 }
2161 EXPORT_SYMBOL(security_secctx_to_secid);
2162
security_release_secctx(char * secdata,u32 seclen)2163 void security_release_secctx(char *secdata, u32 seclen)
2164 {
2165 call_void_hook(release_secctx, secdata, seclen);
2166 }
2167 EXPORT_SYMBOL(security_release_secctx);
2168
security_inode_invalidate_secctx(struct inode * inode)2169 void security_inode_invalidate_secctx(struct inode *inode)
2170 {
2171 call_void_hook(inode_invalidate_secctx, inode);
2172 }
2173 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2174
security_inode_notifysecctx(struct inode * inode,void * ctx,u32 ctxlen)2175 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2176 {
2177 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2178 }
2179 EXPORT_SYMBOL(security_inode_notifysecctx);
2180
security_inode_setsecctx(struct dentry * dentry,void * ctx,u32 ctxlen)2181 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2182 {
2183 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2184 }
2185 EXPORT_SYMBOL(security_inode_setsecctx);
2186
security_inode_getsecctx(struct inode * inode,void ** ctx,u32 * ctxlen)2187 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2188 {
2189 struct security_hook_list *hp;
2190 int rc;
2191
2192 /*
2193 * Only one module will provide a security context.
2194 */
2195 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecctx, list) {
2196 rc = hp->hook.inode_getsecctx(inode, ctx, ctxlen);
2197 if (rc != LSM_RET_DEFAULT(inode_getsecctx))
2198 return rc;
2199 }
2200
2201 return LSM_RET_DEFAULT(inode_getsecctx);
2202 }
2203 EXPORT_SYMBOL(security_inode_getsecctx);
2204
2205 #ifdef CONFIG_WATCH_QUEUE
security_post_notification(const struct cred * w_cred,const struct cred * cred,struct watch_notification * n)2206 int security_post_notification(const struct cred *w_cred,
2207 const struct cred *cred,
2208 struct watch_notification *n)
2209 {
2210 return call_int_hook(post_notification, 0, w_cred, cred, n);
2211 }
2212 #endif /* CONFIG_WATCH_QUEUE */
2213
2214 #ifdef CONFIG_KEY_NOTIFICATIONS
security_watch_key(struct key * key)2215 int security_watch_key(struct key *key)
2216 {
2217 return call_int_hook(watch_key, 0, key);
2218 }
2219 #endif
2220
2221 #ifdef CONFIG_SECURITY_NETWORK
2222
security_unix_stream_connect(struct sock * sock,struct sock * other,struct sock * newsk)2223 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2224 {
2225 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2226 }
2227 EXPORT_SYMBOL(security_unix_stream_connect);
2228
security_unix_may_send(struct socket * sock,struct socket * other)2229 int security_unix_may_send(struct socket *sock, struct socket *other)
2230 {
2231 return call_int_hook(unix_may_send, 0, sock, other);
2232 }
2233 EXPORT_SYMBOL(security_unix_may_send);
2234
security_socket_create(int family,int type,int protocol,int kern)2235 int security_socket_create(int family, int type, int protocol, int kern)
2236 {
2237 return call_int_hook(socket_create, 0, family, type, protocol, kern);
2238 }
2239
security_socket_post_create(struct socket * sock,int family,int type,int protocol,int kern)2240 int security_socket_post_create(struct socket *sock, int family,
2241 int type, int protocol, int kern)
2242 {
2243 return call_int_hook(socket_post_create, 0, sock, family, type,
2244 protocol, kern);
2245 }
2246
security_socket_socketpair(struct socket * socka,struct socket * sockb)2247 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2248 {
2249 return call_int_hook(socket_socketpair, 0, socka, sockb);
2250 }
2251 EXPORT_SYMBOL(security_socket_socketpair);
2252
security_socket_bind(struct socket * sock,struct sockaddr * address,int addrlen)2253 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2254 {
2255 return call_int_hook(socket_bind, 0, sock, address, addrlen);
2256 }
2257
security_socket_connect(struct socket * sock,struct sockaddr * address,int addrlen)2258 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2259 {
2260 return call_int_hook(socket_connect, 0, sock, address, addrlen);
2261 }
2262
security_socket_listen(struct socket * sock,int backlog)2263 int security_socket_listen(struct socket *sock, int backlog)
2264 {
2265 return call_int_hook(socket_listen, 0, sock, backlog);
2266 }
2267
security_socket_accept(struct socket * sock,struct socket * newsock)2268 int security_socket_accept(struct socket *sock, struct socket *newsock)
2269 {
2270 return call_int_hook(socket_accept, 0, sock, newsock);
2271 }
2272
security_socket_sendmsg(struct socket * sock,struct msghdr * msg,int size)2273 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2274 {
2275 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2276 }
2277
security_socket_recvmsg(struct socket * sock,struct msghdr * msg,int size,int flags)2278 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2279 int size, int flags)
2280 {
2281 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2282 }
2283
security_socket_getsockname(struct socket * sock)2284 int security_socket_getsockname(struct socket *sock)
2285 {
2286 return call_int_hook(socket_getsockname, 0, sock);
2287 }
2288
security_socket_getpeername(struct socket * sock)2289 int security_socket_getpeername(struct socket *sock)
2290 {
2291 return call_int_hook(socket_getpeername, 0, sock);
2292 }
2293
security_socket_getsockopt(struct socket * sock,int level,int optname)2294 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2295 {
2296 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2297 }
2298
security_socket_setsockopt(struct socket * sock,int level,int optname)2299 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2300 {
2301 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2302 }
2303
security_socket_shutdown(struct socket * sock,int how)2304 int security_socket_shutdown(struct socket *sock, int how)
2305 {
2306 return call_int_hook(socket_shutdown, 0, sock, how);
2307 }
2308
security_sock_rcv_skb(struct sock * sk,struct sk_buff * skb)2309 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2310 {
2311 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2312 }
2313 EXPORT_SYMBOL(security_sock_rcv_skb);
2314
security_socket_getpeersec_stream(struct socket * sock,char __user * optval,int __user * optlen,unsigned len)2315 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2316 int __user *optlen, unsigned len)
2317 {
2318 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2319 optval, optlen, len);
2320 }
2321
security_socket_getpeersec_dgram(struct socket * sock,struct sk_buff * skb,u32 * secid)2322 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2323 {
2324 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2325 skb, secid);
2326 }
2327 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2328
security_sk_alloc(struct sock * sk,int family,gfp_t priority)2329 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2330 {
2331 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2332 }
2333
security_sk_free(struct sock * sk)2334 void security_sk_free(struct sock *sk)
2335 {
2336 call_void_hook(sk_free_security, sk);
2337 }
2338
security_sk_clone(const struct sock * sk,struct sock * newsk)2339 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2340 {
2341 call_void_hook(sk_clone_security, sk, newsk);
2342 }
2343 EXPORT_SYMBOL(security_sk_clone);
2344
security_sk_classify_flow(struct sock * sk,struct flowi_common * flic)2345 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2346 {
2347 call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2348 }
2349 EXPORT_SYMBOL(security_sk_classify_flow);
2350
security_req_classify_flow(const struct request_sock * req,struct flowi_common * flic)2351 void security_req_classify_flow(const struct request_sock *req,
2352 struct flowi_common *flic)
2353 {
2354 call_void_hook(req_classify_flow, req, flic);
2355 }
2356 EXPORT_SYMBOL(security_req_classify_flow);
2357
security_sock_graft(struct sock * sk,struct socket * parent)2358 void security_sock_graft(struct sock *sk, struct socket *parent)
2359 {
2360 call_void_hook(sock_graft, sk, parent);
2361 }
2362 EXPORT_SYMBOL(security_sock_graft);
2363
security_inet_conn_request(const struct sock * sk,struct sk_buff * skb,struct request_sock * req)2364 int security_inet_conn_request(const struct sock *sk,
2365 struct sk_buff *skb, struct request_sock *req)
2366 {
2367 return call_int_hook(inet_conn_request, 0, sk, skb, req);
2368 }
2369 EXPORT_SYMBOL(security_inet_conn_request);
2370
security_inet_csk_clone(struct sock * newsk,const struct request_sock * req)2371 void security_inet_csk_clone(struct sock *newsk,
2372 const struct request_sock *req)
2373 {
2374 call_void_hook(inet_csk_clone, newsk, req);
2375 }
2376
security_inet_conn_established(struct sock * sk,struct sk_buff * skb)2377 void security_inet_conn_established(struct sock *sk,
2378 struct sk_buff *skb)
2379 {
2380 call_void_hook(inet_conn_established, sk, skb);
2381 }
2382 EXPORT_SYMBOL(security_inet_conn_established);
2383
security_secmark_relabel_packet(u32 secid)2384 int security_secmark_relabel_packet(u32 secid)
2385 {
2386 return call_int_hook(secmark_relabel_packet, 0, secid);
2387 }
2388 EXPORT_SYMBOL(security_secmark_relabel_packet);
2389
security_secmark_refcount_inc(void)2390 void security_secmark_refcount_inc(void)
2391 {
2392 call_void_hook(secmark_refcount_inc);
2393 }
2394 EXPORT_SYMBOL(security_secmark_refcount_inc);
2395
security_secmark_refcount_dec(void)2396 void security_secmark_refcount_dec(void)
2397 {
2398 call_void_hook(secmark_refcount_dec);
2399 }
2400 EXPORT_SYMBOL(security_secmark_refcount_dec);
2401
security_tun_dev_alloc_security(void ** security)2402 int security_tun_dev_alloc_security(void **security)
2403 {
2404 return call_int_hook(tun_dev_alloc_security, 0, security);
2405 }
2406 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2407
security_tun_dev_free_security(void * security)2408 void security_tun_dev_free_security(void *security)
2409 {
2410 call_void_hook(tun_dev_free_security, security);
2411 }
2412 EXPORT_SYMBOL(security_tun_dev_free_security);
2413
security_tun_dev_create(void)2414 int security_tun_dev_create(void)
2415 {
2416 return call_int_hook(tun_dev_create, 0);
2417 }
2418 EXPORT_SYMBOL(security_tun_dev_create);
2419
security_tun_dev_attach_queue(void * security)2420 int security_tun_dev_attach_queue(void *security)
2421 {
2422 return call_int_hook(tun_dev_attach_queue, 0, security);
2423 }
2424 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2425
security_tun_dev_attach(struct sock * sk,void * security)2426 int security_tun_dev_attach(struct sock *sk, void *security)
2427 {
2428 return call_int_hook(tun_dev_attach, 0, sk, security);
2429 }
2430 EXPORT_SYMBOL(security_tun_dev_attach);
2431
security_tun_dev_open(void * security)2432 int security_tun_dev_open(void *security)
2433 {
2434 return call_int_hook(tun_dev_open, 0, security);
2435 }
2436 EXPORT_SYMBOL(security_tun_dev_open);
2437
security_sctp_assoc_request(struct sctp_association * asoc,struct sk_buff * skb)2438 int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb)
2439 {
2440 return call_int_hook(sctp_assoc_request, 0, asoc, skb);
2441 }
2442 EXPORT_SYMBOL(security_sctp_assoc_request);
2443
security_sctp_bind_connect(struct sock * sk,int optname,struct sockaddr * address,int addrlen)2444 int security_sctp_bind_connect(struct sock *sk, int optname,
2445 struct sockaddr *address, int addrlen)
2446 {
2447 return call_int_hook(sctp_bind_connect, 0, sk, optname,
2448 address, addrlen);
2449 }
2450 EXPORT_SYMBOL(security_sctp_bind_connect);
2451
security_sctp_sk_clone(struct sctp_association * asoc,struct sock * sk,struct sock * newsk)2452 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
2453 struct sock *newsk)
2454 {
2455 call_void_hook(sctp_sk_clone, asoc, sk, newsk);
2456 }
2457 EXPORT_SYMBOL(security_sctp_sk_clone);
2458
security_sctp_assoc_established(struct sctp_association * asoc,struct sk_buff * skb)2459 int security_sctp_assoc_established(struct sctp_association *asoc,
2460 struct sk_buff *skb)
2461 {
2462 return call_int_hook(sctp_assoc_established, 0, asoc, skb);
2463 }
2464 EXPORT_SYMBOL(security_sctp_assoc_established);
2465
2466 #endif /* CONFIG_SECURITY_NETWORK */
2467
2468 #ifdef CONFIG_SECURITY_INFINIBAND
2469
security_ib_pkey_access(void * sec,u64 subnet_prefix,u16 pkey)2470 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2471 {
2472 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2473 }
2474 EXPORT_SYMBOL(security_ib_pkey_access);
2475
security_ib_endport_manage_subnet(void * sec,const char * dev_name,u8 port_num)2476 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2477 {
2478 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2479 }
2480 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2481
security_ib_alloc_security(void ** sec)2482 int security_ib_alloc_security(void **sec)
2483 {
2484 return call_int_hook(ib_alloc_security, 0, sec);
2485 }
2486 EXPORT_SYMBOL(security_ib_alloc_security);
2487
security_ib_free_security(void * sec)2488 void security_ib_free_security(void *sec)
2489 {
2490 call_void_hook(ib_free_security, sec);
2491 }
2492 EXPORT_SYMBOL(security_ib_free_security);
2493 #endif /* CONFIG_SECURITY_INFINIBAND */
2494
2495 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2496
security_xfrm_policy_alloc(struct xfrm_sec_ctx ** ctxp,struct xfrm_user_sec_ctx * sec_ctx,gfp_t gfp)2497 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2498 struct xfrm_user_sec_ctx *sec_ctx,
2499 gfp_t gfp)
2500 {
2501 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2502 }
2503 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2504
security_xfrm_policy_clone(struct xfrm_sec_ctx * old_ctx,struct xfrm_sec_ctx ** new_ctxp)2505 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2506 struct xfrm_sec_ctx **new_ctxp)
2507 {
2508 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2509 }
2510
security_xfrm_policy_free(struct xfrm_sec_ctx * ctx)2511 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2512 {
2513 call_void_hook(xfrm_policy_free_security, ctx);
2514 }
2515 EXPORT_SYMBOL(security_xfrm_policy_free);
2516
security_xfrm_policy_delete(struct xfrm_sec_ctx * ctx)2517 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2518 {
2519 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2520 }
2521
security_xfrm_state_alloc(struct xfrm_state * x,struct xfrm_user_sec_ctx * sec_ctx)2522 int security_xfrm_state_alloc(struct xfrm_state *x,
2523 struct xfrm_user_sec_ctx *sec_ctx)
2524 {
2525 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2526 }
2527 EXPORT_SYMBOL(security_xfrm_state_alloc);
2528
security_xfrm_state_alloc_acquire(struct xfrm_state * x,struct xfrm_sec_ctx * polsec,u32 secid)2529 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2530 struct xfrm_sec_ctx *polsec, u32 secid)
2531 {
2532 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2533 }
2534
security_xfrm_state_delete(struct xfrm_state * x)2535 int security_xfrm_state_delete(struct xfrm_state *x)
2536 {
2537 return call_int_hook(xfrm_state_delete_security, 0, x);
2538 }
2539 EXPORT_SYMBOL(security_xfrm_state_delete);
2540
security_xfrm_state_free(struct xfrm_state * x)2541 void security_xfrm_state_free(struct xfrm_state *x)
2542 {
2543 call_void_hook(xfrm_state_free_security, x);
2544 }
2545
security_xfrm_policy_lookup(struct xfrm_sec_ctx * ctx,u32 fl_secid)2546 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2547 {
2548 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2549 }
2550
security_xfrm_state_pol_flow_match(struct xfrm_state * x,struct xfrm_policy * xp,const struct flowi_common * flic)2551 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2552 struct xfrm_policy *xp,
2553 const struct flowi_common *flic)
2554 {
2555 struct security_hook_list *hp;
2556 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2557
2558 /*
2559 * Since this function is expected to return 0 or 1, the judgment
2560 * becomes difficult if multiple LSMs supply this call. Fortunately,
2561 * we can use the first LSM's judgment because currently only SELinux
2562 * supplies this call.
2563 *
2564 * For speed optimization, we explicitly break the loop rather than
2565 * using the macro
2566 */
2567 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2568 list) {
2569 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2570 break;
2571 }
2572 return rc;
2573 }
2574
security_xfrm_decode_session(struct sk_buff * skb,u32 * secid)2575 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2576 {
2577 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2578 }
2579
security_skb_classify_flow(struct sk_buff * skb,struct flowi_common * flic)2580 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2581 {
2582 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2583 0);
2584
2585 BUG_ON(rc);
2586 }
2587 EXPORT_SYMBOL(security_skb_classify_flow);
2588
2589 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
2590
2591 #ifdef CONFIG_KEYS
2592
security_key_alloc(struct key * key,const struct cred * cred,unsigned long flags)2593 int security_key_alloc(struct key *key, const struct cred *cred,
2594 unsigned long flags)
2595 {
2596 return call_int_hook(key_alloc, 0, key, cred, flags);
2597 }
2598
security_key_free(struct key * key)2599 void security_key_free(struct key *key)
2600 {
2601 call_void_hook(key_free, key);
2602 }
2603
security_key_permission(key_ref_t key_ref,const struct cred * cred,enum key_need_perm need_perm)2604 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2605 enum key_need_perm need_perm)
2606 {
2607 return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2608 }
2609
security_key_getsecurity(struct key * key,char ** _buffer)2610 int security_key_getsecurity(struct key *key, char **_buffer)
2611 {
2612 *_buffer = NULL;
2613 return call_int_hook(key_getsecurity, 0, key, _buffer);
2614 }
2615
2616 #endif /* CONFIG_KEYS */
2617
2618 #ifdef CONFIG_AUDIT
2619
security_audit_rule_init(u32 field,u32 op,char * rulestr,void ** lsmrule)2620 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2621 {
2622 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2623 }
2624
security_audit_rule_known(struct audit_krule * krule)2625 int security_audit_rule_known(struct audit_krule *krule)
2626 {
2627 return call_int_hook(audit_rule_known, 0, krule);
2628 }
2629
security_audit_rule_free(void * lsmrule)2630 void security_audit_rule_free(void *lsmrule)
2631 {
2632 call_void_hook(audit_rule_free, lsmrule);
2633 }
2634
security_audit_rule_match(u32 secid,u32 field,u32 op,void * lsmrule)2635 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2636 {
2637 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2638 }
2639 #endif /* CONFIG_AUDIT */
2640
2641 #ifdef CONFIG_BPF_SYSCALL
security_bpf(int cmd,union bpf_attr * attr,unsigned int size)2642 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2643 {
2644 return call_int_hook(bpf, 0, cmd, attr, size);
2645 }
security_bpf_map(struct bpf_map * map,fmode_t fmode)2646 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2647 {
2648 return call_int_hook(bpf_map, 0, map, fmode);
2649 }
security_bpf_prog(struct bpf_prog * prog)2650 int security_bpf_prog(struct bpf_prog *prog)
2651 {
2652 return call_int_hook(bpf_prog, 0, prog);
2653 }
security_bpf_map_alloc(struct bpf_map * map)2654 int security_bpf_map_alloc(struct bpf_map *map)
2655 {
2656 return call_int_hook(bpf_map_alloc_security, 0, map);
2657 }
security_bpf_prog_alloc(struct bpf_prog_aux * aux)2658 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2659 {
2660 return call_int_hook(bpf_prog_alloc_security, 0, aux);
2661 }
security_bpf_map_free(struct bpf_map * map)2662 void security_bpf_map_free(struct bpf_map *map)
2663 {
2664 call_void_hook(bpf_map_free_security, map);
2665 }
security_bpf_prog_free(struct bpf_prog_aux * aux)2666 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2667 {
2668 call_void_hook(bpf_prog_free_security, aux);
2669 }
2670 #endif /* CONFIG_BPF_SYSCALL */
2671
security_locked_down(enum lockdown_reason what)2672 int security_locked_down(enum lockdown_reason what)
2673 {
2674 return call_int_hook(locked_down, 0, what);
2675 }
2676 EXPORT_SYMBOL(security_locked_down);
2677
2678 #ifdef CONFIG_PERF_EVENTS
security_perf_event_open(struct perf_event_attr * attr,int type)2679 int security_perf_event_open(struct perf_event_attr *attr, int type)
2680 {
2681 return call_int_hook(perf_event_open, 0, attr, type);
2682 }
2683
security_perf_event_alloc(struct perf_event * event)2684 int security_perf_event_alloc(struct perf_event *event)
2685 {
2686 return call_int_hook(perf_event_alloc, 0, event);
2687 }
2688
security_perf_event_free(struct perf_event * event)2689 void security_perf_event_free(struct perf_event *event)
2690 {
2691 call_void_hook(perf_event_free, event);
2692 }
2693
security_perf_event_read(struct perf_event * event)2694 int security_perf_event_read(struct perf_event *event)
2695 {
2696 return call_int_hook(perf_event_read, 0, event);
2697 }
2698
security_perf_event_write(struct perf_event * event)2699 int security_perf_event_write(struct perf_event *event)
2700 {
2701 return call_int_hook(perf_event_write, 0, event);
2702 }
2703 #endif /* CONFIG_PERF_EVENTS */
2704
2705 #ifdef CONFIG_IO_URING
security_uring_override_creds(const struct cred * new)2706 int security_uring_override_creds(const struct cred *new)
2707 {
2708 return call_int_hook(uring_override_creds, 0, new);
2709 }
2710
security_uring_sqpoll(void)2711 int security_uring_sqpoll(void)
2712 {
2713 return call_int_hook(uring_sqpoll, 0);
2714 }
security_uring_cmd(struct io_uring_cmd * ioucmd)2715 int security_uring_cmd(struct io_uring_cmd *ioucmd)
2716 {
2717 return call_int_hook(uring_cmd, 0, ioucmd);
2718 }
2719 #endif /* CONFIG_IO_URING */
2720