• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39 
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67 
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 #  include <linux/entry-common.h>
71 # endif
72 #endif
73 
74 #include <uapi/linux/sched/types.h>
75 
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #undef CREATE_TRACE_POINTS
84 
85 #include "sched.h"
86 #include "stats.h"
87 #include "autogroup.h"
88 
89 #include "autogroup.h"
90 #include "pelt.h"
91 #include "smp.h"
92 #include "stats.h"
93 
94 #include "../workqueue_internal.h"
95 #include "../../io_uring/io-wq.h"
96 #include "../smpboot.h"
97 
98 #include <trace/hooks/sched.h>
99 #include <trace/hooks/dtask.h>
100 #include <trace/hooks/cgroup.h>
101 
102 /*
103  * Export tracepoints that act as a bare tracehook (ie: have no trace event
104  * associated with them) to allow external modules to probe them.
105  */
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_switch);
118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_waking);
119 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_wakeup);
120 #ifdef CONFIG_SCHEDSTATS
121 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_sleep);
122 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_wait);
123 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_iowait);
124 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_blocked);
125 #endif
126 
127 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
128 EXPORT_SYMBOL_GPL(runqueues);
129 
130 #ifdef CONFIG_SCHED_DEBUG
131 /*
132  * Debugging: various feature bits
133  *
134  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
135  * sysctl_sched_features, defined in sched.h, to allow constants propagation
136  * at compile time and compiler optimization based on features default.
137  */
138 #define SCHED_FEAT(name, enabled)	\
139 	(1UL << __SCHED_FEAT_##name) * enabled |
140 const_debug unsigned int sysctl_sched_features =
141 #include "features.h"
142 	0;
143 EXPORT_SYMBOL_GPL(sysctl_sched_features);
144 #undef SCHED_FEAT
145 
146 /*
147  * Print a warning if need_resched is set for the given duration (if
148  * LATENCY_WARN is enabled).
149  *
150  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
151  * per boot.
152  */
153 __read_mostly int sysctl_resched_latency_warn_ms = 100;
154 __read_mostly int sysctl_resched_latency_warn_once = 1;
155 #endif /* CONFIG_SCHED_DEBUG */
156 
157 /*
158  * Number of tasks to iterate in a single balance run.
159  * Limited because this is done with IRQs disabled.
160  */
161 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
162 
163 __read_mostly int scheduler_running;
164 
165 #ifdef CONFIG_SCHED_CORE
166 
167 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
168 
169 /* kernel prio, less is more */
__task_prio(struct task_struct * p)170 static inline int __task_prio(struct task_struct *p)
171 {
172 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
173 		return -2;
174 
175 	if (rt_prio(p->prio)) /* includes deadline */
176 		return p->prio; /* [-1, 99] */
177 
178 	if (p->sched_class == &idle_sched_class)
179 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
180 
181 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
182 }
183 
184 /*
185  * l(a,b)
186  * le(a,b) := !l(b,a)
187  * g(a,b)  := l(b,a)
188  * ge(a,b) := !l(a,b)
189  */
190 
191 /* real prio, less is less */
prio_less(struct task_struct * a,struct task_struct * b,bool in_fi)192 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
193 {
194 
195 	int pa = __task_prio(a), pb = __task_prio(b);
196 
197 	if (-pa < -pb)
198 		return true;
199 
200 	if (-pb < -pa)
201 		return false;
202 
203 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
204 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
205 
206 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
207 		return cfs_prio_less(a, b, in_fi);
208 
209 	return false;
210 }
211 
__sched_core_less(struct task_struct * a,struct task_struct * b)212 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
213 {
214 	if (a->core_cookie < b->core_cookie)
215 		return true;
216 
217 	if (a->core_cookie > b->core_cookie)
218 		return false;
219 
220 	/* flip prio, so high prio is leftmost */
221 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
222 		return true;
223 
224 	return false;
225 }
226 
227 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
228 
rb_sched_core_less(struct rb_node * a,const struct rb_node * b)229 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
230 {
231 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
232 }
233 
rb_sched_core_cmp(const void * key,const struct rb_node * node)234 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
235 {
236 	const struct task_struct *p = __node_2_sc(node);
237 	unsigned long cookie = (unsigned long)key;
238 
239 	if (cookie < p->core_cookie)
240 		return -1;
241 
242 	if (cookie > p->core_cookie)
243 		return 1;
244 
245 	return 0;
246 }
247 
sched_core_enqueue(struct rq * rq,struct task_struct * p)248 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
249 {
250 	rq->core->core_task_seq++;
251 
252 	if (!p->core_cookie)
253 		return;
254 
255 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
256 }
257 
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)258 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
259 {
260 	rq->core->core_task_seq++;
261 
262 	if (sched_core_enqueued(p)) {
263 		rb_erase(&p->core_node, &rq->core_tree);
264 		RB_CLEAR_NODE(&p->core_node);
265 	}
266 
267 	/*
268 	 * Migrating the last task off the cpu, with the cpu in forced idle
269 	 * state. Reschedule to create an accounting edge for forced idle,
270 	 * and re-examine whether the core is still in forced idle state.
271 	 */
272 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
273 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
274 		resched_curr(rq);
275 }
276 
277 /*
278  * Find left-most (aka, highest priority) task matching @cookie.
279  */
sched_core_find(struct rq * rq,unsigned long cookie)280 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
281 {
282 	struct rb_node *node;
283 
284 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
285 	/*
286 	 * The idle task always matches any cookie!
287 	 */
288 	if (!node)
289 		return idle_sched_class.pick_task(rq);
290 
291 	return __node_2_sc(node);
292 }
293 
sched_core_next(struct task_struct * p,unsigned long cookie)294 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
295 {
296 	struct rb_node *node = &p->core_node;
297 
298 	node = rb_next(node);
299 	if (!node)
300 		return NULL;
301 
302 	p = container_of(node, struct task_struct, core_node);
303 	if (p->core_cookie != cookie)
304 		return NULL;
305 
306 	return p;
307 }
308 
309 /*
310  * Magic required such that:
311  *
312  *	raw_spin_rq_lock(rq);
313  *	...
314  *	raw_spin_rq_unlock(rq);
315  *
316  * ends up locking and unlocking the _same_ lock, and all CPUs
317  * always agree on what rq has what lock.
318  *
319  * XXX entirely possible to selectively enable cores, don't bother for now.
320  */
321 
322 static DEFINE_MUTEX(sched_core_mutex);
323 static atomic_t sched_core_count;
324 static struct cpumask sched_core_mask;
325 
sched_core_lock(int cpu,unsigned long * flags)326 static void sched_core_lock(int cpu, unsigned long *flags)
327 {
328 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
329 	int t, i = 0;
330 
331 	local_irq_save(*flags);
332 	for_each_cpu(t, smt_mask)
333 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
334 }
335 
sched_core_unlock(int cpu,unsigned long * flags)336 static void sched_core_unlock(int cpu, unsigned long *flags)
337 {
338 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
339 	int t;
340 
341 	for_each_cpu(t, smt_mask)
342 		raw_spin_unlock(&cpu_rq(t)->__lock);
343 	local_irq_restore(*flags);
344 }
345 
__sched_core_flip(bool enabled)346 static void __sched_core_flip(bool enabled)
347 {
348 	unsigned long flags;
349 	int cpu, t;
350 
351 	cpus_read_lock();
352 
353 	/*
354 	 * Toggle the online cores, one by one.
355 	 */
356 	cpumask_copy(&sched_core_mask, cpu_online_mask);
357 	for_each_cpu(cpu, &sched_core_mask) {
358 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
359 
360 		sched_core_lock(cpu, &flags);
361 
362 		for_each_cpu(t, smt_mask)
363 			cpu_rq(t)->core_enabled = enabled;
364 
365 		cpu_rq(cpu)->core->core_forceidle_start = 0;
366 
367 		sched_core_unlock(cpu, &flags);
368 
369 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
370 	}
371 
372 	/*
373 	 * Toggle the offline CPUs.
374 	 */
375 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
376 		cpu_rq(cpu)->core_enabled = enabled;
377 
378 	cpus_read_unlock();
379 }
380 
sched_core_assert_empty(void)381 static void sched_core_assert_empty(void)
382 {
383 	int cpu;
384 
385 	for_each_possible_cpu(cpu)
386 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
387 }
388 
__sched_core_enable(void)389 static void __sched_core_enable(void)
390 {
391 	static_branch_enable(&__sched_core_enabled);
392 	/*
393 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
394 	 * and future ones will observe !sched_core_disabled().
395 	 */
396 	synchronize_rcu();
397 	__sched_core_flip(true);
398 	sched_core_assert_empty();
399 }
400 
__sched_core_disable(void)401 static void __sched_core_disable(void)
402 {
403 	sched_core_assert_empty();
404 	__sched_core_flip(false);
405 	static_branch_disable(&__sched_core_enabled);
406 }
407 
sched_core_get(void)408 void sched_core_get(void)
409 {
410 	if (atomic_inc_not_zero(&sched_core_count))
411 		return;
412 
413 	mutex_lock(&sched_core_mutex);
414 	if (!atomic_read(&sched_core_count))
415 		__sched_core_enable();
416 
417 	smp_mb__before_atomic();
418 	atomic_inc(&sched_core_count);
419 	mutex_unlock(&sched_core_mutex);
420 }
421 
__sched_core_put(struct work_struct * work)422 static void __sched_core_put(struct work_struct *work)
423 {
424 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
425 		__sched_core_disable();
426 		mutex_unlock(&sched_core_mutex);
427 	}
428 }
429 
sched_core_put(void)430 void sched_core_put(void)
431 {
432 	static DECLARE_WORK(_work, __sched_core_put);
433 
434 	/*
435 	 * "There can be only one"
436 	 *
437 	 * Either this is the last one, or we don't actually need to do any
438 	 * 'work'. If it is the last *again*, we rely on
439 	 * WORK_STRUCT_PENDING_BIT.
440 	 */
441 	if (!atomic_add_unless(&sched_core_count, -1, 1))
442 		schedule_work(&_work);
443 }
444 
445 #else /* !CONFIG_SCHED_CORE */
446 
sched_core_enqueue(struct rq * rq,struct task_struct * p)447 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
448 static inline void
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)449 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
450 
451 #endif /* CONFIG_SCHED_CORE */
452 
453 /*
454  * Serialization rules:
455  *
456  * Lock order:
457  *
458  *   p->pi_lock
459  *     rq->lock
460  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
461  *
462  *  rq1->lock
463  *    rq2->lock  where: rq1 < rq2
464  *
465  * Regular state:
466  *
467  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
468  * local CPU's rq->lock, it optionally removes the task from the runqueue and
469  * always looks at the local rq data structures to find the most eligible task
470  * to run next.
471  *
472  * Task enqueue is also under rq->lock, possibly taken from another CPU.
473  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
474  * the local CPU to avoid bouncing the runqueue state around [ see
475  * ttwu_queue_wakelist() ]
476  *
477  * Task wakeup, specifically wakeups that involve migration, are horribly
478  * complicated to avoid having to take two rq->locks.
479  *
480  * Special state:
481  *
482  * System-calls and anything external will use task_rq_lock() which acquires
483  * both p->pi_lock and rq->lock. As a consequence the state they change is
484  * stable while holding either lock:
485  *
486  *  - sched_setaffinity()/
487  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
488  *  - set_user_nice():		p->se.load, p->*prio
489  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
490  *				p->se.load, p->rt_priority,
491  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
492  *  - sched_setnuma():		p->numa_preferred_nid
493  *  - sched_move_task():	p->sched_task_group
494  *  - uclamp_update_active()	p->uclamp*
495  *
496  * p->state <- TASK_*:
497  *
498  *   is changed locklessly using set_current_state(), __set_current_state() or
499  *   set_special_state(), see their respective comments, or by
500  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
501  *   concurrent self.
502  *
503  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
504  *
505  *   is set by activate_task() and cleared by deactivate_task(), under
506  *   rq->lock. Non-zero indicates the task is runnable, the special
507  *   ON_RQ_MIGRATING state is used for migration without holding both
508  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
509  *
510  * p->on_cpu <- { 0, 1 }:
511  *
512  *   is set by prepare_task() and cleared by finish_task() such that it will be
513  *   set before p is scheduled-in and cleared after p is scheduled-out, both
514  *   under rq->lock. Non-zero indicates the task is running on its CPU.
515  *
516  *   [ The astute reader will observe that it is possible for two tasks on one
517  *     CPU to have ->on_cpu = 1 at the same time. ]
518  *
519  * task_cpu(p): is changed by set_task_cpu(), the rules are:
520  *
521  *  - Don't call set_task_cpu() on a blocked task:
522  *
523  *    We don't care what CPU we're not running on, this simplifies hotplug,
524  *    the CPU assignment of blocked tasks isn't required to be valid.
525  *
526  *  - for try_to_wake_up(), called under p->pi_lock:
527  *
528  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
529  *
530  *  - for migration called under rq->lock:
531  *    [ see task_on_rq_migrating() in task_rq_lock() ]
532  *
533  *    o move_queued_task()
534  *    o detach_task()
535  *
536  *  - for migration called under double_rq_lock():
537  *
538  *    o __migrate_swap_task()
539  *    o push_rt_task() / pull_rt_task()
540  *    o push_dl_task() / pull_dl_task()
541  *    o dl_task_offline_migration()
542  *
543  */
544 
raw_spin_rq_lock_nested(struct rq * rq,int subclass)545 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
546 {
547 	raw_spinlock_t *lock;
548 
549 	/* Matches synchronize_rcu() in __sched_core_enable() */
550 	preempt_disable();
551 	if (sched_core_disabled()) {
552 		raw_spin_lock_nested(&rq->__lock, subclass);
553 		/* preempt_count *MUST* be > 1 */
554 		preempt_enable_no_resched();
555 		return;
556 	}
557 
558 	for (;;) {
559 		lock = __rq_lockp(rq);
560 		raw_spin_lock_nested(lock, subclass);
561 		if (likely(lock == __rq_lockp(rq))) {
562 			/* preempt_count *MUST* be > 1 */
563 			preempt_enable_no_resched();
564 			return;
565 		}
566 		raw_spin_unlock(lock);
567 	}
568 }
569 EXPORT_SYMBOL_GPL(raw_spin_rq_lock_nested);
570 
raw_spin_rq_trylock(struct rq * rq)571 bool raw_spin_rq_trylock(struct rq *rq)
572 {
573 	raw_spinlock_t *lock;
574 	bool ret;
575 
576 	/* Matches synchronize_rcu() in __sched_core_enable() */
577 	preempt_disable();
578 	if (sched_core_disabled()) {
579 		ret = raw_spin_trylock(&rq->__lock);
580 		preempt_enable();
581 		return ret;
582 	}
583 
584 	for (;;) {
585 		lock = __rq_lockp(rq);
586 		ret = raw_spin_trylock(lock);
587 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
588 			preempt_enable();
589 			return ret;
590 		}
591 		raw_spin_unlock(lock);
592 	}
593 }
594 
raw_spin_rq_unlock(struct rq * rq)595 void raw_spin_rq_unlock(struct rq *rq)
596 {
597 	raw_spin_unlock(rq_lockp(rq));
598 }
599 EXPORT_SYMBOL_GPL(raw_spin_rq_unlock);
600 
601 #ifdef CONFIG_SMP
602 /*
603  * double_rq_lock - safely lock two runqueues
604  */
double_rq_lock(struct rq * rq1,struct rq * rq2)605 void double_rq_lock(struct rq *rq1, struct rq *rq2)
606 {
607 	lockdep_assert_irqs_disabled();
608 
609 	if (rq_order_less(rq2, rq1))
610 		swap(rq1, rq2);
611 
612 	raw_spin_rq_lock(rq1);
613 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
614 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
615 
616 	double_rq_clock_clear_update(rq1, rq2);
617 }
618 EXPORT_SYMBOL_GPL(double_rq_lock);
619 #endif
620 
621 /*
622  * __task_rq_lock - lock the rq @p resides on.
623  */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)624 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
625 	__acquires(rq->lock)
626 {
627 	struct rq *rq;
628 
629 	lockdep_assert_held(&p->pi_lock);
630 
631 	for (;;) {
632 		rq = task_rq(p);
633 		raw_spin_rq_lock(rq);
634 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
635 			rq_pin_lock(rq, rf);
636 			return rq;
637 		}
638 		raw_spin_rq_unlock(rq);
639 
640 		while (unlikely(task_on_rq_migrating(p)))
641 			cpu_relax();
642 	}
643 }
644 EXPORT_SYMBOL_GPL(__task_rq_lock);
645 
646 /*
647  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
648  */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)649 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
650 	__acquires(p->pi_lock)
651 	__acquires(rq->lock)
652 {
653 	struct rq *rq;
654 
655 	for (;;) {
656 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
657 		rq = task_rq(p);
658 		raw_spin_rq_lock(rq);
659 		/*
660 		 *	move_queued_task()		task_rq_lock()
661 		 *
662 		 *	ACQUIRE (rq->lock)
663 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
664 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
665 		 *	[S] ->cpu = new_cpu		[L] task_rq()
666 		 *					[L] ->on_rq
667 		 *	RELEASE (rq->lock)
668 		 *
669 		 * If we observe the old CPU in task_rq_lock(), the acquire of
670 		 * the old rq->lock will fully serialize against the stores.
671 		 *
672 		 * If we observe the new CPU in task_rq_lock(), the address
673 		 * dependency headed by '[L] rq = task_rq()' and the acquire
674 		 * will pair with the WMB to ensure we then also see migrating.
675 		 */
676 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
677 			rq_pin_lock(rq, rf);
678 			return rq;
679 		}
680 		raw_spin_rq_unlock(rq);
681 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
682 
683 		while (unlikely(task_on_rq_migrating(p)))
684 			cpu_relax();
685 	}
686 }
687 EXPORT_SYMBOL_GPL(task_rq_lock);
688 
689 /*
690  * RQ-clock updating methods:
691  */
692 
update_rq_clock_task(struct rq * rq,s64 delta)693 static void update_rq_clock_task(struct rq *rq, s64 delta)
694 {
695 /*
696  * In theory, the compile should just see 0 here, and optimize out the call
697  * to sched_rt_avg_update. But I don't trust it...
698  */
699 	s64 __maybe_unused steal = 0, irq_delta = 0;
700 
701 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
702 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
703 
704 	/*
705 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
706 	 * this case when a previous update_rq_clock() happened inside a
707 	 * {soft,}irq region.
708 	 *
709 	 * When this happens, we stop ->clock_task and only update the
710 	 * prev_irq_time stamp to account for the part that fit, so that a next
711 	 * update will consume the rest. This ensures ->clock_task is
712 	 * monotonic.
713 	 *
714 	 * It does however cause some slight miss-attribution of {soft,}irq
715 	 * time, a more accurate solution would be to update the irq_time using
716 	 * the current rq->clock timestamp, except that would require using
717 	 * atomic ops.
718 	 */
719 	if (irq_delta > delta)
720 		irq_delta = delta;
721 
722 	rq->prev_irq_time += irq_delta;
723 	delta -= irq_delta;
724 	psi_account_irqtime(rq->curr, irq_delta);
725 #endif
726 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
727 	if (static_key_false((&paravirt_steal_rq_enabled))) {
728 		steal = paravirt_steal_clock(cpu_of(rq));
729 		steal -= rq->prev_steal_time_rq;
730 
731 		if (unlikely(steal > delta))
732 			steal = delta;
733 
734 		rq->prev_steal_time_rq += steal;
735 		delta -= steal;
736 	}
737 #endif
738 
739 	rq->clock_task += delta;
740 
741 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
742 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
743 		update_irq_load_avg(rq, irq_delta + steal);
744 #endif
745 	update_rq_clock_task_mult(rq, delta);
746 }
747 
update_rq_clock(struct rq * rq)748 void update_rq_clock(struct rq *rq)
749 {
750 	s64 delta;
751 
752 	lockdep_assert_rq_held(rq);
753 
754 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
755 		return;
756 
757 #ifdef CONFIG_SCHED_DEBUG
758 	if (sched_feat(WARN_DOUBLE_CLOCK))
759 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
760 	rq->clock_update_flags |= RQCF_UPDATED;
761 #endif
762 
763 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
764 	if (delta < 0)
765 		return;
766 	rq->clock += delta;
767 	update_rq_clock_task(rq, delta);
768 }
769 EXPORT_SYMBOL_GPL(update_rq_clock);
770 
771 #ifdef CONFIG_SCHED_HRTICK
772 /*
773  * Use HR-timers to deliver accurate preemption points.
774  */
775 
hrtick_clear(struct rq * rq)776 static void hrtick_clear(struct rq *rq)
777 {
778 	if (hrtimer_active(&rq->hrtick_timer))
779 		hrtimer_cancel(&rq->hrtick_timer);
780 }
781 
782 /*
783  * High-resolution timer tick.
784  * Runs from hardirq context with interrupts disabled.
785  */
hrtick(struct hrtimer * timer)786 static enum hrtimer_restart hrtick(struct hrtimer *timer)
787 {
788 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
789 	struct rq_flags rf;
790 
791 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
792 
793 	rq_lock(rq, &rf);
794 	update_rq_clock(rq);
795 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
796 	rq_unlock(rq, &rf);
797 
798 	return HRTIMER_NORESTART;
799 }
800 
801 #ifdef CONFIG_SMP
802 
__hrtick_restart(struct rq * rq)803 static void __hrtick_restart(struct rq *rq)
804 {
805 	struct hrtimer *timer = &rq->hrtick_timer;
806 	ktime_t time = rq->hrtick_time;
807 
808 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
809 }
810 
811 /*
812  * called from hardirq (IPI) context
813  */
__hrtick_start(void * arg)814 static void __hrtick_start(void *arg)
815 {
816 	struct rq *rq = arg;
817 	struct rq_flags rf;
818 
819 	rq_lock(rq, &rf);
820 	__hrtick_restart(rq);
821 	rq_unlock(rq, &rf);
822 }
823 
824 /*
825  * Called to set the hrtick timer state.
826  *
827  * called with rq->lock held and irqs disabled
828  */
hrtick_start(struct rq * rq,u64 delay)829 void hrtick_start(struct rq *rq, u64 delay)
830 {
831 	struct hrtimer *timer = &rq->hrtick_timer;
832 	s64 delta;
833 
834 	/*
835 	 * Don't schedule slices shorter than 10000ns, that just
836 	 * doesn't make sense and can cause timer DoS.
837 	 */
838 	delta = max_t(s64, delay, 10000LL);
839 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
840 
841 	if (rq == this_rq())
842 		__hrtick_restart(rq);
843 	else
844 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
845 }
846 
847 #else
848 /*
849  * Called to set the hrtick timer state.
850  *
851  * called with rq->lock held and irqs disabled
852  */
hrtick_start(struct rq * rq,u64 delay)853 void hrtick_start(struct rq *rq, u64 delay)
854 {
855 	/*
856 	 * Don't schedule slices shorter than 10000ns, that just
857 	 * doesn't make sense. Rely on vruntime for fairness.
858 	 */
859 	delay = max_t(u64, delay, 10000LL);
860 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
861 		      HRTIMER_MODE_REL_PINNED_HARD);
862 }
863 
864 #endif /* CONFIG_SMP */
865 
hrtick_rq_init(struct rq * rq)866 static void hrtick_rq_init(struct rq *rq)
867 {
868 #ifdef CONFIG_SMP
869 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
870 #endif
871 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
872 	rq->hrtick_timer.function = hrtick;
873 }
874 #else	/* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)875 static inline void hrtick_clear(struct rq *rq)
876 {
877 }
878 
hrtick_rq_init(struct rq * rq)879 static inline void hrtick_rq_init(struct rq *rq)
880 {
881 }
882 #endif	/* CONFIG_SCHED_HRTICK */
883 
884 /*
885  * cmpxchg based fetch_or, macro so it works for different integer types
886  */
887 #define fetch_or(ptr, mask)						\
888 	({								\
889 		typeof(ptr) _ptr = (ptr);				\
890 		typeof(mask) _mask = (mask);				\
891 		typeof(*_ptr) _val = *_ptr;				\
892 									\
893 		do {							\
894 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
895 	_val;								\
896 })
897 
898 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
899 /*
900  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
901  * this avoids any races wrt polling state changes and thereby avoids
902  * spurious IPIs.
903  */
set_nr_and_not_polling(struct task_struct * p)904 static inline bool set_nr_and_not_polling(struct task_struct *p)
905 {
906 	struct thread_info *ti = task_thread_info(p);
907 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
908 }
909 
910 /*
911  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
912  *
913  * If this returns true, then the idle task promises to call
914  * sched_ttwu_pending() and reschedule soon.
915  */
set_nr_if_polling(struct task_struct * p)916 static bool set_nr_if_polling(struct task_struct *p)
917 {
918 	struct thread_info *ti = task_thread_info(p);
919 	typeof(ti->flags) val = READ_ONCE(ti->flags);
920 
921 	for (;;) {
922 		if (!(val & _TIF_POLLING_NRFLAG))
923 			return false;
924 		if (val & _TIF_NEED_RESCHED)
925 			return true;
926 		if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
927 			break;
928 	}
929 	return true;
930 }
931 
932 #else
set_nr_and_not_polling(struct task_struct * p)933 static inline bool set_nr_and_not_polling(struct task_struct *p)
934 {
935 	set_tsk_need_resched(p);
936 	return true;
937 }
938 
939 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)940 static inline bool set_nr_if_polling(struct task_struct *p)
941 {
942 	return false;
943 }
944 #endif
945 #endif
946 
__wake_q_add(struct wake_q_head * head,struct task_struct * task)947 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
948 {
949 	struct wake_q_node *node = &task->wake_q;
950 
951 	/*
952 	 * Atomically grab the task, if ->wake_q is !nil already it means
953 	 * it's already queued (either by us or someone else) and will get the
954 	 * wakeup due to that.
955 	 *
956 	 * In order to ensure that a pending wakeup will observe our pending
957 	 * state, even in the failed case, an explicit smp_mb() must be used.
958 	 */
959 	smp_mb__before_atomic();
960 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
961 		return false;
962 
963 	/*
964 	 * The head is context local, there can be no concurrency.
965 	 */
966 	*head->lastp = node;
967 	head->lastp = &node->next;
968 	head->count++;
969 	return true;
970 }
971 
972 /**
973  * wake_q_add() - queue a wakeup for 'later' waking.
974  * @head: the wake_q_head to add @task to
975  * @task: the task to queue for 'later' wakeup
976  *
977  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
978  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
979  * instantly.
980  *
981  * This function must be used as-if it were wake_up_process(); IOW the task
982  * must be ready to be woken at this location.
983  */
wake_q_add(struct wake_q_head * head,struct task_struct * task)984 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
985 {
986 	if (__wake_q_add(head, task))
987 		get_task_struct(task);
988 }
989 
990 /**
991  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
992  * @head: the wake_q_head to add @task to
993  * @task: the task to queue for 'later' wakeup
994  *
995  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
996  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
997  * instantly.
998  *
999  * This function must be used as-if it were wake_up_process(); IOW the task
1000  * must be ready to be woken at this location.
1001  *
1002  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1003  * that already hold reference to @task can call the 'safe' version and trust
1004  * wake_q to do the right thing depending whether or not the @task is already
1005  * queued for wakeup.
1006  */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)1007 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1008 {
1009 	if (!__wake_q_add(head, task))
1010 		put_task_struct(task);
1011 }
1012 
wake_up_q(struct wake_q_head * head)1013 void wake_up_q(struct wake_q_head *head)
1014 {
1015 	struct wake_q_node *node = head->first;
1016 
1017 	while (node != WAKE_Q_TAIL) {
1018 		struct task_struct *task;
1019 
1020 		task = container_of(node, struct task_struct, wake_q);
1021 		/* Task can safely be re-inserted now: */
1022 		node = node->next;
1023 		task->wake_q.next = NULL;
1024 		task->wake_q_count = head->count;
1025 
1026 		/*
1027 		 * wake_up_process() executes a full barrier, which pairs with
1028 		 * the queueing in wake_q_add() so as not to miss wakeups.
1029 		 */
1030 		wake_up_process(task);
1031 		task->wake_q_count = 0;
1032 		put_task_struct(task);
1033 	}
1034 }
1035 
1036 /*
1037  * resched_curr - mark rq's current task 'to be rescheduled now'.
1038  *
1039  * On UP this means the setting of the need_resched flag, on SMP it
1040  * might also involve a cross-CPU call to trigger the scheduler on
1041  * the target CPU.
1042  */
resched_curr(struct rq * rq)1043 void resched_curr(struct rq *rq)
1044 {
1045 	struct task_struct *curr = rq->curr;
1046 	int cpu;
1047 
1048 	lockdep_assert_rq_held(rq);
1049 
1050 	if (test_tsk_need_resched(curr))
1051 		return;
1052 
1053 	cpu = cpu_of(rq);
1054 
1055 	if (cpu == smp_processor_id()) {
1056 		set_tsk_need_resched(curr);
1057 		set_preempt_need_resched();
1058 		return;
1059 	}
1060 
1061 	if (set_nr_and_not_polling(curr))
1062 		smp_send_reschedule(cpu);
1063 	else
1064 		trace_sched_wake_idle_without_ipi(cpu);
1065 }
1066 EXPORT_SYMBOL_GPL(resched_curr);
1067 
resched_cpu(int cpu)1068 void resched_cpu(int cpu)
1069 {
1070 	struct rq *rq = cpu_rq(cpu);
1071 	unsigned long flags;
1072 
1073 	raw_spin_rq_lock_irqsave(rq, flags);
1074 	if (cpu_online(cpu) || cpu == smp_processor_id())
1075 		resched_curr(rq);
1076 	raw_spin_rq_unlock_irqrestore(rq, flags);
1077 }
1078 
1079 #ifdef CONFIG_SMP
1080 #ifdef CONFIG_NO_HZ_COMMON
1081 /*
1082  * In the semi idle case, use the nearest busy CPU for migrating timers
1083  * from an idle CPU.  This is good for power-savings.
1084  *
1085  * We don't do similar optimization for completely idle system, as
1086  * selecting an idle CPU will add more delays to the timers than intended
1087  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1088  */
get_nohz_timer_target(void)1089 int get_nohz_timer_target(void)
1090 {
1091 	int i, cpu = smp_processor_id(), default_cpu = -1;
1092 	struct sched_domain *sd;
1093 	const struct cpumask *hk_mask;
1094 	bool done = false;
1095 
1096 	trace_android_rvh_get_nohz_timer_target(&cpu, &done);
1097 	if (done)
1098 		return cpu;
1099 
1100 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1101 		if (!idle_cpu(cpu))
1102 			return cpu;
1103 		default_cpu = cpu;
1104 	}
1105 
1106 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1107 
1108 	rcu_read_lock();
1109 	for_each_domain(cpu, sd) {
1110 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1111 			if (cpu == i)
1112 				continue;
1113 
1114 			if (!idle_cpu(i)) {
1115 				cpu = i;
1116 				goto unlock;
1117 			}
1118 		}
1119 	}
1120 
1121 	if (default_cpu == -1)
1122 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1123 	cpu = default_cpu;
1124 unlock:
1125 	rcu_read_unlock();
1126 	return cpu;
1127 }
1128 
1129 /*
1130  * When add_timer_on() enqueues a timer into the timer wheel of an
1131  * idle CPU then this timer might expire before the next timer event
1132  * which is scheduled to wake up that CPU. In case of a completely
1133  * idle system the next event might even be infinite time into the
1134  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1135  * leaves the inner idle loop so the newly added timer is taken into
1136  * account when the CPU goes back to idle and evaluates the timer
1137  * wheel for the next timer event.
1138  */
wake_up_idle_cpu(int cpu)1139 static void wake_up_idle_cpu(int cpu)
1140 {
1141 	struct rq *rq = cpu_rq(cpu);
1142 
1143 	if (cpu == smp_processor_id())
1144 		return;
1145 
1146 	if (set_nr_and_not_polling(rq->idle))
1147 		smp_send_reschedule(cpu);
1148 	else
1149 		trace_sched_wake_idle_without_ipi(cpu);
1150 }
1151 
wake_up_full_nohz_cpu(int cpu)1152 static bool wake_up_full_nohz_cpu(int cpu)
1153 {
1154 	/*
1155 	 * We just need the target to call irq_exit() and re-evaluate
1156 	 * the next tick. The nohz full kick at least implies that.
1157 	 * If needed we can still optimize that later with an
1158 	 * empty IRQ.
1159 	 */
1160 	if (cpu_is_offline(cpu))
1161 		return true;  /* Don't try to wake offline CPUs. */
1162 	if (tick_nohz_full_cpu(cpu)) {
1163 		if (cpu != smp_processor_id() ||
1164 		    tick_nohz_tick_stopped())
1165 			tick_nohz_full_kick_cpu(cpu);
1166 		return true;
1167 	}
1168 
1169 	return false;
1170 }
1171 
1172 /*
1173  * Wake up the specified CPU.  If the CPU is going offline, it is the
1174  * caller's responsibility to deal with the lost wakeup, for example,
1175  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1176  */
wake_up_nohz_cpu(int cpu)1177 void wake_up_nohz_cpu(int cpu)
1178 {
1179 	if (!wake_up_full_nohz_cpu(cpu))
1180 		wake_up_idle_cpu(cpu);
1181 }
1182 
nohz_csd_func(void * info)1183 static void nohz_csd_func(void *info)
1184 {
1185 	struct rq *rq = info;
1186 	int cpu = cpu_of(rq);
1187 	unsigned int flags;
1188 
1189 	/*
1190 	 * Release the rq::nohz_csd.
1191 	 */
1192 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1193 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1194 
1195 	rq->idle_balance = idle_cpu(cpu);
1196 	if (rq->idle_balance && !need_resched()) {
1197 		rq->nohz_idle_balance = flags;
1198 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1199 	}
1200 }
1201 
1202 #endif /* CONFIG_NO_HZ_COMMON */
1203 
1204 #ifdef CONFIG_NO_HZ_FULL
sched_can_stop_tick(struct rq * rq)1205 bool sched_can_stop_tick(struct rq *rq)
1206 {
1207 	int fifo_nr_running;
1208 
1209 	/* Deadline tasks, even if single, need the tick */
1210 	if (rq->dl.dl_nr_running)
1211 		return false;
1212 
1213 	/*
1214 	 * If there are more than one RR tasks, we need the tick to affect the
1215 	 * actual RR behaviour.
1216 	 */
1217 	if (rq->rt.rr_nr_running) {
1218 		if (rq->rt.rr_nr_running == 1)
1219 			return true;
1220 		else
1221 			return false;
1222 	}
1223 
1224 	/*
1225 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1226 	 * forced preemption between FIFO tasks.
1227 	 */
1228 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1229 	if (fifo_nr_running)
1230 		return true;
1231 
1232 	/*
1233 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1234 	 * if there's more than one we need the tick for involuntary
1235 	 * preemption.
1236 	 */
1237 	if (rq->nr_running > 1)
1238 		return false;
1239 
1240 	return true;
1241 }
1242 #endif /* CONFIG_NO_HZ_FULL */
1243 #endif /* CONFIG_SMP */
1244 
1245 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1246 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1247 /*
1248  * Iterate task_group tree rooted at *from, calling @down when first entering a
1249  * node and @up when leaving it for the final time.
1250  *
1251  * Caller must hold rcu_lock or sufficient equivalent.
1252  */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)1253 int walk_tg_tree_from(struct task_group *from,
1254 			     tg_visitor down, tg_visitor up, void *data)
1255 {
1256 	struct task_group *parent, *child;
1257 	int ret;
1258 
1259 	parent = from;
1260 
1261 down:
1262 	ret = (*down)(parent, data);
1263 	if (ret)
1264 		goto out;
1265 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1266 		parent = child;
1267 		goto down;
1268 
1269 up:
1270 		continue;
1271 	}
1272 	ret = (*up)(parent, data);
1273 	if (ret || parent == from)
1274 		goto out;
1275 
1276 	child = parent;
1277 	parent = parent->parent;
1278 	if (parent)
1279 		goto up;
1280 out:
1281 	return ret;
1282 }
1283 
tg_nop(struct task_group * tg,void * data)1284 int tg_nop(struct task_group *tg, void *data)
1285 {
1286 	return 0;
1287 }
1288 #endif
1289 
set_load_weight(struct task_struct * p,bool update_load)1290 static void set_load_weight(struct task_struct *p, bool update_load)
1291 {
1292 	int prio = p->static_prio - MAX_RT_PRIO;
1293 	struct load_weight *load = &p->se.load;
1294 
1295 	/*
1296 	 * SCHED_IDLE tasks get minimal weight:
1297 	 */
1298 	if (task_has_idle_policy(p)) {
1299 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1300 		load->inv_weight = WMULT_IDLEPRIO;
1301 		return;
1302 	}
1303 
1304 	/*
1305 	 * SCHED_OTHER tasks have to update their load when changing their
1306 	 * weight
1307 	 */
1308 	if (update_load && p->sched_class == &fair_sched_class) {
1309 		reweight_task(p, prio);
1310 	} else {
1311 		load->weight = scale_load(sched_prio_to_weight[prio]);
1312 		load->inv_weight = sched_prio_to_wmult[prio];
1313 	}
1314 }
1315 
1316 #ifdef CONFIG_UCLAMP_TASK
1317 /*
1318  * Serializes updates of utilization clamp values
1319  *
1320  * The (slow-path) user-space triggers utilization clamp value updates which
1321  * can require updates on (fast-path) scheduler's data structures used to
1322  * support enqueue/dequeue operations.
1323  * While the per-CPU rq lock protects fast-path update operations, user-space
1324  * requests are serialized using a mutex to reduce the risk of conflicting
1325  * updates or API abuses.
1326  */
1327 static DEFINE_MUTEX(uclamp_mutex);
1328 
1329 /* Max allowed minimum utilization */
1330 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1331 
1332 /* Max allowed maximum utilization */
1333 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1334 
1335 /*
1336  * By default RT tasks run at the maximum performance point/capacity of the
1337  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1338  * SCHED_CAPACITY_SCALE.
1339  *
1340  * This knob allows admins to change the default behavior when uclamp is being
1341  * used. In battery powered devices, particularly, running at the maximum
1342  * capacity and frequency will increase energy consumption and shorten the
1343  * battery life.
1344  *
1345  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1346  *
1347  * This knob will not override the system default sched_util_clamp_min defined
1348  * above.
1349  */
1350 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1351 
1352 /* All clamps are required to be less or equal than these values */
1353 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1354 
1355 /*
1356  * This static key is used to reduce the uclamp overhead in the fast path. It
1357  * primarily disables the call to uclamp_rq_{inc, dec}() in
1358  * enqueue/dequeue_task().
1359  *
1360  * This allows users to continue to enable uclamp in their kernel config with
1361  * minimum uclamp overhead in the fast path.
1362  *
1363  * As soon as userspace modifies any of the uclamp knobs, the static key is
1364  * enabled, since we have an actual users that make use of uclamp
1365  * functionality.
1366  *
1367  * The knobs that would enable this static key are:
1368  *
1369  *   * A task modifying its uclamp value with sched_setattr().
1370  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1371  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1372  */
1373 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1374 EXPORT_SYMBOL_GPL(sched_uclamp_used);
1375 
1376 /* Integer rounded range for each bucket */
1377 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1378 
1379 #define for_each_clamp_id(clamp_id) \
1380 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1381 
uclamp_bucket_id(unsigned int clamp_value)1382 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1383 {
1384 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1385 }
1386 
uclamp_none(enum uclamp_id clamp_id)1387 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1388 {
1389 	if (clamp_id == UCLAMP_MIN)
1390 		return 0;
1391 	return SCHED_CAPACITY_SCALE;
1392 }
1393 
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)1394 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1395 				 unsigned int value, bool user_defined)
1396 {
1397 	uc_se->value = value;
1398 	uc_se->bucket_id = uclamp_bucket_id(value);
1399 	uc_se->user_defined = user_defined;
1400 }
1401 
1402 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1403 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1404 		  unsigned int clamp_value)
1405 {
1406 	/*
1407 	 * Avoid blocked utilization pushing up the frequency when we go
1408 	 * idle (which drops the max-clamp) by retaining the last known
1409 	 * max-clamp.
1410 	 */
1411 	if (clamp_id == UCLAMP_MAX) {
1412 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1413 		return clamp_value;
1414 	}
1415 
1416 	return uclamp_none(UCLAMP_MIN);
1417 }
1418 
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1419 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1420 				     unsigned int clamp_value)
1421 {
1422 	/* Reset max-clamp retention only on idle exit */
1423 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1424 		return;
1425 
1426 	uclamp_rq_set(rq, clamp_id, clamp_value);
1427 }
1428 
1429 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1430 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1431 				   unsigned int clamp_value)
1432 {
1433 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1434 	int bucket_id = UCLAMP_BUCKETS - 1;
1435 
1436 	/*
1437 	 * Since both min and max clamps are max aggregated, find the
1438 	 * top most bucket with tasks in.
1439 	 */
1440 	for ( ; bucket_id >= 0; bucket_id--) {
1441 		if (!bucket[bucket_id].tasks)
1442 			continue;
1443 		return bucket[bucket_id].value;
1444 	}
1445 
1446 	/* No tasks -- default clamp values */
1447 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1448 }
1449 
__uclamp_update_util_min_rt_default(struct task_struct * p)1450 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1451 {
1452 	unsigned int default_util_min;
1453 	struct uclamp_se *uc_se;
1454 
1455 	lockdep_assert_held(&p->pi_lock);
1456 
1457 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1458 
1459 	/* Only sync if user didn't override the default */
1460 	if (uc_se->user_defined)
1461 		return;
1462 
1463 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1464 	uclamp_se_set(uc_se, default_util_min, false);
1465 }
1466 
uclamp_update_util_min_rt_default(struct task_struct * p)1467 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1468 {
1469 	struct rq_flags rf;
1470 	struct rq *rq;
1471 
1472 	if (!rt_task(p))
1473 		return;
1474 
1475 	/* Protect updates to p->uclamp_* */
1476 	rq = task_rq_lock(p, &rf);
1477 	__uclamp_update_util_min_rt_default(p);
1478 	task_rq_unlock(rq, p, &rf);
1479 }
1480 
1481 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1482 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1483 {
1484 	/* Copy by value as we could modify it */
1485 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1486 #ifdef CONFIG_UCLAMP_TASK_GROUP
1487 	unsigned int tg_min, tg_max, value;
1488 
1489 	/*
1490 	 * Tasks in autogroups or root task group will be
1491 	 * restricted by system defaults.
1492 	 */
1493 	if (task_group_is_autogroup(task_group(p)))
1494 		return uc_req;
1495 	if (task_group(p) == &root_task_group)
1496 		return uc_req;
1497 
1498 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1499 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1500 	value = uc_req.value;
1501 	value = clamp(value, tg_min, tg_max);
1502 	uclamp_se_set(&uc_req, value, false);
1503 #endif
1504 
1505 	return uc_req;
1506 }
1507 
1508 /*
1509  * The effective clamp bucket index of a task depends on, by increasing
1510  * priority:
1511  * - the task specific clamp value, when explicitly requested from userspace
1512  * - the task group effective clamp value, for tasks not either in the root
1513  *   group or in an autogroup
1514  * - the system default clamp value, defined by the sysadmin
1515  */
1516 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1517 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1518 {
1519 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1520 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1521 	struct uclamp_se uc_eff;
1522 	int ret = 0;
1523 
1524 	trace_android_rvh_uclamp_eff_get(p, clamp_id, &uc_max, &uc_eff, &ret);
1525 	if (ret)
1526 		return uc_eff;
1527 
1528 	/* System default restrictions always apply */
1529 	if (unlikely(uc_req.value > uc_max.value))
1530 		return uc_max;
1531 
1532 	return uc_req;
1533 }
1534 
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1535 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1536 {
1537 	struct uclamp_se uc_eff;
1538 
1539 	/* Task currently refcounted: use back-annotated (effective) value */
1540 	if (p->uclamp[clamp_id].active)
1541 		return (unsigned long)p->uclamp[clamp_id].value;
1542 
1543 	uc_eff = uclamp_eff_get(p, clamp_id);
1544 
1545 	return (unsigned long)uc_eff.value;
1546 }
1547 EXPORT_SYMBOL_GPL(uclamp_eff_value);
1548 
1549 /*
1550  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1551  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1552  * updates the rq's clamp value if required.
1553  *
1554  * Tasks can have a task-specific value requested from user-space, track
1555  * within each bucket the maximum value for tasks refcounted in it.
1556  * This "local max aggregation" allows to track the exact "requested" value
1557  * for each bucket when all its RUNNABLE tasks require the same clamp.
1558  */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1559 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1560 				    enum uclamp_id clamp_id)
1561 {
1562 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1563 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1564 	struct uclamp_bucket *bucket;
1565 
1566 	lockdep_assert_rq_held(rq);
1567 
1568 	/* Update task effective clamp */
1569 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1570 
1571 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1572 	bucket->tasks++;
1573 	uc_se->active = true;
1574 
1575 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1576 
1577 	/*
1578 	 * Local max aggregation: rq buckets always track the max
1579 	 * "requested" clamp value of its RUNNABLE tasks.
1580 	 */
1581 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1582 		bucket->value = uc_se->value;
1583 
1584 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1585 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1586 }
1587 
1588 /*
1589  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1590  * is released. If this is the last task reference counting the rq's max
1591  * active clamp value, then the rq's clamp value is updated.
1592  *
1593  * Both refcounted tasks and rq's cached clamp values are expected to be
1594  * always valid. If it's detected they are not, as defensive programming,
1595  * enforce the expected state and warn.
1596  */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1597 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1598 				    enum uclamp_id clamp_id)
1599 {
1600 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1601 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1602 	struct uclamp_bucket *bucket;
1603 	unsigned int bkt_clamp;
1604 	unsigned int rq_clamp;
1605 
1606 	lockdep_assert_rq_held(rq);
1607 
1608 	/*
1609 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1610 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1611 	 *
1612 	 * In this case the uc_se->active flag should be false since no uclamp
1613 	 * accounting was performed at enqueue time and we can just return
1614 	 * here.
1615 	 *
1616 	 * Need to be careful of the following enqueue/dequeue ordering
1617 	 * problem too
1618 	 *
1619 	 *	enqueue(taskA)
1620 	 *	// sched_uclamp_used gets enabled
1621 	 *	enqueue(taskB)
1622 	 *	dequeue(taskA)
1623 	 *	// Must not decrement bucket->tasks here
1624 	 *	dequeue(taskB)
1625 	 *
1626 	 * where we could end up with stale data in uc_se and
1627 	 * bucket[uc_se->bucket_id].
1628 	 *
1629 	 * The following check here eliminates the possibility of such race.
1630 	 */
1631 	if (unlikely(!uc_se->active))
1632 		return;
1633 
1634 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1635 
1636 	SCHED_WARN_ON(!bucket->tasks);
1637 	if (likely(bucket->tasks))
1638 		bucket->tasks--;
1639 
1640 	uc_se->active = false;
1641 
1642 	/*
1643 	 * Keep "local max aggregation" simple and accept to (possibly)
1644 	 * overboost some RUNNABLE tasks in the same bucket.
1645 	 * The rq clamp bucket value is reset to its base value whenever
1646 	 * there are no more RUNNABLE tasks refcounting it.
1647 	 */
1648 	if (likely(bucket->tasks))
1649 		return;
1650 
1651 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1652 	/*
1653 	 * Defensive programming: this should never happen. If it happens,
1654 	 * e.g. due to future modification, warn and fixup the expected value.
1655 	 */
1656 	SCHED_WARN_ON(bucket->value > rq_clamp);
1657 	if (bucket->value >= rq_clamp) {
1658 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1659 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1660 	}
1661 }
1662 
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1663 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1664 {
1665 	enum uclamp_id clamp_id;
1666 
1667 	/*
1668 	 * Avoid any overhead until uclamp is actually used by the userspace.
1669 	 *
1670 	 * The condition is constructed such that a NOP is generated when
1671 	 * sched_uclamp_used is disabled.
1672 	 */
1673 	if (!static_branch_unlikely(&sched_uclamp_used))
1674 		return;
1675 
1676 	if (unlikely(!p->sched_class->uclamp_enabled))
1677 		return;
1678 
1679 	for_each_clamp_id(clamp_id)
1680 		uclamp_rq_inc_id(rq, p, clamp_id);
1681 
1682 	/* Reset clamp idle holding when there is one RUNNABLE task */
1683 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1684 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1685 }
1686 
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1687 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1688 {
1689 	enum uclamp_id clamp_id;
1690 
1691 	/*
1692 	 * Avoid any overhead until uclamp is actually used by the userspace.
1693 	 *
1694 	 * The condition is constructed such that a NOP is generated when
1695 	 * sched_uclamp_used is disabled.
1696 	 */
1697 	if (!static_branch_unlikely(&sched_uclamp_used))
1698 		return;
1699 
1700 	if (unlikely(!p->sched_class->uclamp_enabled))
1701 		return;
1702 
1703 	for_each_clamp_id(clamp_id)
1704 		uclamp_rq_dec_id(rq, p, clamp_id);
1705 }
1706 
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1707 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1708 				      enum uclamp_id clamp_id)
1709 {
1710 	if (!p->uclamp[clamp_id].active)
1711 		return;
1712 
1713 	uclamp_rq_dec_id(rq, p, clamp_id);
1714 	uclamp_rq_inc_id(rq, p, clamp_id);
1715 
1716 	/*
1717 	 * Make sure to clear the idle flag if we've transiently reached 0
1718 	 * active tasks on rq.
1719 	 */
1720 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1721 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1722 }
1723 
1724 static inline void
uclamp_update_active(struct task_struct * p)1725 uclamp_update_active(struct task_struct *p)
1726 {
1727 	enum uclamp_id clamp_id;
1728 	struct rq_flags rf;
1729 	struct rq *rq;
1730 
1731 	/*
1732 	 * Lock the task and the rq where the task is (or was) queued.
1733 	 *
1734 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1735 	 * price to pay to safely serialize util_{min,max} updates with
1736 	 * enqueues, dequeues and migration operations.
1737 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1738 	 */
1739 	rq = task_rq_lock(p, &rf);
1740 
1741 	/*
1742 	 * Setting the clamp bucket is serialized by task_rq_lock().
1743 	 * If the task is not yet RUNNABLE and its task_struct is not
1744 	 * affecting a valid clamp bucket, the next time it's enqueued,
1745 	 * it will already see the updated clamp bucket value.
1746 	 */
1747 	for_each_clamp_id(clamp_id)
1748 		uclamp_rq_reinc_id(rq, p, clamp_id);
1749 
1750 	task_rq_unlock(rq, p, &rf);
1751 }
1752 
1753 #ifdef CONFIG_UCLAMP_TASK_GROUP
1754 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1755 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1756 {
1757 	struct css_task_iter it;
1758 	struct task_struct *p;
1759 
1760 	css_task_iter_start(css, 0, &it);
1761 	while ((p = css_task_iter_next(&it)))
1762 		uclamp_update_active(p);
1763 	css_task_iter_end(&it);
1764 }
1765 
1766 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1767 #endif
1768 
1769 #ifdef CONFIG_SYSCTL
1770 #ifdef CONFIG_UCLAMP_TASK
1771 #ifdef CONFIG_UCLAMP_TASK_GROUP
uclamp_update_root_tg(void)1772 static void uclamp_update_root_tg(void)
1773 {
1774 	struct task_group *tg = &root_task_group;
1775 
1776 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1777 		      sysctl_sched_uclamp_util_min, false);
1778 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1779 		      sysctl_sched_uclamp_util_max, false);
1780 
1781 	rcu_read_lock();
1782 	cpu_util_update_eff(&root_task_group.css);
1783 	rcu_read_unlock();
1784 }
1785 #else
uclamp_update_root_tg(void)1786 static void uclamp_update_root_tg(void) { }
1787 #endif
1788 
uclamp_sync_util_min_rt_default(void)1789 static void uclamp_sync_util_min_rt_default(void)
1790 {
1791 	struct task_struct *g, *p;
1792 
1793 	/*
1794 	 * copy_process()			sysctl_uclamp
1795 	 *					  uclamp_min_rt = X;
1796 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1797 	 *   // link thread			  smp_mb__after_spinlock()
1798 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1799 	 *   sched_post_fork()			  for_each_process_thread()
1800 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1801 	 *
1802 	 * Ensures that either sched_post_fork() will observe the new
1803 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1804 	 * task.
1805 	 */
1806 	read_lock(&tasklist_lock);
1807 	smp_mb__after_spinlock();
1808 	read_unlock(&tasklist_lock);
1809 
1810 	rcu_read_lock();
1811 	for_each_process_thread(g, p)
1812 		uclamp_update_util_min_rt_default(p);
1813 	rcu_read_unlock();
1814 }
1815 
sysctl_sched_uclamp_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1816 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1817 				void *buffer, size_t *lenp, loff_t *ppos)
1818 {
1819 	bool update_root_tg = false;
1820 	int old_min, old_max, old_min_rt;
1821 	int result;
1822 
1823 	mutex_lock(&uclamp_mutex);
1824 	old_min = sysctl_sched_uclamp_util_min;
1825 	old_max = sysctl_sched_uclamp_util_max;
1826 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1827 
1828 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1829 	if (result)
1830 		goto undo;
1831 	if (!write)
1832 		goto done;
1833 
1834 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1835 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1836 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1837 
1838 		result = -EINVAL;
1839 		goto undo;
1840 	}
1841 
1842 	if (old_min != sysctl_sched_uclamp_util_min) {
1843 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1844 			      sysctl_sched_uclamp_util_min, false);
1845 		update_root_tg = true;
1846 	}
1847 	if (old_max != sysctl_sched_uclamp_util_max) {
1848 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1849 			      sysctl_sched_uclamp_util_max, false);
1850 		update_root_tg = true;
1851 	}
1852 
1853 	if (update_root_tg) {
1854 		static_branch_enable(&sched_uclamp_used);
1855 		uclamp_update_root_tg();
1856 	}
1857 
1858 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1859 		static_branch_enable(&sched_uclamp_used);
1860 		uclamp_sync_util_min_rt_default();
1861 	}
1862 
1863 	/*
1864 	 * We update all RUNNABLE tasks only when task groups are in use.
1865 	 * Otherwise, keep it simple and do just a lazy update at each next
1866 	 * task enqueue time.
1867 	 */
1868 
1869 	goto done;
1870 
1871 undo:
1872 	sysctl_sched_uclamp_util_min = old_min;
1873 	sysctl_sched_uclamp_util_max = old_max;
1874 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1875 done:
1876 	mutex_unlock(&uclamp_mutex);
1877 
1878 	return result;
1879 }
1880 #endif
1881 #endif
1882 
uclamp_validate(struct task_struct * p,const struct sched_attr * attr,bool user)1883 static int uclamp_validate(struct task_struct *p,
1884 			   const struct sched_attr *attr, bool user)
1885 {
1886 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1887 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1888 	bool done = false;
1889 	int ret = 0;
1890 
1891 	trace_android_vh_uclamp_validate(p, attr, user, &ret, &done);
1892 	if (done)
1893 		return ret;
1894 
1895 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1896 		util_min = attr->sched_util_min;
1897 
1898 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1899 			return -EINVAL;
1900 	}
1901 
1902 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1903 		util_max = attr->sched_util_max;
1904 
1905 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1906 			return -EINVAL;
1907 	}
1908 
1909 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1910 		return -EINVAL;
1911 
1912 	/*
1913 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1914 	 *
1915 	 * We need to do that here, because enabling static branches is
1916 	 * a blocking operation which obviously cannot be done while holding
1917 	 * scheduler locks.
1918 	 *
1919 	 * We only enable the static key if this was initiated by user space
1920 	 * request. There should be no in-kernel users of uclamp except to
1921 	 * implement things like inheritance like in binder. These in-kernel
1922 	 * callers can rightfully be called be sometimes in_atomic() context
1923 	 * which is invalid context to enable the key in. The enabling path
1924 	 * unconditionally holds the cpus_read_lock() which might_sleep().
1925 	 */
1926 	if (user)
1927 		static_branch_enable(&sched_uclamp_used);
1928 
1929 	return 0;
1930 }
1931 
uclamp_reset(const struct sched_attr * attr,enum uclamp_id clamp_id,struct uclamp_se * uc_se)1932 static bool uclamp_reset(const struct sched_attr *attr,
1933 			 enum uclamp_id clamp_id,
1934 			 struct uclamp_se *uc_se)
1935 {
1936 	/* Reset on sched class change for a non user-defined clamp value. */
1937 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1938 	    !uc_se->user_defined)
1939 		return true;
1940 
1941 	/* Reset on sched_util_{min,max} == -1. */
1942 	if (clamp_id == UCLAMP_MIN &&
1943 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1944 	    attr->sched_util_min == -1) {
1945 		return true;
1946 	}
1947 
1948 	if (clamp_id == UCLAMP_MAX &&
1949 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1950 	    attr->sched_util_max == -1) {
1951 		return true;
1952 	}
1953 
1954 	return false;
1955 }
1956 
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1957 static void __setscheduler_uclamp(struct task_struct *p,
1958 				  const struct sched_attr *attr)
1959 {
1960 	enum uclamp_id clamp_id;
1961 
1962 	for_each_clamp_id(clamp_id) {
1963 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1964 		unsigned int value;
1965 
1966 		if (!uclamp_reset(attr, clamp_id, uc_se))
1967 			continue;
1968 
1969 		/*
1970 		 * RT by default have a 100% boost value that could be modified
1971 		 * at runtime.
1972 		 */
1973 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1974 			value = sysctl_sched_uclamp_util_min_rt_default;
1975 		else
1976 			value = uclamp_none(clamp_id);
1977 
1978 		uclamp_se_set(uc_se, value, false);
1979 
1980 	}
1981 
1982 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1983 		return;
1984 
1985 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1986 	    attr->sched_util_min != -1) {
1987 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1988 			      attr->sched_util_min, true);
1989 		trace_android_vh_setscheduler_uclamp(p, UCLAMP_MIN, attr->sched_util_min);
1990 	}
1991 
1992 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1993 	    attr->sched_util_max != -1) {
1994 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1995 			      attr->sched_util_max, true);
1996 		trace_android_vh_setscheduler_uclamp(p, UCLAMP_MAX, attr->sched_util_max);
1997 	}
1998 }
1999 
uclamp_fork(struct task_struct * p)2000 static void uclamp_fork(struct task_struct *p)
2001 {
2002 	enum uclamp_id clamp_id;
2003 
2004 	/*
2005 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
2006 	 * as the task is still at its early fork stages.
2007 	 */
2008 	for_each_clamp_id(clamp_id)
2009 		p->uclamp[clamp_id].active = false;
2010 
2011 	if (likely(!p->sched_reset_on_fork))
2012 		return;
2013 
2014 	for_each_clamp_id(clamp_id) {
2015 		uclamp_se_set(&p->uclamp_req[clamp_id],
2016 			      uclamp_none(clamp_id), false);
2017 	}
2018 }
2019 
uclamp_post_fork(struct task_struct * p)2020 static void uclamp_post_fork(struct task_struct *p)
2021 {
2022 	uclamp_update_util_min_rt_default(p);
2023 }
2024 
init_uclamp_rq(struct rq * rq)2025 static void __init init_uclamp_rq(struct rq *rq)
2026 {
2027 	enum uclamp_id clamp_id;
2028 	struct uclamp_rq *uc_rq = rq->uclamp;
2029 
2030 	for_each_clamp_id(clamp_id) {
2031 		uc_rq[clamp_id] = (struct uclamp_rq) {
2032 			.value = uclamp_none(clamp_id)
2033 		};
2034 	}
2035 
2036 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2037 }
2038 
init_uclamp(void)2039 static void __init init_uclamp(void)
2040 {
2041 	struct uclamp_se uc_max = {};
2042 	enum uclamp_id clamp_id;
2043 	int cpu;
2044 
2045 	for_each_possible_cpu(cpu)
2046 		init_uclamp_rq(cpu_rq(cpu));
2047 
2048 	for_each_clamp_id(clamp_id) {
2049 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2050 			      uclamp_none(clamp_id), false);
2051 	}
2052 
2053 	/* System defaults allow max clamp values for both indexes */
2054 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2055 	for_each_clamp_id(clamp_id) {
2056 		uclamp_default[clamp_id] = uc_max;
2057 #ifdef CONFIG_UCLAMP_TASK_GROUP
2058 		root_task_group.uclamp_req[clamp_id] = uc_max;
2059 		root_task_group.uclamp[clamp_id] = uc_max;
2060 #endif
2061 	}
2062 }
2063 
2064 #else /* CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)2065 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)2066 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_validate(struct task_struct * p,const struct sched_attr * attr,bool user)2067 static inline int uclamp_validate(struct task_struct *p,
2068 				  const struct sched_attr *attr, bool user)
2069 {
2070 	return -EOPNOTSUPP;
2071 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)2072 static void __setscheduler_uclamp(struct task_struct *p,
2073 				  const struct sched_attr *attr) { }
uclamp_fork(struct task_struct * p)2074 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)2075 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)2076 static inline void init_uclamp(void) { }
2077 #endif /* CONFIG_UCLAMP_TASK */
2078 
sched_task_on_rq(struct task_struct * p)2079 bool sched_task_on_rq(struct task_struct *p)
2080 {
2081 	return task_on_rq_queued(p);
2082 }
2083 
get_wchan(struct task_struct * p)2084 unsigned long get_wchan(struct task_struct *p)
2085 {
2086 	unsigned long ip = 0;
2087 	unsigned int state;
2088 
2089 	if (!p || p == current)
2090 		return 0;
2091 
2092 	/* Only get wchan if task is blocked and we can keep it that way. */
2093 	raw_spin_lock_irq(&p->pi_lock);
2094 	state = READ_ONCE(p->__state);
2095 	smp_rmb(); /* see try_to_wake_up() */
2096 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2097 		ip = __get_wchan(p);
2098 	raw_spin_unlock_irq(&p->pi_lock);
2099 
2100 	return ip;
2101 }
2102 
enqueue_task(struct rq * rq,struct task_struct * p,int flags)2103 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2104 {
2105 	if (!(flags & ENQUEUE_NOCLOCK))
2106 		update_rq_clock(rq);
2107 
2108 	if (!(flags & ENQUEUE_RESTORE)) {
2109 		sched_info_enqueue(rq, p);
2110 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
2111 	}
2112 
2113 	uclamp_rq_inc(rq, p);
2114 	trace_android_rvh_enqueue_task(rq, p, flags);
2115 	p->sched_class->enqueue_task(rq, p, flags);
2116 	trace_android_rvh_after_enqueue_task(rq, p, flags);
2117 
2118 	if (sched_core_enabled(rq))
2119 		sched_core_enqueue(rq, p);
2120 }
2121 
dequeue_task(struct rq * rq,struct task_struct * p,int flags)2122 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2123 {
2124 	if (sched_core_enabled(rq))
2125 		sched_core_dequeue(rq, p, flags);
2126 
2127 	if (!(flags & DEQUEUE_NOCLOCK))
2128 		update_rq_clock(rq);
2129 
2130 	if (!(flags & DEQUEUE_SAVE)) {
2131 		sched_info_dequeue(rq, p);
2132 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2133 	}
2134 
2135 	uclamp_rq_dec(rq, p);
2136 	trace_android_rvh_dequeue_task(rq, p, flags);
2137 	p->sched_class->dequeue_task(rq, p, flags);
2138 	trace_android_rvh_after_dequeue_task(rq, p, flags);
2139 }
2140 
activate_task(struct rq * rq,struct task_struct * p,int flags)2141 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2142 {
2143 	if (task_on_rq_migrating(p))
2144 		flags |= ENQUEUE_MIGRATED;
2145 
2146 	enqueue_task(rq, p, flags);
2147 
2148 	p->on_rq = TASK_ON_RQ_QUEUED;
2149 }
2150 EXPORT_SYMBOL_GPL(activate_task);
2151 
deactivate_task(struct rq * rq,struct task_struct * p,int flags)2152 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2153 {
2154 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2155 
2156 	dequeue_task(rq, p, flags);
2157 }
2158 EXPORT_SYMBOL_GPL(deactivate_task);
2159 
__normal_prio(int policy,int rt_prio,int nice)2160 static inline int __normal_prio(int policy, int rt_prio, int nice)
2161 {
2162 	int prio;
2163 
2164 	if (dl_policy(policy))
2165 		prio = MAX_DL_PRIO - 1;
2166 	else if (rt_policy(policy))
2167 		prio = MAX_RT_PRIO - 1 - rt_prio;
2168 	else
2169 		prio = NICE_TO_PRIO(nice);
2170 
2171 	return prio;
2172 }
2173 
2174 /*
2175  * Calculate the expected normal priority: i.e. priority
2176  * without taking RT-inheritance into account. Might be
2177  * boosted by interactivity modifiers. Changes upon fork,
2178  * setprio syscalls, and whenever the interactivity
2179  * estimator recalculates.
2180  */
normal_prio(struct task_struct * p)2181 static inline int normal_prio(struct task_struct *p)
2182 {
2183 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2184 }
2185 
2186 /*
2187  * Calculate the current priority, i.e. the priority
2188  * taken into account by the scheduler. This value might
2189  * be boosted by RT tasks, or might be boosted by
2190  * interactivity modifiers. Will be RT if the task got
2191  * RT-boosted. If not then it returns p->normal_prio.
2192  */
effective_prio(struct task_struct * p)2193 static int effective_prio(struct task_struct *p)
2194 {
2195 	p->normal_prio = normal_prio(p);
2196 	/*
2197 	 * If we are RT tasks or we were boosted to RT priority,
2198 	 * keep the priority unchanged. Otherwise, update priority
2199 	 * to the normal priority:
2200 	 */
2201 	if (!rt_prio(p->prio))
2202 		return p->normal_prio;
2203 	return p->prio;
2204 }
2205 
2206 /**
2207  * task_curr - is this task currently executing on a CPU?
2208  * @p: the task in question.
2209  *
2210  * Return: 1 if the task is currently executing. 0 otherwise.
2211  */
task_curr(const struct task_struct * p)2212 inline int task_curr(const struct task_struct *p)
2213 {
2214 	return cpu_curr(task_cpu(p)) == p;
2215 }
2216 
2217 /*
2218  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2219  * use the balance_callback list if you want balancing.
2220  *
2221  * this means any call to check_class_changed() must be followed by a call to
2222  * balance_callback().
2223  */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)2224 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2225 				       const struct sched_class *prev_class,
2226 				       int oldprio)
2227 {
2228 	if (prev_class != p->sched_class) {
2229 		if (prev_class->switched_from)
2230 			prev_class->switched_from(rq, p);
2231 
2232 		p->sched_class->switched_to(rq, p);
2233 	} else if (oldprio != p->prio || dl_task(p))
2234 		p->sched_class->prio_changed(rq, p, oldprio);
2235 }
2236 
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)2237 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2238 {
2239 	if (p->sched_class == rq->curr->sched_class)
2240 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2241 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2242 		resched_curr(rq);
2243 
2244 	/*
2245 	 * A queue event has occurred, and we're going to schedule.  In
2246 	 * this case, we can save a useless back to back clock update.
2247 	 */
2248 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2249 		rq_clock_skip_update(rq);
2250 }
2251 EXPORT_SYMBOL_GPL(check_preempt_curr);
2252 
2253 static __always_inline
__task_state_match(struct task_struct * p,unsigned int state)2254 int __task_state_match(struct task_struct *p, unsigned int state)
2255 {
2256 	if (READ_ONCE(p->__state) & state)
2257 		return 1;
2258 
2259 	if (READ_ONCE(p->saved_state) & state)
2260 		return -1;
2261 
2262 	return 0;
2263 }
2264 
2265 static __always_inline
task_state_match(struct task_struct * p,unsigned int state)2266 int task_state_match(struct task_struct *p, unsigned int state)
2267 {
2268 	int match;
2269 
2270 	/*
2271 	 * Serialize against current_save_and_set_rtlock_wait_state(),
2272 	 * current_restore_rtlock_saved_state(), and __refrigerator().
2273 	 */
2274 	raw_spin_lock_irq(&p->pi_lock);
2275 	match = __task_state_match(p, state);
2276 	raw_spin_unlock_irq(&p->pi_lock);
2277 
2278 	return match;
2279 }
2280 
2281 /*
2282  * wait_task_inactive - wait for a thread to unschedule.
2283  *
2284  * Wait for the thread to block in any of the states set in @match_state.
2285  * If it changes, i.e. @p might have woken up, then return zero.  When we
2286  * succeed in waiting for @p to be off its CPU, we return a positive number
2287  * (its total switch count).  If a second call a short while later returns the
2288  * same number, the caller can be sure that @p has remained unscheduled the
2289  * whole time.
2290  *
2291  * The caller must ensure that the task *will* unschedule sometime soon,
2292  * else this function might spin for a *long* time. This function can't
2293  * be called with interrupts off, or it may introduce deadlock with
2294  * smp_call_function() if an IPI is sent by the same process we are
2295  * waiting to become inactive.
2296  */
wait_task_inactive(struct task_struct * p,unsigned int match_state)2297 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2298 {
2299 	int running, queued, match;
2300 	struct rq_flags rf;
2301 	unsigned long ncsw;
2302 	struct rq *rq;
2303 
2304 	for (;;) {
2305 		/*
2306 		 * We do the initial early heuristics without holding
2307 		 * any task-queue locks at all. We'll only try to get
2308 		 * the runqueue lock when things look like they will
2309 		 * work out!
2310 		 */
2311 		rq = task_rq(p);
2312 
2313 		/*
2314 		 * If the task is actively running on another CPU
2315 		 * still, just relax and busy-wait without holding
2316 		 * any locks.
2317 		 *
2318 		 * NOTE! Since we don't hold any locks, it's not
2319 		 * even sure that "rq" stays as the right runqueue!
2320 		 * But we don't care, since "task_on_cpu()" will
2321 		 * return false if the runqueue has changed and p
2322 		 * is actually now running somewhere else!
2323 		 */
2324 		while (task_on_cpu(rq, p)) {
2325 			if (!task_state_match(p, match_state))
2326 				return 0;
2327 			cpu_relax();
2328 		}
2329 
2330 		/*
2331 		 * Ok, time to look more closely! We need the rq
2332 		 * lock now, to be *sure*. If we're wrong, we'll
2333 		 * just go back and repeat.
2334 		 */
2335 		rq = task_rq_lock(p, &rf);
2336 		trace_sched_wait_task(p);
2337 		running = task_on_cpu(rq, p);
2338 		queued = task_on_rq_queued(p);
2339 		ncsw = 0;
2340 		if ((match = __task_state_match(p, match_state))) {
2341 			/*
2342 			 * When matching on p->saved_state, consider this task
2343 			 * still queued so it will wait.
2344 			 */
2345 			if (match < 0)
2346 				queued = 1;
2347 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2348 		}
2349 		task_rq_unlock(rq, p, &rf);
2350 
2351 		/*
2352 		 * If it changed from the expected state, bail out now.
2353 		 */
2354 		if (unlikely(!ncsw))
2355 			break;
2356 
2357 		/*
2358 		 * Was it really running after all now that we
2359 		 * checked with the proper locks actually held?
2360 		 *
2361 		 * Oops. Go back and try again..
2362 		 */
2363 		if (unlikely(running)) {
2364 			cpu_relax();
2365 			continue;
2366 		}
2367 
2368 		/*
2369 		 * It's not enough that it's not actively running,
2370 		 * it must be off the runqueue _entirely_, and not
2371 		 * preempted!
2372 		 *
2373 		 * So if it was still runnable (but just not actively
2374 		 * running right now), it's preempted, and we should
2375 		 * yield - it could be a while.
2376 		 */
2377 		if (unlikely(queued)) {
2378 			ktime_t to = NSEC_PER_SEC / HZ;
2379 
2380 			set_current_state(TASK_UNINTERRUPTIBLE);
2381 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2382 			continue;
2383 		}
2384 
2385 		/*
2386 		 * Ahh, all good. It wasn't running, and it wasn't
2387 		 * runnable, which means that it will never become
2388 		 * running in the future either. We're all done!
2389 		 */
2390 		break;
2391 	}
2392 
2393 	return ncsw;
2394 }
2395 
2396 #ifdef CONFIG_SMP
2397 
2398 static void
2399 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2400 
2401 static int __set_cpus_allowed_ptr(struct task_struct *p,
2402 				  const struct cpumask *new_mask,
2403 				  u32 flags);
2404 
migrate_disable_switch(struct rq * rq,struct task_struct * p)2405 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2406 {
2407 	if (likely(!p->migration_disabled))
2408 		return;
2409 
2410 	if (p->cpus_ptr != &p->cpus_mask)
2411 		return;
2412 
2413 	/*
2414 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2415 	 */
2416 	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2417 }
2418 
migrate_disable(void)2419 void migrate_disable(void)
2420 {
2421 	struct task_struct *p = current;
2422 
2423 	if (p->migration_disabled) {
2424 		p->migration_disabled++;
2425 		return;
2426 	}
2427 
2428 	preempt_disable();
2429 	this_rq()->nr_pinned++;
2430 	p->migration_disabled = 1;
2431 	preempt_enable();
2432 }
2433 EXPORT_SYMBOL_GPL(migrate_disable);
2434 
migrate_enable(void)2435 void migrate_enable(void)
2436 {
2437 	struct task_struct *p = current;
2438 
2439 	if (p->migration_disabled > 1) {
2440 		p->migration_disabled--;
2441 		return;
2442 	}
2443 
2444 	if (WARN_ON_ONCE(!p->migration_disabled))
2445 		return;
2446 
2447 	/*
2448 	 * Ensure stop_task runs either before or after this, and that
2449 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2450 	 */
2451 	preempt_disable();
2452 	if (p->cpus_ptr != &p->cpus_mask)
2453 		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2454 	/*
2455 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2456 	 * regular cpus_mask, otherwise things that race (eg.
2457 	 * select_fallback_rq) get confused.
2458 	 */
2459 	barrier();
2460 	p->migration_disabled = 0;
2461 	this_rq()->nr_pinned--;
2462 	preempt_enable();
2463 }
2464 EXPORT_SYMBOL_GPL(migrate_enable);
2465 
rq_has_pinned_tasks(struct rq * rq)2466 static inline bool rq_has_pinned_tasks(struct rq *rq)
2467 {
2468 	return rq->nr_pinned;
2469 }
2470 
2471 /*
2472  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2473  * __set_cpus_allowed_ptr() and select_fallback_rq().
2474  */
is_cpu_allowed(struct task_struct * p,int cpu)2475 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2476 {
2477 	bool allowed = true;
2478 
2479 	/* When not in the task's cpumask, no point in looking further. */
2480 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2481 		return false;
2482 
2483 	/* migrate_disabled() must be allowed to finish. */
2484 	if (is_migration_disabled(p))
2485 		return cpu_online(cpu);
2486 
2487 	/* check for all cases */
2488 	trace_android_rvh_is_cpu_allowed(p, cpu, &allowed);
2489 
2490 	/* Non kernel threads are not allowed during either online or offline. */
2491 	if (!(p->flags & PF_KTHREAD))
2492 		return cpu_active(cpu) && task_cpu_possible(cpu, p) && allowed;
2493 
2494 	/* KTHREAD_IS_PER_CPU is always allowed. */
2495 	if (kthread_is_per_cpu(p))
2496 		return cpu_online(cpu);
2497 
2498 	if (!allowed)
2499 		return false;
2500 
2501 	/* Regular kernel threads don't get to stay during offline. */
2502 	if (cpu_dying(cpu))
2503 		return false;
2504 
2505 	/* But are allowed during online. */
2506 	return cpu_online(cpu);
2507 }
2508 
2509 /*
2510  * This is how migration works:
2511  *
2512  * 1) we invoke migration_cpu_stop() on the target CPU using
2513  *    stop_one_cpu().
2514  * 2) stopper starts to run (implicitly forcing the migrated thread
2515  *    off the CPU)
2516  * 3) it checks whether the migrated task is still in the wrong runqueue.
2517  * 4) if it's in the wrong runqueue then the migration thread removes
2518  *    it and puts it into the right queue.
2519  * 5) stopper completes and stop_one_cpu() returns and the migration
2520  *    is done.
2521  */
2522 
2523 /*
2524  * move_queued_task - move a queued task to new rq.
2525  *
2526  * Returns (locked) new rq. Old rq's lock is released.
2527  */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)2528 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2529 				   struct task_struct *p, int new_cpu)
2530 {
2531 	int detached = 0;
2532 
2533 	lockdep_assert_rq_held(rq);
2534 
2535 	/*
2536 	 * The vendor hook may drop the lock temporarily, so
2537 	 * pass the rq flags to unpin lock. We expect the
2538 	 * rq lock to be held after return.
2539 	 */
2540 	trace_android_rvh_migrate_queued_task(rq, rf, p, new_cpu, &detached);
2541 	if (detached)
2542 		goto attach;
2543 
2544 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2545 	set_task_cpu(p, new_cpu);
2546 
2547 attach:
2548 	rq_unlock(rq, rf);
2549 	rq = cpu_rq(new_cpu);
2550 
2551 	rq_lock(rq, rf);
2552 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2553 	activate_task(rq, p, 0);
2554 	check_preempt_curr(rq, p, 0);
2555 
2556 	return rq;
2557 }
2558 
2559 struct migration_arg {
2560 	struct task_struct		*task;
2561 	int				dest_cpu;
2562 	struct set_affinity_pending	*pending;
2563 };
2564 
2565 /*
2566  * @refs: number of wait_for_completion()
2567  * @stop_pending: is @stop_work in use
2568  */
2569 struct set_affinity_pending {
2570 	refcount_t		refs;
2571 	unsigned int		stop_pending;
2572 	struct completion	done;
2573 	struct cpu_stop_work	stop_work;
2574 	struct migration_arg	arg;
2575 };
2576 
2577 /*
2578  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2579  * this because either it can't run here any more (set_cpus_allowed()
2580  * away from this CPU, or CPU going down), or because we're
2581  * attempting to rebalance this task on exec (sched_exec).
2582  *
2583  * So we race with normal scheduler movements, but that's OK, as long
2584  * as the task is no longer on this CPU.
2585  */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)2586 struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2587 			  struct task_struct *p, int dest_cpu)
2588 {
2589 	/* Affinity changed (again). */
2590 	if (!is_cpu_allowed(p, dest_cpu))
2591 		return rq;
2592 
2593 	update_rq_clock(rq);
2594 	rq = move_queued_task(rq, rf, p, dest_cpu);
2595 
2596 	return rq;
2597 }
2598 EXPORT_SYMBOL_GPL(__migrate_task);
2599 
2600 /*
2601  * migration_cpu_stop - this will be executed by a highprio stopper thread
2602  * and performs thread migration by bumping thread off CPU then
2603  * 'pushing' onto another runqueue.
2604  */
migration_cpu_stop(void * data)2605 static int migration_cpu_stop(void *data)
2606 {
2607 	struct migration_arg *arg = data;
2608 	struct set_affinity_pending *pending = arg->pending;
2609 	struct task_struct *p = arg->task;
2610 	struct rq *rq = this_rq();
2611 	bool complete = false;
2612 	struct rq_flags rf;
2613 
2614 	/*
2615 	 * The original target CPU might have gone down and we might
2616 	 * be on another CPU but it doesn't matter.
2617 	 */
2618 	local_irq_save(rf.flags);
2619 	/*
2620 	 * We need to explicitly wake pending tasks before running
2621 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2622 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2623 	 */
2624 	flush_smp_call_function_queue();
2625 
2626 	raw_spin_lock(&p->pi_lock);
2627 	rq_lock(rq, &rf);
2628 
2629 	/*
2630 	 * If we were passed a pending, then ->stop_pending was set, thus
2631 	 * p->migration_pending must have remained stable.
2632 	 */
2633 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2634 
2635 	/*
2636 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2637 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2638 	 * we're holding p->pi_lock.
2639 	 */
2640 	if (task_rq(p) == rq) {
2641 		if (is_migration_disabled(p))
2642 			goto out;
2643 
2644 		if (pending) {
2645 			p->migration_pending = NULL;
2646 			complete = true;
2647 
2648 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2649 				goto out;
2650 		}
2651 
2652 		if (task_on_rq_queued(p))
2653 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2654 		else
2655 			p->wake_cpu = arg->dest_cpu;
2656 
2657 		/*
2658 		 * XXX __migrate_task() can fail, at which point we might end
2659 		 * up running on a dodgy CPU, AFAICT this can only happen
2660 		 * during CPU hotplug, at which point we'll get pushed out
2661 		 * anyway, so it's probably not a big deal.
2662 		 */
2663 
2664 	} else if (pending) {
2665 		/*
2666 		 * This happens when we get migrated between migrate_enable()'s
2667 		 * preempt_enable() and scheduling the stopper task. At that
2668 		 * point we're a regular task again and not current anymore.
2669 		 *
2670 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2671 		 * more likely.
2672 		 */
2673 
2674 		/*
2675 		 * The task moved before the stopper got to run. We're holding
2676 		 * ->pi_lock, so the allowed mask is stable - if it got
2677 		 * somewhere allowed, we're done.
2678 		 */
2679 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2680 			p->migration_pending = NULL;
2681 			complete = true;
2682 			goto out;
2683 		}
2684 
2685 		/*
2686 		 * When migrate_enable() hits a rq mis-match we can't reliably
2687 		 * determine is_migration_disabled() and so have to chase after
2688 		 * it.
2689 		 */
2690 		WARN_ON_ONCE(!pending->stop_pending);
2691 		preempt_disable();
2692 		task_rq_unlock(rq, p, &rf);
2693 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2694 				    &pending->arg, &pending->stop_work);
2695 		preempt_enable();
2696 		return 0;
2697 	}
2698 out:
2699 	if (pending)
2700 		pending->stop_pending = false;
2701 	task_rq_unlock(rq, p, &rf);
2702 
2703 	if (complete)
2704 		complete_all(&pending->done);
2705 
2706 	return 0;
2707 }
2708 
push_cpu_stop(void * arg)2709 int push_cpu_stop(void *arg)
2710 {
2711 	struct rq *lowest_rq = NULL, *rq = this_rq();
2712 	struct task_struct *p = arg;
2713 
2714 	raw_spin_lock_irq(&p->pi_lock);
2715 	raw_spin_rq_lock(rq);
2716 
2717 	if (task_rq(p) != rq)
2718 		goto out_unlock;
2719 
2720 	if (is_migration_disabled(p)) {
2721 		p->migration_flags |= MDF_PUSH;
2722 		goto out_unlock;
2723 	}
2724 
2725 	p->migration_flags &= ~MDF_PUSH;
2726 
2727 	if (p->sched_class->find_lock_rq)
2728 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2729 
2730 	if (!lowest_rq)
2731 		goto out_unlock;
2732 
2733 	// XXX validate p is still the highest prio task
2734 	if (task_rq(p) == rq) {
2735 		deactivate_task(rq, p, 0);
2736 		set_task_cpu(p, lowest_rq->cpu);
2737 		activate_task(lowest_rq, p, 0);
2738 		resched_curr(lowest_rq);
2739 	}
2740 
2741 	double_unlock_balance(rq, lowest_rq);
2742 
2743 out_unlock:
2744 	rq->push_busy = false;
2745 	raw_spin_rq_unlock(rq);
2746 	raw_spin_unlock_irq(&p->pi_lock);
2747 
2748 	put_task_struct(p);
2749 	return 0;
2750 }
2751 EXPORT_SYMBOL_GPL(push_cpu_stop);
2752 
2753 /*
2754  * sched_class::set_cpus_allowed must do the below, but is not required to
2755  * actually call this function.
2756  */
set_cpus_allowed_common(struct task_struct * p,const struct cpumask * new_mask,u32 flags)2757 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2758 {
2759 	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2760 		p->cpus_ptr = new_mask;
2761 		return;
2762 	}
2763 
2764 	cpumask_copy(&p->cpus_mask, new_mask);
2765 	p->nr_cpus_allowed = cpumask_weight(new_mask);
2766 	trace_android_rvh_set_cpus_allowed_comm(p, new_mask);
2767 }
2768 
2769 static void
__do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask,u32 flags)2770 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2771 {
2772 	struct rq *rq = task_rq(p);
2773 	bool queued, running;
2774 
2775 	/*
2776 	 * This here violates the locking rules for affinity, since we're only
2777 	 * supposed to change these variables while holding both rq->lock and
2778 	 * p->pi_lock.
2779 	 *
2780 	 * HOWEVER, it magically works, because ttwu() is the only code that
2781 	 * accesses these variables under p->pi_lock and only does so after
2782 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2783 	 * before finish_task().
2784 	 *
2785 	 * XXX do further audits, this smells like something putrid.
2786 	 */
2787 	if (flags & SCA_MIGRATE_DISABLE)
2788 		SCHED_WARN_ON(!p->on_cpu);
2789 	else
2790 		lockdep_assert_held(&p->pi_lock);
2791 
2792 	queued = task_on_rq_queued(p);
2793 	running = task_current(rq, p);
2794 
2795 	if (queued) {
2796 		/*
2797 		 * Because __kthread_bind() calls this on blocked tasks without
2798 		 * holding rq->lock.
2799 		 */
2800 		lockdep_assert_rq_held(rq);
2801 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2802 	}
2803 	if (running)
2804 		put_prev_task(rq, p);
2805 
2806 	p->sched_class->set_cpus_allowed(p, new_mask, flags);
2807 
2808 	if (queued)
2809 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2810 	if (running)
2811 		set_next_task(rq, p);
2812 }
2813 
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2814 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2815 {
2816 	__do_set_cpus_allowed(p, new_mask, 0);
2817 }
2818 
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)2819 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2820 		      int node)
2821 {
2822 	cpumask_t *user_mask;
2823 	unsigned long flags;
2824 
2825 	/*
2826 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2827 	 * may differ by now due to racing.
2828 	 */
2829 	dst->user_cpus_ptr = NULL;
2830 
2831 	/*
2832 	 * This check is racy and losing the race is a valid situation.
2833 	 * It is not worth the extra overhead of taking the pi_lock on
2834 	 * every fork/clone.
2835 	 */
2836 	if (data_race(!src->user_cpus_ptr))
2837 		return 0;
2838 
2839 	user_mask = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2840 	if (!user_mask)
2841 		return -ENOMEM;
2842 
2843 	/*
2844 	 * Use pi_lock to protect content of user_cpus_ptr
2845 	 *
2846 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2847 	 * do_set_cpus_allowed().
2848 	 */
2849 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2850 	if (src->user_cpus_ptr) {
2851 		swap(dst->user_cpus_ptr, user_mask);
2852 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2853 	}
2854 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2855 
2856 	if (unlikely(user_mask))
2857 		kfree(user_mask);
2858 
2859 	return 0;
2860 }
2861 
clear_user_cpus_ptr(struct task_struct * p)2862 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2863 {
2864 	struct cpumask *user_mask = NULL;
2865 
2866 	swap(p->user_cpus_ptr, user_mask);
2867 
2868 	return user_mask;
2869 }
2870 
release_user_cpus_ptr(struct task_struct * p)2871 void release_user_cpus_ptr(struct task_struct *p)
2872 {
2873 	kfree(clear_user_cpus_ptr(p));
2874 }
2875 
2876 /*
2877  * This function is wildly self concurrent; here be dragons.
2878  *
2879  *
2880  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2881  * designated task is enqueued on an allowed CPU. If that task is currently
2882  * running, we have to kick it out using the CPU stopper.
2883  *
2884  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2885  * Consider:
2886  *
2887  *     Initial conditions: P0->cpus_mask = [0, 1]
2888  *
2889  *     P0@CPU0                  P1
2890  *
2891  *     migrate_disable();
2892  *     <preempted>
2893  *                              set_cpus_allowed_ptr(P0, [1]);
2894  *
2895  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2896  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2897  * This means we need the following scheme:
2898  *
2899  *     P0@CPU0                  P1
2900  *
2901  *     migrate_disable();
2902  *     <preempted>
2903  *                              set_cpus_allowed_ptr(P0, [1]);
2904  *                                <blocks>
2905  *     <resumes>
2906  *     migrate_enable();
2907  *       __set_cpus_allowed_ptr();
2908  *       <wakes local stopper>
2909  *                         `--> <woken on migration completion>
2910  *
2911  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2912  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2913  * task p are serialized by p->pi_lock, which we can leverage: the one that
2914  * should come into effect at the end of the Migrate-Disable region is the last
2915  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2916  * but we still need to properly signal those waiting tasks at the appropriate
2917  * moment.
2918  *
2919  * This is implemented using struct set_affinity_pending. The first
2920  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2921  * setup an instance of that struct and install it on the targeted task_struct.
2922  * Any and all further callers will reuse that instance. Those then wait for
2923  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2924  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2925  *
2926  *
2927  * (1) In the cases covered above. There is one more where the completion is
2928  * signaled within affine_move_task() itself: when a subsequent affinity request
2929  * occurs after the stopper bailed out due to the targeted task still being
2930  * Migrate-Disable. Consider:
2931  *
2932  *     Initial conditions: P0->cpus_mask = [0, 1]
2933  *
2934  *     CPU0		  P1				P2
2935  *     <P0>
2936  *       migrate_disable();
2937  *       <preempted>
2938  *                        set_cpus_allowed_ptr(P0, [1]);
2939  *                          <blocks>
2940  *     <migration/0>
2941  *       migration_cpu_stop()
2942  *         is_migration_disabled()
2943  *           <bails>
2944  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2945  *                                                         <signal completion>
2946  *                          <awakes>
2947  *
2948  * Note that the above is safe vs a concurrent migrate_enable(), as any
2949  * pending affinity completion is preceded by an uninstallation of
2950  * p->migration_pending done with p->pi_lock held.
2951  */
affine_move_task(struct rq * rq,struct task_struct * p,struct rq_flags * rf,int dest_cpu,unsigned int flags)2952 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2953 			    int dest_cpu, unsigned int flags)
2954 {
2955 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2956 	bool stop_pending, complete = false;
2957 
2958 	/* Can the task run on the task's current CPU? If so, we're done */
2959 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2960 		struct task_struct *push_task = NULL;
2961 
2962 		if ((flags & SCA_MIGRATE_ENABLE) &&
2963 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2964 			rq->push_busy = true;
2965 			push_task = get_task_struct(p);
2966 		}
2967 
2968 		/*
2969 		 * If there are pending waiters, but no pending stop_work,
2970 		 * then complete now.
2971 		 */
2972 		pending = p->migration_pending;
2973 		if (pending && !pending->stop_pending) {
2974 			p->migration_pending = NULL;
2975 			complete = true;
2976 		}
2977 
2978 		preempt_disable();
2979 		task_rq_unlock(rq, p, rf);
2980 		if (push_task) {
2981 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2982 					    p, &rq->push_work);
2983 		}
2984 		preempt_enable();
2985 
2986 		if (complete)
2987 			complete_all(&pending->done);
2988 
2989 		return 0;
2990 	}
2991 
2992 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2993 		/* serialized by p->pi_lock */
2994 		if (!p->migration_pending) {
2995 			/* Install the request */
2996 			refcount_set(&my_pending.refs, 1);
2997 			init_completion(&my_pending.done);
2998 			my_pending.arg = (struct migration_arg) {
2999 				.task = p,
3000 				.dest_cpu = dest_cpu,
3001 				.pending = &my_pending,
3002 			};
3003 
3004 			p->migration_pending = &my_pending;
3005 		} else {
3006 			pending = p->migration_pending;
3007 			refcount_inc(&pending->refs);
3008 			/*
3009 			 * Affinity has changed, but we've already installed a
3010 			 * pending. migration_cpu_stop() *must* see this, else
3011 			 * we risk a completion of the pending despite having a
3012 			 * task on a disallowed CPU.
3013 			 *
3014 			 * Serialized by p->pi_lock, so this is safe.
3015 			 */
3016 			pending->arg.dest_cpu = dest_cpu;
3017 		}
3018 	}
3019 	pending = p->migration_pending;
3020 	/*
3021 	 * - !MIGRATE_ENABLE:
3022 	 *   we'll have installed a pending if there wasn't one already.
3023 	 *
3024 	 * - MIGRATE_ENABLE:
3025 	 *   we're here because the current CPU isn't matching anymore,
3026 	 *   the only way that can happen is because of a concurrent
3027 	 *   set_cpus_allowed_ptr() call, which should then still be
3028 	 *   pending completion.
3029 	 *
3030 	 * Either way, we really should have a @pending here.
3031 	 */
3032 	if (WARN_ON_ONCE(!pending)) {
3033 		task_rq_unlock(rq, p, rf);
3034 		return -EINVAL;
3035 	}
3036 
3037 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3038 		/*
3039 		 * MIGRATE_ENABLE gets here because 'p == current', but for
3040 		 * anything else we cannot do is_migration_disabled(), punt
3041 		 * and have the stopper function handle it all race-free.
3042 		 */
3043 		stop_pending = pending->stop_pending;
3044 		if (!stop_pending)
3045 			pending->stop_pending = true;
3046 
3047 		if (flags & SCA_MIGRATE_ENABLE)
3048 			p->migration_flags &= ~MDF_PUSH;
3049 
3050 		preempt_disable();
3051 		task_rq_unlock(rq, p, rf);
3052 		if (!stop_pending) {
3053 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3054 					    &pending->arg, &pending->stop_work);
3055 		}
3056 		preempt_enable();
3057 
3058 		if (flags & SCA_MIGRATE_ENABLE)
3059 			return 0;
3060 	} else {
3061 
3062 		if (!is_migration_disabled(p)) {
3063 			if (task_on_rq_queued(p))
3064 				rq = move_queued_task(rq, rf, p, dest_cpu);
3065 
3066 			if (!pending->stop_pending) {
3067 				p->migration_pending = NULL;
3068 				complete = true;
3069 			}
3070 		}
3071 		task_rq_unlock(rq, p, rf);
3072 
3073 		if (complete)
3074 			complete_all(&pending->done);
3075 	}
3076 
3077 	wait_for_completion(&pending->done);
3078 
3079 	if (refcount_dec_and_test(&pending->refs))
3080 		wake_up_var(&pending->refs); /* No UaF, just an address */
3081 
3082 	/*
3083 	 * Block the original owner of &pending until all subsequent callers
3084 	 * have seen the completion and decremented the refcount
3085 	 */
3086 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3087 
3088 	/* ARGH */
3089 	WARN_ON_ONCE(my_pending.stop_pending);
3090 
3091 	return 0;
3092 }
3093 
3094 /*
3095  * Called with both p->pi_lock and rq->lock held; drops both before returning.
3096  */
__set_cpus_allowed_ptr_locked(struct task_struct * p,const struct cpumask * new_mask,u32 flags,struct rq * rq,struct rq_flags * rf)3097 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3098 					 const struct cpumask *new_mask,
3099 					 u32 flags,
3100 					 struct rq *rq,
3101 					 struct rq_flags *rf)
3102 	__releases(rq->lock)
3103 	__releases(p->pi_lock)
3104 {
3105 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3106 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3107 	bool kthread = p->flags & PF_KTHREAD;
3108 	struct cpumask *user_mask = NULL;
3109 	unsigned int dest_cpu;
3110 	int ret = 0;
3111 
3112 	update_rq_clock(rq);
3113 
3114 	if (kthread || is_migration_disabled(p)) {
3115 		/*
3116 		 * Kernel threads are allowed on online && !active CPUs,
3117 		 * however, during cpu-hot-unplug, even these might get pushed
3118 		 * away if not KTHREAD_IS_PER_CPU.
3119 		 *
3120 		 * Specifically, migration_disabled() tasks must not fail the
3121 		 * cpumask_any_and_distribute() pick below, esp. so on
3122 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3123 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3124 		 */
3125 		cpu_valid_mask = cpu_online_mask;
3126 	}
3127 
3128 	if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) {
3129 		ret = -EINVAL;
3130 		goto out;
3131 	}
3132 
3133 	/*
3134 	 * Must re-check here, to close a race against __kthread_bind(),
3135 	 * sched_setaffinity() is not guaranteed to observe the flag.
3136 	 */
3137 	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3138 		ret = -EINVAL;
3139 		goto out;
3140 	}
3141 
3142 	if (!(flags & SCA_MIGRATE_ENABLE)) {
3143 		if (cpumask_equal(&p->cpus_mask, new_mask))
3144 			goto out;
3145 
3146 		if (WARN_ON_ONCE(p == current &&
3147 				 is_migration_disabled(p) &&
3148 				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
3149 			ret = -EBUSY;
3150 			goto out;
3151 		}
3152 	}
3153 
3154 	/*
3155 	 * Picking a ~random cpu helps in cases where we are changing affinity
3156 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3157 	 * immediately required to distribute the tasks within their new mask.
3158 	 */
3159 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
3160 	trace_android_rvh_set_cpus_allowed_by_task(cpu_valid_mask, new_mask, p, &dest_cpu);
3161 
3162 	if (dest_cpu >= nr_cpu_ids) {
3163 		ret = -EINVAL;
3164 		goto out;
3165 	}
3166 
3167 	__do_set_cpus_allowed(p, new_mask, flags);
3168 
3169 	if (flags & SCA_USER)
3170 		user_mask = clear_user_cpus_ptr(p);
3171 
3172 	ret = affine_move_task(rq, p, rf, dest_cpu, flags);
3173 
3174 	kfree(user_mask);
3175 
3176 	return ret;
3177 
3178 out:
3179 	task_rq_unlock(rq, p, rf);
3180 
3181 	return ret;
3182 }
3183 
3184 /*
3185  * Change a given task's CPU affinity. Migrate the thread to a
3186  * proper CPU and schedule it away if the CPU it's executing on
3187  * is removed from the allowed bitmask.
3188  *
3189  * NOTE: the caller must have a valid reference to the task, the
3190  * task must not exit() & deallocate itself prematurely. The
3191  * call is not atomic; no spinlocks may be held.
3192  */
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,u32 flags)3193 static int __set_cpus_allowed_ptr(struct task_struct *p,
3194 				  const struct cpumask *new_mask, u32 flags)
3195 {
3196 	struct rq_flags rf;
3197 	struct rq *rq;
3198 
3199 	rq = task_rq_lock(p, &rf);
3200 	return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf);
3201 }
3202 
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)3203 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3204 {
3205 	return __set_cpus_allowed_ptr(p, new_mask, 0);
3206 }
3207 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3208 
3209 /*
3210  * Change a given task's CPU affinity to the intersection of its current
3211  * affinity mask and @subset_mask, writing the resulting mask to @new_mask
3212  * and pointing @p->user_cpus_ptr to a copy of the old mask.
3213  * If the resulting mask is empty, leave the affinity unchanged and return
3214  * -EINVAL.
3215  */
restrict_cpus_allowed_ptr(struct task_struct * p,struct cpumask * new_mask,const struct cpumask * subset_mask)3216 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3217 				     struct cpumask *new_mask,
3218 				     const struct cpumask *subset_mask)
3219 {
3220 	struct cpumask *user_mask = NULL;
3221 	struct rq_flags rf;
3222 	struct rq *rq;
3223 	int err;
3224 
3225 	if (!p->user_cpus_ptr) {
3226 		user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
3227 		if (!user_mask)
3228 			return -ENOMEM;
3229 	}
3230 
3231 	rq = task_rq_lock(p, &rf);
3232 
3233 	/*
3234 	 * Forcefully restricting the affinity of a deadline task is
3235 	 * likely to cause problems, so fail and noisily override the
3236 	 * mask entirely.
3237 	 */
3238 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3239 		err = -EPERM;
3240 		goto err_unlock;
3241 	}
3242 
3243 	if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
3244 		err = -EINVAL;
3245 		goto err_unlock;
3246 	}
3247 
3248 	/*
3249 	 * We're about to butcher the task affinity, so keep track of what
3250 	 * the user asked for in case we're able to restore it later on.
3251 	 */
3252 	if (user_mask) {
3253 		cpumask_copy(user_mask, p->cpus_ptr);
3254 		p->user_cpus_ptr = user_mask;
3255 	}
3256 
3257 	return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf);
3258 
3259 err_unlock:
3260 	task_rq_unlock(rq, p, &rf);
3261 	kfree(user_mask);
3262 	return err;
3263 }
3264 
3265 /*
3266  * Restrict the CPU affinity of task @p so that it is a subset of
3267  * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the
3268  * old affinity mask. If the resulting mask is empty, we warn and walk
3269  * up the cpuset hierarchy until we find a suitable mask.
3270  */
force_compatible_cpus_allowed_ptr(struct task_struct * p)3271 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3272 {
3273 	cpumask_var_t new_mask;
3274 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3275 
3276 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3277 
3278 	/*
3279 	 * __migrate_task() can fail silently in the face of concurrent
3280 	 * offlining of the chosen destination CPU, so take the hotplug
3281 	 * lock to ensure that the migration succeeds.
3282 	 */
3283 	cpus_read_lock();
3284 	if (!cpumask_available(new_mask))
3285 		goto out_set_mask;
3286 
3287 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3288 		goto out_free_mask;
3289 
3290 	/*
3291 	 * We failed to find a valid subset of the affinity mask for the
3292 	 * task, so override it based on its cpuset hierarchy.
3293 	 */
3294 	cpuset_cpus_allowed(p, new_mask);
3295 	override_mask = new_mask;
3296 
3297 out_set_mask:
3298 	if (printk_ratelimit()) {
3299 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3300 				task_pid_nr(p), p->comm,
3301 				cpumask_pr_args(override_mask));
3302 	}
3303 
3304 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3305 out_free_mask:
3306 	cpus_read_unlock();
3307 	free_cpumask_var(new_mask);
3308 }
3309 
3310 static int
3311 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask);
3312 
3313 /*
3314  * Restore the affinity of a task @p which was previously restricted by a
3315  * call to force_compatible_cpus_allowed_ptr(). This will clear (and free)
3316  * @p->user_cpus_ptr.
3317  *
3318  * It is the caller's responsibility to serialise this with any calls to
3319  * force_compatible_cpus_allowed_ptr(@p).
3320  */
relax_compatible_cpus_allowed_ptr(struct task_struct * p)3321 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3322 {
3323 	struct cpumask *user_mask = p->user_cpus_ptr;
3324 	unsigned long flags;
3325 
3326 	/*
3327 	 * Try to restore the old affinity mask. If this fails, then
3328 	 * we free the mask explicitly to avoid it being inherited across
3329 	 * a subsequent fork().
3330 	 */
3331 	if (!user_mask || !__sched_setaffinity(p, user_mask))
3332 		return;
3333 
3334 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3335 	user_mask = clear_user_cpus_ptr(p);
3336 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3337 
3338 	kfree(user_mask);
3339 }
3340 
set_task_cpu(struct task_struct * p,unsigned int new_cpu)3341 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3342 {
3343 #ifdef CONFIG_SCHED_DEBUG
3344 	unsigned int state = READ_ONCE(p->__state);
3345 
3346 	/*
3347 	 * We should never call set_task_cpu() on a blocked task,
3348 	 * ttwu() will sort out the placement.
3349 	 */
3350 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3351 
3352 	/*
3353 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3354 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3355 	 * time relying on p->on_rq.
3356 	 */
3357 	WARN_ON_ONCE(state == TASK_RUNNING &&
3358 		     p->sched_class == &fair_sched_class &&
3359 		     (p->on_rq && !task_on_rq_migrating(p)));
3360 
3361 #ifdef CONFIG_LOCKDEP
3362 	/*
3363 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3364 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3365 	 *
3366 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3367 	 * see task_group().
3368 	 *
3369 	 * Furthermore, all task_rq users should acquire both locks, see
3370 	 * task_rq_lock().
3371 	 */
3372 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3373 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3374 #endif
3375 	/*
3376 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3377 	 */
3378 	WARN_ON_ONCE(!cpu_online(new_cpu));
3379 
3380 	WARN_ON_ONCE(is_migration_disabled(p));
3381 #endif
3382 
3383 	trace_sched_migrate_task(p, new_cpu);
3384 
3385 	if (task_cpu(p) != new_cpu) {
3386 		if (p->sched_class->migrate_task_rq)
3387 			p->sched_class->migrate_task_rq(p, new_cpu);
3388 		p->se.nr_migrations++;
3389 		rseq_migrate(p);
3390 		perf_event_task_migrate(p);
3391 		trace_android_rvh_set_task_cpu(p, new_cpu);
3392 	}
3393 
3394 	__set_task_cpu(p, new_cpu);
3395 }
3396 EXPORT_SYMBOL_GPL(set_task_cpu);
3397 
__migrate_swap_task(struct task_struct * p,int cpu)3398 static void __migrate_swap_task(struct task_struct *p, int cpu)
3399 {
3400 	if (task_on_rq_queued(p)) {
3401 		struct rq *src_rq, *dst_rq;
3402 		struct rq_flags srf, drf;
3403 
3404 		src_rq = task_rq(p);
3405 		dst_rq = cpu_rq(cpu);
3406 
3407 		rq_pin_lock(src_rq, &srf);
3408 		rq_pin_lock(dst_rq, &drf);
3409 
3410 		deactivate_task(src_rq, p, 0);
3411 		set_task_cpu(p, cpu);
3412 		activate_task(dst_rq, p, 0);
3413 		check_preempt_curr(dst_rq, p, 0);
3414 
3415 		rq_unpin_lock(dst_rq, &drf);
3416 		rq_unpin_lock(src_rq, &srf);
3417 
3418 	} else {
3419 		/*
3420 		 * Task isn't running anymore; make it appear like we migrated
3421 		 * it before it went to sleep. This means on wakeup we make the
3422 		 * previous CPU our target instead of where it really is.
3423 		 */
3424 		p->wake_cpu = cpu;
3425 	}
3426 }
3427 
3428 struct migration_swap_arg {
3429 	struct task_struct *src_task, *dst_task;
3430 	int src_cpu, dst_cpu;
3431 };
3432 
migrate_swap_stop(void * data)3433 static int migrate_swap_stop(void *data)
3434 {
3435 	struct migration_swap_arg *arg = data;
3436 	struct rq *src_rq, *dst_rq;
3437 	int ret = -EAGAIN;
3438 
3439 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3440 		return -EAGAIN;
3441 
3442 	src_rq = cpu_rq(arg->src_cpu);
3443 	dst_rq = cpu_rq(arg->dst_cpu);
3444 
3445 	double_raw_lock(&arg->src_task->pi_lock,
3446 			&arg->dst_task->pi_lock);
3447 	double_rq_lock(src_rq, dst_rq);
3448 
3449 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3450 		goto unlock;
3451 
3452 	if (task_cpu(arg->src_task) != arg->src_cpu)
3453 		goto unlock;
3454 
3455 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3456 		goto unlock;
3457 
3458 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3459 		goto unlock;
3460 
3461 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3462 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3463 
3464 	ret = 0;
3465 
3466 unlock:
3467 	double_rq_unlock(src_rq, dst_rq);
3468 	raw_spin_unlock(&arg->dst_task->pi_lock);
3469 	raw_spin_unlock(&arg->src_task->pi_lock);
3470 
3471 	return ret;
3472 }
3473 
3474 /*
3475  * Cross migrate two tasks
3476  */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)3477 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3478 		int target_cpu, int curr_cpu)
3479 {
3480 	struct migration_swap_arg arg;
3481 	int ret = -EINVAL;
3482 
3483 	arg = (struct migration_swap_arg){
3484 		.src_task = cur,
3485 		.src_cpu = curr_cpu,
3486 		.dst_task = p,
3487 		.dst_cpu = target_cpu,
3488 	};
3489 
3490 	if (arg.src_cpu == arg.dst_cpu)
3491 		goto out;
3492 
3493 	/*
3494 	 * These three tests are all lockless; this is OK since all of them
3495 	 * will be re-checked with proper locks held further down the line.
3496 	 */
3497 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3498 		goto out;
3499 
3500 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3501 		goto out;
3502 
3503 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3504 		goto out;
3505 
3506 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3507 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3508 
3509 out:
3510 	return ret;
3511 }
3512 EXPORT_SYMBOL_GPL(migrate_swap);
3513 
3514 /***
3515  * kick_process - kick a running thread to enter/exit the kernel
3516  * @p: the to-be-kicked thread
3517  *
3518  * Cause a process which is running on another CPU to enter
3519  * kernel-mode, without any delay. (to get signals handled.)
3520  *
3521  * NOTE: this function doesn't have to take the runqueue lock,
3522  * because all it wants to ensure is that the remote task enters
3523  * the kernel. If the IPI races and the task has been migrated
3524  * to another CPU then no harm is done and the purpose has been
3525  * achieved as well.
3526  */
kick_process(struct task_struct * p)3527 void kick_process(struct task_struct *p)
3528 {
3529 	int cpu;
3530 
3531 	preempt_disable();
3532 	cpu = task_cpu(p);
3533 	if ((cpu != smp_processor_id()) && task_curr(p))
3534 		smp_send_reschedule(cpu);
3535 	preempt_enable();
3536 }
3537 EXPORT_SYMBOL_GPL(kick_process);
3538 
3539 /*
3540  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3541  *
3542  * A few notes on cpu_active vs cpu_online:
3543  *
3544  *  - cpu_active must be a subset of cpu_online
3545  *
3546  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3547  *    see __set_cpus_allowed_ptr(). At this point the newly online
3548  *    CPU isn't yet part of the sched domains, and balancing will not
3549  *    see it.
3550  *
3551  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3552  *    avoid the load balancer to place new tasks on the to be removed
3553  *    CPU. Existing tasks will remain running there and will be taken
3554  *    off.
3555  *
3556  * This means that fallback selection must not select !active CPUs.
3557  * And can assume that any active CPU must be online. Conversely
3558  * select_task_rq() below may allow selection of !active CPUs in order
3559  * to satisfy the above rules.
3560  */
select_fallback_rq(int cpu,struct task_struct * p)3561 int select_fallback_rq(int cpu, struct task_struct *p)
3562 {
3563 	int nid = cpu_to_node(cpu);
3564 	const struct cpumask *nodemask = NULL;
3565 	enum { cpuset, possible, fail } state = cpuset;
3566 	int dest_cpu = -1;
3567 
3568 	trace_android_rvh_select_fallback_rq(cpu, p, &dest_cpu);
3569 	if (dest_cpu >= 0)
3570 		return dest_cpu;
3571 
3572 	/*
3573 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3574 	 * will return -1. There is no CPU on the node, and we should
3575 	 * select the CPU on the other node.
3576 	 */
3577 	if (nid != -1) {
3578 		nodemask = cpumask_of_node(nid);
3579 
3580 		/* Look for allowed, online CPU in same node. */
3581 		for_each_cpu(dest_cpu, nodemask) {
3582 			if (is_cpu_allowed(p, dest_cpu))
3583 				return dest_cpu;
3584 		}
3585 	}
3586 
3587 	for (;;) {
3588 		/* Any allowed, online CPU? */
3589 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3590 			if (!is_cpu_allowed(p, dest_cpu))
3591 				continue;
3592 
3593 			goto out;
3594 		}
3595 
3596 		/* No more Mr. Nice Guy. */
3597 		switch (state) {
3598 		case cpuset:
3599 			if (cpuset_cpus_allowed_fallback(p)) {
3600 				state = possible;
3601 				break;
3602 			}
3603 			fallthrough;
3604 		case possible:
3605 			/*
3606 			 * XXX When called from select_task_rq() we only
3607 			 * hold p->pi_lock and again violate locking order.
3608 			 *
3609 			 * More yuck to audit.
3610 			 */
3611 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3612 			state = fail;
3613 			break;
3614 		case fail:
3615 			BUG();
3616 			break;
3617 		}
3618 	}
3619 
3620 out:
3621 	if (state != cpuset) {
3622 		/*
3623 		 * Don't tell them about moving exiting tasks or
3624 		 * kernel threads (both mm NULL), since they never
3625 		 * leave kernel.
3626 		 */
3627 		if (p->mm && printk_ratelimit()) {
3628 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3629 					task_pid_nr(p), p->comm, cpu);
3630 		}
3631 	}
3632 
3633 	return dest_cpu;
3634 }
3635 EXPORT_SYMBOL_GPL(select_fallback_rq);
3636 
3637 /*
3638  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3639  */
3640 static inline
select_task_rq(struct task_struct * p,int cpu,int wake_flags)3641 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3642 {
3643 	lockdep_assert_held(&p->pi_lock);
3644 
3645 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3646 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3647 	else
3648 		cpu = cpumask_any(p->cpus_ptr);
3649 
3650 	/*
3651 	 * In order not to call set_task_cpu() on a blocking task we need
3652 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3653 	 * CPU.
3654 	 *
3655 	 * Since this is common to all placement strategies, this lives here.
3656 	 *
3657 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3658 	 *   not worry about this generic constraint ]
3659 	 */
3660 	if (unlikely(!is_cpu_allowed(p, cpu)))
3661 		cpu = select_fallback_rq(task_cpu(p), p);
3662 
3663 	return cpu;
3664 }
3665 
sched_set_stop_task(int cpu,struct task_struct * stop)3666 void sched_set_stop_task(int cpu, struct task_struct *stop)
3667 {
3668 	static struct lock_class_key stop_pi_lock;
3669 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3670 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3671 
3672 	if (stop) {
3673 		/*
3674 		 * Make it appear like a SCHED_FIFO task, its something
3675 		 * userspace knows about and won't get confused about.
3676 		 *
3677 		 * Also, it will make PI more or less work without too
3678 		 * much confusion -- but then, stop work should not
3679 		 * rely on PI working anyway.
3680 		 */
3681 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3682 
3683 		stop->sched_class = &stop_sched_class;
3684 
3685 		/*
3686 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3687 		 * adjust the effective priority of a task. As a result,
3688 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3689 		 * which can then trigger wakeups of the stop thread to push
3690 		 * around the current task.
3691 		 *
3692 		 * The stop task itself will never be part of the PI-chain, it
3693 		 * never blocks, therefore that ->pi_lock recursion is safe.
3694 		 * Tell lockdep about this by placing the stop->pi_lock in its
3695 		 * own class.
3696 		 */
3697 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3698 	}
3699 
3700 	cpu_rq(cpu)->stop = stop;
3701 
3702 	if (old_stop) {
3703 		/*
3704 		 * Reset it back to a normal scheduling class so that
3705 		 * it can die in pieces.
3706 		 */
3707 		old_stop->sched_class = &rt_sched_class;
3708 	}
3709 }
3710 
3711 #else /* CONFIG_SMP */
3712 
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,u32 flags)3713 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3714 					 const struct cpumask *new_mask,
3715 					 u32 flags)
3716 {
3717 	return set_cpus_allowed_ptr(p, new_mask);
3718 }
3719 
migrate_disable_switch(struct rq * rq,struct task_struct * p)3720 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3721 
rq_has_pinned_tasks(struct rq * rq)3722 static inline bool rq_has_pinned_tasks(struct rq *rq)
3723 {
3724 	return false;
3725 }
3726 
3727 #endif /* !CONFIG_SMP */
3728 
3729 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)3730 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3731 {
3732 	struct rq *rq;
3733 
3734 	if (!schedstat_enabled())
3735 		return;
3736 
3737 	rq = this_rq();
3738 
3739 #ifdef CONFIG_SMP
3740 	if (cpu == rq->cpu) {
3741 		__schedstat_inc(rq->ttwu_local);
3742 		__schedstat_inc(p->stats.nr_wakeups_local);
3743 	} else {
3744 		struct sched_domain *sd;
3745 
3746 		__schedstat_inc(p->stats.nr_wakeups_remote);
3747 		rcu_read_lock();
3748 		for_each_domain(rq->cpu, sd) {
3749 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3750 				__schedstat_inc(sd->ttwu_wake_remote);
3751 				break;
3752 			}
3753 		}
3754 		rcu_read_unlock();
3755 	}
3756 
3757 	if (wake_flags & WF_MIGRATED)
3758 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3759 #endif /* CONFIG_SMP */
3760 
3761 	__schedstat_inc(rq->ttwu_count);
3762 	__schedstat_inc(p->stats.nr_wakeups);
3763 
3764 	if (wake_flags & WF_SYNC)
3765 		__schedstat_inc(p->stats.nr_wakeups_sync);
3766 }
3767 
3768 /*
3769  * Mark the task runnable and perform wakeup-preemption.
3770  */
ttwu_do_wakeup(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3771 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3772 			   struct rq_flags *rf)
3773 {
3774 	check_preempt_curr(rq, p, wake_flags);
3775 	WRITE_ONCE(p->__state, TASK_RUNNING);
3776 	trace_sched_wakeup(p);
3777 
3778 #ifdef CONFIG_SMP
3779 	if (p->sched_class->task_woken) {
3780 		/*
3781 		 * Our task @p is fully woken up and running; so it's safe to
3782 		 * drop the rq->lock, hereafter rq is only used for statistics.
3783 		 */
3784 		rq_unpin_lock(rq, rf);
3785 		p->sched_class->task_woken(rq, p);
3786 		rq_repin_lock(rq, rf);
3787 	}
3788 
3789 	if (rq->idle_stamp) {
3790 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3791 		u64 max = 2*rq->max_idle_balance_cost;
3792 
3793 		update_avg(&rq->avg_idle, delta);
3794 
3795 		if (rq->avg_idle > max)
3796 			rq->avg_idle = max;
3797 
3798 		rq->wake_stamp = jiffies;
3799 		rq->wake_avg_idle = rq->avg_idle / 2;
3800 
3801 		rq->idle_stamp = 0;
3802 	}
3803 #endif
3804 }
3805 
3806 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3807 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3808 		 struct rq_flags *rf)
3809 {
3810 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3811 
3812 	if (wake_flags & WF_SYNC)
3813 		en_flags |= ENQUEUE_WAKEUP_SYNC;
3814 
3815 	lockdep_assert_rq_held(rq);
3816 
3817 	if (p->sched_contributes_to_load)
3818 		rq->nr_uninterruptible--;
3819 
3820 #ifdef CONFIG_SMP
3821 	if (wake_flags & WF_MIGRATED)
3822 		en_flags |= ENQUEUE_MIGRATED;
3823 	else
3824 #endif
3825 	if (p->in_iowait) {
3826 		delayacct_blkio_end(p);
3827 		atomic_dec(&task_rq(p)->nr_iowait);
3828 	}
3829 
3830 	activate_task(rq, p, en_flags);
3831 	ttwu_do_wakeup(rq, p, wake_flags, rf);
3832 }
3833 
3834 /*
3835  * Consider @p being inside a wait loop:
3836  *
3837  *   for (;;) {
3838  *      set_current_state(TASK_UNINTERRUPTIBLE);
3839  *
3840  *      if (CONDITION)
3841  *         break;
3842  *
3843  *      schedule();
3844  *   }
3845  *   __set_current_state(TASK_RUNNING);
3846  *
3847  * between set_current_state() and schedule(). In this case @p is still
3848  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3849  * an atomic manner.
3850  *
3851  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3852  * then schedule() must still happen and p->state can be changed to
3853  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3854  * need to do a full wakeup with enqueue.
3855  *
3856  * Returns: %true when the wakeup is done,
3857  *          %false otherwise.
3858  */
ttwu_runnable(struct task_struct * p,int wake_flags)3859 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3860 {
3861 	struct rq_flags rf;
3862 	struct rq *rq;
3863 	int ret = 0;
3864 
3865 	rq = __task_rq_lock(p, &rf);
3866 	if (task_on_rq_queued(p)) {
3867 		/* check_preempt_curr() may use rq clock */
3868 		update_rq_clock(rq);
3869 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3870 		ret = 1;
3871 	}
3872 	__task_rq_unlock(rq, &rf);
3873 
3874 	return ret;
3875 }
3876 
3877 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)3878 void sched_ttwu_pending(void *arg)
3879 {
3880 	struct llist_node *llist = arg;
3881 	struct rq *rq = this_rq();
3882 	struct task_struct *p, *t;
3883 	struct rq_flags rf;
3884 
3885 	if (!llist)
3886 		return;
3887 
3888 	/*
3889 	 * rq::ttwu_pending racy indication of out-standing wakeups.
3890 	 * Races such that false-negatives are possible, since they
3891 	 * are shorter lived that false-positives would be.
3892 	 */
3893 	WRITE_ONCE(rq->ttwu_pending, 0);
3894 
3895 	rq_lock_irqsave(rq, &rf);
3896 	update_rq_clock(rq);
3897 
3898 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3899 		if (WARN_ON_ONCE(p->on_cpu))
3900 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3901 
3902 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3903 			set_task_cpu(p, cpu_of(rq));
3904 
3905 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3906 	}
3907 
3908 	rq_unlock_irqrestore(rq, &rf);
3909 }
3910 
send_call_function_single_ipi(int cpu)3911 void send_call_function_single_ipi(int cpu)
3912 {
3913 	struct rq *rq = cpu_rq(cpu);
3914 
3915 	if (!set_nr_if_polling(rq->idle))
3916 		arch_send_call_function_single_ipi(cpu);
3917 	else
3918 		trace_sched_wake_idle_without_ipi(cpu);
3919 }
3920 
3921 /*
3922  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3923  * necessary. The wakee CPU on receipt of the IPI will queue the task
3924  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3925  * of the wakeup instead of the waker.
3926  */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3927 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3928 {
3929 	struct rq *rq = cpu_rq(cpu);
3930 
3931 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3932 
3933 	WRITE_ONCE(rq->ttwu_pending, 1);
3934 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3935 }
3936 
wake_up_if_idle(int cpu)3937 void wake_up_if_idle(int cpu)
3938 {
3939 	struct rq *rq = cpu_rq(cpu);
3940 	struct rq_flags rf;
3941 
3942 	rcu_read_lock();
3943 
3944 	if (!is_idle_task(rcu_dereference(rq->curr)))
3945 		goto out;
3946 
3947 	rq_lock_irqsave(rq, &rf);
3948 	if (is_idle_task(rq->curr))
3949 		resched_curr(rq);
3950 	/* Else CPU is not idle, do nothing here: */
3951 	rq_unlock_irqrestore(rq, &rf);
3952 
3953 out:
3954 	rcu_read_unlock();
3955 }
3956 EXPORT_SYMBOL_GPL(wake_up_if_idle);
3957 
cpus_share_cache(int this_cpu,int that_cpu)3958 bool cpus_share_cache(int this_cpu, int that_cpu)
3959 {
3960 	if (this_cpu == that_cpu)
3961 		return true;
3962 
3963 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3964 }
3965 
ttwu_queue_cond(struct task_struct * p,int cpu)3966 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3967 {
3968 	/*
3969 	 * Do not complicate things with the async wake_list while the CPU is
3970 	 * in hotplug state.
3971 	 */
3972 	if (!cpu_active(cpu))
3973 		return false;
3974 
3975 	/* Ensure the task will still be allowed to run on the CPU. */
3976 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3977 		return false;
3978 
3979 	/*
3980 	 * If the CPU does not share cache, then queue the task on the
3981 	 * remote rqs wakelist to avoid accessing remote data.
3982 	 */
3983 	if (!cpus_share_cache(smp_processor_id(), cpu))
3984 		return true;
3985 
3986 	if (cpu == smp_processor_id())
3987 		return false;
3988 
3989 	/*
3990 	 * If the wakee cpu is idle, or the task is descheduling and the
3991 	 * only running task on the CPU, then use the wakelist to offload
3992 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3993 	 * the current CPU is likely busy. nr_running is checked to
3994 	 * avoid unnecessary task stacking.
3995 	 *
3996 	 * Note that we can only get here with (wakee) p->on_rq=0,
3997 	 * p->on_cpu can be whatever, we've done the dequeue, so
3998 	 * the wakee has been accounted out of ->nr_running.
3999 	 */
4000 	if (!cpu_rq(cpu)->nr_running)
4001 		return true;
4002 
4003 	return false;
4004 }
4005 
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4006 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4007 {
4008 	bool cond = false;
4009 
4010 	trace_android_rvh_ttwu_cond(cpu, &cond);
4011 
4012 	if ((sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) ||
4013 			cond) {
4014 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
4015 		__ttwu_queue_wakelist(p, cpu, wake_flags);
4016 		return true;
4017 	}
4018 
4019 	return false;
4020 }
4021 
4022 #else /* !CONFIG_SMP */
4023 
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4024 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4025 {
4026 	return false;
4027 }
4028 
4029 #endif /* CONFIG_SMP */
4030 
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)4031 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4032 {
4033 	struct rq *rq = cpu_rq(cpu);
4034 	struct rq_flags rf;
4035 
4036 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
4037 		return;
4038 
4039 	rq_lock(rq, &rf);
4040 	update_rq_clock(rq);
4041 	ttwu_do_activate(rq, p, wake_flags, &rf);
4042 	rq_unlock(rq, &rf);
4043 }
4044 
4045 /*
4046  * Invoked from try_to_wake_up() to check whether the task can be woken up.
4047  *
4048  * The caller holds p::pi_lock if p != current or has preemption
4049  * disabled when p == current.
4050  *
4051  * The rules of saved_state:
4052  *
4053  *   The related locking code always holds p::pi_lock when updating
4054  *   p::saved_state, which means the code is fully serialized in both cases.
4055  *
4056  *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
4057  *   No other bits set. This allows to distinguish all wakeup scenarios.
4058  *
4059  *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
4060  *   allows us to prevent early wakeup of tasks before they can be run on
4061  *   asymmetric ISA architectures (eg ARMv9).
4062  */
4063 static __always_inline
ttwu_state_match(struct task_struct * p,unsigned int state,int * success)4064 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4065 {
4066 	int match;
4067 
4068 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4069 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4070 			     state != TASK_RTLOCK_WAIT);
4071 	}
4072 
4073 	*success = !!(match = __task_state_match(p, state));
4074 
4075 	/*
4076 	 * Saved state preserves the task state across blocking on
4077 	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
4078 	 * set p::saved_state to TASK_RUNNING, but do not wake the task
4079 	 * because it waits for a lock wakeup or __thaw_task(). Also
4080 	 * indicate success because from the regular waker's point of
4081 	 * view this has succeeded.
4082 	 *
4083 	 * After acquiring the lock the task will restore p::__state
4084 	 * from p::saved_state which ensures that the regular
4085 	 * wakeup is not lost. The restore will also set
4086 	 * p::saved_state to TASK_RUNNING so any further tests will
4087 	 * not result in false positives vs. @success
4088 	 */
4089 	if (match < 0)
4090 		p->saved_state = TASK_RUNNING;
4091 
4092 	return match > 0;
4093 }
4094 
4095 /*
4096  * Notes on Program-Order guarantees on SMP systems.
4097  *
4098  *  MIGRATION
4099  *
4100  * The basic program-order guarantee on SMP systems is that when a task [t]
4101  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4102  * execution on its new CPU [c1].
4103  *
4104  * For migration (of runnable tasks) this is provided by the following means:
4105  *
4106  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4107  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4108  *     rq(c1)->lock (if not at the same time, then in that order).
4109  *  C) LOCK of the rq(c1)->lock scheduling in task
4110  *
4111  * Release/acquire chaining guarantees that B happens after A and C after B.
4112  * Note: the CPU doing B need not be c0 or c1
4113  *
4114  * Example:
4115  *
4116  *   CPU0            CPU1            CPU2
4117  *
4118  *   LOCK rq(0)->lock
4119  *   sched-out X
4120  *   sched-in Y
4121  *   UNLOCK rq(0)->lock
4122  *
4123  *                                   LOCK rq(0)->lock // orders against CPU0
4124  *                                   dequeue X
4125  *                                   UNLOCK rq(0)->lock
4126  *
4127  *                                   LOCK rq(1)->lock
4128  *                                   enqueue X
4129  *                                   UNLOCK rq(1)->lock
4130  *
4131  *                   LOCK rq(1)->lock // orders against CPU2
4132  *                   sched-out Z
4133  *                   sched-in X
4134  *                   UNLOCK rq(1)->lock
4135  *
4136  *
4137  *  BLOCKING -- aka. SLEEP + WAKEUP
4138  *
4139  * For blocking we (obviously) need to provide the same guarantee as for
4140  * migration. However the means are completely different as there is no lock
4141  * chain to provide order. Instead we do:
4142  *
4143  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4144  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4145  *
4146  * Example:
4147  *
4148  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4149  *
4150  *   LOCK rq(0)->lock LOCK X->pi_lock
4151  *   dequeue X
4152  *   sched-out X
4153  *   smp_store_release(X->on_cpu, 0);
4154  *
4155  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4156  *                    X->state = WAKING
4157  *                    set_task_cpu(X,2)
4158  *
4159  *                    LOCK rq(2)->lock
4160  *                    enqueue X
4161  *                    X->state = RUNNING
4162  *                    UNLOCK rq(2)->lock
4163  *
4164  *                                          LOCK rq(2)->lock // orders against CPU1
4165  *                                          sched-out Z
4166  *                                          sched-in X
4167  *                                          UNLOCK rq(2)->lock
4168  *
4169  *                    UNLOCK X->pi_lock
4170  *   UNLOCK rq(0)->lock
4171  *
4172  *
4173  * However, for wakeups there is a second guarantee we must provide, namely we
4174  * must ensure that CONDITION=1 done by the caller can not be reordered with
4175  * accesses to the task state; see try_to_wake_up() and set_current_state().
4176  */
4177 
4178 /**
4179  * try_to_wake_up - wake up a thread
4180  * @p: the thread to be awakened
4181  * @state: the mask of task states that can be woken
4182  * @wake_flags: wake modifier flags (WF_*)
4183  *
4184  * Conceptually does:
4185  *
4186  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4187  *
4188  * If the task was not queued/runnable, also place it back on a runqueue.
4189  *
4190  * This function is atomic against schedule() which would dequeue the task.
4191  *
4192  * It issues a full memory barrier before accessing @p->state, see the comment
4193  * with set_current_state().
4194  *
4195  * Uses p->pi_lock to serialize against concurrent wake-ups.
4196  *
4197  * Relies on p->pi_lock stabilizing:
4198  *  - p->sched_class
4199  *  - p->cpus_ptr
4200  *  - p->sched_task_group
4201  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4202  *
4203  * Tries really hard to only take one task_rq(p)->lock for performance.
4204  * Takes rq->lock in:
4205  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4206  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4207  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4208  *
4209  * As a consequence we race really badly with just about everything. See the
4210  * many memory barriers and their comments for details.
4211  *
4212  * Return: %true if @p->state changes (an actual wakeup was done),
4213  *	   %false otherwise.
4214  */
4215 static int
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)4216 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4217 {
4218 	unsigned long flags;
4219 	int cpu, success = 0;
4220 
4221 	preempt_disable();
4222 	if (p == current) {
4223 		/*
4224 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4225 		 * == smp_processor_id()'. Together this means we can special
4226 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4227 		 * without taking any locks.
4228 		 *
4229 		 * In particular:
4230 		 *  - we rely on Program-Order guarantees for all the ordering,
4231 		 *  - we're serialized against set_special_state() by virtue of
4232 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4233 		 */
4234 		if (!ttwu_state_match(p, state, &success))
4235 			goto out;
4236 
4237 		trace_sched_waking(p);
4238 		WRITE_ONCE(p->__state, TASK_RUNNING);
4239 		trace_sched_wakeup(p);
4240 		goto out;
4241 	}
4242 
4243 	/*
4244 	 * If we are going to wake up a thread waiting for CONDITION we
4245 	 * need to ensure that CONDITION=1 done by the caller can not be
4246 	 * reordered with p->state check below. This pairs with smp_store_mb()
4247 	 * in set_current_state() that the waiting thread does.
4248 	 */
4249 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4250 	smp_mb__after_spinlock();
4251 	if (!ttwu_state_match(p, state, &success))
4252 		goto unlock;
4253 
4254 	trace_sched_waking(p);
4255 
4256 	/*
4257 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4258 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4259 	 * in smp_cond_load_acquire() below.
4260 	 *
4261 	 * sched_ttwu_pending()			try_to_wake_up()
4262 	 *   STORE p->on_rq = 1			  LOAD p->state
4263 	 *   UNLOCK rq->lock
4264 	 *
4265 	 * __schedule() (switch to task 'p')
4266 	 *   LOCK rq->lock			  smp_rmb();
4267 	 *   smp_mb__after_spinlock();
4268 	 *   UNLOCK rq->lock
4269 	 *
4270 	 * [task p]
4271 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4272 	 *
4273 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4274 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4275 	 *
4276 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4277 	 */
4278 	smp_rmb();
4279 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4280 		goto unlock;
4281 
4282 	if (READ_ONCE(p->__state) & TASK_UNINTERRUPTIBLE)
4283 		trace_sched_blocked_reason(p);
4284 
4285 #ifdef CONFIG_SMP
4286 	/*
4287 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4288 	 * possible to, falsely, observe p->on_cpu == 0.
4289 	 *
4290 	 * One must be running (->on_cpu == 1) in order to remove oneself
4291 	 * from the runqueue.
4292 	 *
4293 	 * __schedule() (switch to task 'p')	try_to_wake_up()
4294 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4295 	 *   UNLOCK rq->lock
4296 	 *
4297 	 * __schedule() (put 'p' to sleep)
4298 	 *   LOCK rq->lock			  smp_rmb();
4299 	 *   smp_mb__after_spinlock();
4300 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4301 	 *
4302 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4303 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4304 	 *
4305 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4306 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
4307 	 * care about it's own p->state. See the comment in __schedule().
4308 	 */
4309 	smp_acquire__after_ctrl_dep();
4310 
4311 	/*
4312 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4313 	 * == 0), which means we need to do an enqueue, change p->state to
4314 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4315 	 * enqueue, such as ttwu_queue_wakelist().
4316 	 */
4317 	WRITE_ONCE(p->__state, TASK_WAKING);
4318 
4319 	/*
4320 	 * If the owning (remote) CPU is still in the middle of schedule() with
4321 	 * this task as prev, considering queueing p on the remote CPUs wake_list
4322 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
4323 	 * let the waker make forward progress. This is safe because IRQs are
4324 	 * disabled and the IPI will deliver after on_cpu is cleared.
4325 	 *
4326 	 * Ensure we load task_cpu(p) after p->on_cpu:
4327 	 *
4328 	 * set_task_cpu(p, cpu);
4329 	 *   STORE p->cpu = @cpu
4330 	 * __schedule() (switch to task 'p')
4331 	 *   LOCK rq->lock
4332 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4333 	 *   STORE p->on_cpu = 1		LOAD p->cpu
4334 	 *
4335 	 * to ensure we observe the correct CPU on which the task is currently
4336 	 * scheduling.
4337 	 */
4338 	if (smp_load_acquire(&p->on_cpu) &&
4339 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4340 		goto unlock;
4341 
4342 	/*
4343 	 * If the owning (remote) CPU is still in the middle of schedule() with
4344 	 * this task as prev, wait until it's done referencing the task.
4345 	 *
4346 	 * Pairs with the smp_store_release() in finish_task().
4347 	 *
4348 	 * This ensures that tasks getting woken will be fully ordered against
4349 	 * their previous state and preserve Program Order.
4350 	 */
4351 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4352 
4353 	trace_android_rvh_try_to_wake_up(p);
4354 
4355 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4356 	if (task_cpu(p) != cpu) {
4357 		if (p->in_iowait) {
4358 			delayacct_blkio_end(p);
4359 			atomic_dec(&task_rq(p)->nr_iowait);
4360 		}
4361 
4362 		wake_flags |= WF_MIGRATED;
4363 		psi_ttwu_dequeue(p);
4364 		set_task_cpu(p, cpu);
4365 	}
4366 #else
4367 	cpu = task_cpu(p);
4368 #endif /* CONFIG_SMP */
4369 
4370 	ttwu_queue(p, cpu, wake_flags);
4371 unlock:
4372 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4373 out:
4374 	if (success) {
4375 		trace_android_rvh_try_to_wake_up_success(p);
4376 		ttwu_stat(p, task_cpu(p), wake_flags);
4377 	}
4378 	preempt_enable();
4379 
4380 	return success;
4381 }
4382 
__task_needs_rq_lock(struct task_struct * p)4383 static bool __task_needs_rq_lock(struct task_struct *p)
4384 {
4385 	unsigned int state = READ_ONCE(p->__state);
4386 
4387 	/*
4388 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4389 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4390 	 * locks at the end, see ttwu_queue_wakelist().
4391 	 */
4392 	if (state == TASK_RUNNING || state == TASK_WAKING)
4393 		return true;
4394 
4395 	/*
4396 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4397 	 * possible to, falsely, observe p->on_rq == 0.
4398 	 *
4399 	 * See try_to_wake_up() for a longer comment.
4400 	 */
4401 	smp_rmb();
4402 	if (p->on_rq)
4403 		return true;
4404 
4405 #ifdef CONFIG_SMP
4406 	/*
4407 	 * Ensure the task has finished __schedule() and will not be referenced
4408 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4409 	 */
4410 	smp_rmb();
4411 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4412 #endif
4413 
4414 	return false;
4415 }
4416 
4417 /**
4418  * task_call_func - Invoke a function on task in fixed state
4419  * @p: Process for which the function is to be invoked, can be @current.
4420  * @func: Function to invoke.
4421  * @arg: Argument to function.
4422  *
4423  * Fix the task in it's current state by avoiding wakeups and or rq operations
4424  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4425  * to work out what the state is, if required.  Given that @func can be invoked
4426  * with a runqueue lock held, it had better be quite lightweight.
4427  *
4428  * Returns:
4429  *   Whatever @func returns
4430  */
task_call_func(struct task_struct * p,task_call_f func,void * arg)4431 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4432 {
4433 	struct rq *rq = NULL;
4434 	struct rq_flags rf;
4435 	int ret;
4436 
4437 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4438 
4439 	if (__task_needs_rq_lock(p))
4440 		rq = __task_rq_lock(p, &rf);
4441 
4442 	/*
4443 	 * At this point the task is pinned; either:
4444 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4445 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4446 	 *  - queued, and we're holding off schedule	 (rq->lock)
4447 	 *  - running, and we're holding off de-schedule (rq->lock)
4448 	 *
4449 	 * The called function (@func) can use: task_curr(), p->on_rq and
4450 	 * p->__state to differentiate between these states.
4451 	 */
4452 	ret = func(p, arg);
4453 
4454 	if (rq)
4455 		rq_unlock(rq, &rf);
4456 
4457 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4458 	return ret;
4459 }
4460 
4461 /**
4462  * cpu_curr_snapshot - Return a snapshot of the currently running task
4463  * @cpu: The CPU on which to snapshot the task.
4464  *
4465  * Returns the task_struct pointer of the task "currently" running on
4466  * the specified CPU.  If the same task is running on that CPU throughout,
4467  * the return value will be a pointer to that task's task_struct structure.
4468  * If the CPU did any context switches even vaguely concurrently with the
4469  * execution of this function, the return value will be a pointer to the
4470  * task_struct structure of a randomly chosen task that was running on
4471  * that CPU somewhere around the time that this function was executing.
4472  *
4473  * If the specified CPU was offline, the return value is whatever it
4474  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4475  * task, but there is no guarantee.  Callers wishing a useful return
4476  * value must take some action to ensure that the specified CPU remains
4477  * online throughout.
4478  *
4479  * This function executes full memory barriers before and after fetching
4480  * the pointer, which permits the caller to confine this function's fetch
4481  * with respect to the caller's accesses to other shared variables.
4482  */
cpu_curr_snapshot(int cpu)4483 struct task_struct *cpu_curr_snapshot(int cpu)
4484 {
4485 	struct task_struct *t;
4486 
4487 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4488 	t = rcu_dereference(cpu_curr(cpu));
4489 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4490 	return t;
4491 }
4492 
4493 /**
4494  * wake_up_process - Wake up a specific process
4495  * @p: The process to be woken up.
4496  *
4497  * Attempt to wake up the nominated process and move it to the set of runnable
4498  * processes.
4499  *
4500  * Return: 1 if the process was woken up, 0 if it was already running.
4501  *
4502  * This function executes a full memory barrier before accessing the task state.
4503  */
wake_up_process(struct task_struct * p)4504 int wake_up_process(struct task_struct *p)
4505 {
4506 	return try_to_wake_up(p, TASK_NORMAL, 0);
4507 }
4508 EXPORT_SYMBOL(wake_up_process);
4509 
wake_up_state(struct task_struct * p,unsigned int state)4510 int wake_up_state(struct task_struct *p, unsigned int state)
4511 {
4512 	return try_to_wake_up(p, state, 0);
4513 }
4514 EXPORT_SYMBOL(wake_up_state);
4515 
4516 /*
4517  * Perform scheduler related setup for a newly forked process p.
4518  * p is forked by current.
4519  *
4520  * __sched_fork() is basic setup used by init_idle() too:
4521  */
__sched_fork(unsigned long clone_flags,struct task_struct * p)4522 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4523 {
4524 	p->on_rq			= 0;
4525 
4526 	p->se.on_rq			= 0;
4527 	p->se.exec_start		= 0;
4528 	p->se.sum_exec_runtime		= 0;
4529 	p->se.prev_sum_exec_runtime	= 0;
4530 	p->se.nr_migrations		= 0;
4531 	p->se.vruntime			= 0;
4532 	INIT_LIST_HEAD(&p->se.group_node);
4533 
4534 #ifdef CONFIG_FAIR_GROUP_SCHED
4535 	p->se.cfs_rq			= NULL;
4536 #endif
4537 
4538 	trace_android_rvh_sched_fork_init(p);
4539 
4540 #ifdef CONFIG_SCHEDSTATS
4541 	/* Even if schedstat is disabled, there should not be garbage */
4542 	memset(&p->stats, 0, sizeof(p->stats));
4543 #endif
4544 
4545 	RB_CLEAR_NODE(&p->dl.rb_node);
4546 	init_dl_task_timer(&p->dl);
4547 	init_dl_inactive_task_timer(&p->dl);
4548 	__dl_clear_params(p);
4549 
4550 	INIT_LIST_HEAD(&p->rt.run_list);
4551 	p->rt.timeout		= 0;
4552 	p->rt.time_slice	= sched_rr_timeslice;
4553 	p->rt.on_rq		= 0;
4554 	p->rt.on_list		= 0;
4555 
4556 #ifdef CONFIG_PREEMPT_NOTIFIERS
4557 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4558 #endif
4559 
4560 #ifdef CONFIG_COMPACTION
4561 	p->capture_control = NULL;
4562 #endif
4563 	init_numa_balancing(clone_flags, p);
4564 #ifdef CONFIG_SMP
4565 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4566 	p->migration_pending = NULL;
4567 #endif
4568 }
4569 
4570 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4571 
4572 #ifdef CONFIG_NUMA_BALANCING
4573 
4574 int sysctl_numa_balancing_mode;
4575 
__set_numabalancing_state(bool enabled)4576 static void __set_numabalancing_state(bool enabled)
4577 {
4578 	if (enabled)
4579 		static_branch_enable(&sched_numa_balancing);
4580 	else
4581 		static_branch_disable(&sched_numa_balancing);
4582 }
4583 
set_numabalancing_state(bool enabled)4584 void set_numabalancing_state(bool enabled)
4585 {
4586 	if (enabled)
4587 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4588 	else
4589 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4590 	__set_numabalancing_state(enabled);
4591 }
4592 
4593 #ifdef CONFIG_PROC_SYSCTL
reset_memory_tiering(void)4594 static void reset_memory_tiering(void)
4595 {
4596 	struct pglist_data *pgdat;
4597 
4598 	for_each_online_pgdat(pgdat) {
4599 		pgdat->nbp_threshold = 0;
4600 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4601 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4602 	}
4603 }
4604 
sysctl_numa_balancing(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4605 int sysctl_numa_balancing(struct ctl_table *table, int write,
4606 			  void *buffer, size_t *lenp, loff_t *ppos)
4607 {
4608 	struct ctl_table t;
4609 	int err;
4610 	int state = sysctl_numa_balancing_mode;
4611 
4612 	if (write && !capable(CAP_SYS_ADMIN))
4613 		return -EPERM;
4614 
4615 	t = *table;
4616 	t.data = &state;
4617 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4618 	if (err < 0)
4619 		return err;
4620 	if (write) {
4621 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4622 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4623 			reset_memory_tiering();
4624 		sysctl_numa_balancing_mode = state;
4625 		__set_numabalancing_state(state);
4626 	}
4627 	return err;
4628 }
4629 #endif
4630 #endif
4631 
4632 #ifdef CONFIG_SCHEDSTATS
4633 
4634 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4635 
set_schedstats(bool enabled)4636 static void set_schedstats(bool enabled)
4637 {
4638 	if (enabled)
4639 		static_branch_enable(&sched_schedstats);
4640 	else
4641 		static_branch_disable(&sched_schedstats);
4642 }
4643 
force_schedstat_enabled(void)4644 void force_schedstat_enabled(void)
4645 {
4646 	if (!schedstat_enabled()) {
4647 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4648 		static_branch_enable(&sched_schedstats);
4649 	}
4650 }
4651 
setup_schedstats(char * str)4652 static int __init setup_schedstats(char *str)
4653 {
4654 	int ret = 0;
4655 	if (!str)
4656 		goto out;
4657 
4658 	if (!strcmp(str, "enable")) {
4659 		set_schedstats(true);
4660 		ret = 1;
4661 	} else if (!strcmp(str, "disable")) {
4662 		set_schedstats(false);
4663 		ret = 1;
4664 	}
4665 out:
4666 	if (!ret)
4667 		pr_warn("Unable to parse schedstats=\n");
4668 
4669 	return ret;
4670 }
4671 __setup("schedstats=", setup_schedstats);
4672 
4673 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4674 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4675 		size_t *lenp, loff_t *ppos)
4676 {
4677 	struct ctl_table t;
4678 	int err;
4679 	int state = static_branch_likely(&sched_schedstats);
4680 
4681 	if (write && !capable(CAP_SYS_ADMIN))
4682 		return -EPERM;
4683 
4684 	t = *table;
4685 	t.data = &state;
4686 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4687 	if (err < 0)
4688 		return err;
4689 	if (write)
4690 		set_schedstats(state);
4691 	return err;
4692 }
4693 #endif /* CONFIG_PROC_SYSCTL */
4694 #endif /* CONFIG_SCHEDSTATS */
4695 
4696 #ifdef CONFIG_SYSCTL
4697 static struct ctl_table sched_core_sysctls[] = {
4698 #ifdef CONFIG_SCHEDSTATS
4699 	{
4700 		.procname       = "sched_schedstats",
4701 		.data           = NULL,
4702 		.maxlen         = sizeof(unsigned int),
4703 		.mode           = 0644,
4704 		.proc_handler   = sysctl_schedstats,
4705 		.extra1         = SYSCTL_ZERO,
4706 		.extra2         = SYSCTL_ONE,
4707 	},
4708 #endif /* CONFIG_SCHEDSTATS */
4709 #ifdef CONFIG_UCLAMP_TASK
4710 	{
4711 		.procname       = "sched_util_clamp_min",
4712 		.data           = &sysctl_sched_uclamp_util_min,
4713 		.maxlen         = sizeof(unsigned int),
4714 		.mode           = 0644,
4715 		.proc_handler   = sysctl_sched_uclamp_handler,
4716 	},
4717 	{
4718 		.procname       = "sched_util_clamp_max",
4719 		.data           = &sysctl_sched_uclamp_util_max,
4720 		.maxlen         = sizeof(unsigned int),
4721 		.mode           = 0644,
4722 		.proc_handler   = sysctl_sched_uclamp_handler,
4723 	},
4724 	{
4725 		.procname       = "sched_util_clamp_min_rt_default",
4726 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4727 		.maxlen         = sizeof(unsigned int),
4728 		.mode           = 0644,
4729 		.proc_handler   = sysctl_sched_uclamp_handler,
4730 	},
4731 #endif /* CONFIG_UCLAMP_TASK */
4732 	{}
4733 };
sched_core_sysctl_init(void)4734 static int __init sched_core_sysctl_init(void)
4735 {
4736 	register_sysctl_init("kernel", sched_core_sysctls);
4737 	return 0;
4738 }
4739 late_initcall(sched_core_sysctl_init);
4740 #endif /* CONFIG_SYSCTL */
4741 
4742 /*
4743  * fork()/clone()-time setup:
4744  */
sched_fork(unsigned long clone_flags,struct task_struct * p)4745 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4746 {
4747 	trace_android_rvh_sched_fork(p);
4748 
4749 	__sched_fork(clone_flags, p);
4750 	/*
4751 	 * We mark the process as NEW here. This guarantees that
4752 	 * nobody will actually run it, and a signal or other external
4753 	 * event cannot wake it up and insert it on the runqueue either.
4754 	 */
4755 	p->__state = TASK_NEW;
4756 
4757 	/*
4758 	 * Make sure we do not leak PI boosting priority to the child.
4759 	 */
4760 	p->prio = current->normal_prio;
4761 	trace_android_rvh_prepare_prio_fork(p);
4762 
4763 	uclamp_fork(p);
4764 
4765 	/*
4766 	 * Revert to default priority/policy on fork if requested.
4767 	 */
4768 	if (unlikely(p->sched_reset_on_fork)) {
4769 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4770 			p->policy = SCHED_NORMAL;
4771 			p->static_prio = NICE_TO_PRIO(0);
4772 			p->rt_priority = 0;
4773 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4774 			p->static_prio = NICE_TO_PRIO(0);
4775 
4776 		p->prio = p->normal_prio = p->static_prio;
4777 		set_load_weight(p, false);
4778 
4779 		/*
4780 		 * We don't need the reset flag anymore after the fork. It has
4781 		 * fulfilled its duty:
4782 		 */
4783 		p->sched_reset_on_fork = 0;
4784 	}
4785 
4786 	if (dl_prio(p->prio))
4787 		return -EAGAIN;
4788 	else if (rt_prio(p->prio))
4789 		p->sched_class = &rt_sched_class;
4790 	else
4791 		p->sched_class = &fair_sched_class;
4792 
4793 	init_entity_runnable_average(&p->se);
4794 	trace_android_rvh_finish_prio_fork(p);
4795 
4796 
4797 #ifdef CONFIG_SCHED_INFO
4798 	if (likely(sched_info_on()))
4799 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4800 #endif
4801 #if defined(CONFIG_SMP)
4802 	p->on_cpu = 0;
4803 #endif
4804 	init_task_preempt_count(p);
4805 #ifdef CONFIG_SMP
4806 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4807 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4808 #endif
4809 	return 0;
4810 }
4811 
sched_cgroup_fork(struct task_struct * p,struct kernel_clone_args * kargs)4812 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4813 {
4814 	unsigned long flags;
4815 
4816 	/*
4817 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4818 	 * required yet, but lockdep gets upset if rules are violated.
4819 	 */
4820 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4821 #ifdef CONFIG_CGROUP_SCHED
4822 	if (1) {
4823 		struct task_group *tg;
4824 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4825 				  struct task_group, css);
4826 		tg = autogroup_task_group(p, tg);
4827 		p->sched_task_group = tg;
4828 	}
4829 #endif
4830 	rseq_migrate(p);
4831 	/*
4832 	 * We're setting the CPU for the first time, we don't migrate,
4833 	 * so use __set_task_cpu().
4834 	 */
4835 	__set_task_cpu(p, smp_processor_id());
4836 	if (p->sched_class->task_fork)
4837 		p->sched_class->task_fork(p);
4838 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4839 }
4840 
sched_post_fork(struct task_struct * p)4841 void sched_post_fork(struct task_struct *p)
4842 {
4843 	uclamp_post_fork(p);
4844 }
4845 
to_ratio(u64 period,u64 runtime)4846 unsigned long to_ratio(u64 period, u64 runtime)
4847 {
4848 	if (runtime == RUNTIME_INF)
4849 		return BW_UNIT;
4850 
4851 	/*
4852 	 * Doing this here saves a lot of checks in all
4853 	 * the calling paths, and returning zero seems
4854 	 * safe for them anyway.
4855 	 */
4856 	if (period == 0)
4857 		return 0;
4858 
4859 	return div64_u64(runtime << BW_SHIFT, period);
4860 }
4861 
4862 /*
4863  * wake_up_new_task - wake up a newly created task for the first time.
4864  *
4865  * This function will do some initial scheduler statistics housekeeping
4866  * that must be done for every newly created context, then puts the task
4867  * on the runqueue and wakes it.
4868  */
wake_up_new_task(struct task_struct * p)4869 void wake_up_new_task(struct task_struct *p)
4870 {
4871 	struct rq_flags rf;
4872 	struct rq *rq;
4873 
4874 	trace_android_rvh_wake_up_new_task(p);
4875 
4876 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4877 	WRITE_ONCE(p->__state, TASK_RUNNING);
4878 #ifdef CONFIG_SMP
4879 	/*
4880 	 * Fork balancing, do it here and not earlier because:
4881 	 *  - cpus_ptr can change in the fork path
4882 	 *  - any previously selected CPU might disappear through hotplug
4883 	 *
4884 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4885 	 * as we're not fully set-up yet.
4886 	 */
4887 	p->recent_used_cpu = task_cpu(p);
4888 	rseq_migrate(p);
4889 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4890 #endif
4891 	rq = __task_rq_lock(p, &rf);
4892 	update_rq_clock(rq);
4893 	post_init_entity_util_avg(p);
4894 	trace_android_rvh_new_task_stats(p);
4895 
4896 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4897 	trace_sched_wakeup_new(p);
4898 	check_preempt_curr(rq, p, WF_FORK);
4899 #ifdef CONFIG_SMP
4900 	if (p->sched_class->task_woken) {
4901 		/*
4902 		 * Nothing relies on rq->lock after this, so it's fine to
4903 		 * drop it.
4904 		 */
4905 		rq_unpin_lock(rq, &rf);
4906 		p->sched_class->task_woken(rq, p);
4907 		rq_repin_lock(rq, &rf);
4908 	}
4909 #endif
4910 	task_rq_unlock(rq, p, &rf);
4911 }
4912 
4913 #ifdef CONFIG_PREEMPT_NOTIFIERS
4914 
4915 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4916 
preempt_notifier_inc(void)4917 void preempt_notifier_inc(void)
4918 {
4919 	static_branch_inc(&preempt_notifier_key);
4920 }
4921 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4922 
preempt_notifier_dec(void)4923 void preempt_notifier_dec(void)
4924 {
4925 	static_branch_dec(&preempt_notifier_key);
4926 }
4927 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4928 
4929 /**
4930  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4931  * @notifier: notifier struct to register
4932  */
preempt_notifier_register(struct preempt_notifier * notifier)4933 void preempt_notifier_register(struct preempt_notifier *notifier)
4934 {
4935 	if (!static_branch_unlikely(&preempt_notifier_key))
4936 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4937 
4938 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4939 }
4940 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4941 
4942 /**
4943  * preempt_notifier_unregister - no longer interested in preemption notifications
4944  * @notifier: notifier struct to unregister
4945  *
4946  * This is *not* safe to call from within a preemption notifier.
4947  */
preempt_notifier_unregister(struct preempt_notifier * notifier)4948 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4949 {
4950 	hlist_del(&notifier->link);
4951 }
4952 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4953 
__fire_sched_in_preempt_notifiers(struct task_struct * curr)4954 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4955 {
4956 	struct preempt_notifier *notifier;
4957 
4958 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4959 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4960 }
4961 
fire_sched_in_preempt_notifiers(struct task_struct * curr)4962 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4963 {
4964 	if (static_branch_unlikely(&preempt_notifier_key))
4965 		__fire_sched_in_preempt_notifiers(curr);
4966 }
4967 
4968 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4969 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4970 				   struct task_struct *next)
4971 {
4972 	struct preempt_notifier *notifier;
4973 
4974 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4975 		notifier->ops->sched_out(notifier, next);
4976 }
4977 
4978 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4979 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4980 				 struct task_struct *next)
4981 {
4982 	if (static_branch_unlikely(&preempt_notifier_key))
4983 		__fire_sched_out_preempt_notifiers(curr, next);
4984 }
4985 
4986 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4987 
fire_sched_in_preempt_notifiers(struct task_struct * curr)4988 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4989 {
4990 }
4991 
4992 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4993 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4994 				 struct task_struct *next)
4995 {
4996 }
4997 
4998 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4999 
prepare_task(struct task_struct * next)5000 static inline void prepare_task(struct task_struct *next)
5001 {
5002 #ifdef CONFIG_SMP
5003 	/*
5004 	 * Claim the task as running, we do this before switching to it
5005 	 * such that any running task will have this set.
5006 	 *
5007 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
5008 	 * its ordering comment.
5009 	 */
5010 	WRITE_ONCE(next->on_cpu, 1);
5011 #endif
5012 }
5013 
finish_task(struct task_struct * prev)5014 static inline void finish_task(struct task_struct *prev)
5015 {
5016 #ifdef CONFIG_SMP
5017 	/*
5018 	 * This must be the very last reference to @prev from this CPU. After
5019 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
5020 	 * must ensure this doesn't happen until the switch is completely
5021 	 * finished.
5022 	 *
5023 	 * In particular, the load of prev->state in finish_task_switch() must
5024 	 * happen before this.
5025 	 *
5026 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5027 	 */
5028 	smp_store_release(&prev->on_cpu, 0);
5029 #endif
5030 }
5031 
5032 #ifdef CONFIG_SMP
5033 
do_balance_callbacks(struct rq * rq,struct balance_callback * head)5034 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5035 {
5036 	void (*func)(struct rq *rq);
5037 	struct balance_callback *next;
5038 
5039 	lockdep_assert_rq_held(rq);
5040 
5041 	while (head) {
5042 		func = (void (*)(struct rq *))head->func;
5043 		next = head->next;
5044 		head->next = NULL;
5045 		head = next;
5046 
5047 		func(rq);
5048 	}
5049 }
5050 
5051 static void balance_push(struct rq *rq);
5052 
5053 /*
5054  * balance_push_callback is a right abuse of the callback interface and plays
5055  * by significantly different rules.
5056  *
5057  * Where the normal balance_callback's purpose is to be ran in the same context
5058  * that queued it (only later, when it's safe to drop rq->lock again),
5059  * balance_push_callback is specifically targeted at __schedule().
5060  *
5061  * This abuse is tolerated because it places all the unlikely/odd cases behind
5062  * a single test, namely: rq->balance_callback == NULL.
5063  */
5064 struct balance_callback balance_push_callback = {
5065 	.next = NULL,
5066 	.func = balance_push,
5067 };
5068 EXPORT_SYMBOL_GPL(balance_push_callback);
5069 
5070 static inline struct balance_callback *
__splice_balance_callbacks(struct rq * rq,bool split)5071 __splice_balance_callbacks(struct rq *rq, bool split)
5072 {
5073 	struct balance_callback *head = rq->balance_callback;
5074 
5075 	if (likely(!head))
5076 		return NULL;
5077 
5078 	lockdep_assert_rq_held(rq);
5079 	/*
5080 	 * Must not take balance_push_callback off the list when
5081 	 * splice_balance_callbacks() and balance_callbacks() are not
5082 	 * in the same rq->lock section.
5083 	 *
5084 	 * In that case it would be possible for __schedule() to interleave
5085 	 * and observe the list empty.
5086 	 */
5087 	if (split && head == &balance_push_callback)
5088 		head = NULL;
5089 	else
5090 		rq->balance_callback = NULL;
5091 
5092 	return head;
5093 }
5094 
splice_balance_callbacks(struct rq * rq)5095 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5096 {
5097 	return __splice_balance_callbacks(rq, true);
5098 }
5099 
__balance_callbacks(struct rq * rq)5100 void __balance_callbacks(struct rq *rq)
5101 {
5102 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5103 }
5104 EXPORT_SYMBOL_GPL(__balance_callbacks);
5105 
balance_callbacks(struct rq * rq,struct balance_callback * head)5106 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5107 {
5108 	unsigned long flags;
5109 
5110 	if (unlikely(head)) {
5111 		raw_spin_rq_lock_irqsave(rq, flags);
5112 		do_balance_callbacks(rq, head);
5113 		raw_spin_rq_unlock_irqrestore(rq, flags);
5114 	}
5115 }
5116 
5117 #else
5118 
__balance_callbacks(struct rq * rq)5119 static inline void __balance_callbacks(struct rq *rq)
5120 {
5121 }
5122 
splice_balance_callbacks(struct rq * rq)5123 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5124 {
5125 	return NULL;
5126 }
5127 
balance_callbacks(struct rq * rq,struct balance_callback * head)5128 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5129 {
5130 }
5131 
5132 #endif
5133 
5134 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)5135 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5136 {
5137 	/*
5138 	 * Since the runqueue lock will be released by the next
5139 	 * task (which is an invalid locking op but in the case
5140 	 * of the scheduler it's an obvious special-case), so we
5141 	 * do an early lockdep release here:
5142 	 */
5143 	rq_unpin_lock(rq, rf);
5144 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5145 #ifdef CONFIG_DEBUG_SPINLOCK
5146 	/* this is a valid case when another task releases the spinlock */
5147 	rq_lockp(rq)->owner = next;
5148 #endif
5149 }
5150 
finish_lock_switch(struct rq * rq)5151 static inline void finish_lock_switch(struct rq *rq)
5152 {
5153 	/*
5154 	 * If we are tracking spinlock dependencies then we have to
5155 	 * fix up the runqueue lock - which gets 'carried over' from
5156 	 * prev into current:
5157 	 */
5158 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5159 	__balance_callbacks(rq);
5160 	raw_spin_rq_unlock_irq(rq);
5161 }
5162 
5163 /*
5164  * NOP if the arch has not defined these:
5165  */
5166 
5167 #ifndef prepare_arch_switch
5168 # define prepare_arch_switch(next)	do { } while (0)
5169 #endif
5170 
5171 #ifndef finish_arch_post_lock_switch
5172 # define finish_arch_post_lock_switch()	do { } while (0)
5173 #endif
5174 
kmap_local_sched_out(void)5175 static inline void kmap_local_sched_out(void)
5176 {
5177 #ifdef CONFIG_KMAP_LOCAL
5178 	if (unlikely(current->kmap_ctrl.idx))
5179 		__kmap_local_sched_out();
5180 #endif
5181 }
5182 
kmap_local_sched_in(void)5183 static inline void kmap_local_sched_in(void)
5184 {
5185 #ifdef CONFIG_KMAP_LOCAL
5186 	if (unlikely(current->kmap_ctrl.idx))
5187 		__kmap_local_sched_in();
5188 #endif
5189 }
5190 
5191 /**
5192  * prepare_task_switch - prepare to switch tasks
5193  * @rq: the runqueue preparing to switch
5194  * @prev: the current task that is being switched out
5195  * @next: the task we are going to switch to.
5196  *
5197  * This is called with the rq lock held and interrupts off. It must
5198  * be paired with a subsequent finish_task_switch after the context
5199  * switch.
5200  *
5201  * prepare_task_switch sets up locking and calls architecture specific
5202  * hooks.
5203  */
5204 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)5205 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5206 		    struct task_struct *next)
5207 {
5208 	kcov_prepare_switch(prev);
5209 	sched_info_switch(rq, prev, next);
5210 	perf_event_task_sched_out(prev, next);
5211 	rseq_preempt(prev);
5212 	fire_sched_out_preempt_notifiers(prev, next);
5213 	kmap_local_sched_out();
5214 	prepare_task(next);
5215 	prepare_arch_switch(next);
5216 }
5217 
5218 /**
5219  * finish_task_switch - clean up after a task-switch
5220  * @prev: the thread we just switched away from.
5221  *
5222  * finish_task_switch must be called after the context switch, paired
5223  * with a prepare_task_switch call before the context switch.
5224  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5225  * and do any other architecture-specific cleanup actions.
5226  *
5227  * Note that we may have delayed dropping an mm in context_switch(). If
5228  * so, we finish that here outside of the runqueue lock. (Doing it
5229  * with the lock held can cause deadlocks; see schedule() for
5230  * details.)
5231  *
5232  * The context switch have flipped the stack from under us and restored the
5233  * local variables which were saved when this task called schedule() in the
5234  * past. prev == current is still correct but we need to recalculate this_rq
5235  * because prev may have moved to another CPU.
5236  */
finish_task_switch(struct task_struct * prev)5237 static struct rq *finish_task_switch(struct task_struct *prev)
5238 	__releases(rq->lock)
5239 {
5240 	struct rq *rq = this_rq();
5241 	struct mm_struct *mm = rq->prev_mm;
5242 	unsigned int prev_state;
5243 
5244 	/*
5245 	 * The previous task will have left us with a preempt_count of 2
5246 	 * because it left us after:
5247 	 *
5248 	 *	schedule()
5249 	 *	  preempt_disable();			// 1
5250 	 *	  __schedule()
5251 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5252 	 *
5253 	 * Also, see FORK_PREEMPT_COUNT.
5254 	 */
5255 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5256 		      "corrupted preempt_count: %s/%d/0x%x\n",
5257 		      current->comm, current->pid, preempt_count()))
5258 		preempt_count_set(FORK_PREEMPT_COUNT);
5259 
5260 	rq->prev_mm = NULL;
5261 
5262 	/*
5263 	 * A task struct has one reference for the use as "current".
5264 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5265 	 * schedule one last time. The schedule call will never return, and
5266 	 * the scheduled task must drop that reference.
5267 	 *
5268 	 * We must observe prev->state before clearing prev->on_cpu (in
5269 	 * finish_task), otherwise a concurrent wakeup can get prev
5270 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5271 	 * transition, resulting in a double drop.
5272 	 */
5273 	prev_state = READ_ONCE(prev->__state);
5274 	vtime_task_switch(prev);
5275 	perf_event_task_sched_in(prev, current);
5276 	finish_task(prev);
5277 	tick_nohz_task_switch();
5278 	finish_lock_switch(rq);
5279 	finish_arch_post_lock_switch();
5280 	kcov_finish_switch(current);
5281 	/*
5282 	 * kmap_local_sched_out() is invoked with rq::lock held and
5283 	 * interrupts disabled. There is no requirement for that, but the
5284 	 * sched out code does not have an interrupt enabled section.
5285 	 * Restoring the maps on sched in does not require interrupts being
5286 	 * disabled either.
5287 	 */
5288 	kmap_local_sched_in();
5289 
5290 	fire_sched_in_preempt_notifiers(current);
5291 	/*
5292 	 * When switching through a kernel thread, the loop in
5293 	 * membarrier_{private,global}_expedited() may have observed that
5294 	 * kernel thread and not issued an IPI. It is therefore possible to
5295 	 * schedule between user->kernel->user threads without passing though
5296 	 * switch_mm(). Membarrier requires a barrier after storing to
5297 	 * rq->curr, before returning to userspace, so provide them here:
5298 	 *
5299 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5300 	 *   provided by mmdrop(),
5301 	 * - a sync_core for SYNC_CORE.
5302 	 */
5303 	if (mm) {
5304 		membarrier_mm_sync_core_before_usermode(mm);
5305 		mmdrop_sched(mm);
5306 	}
5307 	if (unlikely(prev_state == TASK_DEAD)) {
5308 		if (prev->sched_class->task_dead)
5309 			prev->sched_class->task_dead(prev);
5310 
5311 		trace_android_rvh_flush_task(prev);
5312 
5313 		/* Task is done with its stack. */
5314 		put_task_stack(prev);
5315 
5316 		put_task_struct_rcu_user(prev);
5317 	}
5318 
5319 	return rq;
5320 }
5321 
5322 /**
5323  * schedule_tail - first thing a freshly forked thread must call.
5324  * @prev: the thread we just switched away from.
5325  */
schedule_tail(struct task_struct * prev)5326 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5327 	__releases(rq->lock)
5328 {
5329 	/*
5330 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5331 	 * finish_task_switch() for details.
5332 	 *
5333 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5334 	 * and the preempt_enable() will end up enabling preemption (on
5335 	 * PREEMPT_COUNT kernels).
5336 	 */
5337 
5338 	finish_task_switch(prev);
5339 	preempt_enable();
5340 
5341 	if (current->set_child_tid)
5342 		put_user(task_pid_vnr(current), current->set_child_tid);
5343 
5344 	calculate_sigpending();
5345 }
5346 
5347 /*
5348  * context_switch - switch to the new MM and the new thread's register state.
5349  */
5350 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)5351 context_switch(struct rq *rq, struct task_struct *prev,
5352 	       struct task_struct *next, struct rq_flags *rf)
5353 {
5354 	prepare_task_switch(rq, prev, next);
5355 
5356 	/*
5357 	 * For paravirt, this is coupled with an exit in switch_to to
5358 	 * combine the page table reload and the switch backend into
5359 	 * one hypercall.
5360 	 */
5361 	arch_start_context_switch(prev);
5362 
5363 	/*
5364 	 * kernel -> kernel   lazy + transfer active
5365 	 *   user -> kernel   lazy + mmgrab() active
5366 	 *
5367 	 * kernel ->   user   switch + mmdrop() active
5368 	 *   user ->   user   switch
5369 	 */
5370 	if (!next->mm) {                                // to kernel
5371 		enter_lazy_tlb(prev->active_mm, next);
5372 
5373 		next->active_mm = prev->active_mm;
5374 		if (prev->mm)                           // from user
5375 			mmgrab(prev->active_mm);
5376 		else
5377 			prev->active_mm = NULL;
5378 	} else {                                        // to user
5379 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5380 		/*
5381 		 * sys_membarrier() requires an smp_mb() between setting
5382 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5383 		 *
5384 		 * The below provides this either through switch_mm(), or in
5385 		 * case 'prev->active_mm == next->mm' through
5386 		 * finish_task_switch()'s mmdrop().
5387 		 */
5388 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5389 		lru_gen_use_mm(next->mm);
5390 
5391 		if (!prev->mm) {                        // from kernel
5392 			/* will mmdrop() in finish_task_switch(). */
5393 			rq->prev_mm = prev->active_mm;
5394 			prev->active_mm = NULL;
5395 		}
5396 	}
5397 
5398 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5399 
5400 	prepare_lock_switch(rq, next, rf);
5401 
5402 	/* Here we just switch the register state and the stack. */
5403 	switch_to(prev, next, prev);
5404 	barrier();
5405 
5406 	return finish_task_switch(prev);
5407 }
5408 
5409 /*
5410  * nr_running and nr_context_switches:
5411  *
5412  * externally visible scheduler statistics: current number of runnable
5413  * threads, total number of context switches performed since bootup.
5414  */
nr_running(void)5415 unsigned int nr_running(void)
5416 {
5417 	unsigned int i, sum = 0;
5418 
5419 	for_each_online_cpu(i)
5420 		sum += cpu_rq(i)->nr_running;
5421 
5422 	return sum;
5423 }
5424 EXPORT_SYMBOL(nr_running);
5425 
5426 /*
5427  * Check if only the current task is running on the CPU.
5428  *
5429  * Caution: this function does not check that the caller has disabled
5430  * preemption, thus the result might have a time-of-check-to-time-of-use
5431  * race.  The caller is responsible to use it correctly, for example:
5432  *
5433  * - from a non-preemptible section (of course)
5434  *
5435  * - from a thread that is bound to a single CPU
5436  *
5437  * - in a loop with very short iterations (e.g. a polling loop)
5438  */
single_task_running(void)5439 bool single_task_running(void)
5440 {
5441 	return raw_rq()->nr_running == 1;
5442 }
5443 EXPORT_SYMBOL(single_task_running);
5444 
nr_context_switches(void)5445 unsigned long long nr_context_switches(void)
5446 {
5447 	int i;
5448 	unsigned long long sum = 0;
5449 
5450 	for_each_possible_cpu(i)
5451 		sum += cpu_rq(i)->nr_switches;
5452 
5453 	return sum;
5454 }
5455 
5456 /*
5457  * Consumers of these two interfaces, like for example the cpuidle menu
5458  * governor, are using nonsensical data. Preferring shallow idle state selection
5459  * for a CPU that has IO-wait which might not even end up running the task when
5460  * it does become runnable.
5461  */
5462 
nr_iowait_cpu(int cpu)5463 unsigned int nr_iowait_cpu(int cpu)
5464 {
5465 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5466 }
5467 
5468 /*
5469  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5470  *
5471  * The idea behind IO-wait account is to account the idle time that we could
5472  * have spend running if it were not for IO. That is, if we were to improve the
5473  * storage performance, we'd have a proportional reduction in IO-wait time.
5474  *
5475  * This all works nicely on UP, where, when a task blocks on IO, we account
5476  * idle time as IO-wait, because if the storage were faster, it could've been
5477  * running and we'd not be idle.
5478  *
5479  * This has been extended to SMP, by doing the same for each CPU. This however
5480  * is broken.
5481  *
5482  * Imagine for instance the case where two tasks block on one CPU, only the one
5483  * CPU will have IO-wait accounted, while the other has regular idle. Even
5484  * though, if the storage were faster, both could've ran at the same time,
5485  * utilising both CPUs.
5486  *
5487  * This means, that when looking globally, the current IO-wait accounting on
5488  * SMP is a lower bound, by reason of under accounting.
5489  *
5490  * Worse, since the numbers are provided per CPU, they are sometimes
5491  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5492  * associated with any one particular CPU, it can wake to another CPU than it
5493  * blocked on. This means the per CPU IO-wait number is meaningless.
5494  *
5495  * Task CPU affinities can make all that even more 'interesting'.
5496  */
5497 
nr_iowait(void)5498 unsigned int nr_iowait(void)
5499 {
5500 	unsigned int i, sum = 0;
5501 
5502 	for_each_possible_cpu(i)
5503 		sum += nr_iowait_cpu(i);
5504 
5505 	return sum;
5506 }
5507 
5508 #ifdef CONFIG_SMP
5509 
5510 /*
5511  * sched_exec - execve() is a valuable balancing opportunity, because at
5512  * this point the task has the smallest effective memory and cache footprint.
5513  */
sched_exec(void)5514 void sched_exec(void)
5515 {
5516 	struct task_struct *p = current;
5517 	unsigned long flags;
5518 	int dest_cpu;
5519 	bool cond = false;
5520 
5521 	trace_android_rvh_sched_exec(&cond);
5522 	if (cond)
5523 		return;
5524 
5525 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5526 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5527 	if (dest_cpu == smp_processor_id())
5528 		goto unlock;
5529 
5530 	if (likely(cpu_active(dest_cpu))) {
5531 		struct migration_arg arg = { p, dest_cpu };
5532 
5533 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5534 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5535 		return;
5536 	}
5537 unlock:
5538 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5539 }
5540 
5541 #endif
5542 
5543 DEFINE_PER_CPU(struct kernel_stat, kstat);
5544 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5545 
5546 EXPORT_PER_CPU_SYMBOL(kstat);
5547 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5548 
5549 /*
5550  * The function fair_sched_class.update_curr accesses the struct curr
5551  * and its field curr->exec_start; when called from task_sched_runtime(),
5552  * we observe a high rate of cache misses in practice.
5553  * Prefetching this data results in improved performance.
5554  */
prefetch_curr_exec_start(struct task_struct * p)5555 static inline void prefetch_curr_exec_start(struct task_struct *p)
5556 {
5557 #ifdef CONFIG_FAIR_GROUP_SCHED
5558 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5559 #else
5560 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5561 #endif
5562 	prefetch(curr);
5563 	prefetch(&curr->exec_start);
5564 }
5565 
5566 /*
5567  * Return accounted runtime for the task.
5568  * In case the task is currently running, return the runtime plus current's
5569  * pending runtime that have not been accounted yet.
5570  */
task_sched_runtime(struct task_struct * p)5571 unsigned long long task_sched_runtime(struct task_struct *p)
5572 {
5573 	struct rq_flags rf;
5574 	struct rq *rq;
5575 	u64 ns;
5576 
5577 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5578 	/*
5579 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5580 	 * So we have a optimization chance when the task's delta_exec is 0.
5581 	 * Reading ->on_cpu is racy, but this is ok.
5582 	 *
5583 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5584 	 * If we race with it entering CPU, unaccounted time is 0. This is
5585 	 * indistinguishable from the read occurring a few cycles earlier.
5586 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5587 	 * been accounted, so we're correct here as well.
5588 	 */
5589 	if (!p->on_cpu || !task_on_rq_queued(p))
5590 		return p->se.sum_exec_runtime;
5591 #endif
5592 
5593 	rq = task_rq_lock(p, &rf);
5594 	/*
5595 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5596 	 * project cycles that may never be accounted to this
5597 	 * thread, breaking clock_gettime().
5598 	 */
5599 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5600 		prefetch_curr_exec_start(p);
5601 		update_rq_clock(rq);
5602 		p->sched_class->update_curr(rq);
5603 	}
5604 	ns = p->se.sum_exec_runtime;
5605 	task_rq_unlock(rq, p, &rf);
5606 
5607 	return ns;
5608 }
5609 
5610 #ifdef CONFIG_SCHED_DEBUG
cpu_resched_latency(struct rq * rq)5611 static u64 cpu_resched_latency(struct rq *rq)
5612 {
5613 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5614 	u64 resched_latency, now = rq_clock(rq);
5615 	static bool warned_once;
5616 
5617 	if (sysctl_resched_latency_warn_once && warned_once)
5618 		return 0;
5619 
5620 	if (!need_resched() || !latency_warn_ms)
5621 		return 0;
5622 
5623 	if (system_state == SYSTEM_BOOTING)
5624 		return 0;
5625 
5626 	if (!rq->last_seen_need_resched_ns) {
5627 		rq->last_seen_need_resched_ns = now;
5628 		rq->ticks_without_resched = 0;
5629 		return 0;
5630 	}
5631 
5632 	rq->ticks_without_resched++;
5633 	resched_latency = now - rq->last_seen_need_resched_ns;
5634 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5635 		return 0;
5636 
5637 	warned_once = true;
5638 
5639 	return resched_latency;
5640 }
5641 
setup_resched_latency_warn_ms(char * str)5642 static int __init setup_resched_latency_warn_ms(char *str)
5643 {
5644 	long val;
5645 
5646 	if ((kstrtol(str, 0, &val))) {
5647 		pr_warn("Unable to set resched_latency_warn_ms\n");
5648 		return 1;
5649 	}
5650 
5651 	sysctl_resched_latency_warn_ms = val;
5652 	return 1;
5653 }
5654 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5655 #else
cpu_resched_latency(struct rq * rq)5656 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5657 #endif /* CONFIG_SCHED_DEBUG */
5658 
5659 /*
5660  * This function gets called by the timer code, with HZ frequency.
5661  * We call it with interrupts disabled.
5662  */
scheduler_tick(void)5663 void scheduler_tick(void)
5664 {
5665 	int cpu = smp_processor_id();
5666 	struct rq *rq = cpu_rq(cpu);
5667 	struct task_struct *curr = rq->curr;
5668 	struct rq_flags rf;
5669 	unsigned long thermal_pressure;
5670 	u64 resched_latency;
5671 
5672 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5673 		arch_scale_freq_tick();
5674 
5675 	sched_clock_tick();
5676 
5677 	rq_lock(rq, &rf);
5678 
5679 	update_rq_clock(rq);
5680 	trace_android_rvh_tick_entry(rq);
5681 
5682 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5683 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5684 	curr->sched_class->task_tick(rq, curr, 0);
5685 	if (sched_feat(LATENCY_WARN))
5686 		resched_latency = cpu_resched_latency(rq);
5687 	calc_global_load_tick(rq);
5688 	sched_core_tick(rq);
5689 
5690 	rq_unlock(rq, &rf);
5691 
5692 	if (sched_feat(LATENCY_WARN) && resched_latency)
5693 		resched_latency_warn(cpu, resched_latency);
5694 
5695 	perf_event_task_tick();
5696 
5697 #ifdef CONFIG_SMP
5698 	rq->idle_balance = idle_cpu(cpu);
5699 	trigger_load_balance(rq);
5700 #endif
5701 
5702 	trace_android_vh_scheduler_tick(rq);
5703 }
5704 
5705 #ifdef CONFIG_NO_HZ_FULL
5706 
5707 struct tick_work {
5708 	int			cpu;
5709 	atomic_t		state;
5710 	struct delayed_work	work;
5711 };
5712 /* Values for ->state, see diagram below. */
5713 #define TICK_SCHED_REMOTE_OFFLINE	0
5714 #define TICK_SCHED_REMOTE_OFFLINING	1
5715 #define TICK_SCHED_REMOTE_RUNNING	2
5716 
5717 /*
5718  * State diagram for ->state:
5719  *
5720  *
5721  *          TICK_SCHED_REMOTE_OFFLINE
5722  *                    |   ^
5723  *                    |   |
5724  *                    |   | sched_tick_remote()
5725  *                    |   |
5726  *                    |   |
5727  *                    +--TICK_SCHED_REMOTE_OFFLINING
5728  *                    |   ^
5729  *                    |   |
5730  * sched_tick_start() |   | sched_tick_stop()
5731  *                    |   |
5732  *                    V   |
5733  *          TICK_SCHED_REMOTE_RUNNING
5734  *
5735  *
5736  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5737  * and sched_tick_start() are happy to leave the state in RUNNING.
5738  */
5739 
5740 static struct tick_work __percpu *tick_work_cpu;
5741 
sched_tick_remote(struct work_struct * work)5742 static void sched_tick_remote(struct work_struct *work)
5743 {
5744 	struct delayed_work *dwork = to_delayed_work(work);
5745 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5746 	int cpu = twork->cpu;
5747 	struct rq *rq = cpu_rq(cpu);
5748 	struct task_struct *curr;
5749 	struct rq_flags rf;
5750 	u64 delta;
5751 	int os;
5752 
5753 	/*
5754 	 * Handle the tick only if it appears the remote CPU is running in full
5755 	 * dynticks mode. The check is racy by nature, but missing a tick or
5756 	 * having one too much is no big deal because the scheduler tick updates
5757 	 * statistics and checks timeslices in a time-independent way, regardless
5758 	 * of when exactly it is running.
5759 	 */
5760 	if (!tick_nohz_tick_stopped_cpu(cpu))
5761 		goto out_requeue;
5762 
5763 	rq_lock_irq(rq, &rf);
5764 	curr = rq->curr;
5765 	if (cpu_is_offline(cpu))
5766 		goto out_unlock;
5767 
5768 	update_rq_clock(rq);
5769 
5770 	if (!is_idle_task(curr)) {
5771 		/*
5772 		 * Make sure the next tick runs within a reasonable
5773 		 * amount of time.
5774 		 */
5775 		delta = rq_clock_task(rq) - curr->se.exec_start;
5776 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5777 	}
5778 	curr->sched_class->task_tick(rq, curr, 0);
5779 
5780 	calc_load_nohz_remote(rq);
5781 out_unlock:
5782 	rq_unlock_irq(rq, &rf);
5783 out_requeue:
5784 
5785 	/*
5786 	 * Run the remote tick once per second (1Hz). This arbitrary
5787 	 * frequency is large enough to avoid overload but short enough
5788 	 * to keep scheduler internal stats reasonably up to date.  But
5789 	 * first update state to reflect hotplug activity if required.
5790 	 */
5791 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5792 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5793 	if (os == TICK_SCHED_REMOTE_RUNNING)
5794 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5795 }
5796 
sched_tick_start(int cpu)5797 static void sched_tick_start(int cpu)
5798 {
5799 	int os;
5800 	struct tick_work *twork;
5801 
5802 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5803 		return;
5804 
5805 	WARN_ON_ONCE(!tick_work_cpu);
5806 
5807 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5808 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5809 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5810 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5811 		twork->cpu = cpu;
5812 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5813 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5814 	}
5815 }
5816 
5817 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)5818 static void sched_tick_stop(int cpu)
5819 {
5820 	struct tick_work *twork;
5821 	int os;
5822 
5823 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5824 		return;
5825 
5826 	WARN_ON_ONCE(!tick_work_cpu);
5827 
5828 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5829 	/* There cannot be competing actions, but don't rely on stop-machine. */
5830 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5831 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5832 	/* Don't cancel, as this would mess up the state machine. */
5833 }
5834 #endif /* CONFIG_HOTPLUG_CPU */
5835 
sched_tick_offload_init(void)5836 int __init sched_tick_offload_init(void)
5837 {
5838 	tick_work_cpu = alloc_percpu(struct tick_work);
5839 	BUG_ON(!tick_work_cpu);
5840 	return 0;
5841 }
5842 
5843 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)5844 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)5845 static inline void sched_tick_stop(int cpu) { }
5846 #endif
5847 
5848 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5849 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5850 /*
5851  * If the value passed in is equal to the current preempt count
5852  * then we just disabled preemption. Start timing the latency.
5853  */
preempt_latency_start(int val)5854 static inline void preempt_latency_start(int val)
5855 {
5856 	if (preempt_count() == val) {
5857 		unsigned long ip = get_lock_parent_ip();
5858 #ifdef CONFIG_DEBUG_PREEMPT
5859 		current->preempt_disable_ip = ip;
5860 #endif
5861 		trace_preempt_off(CALLER_ADDR0, ip);
5862 	}
5863 }
5864 
preempt_count_add(int val)5865 void preempt_count_add(int val)
5866 {
5867 #ifdef CONFIG_DEBUG_PREEMPT
5868 	/*
5869 	 * Underflow?
5870 	 */
5871 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5872 		return;
5873 #endif
5874 	__preempt_count_add(val);
5875 #ifdef CONFIG_DEBUG_PREEMPT
5876 	/*
5877 	 * Spinlock count overflowing soon?
5878 	 */
5879 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5880 				PREEMPT_MASK - 10);
5881 #endif
5882 	preempt_latency_start(val);
5883 }
5884 EXPORT_SYMBOL(preempt_count_add);
5885 NOKPROBE_SYMBOL(preempt_count_add);
5886 
5887 /*
5888  * If the value passed in equals to the current preempt count
5889  * then we just enabled preemption. Stop timing the latency.
5890  */
preempt_latency_stop(int val)5891 static inline void preempt_latency_stop(int val)
5892 {
5893 	if (preempt_count() == val)
5894 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5895 }
5896 
preempt_count_sub(int val)5897 void preempt_count_sub(int val)
5898 {
5899 #ifdef CONFIG_DEBUG_PREEMPT
5900 	/*
5901 	 * Underflow?
5902 	 */
5903 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5904 		return;
5905 	/*
5906 	 * Is the spinlock portion underflowing?
5907 	 */
5908 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5909 			!(preempt_count() & PREEMPT_MASK)))
5910 		return;
5911 #endif
5912 
5913 	preempt_latency_stop(val);
5914 	__preempt_count_sub(val);
5915 }
5916 EXPORT_SYMBOL(preempt_count_sub);
5917 NOKPROBE_SYMBOL(preempt_count_sub);
5918 
5919 #else
preempt_latency_start(int val)5920 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)5921 static inline void preempt_latency_stop(int val) { }
5922 #endif
5923 
get_preempt_disable_ip(struct task_struct * p)5924 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5925 {
5926 #ifdef CONFIG_DEBUG_PREEMPT
5927 	return p->preempt_disable_ip;
5928 #else
5929 	return 0;
5930 #endif
5931 }
5932 
5933 /*
5934  * Print scheduling while atomic bug:
5935  */
__schedule_bug(struct task_struct * prev)5936 static noinline void __schedule_bug(struct task_struct *prev)
5937 {
5938 	/* Save this before calling printk(), since that will clobber it */
5939 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5940 
5941 	if (oops_in_progress)
5942 		return;
5943 
5944 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5945 		prev->comm, prev->pid, preempt_count());
5946 
5947 	debug_show_held_locks(prev);
5948 	print_modules();
5949 	if (irqs_disabled())
5950 		print_irqtrace_events(prev);
5951 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5952 	    && in_atomic_preempt_off()) {
5953 		pr_err("Preemption disabled at:");
5954 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5955 	}
5956 	check_panic_on_warn("scheduling while atomic");
5957 
5958 	trace_android_rvh_schedule_bug(prev);
5959 
5960 	dump_stack();
5961 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5962 }
5963 
5964 /*
5965  * Various schedule()-time debugging checks and statistics:
5966  */
schedule_debug(struct task_struct * prev,bool preempt)5967 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5968 {
5969 #ifdef CONFIG_SCHED_STACK_END_CHECK
5970 	if (task_stack_end_corrupted(prev))
5971 		panic("corrupted stack end detected inside scheduler\n");
5972 
5973 	if (task_scs_end_corrupted(prev))
5974 		panic("corrupted shadow stack detected inside scheduler\n");
5975 #endif
5976 
5977 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5978 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5979 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5980 			prev->comm, prev->pid, prev->non_block_count);
5981 		dump_stack();
5982 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5983 	}
5984 #endif
5985 
5986 	if (unlikely(in_atomic_preempt_off())) {
5987 		__schedule_bug(prev);
5988 		preempt_count_set(PREEMPT_DISABLED);
5989 	}
5990 	rcu_sleep_check();
5991 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5992 
5993 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5994 
5995 	schedstat_inc(this_rq()->sched_count);
5996 }
5997 
put_prev_task_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5998 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5999 				  struct rq_flags *rf)
6000 {
6001 #ifdef CONFIG_SMP
6002 	const struct sched_class *class;
6003 	/*
6004 	 * We must do the balancing pass before put_prev_task(), such
6005 	 * that when we release the rq->lock the task is in the same
6006 	 * state as before we took rq->lock.
6007 	 *
6008 	 * We can terminate the balance pass as soon as we know there is
6009 	 * a runnable task of @class priority or higher.
6010 	 */
6011 	for_class_range(class, prev->sched_class, &idle_sched_class) {
6012 		if (class->balance(rq, prev, rf))
6013 			break;
6014 	}
6015 #endif
6016 
6017 	put_prev_task(rq, prev);
6018 }
6019 
6020 /*
6021  * Pick up the highest-prio task:
6022  */
6023 static inline struct task_struct *
__pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6024 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6025 {
6026 	const struct sched_class *class;
6027 	struct task_struct *p;
6028 
6029 	/*
6030 	 * Optimization: we know that if all tasks are in the fair class we can
6031 	 * call that function directly, but only if the @prev task wasn't of a
6032 	 * higher scheduling class, because otherwise those lose the
6033 	 * opportunity to pull in more work from other CPUs.
6034 	 */
6035 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6036 		   rq->nr_running == rq->cfs.h_nr_running)) {
6037 
6038 		p = pick_next_task_fair(rq, prev, rf);
6039 		if (unlikely(p == RETRY_TASK))
6040 			goto restart;
6041 
6042 		/* Assume the next prioritized class is idle_sched_class */
6043 		if (!p) {
6044 			put_prev_task(rq, prev);
6045 			p = pick_next_task_idle(rq);
6046 		}
6047 
6048 		return p;
6049 	}
6050 
6051 restart:
6052 	put_prev_task_balance(rq, prev, rf);
6053 
6054 	for_each_class(class) {
6055 		p = class->pick_next_task(rq);
6056 		if (p)
6057 			return p;
6058 	}
6059 
6060 	BUG(); /* The idle class should always have a runnable task. */
6061 }
6062 
6063 #ifdef CONFIG_SCHED_CORE
is_task_rq_idle(struct task_struct * t)6064 static inline bool is_task_rq_idle(struct task_struct *t)
6065 {
6066 	return (task_rq(t)->idle == t);
6067 }
6068 
cookie_equals(struct task_struct * a,unsigned long cookie)6069 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6070 {
6071 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6072 }
6073 
cookie_match(struct task_struct * a,struct task_struct * b)6074 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6075 {
6076 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6077 		return true;
6078 
6079 	return a->core_cookie == b->core_cookie;
6080 }
6081 
pick_task(struct rq * rq)6082 static inline struct task_struct *pick_task(struct rq *rq)
6083 {
6084 	const struct sched_class *class;
6085 	struct task_struct *p;
6086 
6087 	for_each_class(class) {
6088 		p = class->pick_task(rq);
6089 		if (p)
6090 			return p;
6091 	}
6092 
6093 	BUG(); /* The idle class should always have a runnable task. */
6094 }
6095 
6096 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6097 
6098 static void queue_core_balance(struct rq *rq);
6099 
6100 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6101 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6102 {
6103 	struct task_struct *next, *p, *max = NULL;
6104 	const struct cpumask *smt_mask;
6105 	bool fi_before = false;
6106 	bool core_clock_updated = (rq == rq->core);
6107 	unsigned long cookie;
6108 	int i, cpu, occ = 0;
6109 	struct rq *rq_i;
6110 	bool need_sync;
6111 
6112 	if (!sched_core_enabled(rq))
6113 		return __pick_next_task(rq, prev, rf);
6114 
6115 	cpu = cpu_of(rq);
6116 
6117 	/* Stopper task is switching into idle, no need core-wide selection. */
6118 	if (cpu_is_offline(cpu)) {
6119 		/*
6120 		 * Reset core_pick so that we don't enter the fastpath when
6121 		 * coming online. core_pick would already be migrated to
6122 		 * another cpu during offline.
6123 		 */
6124 		rq->core_pick = NULL;
6125 		return __pick_next_task(rq, prev, rf);
6126 	}
6127 
6128 	/*
6129 	 * If there were no {en,de}queues since we picked (IOW, the task
6130 	 * pointers are all still valid), and we haven't scheduled the last
6131 	 * pick yet, do so now.
6132 	 *
6133 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6134 	 * it was either offline or went offline during a sibling's core-wide
6135 	 * selection. In this case, do a core-wide selection.
6136 	 */
6137 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6138 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6139 	    rq->core_pick) {
6140 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6141 
6142 		next = rq->core_pick;
6143 		if (next != prev) {
6144 			put_prev_task(rq, prev);
6145 			set_next_task(rq, next);
6146 		}
6147 
6148 		rq->core_pick = NULL;
6149 		goto out;
6150 	}
6151 
6152 	put_prev_task_balance(rq, prev, rf);
6153 
6154 	smt_mask = cpu_smt_mask(cpu);
6155 	need_sync = !!rq->core->core_cookie;
6156 
6157 	/* reset state */
6158 	rq->core->core_cookie = 0UL;
6159 	if (rq->core->core_forceidle_count) {
6160 		if (!core_clock_updated) {
6161 			update_rq_clock(rq->core);
6162 			core_clock_updated = true;
6163 		}
6164 		sched_core_account_forceidle(rq);
6165 		/* reset after accounting force idle */
6166 		rq->core->core_forceidle_start = 0;
6167 		rq->core->core_forceidle_count = 0;
6168 		rq->core->core_forceidle_occupation = 0;
6169 		need_sync = true;
6170 		fi_before = true;
6171 	}
6172 
6173 	/*
6174 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6175 	 *
6176 	 * @task_seq guards the task state ({en,de}queues)
6177 	 * @pick_seq is the @task_seq we did a selection on
6178 	 * @sched_seq is the @pick_seq we scheduled
6179 	 *
6180 	 * However, preemptions can cause multiple picks on the same task set.
6181 	 * 'Fix' this by also increasing @task_seq for every pick.
6182 	 */
6183 	rq->core->core_task_seq++;
6184 
6185 	/*
6186 	 * Optimize for common case where this CPU has no cookies
6187 	 * and there are no cookied tasks running on siblings.
6188 	 */
6189 	if (!need_sync) {
6190 		next = pick_task(rq);
6191 		if (!next->core_cookie) {
6192 			rq->core_pick = NULL;
6193 			/*
6194 			 * For robustness, update the min_vruntime_fi for
6195 			 * unconstrained picks as well.
6196 			 */
6197 			WARN_ON_ONCE(fi_before);
6198 			task_vruntime_update(rq, next, false);
6199 			goto out_set_next;
6200 		}
6201 	}
6202 
6203 	/*
6204 	 * For each thread: do the regular task pick and find the max prio task
6205 	 * amongst them.
6206 	 *
6207 	 * Tie-break prio towards the current CPU
6208 	 */
6209 	for_each_cpu_wrap(i, smt_mask, cpu) {
6210 		rq_i = cpu_rq(i);
6211 
6212 		/*
6213 		 * Current cpu always has its clock updated on entrance to
6214 		 * pick_next_task(). If the current cpu is not the core,
6215 		 * the core may also have been updated above.
6216 		 */
6217 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6218 			update_rq_clock(rq_i);
6219 
6220 		p = rq_i->core_pick = pick_task(rq_i);
6221 		if (!max || prio_less(max, p, fi_before))
6222 			max = p;
6223 	}
6224 
6225 	cookie = rq->core->core_cookie = max->core_cookie;
6226 
6227 	/*
6228 	 * For each thread: try and find a runnable task that matches @max or
6229 	 * force idle.
6230 	 */
6231 	for_each_cpu(i, smt_mask) {
6232 		rq_i = cpu_rq(i);
6233 		p = rq_i->core_pick;
6234 
6235 		if (!cookie_equals(p, cookie)) {
6236 			p = NULL;
6237 			if (cookie)
6238 				p = sched_core_find(rq_i, cookie);
6239 			if (!p)
6240 				p = idle_sched_class.pick_task(rq_i);
6241 		}
6242 
6243 		rq_i->core_pick = p;
6244 
6245 		if (p == rq_i->idle) {
6246 			if (rq_i->nr_running) {
6247 				rq->core->core_forceidle_count++;
6248 				if (!fi_before)
6249 					rq->core->core_forceidle_seq++;
6250 			}
6251 		} else {
6252 			occ++;
6253 		}
6254 	}
6255 
6256 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6257 		rq->core->core_forceidle_start = rq_clock(rq->core);
6258 		rq->core->core_forceidle_occupation = occ;
6259 	}
6260 
6261 	rq->core->core_pick_seq = rq->core->core_task_seq;
6262 	next = rq->core_pick;
6263 	rq->core_sched_seq = rq->core->core_pick_seq;
6264 
6265 	/* Something should have been selected for current CPU */
6266 	WARN_ON_ONCE(!next);
6267 
6268 	/*
6269 	 * Reschedule siblings
6270 	 *
6271 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6272 	 * sending an IPI (below) ensures the sibling will no longer be running
6273 	 * their task. This ensures there is no inter-sibling overlap between
6274 	 * non-matching user state.
6275 	 */
6276 	for_each_cpu(i, smt_mask) {
6277 		rq_i = cpu_rq(i);
6278 
6279 		/*
6280 		 * An online sibling might have gone offline before a task
6281 		 * could be picked for it, or it might be offline but later
6282 		 * happen to come online, but its too late and nothing was
6283 		 * picked for it.  That's Ok - it will pick tasks for itself,
6284 		 * so ignore it.
6285 		 */
6286 		if (!rq_i->core_pick)
6287 			continue;
6288 
6289 		/*
6290 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6291 		 * fi_before     fi      update?
6292 		 *  0            0       1
6293 		 *  0            1       1
6294 		 *  1            0       1
6295 		 *  1            1       0
6296 		 */
6297 		if (!(fi_before && rq->core->core_forceidle_count))
6298 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6299 
6300 		rq_i->core_pick->core_occupation = occ;
6301 
6302 		if (i == cpu) {
6303 			rq_i->core_pick = NULL;
6304 			continue;
6305 		}
6306 
6307 		/* Did we break L1TF mitigation requirements? */
6308 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6309 
6310 		if (rq_i->curr == rq_i->core_pick) {
6311 			rq_i->core_pick = NULL;
6312 			continue;
6313 		}
6314 
6315 		resched_curr(rq_i);
6316 	}
6317 
6318 out_set_next:
6319 	set_next_task(rq, next);
6320 out:
6321 	if (rq->core->core_forceidle_count && next == rq->idle)
6322 		queue_core_balance(rq);
6323 
6324 	return next;
6325 }
6326 
try_steal_cookie(int this,int that)6327 static bool try_steal_cookie(int this, int that)
6328 {
6329 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6330 	struct task_struct *p;
6331 	unsigned long cookie;
6332 	bool success = false;
6333 
6334 	local_irq_disable();
6335 	double_rq_lock(dst, src);
6336 
6337 	cookie = dst->core->core_cookie;
6338 	if (!cookie)
6339 		goto unlock;
6340 
6341 	if (dst->curr != dst->idle)
6342 		goto unlock;
6343 
6344 	p = sched_core_find(src, cookie);
6345 	if (p == src->idle)
6346 		goto unlock;
6347 
6348 	do {
6349 		if (p == src->core_pick || p == src->curr)
6350 			goto next;
6351 
6352 		if (!is_cpu_allowed(p, this))
6353 			goto next;
6354 
6355 		if (p->core_occupation > dst->idle->core_occupation)
6356 			goto next;
6357 
6358 		deactivate_task(src, p, 0);
6359 		set_task_cpu(p, this);
6360 		activate_task(dst, p, 0);
6361 
6362 		resched_curr(dst);
6363 
6364 		success = true;
6365 		break;
6366 
6367 next:
6368 		p = sched_core_next(p, cookie);
6369 	} while (p);
6370 
6371 unlock:
6372 	double_rq_unlock(dst, src);
6373 	local_irq_enable();
6374 
6375 	return success;
6376 }
6377 
steal_cookie_task(int cpu,struct sched_domain * sd)6378 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6379 {
6380 	int i;
6381 
6382 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
6383 		if (i == cpu)
6384 			continue;
6385 
6386 		if (need_resched())
6387 			break;
6388 
6389 		if (try_steal_cookie(cpu, i))
6390 			return true;
6391 	}
6392 
6393 	return false;
6394 }
6395 
sched_core_balance(struct rq * rq)6396 static void sched_core_balance(struct rq *rq)
6397 {
6398 	struct sched_domain *sd;
6399 	int cpu = cpu_of(rq);
6400 
6401 	preempt_disable();
6402 	rcu_read_lock();
6403 	raw_spin_rq_unlock_irq(rq);
6404 	for_each_domain(cpu, sd) {
6405 		if (need_resched())
6406 			break;
6407 
6408 		if (steal_cookie_task(cpu, sd))
6409 			break;
6410 	}
6411 	raw_spin_rq_lock_irq(rq);
6412 	rcu_read_unlock();
6413 	preempt_enable();
6414 }
6415 
6416 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6417 
queue_core_balance(struct rq * rq)6418 static void queue_core_balance(struct rq *rq)
6419 {
6420 	if (!sched_core_enabled(rq))
6421 		return;
6422 
6423 	if (!rq->core->core_cookie)
6424 		return;
6425 
6426 	if (!rq->nr_running) /* not forced idle */
6427 		return;
6428 
6429 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6430 }
6431 
sched_core_cpu_starting(unsigned int cpu)6432 static void sched_core_cpu_starting(unsigned int cpu)
6433 {
6434 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6435 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6436 	unsigned long flags;
6437 	int t;
6438 
6439 	sched_core_lock(cpu, &flags);
6440 
6441 	WARN_ON_ONCE(rq->core != rq);
6442 
6443 	/* if we're the first, we'll be our own leader */
6444 	if (cpumask_weight(smt_mask) == 1)
6445 		goto unlock;
6446 
6447 	/* find the leader */
6448 	for_each_cpu(t, smt_mask) {
6449 		if (t == cpu)
6450 			continue;
6451 		rq = cpu_rq(t);
6452 		if (rq->core == rq) {
6453 			core_rq = rq;
6454 			break;
6455 		}
6456 	}
6457 
6458 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6459 		goto unlock;
6460 
6461 	/* install and validate core_rq */
6462 	for_each_cpu(t, smt_mask) {
6463 		rq = cpu_rq(t);
6464 
6465 		if (t == cpu)
6466 			rq->core = core_rq;
6467 
6468 		WARN_ON_ONCE(rq->core != core_rq);
6469 	}
6470 
6471 unlock:
6472 	sched_core_unlock(cpu, &flags);
6473 }
6474 
sched_core_cpu_deactivate(unsigned int cpu)6475 static void sched_core_cpu_deactivate(unsigned int cpu)
6476 {
6477 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6478 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6479 	unsigned long flags;
6480 	int t;
6481 
6482 	sched_core_lock(cpu, &flags);
6483 
6484 	/* if we're the last man standing, nothing to do */
6485 	if (cpumask_weight(smt_mask) == 1) {
6486 		WARN_ON_ONCE(rq->core != rq);
6487 		goto unlock;
6488 	}
6489 
6490 	/* if we're not the leader, nothing to do */
6491 	if (rq->core != rq)
6492 		goto unlock;
6493 
6494 	/* find a new leader */
6495 	for_each_cpu(t, smt_mask) {
6496 		if (t == cpu)
6497 			continue;
6498 		core_rq = cpu_rq(t);
6499 		break;
6500 	}
6501 
6502 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6503 		goto unlock;
6504 
6505 	/* copy the shared state to the new leader */
6506 	core_rq->core_task_seq             = rq->core_task_seq;
6507 	core_rq->core_pick_seq             = rq->core_pick_seq;
6508 	core_rq->core_cookie               = rq->core_cookie;
6509 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6510 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6511 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6512 
6513 	/*
6514 	 * Accounting edge for forced idle is handled in pick_next_task().
6515 	 * Don't need another one here, since the hotplug thread shouldn't
6516 	 * have a cookie.
6517 	 */
6518 	core_rq->core_forceidle_start = 0;
6519 
6520 	/* install new leader */
6521 	for_each_cpu(t, smt_mask) {
6522 		rq = cpu_rq(t);
6523 		rq->core = core_rq;
6524 	}
6525 
6526 unlock:
6527 	sched_core_unlock(cpu, &flags);
6528 }
6529 
sched_core_cpu_dying(unsigned int cpu)6530 static inline void sched_core_cpu_dying(unsigned int cpu)
6531 {
6532 	struct rq *rq = cpu_rq(cpu);
6533 
6534 	if (rq->core != rq)
6535 		rq->core = rq;
6536 }
6537 
6538 #else /* !CONFIG_SCHED_CORE */
6539 
sched_core_cpu_starting(unsigned int cpu)6540 static inline void sched_core_cpu_starting(unsigned int cpu) {}
sched_core_cpu_deactivate(unsigned int cpu)6541 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
sched_core_cpu_dying(unsigned int cpu)6542 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6543 
6544 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6545 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6546 {
6547 	return __pick_next_task(rq, prev, rf);
6548 }
6549 
6550 #endif /* CONFIG_SCHED_CORE */
6551 
6552 /*
6553  * Constants for the sched_mode argument of __schedule().
6554  *
6555  * The mode argument allows RT enabled kernels to differentiate a
6556  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6557  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6558  * optimize the AND operation out and just check for zero.
6559  */
6560 #define SM_NONE			0x0
6561 #define SM_PREEMPT		0x1
6562 #define SM_RTLOCK_WAIT		0x2
6563 
6564 #ifndef CONFIG_PREEMPT_RT
6565 # define SM_MASK_PREEMPT	(~0U)
6566 #else
6567 # define SM_MASK_PREEMPT	SM_PREEMPT
6568 #endif
6569 
6570 /*
6571  * __schedule() is the main scheduler function.
6572  *
6573  * The main means of driving the scheduler and thus entering this function are:
6574  *
6575  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6576  *
6577  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6578  *      paths. For example, see arch/x86/entry_64.S.
6579  *
6580  *      To drive preemption between tasks, the scheduler sets the flag in timer
6581  *      interrupt handler scheduler_tick().
6582  *
6583  *   3. Wakeups don't really cause entry into schedule(). They add a
6584  *      task to the run-queue and that's it.
6585  *
6586  *      Now, if the new task added to the run-queue preempts the current
6587  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6588  *      called on the nearest possible occasion:
6589  *
6590  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6591  *
6592  *         - in syscall or exception context, at the next outmost
6593  *           preempt_enable(). (this might be as soon as the wake_up()'s
6594  *           spin_unlock()!)
6595  *
6596  *         - in IRQ context, return from interrupt-handler to
6597  *           preemptible context
6598  *
6599  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6600  *         then at the next:
6601  *
6602  *          - cond_resched() call
6603  *          - explicit schedule() call
6604  *          - return from syscall or exception to user-space
6605  *          - return from interrupt-handler to user-space
6606  *
6607  * WARNING: must be called with preemption disabled!
6608  */
__schedule(unsigned int sched_mode)6609 static void __sched notrace __schedule(unsigned int sched_mode)
6610 {
6611 	struct task_struct *prev, *next;
6612 	unsigned long *switch_count;
6613 	unsigned long prev_state;
6614 	struct rq_flags rf;
6615 	struct rq *rq;
6616 	int cpu;
6617 
6618 	cpu = smp_processor_id();
6619 	rq = cpu_rq(cpu);
6620 	prev = rq->curr;
6621 
6622 	schedule_debug(prev, !!sched_mode);
6623 
6624 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6625 		hrtick_clear(rq);
6626 
6627 	local_irq_disable();
6628 	rcu_note_context_switch(!!sched_mode);
6629 
6630 	/*
6631 	 * Make sure that signal_pending_state()->signal_pending() below
6632 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6633 	 * done by the caller to avoid the race with signal_wake_up():
6634 	 *
6635 	 * __set_current_state(@state)		signal_wake_up()
6636 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6637 	 *					  wake_up_state(p, state)
6638 	 *   LOCK rq->lock			    LOCK p->pi_state
6639 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6640 	 *     if (signal_pending_state())	    if (p->state & @state)
6641 	 *
6642 	 * Also, the membarrier system call requires a full memory barrier
6643 	 * after coming from user-space, before storing to rq->curr.
6644 	 */
6645 	rq_lock(rq, &rf);
6646 	smp_mb__after_spinlock();
6647 
6648 	/* Promote REQ to ACT */
6649 	rq->clock_update_flags <<= 1;
6650 	update_rq_clock(rq);
6651 
6652 	switch_count = &prev->nivcsw;
6653 
6654 	/*
6655 	 * We must load prev->state once (task_struct::state is volatile), such
6656 	 * that we form a control dependency vs deactivate_task() below.
6657 	 */
6658 	prev_state = READ_ONCE(prev->__state);
6659 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6660 		if (signal_pending_state(prev_state, prev)) {
6661 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6662 		} else {
6663 			prev->sched_contributes_to_load =
6664 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6665 				!(prev_state & TASK_NOLOAD) &&
6666 				!(prev_state & TASK_FROZEN);
6667 
6668 			if (prev->sched_contributes_to_load)
6669 				rq->nr_uninterruptible++;
6670 
6671 			/*
6672 			 * __schedule()			ttwu()
6673 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6674 			 *   if (prev_state)		    goto out;
6675 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6676 			 *				  p->state = TASK_WAKING
6677 			 *
6678 			 * Where __schedule() and ttwu() have matching control dependencies.
6679 			 *
6680 			 * After this, schedule() must not care about p->state any more.
6681 			 */
6682 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6683 
6684 			if (prev->in_iowait) {
6685 				atomic_inc(&rq->nr_iowait);
6686 				delayacct_blkio_start();
6687 			}
6688 		}
6689 		switch_count = &prev->nvcsw;
6690 	}
6691 
6692 	next = pick_next_task(rq, prev, &rf);
6693 	clear_tsk_need_resched(prev);
6694 	clear_preempt_need_resched();
6695 #ifdef CONFIG_SCHED_DEBUG
6696 	rq->last_seen_need_resched_ns = 0;
6697 #endif
6698 
6699 	trace_android_rvh_schedule(sched_mode, prev, next, rq);
6700 	if (likely(prev != next)) {
6701 		rq->nr_switches++;
6702 		/*
6703 		 * RCU users of rcu_dereference(rq->curr) may not see
6704 		 * changes to task_struct made by pick_next_task().
6705 		 */
6706 		RCU_INIT_POINTER(rq->curr, next);
6707 		/*
6708 		 * The membarrier system call requires each architecture
6709 		 * to have a full memory barrier after updating
6710 		 * rq->curr, before returning to user-space.
6711 		 *
6712 		 * Here are the schemes providing that barrier on the
6713 		 * various architectures:
6714 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6715 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6716 		 * - finish_lock_switch() for weakly-ordered
6717 		 *   architectures where spin_unlock is a full barrier,
6718 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6719 		 *   is a RELEASE barrier),
6720 		 */
6721 		++*switch_count;
6722 
6723 		migrate_disable_switch(rq, prev);
6724 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6725 
6726 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6727 
6728 		/* Also unlocks the rq: */
6729 		rq = context_switch(rq, prev, next, &rf);
6730 	} else {
6731 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6732 
6733 		rq_unpin_lock(rq, &rf);
6734 		__balance_callbacks(rq);
6735 		raw_spin_rq_unlock_irq(rq);
6736 	}
6737 }
6738 
do_task_dead(void)6739 void __noreturn do_task_dead(void)
6740 {
6741 	/* Causes final put_task_struct in finish_task_switch(): */
6742 	set_special_state(TASK_DEAD);
6743 
6744 	/* Tell freezer to ignore us: */
6745 	current->flags |= PF_NOFREEZE;
6746 
6747 	__schedule(SM_NONE);
6748 	BUG();
6749 
6750 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6751 	for (;;)
6752 		cpu_relax();
6753 }
6754 
sched_submit_work(struct task_struct * tsk)6755 static inline void sched_submit_work(struct task_struct *tsk)
6756 {
6757 	unsigned int task_flags;
6758 
6759 	if (task_is_running(tsk))
6760 		return;
6761 
6762 	task_flags = tsk->flags;
6763 	/*
6764 	 * If a worker goes to sleep, notify and ask workqueue whether it
6765 	 * wants to wake up a task to maintain concurrency.
6766 	 */
6767 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6768 		if (task_flags & PF_WQ_WORKER)
6769 			wq_worker_sleeping(tsk);
6770 		else
6771 			io_wq_worker_sleeping(tsk);
6772 	}
6773 
6774 	/*
6775 	 * spinlock and rwlock must not flush block requests.  This will
6776 	 * deadlock if the callback attempts to acquire a lock which is
6777 	 * already acquired.
6778 	 */
6779 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6780 
6781 	/*
6782 	 * If we are going to sleep and we have plugged IO queued,
6783 	 * make sure to submit it to avoid deadlocks.
6784 	 */
6785 	blk_flush_plug(tsk->plug, true);
6786 }
6787 
sched_update_worker(struct task_struct * tsk)6788 static void sched_update_worker(struct task_struct *tsk)
6789 {
6790 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6791 		if (tsk->flags & PF_WQ_WORKER)
6792 			wq_worker_running(tsk);
6793 		else
6794 			io_wq_worker_running(tsk);
6795 	}
6796 }
6797 
schedule(void)6798 asmlinkage __visible void __sched schedule(void)
6799 {
6800 	struct task_struct *tsk = current;
6801 
6802 	sched_submit_work(tsk);
6803 	do {
6804 		preempt_disable();
6805 		__schedule(SM_NONE);
6806 		sched_preempt_enable_no_resched();
6807 	} while (need_resched());
6808 	sched_update_worker(tsk);
6809 }
6810 EXPORT_SYMBOL(schedule);
6811 
6812 /*
6813  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6814  * state (have scheduled out non-voluntarily) by making sure that all
6815  * tasks have either left the run queue or have gone into user space.
6816  * As idle tasks do not do either, they must not ever be preempted
6817  * (schedule out non-voluntarily).
6818  *
6819  * schedule_idle() is similar to schedule_preempt_disable() except that it
6820  * never enables preemption because it does not call sched_submit_work().
6821  */
schedule_idle(void)6822 void __sched schedule_idle(void)
6823 {
6824 	/*
6825 	 * As this skips calling sched_submit_work(), which the idle task does
6826 	 * regardless because that function is a nop when the task is in a
6827 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6828 	 * current task can be in any other state. Note, idle is always in the
6829 	 * TASK_RUNNING state.
6830 	 */
6831 	WARN_ON_ONCE(current->__state);
6832 	do {
6833 		__schedule(SM_NONE);
6834 	} while (need_resched());
6835 }
6836 
6837 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
schedule_user(void)6838 asmlinkage __visible void __sched schedule_user(void)
6839 {
6840 	/*
6841 	 * If we come here after a random call to set_need_resched(),
6842 	 * or we have been woken up remotely but the IPI has not yet arrived,
6843 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6844 	 * we find a better solution.
6845 	 *
6846 	 * NB: There are buggy callers of this function.  Ideally we
6847 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6848 	 * too frequently to make sense yet.
6849 	 */
6850 	enum ctx_state prev_state = exception_enter();
6851 	schedule();
6852 	exception_exit(prev_state);
6853 }
6854 #endif
6855 
6856 /**
6857  * schedule_preempt_disabled - called with preemption disabled
6858  *
6859  * Returns with preemption disabled. Note: preempt_count must be 1
6860  */
schedule_preempt_disabled(void)6861 void __sched schedule_preempt_disabled(void)
6862 {
6863 	sched_preempt_enable_no_resched();
6864 	schedule();
6865 	preempt_disable();
6866 }
6867 
6868 #ifdef CONFIG_PREEMPT_RT
schedule_rtlock(void)6869 void __sched notrace schedule_rtlock(void)
6870 {
6871 	do {
6872 		preempt_disable();
6873 		__schedule(SM_RTLOCK_WAIT);
6874 		sched_preempt_enable_no_resched();
6875 	} while (need_resched());
6876 }
6877 NOKPROBE_SYMBOL(schedule_rtlock);
6878 #endif
6879 
preempt_schedule_common(void)6880 static void __sched notrace preempt_schedule_common(void)
6881 {
6882 	do {
6883 		/*
6884 		 * Because the function tracer can trace preempt_count_sub()
6885 		 * and it also uses preempt_enable/disable_notrace(), if
6886 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6887 		 * by the function tracer will call this function again and
6888 		 * cause infinite recursion.
6889 		 *
6890 		 * Preemption must be disabled here before the function
6891 		 * tracer can trace. Break up preempt_disable() into two
6892 		 * calls. One to disable preemption without fear of being
6893 		 * traced. The other to still record the preemption latency,
6894 		 * which can also be traced by the function tracer.
6895 		 */
6896 		preempt_disable_notrace();
6897 		preempt_latency_start(1);
6898 		__schedule(SM_PREEMPT);
6899 		preempt_latency_stop(1);
6900 		preempt_enable_no_resched_notrace();
6901 
6902 		/*
6903 		 * Check again in case we missed a preemption opportunity
6904 		 * between schedule and now.
6905 		 */
6906 	} while (need_resched());
6907 }
6908 
6909 #ifdef CONFIG_PREEMPTION
6910 /*
6911  * This is the entry point to schedule() from in-kernel preemption
6912  * off of preempt_enable.
6913  */
preempt_schedule(void)6914 asmlinkage __visible void __sched notrace preempt_schedule(void)
6915 {
6916 	/*
6917 	 * If there is a non-zero preempt_count or interrupts are disabled,
6918 	 * we do not want to preempt the current task. Just return..
6919 	 */
6920 	if (likely(!preemptible()))
6921 		return;
6922 	preempt_schedule_common();
6923 }
6924 NOKPROBE_SYMBOL(preempt_schedule);
6925 EXPORT_SYMBOL(preempt_schedule);
6926 
6927 #ifdef CONFIG_PREEMPT_DYNAMIC
6928 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6929 #ifndef preempt_schedule_dynamic_enabled
6930 #define preempt_schedule_dynamic_enabled	preempt_schedule
6931 #define preempt_schedule_dynamic_disabled	NULL
6932 #endif
6933 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6934 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6935 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6936 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
dynamic_preempt_schedule(void)6937 void __sched notrace dynamic_preempt_schedule(void)
6938 {
6939 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6940 		return;
6941 	preempt_schedule();
6942 }
6943 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6944 EXPORT_SYMBOL(dynamic_preempt_schedule);
6945 #endif
6946 #endif
6947 
6948 /**
6949  * preempt_schedule_notrace - preempt_schedule called by tracing
6950  *
6951  * The tracing infrastructure uses preempt_enable_notrace to prevent
6952  * recursion and tracing preempt enabling caused by the tracing
6953  * infrastructure itself. But as tracing can happen in areas coming
6954  * from userspace or just about to enter userspace, a preempt enable
6955  * can occur before user_exit() is called. This will cause the scheduler
6956  * to be called when the system is still in usermode.
6957  *
6958  * To prevent this, the preempt_enable_notrace will use this function
6959  * instead of preempt_schedule() to exit user context if needed before
6960  * calling the scheduler.
6961  */
preempt_schedule_notrace(void)6962 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6963 {
6964 	enum ctx_state prev_ctx;
6965 
6966 	if (likely(!preemptible()))
6967 		return;
6968 
6969 	do {
6970 		/*
6971 		 * Because the function tracer can trace preempt_count_sub()
6972 		 * and it also uses preempt_enable/disable_notrace(), if
6973 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6974 		 * by the function tracer will call this function again and
6975 		 * cause infinite recursion.
6976 		 *
6977 		 * Preemption must be disabled here before the function
6978 		 * tracer can trace. Break up preempt_disable() into two
6979 		 * calls. One to disable preemption without fear of being
6980 		 * traced. The other to still record the preemption latency,
6981 		 * which can also be traced by the function tracer.
6982 		 */
6983 		preempt_disable_notrace();
6984 		preempt_latency_start(1);
6985 		/*
6986 		 * Needs preempt disabled in case user_exit() is traced
6987 		 * and the tracer calls preempt_enable_notrace() causing
6988 		 * an infinite recursion.
6989 		 */
6990 		prev_ctx = exception_enter();
6991 		__schedule(SM_PREEMPT);
6992 		exception_exit(prev_ctx);
6993 
6994 		preempt_latency_stop(1);
6995 		preempt_enable_no_resched_notrace();
6996 	} while (need_resched());
6997 }
6998 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6999 
7000 #ifdef CONFIG_PREEMPT_DYNAMIC
7001 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7002 #ifndef preempt_schedule_notrace_dynamic_enabled
7003 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
7004 #define preempt_schedule_notrace_dynamic_disabled	NULL
7005 #endif
7006 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7007 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7008 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7009 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
dynamic_preempt_schedule_notrace(void)7010 void __sched notrace dynamic_preempt_schedule_notrace(void)
7011 {
7012 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7013 		return;
7014 	preempt_schedule_notrace();
7015 }
7016 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7017 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7018 #endif
7019 #endif
7020 
7021 #endif /* CONFIG_PREEMPTION */
7022 
7023 /*
7024  * This is the entry point to schedule() from kernel preemption
7025  * off of irq context.
7026  * Note, that this is called and return with irqs disabled. This will
7027  * protect us against recursive calling from irq.
7028  */
preempt_schedule_irq(void)7029 asmlinkage __visible void __sched preempt_schedule_irq(void)
7030 {
7031 	enum ctx_state prev_state;
7032 
7033 	/* Catch callers which need to be fixed */
7034 	BUG_ON(preempt_count() || !irqs_disabled());
7035 
7036 	prev_state = exception_enter();
7037 
7038 	do {
7039 		preempt_disable();
7040 		local_irq_enable();
7041 		__schedule(SM_PREEMPT);
7042 		local_irq_disable();
7043 		sched_preempt_enable_no_resched();
7044 	} while (need_resched());
7045 
7046 	exception_exit(prev_state);
7047 }
7048 
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)7049 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7050 			  void *key)
7051 {
7052 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC | WF_ANDROID_VENDOR));
7053 	return try_to_wake_up(curr->private, mode, wake_flags);
7054 }
7055 EXPORT_SYMBOL(default_wake_function);
7056 
__setscheduler_prio(struct task_struct * p,int prio)7057 static void __setscheduler_prio(struct task_struct *p, int prio)
7058 {
7059 	if (dl_prio(prio))
7060 		p->sched_class = &dl_sched_class;
7061 	else if (rt_prio(prio))
7062 		p->sched_class = &rt_sched_class;
7063 	else
7064 		p->sched_class = &fair_sched_class;
7065 
7066 	p->prio = prio;
7067 }
7068 
7069 #ifdef CONFIG_RT_MUTEXES
7070 
__rt_effective_prio(struct task_struct * pi_task,int prio)7071 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
7072 {
7073 	if (pi_task)
7074 		prio = min(prio, pi_task->prio);
7075 
7076 	return prio;
7077 }
7078 
rt_effective_prio(struct task_struct * p,int prio)7079 static inline int rt_effective_prio(struct task_struct *p, int prio)
7080 {
7081 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
7082 
7083 	return __rt_effective_prio(pi_task, prio);
7084 }
7085 
7086 /*
7087  * rt_mutex_setprio - set the current priority of a task
7088  * @p: task to boost
7089  * @pi_task: donor task
7090  *
7091  * This function changes the 'effective' priority of a task. It does
7092  * not touch ->normal_prio like __setscheduler().
7093  *
7094  * Used by the rt_mutex code to implement priority inheritance
7095  * logic. Call site only calls if the priority of the task changed.
7096  */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)7097 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7098 {
7099 	int prio, oldprio, queued, running, queue_flag =
7100 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7101 	const struct sched_class *prev_class;
7102 	struct rq_flags rf;
7103 	struct rq *rq;
7104 	int update = 0;
7105 
7106 	trace_android_rvh_rtmutex_prepare_setprio(p, pi_task);
7107 	/* XXX used to be waiter->prio, not waiter->task->prio */
7108 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7109 
7110 	trace_android_rvh_rtmutex_force_update(p, pi_task, &update);
7111 	/*
7112 	 * If nothing changed; bail early.
7113 	 */
7114 	if (!update && p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7115 		return;
7116 
7117 	rq = __task_rq_lock(p, &rf);
7118 	update_rq_clock(rq);
7119 	/*
7120 	 * Set under pi_lock && rq->lock, such that the value can be used under
7121 	 * either lock.
7122 	 *
7123 	 * Note that there is loads of tricky to make this pointer cache work
7124 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7125 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7126 	 * task is allowed to run again (and can exit). This ensures the pointer
7127 	 * points to a blocked task -- which guarantees the task is present.
7128 	 */
7129 	p->pi_top_task = pi_task;
7130 
7131 	/*
7132 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7133 	 */
7134 	if (!update && prio == p->prio && !dl_prio(prio))
7135 		goto out_unlock;
7136 
7137 	/*
7138 	 * Idle task boosting is a nono in general. There is one
7139 	 * exception, when PREEMPT_RT and NOHZ is active:
7140 	 *
7141 	 * The idle task calls get_next_timer_interrupt() and holds
7142 	 * the timer wheel base->lock on the CPU and another CPU wants
7143 	 * to access the timer (probably to cancel it). We can safely
7144 	 * ignore the boosting request, as the idle CPU runs this code
7145 	 * with interrupts disabled and will complete the lock
7146 	 * protected section without being interrupted. So there is no
7147 	 * real need to boost.
7148 	 */
7149 	if (unlikely(p == rq->idle)) {
7150 		WARN_ON(p != rq->curr);
7151 		WARN_ON(p->pi_blocked_on);
7152 		goto out_unlock;
7153 	}
7154 
7155 	trace_sched_pi_setprio(p, pi_task);
7156 	oldprio = p->prio;
7157 
7158 	if (oldprio == prio)
7159 		queue_flag &= ~DEQUEUE_MOVE;
7160 
7161 	prev_class = p->sched_class;
7162 	queued = task_on_rq_queued(p);
7163 	running = task_current(rq, p);
7164 	if (queued)
7165 		dequeue_task(rq, p, queue_flag);
7166 	if (running)
7167 		put_prev_task(rq, p);
7168 
7169 	/*
7170 	 * Boosting condition are:
7171 	 * 1. -rt task is running and holds mutex A
7172 	 *      --> -dl task blocks on mutex A
7173 	 *
7174 	 * 2. -dl task is running and holds mutex A
7175 	 *      --> -dl task blocks on mutex A and could preempt the
7176 	 *          running task
7177 	 */
7178 	if (dl_prio(prio)) {
7179 		if (!dl_prio(p->normal_prio) ||
7180 		    (pi_task && dl_prio(pi_task->prio) &&
7181 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7182 			p->dl.pi_se = pi_task->dl.pi_se;
7183 			queue_flag |= ENQUEUE_REPLENISH;
7184 		} else {
7185 			p->dl.pi_se = &p->dl;
7186 		}
7187 	} else if (rt_prio(prio)) {
7188 		if (dl_prio(oldprio))
7189 			p->dl.pi_se = &p->dl;
7190 		if (oldprio < prio)
7191 			queue_flag |= ENQUEUE_HEAD;
7192 	} else {
7193 		if (dl_prio(oldprio))
7194 			p->dl.pi_se = &p->dl;
7195 		if (rt_prio(oldprio))
7196 			p->rt.timeout = 0;
7197 	}
7198 
7199 	__setscheduler_prio(p, prio);
7200 
7201 	if (queued)
7202 		enqueue_task(rq, p, queue_flag);
7203 	if (running)
7204 		set_next_task(rq, p);
7205 
7206 	check_class_changed(rq, p, prev_class, oldprio);
7207 out_unlock:
7208 	/* Avoid rq from going away on us: */
7209 	preempt_disable();
7210 
7211 	rq_unpin_lock(rq, &rf);
7212 	__balance_callbacks(rq);
7213 	raw_spin_rq_unlock(rq);
7214 
7215 	preempt_enable();
7216 }
7217 #else
rt_effective_prio(struct task_struct * p,int prio)7218 static inline int rt_effective_prio(struct task_struct *p, int prio)
7219 {
7220 	return prio;
7221 }
7222 #endif
7223 
set_user_nice(struct task_struct * p,long nice)7224 void set_user_nice(struct task_struct *p, long nice)
7225 {
7226 	bool queued, running, allowed = false;
7227 	int old_prio;
7228 	struct rq_flags rf;
7229 	struct rq *rq;
7230 
7231 	trace_android_rvh_set_user_nice(p, &nice, &allowed);
7232 	if ((task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) && !allowed)
7233 		return;
7234 	/*
7235 	 * We have to be careful, if called from sys_setpriority(),
7236 	 * the task might be in the middle of scheduling on another CPU.
7237 	 */
7238 	rq = task_rq_lock(p, &rf);
7239 	update_rq_clock(rq);
7240 
7241 	trace_android_rvh_set_user_nice_locked(p, &nice);
7242 	if (task_nice(p) == nice)
7243 		goto out_unlock;
7244 
7245 	/*
7246 	 * The RT priorities are set via sched_setscheduler(), but we still
7247 	 * allow the 'normal' nice value to be set - but as expected
7248 	 * it won't have any effect on scheduling until the task is
7249 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7250 	 */
7251 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7252 		p->static_prio = NICE_TO_PRIO(nice);
7253 		goto out_unlock;
7254 	}
7255 	queued = task_on_rq_queued(p);
7256 	running = task_current(rq, p);
7257 	if (queued)
7258 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7259 	if (running)
7260 		put_prev_task(rq, p);
7261 
7262 	p->static_prio = NICE_TO_PRIO(nice);
7263 	set_load_weight(p, true);
7264 	old_prio = p->prio;
7265 	p->prio = effective_prio(p);
7266 
7267 	if (queued)
7268 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7269 	if (running)
7270 		set_next_task(rq, p);
7271 
7272 	/*
7273 	 * If the task increased its priority or is running and
7274 	 * lowered its priority, then reschedule its CPU:
7275 	 */
7276 	p->sched_class->prio_changed(rq, p, old_prio);
7277 
7278 out_unlock:
7279 	task_rq_unlock(rq, p, &rf);
7280 }
7281 EXPORT_SYMBOL(set_user_nice);
7282 
7283 /*
7284  * is_nice_reduction - check if nice value is an actual reduction
7285  *
7286  * Similar to can_nice() but does not perform a capability check.
7287  *
7288  * @p: task
7289  * @nice: nice value
7290  */
is_nice_reduction(const struct task_struct * p,const int nice)7291 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7292 {
7293 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
7294 	int nice_rlim = nice_to_rlimit(nice);
7295 
7296 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7297 }
7298 
7299 /*
7300  * can_nice - check if a task can reduce its nice value
7301  * @p: task
7302  * @nice: nice value
7303  */
can_nice(const struct task_struct * p,const int nice)7304 int can_nice(const struct task_struct *p, const int nice)
7305 {
7306 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7307 }
7308 
7309 #ifdef __ARCH_WANT_SYS_NICE
7310 
7311 /*
7312  * sys_nice - change the priority of the current process.
7313  * @increment: priority increment
7314  *
7315  * sys_setpriority is a more generic, but much slower function that
7316  * does similar things.
7317  */
SYSCALL_DEFINE1(nice,int,increment)7318 SYSCALL_DEFINE1(nice, int, increment)
7319 {
7320 	long nice, retval;
7321 
7322 	/*
7323 	 * Setpriority might change our priority at the same moment.
7324 	 * We don't have to worry. Conceptually one call occurs first
7325 	 * and we have a single winner.
7326 	 */
7327 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7328 	nice = task_nice(current) + increment;
7329 
7330 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7331 	if (increment < 0 && !can_nice(current, nice))
7332 		return -EPERM;
7333 
7334 	retval = security_task_setnice(current, nice);
7335 	if (retval)
7336 		return retval;
7337 
7338 	set_user_nice(current, nice);
7339 	return 0;
7340 }
7341 
7342 #endif
7343 
7344 /**
7345  * task_prio - return the priority value of a given task.
7346  * @p: the task in question.
7347  *
7348  * Return: The priority value as seen by users in /proc.
7349  *
7350  * sched policy         return value   kernel prio    user prio/nice
7351  *
7352  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7353  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7354  * deadline                     -101             -1           0
7355  */
task_prio(const struct task_struct * p)7356 int task_prio(const struct task_struct *p)
7357 {
7358 	return p->prio - MAX_RT_PRIO;
7359 }
7360 
7361 /**
7362  * idle_cpu - is a given CPU idle currently?
7363  * @cpu: the processor in question.
7364  *
7365  * Return: 1 if the CPU is currently idle. 0 otherwise.
7366  */
idle_cpu(int cpu)7367 int idle_cpu(int cpu)
7368 {
7369 	struct rq *rq = cpu_rq(cpu);
7370 
7371 	if (rq->curr != rq->idle)
7372 		return 0;
7373 
7374 	if (rq->nr_running)
7375 		return 0;
7376 
7377 #ifdef CONFIG_SMP
7378 	if (rq->ttwu_pending)
7379 		return 0;
7380 #endif
7381 
7382 	return 1;
7383 }
7384 
7385 /**
7386  * available_idle_cpu - is a given CPU idle for enqueuing work.
7387  * @cpu: the CPU in question.
7388  *
7389  * Return: 1 if the CPU is currently idle. 0 otherwise.
7390  */
available_idle_cpu(int cpu)7391 int available_idle_cpu(int cpu)
7392 {
7393 	if (!idle_cpu(cpu))
7394 		return 0;
7395 
7396 	if (vcpu_is_preempted(cpu))
7397 		return 0;
7398 
7399 	return 1;
7400 }
7401 EXPORT_SYMBOL_GPL(available_idle_cpu);
7402 
7403 /**
7404  * idle_task - return the idle task for a given CPU.
7405  * @cpu: the processor in question.
7406  *
7407  * Return: The idle task for the CPU @cpu.
7408  */
idle_task(int cpu)7409 struct task_struct *idle_task(int cpu)
7410 {
7411 	return cpu_rq(cpu)->idle;
7412 }
7413 
7414 #ifdef CONFIG_SMP
7415 /*
7416  * This function computes an effective utilization for the given CPU, to be
7417  * used for frequency selection given the linear relation: f = u * f_max.
7418  *
7419  * The scheduler tracks the following metrics:
7420  *
7421  *   cpu_util_{cfs,rt,dl,irq}()
7422  *   cpu_bw_dl()
7423  *
7424  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7425  * synchronized windows and are thus directly comparable.
7426  *
7427  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7428  * which excludes things like IRQ and steal-time. These latter are then accrued
7429  * in the irq utilization.
7430  *
7431  * The DL bandwidth number otoh is not a measured metric but a value computed
7432  * based on the task model parameters and gives the minimal utilization
7433  * required to meet deadlines.
7434  */
effective_cpu_util(int cpu,unsigned long util_cfs,enum cpu_util_type type,struct task_struct * p)7435 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7436 				 enum cpu_util_type type,
7437 				 struct task_struct *p)
7438 {
7439 	unsigned long dl_util, util, irq, max;
7440 	struct rq *rq = cpu_rq(cpu);
7441 	unsigned long new_util = ULONG_MAX;
7442 
7443 	max = arch_scale_cpu_capacity(cpu);
7444 
7445 	trace_android_rvh_effective_cpu_util(cpu, util_cfs, max, type, p, &new_util);
7446 	if (new_util != ULONG_MAX)
7447 		return new_util;
7448 
7449 	if (!uclamp_is_used() &&
7450 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7451 		return max;
7452 	}
7453 
7454 	/*
7455 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7456 	 * because of inaccuracies in how we track these -- see
7457 	 * update_irq_load_avg().
7458 	 */
7459 	irq = cpu_util_irq(rq);
7460 	if (unlikely(irq >= max))
7461 		return max;
7462 
7463 	/*
7464 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7465 	 * CFS tasks and we use the same metric to track the effective
7466 	 * utilization (PELT windows are synchronized) we can directly add them
7467 	 * to obtain the CPU's actual utilization.
7468 	 *
7469 	 * CFS and RT utilization can be boosted or capped, depending on
7470 	 * utilization clamp constraints requested by currently RUNNABLE
7471 	 * tasks.
7472 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7473 	 * frequency will be gracefully reduced with the utilization decay.
7474 	 */
7475 	util = util_cfs + cpu_util_rt(rq);
7476 	if (type == FREQUENCY_UTIL)
7477 		util = uclamp_rq_util_with(rq, util, p);
7478 
7479 	dl_util = cpu_util_dl(rq);
7480 
7481 	/*
7482 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7483 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7484 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7485 	 * that we select f_max when there is no idle time.
7486 	 *
7487 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7488 	 * saturation when we should -- something for later.
7489 	 */
7490 	if (util + dl_util >= max)
7491 		return max;
7492 
7493 	/*
7494 	 * OTOH, for energy computation we need the estimated running time, so
7495 	 * include util_dl and ignore dl_bw.
7496 	 */
7497 	if (type == ENERGY_UTIL)
7498 		util += dl_util;
7499 
7500 	/*
7501 	 * There is still idle time; further improve the number by using the
7502 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7503 	 * need to scale the task numbers:
7504 	 *
7505 	 *              max - irq
7506 	 *   U' = irq + --------- * U
7507 	 *                 max
7508 	 */
7509 	util = scale_irq_capacity(util, irq, max);
7510 	util += irq;
7511 
7512 	/*
7513 	 * Bandwidth required by DEADLINE must always be granted while, for
7514 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7515 	 * to gracefully reduce the frequency when no tasks show up for longer
7516 	 * periods of time.
7517 	 *
7518 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7519 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7520 	 * an interface. So, we only do the latter for now.
7521 	 */
7522 	if (type == FREQUENCY_UTIL)
7523 		util += cpu_bw_dl(rq);
7524 
7525 	return min(max, util);
7526 }
7527 
sched_cpu_util(int cpu)7528 unsigned long sched_cpu_util(int cpu)
7529 {
7530 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7531 }
7532 #endif /* CONFIG_SMP */
7533 
7534 /**
7535  * find_process_by_pid - find a process with a matching PID value.
7536  * @pid: the pid in question.
7537  *
7538  * The task of @pid, if found. %NULL otherwise.
7539  */
find_process_by_pid(pid_t pid)7540 static struct task_struct *find_process_by_pid(pid_t pid)
7541 {
7542 	return pid ? find_task_by_vpid(pid) : current;
7543 }
7544 
7545 /*
7546  * sched_setparam() passes in -1 for its policy, to let the functions
7547  * it calls know not to change it.
7548  */
7549 #define SETPARAM_POLICY	-1
7550 
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)7551 static void __setscheduler_params(struct task_struct *p,
7552 		const struct sched_attr *attr)
7553 {
7554 	int policy = attr->sched_policy;
7555 
7556 	if (policy == SETPARAM_POLICY)
7557 		policy = p->policy;
7558 
7559 	p->policy = policy;
7560 
7561 	if (dl_policy(policy))
7562 		__setparam_dl(p, attr);
7563 	else if (fair_policy(policy))
7564 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7565 
7566 	/*
7567 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7568 	 * !rt_policy. Always setting this ensures that things like
7569 	 * getparam()/getattr() don't report silly values for !rt tasks.
7570 	 */
7571 	p->rt_priority = attr->sched_priority;
7572 	p->normal_prio = normal_prio(p);
7573 	set_load_weight(p, true);
7574 }
7575 
7576 /*
7577  * Check the target process has a UID that matches the current process's:
7578  */
check_same_owner(struct task_struct * p)7579 static bool check_same_owner(struct task_struct *p)
7580 {
7581 	const struct cred *cred = current_cred(), *pcred;
7582 	bool match;
7583 
7584 	rcu_read_lock();
7585 	pcred = __task_cred(p);
7586 	match = (uid_eq(cred->euid, pcred->euid) ||
7587 		 uid_eq(cred->euid, pcred->uid));
7588 	rcu_read_unlock();
7589 	return match;
7590 }
7591 
7592 /*
7593  * Allow unprivileged RT tasks to decrease priority.
7594  * Only issue a capable test if needed and only once to avoid an audit
7595  * event on permitted non-privileged operations:
7596  */
user_check_sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,int policy,int reset_on_fork)7597 static int user_check_sched_setscheduler(struct task_struct *p,
7598 					 const struct sched_attr *attr,
7599 					 int policy, int reset_on_fork)
7600 {
7601 	if (fair_policy(policy)) {
7602 		if (attr->sched_nice < task_nice(p) &&
7603 		    !is_nice_reduction(p, attr->sched_nice))
7604 			goto req_priv;
7605 	}
7606 
7607 	if (rt_policy(policy)) {
7608 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7609 
7610 		/* Can't set/change the rt policy: */
7611 		if (policy != p->policy && !rlim_rtprio)
7612 			goto req_priv;
7613 
7614 		/* Can't increase priority: */
7615 		if (attr->sched_priority > p->rt_priority &&
7616 		    attr->sched_priority > rlim_rtprio)
7617 			goto req_priv;
7618 	}
7619 
7620 	/*
7621 	 * Can't set/change SCHED_DEADLINE policy at all for now
7622 	 * (safest behavior); in the future we would like to allow
7623 	 * unprivileged DL tasks to increase their relative deadline
7624 	 * or reduce their runtime (both ways reducing utilization)
7625 	 */
7626 	if (dl_policy(policy))
7627 		goto req_priv;
7628 
7629 	/*
7630 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7631 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7632 	 */
7633 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
7634 		if (!is_nice_reduction(p, task_nice(p)))
7635 			goto req_priv;
7636 	}
7637 
7638 	/* Can't change other user's priorities: */
7639 	if (!check_same_owner(p))
7640 		goto req_priv;
7641 
7642 	/* Normal users shall not reset the sched_reset_on_fork flag: */
7643 	if (p->sched_reset_on_fork && !reset_on_fork)
7644 		goto req_priv;
7645 
7646 	return 0;
7647 
7648 req_priv:
7649 	if (!capable(CAP_SYS_NICE))
7650 		return -EPERM;
7651 
7652 	return 0;
7653 }
7654 
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)7655 static int __sched_setscheduler(struct task_struct *p,
7656 				const struct sched_attr *attr,
7657 				bool user, bool pi)
7658 {
7659 	int oldpolicy = -1, policy = attr->sched_policy;
7660 	int retval, oldprio, newprio, queued, running;
7661 	const struct sched_class *prev_class;
7662 	struct balance_callback *head;
7663 	struct rq_flags rf;
7664 	int reset_on_fork;
7665 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7666 	struct rq *rq;
7667 	bool cpuset_locked = false;
7668 
7669 	/* The pi code expects interrupts enabled */
7670 	BUG_ON(pi && in_interrupt());
7671 recheck:
7672 	/* Double check policy once rq lock held: */
7673 	if (policy < 0) {
7674 		reset_on_fork = p->sched_reset_on_fork;
7675 		policy = oldpolicy = p->policy;
7676 	} else {
7677 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7678 
7679 		if (!valid_policy(policy))
7680 			return -EINVAL;
7681 	}
7682 
7683 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7684 		return -EINVAL;
7685 
7686 	/*
7687 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7688 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7689 	 * SCHED_BATCH and SCHED_IDLE is 0.
7690 	 */
7691 	if (attr->sched_priority > MAX_RT_PRIO-1)
7692 		return -EINVAL;
7693 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7694 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7695 		return -EINVAL;
7696 
7697 	if (user) {
7698 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7699 		if (retval)
7700 			return retval;
7701 
7702 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7703 			return -EINVAL;
7704 
7705 		retval = security_task_setscheduler(p);
7706 		if (retval)
7707 			return retval;
7708 	}
7709 
7710 	/* Update task specific "requested" clamps */
7711 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7712 		retval = uclamp_validate(p, attr, user);
7713 		if (retval)
7714 			return retval;
7715 	}
7716 
7717 	/*
7718 	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
7719 	 * information.
7720 	 */
7721 	if (dl_policy(policy) || dl_policy(p->policy)) {
7722 		cpuset_locked = true;
7723 		cpuset_lock();
7724 	}
7725 
7726 	/*
7727 	 * Make sure no PI-waiters arrive (or leave) while we are
7728 	 * changing the priority of the task:
7729 	 *
7730 	 * To be able to change p->policy safely, the appropriate
7731 	 * runqueue lock must be held.
7732 	 */
7733 	rq = task_rq_lock(p, &rf);
7734 	update_rq_clock(rq);
7735 
7736 	/*
7737 	 * Changing the policy of the stop threads its a very bad idea:
7738 	 */
7739 	if (p == rq->stop) {
7740 		retval = -EINVAL;
7741 		goto unlock;
7742 	}
7743 
7744 	/*
7745 	 * If not changing anything there's no need to proceed further,
7746 	 * but store a possible modification of reset_on_fork.
7747 	 */
7748 	if (unlikely(policy == p->policy)) {
7749 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7750 			goto change;
7751 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7752 			goto change;
7753 		if (dl_policy(policy) && dl_param_changed(p, attr))
7754 			goto change;
7755 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7756 			goto change;
7757 
7758 		p->sched_reset_on_fork = reset_on_fork;
7759 		retval = 0;
7760 		goto unlock;
7761 	}
7762 change:
7763 
7764 	if (user) {
7765 #ifdef CONFIG_RT_GROUP_SCHED
7766 		/*
7767 		 * Do not allow realtime tasks into groups that have no runtime
7768 		 * assigned.
7769 		 */
7770 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7771 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7772 				!task_group_is_autogroup(task_group(p))) {
7773 			retval = -EPERM;
7774 			goto unlock;
7775 		}
7776 #endif
7777 #ifdef CONFIG_SMP
7778 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7779 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7780 			cpumask_t *span = rq->rd->span;
7781 
7782 			/*
7783 			 * Don't allow tasks with an affinity mask smaller than
7784 			 * the entire root_domain to become SCHED_DEADLINE. We
7785 			 * will also fail if there's no bandwidth available.
7786 			 */
7787 			if (!cpumask_subset(span, p->cpus_ptr) ||
7788 			    rq->rd->dl_bw.bw == 0) {
7789 				retval = -EPERM;
7790 				goto unlock;
7791 			}
7792 		}
7793 #endif
7794 	}
7795 
7796 	/* Re-check policy now with rq lock held: */
7797 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7798 		policy = oldpolicy = -1;
7799 		task_rq_unlock(rq, p, &rf);
7800 		if (cpuset_locked)
7801 			cpuset_unlock();
7802 		goto recheck;
7803 	}
7804 
7805 	/*
7806 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7807 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7808 	 * is available.
7809 	 */
7810 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7811 		retval = -EBUSY;
7812 		goto unlock;
7813 	}
7814 
7815 	p->sched_reset_on_fork = reset_on_fork;
7816 	oldprio = p->prio;
7817 
7818 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7819 	if (pi) {
7820 		/*
7821 		 * Take priority boosted tasks into account. If the new
7822 		 * effective priority is unchanged, we just store the new
7823 		 * normal parameters and do not touch the scheduler class and
7824 		 * the runqueue. This will be done when the task deboost
7825 		 * itself.
7826 		 */
7827 		newprio = rt_effective_prio(p, newprio);
7828 		if (newprio == oldprio)
7829 			queue_flags &= ~DEQUEUE_MOVE;
7830 	}
7831 
7832 	queued = task_on_rq_queued(p);
7833 	running = task_current(rq, p);
7834 	if (queued)
7835 		dequeue_task(rq, p, queue_flags);
7836 	if (running)
7837 		put_prev_task(rq, p);
7838 
7839 	prev_class = p->sched_class;
7840 
7841 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7842 		__setscheduler_params(p, attr);
7843 		__setscheduler_prio(p, newprio);
7844 		trace_android_rvh_setscheduler(p);
7845 	}
7846 	__setscheduler_uclamp(p, attr);
7847 
7848 	if (queued) {
7849 		/*
7850 		 * We enqueue to tail when the priority of a task is
7851 		 * increased (user space view).
7852 		 */
7853 		if (oldprio < p->prio)
7854 			queue_flags |= ENQUEUE_HEAD;
7855 
7856 		enqueue_task(rq, p, queue_flags);
7857 	}
7858 	if (running)
7859 		set_next_task(rq, p);
7860 
7861 	check_class_changed(rq, p, prev_class, oldprio);
7862 
7863 	/* Avoid rq from going away on us: */
7864 	preempt_disable();
7865 	head = splice_balance_callbacks(rq);
7866 	task_rq_unlock(rq, p, &rf);
7867 
7868 	if (pi) {
7869 		if (cpuset_locked)
7870 			cpuset_unlock();
7871 		rt_mutex_adjust_pi(p);
7872 	}
7873 
7874 	/* Run balance callbacks after we've adjusted the PI chain: */
7875 	balance_callbacks(rq, head);
7876 	preempt_enable();
7877 
7878 	return 0;
7879 
7880 unlock:
7881 	task_rq_unlock(rq, p, &rf);
7882 	if (cpuset_locked)
7883 		cpuset_unlock();
7884 	return retval;
7885 }
7886 
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)7887 static int _sched_setscheduler(struct task_struct *p, int policy,
7888 			       const struct sched_param *param, bool check)
7889 {
7890 	struct sched_attr attr = {
7891 		.sched_policy   = policy,
7892 		.sched_priority = param->sched_priority,
7893 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7894 	};
7895 
7896 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7897 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7898 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7899 		policy &= ~SCHED_RESET_ON_FORK;
7900 		attr.sched_policy = policy;
7901 	}
7902 
7903 	return __sched_setscheduler(p, &attr, check, true);
7904 }
7905 /**
7906  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7907  * @p: the task in question.
7908  * @policy: new policy.
7909  * @param: structure containing the new RT priority.
7910  *
7911  * Use sched_set_fifo(), read its comment.
7912  *
7913  * Return: 0 on success. An error code otherwise.
7914  *
7915  * NOTE that the task may be already dead.
7916  */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)7917 int sched_setscheduler(struct task_struct *p, int policy,
7918 		       const struct sched_param *param)
7919 {
7920 	return _sched_setscheduler(p, policy, param, true);
7921 }
7922 EXPORT_SYMBOL_GPL(sched_setscheduler);
7923 
sched_setattr(struct task_struct * p,const struct sched_attr * attr)7924 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7925 {
7926 	return __sched_setscheduler(p, attr, true, true);
7927 }
7928 EXPORT_SYMBOL_GPL(sched_setattr);
7929 
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)7930 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7931 {
7932 	return __sched_setscheduler(p, attr, false, true);
7933 }
7934 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7935 
7936 /**
7937  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7938  * @p: the task in question.
7939  * @policy: new policy.
7940  * @param: structure containing the new RT priority.
7941  *
7942  * Just like sched_setscheduler, only don't bother checking if the
7943  * current context has permission.  For example, this is needed in
7944  * stop_machine(): we create temporary high priority worker threads,
7945  * but our caller might not have that capability.
7946  *
7947  * Return: 0 on success. An error code otherwise.
7948  */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)7949 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7950 			       const struct sched_param *param)
7951 {
7952 	return _sched_setscheduler(p, policy, param, false);
7953 }
7954 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
7955 
7956 /*
7957  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7958  * incapable of resource management, which is the one thing an OS really should
7959  * be doing.
7960  *
7961  * This is of course the reason it is limited to privileged users only.
7962  *
7963  * Worse still; it is fundamentally impossible to compose static priority
7964  * workloads. You cannot take two correctly working static prio workloads
7965  * and smash them together and still expect them to work.
7966  *
7967  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7968  *
7969  *   MAX_RT_PRIO / 2
7970  *
7971  * The administrator _MUST_ configure the system, the kernel simply doesn't
7972  * know enough information to make a sensible choice.
7973  */
sched_set_fifo(struct task_struct * p)7974 void sched_set_fifo(struct task_struct *p)
7975 {
7976 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7977 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7978 }
7979 EXPORT_SYMBOL_GPL(sched_set_fifo);
7980 
7981 /*
7982  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7983  */
sched_set_fifo_low(struct task_struct * p)7984 void sched_set_fifo_low(struct task_struct *p)
7985 {
7986 	struct sched_param sp = { .sched_priority = 1 };
7987 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7988 }
7989 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7990 
sched_set_normal(struct task_struct * p,int nice)7991 void sched_set_normal(struct task_struct *p, int nice)
7992 {
7993 	struct sched_attr attr = {
7994 		.sched_policy = SCHED_NORMAL,
7995 		.sched_nice = nice,
7996 	};
7997 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7998 }
7999 EXPORT_SYMBOL_GPL(sched_set_normal);
8000 
8001 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)8002 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
8003 {
8004 	struct sched_param lparam;
8005 	struct task_struct *p;
8006 	int retval;
8007 
8008 	if (!param || pid < 0)
8009 		return -EINVAL;
8010 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
8011 		return -EFAULT;
8012 
8013 	rcu_read_lock();
8014 	retval = -ESRCH;
8015 	p = find_process_by_pid(pid);
8016 	if (p != NULL)
8017 		retval = sched_setscheduler(p, policy, &lparam);
8018 	rcu_read_unlock();
8019 
8020 	return retval;
8021 }
8022 
8023 /*
8024  * Mimics kernel/events/core.c perf_copy_attr().
8025  */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)8026 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
8027 {
8028 	u32 size;
8029 	int ret;
8030 
8031 	/* Zero the full structure, so that a short copy will be nice: */
8032 	memset(attr, 0, sizeof(*attr));
8033 
8034 	ret = get_user(size, &uattr->size);
8035 	if (ret)
8036 		return ret;
8037 
8038 	/* ABI compatibility quirk: */
8039 	if (!size)
8040 		size = SCHED_ATTR_SIZE_VER0;
8041 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
8042 		goto err_size;
8043 
8044 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
8045 	if (ret) {
8046 		if (ret == -E2BIG)
8047 			goto err_size;
8048 		return ret;
8049 	}
8050 
8051 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
8052 	    size < SCHED_ATTR_SIZE_VER1)
8053 		return -EINVAL;
8054 
8055 	/*
8056 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
8057 	 * to be strict and return an error on out-of-bounds values?
8058 	 */
8059 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
8060 
8061 	return 0;
8062 
8063 err_size:
8064 	put_user(sizeof(*attr), &uattr->size);
8065 	return -E2BIG;
8066 }
8067 
get_params(struct task_struct * p,struct sched_attr * attr)8068 static void get_params(struct task_struct *p, struct sched_attr *attr)
8069 {
8070 	if (task_has_dl_policy(p))
8071 		__getparam_dl(p, attr);
8072 	else if (task_has_rt_policy(p))
8073 		attr->sched_priority = p->rt_priority;
8074 	else
8075 		attr->sched_nice = task_nice(p);
8076 }
8077 
8078 /**
8079  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
8080  * @pid: the pid in question.
8081  * @policy: new policy.
8082  * @param: structure containing the new RT priority.
8083  *
8084  * Return: 0 on success. An error code otherwise.
8085  */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)8086 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
8087 {
8088 	if (policy < 0)
8089 		return -EINVAL;
8090 
8091 	return do_sched_setscheduler(pid, policy, param);
8092 }
8093 
8094 /**
8095  * sys_sched_setparam - set/change the RT priority of a thread
8096  * @pid: the pid in question.
8097  * @param: structure containing the new RT priority.
8098  *
8099  * Return: 0 on success. An error code otherwise.
8100  */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)8101 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
8102 {
8103 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
8104 }
8105 
8106 /**
8107  * sys_sched_setattr - same as above, but with extended sched_attr
8108  * @pid: the pid in question.
8109  * @uattr: structure containing the extended parameters.
8110  * @flags: for future extension.
8111  */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)8112 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8113 			       unsigned int, flags)
8114 {
8115 	struct sched_attr attr;
8116 	struct task_struct *p;
8117 	int retval;
8118 
8119 	if (!uattr || pid < 0 || flags)
8120 		return -EINVAL;
8121 
8122 	retval = sched_copy_attr(uattr, &attr);
8123 	if (retval)
8124 		return retval;
8125 
8126 	if ((int)attr.sched_policy < 0)
8127 		return -EINVAL;
8128 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8129 		attr.sched_policy = SETPARAM_POLICY;
8130 
8131 	rcu_read_lock();
8132 	retval = -ESRCH;
8133 	p = find_process_by_pid(pid);
8134 	if (likely(p))
8135 		get_task_struct(p);
8136 	rcu_read_unlock();
8137 
8138 	if (likely(p)) {
8139 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8140 			get_params(p, &attr);
8141 		retval = sched_setattr(p, &attr);
8142 		put_task_struct(p);
8143 	}
8144 
8145 	return retval;
8146 }
8147 
8148 /**
8149  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8150  * @pid: the pid in question.
8151  *
8152  * Return: On success, the policy of the thread. Otherwise, a negative error
8153  * code.
8154  */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)8155 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8156 {
8157 	struct task_struct *p;
8158 	int retval;
8159 
8160 	if (pid < 0)
8161 		return -EINVAL;
8162 
8163 	retval = -ESRCH;
8164 	rcu_read_lock();
8165 	p = find_process_by_pid(pid);
8166 	if (p) {
8167 		retval = security_task_getscheduler(p);
8168 		if (!retval)
8169 			retval = p->policy
8170 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
8171 	}
8172 	rcu_read_unlock();
8173 	return retval;
8174 }
8175 
8176 /**
8177  * sys_sched_getparam - get the RT priority of a thread
8178  * @pid: the pid in question.
8179  * @param: structure containing the RT priority.
8180  *
8181  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8182  * code.
8183  */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)8184 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8185 {
8186 	struct sched_param lp = { .sched_priority = 0 };
8187 	struct task_struct *p;
8188 	int retval;
8189 
8190 	if (!param || pid < 0)
8191 		return -EINVAL;
8192 
8193 	rcu_read_lock();
8194 	p = find_process_by_pid(pid);
8195 	retval = -ESRCH;
8196 	if (!p)
8197 		goto out_unlock;
8198 
8199 	retval = security_task_getscheduler(p);
8200 	if (retval)
8201 		goto out_unlock;
8202 
8203 	if (task_has_rt_policy(p))
8204 		lp.sched_priority = p->rt_priority;
8205 	rcu_read_unlock();
8206 
8207 	/*
8208 	 * This one might sleep, we cannot do it with a spinlock held ...
8209 	 */
8210 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8211 
8212 	return retval;
8213 
8214 out_unlock:
8215 	rcu_read_unlock();
8216 	return retval;
8217 }
8218 
8219 /*
8220  * Copy the kernel size attribute structure (which might be larger
8221  * than what user-space knows about) to user-space.
8222  *
8223  * Note that all cases are valid: user-space buffer can be larger or
8224  * smaller than the kernel-space buffer. The usual case is that both
8225  * have the same size.
8226  */
8227 static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)8228 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8229 			struct sched_attr *kattr,
8230 			unsigned int usize)
8231 {
8232 	unsigned int ksize = sizeof(*kattr);
8233 
8234 	if (!access_ok(uattr, usize))
8235 		return -EFAULT;
8236 
8237 	/*
8238 	 * sched_getattr() ABI forwards and backwards compatibility:
8239 	 *
8240 	 * If usize == ksize then we just copy everything to user-space and all is good.
8241 	 *
8242 	 * If usize < ksize then we only copy as much as user-space has space for,
8243 	 * this keeps ABI compatibility as well. We skip the rest.
8244 	 *
8245 	 * If usize > ksize then user-space is using a newer version of the ABI,
8246 	 * which part the kernel doesn't know about. Just ignore it - tooling can
8247 	 * detect the kernel's knowledge of attributes from the attr->size value
8248 	 * which is set to ksize in this case.
8249 	 */
8250 	kattr->size = min(usize, ksize);
8251 
8252 	if (copy_to_user(uattr, kattr, kattr->size))
8253 		return -EFAULT;
8254 
8255 	return 0;
8256 }
8257 
8258 /**
8259  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8260  * @pid: the pid in question.
8261  * @uattr: structure containing the extended parameters.
8262  * @usize: sizeof(attr) for fwd/bwd comp.
8263  * @flags: for future extension.
8264  */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)8265 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8266 		unsigned int, usize, unsigned int, flags)
8267 {
8268 	struct sched_attr kattr = { };
8269 	struct task_struct *p;
8270 	int retval;
8271 
8272 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8273 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
8274 		return -EINVAL;
8275 
8276 	rcu_read_lock();
8277 	p = find_process_by_pid(pid);
8278 	retval = -ESRCH;
8279 	if (!p)
8280 		goto out_unlock;
8281 
8282 	retval = security_task_getscheduler(p);
8283 	if (retval)
8284 		goto out_unlock;
8285 
8286 	kattr.sched_policy = p->policy;
8287 	if (p->sched_reset_on_fork)
8288 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8289 	get_params(p, &kattr);
8290 	kattr.sched_flags &= SCHED_FLAG_ALL;
8291 
8292 #ifdef CONFIG_UCLAMP_TASK
8293 	/*
8294 	 * This could race with another potential updater, but this is fine
8295 	 * because it'll correctly read the old or the new value. We don't need
8296 	 * to guarantee who wins the race as long as it doesn't return garbage.
8297 	 */
8298 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8299 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8300 #endif
8301 
8302 	rcu_read_unlock();
8303 
8304 	return sched_attr_copy_to_user(uattr, &kattr, usize);
8305 
8306 out_unlock:
8307 	rcu_read_unlock();
8308 	return retval;
8309 }
8310 
8311 #ifdef CONFIG_SMP
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)8312 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8313 {
8314 	int ret = 0;
8315 
8316 	/*
8317 	 * If the task isn't a deadline task or admission control is
8318 	 * disabled then we don't care about affinity changes.
8319 	 */
8320 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8321 		return 0;
8322 
8323 	/*
8324 	 * Since bandwidth control happens on root_domain basis,
8325 	 * if admission test is enabled, we only admit -deadline
8326 	 * tasks allowed to run on all the CPUs in the task's
8327 	 * root_domain.
8328 	 */
8329 	rcu_read_lock();
8330 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
8331 		ret = -EBUSY;
8332 	rcu_read_unlock();
8333 	return ret;
8334 }
8335 #endif
8336 
8337 static int
__sched_setaffinity(struct task_struct * p,const struct cpumask * mask)8338 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask)
8339 {
8340 	int retval;
8341 	cpumask_var_t cpus_allowed, new_mask;
8342 
8343 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8344 		return -ENOMEM;
8345 
8346 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8347 		retval = -ENOMEM;
8348 		goto out_free_cpus_allowed;
8349 	}
8350 
8351 	cpuset_cpus_allowed(p, cpus_allowed);
8352 	cpumask_and(new_mask, mask, cpus_allowed);
8353 
8354 	retval = dl_task_check_affinity(p, new_mask);
8355 	if (retval)
8356 		goto out_free_new_mask;
8357 again:
8358 	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER);
8359 	if (retval)
8360 		goto out_free_new_mask;
8361 
8362 	cpuset_cpus_allowed(p, cpus_allowed);
8363 	if (!cpumask_subset(new_mask, cpus_allowed)) {
8364 		/*
8365 		 * We must have raced with a concurrent cpuset update.
8366 		 * Just reset the cpumask to the cpuset's cpus_allowed.
8367 		 */
8368 		cpumask_copy(new_mask, cpus_allowed);
8369 		goto again;
8370 	}
8371 
8372 out_free_new_mask:
8373 	free_cpumask_var(new_mask);
8374 out_free_cpus_allowed:
8375 	free_cpumask_var(cpus_allowed);
8376 	return retval;
8377 }
8378 
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)8379 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8380 {
8381 	struct task_struct *p;
8382 	int retval = 0;
8383 	bool skip = false;
8384 
8385 	rcu_read_lock();
8386 
8387 	p = find_process_by_pid(pid);
8388 	if (!p) {
8389 		rcu_read_unlock();
8390 		return -ESRCH;
8391 	}
8392 
8393 	/* Prevent p going away */
8394 	get_task_struct(p);
8395 	rcu_read_unlock();
8396 
8397 	if (p->flags & PF_NO_SETAFFINITY) {
8398 		retval = -EINVAL;
8399 		goto out_put_task;
8400 	}
8401 
8402 	if (!check_same_owner(p)) {
8403 		rcu_read_lock();
8404 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8405 			rcu_read_unlock();
8406 			retval = -EPERM;
8407 			goto out_put_task;
8408 		}
8409 		rcu_read_unlock();
8410 	}
8411 
8412 	trace_android_vh_sched_setaffinity_early(p, in_mask, &skip);
8413 	if (skip)
8414 		goto out_put_task;
8415 	retval = security_task_setscheduler(p);
8416 	if (retval)
8417 		goto out_put_task;
8418 
8419 	retval = __sched_setaffinity(p, in_mask);
8420 	trace_android_rvh_sched_setaffinity(p, in_mask, &retval);
8421 
8422 out_put_task:
8423 	put_task_struct(p);
8424 	return retval;
8425 }
8426 
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)8427 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8428 			     struct cpumask *new_mask)
8429 {
8430 	if (len < cpumask_size())
8431 		cpumask_clear(new_mask);
8432 	else if (len > cpumask_size())
8433 		len = cpumask_size();
8434 
8435 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8436 }
8437 
8438 /**
8439  * sys_sched_setaffinity - set the CPU affinity of a process
8440  * @pid: pid of the process
8441  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8442  * @user_mask_ptr: user-space pointer to the new CPU mask
8443  *
8444  * Return: 0 on success. An error code otherwise.
8445  */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8446 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8447 		unsigned long __user *, user_mask_ptr)
8448 {
8449 	cpumask_var_t new_mask;
8450 	int retval;
8451 
8452 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8453 		return -ENOMEM;
8454 
8455 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8456 	if (retval == 0)
8457 		retval = sched_setaffinity(pid, new_mask);
8458 	free_cpumask_var(new_mask);
8459 	return retval;
8460 }
8461 
sched_getaffinity(pid_t pid,struct cpumask * mask)8462 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8463 {
8464 	struct task_struct *p;
8465 	unsigned long flags;
8466 	int retval;
8467 
8468 	rcu_read_lock();
8469 
8470 	retval = -ESRCH;
8471 	p = find_process_by_pid(pid);
8472 	if (!p)
8473 		goto out_unlock;
8474 
8475 	retval = security_task_getscheduler(p);
8476 	if (retval)
8477 		goto out_unlock;
8478 
8479 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8480 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8481 	trace_android_rvh_sched_getaffinity(p, mask);
8482 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8483 
8484 out_unlock:
8485 	rcu_read_unlock();
8486 
8487 	return retval;
8488 }
8489 
8490 /**
8491  * sys_sched_getaffinity - get the CPU affinity of a process
8492  * @pid: pid of the process
8493  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8494  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8495  *
8496  * Return: size of CPU mask copied to user_mask_ptr on success. An
8497  * error code otherwise.
8498  */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8499 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8500 		unsigned long __user *, user_mask_ptr)
8501 {
8502 	int ret;
8503 	cpumask_var_t mask;
8504 
8505 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8506 		return -EINVAL;
8507 	if (len & (sizeof(unsigned long)-1))
8508 		return -EINVAL;
8509 
8510 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
8511 		return -ENOMEM;
8512 
8513 	ret = sched_getaffinity(pid, mask);
8514 	if (ret == 0) {
8515 		unsigned int retlen = min(len, cpumask_size());
8516 
8517 		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
8518 			ret = -EFAULT;
8519 		else
8520 			ret = retlen;
8521 	}
8522 	free_cpumask_var(mask);
8523 
8524 	return ret;
8525 }
8526 
do_sched_yield(void)8527 static void do_sched_yield(void)
8528 {
8529 	struct rq_flags rf;
8530 	struct rq *rq;
8531 	long skip = 0;
8532 
8533 	trace_android_rvh_before_do_sched_yield(&skip);
8534 	if (skip)
8535 		return;
8536 
8537 	rq = this_rq_lock_irq(&rf);
8538 
8539 	schedstat_inc(rq->yld_count);
8540 	current->sched_class->yield_task(rq);
8541 
8542 	trace_android_rvh_do_sched_yield(rq);
8543 
8544 	preempt_disable();
8545 	rq_unlock_irq(rq, &rf);
8546 	sched_preempt_enable_no_resched();
8547 
8548 	schedule();
8549 }
8550 
8551 /**
8552  * sys_sched_yield - yield the current processor to other threads.
8553  *
8554  * This function yields the current CPU to other tasks. If there are no
8555  * other threads running on this CPU then this function will return.
8556  *
8557  * Return: 0.
8558  */
SYSCALL_DEFINE0(sched_yield)8559 SYSCALL_DEFINE0(sched_yield)
8560 {
8561 	do_sched_yield();
8562 	return 0;
8563 }
8564 
8565 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
__cond_resched(void)8566 int __sched __cond_resched(void)
8567 {
8568 	if (should_resched(0)) {
8569 		preempt_schedule_common();
8570 		return 1;
8571 	}
8572 	/*
8573 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8574 	 * whether the current CPU is in an RCU read-side critical section,
8575 	 * so the tick can report quiescent states even for CPUs looping
8576 	 * in kernel context.  In contrast, in non-preemptible kernels,
8577 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8578 	 * processes executing in kernel context might never report an
8579 	 * RCU quiescent state.  Therefore, the following code causes
8580 	 * cond_resched() to report a quiescent state, but only when RCU
8581 	 * is in urgent need of one.
8582 	 */
8583 #ifndef CONFIG_PREEMPT_RCU
8584 	rcu_all_qs();
8585 #endif
8586 	return 0;
8587 }
8588 EXPORT_SYMBOL(__cond_resched);
8589 #endif
8590 
8591 #ifdef CONFIG_PREEMPT_DYNAMIC
8592 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8593 #define cond_resched_dynamic_enabled	__cond_resched
8594 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8595 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8596 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8597 
8598 #define might_resched_dynamic_enabled	__cond_resched
8599 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8600 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8601 EXPORT_STATIC_CALL_TRAMP(might_resched);
8602 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8603 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
dynamic_cond_resched(void)8604 int __sched dynamic_cond_resched(void)
8605 {
8606 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8607 		return 0;
8608 	return __cond_resched();
8609 }
8610 EXPORT_SYMBOL(dynamic_cond_resched);
8611 
8612 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
dynamic_might_resched(void)8613 int __sched dynamic_might_resched(void)
8614 {
8615 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8616 		return 0;
8617 	return __cond_resched();
8618 }
8619 EXPORT_SYMBOL(dynamic_might_resched);
8620 #endif
8621 #endif
8622 
8623 /*
8624  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8625  * call schedule, and on return reacquire the lock.
8626  *
8627  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8628  * operations here to prevent schedule() from being called twice (once via
8629  * spin_unlock(), once by hand).
8630  */
__cond_resched_lock(spinlock_t * lock)8631 int __cond_resched_lock(spinlock_t *lock)
8632 {
8633 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8634 	int ret = 0;
8635 
8636 	lockdep_assert_held(lock);
8637 
8638 	if (spin_needbreak(lock) || resched) {
8639 		spin_unlock(lock);
8640 		if (!_cond_resched())
8641 			cpu_relax();
8642 		ret = 1;
8643 		spin_lock(lock);
8644 	}
8645 	return ret;
8646 }
8647 EXPORT_SYMBOL(__cond_resched_lock);
8648 
__cond_resched_rwlock_read(rwlock_t * lock)8649 int __cond_resched_rwlock_read(rwlock_t *lock)
8650 {
8651 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8652 	int ret = 0;
8653 
8654 	lockdep_assert_held_read(lock);
8655 
8656 	if (rwlock_needbreak(lock) || resched) {
8657 		read_unlock(lock);
8658 		if (!_cond_resched())
8659 			cpu_relax();
8660 		ret = 1;
8661 		read_lock(lock);
8662 	}
8663 	return ret;
8664 }
8665 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8666 
__cond_resched_rwlock_write(rwlock_t * lock)8667 int __cond_resched_rwlock_write(rwlock_t *lock)
8668 {
8669 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8670 	int ret = 0;
8671 
8672 	lockdep_assert_held_write(lock);
8673 
8674 	if (rwlock_needbreak(lock) || resched) {
8675 		write_unlock(lock);
8676 		if (!_cond_resched())
8677 			cpu_relax();
8678 		ret = 1;
8679 		write_lock(lock);
8680 	}
8681 	return ret;
8682 }
8683 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8684 
8685 #ifdef CONFIG_PREEMPT_DYNAMIC
8686 
8687 #ifdef CONFIG_GENERIC_ENTRY
8688 #include <linux/entry-common.h>
8689 #endif
8690 
8691 /*
8692  * SC:cond_resched
8693  * SC:might_resched
8694  * SC:preempt_schedule
8695  * SC:preempt_schedule_notrace
8696  * SC:irqentry_exit_cond_resched
8697  *
8698  *
8699  * NONE:
8700  *   cond_resched               <- __cond_resched
8701  *   might_resched              <- RET0
8702  *   preempt_schedule           <- NOP
8703  *   preempt_schedule_notrace   <- NOP
8704  *   irqentry_exit_cond_resched <- NOP
8705  *
8706  * VOLUNTARY:
8707  *   cond_resched               <- __cond_resched
8708  *   might_resched              <- __cond_resched
8709  *   preempt_schedule           <- NOP
8710  *   preempt_schedule_notrace   <- NOP
8711  *   irqentry_exit_cond_resched <- NOP
8712  *
8713  * FULL:
8714  *   cond_resched               <- RET0
8715  *   might_resched              <- RET0
8716  *   preempt_schedule           <- preempt_schedule
8717  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8718  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8719  */
8720 
8721 enum {
8722 	preempt_dynamic_undefined = -1,
8723 	preempt_dynamic_none,
8724 	preempt_dynamic_voluntary,
8725 	preempt_dynamic_full,
8726 };
8727 
8728 int preempt_dynamic_mode = preempt_dynamic_undefined;
8729 
sched_dynamic_mode(const char * str)8730 int sched_dynamic_mode(const char *str)
8731 {
8732 	if (!strcmp(str, "none"))
8733 		return preempt_dynamic_none;
8734 
8735 	if (!strcmp(str, "voluntary"))
8736 		return preempt_dynamic_voluntary;
8737 
8738 	if (!strcmp(str, "full"))
8739 		return preempt_dynamic_full;
8740 
8741 	return -EINVAL;
8742 }
8743 
8744 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8745 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8746 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8747 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8748 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8749 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8750 #else
8751 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8752 #endif
8753 
sched_dynamic_update(int mode)8754 void sched_dynamic_update(int mode)
8755 {
8756 	/*
8757 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8758 	 * the ZERO state, which is invalid.
8759 	 */
8760 	preempt_dynamic_enable(cond_resched);
8761 	preempt_dynamic_enable(might_resched);
8762 	preempt_dynamic_enable(preempt_schedule);
8763 	preempt_dynamic_enable(preempt_schedule_notrace);
8764 	preempt_dynamic_enable(irqentry_exit_cond_resched);
8765 
8766 	switch (mode) {
8767 	case preempt_dynamic_none:
8768 		preempt_dynamic_enable(cond_resched);
8769 		preempt_dynamic_disable(might_resched);
8770 		preempt_dynamic_disable(preempt_schedule);
8771 		preempt_dynamic_disable(preempt_schedule_notrace);
8772 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8773 		pr_info("Dynamic Preempt: none\n");
8774 		break;
8775 
8776 	case preempt_dynamic_voluntary:
8777 		preempt_dynamic_enable(cond_resched);
8778 		preempt_dynamic_enable(might_resched);
8779 		preempt_dynamic_disable(preempt_schedule);
8780 		preempt_dynamic_disable(preempt_schedule_notrace);
8781 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8782 		pr_info("Dynamic Preempt: voluntary\n");
8783 		break;
8784 
8785 	case preempt_dynamic_full:
8786 		preempt_dynamic_disable(cond_resched);
8787 		preempt_dynamic_disable(might_resched);
8788 		preempt_dynamic_enable(preempt_schedule);
8789 		preempt_dynamic_enable(preempt_schedule_notrace);
8790 		preempt_dynamic_enable(irqentry_exit_cond_resched);
8791 		pr_info("Dynamic Preempt: full\n");
8792 		break;
8793 	}
8794 
8795 	preempt_dynamic_mode = mode;
8796 }
8797 
setup_preempt_mode(char * str)8798 static int __init setup_preempt_mode(char *str)
8799 {
8800 	int mode = sched_dynamic_mode(str);
8801 	if (mode < 0) {
8802 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8803 		return 0;
8804 	}
8805 
8806 	sched_dynamic_update(mode);
8807 	return 1;
8808 }
8809 __setup("preempt=", setup_preempt_mode);
8810 
preempt_dynamic_init(void)8811 static void __init preempt_dynamic_init(void)
8812 {
8813 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8814 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8815 			sched_dynamic_update(preempt_dynamic_none);
8816 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8817 			sched_dynamic_update(preempt_dynamic_voluntary);
8818 		} else {
8819 			/* Default static call setting, nothing to do */
8820 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8821 			preempt_dynamic_mode = preempt_dynamic_full;
8822 			pr_info("Dynamic Preempt: full\n");
8823 		}
8824 	}
8825 }
8826 
8827 #define PREEMPT_MODEL_ACCESSOR(mode) \
8828 	bool preempt_model_##mode(void)						 \
8829 	{									 \
8830 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8831 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
8832 	}									 \
8833 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
8834 
8835 PREEMPT_MODEL_ACCESSOR(none);
8836 PREEMPT_MODEL_ACCESSOR(voluntary);
8837 PREEMPT_MODEL_ACCESSOR(full);
8838 
8839 #else /* !CONFIG_PREEMPT_DYNAMIC */
8840 
preempt_dynamic_init(void)8841 static inline void preempt_dynamic_init(void) { }
8842 
8843 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8844 
8845 /**
8846  * yield - yield the current processor to other threads.
8847  *
8848  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8849  *
8850  * The scheduler is at all times free to pick the calling task as the most
8851  * eligible task to run, if removing the yield() call from your code breaks
8852  * it, it's already broken.
8853  *
8854  * Typical broken usage is:
8855  *
8856  * while (!event)
8857  *	yield();
8858  *
8859  * where one assumes that yield() will let 'the other' process run that will
8860  * make event true. If the current task is a SCHED_FIFO task that will never
8861  * happen. Never use yield() as a progress guarantee!!
8862  *
8863  * If you want to use yield() to wait for something, use wait_event().
8864  * If you want to use yield() to be 'nice' for others, use cond_resched().
8865  * If you still want to use yield(), do not!
8866  */
yield(void)8867 void __sched yield(void)
8868 {
8869 	set_current_state(TASK_RUNNING);
8870 	do_sched_yield();
8871 }
8872 EXPORT_SYMBOL(yield);
8873 
8874 /**
8875  * yield_to - yield the current processor to another thread in
8876  * your thread group, or accelerate that thread toward the
8877  * processor it's on.
8878  * @p: target task
8879  * @preempt: whether task preemption is allowed or not
8880  *
8881  * It's the caller's job to ensure that the target task struct
8882  * can't go away on us before we can do any checks.
8883  *
8884  * Return:
8885  *	true (>0) if we indeed boosted the target task.
8886  *	false (0) if we failed to boost the target.
8887  *	-ESRCH if there's no task to yield to.
8888  */
yield_to(struct task_struct * p,bool preempt)8889 int __sched yield_to(struct task_struct *p, bool preempt)
8890 {
8891 	struct task_struct *curr = current;
8892 	struct rq *rq, *p_rq;
8893 	unsigned long flags;
8894 	int yielded = 0;
8895 
8896 	local_irq_save(flags);
8897 	rq = this_rq();
8898 
8899 again:
8900 	p_rq = task_rq(p);
8901 	/*
8902 	 * If we're the only runnable task on the rq and target rq also
8903 	 * has only one task, there's absolutely no point in yielding.
8904 	 */
8905 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8906 		yielded = -ESRCH;
8907 		goto out_irq;
8908 	}
8909 
8910 	double_rq_lock(rq, p_rq);
8911 	if (task_rq(p) != p_rq) {
8912 		double_rq_unlock(rq, p_rq);
8913 		goto again;
8914 	}
8915 
8916 	if (!curr->sched_class->yield_to_task)
8917 		goto out_unlock;
8918 
8919 	if (curr->sched_class != p->sched_class)
8920 		goto out_unlock;
8921 
8922 	if (task_on_cpu(p_rq, p) || !task_is_running(p))
8923 		goto out_unlock;
8924 
8925 	yielded = curr->sched_class->yield_to_task(rq, p);
8926 	if (yielded) {
8927 		schedstat_inc(rq->yld_count);
8928 		/*
8929 		 * Make p's CPU reschedule; pick_next_entity takes care of
8930 		 * fairness.
8931 		 */
8932 		if (preempt && rq != p_rq)
8933 			resched_curr(p_rq);
8934 	}
8935 
8936 out_unlock:
8937 	double_rq_unlock(rq, p_rq);
8938 out_irq:
8939 	local_irq_restore(flags);
8940 
8941 	if (yielded > 0)
8942 		schedule();
8943 
8944 	return yielded;
8945 }
8946 EXPORT_SYMBOL_GPL(yield_to);
8947 
io_schedule_prepare(void)8948 int io_schedule_prepare(void)
8949 {
8950 	int old_iowait = current->in_iowait;
8951 
8952 	current->in_iowait = 1;
8953 	blk_flush_plug(current->plug, true);
8954 	return old_iowait;
8955 }
8956 
io_schedule_finish(int token)8957 void io_schedule_finish(int token)
8958 {
8959 	current->in_iowait = token;
8960 }
8961 
8962 /*
8963  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8964  * that process accounting knows that this is a task in IO wait state.
8965  */
io_schedule_timeout(long timeout)8966 long __sched io_schedule_timeout(long timeout)
8967 {
8968 	int token;
8969 	long ret;
8970 
8971 	token = io_schedule_prepare();
8972 	ret = schedule_timeout(timeout);
8973 	io_schedule_finish(token);
8974 
8975 	return ret;
8976 }
8977 EXPORT_SYMBOL(io_schedule_timeout);
8978 
io_schedule(void)8979 void __sched io_schedule(void)
8980 {
8981 	int token;
8982 
8983 	token = io_schedule_prepare();
8984 	schedule();
8985 	io_schedule_finish(token);
8986 }
8987 EXPORT_SYMBOL(io_schedule);
8988 
8989 /**
8990  * sys_sched_get_priority_max - return maximum RT priority.
8991  * @policy: scheduling class.
8992  *
8993  * Return: On success, this syscall returns the maximum
8994  * rt_priority that can be used by a given scheduling class.
8995  * On failure, a negative error code is returned.
8996  */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)8997 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8998 {
8999 	int ret = -EINVAL;
9000 
9001 	switch (policy) {
9002 	case SCHED_FIFO:
9003 	case SCHED_RR:
9004 		ret = MAX_RT_PRIO-1;
9005 		break;
9006 	case SCHED_DEADLINE:
9007 	case SCHED_NORMAL:
9008 	case SCHED_BATCH:
9009 	case SCHED_IDLE:
9010 		ret = 0;
9011 		break;
9012 	}
9013 	return ret;
9014 }
9015 
9016 /**
9017  * sys_sched_get_priority_min - return minimum RT priority.
9018  * @policy: scheduling class.
9019  *
9020  * Return: On success, this syscall returns the minimum
9021  * rt_priority that can be used by a given scheduling class.
9022  * On failure, a negative error code is returned.
9023  */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)9024 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
9025 {
9026 	int ret = -EINVAL;
9027 
9028 	switch (policy) {
9029 	case SCHED_FIFO:
9030 	case SCHED_RR:
9031 		ret = 1;
9032 		break;
9033 	case SCHED_DEADLINE:
9034 	case SCHED_NORMAL:
9035 	case SCHED_BATCH:
9036 	case SCHED_IDLE:
9037 		ret = 0;
9038 	}
9039 	return ret;
9040 }
9041 
sched_rr_get_interval(pid_t pid,struct timespec64 * t)9042 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
9043 {
9044 	struct task_struct *p;
9045 	unsigned int time_slice;
9046 	struct rq_flags rf;
9047 	struct rq *rq;
9048 	int retval;
9049 
9050 	if (pid < 0)
9051 		return -EINVAL;
9052 
9053 	retval = -ESRCH;
9054 	rcu_read_lock();
9055 	p = find_process_by_pid(pid);
9056 	if (!p)
9057 		goto out_unlock;
9058 
9059 	retval = security_task_getscheduler(p);
9060 	if (retval)
9061 		goto out_unlock;
9062 
9063 	rq = task_rq_lock(p, &rf);
9064 	time_slice = 0;
9065 	if (p->sched_class->get_rr_interval)
9066 		time_slice = p->sched_class->get_rr_interval(rq, p);
9067 	task_rq_unlock(rq, p, &rf);
9068 
9069 	rcu_read_unlock();
9070 	jiffies_to_timespec64(time_slice, t);
9071 	return 0;
9072 
9073 out_unlock:
9074 	rcu_read_unlock();
9075 	return retval;
9076 }
9077 
9078 /**
9079  * sys_sched_rr_get_interval - return the default timeslice of a process.
9080  * @pid: pid of the process.
9081  * @interval: userspace pointer to the timeslice value.
9082  *
9083  * this syscall writes the default timeslice value of a given process
9084  * into the user-space timespec buffer. A value of '0' means infinity.
9085  *
9086  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9087  * an error code.
9088  */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)9089 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
9090 		struct __kernel_timespec __user *, interval)
9091 {
9092 	struct timespec64 t;
9093 	int retval = sched_rr_get_interval(pid, &t);
9094 
9095 	if (retval == 0)
9096 		retval = put_timespec64(&t, interval);
9097 
9098 	return retval;
9099 }
9100 
9101 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)9102 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9103 		struct old_timespec32 __user *, interval)
9104 {
9105 	struct timespec64 t;
9106 	int retval = sched_rr_get_interval(pid, &t);
9107 
9108 	if (retval == 0)
9109 		retval = put_old_timespec32(&t, interval);
9110 	return retval;
9111 }
9112 #endif
9113 
sched_show_task(struct task_struct * p)9114 void sched_show_task(struct task_struct *p)
9115 {
9116 	unsigned long free = 0;
9117 	int ppid;
9118 
9119 	if (!try_get_task_stack(p))
9120 		return;
9121 
9122 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9123 
9124 	if (task_is_running(p))
9125 		pr_cont("  running task    ");
9126 #ifdef CONFIG_DEBUG_STACK_USAGE
9127 	free = stack_not_used(p);
9128 #endif
9129 	ppid = 0;
9130 	rcu_read_lock();
9131 	if (pid_alive(p))
9132 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
9133 	rcu_read_unlock();
9134 	pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
9135 		free, task_pid_nr(p), ppid,
9136 		read_task_thread_flags(p));
9137 
9138 	print_worker_info(KERN_INFO, p);
9139 	print_stop_info(KERN_INFO, p);
9140 	trace_android_vh_sched_show_task(p);
9141 	show_stack(p, NULL, KERN_INFO);
9142 	put_task_stack(p);
9143 }
9144 EXPORT_SYMBOL_GPL(sched_show_task);
9145 
9146 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)9147 state_filter_match(unsigned long state_filter, struct task_struct *p)
9148 {
9149 	unsigned int state = READ_ONCE(p->__state);
9150 
9151 	/* no filter, everything matches */
9152 	if (!state_filter)
9153 		return true;
9154 
9155 	/* filter, but doesn't match */
9156 	if (!(state & state_filter))
9157 		return false;
9158 
9159 	/*
9160 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9161 	 * TASK_KILLABLE).
9162 	 */
9163 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9164 		return false;
9165 
9166 	return true;
9167 }
9168 
9169 
show_state_filter(unsigned int state_filter)9170 void show_state_filter(unsigned int state_filter)
9171 {
9172 	struct task_struct *g, *p;
9173 
9174 	rcu_read_lock();
9175 	for_each_process_thread(g, p) {
9176 		/*
9177 		 * reset the NMI-timeout, listing all files on a slow
9178 		 * console might take a lot of time:
9179 		 * Also, reset softlockup watchdogs on all CPUs, because
9180 		 * another CPU might be blocked waiting for us to process
9181 		 * an IPI.
9182 		 */
9183 		touch_nmi_watchdog();
9184 		touch_all_softlockup_watchdogs();
9185 		if (state_filter_match(state_filter, p))
9186 			sched_show_task(p);
9187 	}
9188 
9189 #ifdef CONFIG_SCHED_DEBUG
9190 	if (!state_filter)
9191 		sysrq_sched_debug_show();
9192 #endif
9193 	rcu_read_unlock();
9194 	/*
9195 	 * Only show locks if all tasks are dumped:
9196 	 */
9197 	if (!state_filter)
9198 		debug_show_all_locks();
9199 }
9200 
9201 /**
9202  * init_idle - set up an idle thread for a given CPU
9203  * @idle: task in question
9204  * @cpu: CPU the idle task belongs to
9205  *
9206  * NOTE: this function does not set the idle thread's NEED_RESCHED
9207  * flag, to make booting more robust.
9208  */
init_idle(struct task_struct * idle,int cpu)9209 void __init init_idle(struct task_struct *idle, int cpu)
9210 {
9211 	struct rq *rq = cpu_rq(cpu);
9212 	unsigned long flags;
9213 
9214 	__sched_fork(0, idle);
9215 
9216 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
9217 	raw_spin_rq_lock(rq);
9218 
9219 	idle->__state = TASK_RUNNING;
9220 	idle->se.exec_start = sched_clock();
9221 	/*
9222 	 * PF_KTHREAD should already be set at this point; regardless, make it
9223 	 * look like a proper per-CPU kthread.
9224 	 */
9225 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
9226 	kthread_set_per_cpu(idle, cpu);
9227 
9228 #ifdef CONFIG_SMP
9229 	/*
9230 	 * It's possible that init_idle() gets called multiple times on a task,
9231 	 * in that case do_set_cpus_allowed() will not do the right thing.
9232 	 *
9233 	 * And since this is boot we can forgo the serialization.
9234 	 */
9235 	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
9236 #endif
9237 	/*
9238 	 * We're having a chicken and egg problem, even though we are
9239 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
9240 	 * lockdep check in task_group() will fail.
9241 	 *
9242 	 * Similar case to sched_fork(). / Alternatively we could
9243 	 * use task_rq_lock() here and obtain the other rq->lock.
9244 	 *
9245 	 * Silence PROVE_RCU
9246 	 */
9247 	rcu_read_lock();
9248 	__set_task_cpu(idle, cpu);
9249 	rcu_read_unlock();
9250 
9251 	rq->idle = idle;
9252 	rcu_assign_pointer(rq->curr, idle);
9253 	idle->on_rq = TASK_ON_RQ_QUEUED;
9254 #ifdef CONFIG_SMP
9255 	idle->on_cpu = 1;
9256 #endif
9257 	raw_spin_rq_unlock(rq);
9258 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9259 
9260 	/* Set the preempt count _outside_ the spinlocks! */
9261 	init_idle_preempt_count(idle, cpu);
9262 
9263 	/*
9264 	 * The idle tasks have their own, simple scheduling class:
9265 	 */
9266 	idle->sched_class = &idle_sched_class;
9267 	ftrace_graph_init_idle_task(idle, cpu);
9268 	vtime_init_idle(idle, cpu);
9269 #ifdef CONFIG_SMP
9270 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9271 #endif
9272 }
9273 
9274 #ifdef CONFIG_SMP
9275 
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)9276 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9277 			      const struct cpumask *trial)
9278 {
9279 	int ret = 1;
9280 
9281 	if (cpumask_empty(cur))
9282 		return ret;
9283 
9284 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9285 
9286 	return ret;
9287 }
9288 
task_can_attach(struct task_struct * p)9289 int task_can_attach(struct task_struct *p)
9290 {
9291 	int ret = 0;
9292 
9293 	/*
9294 	 * Kthreads which disallow setaffinity shouldn't be moved
9295 	 * to a new cpuset; we don't want to change their CPU
9296 	 * affinity and isolating such threads by their set of
9297 	 * allowed nodes is unnecessary.  Thus, cpusets are not
9298 	 * applicable for such threads.  This prevents checking for
9299 	 * success of set_cpus_allowed_ptr() on all attached tasks
9300 	 * before cpus_mask may be changed.
9301 	 */
9302 	if (p->flags & PF_NO_SETAFFINITY)
9303 		ret = -EINVAL;
9304 
9305 	return ret;
9306 }
9307 
9308 bool sched_smp_initialized __read_mostly;
9309 
9310 #ifdef CONFIG_NUMA_BALANCING
9311 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)9312 int migrate_task_to(struct task_struct *p, int target_cpu)
9313 {
9314 	struct migration_arg arg = { p, target_cpu };
9315 	int curr_cpu = task_cpu(p);
9316 
9317 	if (curr_cpu == target_cpu)
9318 		return 0;
9319 
9320 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9321 		return -EINVAL;
9322 
9323 	/* TODO: This is not properly updating schedstats */
9324 
9325 	trace_sched_move_numa(p, curr_cpu, target_cpu);
9326 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9327 }
9328 
9329 /*
9330  * Requeue a task on a given node and accurately track the number of NUMA
9331  * tasks on the runqueues
9332  */
sched_setnuma(struct task_struct * p,int nid)9333 void sched_setnuma(struct task_struct *p, int nid)
9334 {
9335 	bool queued, running;
9336 	struct rq_flags rf;
9337 	struct rq *rq;
9338 
9339 	rq = task_rq_lock(p, &rf);
9340 	queued = task_on_rq_queued(p);
9341 	running = task_current(rq, p);
9342 
9343 	if (queued)
9344 		dequeue_task(rq, p, DEQUEUE_SAVE);
9345 	if (running)
9346 		put_prev_task(rq, p);
9347 
9348 	p->numa_preferred_nid = nid;
9349 
9350 	if (queued)
9351 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9352 	if (running)
9353 		set_next_task(rq, p);
9354 	task_rq_unlock(rq, p, &rf);
9355 }
9356 #endif /* CONFIG_NUMA_BALANCING */
9357 
9358 #ifdef CONFIG_HOTPLUG_CPU
9359 /*
9360  * Ensure that the idle task is using init_mm right before its CPU goes
9361  * offline.
9362  */
idle_task_exit(void)9363 void idle_task_exit(void)
9364 {
9365 	struct mm_struct *mm = current->active_mm;
9366 
9367 	BUG_ON(cpu_online(smp_processor_id()));
9368 	BUG_ON(current != this_rq()->idle);
9369 
9370 	if (mm != &init_mm) {
9371 		switch_mm(mm, &init_mm, current);
9372 		finish_arch_post_lock_switch();
9373 	}
9374 
9375 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9376 }
9377 
pick_migrate_task(struct rq * rq)9378 struct task_struct *pick_migrate_task(struct rq *rq)
9379 {
9380 	const struct sched_class *class;
9381 	struct task_struct *next;
9382 
9383 	for_each_class(class) {
9384 		next = class->pick_next_task(rq);
9385 		if (next) {
9386 			next->sched_class->put_prev_task(rq, next);
9387 			return next;
9388 		}
9389 	}
9390 
9391 	/* The idle class should always have a runnable task */
9392 	BUG();
9393 }
9394 EXPORT_SYMBOL_GPL(pick_migrate_task);
9395 
__balance_push_cpu_stop(void * arg)9396 static int __balance_push_cpu_stop(void *arg)
9397 {
9398 	struct task_struct *p = arg;
9399 	struct rq *rq = this_rq();
9400 	struct rq_flags rf;
9401 	int cpu;
9402 
9403 	raw_spin_lock_irq(&p->pi_lock);
9404 	rq_lock(rq, &rf);
9405 
9406 	update_rq_clock(rq);
9407 
9408 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
9409 		cpu = select_fallback_rq(rq->cpu, p);
9410 		rq = __migrate_task(rq, &rf, p, cpu);
9411 	}
9412 
9413 	rq_unlock(rq, &rf);
9414 	raw_spin_unlock_irq(&p->pi_lock);
9415 
9416 	put_task_struct(p);
9417 
9418 	return 0;
9419 }
9420 
9421 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9422 
9423 /*
9424  * Ensure we only run per-cpu kthreads once the CPU goes !active.
9425  *
9426  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9427  * effective when the hotplug motion is down.
9428  */
balance_push(struct rq * rq)9429 static void balance_push(struct rq *rq)
9430 {
9431 	struct task_struct *push_task = rq->curr;
9432 
9433 	lockdep_assert_rq_held(rq);
9434 
9435 	/*
9436 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9437 	 */
9438 	rq->balance_callback = &balance_push_callback;
9439 
9440 	/*
9441 	 * Only active while going offline and when invoked on the outgoing
9442 	 * CPU.
9443 	 */
9444 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9445 		return;
9446 
9447 	/*
9448 	 * Both the cpu-hotplug and stop task are in this case and are
9449 	 * required to complete the hotplug process.
9450 	 */
9451 	if (kthread_is_per_cpu(push_task) ||
9452 	    is_migration_disabled(push_task)) {
9453 
9454 		/*
9455 		 * If this is the idle task on the outgoing CPU try to wake
9456 		 * up the hotplug control thread which might wait for the
9457 		 * last task to vanish. The rcuwait_active() check is
9458 		 * accurate here because the waiter is pinned on this CPU
9459 		 * and can't obviously be running in parallel.
9460 		 *
9461 		 * On RT kernels this also has to check whether there are
9462 		 * pinned and scheduled out tasks on the runqueue. They
9463 		 * need to leave the migrate disabled section first.
9464 		 */
9465 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9466 		    rcuwait_active(&rq->hotplug_wait)) {
9467 			raw_spin_rq_unlock(rq);
9468 			rcuwait_wake_up(&rq->hotplug_wait);
9469 			raw_spin_rq_lock(rq);
9470 		}
9471 		return;
9472 	}
9473 
9474 	get_task_struct(push_task);
9475 	/*
9476 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9477 	 * Both preemption and IRQs are still disabled.
9478 	 */
9479 	preempt_disable();
9480 	raw_spin_rq_unlock(rq);
9481 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9482 			    this_cpu_ptr(&push_work));
9483 	preempt_enable();
9484 	/*
9485 	 * At this point need_resched() is true and we'll take the loop in
9486 	 * schedule(). The next pick is obviously going to be the stop task
9487 	 * which kthread_is_per_cpu() and will push this task away.
9488 	 */
9489 	raw_spin_rq_lock(rq);
9490 }
9491 
balance_push_set(int cpu,bool on)9492 static void balance_push_set(int cpu, bool on)
9493 {
9494 	struct rq *rq = cpu_rq(cpu);
9495 	struct rq_flags rf;
9496 
9497 	rq_lock_irqsave(rq, &rf);
9498 	if (on) {
9499 		WARN_ON_ONCE(rq->balance_callback);
9500 		rq->balance_callback = &balance_push_callback;
9501 	} else if (rq->balance_callback == &balance_push_callback) {
9502 		rq->balance_callback = NULL;
9503 	}
9504 	rq_unlock_irqrestore(rq, &rf);
9505 }
9506 
9507 /*
9508  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9509  * inactive. All tasks which are not per CPU kernel threads are either
9510  * pushed off this CPU now via balance_push() or placed on a different CPU
9511  * during wakeup. Wait until the CPU is quiescent.
9512  */
balance_hotplug_wait(void)9513 static void balance_hotplug_wait(void)
9514 {
9515 	struct rq *rq = this_rq();
9516 
9517 	rcuwait_wait_event(&rq->hotplug_wait,
9518 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9519 			   TASK_UNINTERRUPTIBLE);
9520 }
9521 
9522 #else
9523 
balance_push(struct rq * rq)9524 static inline void balance_push(struct rq *rq)
9525 {
9526 }
9527 
balance_push_set(int cpu,bool on)9528 static inline void balance_push_set(int cpu, bool on)
9529 {
9530 }
9531 
balance_hotplug_wait(void)9532 static inline void balance_hotplug_wait(void)
9533 {
9534 }
9535 
9536 #endif /* CONFIG_HOTPLUG_CPU */
9537 
set_rq_online(struct rq * rq)9538 void set_rq_online(struct rq *rq)
9539 {
9540 	if (!rq->online) {
9541 		const struct sched_class *class;
9542 
9543 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9544 		rq->online = 1;
9545 
9546 		for_each_class(class) {
9547 			if (class->rq_online)
9548 				class->rq_online(rq);
9549 		}
9550 	}
9551 }
9552 
set_rq_offline(struct rq * rq)9553 void set_rq_offline(struct rq *rq)
9554 {
9555 	if (rq->online) {
9556 		const struct sched_class *class;
9557 
9558 		for_each_class(class) {
9559 			if (class->rq_offline)
9560 				class->rq_offline(rq);
9561 		}
9562 
9563 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9564 		rq->online = 0;
9565 	}
9566 }
9567 
9568 /*
9569  * used to mark begin/end of suspend/resume:
9570  */
9571 static int num_cpus_frozen;
9572 
9573 /*
9574  * Update cpusets according to cpu_active mask.  If cpusets are
9575  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9576  * around partition_sched_domains().
9577  *
9578  * If we come here as part of a suspend/resume, don't touch cpusets because we
9579  * want to restore it back to its original state upon resume anyway.
9580  */
cpuset_cpu_active(void)9581 static void cpuset_cpu_active(void)
9582 {
9583 	if (cpuhp_tasks_frozen) {
9584 		/*
9585 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9586 		 * resume sequence. As long as this is not the last online
9587 		 * operation in the resume sequence, just build a single sched
9588 		 * domain, ignoring cpusets.
9589 		 */
9590 		partition_sched_domains(1, NULL, NULL);
9591 		if (--num_cpus_frozen)
9592 			return;
9593 		/*
9594 		 * This is the last CPU online operation. So fall through and
9595 		 * restore the original sched domains by considering the
9596 		 * cpuset configurations.
9597 		 */
9598 		cpuset_force_rebuild();
9599 	}
9600 	cpuset_update_active_cpus();
9601 }
9602 
cpuset_cpu_inactive(unsigned int cpu)9603 static int cpuset_cpu_inactive(unsigned int cpu)
9604 {
9605 	if (!cpuhp_tasks_frozen) {
9606 		int ret = dl_bw_check_overflow(cpu);
9607 
9608 		if (ret)
9609 			return ret;
9610 		cpuset_update_active_cpus();
9611 	} else {
9612 		num_cpus_frozen++;
9613 		partition_sched_domains(1, NULL, NULL);
9614 	}
9615 	return 0;
9616 }
9617 
sched_cpu_activate(unsigned int cpu)9618 int sched_cpu_activate(unsigned int cpu)
9619 {
9620 	struct rq *rq = cpu_rq(cpu);
9621 	struct rq_flags rf;
9622 
9623 	/*
9624 	 * Clear the balance_push callback and prepare to schedule
9625 	 * regular tasks.
9626 	 */
9627 	balance_push_set(cpu, false);
9628 
9629 #ifdef CONFIG_SCHED_SMT
9630 	/*
9631 	 * When going up, increment the number of cores with SMT present.
9632 	 */
9633 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9634 		static_branch_inc_cpuslocked(&sched_smt_present);
9635 #endif
9636 	set_cpu_active(cpu, true);
9637 
9638 	if (sched_smp_initialized) {
9639 		sched_update_numa(cpu, true);
9640 		sched_domains_numa_masks_set(cpu);
9641 		cpuset_cpu_active();
9642 	}
9643 
9644 	/*
9645 	 * Put the rq online, if not already. This happens:
9646 	 *
9647 	 * 1) In the early boot process, because we build the real domains
9648 	 *    after all CPUs have been brought up.
9649 	 *
9650 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9651 	 *    domains.
9652 	 */
9653 	rq_lock_irqsave(rq, &rf);
9654 	if (rq->rd) {
9655 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9656 		set_rq_online(rq);
9657 	}
9658 	rq_unlock_irqrestore(rq, &rf);
9659 
9660 	return 0;
9661 }
9662 
sched_cpu_deactivate(unsigned int cpu)9663 int sched_cpu_deactivate(unsigned int cpu)
9664 {
9665 	struct rq *rq = cpu_rq(cpu);
9666 	struct rq_flags rf;
9667 	int ret;
9668 
9669 	/*
9670 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9671 	 * load balancing when not active
9672 	 */
9673 	nohz_balance_exit_idle(rq);
9674 
9675 	set_cpu_active(cpu, false);
9676 
9677 	/*
9678 	 * From this point forward, this CPU will refuse to run any task that
9679 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9680 	 * push those tasks away until this gets cleared, see
9681 	 * sched_cpu_dying().
9682 	 */
9683 	balance_push_set(cpu, true);
9684 
9685 	/*
9686 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9687 	 * preempt-disabled and RCU users of this state to go away such that
9688 	 * all new such users will observe it.
9689 	 *
9690 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9691 	 * ttwu_queue_cond() and is_cpu_allowed().
9692 	 *
9693 	 * Do sync before park smpboot threads to take care the rcu boost case.
9694 	 */
9695 	synchronize_rcu();
9696 
9697 	rq_lock_irqsave(rq, &rf);
9698 	if (rq->rd) {
9699 		update_rq_clock(rq);
9700 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9701 		set_rq_offline(rq);
9702 	}
9703 	rq_unlock_irqrestore(rq, &rf);
9704 
9705 #ifdef CONFIG_SCHED_SMT
9706 	/*
9707 	 * When going down, decrement the number of cores with SMT present.
9708 	 */
9709 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9710 		static_branch_dec_cpuslocked(&sched_smt_present);
9711 
9712 	sched_core_cpu_deactivate(cpu);
9713 #endif
9714 
9715 	if (!sched_smp_initialized)
9716 		return 0;
9717 
9718 	sched_update_numa(cpu, false);
9719 	ret = cpuset_cpu_inactive(cpu);
9720 	if (ret) {
9721 		balance_push_set(cpu, false);
9722 		set_cpu_active(cpu, true);
9723 		sched_update_numa(cpu, true);
9724 		return ret;
9725 	}
9726 	sched_domains_numa_masks_clear(cpu);
9727 	return 0;
9728 }
9729 
sched_rq_cpu_starting(unsigned int cpu)9730 static void sched_rq_cpu_starting(unsigned int cpu)
9731 {
9732 	struct rq *rq = cpu_rq(cpu);
9733 
9734 	rq->calc_load_update = calc_load_update;
9735 	update_max_interval();
9736 }
9737 
sched_cpu_starting(unsigned int cpu)9738 int sched_cpu_starting(unsigned int cpu)
9739 {
9740 	sched_core_cpu_starting(cpu);
9741 	sched_rq_cpu_starting(cpu);
9742 	sched_tick_start(cpu);
9743 	trace_android_rvh_sched_cpu_starting(cpu);
9744 	return 0;
9745 }
9746 
9747 #ifdef CONFIG_HOTPLUG_CPU
9748 
9749 /*
9750  * Invoked immediately before the stopper thread is invoked to bring the
9751  * CPU down completely. At this point all per CPU kthreads except the
9752  * hotplug thread (current) and the stopper thread (inactive) have been
9753  * either parked or have been unbound from the outgoing CPU. Ensure that
9754  * any of those which might be on the way out are gone.
9755  *
9756  * If after this point a bound task is being woken on this CPU then the
9757  * responsible hotplug callback has failed to do it's job.
9758  * sched_cpu_dying() will catch it with the appropriate fireworks.
9759  */
sched_cpu_wait_empty(unsigned int cpu)9760 int sched_cpu_wait_empty(unsigned int cpu)
9761 {
9762 	balance_hotplug_wait();
9763 	return 0;
9764 }
9765 
9766 /*
9767  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9768  * might have. Called from the CPU stopper task after ensuring that the
9769  * stopper is the last running task on the CPU, so nr_active count is
9770  * stable. We need to take the teardown thread which is calling this into
9771  * account, so we hand in adjust = 1 to the load calculation.
9772  *
9773  * Also see the comment "Global load-average calculations".
9774  */
calc_load_migrate(struct rq * rq)9775 static void calc_load_migrate(struct rq *rq)
9776 {
9777 	long delta = calc_load_fold_active(rq, 1);
9778 
9779 	if (delta)
9780 		atomic_long_add(delta, &calc_load_tasks);
9781 }
9782 
dump_rq_tasks(struct rq * rq,const char * loglvl)9783 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9784 {
9785 	struct task_struct *g, *p;
9786 	int cpu = cpu_of(rq);
9787 
9788 	lockdep_assert_rq_held(rq);
9789 
9790 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9791 	for_each_process_thread(g, p) {
9792 		if (task_cpu(p) != cpu)
9793 			continue;
9794 
9795 		if (!task_on_rq_queued(p))
9796 			continue;
9797 
9798 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9799 	}
9800 }
9801 
sched_cpu_dying(unsigned int cpu)9802 int sched_cpu_dying(unsigned int cpu)
9803 {
9804 	struct rq *rq = cpu_rq(cpu);
9805 	struct rq_flags rf;
9806 
9807 	/* Handle pending wakeups and then migrate everything off */
9808 	sched_tick_stop(cpu);
9809 
9810 	rq_lock_irqsave(rq, &rf);
9811 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9812 		WARN(true, "Dying CPU not properly vacated!");
9813 		dump_rq_tasks(rq, KERN_WARNING);
9814 	}
9815 	rq_unlock_irqrestore(rq, &rf);
9816 
9817 	trace_android_rvh_sched_cpu_dying(cpu);
9818 
9819 	calc_load_migrate(rq);
9820 	update_max_interval();
9821 	hrtick_clear(rq);
9822 	sched_core_cpu_dying(cpu);
9823 	return 0;
9824 }
9825 #endif
9826 
sched_init_smp(void)9827 void __init sched_init_smp(void)
9828 {
9829 	sched_init_numa(NUMA_NO_NODE);
9830 
9831 	/*
9832 	 * There's no userspace yet to cause hotplug operations; hence all the
9833 	 * CPU masks are stable and all blatant races in the below code cannot
9834 	 * happen.
9835 	 */
9836 	mutex_lock(&sched_domains_mutex);
9837 	sched_init_domains(cpu_active_mask);
9838 	mutex_unlock(&sched_domains_mutex);
9839 
9840 	/* Move init over to a non-isolated CPU */
9841 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9842 		BUG();
9843 	current->flags &= ~PF_NO_SETAFFINITY;
9844 	sched_init_granularity();
9845 
9846 	init_sched_rt_class();
9847 	init_sched_dl_class();
9848 
9849 	sched_smp_initialized = true;
9850 }
9851 
migration_init(void)9852 static int __init migration_init(void)
9853 {
9854 	sched_cpu_starting(smp_processor_id());
9855 	return 0;
9856 }
9857 early_initcall(migration_init);
9858 
9859 #else
sched_init_smp(void)9860 void __init sched_init_smp(void)
9861 {
9862 	sched_init_granularity();
9863 }
9864 #endif /* CONFIG_SMP */
9865 
in_sched_functions(unsigned long addr)9866 int in_sched_functions(unsigned long addr)
9867 {
9868 	return in_lock_functions(addr) ||
9869 		(addr >= (unsigned long)__sched_text_start
9870 		&& addr < (unsigned long)__sched_text_end);
9871 }
9872 
9873 #ifdef CONFIG_CGROUP_SCHED
9874 /*
9875  * Default task group.
9876  * Every task in system belongs to this group at bootup.
9877  */
9878 struct task_group root_task_group;
9879 EXPORT_SYMBOL_GPL(root_task_group);
9880 LIST_HEAD(task_groups);
9881 EXPORT_SYMBOL_GPL(task_groups);
9882 
9883 /* Cacheline aligned slab cache for task_group */
9884 static struct kmem_cache *task_group_cache __read_mostly;
9885 #endif
9886 
sched_init(void)9887 void __init sched_init(void)
9888 {
9889 	unsigned long ptr = 0;
9890 	int i;
9891 
9892 	/* Make sure the linker didn't screw up */
9893 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9894 	       &fair_sched_class != &rt_sched_class + 1 ||
9895 	       &rt_sched_class   != &dl_sched_class + 1);
9896 #ifdef CONFIG_SMP
9897 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9898 #endif
9899 
9900 	wait_bit_init();
9901 
9902 #ifdef CONFIG_FAIR_GROUP_SCHED
9903 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9904 #endif
9905 #ifdef CONFIG_RT_GROUP_SCHED
9906 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9907 #endif
9908 	if (ptr) {
9909 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9910 
9911 #ifdef CONFIG_FAIR_GROUP_SCHED
9912 		root_task_group.se = (struct sched_entity **)ptr;
9913 		ptr += nr_cpu_ids * sizeof(void **);
9914 
9915 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9916 		ptr += nr_cpu_ids * sizeof(void **);
9917 
9918 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9919 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9920 #endif /* CONFIG_FAIR_GROUP_SCHED */
9921 #ifdef CONFIG_RT_GROUP_SCHED
9922 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9923 		ptr += nr_cpu_ids * sizeof(void **);
9924 
9925 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9926 		ptr += nr_cpu_ids * sizeof(void **);
9927 
9928 #endif /* CONFIG_RT_GROUP_SCHED */
9929 	}
9930 
9931 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9932 
9933 #ifdef CONFIG_SMP
9934 	init_defrootdomain();
9935 #endif
9936 
9937 #ifdef CONFIG_RT_GROUP_SCHED
9938 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9939 			global_rt_period(), global_rt_runtime());
9940 #endif /* CONFIG_RT_GROUP_SCHED */
9941 
9942 #ifdef CONFIG_CGROUP_SCHED
9943 	task_group_cache = KMEM_CACHE(task_group, 0);
9944 
9945 	list_add(&root_task_group.list, &task_groups);
9946 	INIT_LIST_HEAD(&root_task_group.children);
9947 	INIT_LIST_HEAD(&root_task_group.siblings);
9948 	autogroup_init(&init_task);
9949 #endif /* CONFIG_CGROUP_SCHED */
9950 
9951 	for_each_possible_cpu(i) {
9952 		struct rq *rq;
9953 
9954 		rq = cpu_rq(i);
9955 		raw_spin_lock_init(&rq->__lock);
9956 		rq->nr_running = 0;
9957 		rq->calc_load_active = 0;
9958 		rq->calc_load_update = jiffies + LOAD_FREQ;
9959 		init_cfs_rq(&rq->cfs);
9960 		init_rt_rq(&rq->rt);
9961 		init_dl_rq(&rq->dl);
9962 #ifdef CONFIG_FAIR_GROUP_SCHED
9963 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9964 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9965 		/*
9966 		 * How much CPU bandwidth does root_task_group get?
9967 		 *
9968 		 * In case of task-groups formed thr' the cgroup filesystem, it
9969 		 * gets 100% of the CPU resources in the system. This overall
9970 		 * system CPU resource is divided among the tasks of
9971 		 * root_task_group and its child task-groups in a fair manner,
9972 		 * based on each entity's (task or task-group's) weight
9973 		 * (se->load.weight).
9974 		 *
9975 		 * In other words, if root_task_group has 10 tasks of weight
9976 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9977 		 * then A0's share of the CPU resource is:
9978 		 *
9979 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9980 		 *
9981 		 * We achieve this by letting root_task_group's tasks sit
9982 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9983 		 */
9984 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9985 #endif /* CONFIG_FAIR_GROUP_SCHED */
9986 
9987 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9988 #ifdef CONFIG_RT_GROUP_SCHED
9989 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9990 #endif
9991 #ifdef CONFIG_SMP
9992 		rq->sd = NULL;
9993 		rq->rd = NULL;
9994 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9995 		rq->balance_callback = &balance_push_callback;
9996 		rq->active_balance = 0;
9997 		rq->next_balance = jiffies;
9998 		rq->push_cpu = 0;
9999 		rq->cpu = i;
10000 		rq->online = 0;
10001 		rq->idle_stamp = 0;
10002 		rq->avg_idle = 2*sysctl_sched_migration_cost;
10003 		rq->wake_stamp = jiffies;
10004 		rq->wake_avg_idle = rq->avg_idle;
10005 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
10006 
10007 		INIT_LIST_HEAD(&rq->cfs_tasks);
10008 
10009 		rq_attach_root(rq, &def_root_domain);
10010 #ifdef CONFIG_NO_HZ_COMMON
10011 		rq->last_blocked_load_update_tick = jiffies;
10012 		atomic_set(&rq->nohz_flags, 0);
10013 
10014 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
10015 #endif
10016 #ifdef CONFIG_HOTPLUG_CPU
10017 		rcuwait_init(&rq->hotplug_wait);
10018 #endif
10019 #endif /* CONFIG_SMP */
10020 		hrtick_rq_init(rq);
10021 		atomic_set(&rq->nr_iowait, 0);
10022 
10023 #ifdef CONFIG_SCHED_CORE
10024 		rq->core = rq;
10025 		rq->core_pick = NULL;
10026 		rq->core_enabled = 0;
10027 		rq->core_tree = RB_ROOT;
10028 		rq->core_forceidle_count = 0;
10029 		rq->core_forceidle_occupation = 0;
10030 		rq->core_forceidle_start = 0;
10031 
10032 		rq->core_cookie = 0UL;
10033 #endif
10034 	}
10035 
10036 	set_load_weight(&init_task, false);
10037 
10038 	/*
10039 	 * The boot idle thread does lazy MMU switching as well:
10040 	 */
10041 	mmgrab(&init_mm);
10042 	enter_lazy_tlb(&init_mm, current);
10043 
10044 	/*
10045 	 * The idle task doesn't need the kthread struct to function, but it
10046 	 * is dressed up as a per-CPU kthread and thus needs to play the part
10047 	 * if we want to avoid special-casing it in code that deals with per-CPU
10048 	 * kthreads.
10049 	 */
10050 	WARN_ON(!set_kthread_struct(current));
10051 
10052 	/*
10053 	 * Make us the idle thread. Technically, schedule() should not be
10054 	 * called from this thread, however somewhere below it might be,
10055 	 * but because we are the idle thread, we just pick up running again
10056 	 * when this runqueue becomes "idle".
10057 	 */
10058 	init_idle(current, smp_processor_id());
10059 
10060 	calc_load_update = jiffies + LOAD_FREQ;
10061 
10062 #ifdef CONFIG_SMP
10063 	idle_thread_set_boot_cpu();
10064 	balance_push_set(smp_processor_id(), false);
10065 #endif
10066 	init_sched_fair_class();
10067 
10068 	psi_init();
10069 
10070 	init_uclamp();
10071 
10072 	preempt_dynamic_init();
10073 
10074 	scheduler_running = 1;
10075 }
10076 
10077 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
10078 
__might_sleep(const char * file,int line)10079 void __might_sleep(const char *file, int line)
10080 {
10081 	unsigned int state = get_current_state();
10082 	/*
10083 	 * Blocking primitives will set (and therefore destroy) current->state,
10084 	 * since we will exit with TASK_RUNNING make sure we enter with it,
10085 	 * otherwise we will destroy state.
10086 	 */
10087 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
10088 			"do not call blocking ops when !TASK_RUNNING; "
10089 			"state=%x set at [<%p>] %pS\n", state,
10090 			(void *)current->task_state_change,
10091 			(void *)current->task_state_change);
10092 
10093 	__might_resched(file, line, 0);
10094 }
10095 EXPORT_SYMBOL(__might_sleep);
10096 
print_preempt_disable_ip(int preempt_offset,unsigned long ip)10097 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10098 {
10099 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10100 		return;
10101 
10102 	if (preempt_count() == preempt_offset)
10103 		return;
10104 
10105 	pr_err("Preemption disabled at:");
10106 	print_ip_sym(KERN_ERR, ip);
10107 }
10108 
resched_offsets_ok(unsigned int offsets)10109 static inline bool resched_offsets_ok(unsigned int offsets)
10110 {
10111 	unsigned int nested = preempt_count();
10112 
10113 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10114 
10115 	return nested == offsets;
10116 }
10117 
__might_resched(const char * file,int line,unsigned int offsets)10118 void __might_resched(const char *file, int line, unsigned int offsets)
10119 {
10120 	/* Ratelimiting timestamp: */
10121 	static unsigned long prev_jiffy;
10122 
10123 	unsigned long preempt_disable_ip;
10124 
10125 	/* WARN_ON_ONCE() by default, no rate limit required: */
10126 	rcu_sleep_check();
10127 
10128 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10129 	     !is_idle_task(current) && !current->non_block_count) ||
10130 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10131 	    oops_in_progress)
10132 		return;
10133 
10134 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10135 		return;
10136 	prev_jiffy = jiffies;
10137 
10138 	/* Save this before calling printk(), since that will clobber it: */
10139 	preempt_disable_ip = get_preempt_disable_ip(current);
10140 
10141 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10142 	       file, line);
10143 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10144 	       in_atomic(), irqs_disabled(), current->non_block_count,
10145 	       current->pid, current->comm);
10146 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10147 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
10148 
10149 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10150 		pr_err("RCU nest depth: %d, expected: %u\n",
10151 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10152 	}
10153 
10154 	if (task_stack_end_corrupted(current))
10155 		pr_emerg("Thread overran stack, or stack corrupted\n");
10156 
10157 	debug_show_held_locks(current);
10158 	if (irqs_disabled())
10159 		print_irqtrace_events(current);
10160 
10161 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10162 				 preempt_disable_ip);
10163 
10164 	trace_android_rvh_schedule_bug(NULL);
10165 
10166 	dump_stack();
10167 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10168 }
10169 EXPORT_SYMBOL(__might_resched);
10170 
__cant_sleep(const char * file,int line,int preempt_offset)10171 void __cant_sleep(const char *file, int line, int preempt_offset)
10172 {
10173 	static unsigned long prev_jiffy;
10174 
10175 	if (irqs_disabled())
10176 		return;
10177 
10178 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10179 		return;
10180 
10181 	if (preempt_count() > preempt_offset)
10182 		return;
10183 
10184 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10185 		return;
10186 	prev_jiffy = jiffies;
10187 
10188 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10189 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10190 			in_atomic(), irqs_disabled(),
10191 			current->pid, current->comm);
10192 
10193 	debug_show_held_locks(current);
10194 	dump_stack();
10195 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10196 }
10197 EXPORT_SYMBOL_GPL(__cant_sleep);
10198 
10199 #ifdef CONFIG_SMP
__cant_migrate(const char * file,int line)10200 void __cant_migrate(const char *file, int line)
10201 {
10202 	static unsigned long prev_jiffy;
10203 
10204 	if (irqs_disabled())
10205 		return;
10206 
10207 	if (is_migration_disabled(current))
10208 		return;
10209 
10210 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10211 		return;
10212 
10213 	if (preempt_count() > 0)
10214 		return;
10215 
10216 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10217 		return;
10218 	prev_jiffy = jiffies;
10219 
10220 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10221 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10222 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
10223 	       current->pid, current->comm);
10224 
10225 	debug_show_held_locks(current);
10226 	dump_stack();
10227 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10228 }
10229 EXPORT_SYMBOL_GPL(__cant_migrate);
10230 #endif
10231 #endif
10232 
10233 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)10234 void normalize_rt_tasks(void)
10235 {
10236 	struct task_struct *g, *p;
10237 	struct sched_attr attr = {
10238 		.sched_policy = SCHED_NORMAL,
10239 	};
10240 
10241 	read_lock(&tasklist_lock);
10242 	for_each_process_thread(g, p) {
10243 		/*
10244 		 * Only normalize user tasks:
10245 		 */
10246 		if (p->flags & PF_KTHREAD)
10247 			continue;
10248 
10249 		p->se.exec_start = 0;
10250 		schedstat_set(p->stats.wait_start,  0);
10251 		schedstat_set(p->stats.sleep_start, 0);
10252 		schedstat_set(p->stats.block_start, 0);
10253 
10254 		if (!dl_task(p) && !rt_task(p)) {
10255 			/*
10256 			 * Renice negative nice level userspace
10257 			 * tasks back to 0:
10258 			 */
10259 			if (task_nice(p) < 0)
10260 				set_user_nice(p, 0);
10261 			continue;
10262 		}
10263 
10264 		__sched_setscheduler(p, &attr, false, false);
10265 	}
10266 	read_unlock(&tasklist_lock);
10267 }
10268 
10269 #endif /* CONFIG_MAGIC_SYSRQ */
10270 
10271 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
10272 /*
10273  * These functions are only useful for the IA64 MCA handling, or kdb.
10274  *
10275  * They can only be called when the whole system has been
10276  * stopped - every CPU needs to be quiescent, and no scheduling
10277  * activity can take place. Using them for anything else would
10278  * be a serious bug, and as a result, they aren't even visible
10279  * under any other configuration.
10280  */
10281 
10282 /**
10283  * curr_task - return the current task for a given CPU.
10284  * @cpu: the processor in question.
10285  *
10286  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10287  *
10288  * Return: The current task for @cpu.
10289  */
curr_task(int cpu)10290 struct task_struct *curr_task(int cpu)
10291 {
10292 	return cpu_curr(cpu);
10293 }
10294 
10295 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10296 
10297 #ifdef CONFIG_IA64
10298 /**
10299  * ia64_set_curr_task - set the current task for a given CPU.
10300  * @cpu: the processor in question.
10301  * @p: the task pointer to set.
10302  *
10303  * Description: This function must only be used when non-maskable interrupts
10304  * are serviced on a separate stack. It allows the architecture to switch the
10305  * notion of the current task on a CPU in a non-blocking manner. This function
10306  * must be called with all CPU's synchronized, and interrupts disabled, the
10307  * and caller must save the original value of the current task (see
10308  * curr_task() above) and restore that value before reenabling interrupts and
10309  * re-starting the system.
10310  *
10311  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10312  */
ia64_set_curr_task(int cpu,struct task_struct * p)10313 void ia64_set_curr_task(int cpu, struct task_struct *p)
10314 {
10315 	cpu_curr(cpu) = p;
10316 }
10317 
10318 #endif
10319 
10320 #ifdef CONFIG_CGROUP_SCHED
10321 /* task_group_lock serializes the addition/removal of task groups */
10322 static DEFINE_SPINLOCK(task_group_lock);
10323 
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)10324 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10325 					    struct task_group *parent)
10326 {
10327 #ifdef CONFIG_UCLAMP_TASK_GROUP
10328 	enum uclamp_id clamp_id;
10329 
10330 	for_each_clamp_id(clamp_id) {
10331 		uclamp_se_set(&tg->uclamp_req[clamp_id],
10332 			      uclamp_none(clamp_id), false);
10333 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10334 	}
10335 #endif
10336 }
10337 
sched_free_group(struct task_group * tg)10338 static void sched_free_group(struct task_group *tg)
10339 {
10340 	free_fair_sched_group(tg);
10341 	free_rt_sched_group(tg);
10342 	autogroup_free(tg);
10343 	kmem_cache_free(task_group_cache, tg);
10344 }
10345 
sched_free_group_rcu(struct rcu_head * rcu)10346 static void sched_free_group_rcu(struct rcu_head *rcu)
10347 {
10348 	sched_free_group(container_of(rcu, struct task_group, rcu));
10349 }
10350 
sched_unregister_group(struct task_group * tg)10351 static void sched_unregister_group(struct task_group *tg)
10352 {
10353 	unregister_fair_sched_group(tg);
10354 	unregister_rt_sched_group(tg);
10355 	/*
10356 	 * We have to wait for yet another RCU grace period to expire, as
10357 	 * print_cfs_stats() might run concurrently.
10358 	 */
10359 	call_rcu(&tg->rcu, sched_free_group_rcu);
10360 }
10361 
10362 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)10363 struct task_group *sched_create_group(struct task_group *parent)
10364 {
10365 	struct task_group *tg;
10366 
10367 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10368 	if (!tg)
10369 		return ERR_PTR(-ENOMEM);
10370 
10371 	if (!alloc_fair_sched_group(tg, parent))
10372 		goto err;
10373 
10374 	if (!alloc_rt_sched_group(tg, parent))
10375 		goto err;
10376 
10377 	alloc_uclamp_sched_group(tg, parent);
10378 
10379 	return tg;
10380 
10381 err:
10382 	sched_free_group(tg);
10383 	return ERR_PTR(-ENOMEM);
10384 }
10385 
sched_online_group(struct task_group * tg,struct task_group * parent)10386 void sched_online_group(struct task_group *tg, struct task_group *parent)
10387 {
10388 	unsigned long flags;
10389 
10390 	spin_lock_irqsave(&task_group_lock, flags);
10391 	list_add_rcu(&tg->list, &task_groups);
10392 
10393 	/* Root should already exist: */
10394 	WARN_ON(!parent);
10395 
10396 	tg->parent = parent;
10397 	INIT_LIST_HEAD(&tg->children);
10398 	list_add_rcu(&tg->siblings, &parent->children);
10399 	spin_unlock_irqrestore(&task_group_lock, flags);
10400 
10401 	online_fair_sched_group(tg);
10402 }
10403 
10404 /* rcu callback to free various structures associated with a task group */
sched_unregister_group_rcu(struct rcu_head * rhp)10405 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10406 {
10407 	/* Now it should be safe to free those cfs_rqs: */
10408 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10409 }
10410 
sched_destroy_group(struct task_group * tg)10411 void sched_destroy_group(struct task_group *tg)
10412 {
10413 	/* Wait for possible concurrent references to cfs_rqs complete: */
10414 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10415 }
10416 
sched_release_group(struct task_group * tg)10417 void sched_release_group(struct task_group *tg)
10418 {
10419 	unsigned long flags;
10420 
10421 	/*
10422 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10423 	 * sched_cfs_period_timer()).
10424 	 *
10425 	 * For this to be effective, we have to wait for all pending users of
10426 	 * this task group to leave their RCU critical section to ensure no new
10427 	 * user will see our dying task group any more. Specifically ensure
10428 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10429 	 *
10430 	 * We therefore defer calling unregister_fair_sched_group() to
10431 	 * sched_unregister_group() which is guarantied to get called only after the
10432 	 * current RCU grace period has expired.
10433 	 */
10434 	spin_lock_irqsave(&task_group_lock, flags);
10435 	list_del_rcu(&tg->list);
10436 	list_del_rcu(&tg->siblings);
10437 	spin_unlock_irqrestore(&task_group_lock, flags);
10438 }
10439 
sched_change_group(struct task_struct * tsk)10440 static void sched_change_group(struct task_struct *tsk)
10441 {
10442 	struct task_group *tg;
10443 
10444 	/*
10445 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10446 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10447 	 * to prevent lockdep warnings.
10448 	 */
10449 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10450 			  struct task_group, css);
10451 	tg = autogroup_task_group(tsk, tg);
10452 	tsk->sched_task_group = tg;
10453 
10454 #ifdef CONFIG_FAIR_GROUP_SCHED
10455 	if (tsk->sched_class->task_change_group)
10456 		tsk->sched_class->task_change_group(tsk);
10457 	else
10458 #endif
10459 		set_task_rq(tsk, task_cpu(tsk));
10460 }
10461 
10462 /*
10463  * Change task's runqueue when it moves between groups.
10464  *
10465  * The caller of this function should have put the task in its new group by
10466  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10467  * its new group.
10468  */
sched_move_task(struct task_struct * tsk)10469 void sched_move_task(struct task_struct *tsk)
10470 {
10471 	int queued, running, queue_flags =
10472 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10473 	struct rq_flags rf;
10474 	struct rq *rq;
10475 
10476 	rq = task_rq_lock(tsk, &rf);
10477 	update_rq_clock(rq);
10478 
10479 	running = task_current(rq, tsk);
10480 	queued = task_on_rq_queued(tsk);
10481 
10482 	if (queued)
10483 		dequeue_task(rq, tsk, queue_flags);
10484 	if (running)
10485 		put_prev_task(rq, tsk);
10486 
10487 	sched_change_group(tsk);
10488 
10489 	if (queued)
10490 		enqueue_task(rq, tsk, queue_flags);
10491 	if (running) {
10492 		set_next_task(rq, tsk);
10493 		/*
10494 		 * After changing group, the running task may have joined a
10495 		 * throttled one but it's still the running task. Trigger a
10496 		 * resched to make sure that task can still run.
10497 		 */
10498 		resched_curr(rq);
10499 	}
10500 
10501 	task_rq_unlock(rq, tsk, &rf);
10502 }
10503 
css_tg(struct cgroup_subsys_state * css)10504 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10505 {
10506 	return css ? container_of(css, struct task_group, css) : NULL;
10507 }
10508 
10509 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)10510 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10511 {
10512 	struct task_group *parent = css_tg(parent_css);
10513 	struct task_group *tg;
10514 
10515 	if (!parent) {
10516 		/* This is early initialization for the top cgroup */
10517 		return &root_task_group.css;
10518 	}
10519 
10520 	tg = sched_create_group(parent);
10521 	if (IS_ERR(tg))
10522 		return ERR_PTR(-ENOMEM);
10523 
10524 	return &tg->css;
10525 }
10526 
10527 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)10528 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10529 {
10530 	struct task_group *tg = css_tg(css);
10531 	struct task_group *parent = css_tg(css->parent);
10532 
10533 	if (parent)
10534 		sched_online_group(tg, parent);
10535 
10536 #ifdef CONFIG_UCLAMP_TASK_GROUP
10537 	/* Propagate the effective uclamp value for the new group */
10538 	mutex_lock(&uclamp_mutex);
10539 	rcu_read_lock();
10540 	cpu_util_update_eff(css);
10541 	rcu_read_unlock();
10542 	mutex_unlock(&uclamp_mutex);
10543 #endif
10544 
10545 	trace_android_rvh_cpu_cgroup_online(css);
10546 	return 0;
10547 }
10548 
cpu_cgroup_css_released(struct cgroup_subsys_state * css)10549 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10550 {
10551 	struct task_group *tg = css_tg(css);
10552 
10553 	sched_release_group(tg);
10554 }
10555 
cpu_cgroup_css_free(struct cgroup_subsys_state * css)10556 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10557 {
10558 	struct task_group *tg = css_tg(css);
10559 
10560 	/*
10561 	 * Relies on the RCU grace period between css_released() and this.
10562 	 */
10563 	sched_unregister_group(tg);
10564 }
10565 
10566 #ifdef CONFIG_RT_GROUP_SCHED
cpu_cgroup_can_attach(struct cgroup_taskset * tset)10567 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10568 {
10569 	struct task_struct *task;
10570 	struct cgroup_subsys_state *css;
10571 
10572 	cgroup_taskset_for_each(task, css, tset) {
10573 		if (!sched_rt_can_attach(css_tg(css), task))
10574 			return -EINVAL;
10575 	}
10576 	return 0;
10577 }
10578 #endif
10579 
cpu_cgroup_attach(struct cgroup_taskset * tset)10580 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10581 {
10582 	struct task_struct *task;
10583 	struct cgroup_subsys_state *css;
10584 
10585 	cgroup_taskset_for_each(task, css, tset)
10586 		sched_move_task(task);
10587 
10588 	trace_android_rvh_cpu_cgroup_attach(tset);
10589 }
10590 
10591 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)10592 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10593 {
10594 	struct cgroup_subsys_state *top_css = css;
10595 	struct uclamp_se *uc_parent = NULL;
10596 	struct uclamp_se *uc_se = NULL;
10597 	unsigned int eff[UCLAMP_CNT];
10598 	enum uclamp_id clamp_id;
10599 	unsigned int clamps;
10600 
10601 	lockdep_assert_held(&uclamp_mutex);
10602 	SCHED_WARN_ON(!rcu_read_lock_held());
10603 
10604 	css_for_each_descendant_pre(css, top_css) {
10605 		uc_parent = css_tg(css)->parent
10606 			? css_tg(css)->parent->uclamp : NULL;
10607 
10608 		for_each_clamp_id(clamp_id) {
10609 			/* Assume effective clamps matches requested clamps */
10610 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10611 			/* Cap effective clamps with parent's effective clamps */
10612 			if (uc_parent &&
10613 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10614 				eff[clamp_id] = uc_parent[clamp_id].value;
10615 			}
10616 		}
10617 		/* Ensure protection is always capped by limit */
10618 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10619 
10620 		/* Propagate most restrictive effective clamps */
10621 		clamps = 0x0;
10622 		uc_se = css_tg(css)->uclamp;
10623 		for_each_clamp_id(clamp_id) {
10624 			if (eff[clamp_id] == uc_se[clamp_id].value)
10625 				continue;
10626 			uc_se[clamp_id].value = eff[clamp_id];
10627 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10628 			clamps |= (0x1 << clamp_id);
10629 		}
10630 		if (!clamps) {
10631 			css = css_rightmost_descendant(css);
10632 			continue;
10633 		}
10634 
10635 		/* Immediately update descendants RUNNABLE tasks */
10636 		uclamp_update_active_tasks(css);
10637 	}
10638 }
10639 
10640 /*
10641  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10642  * C expression. Since there is no way to convert a macro argument (N) into a
10643  * character constant, use two levels of macros.
10644  */
10645 #define _POW10(exp) ((unsigned int)1e##exp)
10646 #define POW10(exp) _POW10(exp)
10647 
10648 struct uclamp_request {
10649 #define UCLAMP_PERCENT_SHIFT	2
10650 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10651 	s64 percent;
10652 	u64 util;
10653 	int ret;
10654 };
10655 
10656 static inline struct uclamp_request
capacity_from_percent(char * buf)10657 capacity_from_percent(char *buf)
10658 {
10659 	struct uclamp_request req = {
10660 		.percent = UCLAMP_PERCENT_SCALE,
10661 		.util = SCHED_CAPACITY_SCALE,
10662 		.ret = 0,
10663 	};
10664 
10665 	buf = strim(buf);
10666 	if (strcmp(buf, "max")) {
10667 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10668 					     &req.percent);
10669 		if (req.ret)
10670 			return req;
10671 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10672 			req.ret = -ERANGE;
10673 			return req;
10674 		}
10675 
10676 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10677 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10678 	}
10679 
10680 	return req;
10681 }
10682 
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)10683 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10684 				size_t nbytes, loff_t off,
10685 				enum uclamp_id clamp_id)
10686 {
10687 	struct uclamp_request req;
10688 	struct task_group *tg;
10689 
10690 	req = capacity_from_percent(buf);
10691 	if (req.ret)
10692 		return req.ret;
10693 
10694 	static_branch_enable(&sched_uclamp_used);
10695 
10696 	mutex_lock(&uclamp_mutex);
10697 	rcu_read_lock();
10698 
10699 	tg = css_tg(of_css(of));
10700 	if (tg->uclamp_req[clamp_id].value != req.util)
10701 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10702 
10703 	/*
10704 	 * Because of not recoverable conversion rounding we keep track of the
10705 	 * exact requested value
10706 	 */
10707 	tg->uclamp_pct[clamp_id] = req.percent;
10708 
10709 	/* Update effective clamps to track the most restrictive value */
10710 	cpu_util_update_eff(of_css(of));
10711 
10712 	rcu_read_unlock();
10713 	mutex_unlock(&uclamp_mutex);
10714 
10715 	return nbytes;
10716 }
10717 
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10718 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10719 				    char *buf, size_t nbytes,
10720 				    loff_t off)
10721 {
10722 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10723 }
10724 
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10725 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10726 				    char *buf, size_t nbytes,
10727 				    loff_t off)
10728 {
10729 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10730 }
10731 
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)10732 static inline void cpu_uclamp_print(struct seq_file *sf,
10733 				    enum uclamp_id clamp_id)
10734 {
10735 	struct task_group *tg;
10736 	u64 util_clamp;
10737 	u64 percent;
10738 	u32 rem;
10739 
10740 	rcu_read_lock();
10741 	tg = css_tg(seq_css(sf));
10742 	util_clamp = tg->uclamp_req[clamp_id].value;
10743 	rcu_read_unlock();
10744 
10745 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10746 		seq_puts(sf, "max\n");
10747 		return;
10748 	}
10749 
10750 	percent = tg->uclamp_pct[clamp_id];
10751 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10752 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10753 }
10754 
cpu_uclamp_min_show(struct seq_file * sf,void * v)10755 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10756 {
10757 	cpu_uclamp_print(sf, UCLAMP_MIN);
10758 	return 0;
10759 }
10760 
cpu_uclamp_max_show(struct seq_file * sf,void * v)10761 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10762 {
10763 	cpu_uclamp_print(sf, UCLAMP_MAX);
10764 	return 0;
10765 }
10766 
cpu_uclamp_ls_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 ls)10767 static int cpu_uclamp_ls_write_u64(struct cgroup_subsys_state *css,
10768 				   struct cftype *cftype, u64 ls)
10769 {
10770 	struct task_group *tg;
10771 
10772 	if (ls > 1)
10773 		return -EINVAL;
10774 	tg = css_tg(css);
10775 	tg->latency_sensitive = (unsigned int) ls;
10776 
10777 	return 0;
10778 }
10779 
cpu_uclamp_ls_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10780 static u64 cpu_uclamp_ls_read_u64(struct cgroup_subsys_state *css,
10781 				  struct cftype *cft)
10782 {
10783 	struct task_group *tg = css_tg(css);
10784 
10785 	return (u64) tg->latency_sensitive;
10786 }
10787 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10788 
10789 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)10790 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10791 				struct cftype *cftype, u64 shareval)
10792 {
10793 	if (shareval > scale_load_down(ULONG_MAX))
10794 		shareval = MAX_SHARES;
10795 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10796 }
10797 
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10798 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10799 			       struct cftype *cft)
10800 {
10801 	struct task_group *tg = css_tg(css);
10802 
10803 	return (u64) scale_load_down(tg->shares);
10804 }
10805 
10806 #ifdef CONFIG_CFS_BANDWIDTH
10807 static DEFINE_MUTEX(cfs_constraints_mutex);
10808 
10809 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10810 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10811 /* More than 203 days if BW_SHIFT equals 20. */
10812 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10813 
10814 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10815 
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota,u64 burst)10816 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10817 				u64 burst)
10818 {
10819 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10820 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10821 
10822 	if (tg == &root_task_group)
10823 		return -EINVAL;
10824 
10825 	/*
10826 	 * Ensure we have at some amount of bandwidth every period.  This is
10827 	 * to prevent reaching a state of large arrears when throttled via
10828 	 * entity_tick() resulting in prolonged exit starvation.
10829 	 */
10830 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10831 		return -EINVAL;
10832 
10833 	/*
10834 	 * Likewise, bound things on the other side by preventing insane quota
10835 	 * periods.  This also allows us to normalize in computing quota
10836 	 * feasibility.
10837 	 */
10838 	if (period > max_cfs_quota_period)
10839 		return -EINVAL;
10840 
10841 	/*
10842 	 * Bound quota to defend quota against overflow during bandwidth shift.
10843 	 */
10844 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10845 		return -EINVAL;
10846 
10847 	if (quota != RUNTIME_INF && (burst > quota ||
10848 				     burst + quota > max_cfs_runtime))
10849 		return -EINVAL;
10850 
10851 	/*
10852 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10853 	 * unthrottle_offline_cfs_rqs().
10854 	 */
10855 	cpus_read_lock();
10856 	mutex_lock(&cfs_constraints_mutex);
10857 	ret = __cfs_schedulable(tg, period, quota);
10858 	if (ret)
10859 		goto out_unlock;
10860 
10861 	runtime_enabled = quota != RUNTIME_INF;
10862 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10863 	/*
10864 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10865 	 * before making related changes, and on->off must occur afterwards
10866 	 */
10867 	if (runtime_enabled && !runtime_was_enabled)
10868 		cfs_bandwidth_usage_inc();
10869 	raw_spin_lock_irq(&cfs_b->lock);
10870 	cfs_b->period = ns_to_ktime(period);
10871 	cfs_b->quota = quota;
10872 	cfs_b->burst = burst;
10873 
10874 	__refill_cfs_bandwidth_runtime(cfs_b);
10875 
10876 	/* Restart the period timer (if active) to handle new period expiry: */
10877 	if (runtime_enabled)
10878 		start_cfs_bandwidth(cfs_b);
10879 
10880 	raw_spin_unlock_irq(&cfs_b->lock);
10881 
10882 	for_each_online_cpu(i) {
10883 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10884 		struct rq *rq = cfs_rq->rq;
10885 		struct rq_flags rf;
10886 
10887 		rq_lock_irq(rq, &rf);
10888 		cfs_rq->runtime_enabled = runtime_enabled;
10889 		cfs_rq->runtime_remaining = 0;
10890 
10891 		if (cfs_rq->throttled)
10892 			unthrottle_cfs_rq(cfs_rq);
10893 		rq_unlock_irq(rq, &rf);
10894 	}
10895 	if (runtime_was_enabled && !runtime_enabled)
10896 		cfs_bandwidth_usage_dec();
10897 out_unlock:
10898 	mutex_unlock(&cfs_constraints_mutex);
10899 	cpus_read_unlock();
10900 
10901 	return ret;
10902 }
10903 
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)10904 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10905 {
10906 	u64 quota, period, burst;
10907 
10908 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10909 	burst = tg->cfs_bandwidth.burst;
10910 	if (cfs_quota_us < 0)
10911 		quota = RUNTIME_INF;
10912 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10913 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10914 	else
10915 		return -EINVAL;
10916 
10917 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10918 }
10919 
tg_get_cfs_quota(struct task_group * tg)10920 static long tg_get_cfs_quota(struct task_group *tg)
10921 {
10922 	u64 quota_us;
10923 
10924 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10925 		return -1;
10926 
10927 	quota_us = tg->cfs_bandwidth.quota;
10928 	do_div(quota_us, NSEC_PER_USEC);
10929 
10930 	return quota_us;
10931 }
10932 
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)10933 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10934 {
10935 	u64 quota, period, burst;
10936 
10937 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10938 		return -EINVAL;
10939 
10940 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10941 	quota = tg->cfs_bandwidth.quota;
10942 	burst = tg->cfs_bandwidth.burst;
10943 
10944 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10945 }
10946 
tg_get_cfs_period(struct task_group * tg)10947 static long tg_get_cfs_period(struct task_group *tg)
10948 {
10949 	u64 cfs_period_us;
10950 
10951 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10952 	do_div(cfs_period_us, NSEC_PER_USEC);
10953 
10954 	return cfs_period_us;
10955 }
10956 
tg_set_cfs_burst(struct task_group * tg,long cfs_burst_us)10957 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10958 {
10959 	u64 quota, period, burst;
10960 
10961 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10962 		return -EINVAL;
10963 
10964 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10965 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10966 	quota = tg->cfs_bandwidth.quota;
10967 
10968 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10969 }
10970 
tg_get_cfs_burst(struct task_group * tg)10971 static long tg_get_cfs_burst(struct task_group *tg)
10972 {
10973 	u64 burst_us;
10974 
10975 	burst_us = tg->cfs_bandwidth.burst;
10976 	do_div(burst_us, NSEC_PER_USEC);
10977 
10978 	return burst_us;
10979 }
10980 
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)10981 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10982 				  struct cftype *cft)
10983 {
10984 	return tg_get_cfs_quota(css_tg(css));
10985 }
10986 
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)10987 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10988 				   struct cftype *cftype, s64 cfs_quota_us)
10989 {
10990 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10991 }
10992 
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10993 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10994 				   struct cftype *cft)
10995 {
10996 	return tg_get_cfs_period(css_tg(css));
10997 }
10998 
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)10999 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
11000 				    struct cftype *cftype, u64 cfs_period_us)
11001 {
11002 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
11003 }
11004 
cpu_cfs_burst_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11005 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
11006 				  struct cftype *cft)
11007 {
11008 	return tg_get_cfs_burst(css_tg(css));
11009 }
11010 
cpu_cfs_burst_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_burst_us)11011 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
11012 				   struct cftype *cftype, u64 cfs_burst_us)
11013 {
11014 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
11015 }
11016 
11017 struct cfs_schedulable_data {
11018 	struct task_group *tg;
11019 	u64 period, quota;
11020 };
11021 
11022 /*
11023  * normalize group quota/period to be quota/max_period
11024  * note: units are usecs
11025  */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)11026 static u64 normalize_cfs_quota(struct task_group *tg,
11027 			       struct cfs_schedulable_data *d)
11028 {
11029 	u64 quota, period;
11030 
11031 	if (tg == d->tg) {
11032 		period = d->period;
11033 		quota = d->quota;
11034 	} else {
11035 		period = tg_get_cfs_period(tg);
11036 		quota = tg_get_cfs_quota(tg);
11037 	}
11038 
11039 	/* note: these should typically be equivalent */
11040 	if (quota == RUNTIME_INF || quota == -1)
11041 		return RUNTIME_INF;
11042 
11043 	return to_ratio(period, quota);
11044 }
11045 
tg_cfs_schedulable_down(struct task_group * tg,void * data)11046 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
11047 {
11048 	struct cfs_schedulable_data *d = data;
11049 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11050 	s64 quota = 0, parent_quota = -1;
11051 
11052 	if (!tg->parent) {
11053 		quota = RUNTIME_INF;
11054 	} else {
11055 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
11056 
11057 		quota = normalize_cfs_quota(tg, d);
11058 		parent_quota = parent_b->hierarchical_quota;
11059 
11060 		/*
11061 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
11062 		 * always take the min.  On cgroup1, only inherit when no
11063 		 * limit is set:
11064 		 */
11065 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11066 			quota = min(quota, parent_quota);
11067 		} else {
11068 			if (quota == RUNTIME_INF)
11069 				quota = parent_quota;
11070 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11071 				return -EINVAL;
11072 		}
11073 	}
11074 	cfs_b->hierarchical_quota = quota;
11075 
11076 	return 0;
11077 }
11078 
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)11079 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11080 {
11081 	int ret;
11082 	struct cfs_schedulable_data data = {
11083 		.tg = tg,
11084 		.period = period,
11085 		.quota = quota,
11086 	};
11087 
11088 	if (quota != RUNTIME_INF) {
11089 		do_div(data.period, NSEC_PER_USEC);
11090 		do_div(data.quota, NSEC_PER_USEC);
11091 	}
11092 
11093 	rcu_read_lock();
11094 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11095 	rcu_read_unlock();
11096 
11097 	return ret;
11098 }
11099 
cpu_cfs_stat_show(struct seq_file * sf,void * v)11100 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
11101 {
11102 	struct task_group *tg = css_tg(seq_css(sf));
11103 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11104 
11105 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11106 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11107 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
11108 
11109 	if (schedstat_enabled() && tg != &root_task_group) {
11110 		struct sched_statistics *stats;
11111 		u64 ws = 0;
11112 		int i;
11113 
11114 		for_each_possible_cpu(i) {
11115 			stats = __schedstats_from_se(tg->se[i]);
11116 			ws += schedstat_val(stats->wait_sum);
11117 		}
11118 
11119 		seq_printf(sf, "wait_sum %llu\n", ws);
11120 	}
11121 
11122 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11123 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11124 
11125 	return 0;
11126 }
11127 #endif /* CONFIG_CFS_BANDWIDTH */
11128 #endif /* CONFIG_FAIR_GROUP_SCHED */
11129 
11130 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)11131 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11132 				struct cftype *cft, s64 val)
11133 {
11134 	return sched_group_set_rt_runtime(css_tg(css), val);
11135 }
11136 
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)11137 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11138 			       struct cftype *cft)
11139 {
11140 	return sched_group_rt_runtime(css_tg(css));
11141 }
11142 
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)11143 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11144 				    struct cftype *cftype, u64 rt_period_us)
11145 {
11146 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
11147 }
11148 
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)11149 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11150 				   struct cftype *cft)
11151 {
11152 	return sched_group_rt_period(css_tg(css));
11153 }
11154 #endif /* CONFIG_RT_GROUP_SCHED */
11155 
11156 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_idle_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11157 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11158 			       struct cftype *cft)
11159 {
11160 	return css_tg(css)->idle;
11161 }
11162 
cpu_idle_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 idle)11163 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11164 				struct cftype *cft, s64 idle)
11165 {
11166 	return sched_group_set_idle(css_tg(css), idle);
11167 }
11168 #endif
11169 
11170 static struct cftype cpu_legacy_files[] = {
11171 #ifdef CONFIG_FAIR_GROUP_SCHED
11172 	{
11173 		.name = "shares",
11174 		.read_u64 = cpu_shares_read_u64,
11175 		.write_u64 = cpu_shares_write_u64,
11176 	},
11177 	{
11178 		.name = "idle",
11179 		.read_s64 = cpu_idle_read_s64,
11180 		.write_s64 = cpu_idle_write_s64,
11181 	},
11182 #endif
11183 #ifdef CONFIG_CFS_BANDWIDTH
11184 	{
11185 		.name = "cfs_quota_us",
11186 		.read_s64 = cpu_cfs_quota_read_s64,
11187 		.write_s64 = cpu_cfs_quota_write_s64,
11188 	},
11189 	{
11190 		.name = "cfs_period_us",
11191 		.read_u64 = cpu_cfs_period_read_u64,
11192 		.write_u64 = cpu_cfs_period_write_u64,
11193 	},
11194 	{
11195 		.name = "cfs_burst_us",
11196 		.read_u64 = cpu_cfs_burst_read_u64,
11197 		.write_u64 = cpu_cfs_burst_write_u64,
11198 	},
11199 	{
11200 		.name = "stat",
11201 		.seq_show = cpu_cfs_stat_show,
11202 	},
11203 #endif
11204 #ifdef CONFIG_RT_GROUP_SCHED
11205 	{
11206 		.name = "rt_runtime_us",
11207 		.read_s64 = cpu_rt_runtime_read,
11208 		.write_s64 = cpu_rt_runtime_write,
11209 	},
11210 	{
11211 		.name = "rt_period_us",
11212 		.read_u64 = cpu_rt_period_read_uint,
11213 		.write_u64 = cpu_rt_period_write_uint,
11214 	},
11215 #endif
11216 #ifdef CONFIG_UCLAMP_TASK_GROUP
11217 	{
11218 		.name = "uclamp.min",
11219 		.flags = CFTYPE_NOT_ON_ROOT,
11220 		.seq_show = cpu_uclamp_min_show,
11221 		.write = cpu_uclamp_min_write,
11222 	},
11223 	{
11224 		.name = "uclamp.max",
11225 		.flags = CFTYPE_NOT_ON_ROOT,
11226 		.seq_show = cpu_uclamp_max_show,
11227 		.write = cpu_uclamp_max_write,
11228 	},
11229 	{
11230 		.name = "uclamp.latency_sensitive",
11231 		.flags = CFTYPE_NOT_ON_ROOT,
11232 		.read_u64 = cpu_uclamp_ls_read_u64,
11233 		.write_u64 = cpu_uclamp_ls_write_u64,
11234 	},
11235 #endif
11236 	{ }	/* Terminate */
11237 };
11238 
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)11239 static int cpu_extra_stat_show(struct seq_file *sf,
11240 			       struct cgroup_subsys_state *css)
11241 {
11242 #ifdef CONFIG_CFS_BANDWIDTH
11243 	{
11244 		struct task_group *tg = css_tg(css);
11245 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11246 		u64 throttled_usec, burst_usec;
11247 
11248 		throttled_usec = cfs_b->throttled_time;
11249 		do_div(throttled_usec, NSEC_PER_USEC);
11250 		burst_usec = cfs_b->burst_time;
11251 		do_div(burst_usec, NSEC_PER_USEC);
11252 
11253 		seq_printf(sf, "nr_periods %d\n"
11254 			   "nr_throttled %d\n"
11255 			   "throttled_usec %llu\n"
11256 			   "nr_bursts %d\n"
11257 			   "burst_usec %llu\n",
11258 			   cfs_b->nr_periods, cfs_b->nr_throttled,
11259 			   throttled_usec, cfs_b->nr_burst, burst_usec);
11260 	}
11261 #endif
11262 	return 0;
11263 }
11264 
11265 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11266 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11267 			       struct cftype *cft)
11268 {
11269 	struct task_group *tg = css_tg(css);
11270 	u64 weight = scale_load_down(tg->shares);
11271 
11272 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11273 }
11274 
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)11275 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11276 				struct cftype *cft, u64 weight)
11277 {
11278 	/*
11279 	 * cgroup weight knobs should use the common MIN, DFL and MAX
11280 	 * values which are 1, 100 and 10000 respectively.  While it loses
11281 	 * a bit of range on both ends, it maps pretty well onto the shares
11282 	 * value used by scheduler and the round-trip conversions preserve
11283 	 * the original value over the entire range.
11284 	 */
11285 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11286 		return -ERANGE;
11287 
11288 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11289 
11290 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11291 }
11292 
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11293 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11294 				    struct cftype *cft)
11295 {
11296 	unsigned long weight = scale_load_down(css_tg(css)->shares);
11297 	int last_delta = INT_MAX;
11298 	int prio, delta;
11299 
11300 	/* find the closest nice value to the current weight */
11301 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11302 		delta = abs(sched_prio_to_weight[prio] - weight);
11303 		if (delta >= last_delta)
11304 			break;
11305 		last_delta = delta;
11306 	}
11307 
11308 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11309 }
11310 
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)11311 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11312 				     struct cftype *cft, s64 nice)
11313 {
11314 	unsigned long weight;
11315 	int idx;
11316 
11317 	if (nice < MIN_NICE || nice > MAX_NICE)
11318 		return -ERANGE;
11319 
11320 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11321 	idx = array_index_nospec(idx, 40);
11322 	weight = sched_prio_to_weight[idx];
11323 
11324 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11325 }
11326 #endif
11327 
cpu_period_quota_print(struct seq_file * sf,long period,long quota)11328 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11329 						  long period, long quota)
11330 {
11331 	if (quota < 0)
11332 		seq_puts(sf, "max");
11333 	else
11334 		seq_printf(sf, "%ld", quota);
11335 
11336 	seq_printf(sf, " %ld\n", period);
11337 }
11338 
11339 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)11340 static int __maybe_unused cpu_period_quota_parse(char *buf,
11341 						 u64 *periodp, u64 *quotap)
11342 {
11343 	char tok[21];	/* U64_MAX */
11344 
11345 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11346 		return -EINVAL;
11347 
11348 	*periodp *= NSEC_PER_USEC;
11349 
11350 	if (sscanf(tok, "%llu", quotap))
11351 		*quotap *= NSEC_PER_USEC;
11352 	else if (!strcmp(tok, "max"))
11353 		*quotap = RUNTIME_INF;
11354 	else
11355 		return -EINVAL;
11356 
11357 	return 0;
11358 }
11359 
11360 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)11361 static int cpu_max_show(struct seq_file *sf, void *v)
11362 {
11363 	struct task_group *tg = css_tg(seq_css(sf));
11364 
11365 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11366 	return 0;
11367 }
11368 
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)11369 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11370 			     char *buf, size_t nbytes, loff_t off)
11371 {
11372 	struct task_group *tg = css_tg(of_css(of));
11373 	u64 period = tg_get_cfs_period(tg);
11374 	u64 burst = tg_get_cfs_burst(tg);
11375 	u64 quota;
11376 	int ret;
11377 
11378 	ret = cpu_period_quota_parse(buf, &period, &quota);
11379 	if (!ret)
11380 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11381 	return ret ?: nbytes;
11382 }
11383 #endif
11384 
11385 static struct cftype cpu_files[] = {
11386 #ifdef CONFIG_FAIR_GROUP_SCHED
11387 	{
11388 		.name = "weight",
11389 		.flags = CFTYPE_NOT_ON_ROOT,
11390 		.read_u64 = cpu_weight_read_u64,
11391 		.write_u64 = cpu_weight_write_u64,
11392 	},
11393 	{
11394 		.name = "weight.nice",
11395 		.flags = CFTYPE_NOT_ON_ROOT,
11396 		.read_s64 = cpu_weight_nice_read_s64,
11397 		.write_s64 = cpu_weight_nice_write_s64,
11398 	},
11399 	{
11400 		.name = "idle",
11401 		.flags = CFTYPE_NOT_ON_ROOT,
11402 		.read_s64 = cpu_idle_read_s64,
11403 		.write_s64 = cpu_idle_write_s64,
11404 	},
11405 #endif
11406 #ifdef CONFIG_CFS_BANDWIDTH
11407 	{
11408 		.name = "max",
11409 		.flags = CFTYPE_NOT_ON_ROOT,
11410 		.seq_show = cpu_max_show,
11411 		.write = cpu_max_write,
11412 	},
11413 	{
11414 		.name = "max.burst",
11415 		.flags = CFTYPE_NOT_ON_ROOT,
11416 		.read_u64 = cpu_cfs_burst_read_u64,
11417 		.write_u64 = cpu_cfs_burst_write_u64,
11418 	},
11419 #endif
11420 #ifdef CONFIG_UCLAMP_TASK_GROUP
11421 	{
11422 		.name = "uclamp.min",
11423 		.flags = CFTYPE_NOT_ON_ROOT,
11424 		.seq_show = cpu_uclamp_min_show,
11425 		.write = cpu_uclamp_min_write,
11426 	},
11427 	{
11428 		.name = "uclamp.max",
11429 		.flags = CFTYPE_NOT_ON_ROOT,
11430 		.seq_show = cpu_uclamp_max_show,
11431 		.write = cpu_uclamp_max_write,
11432 	},
11433 	{
11434 		.name = "uclamp.latency_sensitive",
11435 		.flags = CFTYPE_NOT_ON_ROOT,
11436 		.read_u64 = cpu_uclamp_ls_read_u64,
11437 		.write_u64 = cpu_uclamp_ls_write_u64,
11438 	},
11439 #endif
11440 	{ }	/* terminate */
11441 };
11442 
11443 struct cgroup_subsys cpu_cgrp_subsys = {
11444 	.css_alloc	= cpu_cgroup_css_alloc,
11445 	.css_online	= cpu_cgroup_css_online,
11446 	.css_released	= cpu_cgroup_css_released,
11447 	.css_free	= cpu_cgroup_css_free,
11448 	.css_extra_stat_show = cpu_extra_stat_show,
11449 #ifdef CONFIG_RT_GROUP_SCHED
11450 	.can_attach	= cpu_cgroup_can_attach,
11451 #endif
11452 	.attach		= cpu_cgroup_attach,
11453 	.legacy_cftypes	= cpu_legacy_files,
11454 	.dfl_cftypes	= cpu_files,
11455 	.early_init	= true,
11456 	.threaded	= true,
11457 };
11458 
11459 #endif	/* CONFIG_CGROUP_SCHED */
11460 
dump_cpu_task(int cpu)11461 void dump_cpu_task(int cpu)
11462 {
11463 	if (cpu == smp_processor_id() && in_hardirq()) {
11464 		struct pt_regs *regs;
11465 
11466 		regs = get_irq_regs();
11467 		if (regs) {
11468 			show_regs(regs);
11469 			return;
11470 		}
11471 	}
11472 
11473 	if (trigger_single_cpu_backtrace(cpu))
11474 		return;
11475 
11476 	pr_info("Task dump for CPU %d:\n", cpu);
11477 	sched_show_task(cpu_curr(cpu));
11478 }
11479 
11480 /*
11481  * Nice levels are multiplicative, with a gentle 10% change for every
11482  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11483  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11484  * that remained on nice 0.
11485  *
11486  * The "10% effect" is relative and cumulative: from _any_ nice level,
11487  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11488  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11489  * If a task goes up by ~10% and another task goes down by ~10% then
11490  * the relative distance between them is ~25%.)
11491  */
11492 const int sched_prio_to_weight[40] = {
11493  /* -20 */     88761,     71755,     56483,     46273,     36291,
11494  /* -15 */     29154,     23254,     18705,     14949,     11916,
11495  /* -10 */      9548,      7620,      6100,      4904,      3906,
11496  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11497  /*   0 */      1024,       820,       655,       526,       423,
11498  /*   5 */       335,       272,       215,       172,       137,
11499  /*  10 */       110,        87,        70,        56,        45,
11500  /*  15 */        36,        29,        23,        18,        15,
11501 };
11502 
11503 /*
11504  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11505  *
11506  * In cases where the weight does not change often, we can use the
11507  * precalculated inverse to speed up arithmetics by turning divisions
11508  * into multiplications:
11509  */
11510 const u32 sched_prio_to_wmult[40] = {
11511  /* -20 */     48388,     59856,     76040,     92818,    118348,
11512  /* -15 */    147320,    184698,    229616,    287308,    360437,
11513  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11514  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11515  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11516  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11517  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11518  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11519 };
11520 
call_trace_sched_update_nr_running(struct rq * rq,int count)11521 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11522 {
11523         trace_sched_update_nr_running_tp(rq, count);
11524 }
11525