• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Generic socket support routines. Memory allocators, socket lock/release
8  *		handler for protocols to use and generic option handler.
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  */
85 
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87 
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/udp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 #include <linux/user_namespace.h>
114 #include <linux/static_key.h>
115 #include <linux/memcontrol.h>
116 #include <linux/prefetch.h>
117 #include <linux/compat.h>
118 
119 #include <linux/uaccess.h>
120 
121 #include <linux/netdevice.h>
122 #include <net/protocol.h>
123 #include <linux/skbuff.h>
124 #include <net/net_namespace.h>
125 #include <net/request_sock.h>
126 #include <net/sock.h>
127 #include <linux/net_tstamp.h>
128 #include <net/xfrm.h>
129 #include <linux/ipsec.h>
130 #include <net/cls_cgroup.h>
131 #include <net/netprio_cgroup.h>
132 #include <linux/sock_diag.h>
133 
134 #include <linux/filter.h>
135 #include <net/sock_reuseport.h>
136 #include <net/bpf_sk_storage.h>
137 
138 #include <trace/events/sock.h>
139 #include <trace/hooks/sched.h>
140 #include <trace/hooks/net.h>
141 
142 #include <net/tcp.h>
143 #include <net/busy_poll.h>
144 
145 #include <linux/ethtool.h>
146 
147 #include "dev.h"
148 
149 static DEFINE_MUTEX(proto_list_mutex);
150 static LIST_HEAD(proto_list);
151 
152 static void sock_def_write_space_wfree(struct sock *sk);
153 static void sock_def_write_space(struct sock *sk);
154 
155 /**
156  * sk_ns_capable - General socket capability test
157  * @sk: Socket to use a capability on or through
158  * @user_ns: The user namespace of the capability to use
159  * @cap: The capability to use
160  *
161  * Test to see if the opener of the socket had when the socket was
162  * created and the current process has the capability @cap in the user
163  * namespace @user_ns.
164  */
sk_ns_capable(const struct sock * sk,struct user_namespace * user_ns,int cap)165 bool sk_ns_capable(const struct sock *sk,
166 		   struct user_namespace *user_ns, int cap)
167 {
168 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
169 		ns_capable(user_ns, cap);
170 }
171 EXPORT_SYMBOL(sk_ns_capable);
172 
173 /**
174  * sk_capable - Socket global capability test
175  * @sk: Socket to use a capability on or through
176  * @cap: The global capability to use
177  *
178  * Test to see if the opener of the socket had when the socket was
179  * created and the current process has the capability @cap in all user
180  * namespaces.
181  */
sk_capable(const struct sock * sk,int cap)182 bool sk_capable(const struct sock *sk, int cap)
183 {
184 	return sk_ns_capable(sk, &init_user_ns, cap);
185 }
186 EXPORT_SYMBOL(sk_capable);
187 
188 /**
189  * sk_net_capable - Network namespace socket capability test
190  * @sk: Socket to use a capability on or through
191  * @cap: The capability to use
192  *
193  * Test to see if the opener of the socket had when the socket was created
194  * and the current process has the capability @cap over the network namespace
195  * the socket is a member of.
196  */
sk_net_capable(const struct sock * sk,int cap)197 bool sk_net_capable(const struct sock *sk, int cap)
198 {
199 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
200 }
201 EXPORT_SYMBOL(sk_net_capable);
202 
203 /*
204  * Each address family might have different locking rules, so we have
205  * one slock key per address family and separate keys for internal and
206  * userspace sockets.
207  */
208 static struct lock_class_key af_family_keys[AF_MAX];
209 static struct lock_class_key af_family_kern_keys[AF_MAX];
210 static struct lock_class_key af_family_slock_keys[AF_MAX];
211 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
212 
213 /*
214  * Make lock validator output more readable. (we pre-construct these
215  * strings build-time, so that runtime initialization of socket
216  * locks is fast):
217  */
218 
219 #define _sock_locks(x)						  \
220   x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
221   x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
222   x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
223   x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
224   x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
225   x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
226   x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
227   x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
228   x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
229   x "27"       ,	x "28"          ,	x "AF_CAN"      , \
230   x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
231   x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
232   x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
233   x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
234   x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
235   x "AF_MCTP"  , \
236   x "AF_MAX"
237 
238 static const char *const af_family_key_strings[AF_MAX+1] = {
239 	_sock_locks("sk_lock-")
240 };
241 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
242 	_sock_locks("slock-")
243 };
244 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
245 	_sock_locks("clock-")
246 };
247 
248 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
249 	_sock_locks("k-sk_lock-")
250 };
251 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
252 	_sock_locks("k-slock-")
253 };
254 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
255 	_sock_locks("k-clock-")
256 };
257 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
258 	_sock_locks("rlock-")
259 };
260 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
261 	_sock_locks("wlock-")
262 };
263 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
264 	_sock_locks("elock-")
265 };
266 
267 /*
268  * sk_callback_lock and sk queues locking rules are per-address-family,
269  * so split the lock classes by using a per-AF key:
270  */
271 static struct lock_class_key af_callback_keys[AF_MAX];
272 static struct lock_class_key af_rlock_keys[AF_MAX];
273 static struct lock_class_key af_wlock_keys[AF_MAX];
274 static struct lock_class_key af_elock_keys[AF_MAX];
275 static struct lock_class_key af_kern_callback_keys[AF_MAX];
276 
277 /* Run time adjustable parameters. */
278 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
279 EXPORT_SYMBOL(sysctl_wmem_max);
280 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
281 EXPORT_SYMBOL(sysctl_rmem_max);
282 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
283 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
284 
285 /* Maximal space eaten by iovec or ancillary data plus some space */
286 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
287 EXPORT_SYMBOL(sysctl_optmem_max);
288 
289 int sysctl_tstamp_allow_data __read_mostly = 1;
290 
291 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
292 EXPORT_SYMBOL_GPL(memalloc_socks_key);
293 
294 /**
295  * sk_set_memalloc - sets %SOCK_MEMALLOC
296  * @sk: socket to set it on
297  *
298  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
299  * It's the responsibility of the admin to adjust min_free_kbytes
300  * to meet the requirements
301  */
sk_set_memalloc(struct sock * sk)302 void sk_set_memalloc(struct sock *sk)
303 {
304 	sock_set_flag(sk, SOCK_MEMALLOC);
305 	sk->sk_allocation |= __GFP_MEMALLOC;
306 	static_branch_inc(&memalloc_socks_key);
307 }
308 EXPORT_SYMBOL_GPL(sk_set_memalloc);
309 
sk_clear_memalloc(struct sock * sk)310 void sk_clear_memalloc(struct sock *sk)
311 {
312 	sock_reset_flag(sk, SOCK_MEMALLOC);
313 	sk->sk_allocation &= ~__GFP_MEMALLOC;
314 	static_branch_dec(&memalloc_socks_key);
315 
316 	/*
317 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
318 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
319 	 * it has rmem allocations due to the last swapfile being deactivated
320 	 * but there is a risk that the socket is unusable due to exceeding
321 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
322 	 */
323 	sk_mem_reclaim(sk);
324 }
325 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
326 
__sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)327 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
328 {
329 	int ret;
330 	unsigned int noreclaim_flag;
331 
332 	/* these should have been dropped before queueing */
333 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
334 
335 	noreclaim_flag = memalloc_noreclaim_save();
336 	ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
337 				 tcp_v6_do_rcv,
338 				 tcp_v4_do_rcv,
339 				 sk, skb);
340 	memalloc_noreclaim_restore(noreclaim_flag);
341 
342 	return ret;
343 }
344 EXPORT_SYMBOL(__sk_backlog_rcv);
345 
sk_error_report(struct sock * sk)346 void sk_error_report(struct sock *sk)
347 {
348 	sk->sk_error_report(sk);
349 
350 	switch (sk->sk_family) {
351 	case AF_INET:
352 		fallthrough;
353 	case AF_INET6:
354 		trace_inet_sk_error_report(sk);
355 		break;
356 	default:
357 		break;
358 	}
359 }
360 EXPORT_SYMBOL(sk_error_report);
361 
sock_get_timeout(long timeo,void * optval,bool old_timeval)362 int sock_get_timeout(long timeo, void *optval, bool old_timeval)
363 {
364 	struct __kernel_sock_timeval tv;
365 
366 	if (timeo == MAX_SCHEDULE_TIMEOUT) {
367 		tv.tv_sec = 0;
368 		tv.tv_usec = 0;
369 	} else {
370 		tv.tv_sec = timeo / HZ;
371 		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
372 	}
373 
374 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
375 		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
376 		*(struct old_timeval32 *)optval = tv32;
377 		return sizeof(tv32);
378 	}
379 
380 	if (old_timeval) {
381 		struct __kernel_old_timeval old_tv;
382 		old_tv.tv_sec = tv.tv_sec;
383 		old_tv.tv_usec = tv.tv_usec;
384 		*(struct __kernel_old_timeval *)optval = old_tv;
385 		return sizeof(old_tv);
386 	}
387 
388 	*(struct __kernel_sock_timeval *)optval = tv;
389 	return sizeof(tv);
390 }
391 EXPORT_SYMBOL(sock_get_timeout);
392 
sock_copy_user_timeval(struct __kernel_sock_timeval * tv,sockptr_t optval,int optlen,bool old_timeval)393 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
394 			   sockptr_t optval, int optlen, bool old_timeval)
395 {
396 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
397 		struct old_timeval32 tv32;
398 
399 		if (optlen < sizeof(tv32))
400 			return -EINVAL;
401 
402 		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
403 			return -EFAULT;
404 		tv->tv_sec = tv32.tv_sec;
405 		tv->tv_usec = tv32.tv_usec;
406 	} else if (old_timeval) {
407 		struct __kernel_old_timeval old_tv;
408 
409 		if (optlen < sizeof(old_tv))
410 			return -EINVAL;
411 		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
412 			return -EFAULT;
413 		tv->tv_sec = old_tv.tv_sec;
414 		tv->tv_usec = old_tv.tv_usec;
415 	} else {
416 		if (optlen < sizeof(*tv))
417 			return -EINVAL;
418 		if (copy_from_sockptr(tv, optval, sizeof(*tv)))
419 			return -EFAULT;
420 	}
421 
422 	return 0;
423 }
424 EXPORT_SYMBOL(sock_copy_user_timeval);
425 
sock_set_timeout(long * timeo_p,sockptr_t optval,int optlen,bool old_timeval)426 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
427 			    bool old_timeval)
428 {
429 	struct __kernel_sock_timeval tv;
430 	int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
431 	long val;
432 
433 	if (err)
434 		return err;
435 
436 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
437 		return -EDOM;
438 
439 	if (tv.tv_sec < 0) {
440 		static int warned __read_mostly;
441 
442 		WRITE_ONCE(*timeo_p, 0);
443 		if (warned < 10 && net_ratelimit()) {
444 			warned++;
445 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
446 				__func__, current->comm, task_pid_nr(current));
447 		}
448 		return 0;
449 	}
450 	val = MAX_SCHEDULE_TIMEOUT;
451 	if ((tv.tv_sec || tv.tv_usec) &&
452 	    (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)))
453 		val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec,
454 						    USEC_PER_SEC / HZ);
455 	WRITE_ONCE(*timeo_p, val);
456 	return 0;
457 }
458 
sock_needs_netstamp(const struct sock * sk)459 static bool sock_needs_netstamp(const struct sock *sk)
460 {
461 	switch (sk->sk_family) {
462 	case AF_UNSPEC:
463 	case AF_UNIX:
464 		return false;
465 	default:
466 		return true;
467 	}
468 }
469 
sock_disable_timestamp(struct sock * sk,unsigned long flags)470 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
471 {
472 	if (sk->sk_flags & flags) {
473 		sk->sk_flags &= ~flags;
474 		if (sock_needs_netstamp(sk) &&
475 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
476 			net_disable_timestamp();
477 	}
478 }
479 
480 
__sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)481 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
482 {
483 	unsigned long flags;
484 	struct sk_buff_head *list = &sk->sk_receive_queue;
485 
486 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
487 		atomic_inc(&sk->sk_drops);
488 		trace_sock_rcvqueue_full(sk, skb);
489 		return -ENOMEM;
490 	}
491 
492 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
493 		atomic_inc(&sk->sk_drops);
494 		return -ENOBUFS;
495 	}
496 
497 	skb->dev = NULL;
498 	skb_set_owner_r(skb, sk);
499 
500 	/* we escape from rcu protected region, make sure we dont leak
501 	 * a norefcounted dst
502 	 */
503 	skb_dst_force(skb);
504 
505 	spin_lock_irqsave(&list->lock, flags);
506 	sock_skb_set_dropcount(sk, skb);
507 	__skb_queue_tail(list, skb);
508 	spin_unlock_irqrestore(&list->lock, flags);
509 
510 	if (!sock_flag(sk, SOCK_DEAD))
511 		sk->sk_data_ready(sk);
512 	return 0;
513 }
514 EXPORT_SYMBOL(__sock_queue_rcv_skb);
515 
sock_queue_rcv_skb_reason(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason * reason)516 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
517 			      enum skb_drop_reason *reason)
518 {
519 	enum skb_drop_reason drop_reason;
520 	int err;
521 
522 	err = sk_filter(sk, skb);
523 	if (err) {
524 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
525 		goto out;
526 	}
527 	err = __sock_queue_rcv_skb(sk, skb);
528 	switch (err) {
529 	case -ENOMEM:
530 		drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
531 		break;
532 	case -ENOBUFS:
533 		drop_reason = SKB_DROP_REASON_PROTO_MEM;
534 		break;
535 	default:
536 		drop_reason = SKB_NOT_DROPPED_YET;
537 		break;
538 	}
539 out:
540 	if (reason)
541 		*reason = drop_reason;
542 	return err;
543 }
544 EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
545 
__sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested,unsigned int trim_cap,bool refcounted)546 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
547 		     const int nested, unsigned int trim_cap, bool refcounted)
548 {
549 	int rc = NET_RX_SUCCESS;
550 
551 	if (sk_filter_trim_cap(sk, skb, trim_cap))
552 		goto discard_and_relse;
553 
554 	skb->dev = NULL;
555 
556 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
557 		atomic_inc(&sk->sk_drops);
558 		goto discard_and_relse;
559 	}
560 	if (nested)
561 		bh_lock_sock_nested(sk);
562 	else
563 		bh_lock_sock(sk);
564 	if (!sock_owned_by_user(sk)) {
565 		/*
566 		 * trylock + unlock semantics:
567 		 */
568 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
569 
570 		rc = sk_backlog_rcv(sk, skb);
571 
572 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
573 	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
574 		bh_unlock_sock(sk);
575 		atomic_inc(&sk->sk_drops);
576 		goto discard_and_relse;
577 	}
578 
579 	bh_unlock_sock(sk);
580 out:
581 	if (refcounted)
582 		sock_put(sk);
583 	return rc;
584 discard_and_relse:
585 	kfree_skb(skb);
586 	goto out;
587 }
588 EXPORT_SYMBOL(__sk_receive_skb);
589 
590 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
591 							  u32));
592 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
593 							   u32));
__sk_dst_check(struct sock * sk,u32 cookie)594 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
595 {
596 	struct dst_entry *dst = __sk_dst_get(sk);
597 
598 	if (dst && dst->obsolete &&
599 	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
600 			       dst, cookie) == NULL) {
601 		sk_tx_queue_clear(sk);
602 		WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
603 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
604 		dst_release(dst);
605 		return NULL;
606 	}
607 
608 	return dst;
609 }
610 EXPORT_SYMBOL(__sk_dst_check);
611 
sk_dst_check(struct sock * sk,u32 cookie)612 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
613 {
614 	struct dst_entry *dst = sk_dst_get(sk);
615 
616 	if (dst && dst->obsolete &&
617 	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
618 			       dst, cookie) == NULL) {
619 		sk_dst_reset(sk);
620 		dst_release(dst);
621 		return NULL;
622 	}
623 
624 	return dst;
625 }
626 EXPORT_SYMBOL(sk_dst_check);
627 
sock_bindtoindex_locked(struct sock * sk,int ifindex)628 static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
629 {
630 	int ret = -ENOPROTOOPT;
631 #ifdef CONFIG_NETDEVICES
632 	struct net *net = sock_net(sk);
633 
634 	/* Sorry... */
635 	ret = -EPERM;
636 	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
637 		goto out;
638 
639 	ret = -EINVAL;
640 	if (ifindex < 0)
641 		goto out;
642 
643 	/* Paired with all READ_ONCE() done locklessly. */
644 	WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
645 
646 	if (sk->sk_prot->rehash)
647 		sk->sk_prot->rehash(sk);
648 	sk_dst_reset(sk);
649 
650 	ret = 0;
651 
652 out:
653 #endif
654 
655 	return ret;
656 }
657 
sock_bindtoindex(struct sock * sk,int ifindex,bool lock_sk)658 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
659 {
660 	int ret;
661 
662 	if (lock_sk)
663 		lock_sock(sk);
664 	ret = sock_bindtoindex_locked(sk, ifindex);
665 	if (lock_sk)
666 		release_sock(sk);
667 
668 	return ret;
669 }
670 EXPORT_SYMBOL(sock_bindtoindex);
671 
sock_setbindtodevice(struct sock * sk,sockptr_t optval,int optlen)672 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
673 {
674 	int ret = -ENOPROTOOPT;
675 #ifdef CONFIG_NETDEVICES
676 	struct net *net = sock_net(sk);
677 	char devname[IFNAMSIZ];
678 	int index;
679 
680 	ret = -EINVAL;
681 	if (optlen < 0)
682 		goto out;
683 
684 	/* Bind this socket to a particular device like "eth0",
685 	 * as specified in the passed interface name. If the
686 	 * name is "" or the option length is zero the socket
687 	 * is not bound.
688 	 */
689 	if (optlen > IFNAMSIZ - 1)
690 		optlen = IFNAMSIZ - 1;
691 	memset(devname, 0, sizeof(devname));
692 
693 	ret = -EFAULT;
694 	if (copy_from_sockptr(devname, optval, optlen))
695 		goto out;
696 
697 	index = 0;
698 	if (devname[0] != '\0') {
699 		struct net_device *dev;
700 
701 		rcu_read_lock();
702 		dev = dev_get_by_name_rcu(net, devname);
703 		if (dev)
704 			index = dev->ifindex;
705 		rcu_read_unlock();
706 		ret = -ENODEV;
707 		if (!dev)
708 			goto out;
709 	}
710 
711 	sockopt_lock_sock(sk);
712 	ret = sock_bindtoindex_locked(sk, index);
713 	sockopt_release_sock(sk);
714 out:
715 #endif
716 
717 	return ret;
718 }
719 
sock_getbindtodevice(struct sock * sk,sockptr_t optval,sockptr_t optlen,int len)720 static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
721 				sockptr_t optlen, int len)
722 {
723 	int ret = -ENOPROTOOPT;
724 #ifdef CONFIG_NETDEVICES
725 	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
726 	struct net *net = sock_net(sk);
727 	char devname[IFNAMSIZ];
728 
729 	if (bound_dev_if == 0) {
730 		len = 0;
731 		goto zero;
732 	}
733 
734 	ret = -EINVAL;
735 	if (len < IFNAMSIZ)
736 		goto out;
737 
738 	ret = netdev_get_name(net, devname, bound_dev_if);
739 	if (ret)
740 		goto out;
741 
742 	len = strlen(devname) + 1;
743 
744 	ret = -EFAULT;
745 	if (copy_to_sockptr(optval, devname, len))
746 		goto out;
747 
748 zero:
749 	ret = -EFAULT;
750 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
751 		goto out;
752 
753 	ret = 0;
754 
755 out:
756 #endif
757 
758 	return ret;
759 }
760 
sk_mc_loop(struct sock * sk)761 bool sk_mc_loop(struct sock *sk)
762 {
763 	if (dev_recursion_level())
764 		return false;
765 	if (!sk)
766 		return true;
767 	/* IPV6_ADDRFORM can change sk->sk_family under us. */
768 	switch (READ_ONCE(sk->sk_family)) {
769 	case AF_INET:
770 		return inet_sk(sk)->mc_loop;
771 #if IS_ENABLED(CONFIG_IPV6)
772 	case AF_INET6:
773 		return inet6_sk(sk)->mc_loop;
774 #endif
775 	}
776 	WARN_ON_ONCE(1);
777 	return true;
778 }
779 EXPORT_SYMBOL(sk_mc_loop);
780 
sock_set_reuseaddr(struct sock * sk)781 void sock_set_reuseaddr(struct sock *sk)
782 {
783 	lock_sock(sk);
784 	sk->sk_reuse = SK_CAN_REUSE;
785 	release_sock(sk);
786 }
787 EXPORT_SYMBOL(sock_set_reuseaddr);
788 
sock_set_reuseport(struct sock * sk)789 void sock_set_reuseport(struct sock *sk)
790 {
791 	lock_sock(sk);
792 	sk->sk_reuseport = true;
793 	release_sock(sk);
794 }
795 EXPORT_SYMBOL(sock_set_reuseport);
796 
sock_no_linger(struct sock * sk)797 void sock_no_linger(struct sock *sk)
798 {
799 	lock_sock(sk);
800 	WRITE_ONCE(sk->sk_lingertime, 0);
801 	sock_set_flag(sk, SOCK_LINGER);
802 	release_sock(sk);
803 }
804 EXPORT_SYMBOL(sock_no_linger);
805 
sock_set_priority(struct sock * sk,u32 priority)806 void sock_set_priority(struct sock *sk, u32 priority)
807 {
808 	lock_sock(sk);
809 	WRITE_ONCE(sk->sk_priority, priority);
810 	release_sock(sk);
811 }
812 EXPORT_SYMBOL(sock_set_priority);
813 
sock_set_sndtimeo(struct sock * sk,s64 secs)814 void sock_set_sndtimeo(struct sock *sk, s64 secs)
815 {
816 	lock_sock(sk);
817 	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
818 		WRITE_ONCE(sk->sk_sndtimeo, secs * HZ);
819 	else
820 		WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT);
821 	release_sock(sk);
822 }
823 EXPORT_SYMBOL(sock_set_sndtimeo);
824 
__sock_set_timestamps(struct sock * sk,bool val,bool new,bool ns)825 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
826 {
827 	if (val)  {
828 		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
829 		sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
830 		sock_set_flag(sk, SOCK_RCVTSTAMP);
831 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
832 	} else {
833 		sock_reset_flag(sk, SOCK_RCVTSTAMP);
834 		sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
835 	}
836 }
837 
sock_enable_timestamps(struct sock * sk)838 void sock_enable_timestamps(struct sock *sk)
839 {
840 	lock_sock(sk);
841 	__sock_set_timestamps(sk, true, false, true);
842 	release_sock(sk);
843 }
844 EXPORT_SYMBOL(sock_enable_timestamps);
845 
sock_set_timestamp(struct sock * sk,int optname,bool valbool)846 void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
847 {
848 	switch (optname) {
849 	case SO_TIMESTAMP_OLD:
850 		__sock_set_timestamps(sk, valbool, false, false);
851 		break;
852 	case SO_TIMESTAMP_NEW:
853 		__sock_set_timestamps(sk, valbool, true, false);
854 		break;
855 	case SO_TIMESTAMPNS_OLD:
856 		__sock_set_timestamps(sk, valbool, false, true);
857 		break;
858 	case SO_TIMESTAMPNS_NEW:
859 		__sock_set_timestamps(sk, valbool, true, true);
860 		break;
861 	}
862 }
863 
sock_timestamping_bind_phc(struct sock * sk,int phc_index)864 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
865 {
866 	struct net *net = sock_net(sk);
867 	struct net_device *dev = NULL;
868 	bool match = false;
869 	int *vclock_index;
870 	int i, num;
871 
872 	if (sk->sk_bound_dev_if)
873 		dev = dev_get_by_index(net, sk->sk_bound_dev_if);
874 
875 	if (!dev) {
876 		pr_err("%s: sock not bind to device\n", __func__);
877 		return -EOPNOTSUPP;
878 	}
879 
880 	num = ethtool_get_phc_vclocks(dev, &vclock_index);
881 	dev_put(dev);
882 
883 	for (i = 0; i < num; i++) {
884 		if (*(vclock_index + i) == phc_index) {
885 			match = true;
886 			break;
887 		}
888 	}
889 
890 	if (num > 0)
891 		kfree(vclock_index);
892 
893 	if (!match)
894 		return -EINVAL;
895 
896 	WRITE_ONCE(sk->sk_bind_phc, phc_index);
897 
898 	return 0;
899 }
900 
sock_set_timestamping(struct sock * sk,int optname,struct so_timestamping timestamping)901 int sock_set_timestamping(struct sock *sk, int optname,
902 			  struct so_timestamping timestamping)
903 {
904 	int val = timestamping.flags;
905 	int ret;
906 
907 	if (val & ~SOF_TIMESTAMPING_MASK)
908 		return -EINVAL;
909 
910 	if (val & SOF_TIMESTAMPING_OPT_ID &&
911 	    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
912 		if (sk_is_tcp(sk)) {
913 			if ((1 << sk->sk_state) &
914 			    (TCPF_CLOSE | TCPF_LISTEN))
915 				return -EINVAL;
916 			atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
917 		} else {
918 			atomic_set(&sk->sk_tskey, 0);
919 		}
920 	}
921 
922 	if (val & SOF_TIMESTAMPING_OPT_STATS &&
923 	    !(val & SOF_TIMESTAMPING_OPT_TSONLY))
924 		return -EINVAL;
925 
926 	if (val & SOF_TIMESTAMPING_BIND_PHC) {
927 		ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
928 		if (ret)
929 			return ret;
930 	}
931 
932 	WRITE_ONCE(sk->sk_tsflags, val);
933 	sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
934 
935 	if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
936 		sock_enable_timestamp(sk,
937 				      SOCK_TIMESTAMPING_RX_SOFTWARE);
938 	else
939 		sock_disable_timestamp(sk,
940 				       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
941 	return 0;
942 }
943 
sock_set_keepalive(struct sock * sk)944 void sock_set_keepalive(struct sock *sk)
945 {
946 	lock_sock(sk);
947 	if (sk->sk_prot->keepalive)
948 		sk->sk_prot->keepalive(sk, true);
949 	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
950 	release_sock(sk);
951 }
952 EXPORT_SYMBOL(sock_set_keepalive);
953 
__sock_set_rcvbuf(struct sock * sk,int val)954 static void __sock_set_rcvbuf(struct sock *sk, int val)
955 {
956 	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
957 	 * as a negative value.
958 	 */
959 	val = min_t(int, val, INT_MAX / 2);
960 	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
961 
962 	/* We double it on the way in to account for "struct sk_buff" etc.
963 	 * overhead.   Applications assume that the SO_RCVBUF setting they make
964 	 * will allow that much actual data to be received on that socket.
965 	 *
966 	 * Applications are unaware that "struct sk_buff" and other overheads
967 	 * allocate from the receive buffer during socket buffer allocation.
968 	 *
969 	 * And after considering the possible alternatives, returning the value
970 	 * we actually used in getsockopt is the most desirable behavior.
971 	 */
972 	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
973 }
974 
sock_set_rcvbuf(struct sock * sk,int val)975 void sock_set_rcvbuf(struct sock *sk, int val)
976 {
977 	lock_sock(sk);
978 	__sock_set_rcvbuf(sk, val);
979 	release_sock(sk);
980 }
981 EXPORT_SYMBOL(sock_set_rcvbuf);
982 
__sock_set_mark(struct sock * sk,u32 val)983 static void __sock_set_mark(struct sock *sk, u32 val)
984 {
985 	if (val != sk->sk_mark) {
986 		WRITE_ONCE(sk->sk_mark, val);
987 		sk_dst_reset(sk);
988 	}
989 }
990 
sock_set_mark(struct sock * sk,u32 val)991 void sock_set_mark(struct sock *sk, u32 val)
992 {
993 	lock_sock(sk);
994 	__sock_set_mark(sk, val);
995 	release_sock(sk);
996 }
997 EXPORT_SYMBOL(sock_set_mark);
998 
sock_release_reserved_memory(struct sock * sk,int bytes)999 static void sock_release_reserved_memory(struct sock *sk, int bytes)
1000 {
1001 	/* Round down bytes to multiple of pages */
1002 	bytes = round_down(bytes, PAGE_SIZE);
1003 
1004 	WARN_ON(bytes > sk->sk_reserved_mem);
1005 	WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes);
1006 	sk_mem_reclaim(sk);
1007 }
1008 
sock_reserve_memory(struct sock * sk,int bytes)1009 static int sock_reserve_memory(struct sock *sk, int bytes)
1010 {
1011 	long allocated;
1012 	bool charged;
1013 	int pages;
1014 
1015 	if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1016 		return -EOPNOTSUPP;
1017 
1018 	if (!bytes)
1019 		return 0;
1020 
1021 	pages = sk_mem_pages(bytes);
1022 
1023 	/* pre-charge to memcg */
1024 	charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1025 					  GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1026 	if (!charged)
1027 		return -ENOMEM;
1028 
1029 	/* pre-charge to forward_alloc */
1030 	sk_memory_allocated_add(sk, pages);
1031 	allocated = sk_memory_allocated(sk);
1032 	/* If the system goes into memory pressure with this
1033 	 * precharge, give up and return error.
1034 	 */
1035 	if (allocated > sk_prot_mem_limits(sk, 1)) {
1036 		sk_memory_allocated_sub(sk, pages);
1037 		mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1038 		return -ENOMEM;
1039 	}
1040 	sk_forward_alloc_add(sk, pages << PAGE_SHIFT);
1041 
1042 	WRITE_ONCE(sk->sk_reserved_mem,
1043 		   sk->sk_reserved_mem + (pages << PAGE_SHIFT));
1044 
1045 	return 0;
1046 }
1047 
sockopt_lock_sock(struct sock * sk)1048 void sockopt_lock_sock(struct sock *sk)
1049 {
1050 	/* When current->bpf_ctx is set, the setsockopt is called from
1051 	 * a bpf prog.  bpf has ensured the sk lock has been
1052 	 * acquired before calling setsockopt().
1053 	 */
1054 	if (has_current_bpf_ctx())
1055 		return;
1056 
1057 	lock_sock(sk);
1058 }
1059 EXPORT_SYMBOL(sockopt_lock_sock);
1060 
sockopt_release_sock(struct sock * sk)1061 void sockopt_release_sock(struct sock *sk)
1062 {
1063 	if (has_current_bpf_ctx())
1064 		return;
1065 
1066 	release_sock(sk);
1067 }
1068 EXPORT_SYMBOL(sockopt_release_sock);
1069 
sockopt_ns_capable(struct user_namespace * ns,int cap)1070 bool sockopt_ns_capable(struct user_namespace *ns, int cap)
1071 {
1072 	return has_current_bpf_ctx() || ns_capable(ns, cap);
1073 }
1074 EXPORT_SYMBOL(sockopt_ns_capable);
1075 
sockopt_capable(int cap)1076 bool sockopt_capable(int cap)
1077 {
1078 	return has_current_bpf_ctx() || capable(cap);
1079 }
1080 EXPORT_SYMBOL(sockopt_capable);
1081 
1082 /*
1083  *	This is meant for all protocols to use and covers goings on
1084  *	at the socket level. Everything here is generic.
1085  */
1086 
sk_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)1087 int sk_setsockopt(struct sock *sk, int level, int optname,
1088 		  sockptr_t optval, unsigned int optlen)
1089 {
1090 	struct so_timestamping timestamping;
1091 	struct socket *sock = sk->sk_socket;
1092 	struct sock_txtime sk_txtime;
1093 	int val;
1094 	int valbool;
1095 	struct linger ling;
1096 	int ret = 0;
1097 
1098 	/*
1099 	 *	Options without arguments
1100 	 */
1101 
1102 	if (optname == SO_BINDTODEVICE)
1103 		return sock_setbindtodevice(sk, optval, optlen);
1104 
1105 	if (optlen < sizeof(int))
1106 		return -EINVAL;
1107 
1108 	if (copy_from_sockptr(&val, optval, sizeof(val)))
1109 		return -EFAULT;
1110 
1111 	valbool = val ? 1 : 0;
1112 
1113 	sockopt_lock_sock(sk);
1114 
1115 	switch (optname) {
1116 	case SO_DEBUG:
1117 		if (val && !sockopt_capable(CAP_NET_ADMIN))
1118 			ret = -EACCES;
1119 		else
1120 			sock_valbool_flag(sk, SOCK_DBG, valbool);
1121 		break;
1122 	case SO_REUSEADDR:
1123 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1124 		break;
1125 	case SO_REUSEPORT:
1126 		sk->sk_reuseport = valbool;
1127 		break;
1128 	case SO_TYPE:
1129 	case SO_PROTOCOL:
1130 	case SO_DOMAIN:
1131 	case SO_ERROR:
1132 		ret = -ENOPROTOOPT;
1133 		break;
1134 	case SO_DONTROUTE:
1135 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1136 		sk_dst_reset(sk);
1137 		break;
1138 	case SO_BROADCAST:
1139 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1140 		break;
1141 	case SO_SNDBUF:
1142 		/* Don't error on this BSD doesn't and if you think
1143 		 * about it this is right. Otherwise apps have to
1144 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1145 		 * are treated in BSD as hints
1146 		 */
1147 		val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
1148 set_sndbuf:
1149 		/* Ensure val * 2 fits into an int, to prevent max_t()
1150 		 * from treating it as a negative value.
1151 		 */
1152 		val = min_t(int, val, INT_MAX / 2);
1153 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1154 		WRITE_ONCE(sk->sk_sndbuf,
1155 			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
1156 		/* Wake up sending tasks if we upped the value. */
1157 		sk->sk_write_space(sk);
1158 		break;
1159 
1160 	case SO_SNDBUFFORCE:
1161 		if (!sockopt_capable(CAP_NET_ADMIN)) {
1162 			ret = -EPERM;
1163 			break;
1164 		}
1165 
1166 		/* No negative values (to prevent underflow, as val will be
1167 		 * multiplied by 2).
1168 		 */
1169 		if (val < 0)
1170 			val = 0;
1171 		goto set_sndbuf;
1172 
1173 	case SO_RCVBUF:
1174 		/* Don't error on this BSD doesn't and if you think
1175 		 * about it this is right. Otherwise apps have to
1176 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1177 		 * are treated in BSD as hints
1178 		 */
1179 		__sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
1180 		break;
1181 
1182 	case SO_RCVBUFFORCE:
1183 		if (!sockopt_capable(CAP_NET_ADMIN)) {
1184 			ret = -EPERM;
1185 			break;
1186 		}
1187 
1188 		/* No negative values (to prevent underflow, as val will be
1189 		 * multiplied by 2).
1190 		 */
1191 		__sock_set_rcvbuf(sk, max(val, 0));
1192 		break;
1193 
1194 	case SO_KEEPALIVE:
1195 		if (sk->sk_prot->keepalive)
1196 			sk->sk_prot->keepalive(sk, valbool);
1197 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1198 		break;
1199 
1200 	case SO_OOBINLINE:
1201 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1202 		break;
1203 
1204 	case SO_NO_CHECK:
1205 		sk->sk_no_check_tx = valbool;
1206 		break;
1207 
1208 	case SO_PRIORITY:
1209 		if ((val >= 0 && val <= 6) ||
1210 		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1211 		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1212 			WRITE_ONCE(sk->sk_priority, val);
1213 		else
1214 			ret = -EPERM;
1215 		break;
1216 
1217 	case SO_LINGER:
1218 		if (optlen < sizeof(ling)) {
1219 			ret = -EINVAL;	/* 1003.1g */
1220 			break;
1221 		}
1222 		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1223 			ret = -EFAULT;
1224 			break;
1225 		}
1226 		if (!ling.l_onoff) {
1227 			sock_reset_flag(sk, SOCK_LINGER);
1228 		} else {
1229 			unsigned long t_sec = ling.l_linger;
1230 
1231 			if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ)
1232 				WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT);
1233 			else
1234 				WRITE_ONCE(sk->sk_lingertime, t_sec * HZ);
1235 			sock_set_flag(sk, SOCK_LINGER);
1236 		}
1237 		break;
1238 
1239 	case SO_BSDCOMPAT:
1240 		break;
1241 
1242 	case SO_PASSCRED:
1243 		if (valbool)
1244 			set_bit(SOCK_PASSCRED, &sock->flags);
1245 		else
1246 			clear_bit(SOCK_PASSCRED, &sock->flags);
1247 		break;
1248 
1249 	case SO_TIMESTAMP_OLD:
1250 	case SO_TIMESTAMP_NEW:
1251 	case SO_TIMESTAMPNS_OLD:
1252 	case SO_TIMESTAMPNS_NEW:
1253 		sock_set_timestamp(sk, optname, valbool);
1254 		break;
1255 
1256 	case SO_TIMESTAMPING_NEW:
1257 	case SO_TIMESTAMPING_OLD:
1258 		if (optlen == sizeof(timestamping)) {
1259 			if (copy_from_sockptr(&timestamping, optval,
1260 					      sizeof(timestamping))) {
1261 				ret = -EFAULT;
1262 				break;
1263 			}
1264 		} else {
1265 			memset(&timestamping, 0, sizeof(timestamping));
1266 			timestamping.flags = val;
1267 		}
1268 		ret = sock_set_timestamping(sk, optname, timestamping);
1269 		break;
1270 
1271 	case SO_RCVLOWAT:
1272 		if (val < 0)
1273 			val = INT_MAX;
1274 		if (sock && sock->ops->set_rcvlowat)
1275 			ret = sock->ops->set_rcvlowat(sk, val);
1276 		else
1277 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1278 		break;
1279 
1280 	case SO_RCVTIMEO_OLD:
1281 	case SO_RCVTIMEO_NEW:
1282 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1283 				       optlen, optname == SO_RCVTIMEO_OLD);
1284 		break;
1285 
1286 	case SO_SNDTIMEO_OLD:
1287 	case SO_SNDTIMEO_NEW:
1288 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1289 				       optlen, optname == SO_SNDTIMEO_OLD);
1290 		break;
1291 
1292 	case SO_ATTACH_FILTER: {
1293 		struct sock_fprog fprog;
1294 
1295 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1296 		if (!ret)
1297 			ret = sk_attach_filter(&fprog, sk);
1298 		break;
1299 	}
1300 	case SO_ATTACH_BPF:
1301 		ret = -EINVAL;
1302 		if (optlen == sizeof(u32)) {
1303 			u32 ufd;
1304 
1305 			ret = -EFAULT;
1306 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1307 				break;
1308 
1309 			ret = sk_attach_bpf(ufd, sk);
1310 		}
1311 		break;
1312 
1313 	case SO_ATTACH_REUSEPORT_CBPF: {
1314 		struct sock_fprog fprog;
1315 
1316 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1317 		if (!ret)
1318 			ret = sk_reuseport_attach_filter(&fprog, sk);
1319 		break;
1320 	}
1321 	case SO_ATTACH_REUSEPORT_EBPF:
1322 		ret = -EINVAL;
1323 		if (optlen == sizeof(u32)) {
1324 			u32 ufd;
1325 
1326 			ret = -EFAULT;
1327 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1328 				break;
1329 
1330 			ret = sk_reuseport_attach_bpf(ufd, sk);
1331 		}
1332 		break;
1333 
1334 	case SO_DETACH_REUSEPORT_BPF:
1335 		ret = reuseport_detach_prog(sk);
1336 		break;
1337 
1338 	case SO_DETACH_FILTER:
1339 		ret = sk_detach_filter(sk);
1340 		break;
1341 
1342 	case SO_LOCK_FILTER:
1343 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1344 			ret = -EPERM;
1345 		else
1346 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1347 		break;
1348 
1349 	case SO_PASSSEC:
1350 		if (valbool)
1351 			set_bit(SOCK_PASSSEC, &sock->flags);
1352 		else
1353 			clear_bit(SOCK_PASSSEC, &sock->flags);
1354 		break;
1355 	case SO_MARK:
1356 		if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1357 		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1358 			ret = -EPERM;
1359 			break;
1360 		}
1361 
1362 		__sock_set_mark(sk, val);
1363 		break;
1364 	case SO_RCVMARK:
1365 		sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1366 		break;
1367 
1368 	case SO_RXQ_OVFL:
1369 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1370 		break;
1371 
1372 	case SO_WIFI_STATUS:
1373 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1374 		break;
1375 
1376 	case SO_PEEK_OFF:
1377 		if (sock->ops->set_peek_off)
1378 			ret = sock->ops->set_peek_off(sk, val);
1379 		else
1380 			ret = -EOPNOTSUPP;
1381 		break;
1382 
1383 	case SO_NOFCS:
1384 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1385 		break;
1386 
1387 	case SO_SELECT_ERR_QUEUE:
1388 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1389 		break;
1390 
1391 #ifdef CONFIG_NET_RX_BUSY_POLL
1392 	case SO_BUSY_POLL:
1393 		/* allow unprivileged users to decrease the value */
1394 		if ((val > sk->sk_ll_usec) && !sockopt_capable(CAP_NET_ADMIN))
1395 			ret = -EPERM;
1396 		else {
1397 			if (val < 0)
1398 				ret = -EINVAL;
1399 			else
1400 				WRITE_ONCE(sk->sk_ll_usec, val);
1401 		}
1402 		break;
1403 	case SO_PREFER_BUSY_POLL:
1404 		if (valbool && !sockopt_capable(CAP_NET_ADMIN))
1405 			ret = -EPERM;
1406 		else
1407 			WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1408 		break;
1409 	case SO_BUSY_POLL_BUDGET:
1410 		if (val > READ_ONCE(sk->sk_busy_poll_budget) && !sockopt_capable(CAP_NET_ADMIN)) {
1411 			ret = -EPERM;
1412 		} else {
1413 			if (val < 0 || val > U16_MAX)
1414 				ret = -EINVAL;
1415 			else
1416 				WRITE_ONCE(sk->sk_busy_poll_budget, val);
1417 		}
1418 		break;
1419 #endif
1420 
1421 	case SO_MAX_PACING_RATE:
1422 		{
1423 		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1424 
1425 		if (sizeof(ulval) != sizeof(val) &&
1426 		    optlen >= sizeof(ulval) &&
1427 		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1428 			ret = -EFAULT;
1429 			break;
1430 		}
1431 		if (ulval != ~0UL)
1432 			cmpxchg(&sk->sk_pacing_status,
1433 				SK_PACING_NONE,
1434 				SK_PACING_NEEDED);
1435 		/* Pairs with READ_ONCE() from sk_getsockopt() */
1436 		WRITE_ONCE(sk->sk_max_pacing_rate, ulval);
1437 		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1438 		break;
1439 		}
1440 	case SO_INCOMING_CPU:
1441 		reuseport_update_incoming_cpu(sk, val);
1442 		break;
1443 
1444 	case SO_CNX_ADVICE:
1445 		if (val == 1)
1446 			dst_negative_advice(sk);
1447 		break;
1448 
1449 	case SO_ZEROCOPY:
1450 		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1451 			if (!(sk_is_tcp(sk) ||
1452 			      (sk->sk_type == SOCK_DGRAM &&
1453 			       sk->sk_protocol == IPPROTO_UDP)))
1454 				ret = -EOPNOTSUPP;
1455 		} else if (sk->sk_family != PF_RDS) {
1456 			ret = -EOPNOTSUPP;
1457 		}
1458 		if (!ret) {
1459 			if (val < 0 || val > 1)
1460 				ret = -EINVAL;
1461 			else
1462 				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1463 		}
1464 		break;
1465 
1466 	case SO_TXTIME:
1467 		if (optlen != sizeof(struct sock_txtime)) {
1468 			ret = -EINVAL;
1469 			break;
1470 		} else if (copy_from_sockptr(&sk_txtime, optval,
1471 			   sizeof(struct sock_txtime))) {
1472 			ret = -EFAULT;
1473 			break;
1474 		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1475 			ret = -EINVAL;
1476 			break;
1477 		}
1478 		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1479 		 * scheduler has enough safe guards.
1480 		 */
1481 		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1482 		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1483 			ret = -EPERM;
1484 			break;
1485 		}
1486 		sock_valbool_flag(sk, SOCK_TXTIME, true);
1487 		sk->sk_clockid = sk_txtime.clockid;
1488 		sk->sk_txtime_deadline_mode =
1489 			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1490 		sk->sk_txtime_report_errors =
1491 			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1492 		break;
1493 
1494 	case SO_BINDTOIFINDEX:
1495 		ret = sock_bindtoindex_locked(sk, val);
1496 		break;
1497 
1498 	case SO_BUF_LOCK:
1499 		if (val & ~SOCK_BUF_LOCK_MASK) {
1500 			ret = -EINVAL;
1501 			break;
1502 		}
1503 		sk->sk_userlocks = val | (sk->sk_userlocks &
1504 					  ~SOCK_BUF_LOCK_MASK);
1505 		break;
1506 
1507 	case SO_RESERVE_MEM:
1508 	{
1509 		int delta;
1510 
1511 		if (val < 0) {
1512 			ret = -EINVAL;
1513 			break;
1514 		}
1515 
1516 		delta = val - sk->sk_reserved_mem;
1517 		if (delta < 0)
1518 			sock_release_reserved_memory(sk, -delta);
1519 		else
1520 			ret = sock_reserve_memory(sk, delta);
1521 		break;
1522 	}
1523 
1524 	case SO_TXREHASH:
1525 		if (val < -1 || val > 1) {
1526 			ret = -EINVAL;
1527 			break;
1528 		}
1529 		if ((u8)val == SOCK_TXREHASH_DEFAULT)
1530 			val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1531 		/* Paired with READ_ONCE() in tcp_rtx_synack()
1532 		 * and sk_getsockopt().
1533 		 */
1534 		WRITE_ONCE(sk->sk_txrehash, (u8)val);
1535 		break;
1536 
1537 	default:
1538 		ret = -ENOPROTOOPT;
1539 		break;
1540 	}
1541 	sockopt_release_sock(sk);
1542 	return ret;
1543 }
1544 
sock_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1545 int sock_setsockopt(struct socket *sock, int level, int optname,
1546 		    sockptr_t optval, unsigned int optlen)
1547 {
1548 	return sk_setsockopt(sock->sk, level, optname,
1549 			     optval, optlen);
1550 }
1551 EXPORT_SYMBOL(sock_setsockopt);
1552 
sk_get_peer_cred(struct sock * sk)1553 static const struct cred *sk_get_peer_cred(struct sock *sk)
1554 {
1555 	const struct cred *cred;
1556 
1557 	spin_lock(&sk->sk_peer_lock);
1558 	cred = get_cred(sk->sk_peer_cred);
1559 	spin_unlock(&sk->sk_peer_lock);
1560 
1561 	return cred;
1562 }
1563 
cred_to_ucred(struct pid * pid,const struct cred * cred,struct ucred * ucred)1564 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1565 			  struct ucred *ucred)
1566 {
1567 	ucred->pid = pid_vnr(pid);
1568 	ucred->uid = ucred->gid = -1;
1569 	if (cred) {
1570 		struct user_namespace *current_ns = current_user_ns();
1571 
1572 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1573 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1574 	}
1575 }
1576 
groups_to_user(sockptr_t dst,const struct group_info * src)1577 static int groups_to_user(sockptr_t dst, const struct group_info *src)
1578 {
1579 	struct user_namespace *user_ns = current_user_ns();
1580 	int i;
1581 
1582 	for (i = 0; i < src->ngroups; i++) {
1583 		gid_t gid = from_kgid_munged(user_ns, src->gid[i]);
1584 
1585 		if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid)))
1586 			return -EFAULT;
1587 	}
1588 
1589 	return 0;
1590 }
1591 
sk_getsockopt(struct sock * sk,int level,int optname,sockptr_t optval,sockptr_t optlen)1592 int sk_getsockopt(struct sock *sk, int level, int optname,
1593 		  sockptr_t optval, sockptr_t optlen)
1594 {
1595 	struct socket *sock = sk->sk_socket;
1596 
1597 	union {
1598 		int val;
1599 		u64 val64;
1600 		unsigned long ulval;
1601 		struct linger ling;
1602 		struct old_timeval32 tm32;
1603 		struct __kernel_old_timeval tm;
1604 		struct  __kernel_sock_timeval stm;
1605 		struct sock_txtime txtime;
1606 		struct so_timestamping timestamping;
1607 	} v;
1608 
1609 	int lv = sizeof(int);
1610 	int len;
1611 
1612 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
1613 		return -EFAULT;
1614 	if (len < 0)
1615 		return -EINVAL;
1616 
1617 	memset(&v, 0, sizeof(v));
1618 
1619 	switch (optname) {
1620 	case SO_DEBUG:
1621 		v.val = sock_flag(sk, SOCK_DBG);
1622 		break;
1623 
1624 	case SO_DONTROUTE:
1625 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1626 		break;
1627 
1628 	case SO_BROADCAST:
1629 		v.val = sock_flag(sk, SOCK_BROADCAST);
1630 		break;
1631 
1632 	case SO_SNDBUF:
1633 		v.val = READ_ONCE(sk->sk_sndbuf);
1634 		break;
1635 
1636 	case SO_RCVBUF:
1637 		v.val = READ_ONCE(sk->sk_rcvbuf);
1638 		break;
1639 
1640 	case SO_REUSEADDR:
1641 		v.val = sk->sk_reuse;
1642 		break;
1643 
1644 	case SO_REUSEPORT:
1645 		v.val = sk->sk_reuseport;
1646 		break;
1647 
1648 	case SO_KEEPALIVE:
1649 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1650 		break;
1651 
1652 	case SO_TYPE:
1653 		v.val = sk->sk_type;
1654 		break;
1655 
1656 	case SO_PROTOCOL:
1657 		v.val = sk->sk_protocol;
1658 		break;
1659 
1660 	case SO_DOMAIN:
1661 		v.val = sk->sk_family;
1662 		break;
1663 
1664 	case SO_ERROR:
1665 		v.val = -sock_error(sk);
1666 		if (v.val == 0)
1667 			v.val = xchg(&sk->sk_err_soft, 0);
1668 		break;
1669 
1670 	case SO_OOBINLINE:
1671 		v.val = sock_flag(sk, SOCK_URGINLINE);
1672 		break;
1673 
1674 	case SO_NO_CHECK:
1675 		v.val = sk->sk_no_check_tx;
1676 		break;
1677 
1678 	case SO_PRIORITY:
1679 		v.val = READ_ONCE(sk->sk_priority);
1680 		break;
1681 
1682 	case SO_LINGER:
1683 		lv		= sizeof(v.ling);
1684 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1685 		v.ling.l_linger	= READ_ONCE(sk->sk_lingertime) / HZ;
1686 		break;
1687 
1688 	case SO_BSDCOMPAT:
1689 		break;
1690 
1691 	case SO_TIMESTAMP_OLD:
1692 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1693 				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1694 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1695 		break;
1696 
1697 	case SO_TIMESTAMPNS_OLD:
1698 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1699 		break;
1700 
1701 	case SO_TIMESTAMP_NEW:
1702 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1703 		break;
1704 
1705 	case SO_TIMESTAMPNS_NEW:
1706 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1707 		break;
1708 
1709 	case SO_TIMESTAMPING_OLD:
1710 	case SO_TIMESTAMPING_NEW:
1711 		lv = sizeof(v.timestamping);
1712 		/* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only
1713 		 * returning the flags when they were set through the same option.
1714 		 * Don't change the beviour for the old case SO_TIMESTAMPING_OLD.
1715 		 */
1716 		if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, SOCK_TSTAMP_NEW)) {
1717 			v.timestamping.flags = READ_ONCE(sk->sk_tsflags);
1718 			v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc);
1719 		}
1720 		break;
1721 
1722 	case SO_RCVTIMEO_OLD:
1723 	case SO_RCVTIMEO_NEW:
1724 		lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v,
1725 				      SO_RCVTIMEO_OLD == optname);
1726 		break;
1727 
1728 	case SO_SNDTIMEO_OLD:
1729 	case SO_SNDTIMEO_NEW:
1730 		lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v,
1731 				      SO_SNDTIMEO_OLD == optname);
1732 		break;
1733 
1734 	case SO_RCVLOWAT:
1735 		v.val = READ_ONCE(sk->sk_rcvlowat);
1736 		break;
1737 
1738 	case SO_SNDLOWAT:
1739 		v.val = 1;
1740 		break;
1741 
1742 	case SO_PASSCRED:
1743 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1744 		break;
1745 
1746 	case SO_PEERCRED:
1747 	{
1748 		struct ucred peercred;
1749 		if (len > sizeof(peercred))
1750 			len = sizeof(peercred);
1751 
1752 		spin_lock(&sk->sk_peer_lock);
1753 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1754 		spin_unlock(&sk->sk_peer_lock);
1755 
1756 		if (copy_to_sockptr(optval, &peercred, len))
1757 			return -EFAULT;
1758 		goto lenout;
1759 	}
1760 
1761 	case SO_PEERGROUPS:
1762 	{
1763 		const struct cred *cred;
1764 		int ret, n;
1765 
1766 		cred = sk_get_peer_cred(sk);
1767 		if (!cred)
1768 			return -ENODATA;
1769 
1770 		n = cred->group_info->ngroups;
1771 		if (len < n * sizeof(gid_t)) {
1772 			len = n * sizeof(gid_t);
1773 			put_cred(cred);
1774 			return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE;
1775 		}
1776 		len = n * sizeof(gid_t);
1777 
1778 		ret = groups_to_user(optval, cred->group_info);
1779 		put_cred(cred);
1780 		if (ret)
1781 			return ret;
1782 		goto lenout;
1783 	}
1784 
1785 	case SO_PEERNAME:
1786 	{
1787 		struct sockaddr_storage address;
1788 
1789 		lv = sock->ops->getname(sock, (struct sockaddr *)&address, 2);
1790 		if (lv < 0)
1791 			return -ENOTCONN;
1792 		if (lv < len)
1793 			return -EINVAL;
1794 		if (copy_to_sockptr(optval, &address, len))
1795 			return -EFAULT;
1796 		goto lenout;
1797 	}
1798 
1799 	/* Dubious BSD thing... Probably nobody even uses it, but
1800 	 * the UNIX standard wants it for whatever reason... -DaveM
1801 	 */
1802 	case SO_ACCEPTCONN:
1803 		v.val = sk->sk_state == TCP_LISTEN;
1804 		break;
1805 
1806 	case SO_PASSSEC:
1807 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1808 		break;
1809 
1810 	case SO_PEERSEC:
1811 		return security_socket_getpeersec_stream(sock, optval.user, optlen.user, len);
1812 
1813 	case SO_MARK:
1814 		v.val = READ_ONCE(sk->sk_mark);
1815 		break;
1816 
1817 	case SO_RCVMARK:
1818 		v.val = sock_flag(sk, SOCK_RCVMARK);
1819 		break;
1820 
1821 	case SO_RXQ_OVFL:
1822 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1823 		break;
1824 
1825 	case SO_WIFI_STATUS:
1826 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1827 		break;
1828 
1829 	case SO_PEEK_OFF:
1830 		if (!sock->ops->set_peek_off)
1831 			return -EOPNOTSUPP;
1832 
1833 		v.val = READ_ONCE(sk->sk_peek_off);
1834 		break;
1835 	case SO_NOFCS:
1836 		v.val = sock_flag(sk, SOCK_NOFCS);
1837 		break;
1838 
1839 	case SO_BINDTODEVICE:
1840 		return sock_getbindtodevice(sk, optval, optlen, len);
1841 
1842 	case SO_GET_FILTER:
1843 		len = sk_get_filter(sk, optval, len);
1844 		if (len < 0)
1845 			return len;
1846 
1847 		goto lenout;
1848 
1849 	case SO_LOCK_FILTER:
1850 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1851 		break;
1852 
1853 	case SO_BPF_EXTENSIONS:
1854 		v.val = bpf_tell_extensions();
1855 		break;
1856 
1857 	case SO_SELECT_ERR_QUEUE:
1858 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1859 		break;
1860 
1861 #ifdef CONFIG_NET_RX_BUSY_POLL
1862 	case SO_BUSY_POLL:
1863 		v.val = READ_ONCE(sk->sk_ll_usec);
1864 		break;
1865 	case SO_PREFER_BUSY_POLL:
1866 		v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1867 		break;
1868 #endif
1869 
1870 	case SO_MAX_PACING_RATE:
1871 		/* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */
1872 		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1873 			lv = sizeof(v.ulval);
1874 			v.ulval = READ_ONCE(sk->sk_max_pacing_rate);
1875 		} else {
1876 			/* 32bit version */
1877 			v.val = min_t(unsigned long, ~0U,
1878 				      READ_ONCE(sk->sk_max_pacing_rate));
1879 		}
1880 		break;
1881 
1882 	case SO_INCOMING_CPU:
1883 		v.val = READ_ONCE(sk->sk_incoming_cpu);
1884 		break;
1885 
1886 	case SO_MEMINFO:
1887 	{
1888 		u32 meminfo[SK_MEMINFO_VARS];
1889 
1890 		sk_get_meminfo(sk, meminfo);
1891 
1892 		len = min_t(unsigned int, len, sizeof(meminfo));
1893 		if (copy_to_sockptr(optval, &meminfo, len))
1894 			return -EFAULT;
1895 
1896 		goto lenout;
1897 	}
1898 
1899 #ifdef CONFIG_NET_RX_BUSY_POLL
1900 	case SO_INCOMING_NAPI_ID:
1901 		v.val = READ_ONCE(sk->sk_napi_id);
1902 
1903 		/* aggregate non-NAPI IDs down to 0 */
1904 		if (v.val < MIN_NAPI_ID)
1905 			v.val = 0;
1906 
1907 		break;
1908 #endif
1909 
1910 	case SO_COOKIE:
1911 		lv = sizeof(u64);
1912 		if (len < lv)
1913 			return -EINVAL;
1914 		v.val64 = sock_gen_cookie(sk);
1915 		break;
1916 
1917 	case SO_ZEROCOPY:
1918 		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1919 		break;
1920 
1921 	case SO_TXTIME:
1922 		lv = sizeof(v.txtime);
1923 		v.txtime.clockid = sk->sk_clockid;
1924 		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1925 				  SOF_TXTIME_DEADLINE_MODE : 0;
1926 		v.txtime.flags |= sk->sk_txtime_report_errors ?
1927 				  SOF_TXTIME_REPORT_ERRORS : 0;
1928 		break;
1929 
1930 	case SO_BINDTOIFINDEX:
1931 		v.val = READ_ONCE(sk->sk_bound_dev_if);
1932 		break;
1933 
1934 	case SO_NETNS_COOKIE:
1935 		lv = sizeof(u64);
1936 		if (len != lv)
1937 			return -EINVAL;
1938 		v.val64 = sock_net(sk)->net_cookie;
1939 		break;
1940 
1941 	case SO_BUF_LOCK:
1942 		v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
1943 		break;
1944 
1945 	case SO_RESERVE_MEM:
1946 		v.val = READ_ONCE(sk->sk_reserved_mem);
1947 		break;
1948 
1949 	case SO_TXREHASH:
1950 		/* Paired with WRITE_ONCE() in sk_setsockopt() */
1951 		v.val = READ_ONCE(sk->sk_txrehash);
1952 		break;
1953 
1954 	default:
1955 		/* We implement the SO_SNDLOWAT etc to not be settable
1956 		 * (1003.1g 7).
1957 		 */
1958 		return -ENOPROTOOPT;
1959 	}
1960 
1961 	if (len > lv)
1962 		len = lv;
1963 	if (copy_to_sockptr(optval, &v, len))
1964 		return -EFAULT;
1965 lenout:
1966 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
1967 		return -EFAULT;
1968 	return 0;
1969 }
1970 
sock_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1971 int sock_getsockopt(struct socket *sock, int level, int optname,
1972 		    char __user *optval, int __user *optlen)
1973 {
1974 	return sk_getsockopt(sock->sk, level, optname,
1975 			     USER_SOCKPTR(optval),
1976 			     USER_SOCKPTR(optlen));
1977 }
1978 
1979 /*
1980  * Initialize an sk_lock.
1981  *
1982  * (We also register the sk_lock with the lock validator.)
1983  */
sock_lock_init(struct sock * sk)1984 static inline void sock_lock_init(struct sock *sk)
1985 {
1986 	if (sk->sk_kern_sock)
1987 		sock_lock_init_class_and_name(
1988 			sk,
1989 			af_family_kern_slock_key_strings[sk->sk_family],
1990 			af_family_kern_slock_keys + sk->sk_family,
1991 			af_family_kern_key_strings[sk->sk_family],
1992 			af_family_kern_keys + sk->sk_family);
1993 	else
1994 		sock_lock_init_class_and_name(
1995 			sk,
1996 			af_family_slock_key_strings[sk->sk_family],
1997 			af_family_slock_keys + sk->sk_family,
1998 			af_family_key_strings[sk->sk_family],
1999 			af_family_keys + sk->sk_family);
2000 }
2001 
2002 /*
2003  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
2004  * even temporarly, because of RCU lookups. sk_node should also be left as is.
2005  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
2006  */
sock_copy(struct sock * nsk,const struct sock * osk)2007 static void sock_copy(struct sock *nsk, const struct sock *osk)
2008 {
2009 	const struct proto *prot = READ_ONCE(osk->sk_prot);
2010 #ifdef CONFIG_SECURITY_NETWORK
2011 	void *sptr = nsk->sk_security;
2012 #endif
2013 
2014 	/* If we move sk_tx_queue_mapping out of the private section,
2015 	 * we must check if sk_tx_queue_clear() is called after
2016 	 * sock_copy() in sk_clone_lock().
2017 	 */
2018 	BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
2019 		     offsetof(struct sock, sk_dontcopy_begin) ||
2020 		     offsetof(struct sock, sk_tx_queue_mapping) >=
2021 		     offsetof(struct sock, sk_dontcopy_end));
2022 
2023 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
2024 
2025 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
2026 	       prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
2027 
2028 #ifdef CONFIG_SECURITY_NETWORK
2029 	nsk->sk_security = sptr;
2030 	security_sk_clone(osk, nsk);
2031 #endif
2032 }
2033 
sk_prot_alloc(struct proto * prot,gfp_t priority,int family)2034 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
2035 		int family)
2036 {
2037 	struct sock *sk;
2038 	struct kmem_cache *slab;
2039 
2040 	slab = prot->slab;
2041 	if (slab != NULL) {
2042 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
2043 		if (!sk)
2044 			return sk;
2045 		if (want_init_on_alloc(priority))
2046 			sk_prot_clear_nulls(sk, prot->obj_size);
2047 	} else
2048 		sk = kmalloc(prot->obj_size, priority);
2049 
2050 	if (sk != NULL) {
2051 		if (security_sk_alloc(sk, family, priority))
2052 			goto out_free;
2053 
2054 		trace_android_rvh_sk_alloc(sk);
2055 
2056 		if (!try_module_get(prot->owner))
2057 			goto out_free_sec;
2058 	}
2059 
2060 	return sk;
2061 
2062 out_free_sec:
2063 	security_sk_free(sk);
2064 	trace_android_rvh_sk_free(sk);
2065 out_free:
2066 	if (slab != NULL)
2067 		kmem_cache_free(slab, sk);
2068 	else
2069 		kfree(sk);
2070 	return NULL;
2071 }
2072 
sk_prot_free(struct proto * prot,struct sock * sk)2073 static void sk_prot_free(struct proto *prot, struct sock *sk)
2074 {
2075 	struct kmem_cache *slab;
2076 	struct module *owner;
2077 
2078 	owner = prot->owner;
2079 	slab = prot->slab;
2080 
2081 	cgroup_sk_free(&sk->sk_cgrp_data);
2082 	mem_cgroup_sk_free(sk);
2083 	security_sk_free(sk);
2084 	trace_android_rvh_sk_free(sk);
2085 	if (slab != NULL)
2086 		kmem_cache_free(slab, sk);
2087 	else
2088 		kfree(sk);
2089 	module_put(owner);
2090 }
2091 
2092 /**
2093  *	sk_alloc - All socket objects are allocated here
2094  *	@net: the applicable net namespace
2095  *	@family: protocol family
2096  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2097  *	@prot: struct proto associated with this new sock instance
2098  *	@kern: is this to be a kernel socket?
2099  */
sk_alloc(struct net * net,int family,gfp_t priority,struct proto * prot,int kern)2100 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2101 		      struct proto *prot, int kern)
2102 {
2103 	struct sock *sk;
2104 
2105 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2106 	if (sk) {
2107 		sk->sk_family = family;
2108 		/*
2109 		 * See comment in struct sock definition to understand
2110 		 * why we need sk_prot_creator -acme
2111 		 */
2112 		sk->sk_prot = sk->sk_prot_creator = prot;
2113 		sk->sk_kern_sock = kern;
2114 		sock_lock_init(sk);
2115 		sk->sk_net_refcnt = kern ? 0 : 1;
2116 		if (likely(sk->sk_net_refcnt)) {
2117 			get_net_track(net, &sk->ns_tracker, priority);
2118 			sock_inuse_add(net, 1);
2119 		}
2120 
2121 		sock_net_set(sk, net);
2122 		refcount_set(&sk->sk_wmem_alloc, 1);
2123 
2124 		mem_cgroup_sk_alloc(sk);
2125 		cgroup_sk_alloc(&sk->sk_cgrp_data);
2126 		sock_update_classid(&sk->sk_cgrp_data);
2127 		sock_update_netprioidx(&sk->sk_cgrp_data);
2128 		sk_tx_queue_clear(sk);
2129 	}
2130 
2131 	return sk;
2132 }
2133 EXPORT_SYMBOL(sk_alloc);
2134 
2135 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
2136  * grace period. This is the case for UDP sockets and TCP listeners.
2137  */
__sk_destruct(struct rcu_head * head)2138 static void __sk_destruct(struct rcu_head *head)
2139 {
2140 	struct sock *sk = container_of(head, struct sock, sk_rcu);
2141 	struct sk_filter *filter;
2142 
2143 	if (sk->sk_destruct)
2144 		sk->sk_destruct(sk);
2145 
2146 	filter = rcu_dereference_check(sk->sk_filter,
2147 				       refcount_read(&sk->sk_wmem_alloc) == 0);
2148 	if (filter) {
2149 		sk_filter_uncharge(sk, filter);
2150 		RCU_INIT_POINTER(sk->sk_filter, NULL);
2151 	}
2152 
2153 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2154 
2155 #ifdef CONFIG_BPF_SYSCALL
2156 	bpf_sk_storage_free(sk);
2157 #endif
2158 
2159 	if (atomic_read(&sk->sk_omem_alloc))
2160 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
2161 			 __func__, atomic_read(&sk->sk_omem_alloc));
2162 
2163 	if (sk->sk_frag.page) {
2164 		put_page(sk->sk_frag.page);
2165 		sk->sk_frag.page = NULL;
2166 	}
2167 
2168 	/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2169 	put_cred(sk->sk_peer_cred);
2170 	put_pid(sk->sk_peer_pid);
2171 
2172 	if (likely(sk->sk_net_refcnt))
2173 		put_net_track(sock_net(sk), &sk->ns_tracker);
2174 	sk_prot_free(sk->sk_prot_creator, sk);
2175 }
2176 
sk_destruct(struct sock * sk)2177 void sk_destruct(struct sock *sk)
2178 {
2179 	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2180 
2181 	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2182 		reuseport_detach_sock(sk);
2183 		use_call_rcu = true;
2184 	}
2185 
2186 	if (use_call_rcu)
2187 		call_rcu(&sk->sk_rcu, __sk_destruct);
2188 	else
2189 		__sk_destruct(&sk->sk_rcu);
2190 }
2191 
__sk_free(struct sock * sk)2192 static void __sk_free(struct sock *sk)
2193 {
2194 	if (likely(sk->sk_net_refcnt))
2195 		sock_inuse_add(sock_net(sk), -1);
2196 
2197 	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2198 		sock_diag_broadcast_destroy(sk);
2199 	else
2200 		sk_destruct(sk);
2201 }
2202 
sk_free(struct sock * sk)2203 void sk_free(struct sock *sk)
2204 {
2205 	/*
2206 	 * We subtract one from sk_wmem_alloc and can know if
2207 	 * some packets are still in some tx queue.
2208 	 * If not null, sock_wfree() will call __sk_free(sk) later
2209 	 */
2210 	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2211 		__sk_free(sk);
2212 }
2213 EXPORT_SYMBOL(sk_free);
2214 
sk_init_common(struct sock * sk)2215 static void sk_init_common(struct sock *sk)
2216 {
2217 	skb_queue_head_init(&sk->sk_receive_queue);
2218 	skb_queue_head_init(&sk->sk_write_queue);
2219 	skb_queue_head_init(&sk->sk_error_queue);
2220 
2221 	rwlock_init(&sk->sk_callback_lock);
2222 	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2223 			af_rlock_keys + sk->sk_family,
2224 			af_family_rlock_key_strings[sk->sk_family]);
2225 	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2226 			af_wlock_keys + sk->sk_family,
2227 			af_family_wlock_key_strings[sk->sk_family]);
2228 	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2229 			af_elock_keys + sk->sk_family,
2230 			af_family_elock_key_strings[sk->sk_family]);
2231 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2232 			af_callback_keys + sk->sk_family,
2233 			af_family_clock_key_strings[sk->sk_family]);
2234 }
2235 
2236 /**
2237  *	sk_clone_lock - clone a socket, and lock its clone
2238  *	@sk: the socket to clone
2239  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2240  *
2241  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2242  */
sk_clone_lock(const struct sock * sk,const gfp_t priority)2243 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2244 {
2245 	struct proto *prot = READ_ONCE(sk->sk_prot);
2246 	struct sk_filter *filter;
2247 	bool is_charged = true;
2248 	struct sock *newsk;
2249 
2250 	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2251 	if (!newsk)
2252 		goto out;
2253 
2254 	sock_copy(newsk, sk);
2255 
2256 	newsk->sk_prot_creator = prot;
2257 
2258 	/* SANITY */
2259 	if (likely(newsk->sk_net_refcnt)) {
2260 		get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2261 		sock_inuse_add(sock_net(newsk), 1);
2262 	}
2263 	sk_node_init(&newsk->sk_node);
2264 	sock_lock_init(newsk);
2265 	bh_lock_sock(newsk);
2266 	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
2267 	newsk->sk_backlog.len = 0;
2268 
2269 	atomic_set(&newsk->sk_rmem_alloc, 0);
2270 
2271 	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2272 	refcount_set(&newsk->sk_wmem_alloc, 1);
2273 
2274 	atomic_set(&newsk->sk_omem_alloc, 0);
2275 	sk_init_common(newsk);
2276 
2277 	newsk->sk_dst_cache	= NULL;
2278 	newsk->sk_dst_pending_confirm = 0;
2279 	newsk->sk_wmem_queued	= 0;
2280 	newsk->sk_forward_alloc = 0;
2281 	newsk->sk_reserved_mem  = 0;
2282 	atomic_set(&newsk->sk_drops, 0);
2283 	newsk->sk_send_head	= NULL;
2284 	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2285 	atomic_set(&newsk->sk_zckey, 0);
2286 
2287 	sock_reset_flag(newsk, SOCK_DONE);
2288 
2289 	/* sk->sk_memcg will be populated at accept() time */
2290 	newsk->sk_memcg = NULL;
2291 
2292 	cgroup_sk_clone(&newsk->sk_cgrp_data);
2293 
2294 	rcu_read_lock();
2295 	filter = rcu_dereference(sk->sk_filter);
2296 	if (filter != NULL)
2297 		/* though it's an empty new sock, the charging may fail
2298 		 * if sysctl_optmem_max was changed between creation of
2299 		 * original socket and cloning
2300 		 */
2301 		is_charged = sk_filter_charge(newsk, filter);
2302 	RCU_INIT_POINTER(newsk->sk_filter, filter);
2303 	rcu_read_unlock();
2304 
2305 	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2306 		/* We need to make sure that we don't uncharge the new
2307 		 * socket if we couldn't charge it in the first place
2308 		 * as otherwise we uncharge the parent's filter.
2309 		 */
2310 		if (!is_charged)
2311 			RCU_INIT_POINTER(newsk->sk_filter, NULL);
2312 		sk_free_unlock_clone(newsk);
2313 		newsk = NULL;
2314 		goto out;
2315 	}
2316 	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2317 
2318 	if (bpf_sk_storage_clone(sk, newsk)) {
2319 		sk_free_unlock_clone(newsk);
2320 		newsk = NULL;
2321 		goto out;
2322 	}
2323 
2324 	/* Clear sk_user_data if parent had the pointer tagged
2325 	 * as not suitable for copying when cloning.
2326 	 */
2327 	if (sk_user_data_is_nocopy(newsk))
2328 		newsk->sk_user_data = NULL;
2329 
2330 	newsk->sk_err	   = 0;
2331 	newsk->sk_err_soft = 0;
2332 	newsk->sk_priority = 0;
2333 	newsk->sk_incoming_cpu = raw_smp_processor_id();
2334 
2335 	/* Before updating sk_refcnt, we must commit prior changes to memory
2336 	 * (Documentation/RCU/rculist_nulls.rst for details)
2337 	 */
2338 	smp_wmb();
2339 	refcount_set(&newsk->sk_refcnt, 2);
2340 
2341 	/* Increment the counter in the same struct proto as the master
2342 	 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
2343 	 * is the same as sk->sk_prot->socks, as this field was copied
2344 	 * with memcpy).
2345 	 *
2346 	 * This _changes_ the previous behaviour, where
2347 	 * tcp_create_openreq_child always was incrementing the
2348 	 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
2349 	 * to be taken into account in all callers. -acme
2350 	 */
2351 	sk_refcnt_debug_inc(newsk);
2352 	sk_set_socket(newsk, NULL);
2353 	sk_tx_queue_clear(newsk);
2354 	RCU_INIT_POINTER(newsk->sk_wq, NULL);
2355 
2356 	if (newsk->sk_prot->sockets_allocated)
2357 		sk_sockets_allocated_inc(newsk);
2358 
2359 	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2360 		net_enable_timestamp();
2361 out:
2362 	return newsk;
2363 }
2364 EXPORT_SYMBOL_GPL(sk_clone_lock);
2365 
sk_free_unlock_clone(struct sock * sk)2366 void sk_free_unlock_clone(struct sock *sk)
2367 {
2368 	/* It is still raw copy of parent, so invalidate
2369 	 * destructor and make plain sk_free() */
2370 	sk->sk_destruct = NULL;
2371 	bh_unlock_sock(sk);
2372 	sk_free(sk);
2373 }
2374 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2375 
sk_trim_gso_size(struct sock * sk)2376 static void sk_trim_gso_size(struct sock *sk)
2377 {
2378 	if (sk->sk_gso_max_size <= GSO_LEGACY_MAX_SIZE)
2379 		return;
2380 #if IS_ENABLED(CONFIG_IPV6)
2381 	if (sk->sk_family == AF_INET6 &&
2382 	    sk_is_tcp(sk) &&
2383 	    !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
2384 		return;
2385 #endif
2386 	sk->sk_gso_max_size = GSO_LEGACY_MAX_SIZE;
2387 }
2388 
sk_setup_caps(struct sock * sk,struct dst_entry * dst)2389 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2390 {
2391 	u32 max_segs = 1;
2392 
2393 	sk->sk_route_caps = dst->dev->features;
2394 	if (sk_is_tcp(sk))
2395 		sk->sk_route_caps |= NETIF_F_GSO;
2396 	if (sk->sk_route_caps & NETIF_F_GSO)
2397 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2398 	if (unlikely(sk->sk_gso_disabled))
2399 		sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2400 	if (sk_can_gso(sk)) {
2401 		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2402 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2403 		} else {
2404 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2405 			/* pairs with the WRITE_ONCE() in netif_set_gso_max_size() */
2406 			sk->sk_gso_max_size = READ_ONCE(dst->dev->gso_max_size);
2407 			sk_trim_gso_size(sk);
2408 			sk->sk_gso_max_size -= (MAX_TCP_HEADER + 1);
2409 			/* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2410 			max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2411 		}
2412 	}
2413 	sk->sk_gso_max_segs = max_segs;
2414 	sk_dst_set(sk, dst);
2415 }
2416 EXPORT_SYMBOL_GPL(sk_setup_caps);
2417 
2418 /*
2419  *	Simple resource managers for sockets.
2420  */
2421 
2422 
2423 /*
2424  * Write buffer destructor automatically called from kfree_skb.
2425  */
sock_wfree(struct sk_buff * skb)2426 void sock_wfree(struct sk_buff *skb)
2427 {
2428 	struct sock *sk = skb->sk;
2429 	unsigned int len = skb->truesize;
2430 	bool free;
2431 
2432 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2433 		if (sock_flag(sk, SOCK_RCU_FREE) &&
2434 		    sk->sk_write_space == sock_def_write_space) {
2435 			rcu_read_lock();
2436 			free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2437 			sock_def_write_space_wfree(sk);
2438 			rcu_read_unlock();
2439 			if (unlikely(free))
2440 				__sk_free(sk);
2441 			return;
2442 		}
2443 
2444 		/*
2445 		 * Keep a reference on sk_wmem_alloc, this will be released
2446 		 * after sk_write_space() call
2447 		 */
2448 		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2449 		sk->sk_write_space(sk);
2450 		len = 1;
2451 	}
2452 	/*
2453 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2454 	 * could not do because of in-flight packets
2455 	 */
2456 	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2457 		__sk_free(sk);
2458 }
2459 EXPORT_SYMBOL(sock_wfree);
2460 
2461 /* This variant of sock_wfree() is used by TCP,
2462  * since it sets SOCK_USE_WRITE_QUEUE.
2463  */
__sock_wfree(struct sk_buff * skb)2464 void __sock_wfree(struct sk_buff *skb)
2465 {
2466 	struct sock *sk = skb->sk;
2467 
2468 	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2469 		__sk_free(sk);
2470 }
2471 
skb_set_owner_w(struct sk_buff * skb,struct sock * sk)2472 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2473 {
2474 	skb_orphan(skb);
2475 	skb->sk = sk;
2476 #ifdef CONFIG_INET
2477 	if (unlikely(!sk_fullsock(sk))) {
2478 		skb->destructor = sock_edemux;
2479 		sock_hold(sk);
2480 		return;
2481 	}
2482 #endif
2483 	skb->destructor = sock_wfree;
2484 	skb_set_hash_from_sk(skb, sk);
2485 	/*
2486 	 * We used to take a refcount on sk, but following operation
2487 	 * is enough to guarantee sk_free() wont free this sock until
2488 	 * all in-flight packets are completed
2489 	 */
2490 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2491 }
2492 EXPORT_SYMBOL(skb_set_owner_w);
2493 
can_skb_orphan_partial(const struct sk_buff * skb)2494 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2495 {
2496 #ifdef CONFIG_TLS_DEVICE
2497 	/* Drivers depend on in-order delivery for crypto offload,
2498 	 * partial orphan breaks out-of-order-OK logic.
2499 	 */
2500 	if (skb->decrypted)
2501 		return false;
2502 #endif
2503 	return (skb->destructor == sock_wfree ||
2504 		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2505 }
2506 
2507 /* This helper is used by netem, as it can hold packets in its
2508  * delay queue. We want to allow the owner socket to send more
2509  * packets, as if they were already TX completed by a typical driver.
2510  * But we also want to keep skb->sk set because some packet schedulers
2511  * rely on it (sch_fq for example).
2512  */
skb_orphan_partial(struct sk_buff * skb)2513 void skb_orphan_partial(struct sk_buff *skb)
2514 {
2515 	if (skb_is_tcp_pure_ack(skb))
2516 		return;
2517 
2518 	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2519 		return;
2520 
2521 	skb_orphan(skb);
2522 }
2523 EXPORT_SYMBOL(skb_orphan_partial);
2524 
2525 /*
2526  * Read buffer destructor automatically called from kfree_skb.
2527  */
sock_rfree(struct sk_buff * skb)2528 void sock_rfree(struct sk_buff *skb)
2529 {
2530 	struct sock *sk = skb->sk;
2531 	unsigned int len = skb->truesize;
2532 
2533 	atomic_sub(len, &sk->sk_rmem_alloc);
2534 	sk_mem_uncharge(sk, len);
2535 }
2536 EXPORT_SYMBOL(sock_rfree);
2537 
2538 /*
2539  * Buffer destructor for skbs that are not used directly in read or write
2540  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2541  */
sock_efree(struct sk_buff * skb)2542 void sock_efree(struct sk_buff *skb)
2543 {
2544 	sock_put(skb->sk);
2545 }
2546 EXPORT_SYMBOL(sock_efree);
2547 
2548 /* Buffer destructor for prefetch/receive path where reference count may
2549  * not be held, e.g. for listen sockets.
2550  */
2551 #ifdef CONFIG_INET
sock_pfree(struct sk_buff * skb)2552 void sock_pfree(struct sk_buff *skb)
2553 {
2554 	if (sk_is_refcounted(skb->sk))
2555 		sock_gen_put(skb->sk);
2556 }
2557 EXPORT_SYMBOL(sock_pfree);
2558 #endif /* CONFIG_INET */
2559 
sock_i_uid(struct sock * sk)2560 kuid_t sock_i_uid(struct sock *sk)
2561 {
2562 	kuid_t uid;
2563 
2564 	read_lock_bh(&sk->sk_callback_lock);
2565 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2566 	read_unlock_bh(&sk->sk_callback_lock);
2567 	return uid;
2568 }
2569 EXPORT_SYMBOL(sock_i_uid);
2570 
__sock_i_ino(struct sock * sk)2571 unsigned long __sock_i_ino(struct sock *sk)
2572 {
2573 	unsigned long ino;
2574 
2575 	read_lock(&sk->sk_callback_lock);
2576 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2577 	read_unlock(&sk->sk_callback_lock);
2578 	return ino;
2579 }
2580 EXPORT_SYMBOL(__sock_i_ino);
2581 
sock_i_ino(struct sock * sk)2582 unsigned long sock_i_ino(struct sock *sk)
2583 {
2584 	unsigned long ino;
2585 
2586 	local_bh_disable();
2587 	ino = __sock_i_ino(sk);
2588 	local_bh_enable();
2589 	return ino;
2590 }
2591 EXPORT_SYMBOL(sock_i_ino);
2592 
2593 /*
2594  * Allocate a skb from the socket's send buffer.
2595  */
sock_wmalloc(struct sock * sk,unsigned long size,int force,gfp_t priority)2596 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2597 			     gfp_t priority)
2598 {
2599 	if (force ||
2600 	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2601 		struct sk_buff *skb = alloc_skb(size, priority);
2602 
2603 		if (skb) {
2604 			skb_set_owner_w(skb, sk);
2605 			return skb;
2606 		}
2607 	}
2608 	return NULL;
2609 }
2610 EXPORT_SYMBOL(sock_wmalloc);
2611 
sock_ofree(struct sk_buff * skb)2612 static void sock_ofree(struct sk_buff *skb)
2613 {
2614 	struct sock *sk = skb->sk;
2615 
2616 	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2617 }
2618 
sock_omalloc(struct sock * sk,unsigned long size,gfp_t priority)2619 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2620 			     gfp_t priority)
2621 {
2622 	struct sk_buff *skb;
2623 
2624 	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2625 	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2626 	    READ_ONCE(sysctl_optmem_max))
2627 		return NULL;
2628 
2629 	skb = alloc_skb(size, priority);
2630 	if (!skb)
2631 		return NULL;
2632 
2633 	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2634 	skb->sk = sk;
2635 	skb->destructor = sock_ofree;
2636 	return skb;
2637 }
2638 
2639 /*
2640  * Allocate a memory block from the socket's option memory buffer.
2641  */
sock_kmalloc(struct sock * sk,int size,gfp_t priority)2642 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2643 {
2644 	int optmem_max = READ_ONCE(sysctl_optmem_max);
2645 
2646 	if ((unsigned int)size <= optmem_max &&
2647 	    atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2648 		void *mem;
2649 		/* First do the add, to avoid the race if kmalloc
2650 		 * might sleep.
2651 		 */
2652 		atomic_add(size, &sk->sk_omem_alloc);
2653 		mem = kmalloc(size, priority);
2654 		if (mem)
2655 			return mem;
2656 		atomic_sub(size, &sk->sk_omem_alloc);
2657 	}
2658 	return NULL;
2659 }
2660 EXPORT_SYMBOL(sock_kmalloc);
2661 
2662 /* Free an option memory block. Note, we actually want the inline
2663  * here as this allows gcc to detect the nullify and fold away the
2664  * condition entirely.
2665  */
__sock_kfree_s(struct sock * sk,void * mem,int size,const bool nullify)2666 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2667 				  const bool nullify)
2668 {
2669 	if (WARN_ON_ONCE(!mem))
2670 		return;
2671 	if (nullify)
2672 		kfree_sensitive(mem);
2673 	else
2674 		kfree(mem);
2675 	atomic_sub(size, &sk->sk_omem_alloc);
2676 }
2677 
sock_kfree_s(struct sock * sk,void * mem,int size)2678 void sock_kfree_s(struct sock *sk, void *mem, int size)
2679 {
2680 	__sock_kfree_s(sk, mem, size, false);
2681 }
2682 EXPORT_SYMBOL(sock_kfree_s);
2683 
sock_kzfree_s(struct sock * sk,void * mem,int size)2684 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2685 {
2686 	__sock_kfree_s(sk, mem, size, true);
2687 }
2688 EXPORT_SYMBOL(sock_kzfree_s);
2689 
2690 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2691    I think, these locks should be removed for datagram sockets.
2692  */
sock_wait_for_wmem(struct sock * sk,long timeo)2693 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2694 {
2695 	DEFINE_WAIT(wait);
2696 
2697 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2698 	for (;;) {
2699 		if (!timeo)
2700 			break;
2701 		if (signal_pending(current))
2702 			break;
2703 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2704 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2705 		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2706 			break;
2707 		if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2708 			break;
2709 		if (READ_ONCE(sk->sk_err))
2710 			break;
2711 		timeo = schedule_timeout(timeo);
2712 	}
2713 	finish_wait(sk_sleep(sk), &wait);
2714 	return timeo;
2715 }
2716 
2717 
2718 /*
2719  *	Generic send/receive buffer handlers
2720  */
2721 
sock_alloc_send_pskb(struct sock * sk,unsigned long header_len,unsigned long data_len,int noblock,int * errcode,int max_page_order)2722 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2723 				     unsigned long data_len, int noblock,
2724 				     int *errcode, int max_page_order)
2725 {
2726 	struct sk_buff *skb;
2727 	long timeo;
2728 	int err;
2729 
2730 	timeo = sock_sndtimeo(sk, noblock);
2731 	for (;;) {
2732 		err = sock_error(sk);
2733 		if (err != 0)
2734 			goto failure;
2735 
2736 		err = -EPIPE;
2737 		if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2738 			goto failure;
2739 
2740 		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2741 			break;
2742 
2743 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2744 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2745 		err = -EAGAIN;
2746 		if (!timeo)
2747 			goto failure;
2748 		if (signal_pending(current))
2749 			goto interrupted;
2750 		timeo = sock_wait_for_wmem(sk, timeo);
2751 	}
2752 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2753 				   errcode, sk->sk_allocation);
2754 	if (skb)
2755 		skb_set_owner_w(skb, sk);
2756 	return skb;
2757 
2758 interrupted:
2759 	err = sock_intr_errno(timeo);
2760 failure:
2761 	*errcode = err;
2762 	return NULL;
2763 }
2764 EXPORT_SYMBOL(sock_alloc_send_pskb);
2765 
__sock_cmsg_send(struct sock * sk,struct msghdr * msg,struct cmsghdr * cmsg,struct sockcm_cookie * sockc)2766 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2767 		     struct sockcm_cookie *sockc)
2768 {
2769 	u32 tsflags;
2770 
2771 	switch (cmsg->cmsg_type) {
2772 	case SO_MARK:
2773 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2774 		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2775 			return -EPERM;
2776 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2777 			return -EINVAL;
2778 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2779 		break;
2780 	case SO_TIMESTAMPING_OLD:
2781 	case SO_TIMESTAMPING_NEW:
2782 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2783 			return -EINVAL;
2784 
2785 		tsflags = *(u32 *)CMSG_DATA(cmsg);
2786 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2787 			return -EINVAL;
2788 
2789 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2790 		sockc->tsflags |= tsflags;
2791 		break;
2792 	case SCM_TXTIME:
2793 		if (!sock_flag(sk, SOCK_TXTIME))
2794 			return -EINVAL;
2795 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2796 			return -EINVAL;
2797 		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2798 		break;
2799 	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2800 	case SCM_RIGHTS:
2801 	case SCM_CREDENTIALS:
2802 		break;
2803 	default:
2804 		return -EINVAL;
2805 	}
2806 	return 0;
2807 }
2808 EXPORT_SYMBOL(__sock_cmsg_send);
2809 
sock_cmsg_send(struct sock * sk,struct msghdr * msg,struct sockcm_cookie * sockc)2810 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2811 		   struct sockcm_cookie *sockc)
2812 {
2813 	struct cmsghdr *cmsg;
2814 	int ret;
2815 
2816 	for_each_cmsghdr(cmsg, msg) {
2817 		if (!CMSG_OK(msg, cmsg))
2818 			return -EINVAL;
2819 		if (cmsg->cmsg_level != SOL_SOCKET)
2820 			continue;
2821 		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2822 		if (ret)
2823 			return ret;
2824 	}
2825 	return 0;
2826 }
2827 EXPORT_SYMBOL(sock_cmsg_send);
2828 
sk_enter_memory_pressure(struct sock * sk)2829 static void sk_enter_memory_pressure(struct sock *sk)
2830 {
2831 	if (!sk->sk_prot->enter_memory_pressure)
2832 		return;
2833 
2834 	sk->sk_prot->enter_memory_pressure(sk);
2835 }
2836 
sk_leave_memory_pressure(struct sock * sk)2837 static void sk_leave_memory_pressure(struct sock *sk)
2838 {
2839 	if (sk->sk_prot->leave_memory_pressure) {
2840 		INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure,
2841 				     tcp_leave_memory_pressure, sk);
2842 	} else {
2843 		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2844 
2845 		if (memory_pressure && READ_ONCE(*memory_pressure))
2846 			WRITE_ONCE(*memory_pressure, 0);
2847 	}
2848 }
2849 
2850 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2851 
2852 /**
2853  * skb_page_frag_refill - check that a page_frag contains enough room
2854  * @sz: minimum size of the fragment we want to get
2855  * @pfrag: pointer to page_frag
2856  * @gfp: priority for memory allocation
2857  *
2858  * Note: While this allocator tries to use high order pages, there is
2859  * no guarantee that allocations succeed. Therefore, @sz MUST be
2860  * less or equal than PAGE_SIZE.
2861  */
skb_page_frag_refill(unsigned int sz,struct page_frag * pfrag,gfp_t gfp)2862 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2863 {
2864 	if (pfrag->page) {
2865 		if (page_ref_count(pfrag->page) == 1) {
2866 			pfrag->offset = 0;
2867 			return true;
2868 		}
2869 		if (pfrag->offset + sz <= pfrag->size)
2870 			return true;
2871 		put_page(pfrag->page);
2872 	}
2873 
2874 	pfrag->offset = 0;
2875 	if (SKB_FRAG_PAGE_ORDER &&
2876 	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2877 		/* Avoid direct reclaim but allow kswapd to wake */
2878 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2879 					  __GFP_COMP | __GFP_NOWARN |
2880 					  __GFP_NORETRY,
2881 					  SKB_FRAG_PAGE_ORDER);
2882 		if (likely(pfrag->page)) {
2883 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2884 			return true;
2885 		}
2886 	}
2887 	pfrag->page = alloc_page(gfp);
2888 	if (likely(pfrag->page)) {
2889 		pfrag->size = PAGE_SIZE;
2890 		return true;
2891 	}
2892 	return false;
2893 }
2894 EXPORT_SYMBOL(skb_page_frag_refill);
2895 
sk_page_frag_refill(struct sock * sk,struct page_frag * pfrag)2896 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2897 {
2898 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2899 		return true;
2900 
2901 	sk_enter_memory_pressure(sk);
2902 	sk_stream_moderate_sndbuf(sk);
2903 	return false;
2904 }
2905 EXPORT_SYMBOL(sk_page_frag_refill);
2906 
__lock_sock(struct sock * sk)2907 void __lock_sock(struct sock *sk)
2908 	__releases(&sk->sk_lock.slock)
2909 	__acquires(&sk->sk_lock.slock)
2910 {
2911 	DEFINE_WAIT(wait);
2912 
2913 	for (;;) {
2914 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2915 					TASK_UNINTERRUPTIBLE);
2916 		spin_unlock_bh(&sk->sk_lock.slock);
2917 		schedule();
2918 		spin_lock_bh(&sk->sk_lock.slock);
2919 		if (!sock_owned_by_user(sk))
2920 			break;
2921 	}
2922 	finish_wait(&sk->sk_lock.wq, &wait);
2923 }
2924 
__release_sock(struct sock * sk)2925 void __release_sock(struct sock *sk)
2926 	__releases(&sk->sk_lock.slock)
2927 	__acquires(&sk->sk_lock.slock)
2928 {
2929 	struct sk_buff *skb, *next;
2930 
2931 	while ((skb = sk->sk_backlog.head) != NULL) {
2932 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2933 
2934 		spin_unlock_bh(&sk->sk_lock.slock);
2935 
2936 		do {
2937 			next = skb->next;
2938 			prefetch(next);
2939 			DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
2940 			skb_mark_not_on_list(skb);
2941 			sk_backlog_rcv(sk, skb);
2942 
2943 			cond_resched();
2944 
2945 			skb = next;
2946 		} while (skb != NULL);
2947 
2948 		spin_lock_bh(&sk->sk_lock.slock);
2949 	}
2950 
2951 	/*
2952 	 * Doing the zeroing here guarantee we can not loop forever
2953 	 * while a wild producer attempts to flood us.
2954 	 */
2955 	sk->sk_backlog.len = 0;
2956 }
2957 
__sk_flush_backlog(struct sock * sk)2958 void __sk_flush_backlog(struct sock *sk)
2959 {
2960 	spin_lock_bh(&sk->sk_lock.slock);
2961 	__release_sock(sk);
2962 	spin_unlock_bh(&sk->sk_lock.slock);
2963 }
2964 EXPORT_SYMBOL_GPL(__sk_flush_backlog);
2965 
2966 /**
2967  * sk_wait_data - wait for data to arrive at sk_receive_queue
2968  * @sk:    sock to wait on
2969  * @timeo: for how long
2970  * @skb:   last skb seen on sk_receive_queue
2971  *
2972  * Now socket state including sk->sk_err is changed only under lock,
2973  * hence we may omit checks after joining wait queue.
2974  * We check receive queue before schedule() only as optimization;
2975  * it is very likely that release_sock() added new data.
2976  */
sk_wait_data(struct sock * sk,long * timeo,const struct sk_buff * skb)2977 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2978 {
2979 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2980 	int rc;
2981 
2982 	add_wait_queue(sk_sleep(sk), &wait);
2983 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2984 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2985 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2986 	remove_wait_queue(sk_sleep(sk), &wait);
2987 	return rc;
2988 }
2989 EXPORT_SYMBOL(sk_wait_data);
2990 
2991 /**
2992  *	__sk_mem_raise_allocated - increase memory_allocated
2993  *	@sk: socket
2994  *	@size: memory size to allocate
2995  *	@amt: pages to allocate
2996  *	@kind: allocation type
2997  *
2998  *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2999  */
__sk_mem_raise_allocated(struct sock * sk,int size,int amt,int kind)3000 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
3001 {
3002 	bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg;
3003 	struct proto *prot = sk->sk_prot;
3004 	bool charged = true;
3005 	long allocated;
3006 
3007 	sk_memory_allocated_add(sk, amt);
3008 	allocated = sk_memory_allocated(sk);
3009 	if (memcg_charge &&
3010 	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3011 						gfp_memcg_charge())))
3012 		goto suppress_allocation;
3013 
3014 	/* Under limit. */
3015 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
3016 		sk_leave_memory_pressure(sk);
3017 		return 1;
3018 	}
3019 
3020 	/* Under pressure. */
3021 	if (allocated > sk_prot_mem_limits(sk, 1))
3022 		sk_enter_memory_pressure(sk);
3023 
3024 	/* Over hard limit. */
3025 	if (allocated > sk_prot_mem_limits(sk, 2))
3026 		goto suppress_allocation;
3027 
3028 	/* guarantee minimum buffer size under pressure */
3029 	if (kind == SK_MEM_RECV) {
3030 		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
3031 			return 1;
3032 
3033 	} else { /* SK_MEM_SEND */
3034 		int wmem0 = sk_get_wmem0(sk, prot);
3035 
3036 		if (sk->sk_type == SOCK_STREAM) {
3037 			if (sk->sk_wmem_queued < wmem0)
3038 				return 1;
3039 		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
3040 				return 1;
3041 		}
3042 	}
3043 
3044 	if (sk_has_memory_pressure(sk)) {
3045 		u64 alloc;
3046 
3047 		if (!sk_under_memory_pressure(sk))
3048 			return 1;
3049 		alloc = sk_sockets_allocated_read_positive(sk);
3050 		if (sk_prot_mem_limits(sk, 2) > alloc *
3051 		    sk_mem_pages(sk->sk_wmem_queued +
3052 				 atomic_read(&sk->sk_rmem_alloc) +
3053 				 sk->sk_forward_alloc))
3054 			return 1;
3055 	}
3056 
3057 suppress_allocation:
3058 
3059 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
3060 		sk_stream_moderate_sndbuf(sk);
3061 
3062 		/* Fail only if socket is _under_ its sndbuf.
3063 		 * In this case we cannot block, so that we have to fail.
3064 		 */
3065 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
3066 			/* Force charge with __GFP_NOFAIL */
3067 			if (memcg_charge && !charged) {
3068 				mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3069 					gfp_memcg_charge() | __GFP_NOFAIL);
3070 			}
3071 			return 1;
3072 		}
3073 	}
3074 
3075 	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
3076 		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
3077 
3078 	sk_memory_allocated_sub(sk, amt);
3079 
3080 	if (memcg_charge && charged)
3081 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
3082 
3083 	return 0;
3084 }
3085 
3086 /**
3087  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
3088  *	@sk: socket
3089  *	@size: memory size to allocate
3090  *	@kind: allocation type
3091  *
3092  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3093  *	rmem allocation. This function assumes that protocols which have
3094  *	memory_pressure use sk_wmem_queued as write buffer accounting.
3095  */
__sk_mem_schedule(struct sock * sk,int size,int kind)3096 int __sk_mem_schedule(struct sock *sk, int size, int kind)
3097 {
3098 	int ret, amt = sk_mem_pages(size);
3099 
3100 	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3101 	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3102 	if (!ret)
3103 		sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT));
3104 	return ret;
3105 }
3106 EXPORT_SYMBOL(__sk_mem_schedule);
3107 
3108 /**
3109  *	__sk_mem_reduce_allocated - reclaim memory_allocated
3110  *	@sk: socket
3111  *	@amount: number of quanta
3112  *
3113  *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3114  */
__sk_mem_reduce_allocated(struct sock * sk,int amount)3115 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3116 {
3117 	sk_memory_allocated_sub(sk, amount);
3118 
3119 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3120 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3121 
3122 	if (sk_under_global_memory_pressure(sk) &&
3123 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3124 		sk_leave_memory_pressure(sk);
3125 }
3126 
3127 /**
3128  *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3129  *	@sk: socket
3130  *	@amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3131  */
__sk_mem_reclaim(struct sock * sk,int amount)3132 void __sk_mem_reclaim(struct sock *sk, int amount)
3133 {
3134 	amount >>= PAGE_SHIFT;
3135 	sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT));
3136 	__sk_mem_reduce_allocated(sk, amount);
3137 }
3138 EXPORT_SYMBOL(__sk_mem_reclaim);
3139 
sk_set_peek_off(struct sock * sk,int val)3140 int sk_set_peek_off(struct sock *sk, int val)
3141 {
3142 	WRITE_ONCE(sk->sk_peek_off, val);
3143 	return 0;
3144 }
3145 EXPORT_SYMBOL_GPL(sk_set_peek_off);
3146 
3147 /*
3148  * Set of default routines for initialising struct proto_ops when
3149  * the protocol does not support a particular function. In certain
3150  * cases where it makes no sense for a protocol to have a "do nothing"
3151  * function, some default processing is provided.
3152  */
3153 
sock_no_bind(struct socket * sock,struct sockaddr * saddr,int len)3154 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3155 {
3156 	return -EOPNOTSUPP;
3157 }
3158 EXPORT_SYMBOL(sock_no_bind);
3159 
sock_no_connect(struct socket * sock,struct sockaddr * saddr,int len,int flags)3160 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3161 		    int len, int flags)
3162 {
3163 	return -EOPNOTSUPP;
3164 }
3165 EXPORT_SYMBOL(sock_no_connect);
3166 
sock_no_socketpair(struct socket * sock1,struct socket * sock2)3167 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3168 {
3169 	return -EOPNOTSUPP;
3170 }
3171 EXPORT_SYMBOL(sock_no_socketpair);
3172 
sock_no_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)3173 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
3174 		   bool kern)
3175 {
3176 	return -EOPNOTSUPP;
3177 }
3178 EXPORT_SYMBOL(sock_no_accept);
3179 
sock_no_getname(struct socket * sock,struct sockaddr * saddr,int peer)3180 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3181 		    int peer)
3182 {
3183 	return -EOPNOTSUPP;
3184 }
3185 EXPORT_SYMBOL(sock_no_getname);
3186 
sock_no_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)3187 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3188 {
3189 	return -EOPNOTSUPP;
3190 }
3191 EXPORT_SYMBOL(sock_no_ioctl);
3192 
sock_no_listen(struct socket * sock,int backlog)3193 int sock_no_listen(struct socket *sock, int backlog)
3194 {
3195 	return -EOPNOTSUPP;
3196 }
3197 EXPORT_SYMBOL(sock_no_listen);
3198 
sock_no_shutdown(struct socket * sock,int how)3199 int sock_no_shutdown(struct socket *sock, int how)
3200 {
3201 	return -EOPNOTSUPP;
3202 }
3203 EXPORT_SYMBOL(sock_no_shutdown);
3204 
sock_no_sendmsg(struct socket * sock,struct msghdr * m,size_t len)3205 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3206 {
3207 	return -EOPNOTSUPP;
3208 }
3209 EXPORT_SYMBOL(sock_no_sendmsg);
3210 
sock_no_sendmsg_locked(struct sock * sk,struct msghdr * m,size_t len)3211 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3212 {
3213 	return -EOPNOTSUPP;
3214 }
3215 EXPORT_SYMBOL(sock_no_sendmsg_locked);
3216 
sock_no_recvmsg(struct socket * sock,struct msghdr * m,size_t len,int flags)3217 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3218 		    int flags)
3219 {
3220 	return -EOPNOTSUPP;
3221 }
3222 EXPORT_SYMBOL(sock_no_recvmsg);
3223 
sock_no_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)3224 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3225 {
3226 	/* Mirror missing mmap method error code */
3227 	return -ENODEV;
3228 }
3229 EXPORT_SYMBOL(sock_no_mmap);
3230 
3231 /*
3232  * When a file is received (via SCM_RIGHTS, etc), we must bump the
3233  * various sock-based usage counts.
3234  */
__receive_sock(struct file * file)3235 void __receive_sock(struct file *file)
3236 {
3237 	struct socket *sock;
3238 
3239 	sock = sock_from_file(file);
3240 	if (sock) {
3241 		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3242 		sock_update_classid(&sock->sk->sk_cgrp_data);
3243 	}
3244 }
3245 
sock_no_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)3246 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
3247 {
3248 	ssize_t res;
3249 	struct msghdr msg = {.msg_flags = flags};
3250 	struct kvec iov;
3251 	char *kaddr = kmap(page);
3252 	iov.iov_base = kaddr + offset;
3253 	iov.iov_len = size;
3254 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
3255 	kunmap(page);
3256 	return res;
3257 }
3258 EXPORT_SYMBOL(sock_no_sendpage);
3259 
sock_no_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)3260 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
3261 				int offset, size_t size, int flags)
3262 {
3263 	ssize_t res;
3264 	struct msghdr msg = {.msg_flags = flags};
3265 	struct kvec iov;
3266 	char *kaddr = kmap(page);
3267 
3268 	iov.iov_base = kaddr + offset;
3269 	iov.iov_len = size;
3270 	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
3271 	kunmap(page);
3272 	return res;
3273 }
3274 EXPORT_SYMBOL(sock_no_sendpage_locked);
3275 
3276 /*
3277  *	Default Socket Callbacks
3278  */
3279 
sock_def_wakeup(struct sock * sk)3280 static void sock_def_wakeup(struct sock *sk)
3281 {
3282 	struct socket_wq *wq;
3283 
3284 	rcu_read_lock();
3285 	wq = rcu_dereference(sk->sk_wq);
3286 	if (skwq_has_sleeper(wq))
3287 		wake_up_interruptible_all(&wq->wait);
3288 	rcu_read_unlock();
3289 }
3290 
sock_def_error_report(struct sock * sk)3291 static void sock_def_error_report(struct sock *sk)
3292 {
3293 	struct socket_wq *wq;
3294 
3295 	rcu_read_lock();
3296 	wq = rcu_dereference(sk->sk_wq);
3297 	if (skwq_has_sleeper(wq))
3298 		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3299 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3300 	rcu_read_unlock();
3301 }
3302 
sock_def_readable(struct sock * sk)3303 void sock_def_readable(struct sock *sk)
3304 {
3305 	struct socket_wq *wq;
3306 
3307 	rcu_read_lock();
3308 	wq = rcu_dereference(sk->sk_wq);
3309 
3310 	if (skwq_has_sleeper(wq)) {
3311 		int done = 0;
3312 
3313 		trace_android_vh_do_wake_up_sync(&wq->wait, &done, sk);
3314 		if (done)
3315 			goto out;
3316 
3317 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3318 						EPOLLRDNORM | EPOLLRDBAND);
3319 	}
3320 
3321 out:
3322 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3323 	rcu_read_unlock();
3324 }
3325 
sock_def_write_space(struct sock * sk)3326 static void sock_def_write_space(struct sock *sk)
3327 {
3328 	struct socket_wq *wq;
3329 
3330 	rcu_read_lock();
3331 
3332 	/* Do not wake up a writer until he can make "significant"
3333 	 * progress.  --DaveM
3334 	 */
3335 	if (sock_writeable(sk)) {
3336 		wq = rcu_dereference(sk->sk_wq);
3337 		if (skwq_has_sleeper(wq))
3338 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3339 						EPOLLWRNORM | EPOLLWRBAND);
3340 
3341 		/* Should agree with poll, otherwise some programs break */
3342 		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3343 	}
3344 
3345 	rcu_read_unlock();
3346 }
3347 
3348 /* An optimised version of sock_def_write_space(), should only be called
3349  * for SOCK_RCU_FREE sockets under RCU read section and after putting
3350  * ->sk_wmem_alloc.
3351  */
sock_def_write_space_wfree(struct sock * sk)3352 static void sock_def_write_space_wfree(struct sock *sk)
3353 {
3354 	/* Do not wake up a writer until he can make "significant"
3355 	 * progress.  --DaveM
3356 	 */
3357 	if (sock_writeable(sk)) {
3358 		struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3359 
3360 		/* rely on refcount_sub from sock_wfree() */
3361 		smp_mb__after_atomic();
3362 		if (wq && waitqueue_active(&wq->wait))
3363 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3364 						EPOLLWRNORM | EPOLLWRBAND);
3365 
3366 		/* Should agree with poll, otherwise some programs break */
3367 		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3368 	}
3369 }
3370 
sock_def_destruct(struct sock * sk)3371 static void sock_def_destruct(struct sock *sk)
3372 {
3373 }
3374 
sk_send_sigurg(struct sock * sk)3375 void sk_send_sigurg(struct sock *sk)
3376 {
3377 	if (sk->sk_socket && sk->sk_socket->file)
3378 		if (send_sigurg(&sk->sk_socket->file->f_owner))
3379 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3380 }
3381 EXPORT_SYMBOL(sk_send_sigurg);
3382 
sk_reset_timer(struct sock * sk,struct timer_list * timer,unsigned long expires)3383 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3384 		    unsigned long expires)
3385 {
3386 	if (!mod_timer(timer, expires))
3387 		sock_hold(sk);
3388 }
3389 EXPORT_SYMBOL(sk_reset_timer);
3390 
sk_stop_timer(struct sock * sk,struct timer_list * timer)3391 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3392 {
3393 	if (del_timer(timer))
3394 		__sock_put(sk);
3395 }
3396 EXPORT_SYMBOL(sk_stop_timer);
3397 
sk_stop_timer_sync(struct sock * sk,struct timer_list * timer)3398 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3399 {
3400 	if (del_timer_sync(timer))
3401 		__sock_put(sk);
3402 }
3403 EXPORT_SYMBOL(sk_stop_timer_sync);
3404 
sock_init_data_uid(struct socket * sock,struct sock * sk,kuid_t uid)3405 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid)
3406 {
3407 	sk_init_common(sk);
3408 	sk->sk_send_head	=	NULL;
3409 
3410 	timer_setup(&sk->sk_timer, NULL, 0);
3411 
3412 	sk->sk_allocation	=	GFP_KERNEL;
3413 	sk->sk_rcvbuf		=	READ_ONCE(sysctl_rmem_default);
3414 	sk->sk_sndbuf		=	READ_ONCE(sysctl_wmem_default);
3415 	sk->sk_state		=	TCP_CLOSE;
3416 	sk_set_socket(sk, sock);
3417 
3418 	sock_set_flag(sk, SOCK_ZAPPED);
3419 
3420 	if (sock) {
3421 		sk->sk_type	=	sock->type;
3422 		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3423 		sock->sk	=	sk;
3424 	} else {
3425 		RCU_INIT_POINTER(sk->sk_wq, NULL);
3426 	}
3427 	sk->sk_uid	=	uid;
3428 
3429 	rwlock_init(&sk->sk_callback_lock);
3430 	if (sk->sk_kern_sock)
3431 		lockdep_set_class_and_name(
3432 			&sk->sk_callback_lock,
3433 			af_kern_callback_keys + sk->sk_family,
3434 			af_family_kern_clock_key_strings[sk->sk_family]);
3435 	else
3436 		lockdep_set_class_and_name(
3437 			&sk->sk_callback_lock,
3438 			af_callback_keys + sk->sk_family,
3439 			af_family_clock_key_strings[sk->sk_family]);
3440 
3441 	sk->sk_state_change	=	sock_def_wakeup;
3442 	sk->sk_data_ready	=	sock_def_readable;
3443 	sk->sk_write_space	=	sock_def_write_space;
3444 	sk->sk_error_report	=	sock_def_error_report;
3445 	sk->sk_destruct		=	sock_def_destruct;
3446 
3447 	sk->sk_frag.page	=	NULL;
3448 	sk->sk_frag.offset	=	0;
3449 	sk->sk_peek_off		=	-1;
3450 
3451 	sk->sk_peer_pid 	=	NULL;
3452 	sk->sk_peer_cred	=	NULL;
3453 	spin_lock_init(&sk->sk_peer_lock);
3454 
3455 	sk->sk_write_pending	=	0;
3456 	sk->sk_rcvlowat		=	1;
3457 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3458 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3459 
3460 	sk->sk_stamp = SK_DEFAULT_STAMP;
3461 #if BITS_PER_LONG==32
3462 	seqlock_init(&sk->sk_stamp_seq);
3463 #endif
3464 	atomic_set(&sk->sk_zckey, 0);
3465 
3466 #ifdef CONFIG_NET_RX_BUSY_POLL
3467 	sk->sk_napi_id		=	0;
3468 	sk->sk_ll_usec		=	READ_ONCE(sysctl_net_busy_read);
3469 #endif
3470 
3471 	sk->sk_max_pacing_rate = ~0UL;
3472 	sk->sk_pacing_rate = ~0UL;
3473 	WRITE_ONCE(sk->sk_pacing_shift, 10);
3474 	sk->sk_incoming_cpu = -1;
3475 
3476 	sk_rx_queue_clear(sk);
3477 	/*
3478 	 * Before updating sk_refcnt, we must commit prior changes to memory
3479 	 * (Documentation/RCU/rculist_nulls.rst for details)
3480 	 */
3481 	smp_wmb();
3482 	refcount_set(&sk->sk_refcnt, 1);
3483 	atomic_set(&sk->sk_drops, 0);
3484 }
3485 EXPORT_SYMBOL(sock_init_data_uid);
3486 
sock_init_data(struct socket * sock,struct sock * sk)3487 void sock_init_data(struct socket *sock, struct sock *sk)
3488 {
3489 	kuid_t uid = sock ?
3490 		SOCK_INODE(sock)->i_uid :
3491 		make_kuid(sock_net(sk)->user_ns, 0);
3492 
3493 	sock_init_data_uid(sock, sk, uid);
3494 }
3495 EXPORT_SYMBOL(sock_init_data);
3496 
lock_sock_nested(struct sock * sk,int subclass)3497 void lock_sock_nested(struct sock *sk, int subclass)
3498 {
3499 	/* The sk_lock has mutex_lock() semantics here. */
3500 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3501 
3502 	might_sleep();
3503 	spin_lock_bh(&sk->sk_lock.slock);
3504 	if (sock_owned_by_user_nocheck(sk))
3505 		__lock_sock(sk);
3506 	sk->sk_lock.owned = 1;
3507 	spin_unlock_bh(&sk->sk_lock.slock);
3508 }
3509 EXPORT_SYMBOL(lock_sock_nested);
3510 
release_sock(struct sock * sk)3511 void release_sock(struct sock *sk)
3512 {
3513 	spin_lock_bh(&sk->sk_lock.slock);
3514 	if (sk->sk_backlog.tail)
3515 		__release_sock(sk);
3516 
3517 	/* Warning : release_cb() might need to release sk ownership,
3518 	 * ie call sock_release_ownership(sk) before us.
3519 	 */
3520 	if (sk->sk_prot->release_cb)
3521 		sk->sk_prot->release_cb(sk);
3522 
3523 	sock_release_ownership(sk);
3524 	if (waitqueue_active(&sk->sk_lock.wq))
3525 		wake_up(&sk->sk_lock.wq);
3526 	spin_unlock_bh(&sk->sk_lock.slock);
3527 }
3528 EXPORT_SYMBOL(release_sock);
3529 
__lock_sock_fast(struct sock * sk)3530 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3531 {
3532 	might_sleep();
3533 	spin_lock_bh(&sk->sk_lock.slock);
3534 
3535 	if (!sock_owned_by_user_nocheck(sk)) {
3536 		/*
3537 		 * Fast path return with bottom halves disabled and
3538 		 * sock::sk_lock.slock held.
3539 		 *
3540 		 * The 'mutex' is not contended and holding
3541 		 * sock::sk_lock.slock prevents all other lockers to
3542 		 * proceed so the corresponding unlock_sock_fast() can
3543 		 * avoid the slow path of release_sock() completely and
3544 		 * just release slock.
3545 		 *
3546 		 * From a semantical POV this is equivalent to 'acquiring'
3547 		 * the 'mutex', hence the corresponding lockdep
3548 		 * mutex_release() has to happen in the fast path of
3549 		 * unlock_sock_fast().
3550 		 */
3551 		return false;
3552 	}
3553 
3554 	__lock_sock(sk);
3555 	sk->sk_lock.owned = 1;
3556 	__acquire(&sk->sk_lock.slock);
3557 	spin_unlock_bh(&sk->sk_lock.slock);
3558 	return true;
3559 }
3560 EXPORT_SYMBOL(__lock_sock_fast);
3561 
sock_gettstamp(struct socket * sock,void __user * userstamp,bool timeval,bool time32)3562 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3563 		   bool timeval, bool time32)
3564 {
3565 	struct sock *sk = sock->sk;
3566 	struct timespec64 ts;
3567 
3568 	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3569 	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3570 	if (ts.tv_sec == -1)
3571 		return -ENOENT;
3572 	if (ts.tv_sec == 0) {
3573 		ktime_t kt = ktime_get_real();
3574 		sock_write_timestamp(sk, kt);
3575 		ts = ktime_to_timespec64(kt);
3576 	}
3577 
3578 	if (timeval)
3579 		ts.tv_nsec /= 1000;
3580 
3581 #ifdef CONFIG_COMPAT_32BIT_TIME
3582 	if (time32)
3583 		return put_old_timespec32(&ts, userstamp);
3584 #endif
3585 #ifdef CONFIG_SPARC64
3586 	/* beware of padding in sparc64 timeval */
3587 	if (timeval && !in_compat_syscall()) {
3588 		struct __kernel_old_timeval __user tv = {
3589 			.tv_sec = ts.tv_sec,
3590 			.tv_usec = ts.tv_nsec,
3591 		};
3592 		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3593 			return -EFAULT;
3594 		return 0;
3595 	}
3596 #endif
3597 	return put_timespec64(&ts, userstamp);
3598 }
3599 EXPORT_SYMBOL(sock_gettstamp);
3600 
sock_enable_timestamp(struct sock * sk,enum sock_flags flag)3601 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3602 {
3603 	if (!sock_flag(sk, flag)) {
3604 		unsigned long previous_flags = sk->sk_flags;
3605 
3606 		sock_set_flag(sk, flag);
3607 		/*
3608 		 * we just set one of the two flags which require net
3609 		 * time stamping, but time stamping might have been on
3610 		 * already because of the other one
3611 		 */
3612 		if (sock_needs_netstamp(sk) &&
3613 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3614 			net_enable_timestamp();
3615 	}
3616 }
3617 
sock_recv_errqueue(struct sock * sk,struct msghdr * msg,int len,int level,int type)3618 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3619 		       int level, int type)
3620 {
3621 	struct sock_exterr_skb *serr;
3622 	struct sk_buff *skb;
3623 	int copied, err;
3624 
3625 	err = -EAGAIN;
3626 	skb = sock_dequeue_err_skb(sk);
3627 	if (skb == NULL)
3628 		goto out;
3629 
3630 	copied = skb->len;
3631 	if (copied > len) {
3632 		msg->msg_flags |= MSG_TRUNC;
3633 		copied = len;
3634 	}
3635 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3636 	if (err)
3637 		goto out_free_skb;
3638 
3639 	sock_recv_timestamp(msg, sk, skb);
3640 
3641 	serr = SKB_EXT_ERR(skb);
3642 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3643 
3644 	msg->msg_flags |= MSG_ERRQUEUE;
3645 	err = copied;
3646 
3647 out_free_skb:
3648 	kfree_skb(skb);
3649 out:
3650 	return err;
3651 }
3652 EXPORT_SYMBOL(sock_recv_errqueue);
3653 
3654 /*
3655  *	Get a socket option on an socket.
3656  *
3657  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3658  *	asynchronous errors should be reported by getsockopt. We assume
3659  *	this means if you specify SO_ERROR (otherwise whats the point of it).
3660  */
sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)3661 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3662 			   char __user *optval, int __user *optlen)
3663 {
3664 	struct sock *sk = sock->sk;
3665 
3666 	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3667 	return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3668 }
3669 EXPORT_SYMBOL(sock_common_getsockopt);
3670 
sock_common_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)3671 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3672 			int flags)
3673 {
3674 	struct sock *sk = sock->sk;
3675 	int addr_len = 0;
3676 	int err;
3677 
3678 	err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
3679 	if (err >= 0)
3680 		msg->msg_namelen = addr_len;
3681 	return err;
3682 }
3683 EXPORT_SYMBOL(sock_common_recvmsg);
3684 
3685 /*
3686  *	Set socket options on an inet socket.
3687  */
sock_common_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)3688 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3689 			   sockptr_t optval, unsigned int optlen)
3690 {
3691 	struct sock *sk = sock->sk;
3692 
3693 	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3694 	return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3695 }
3696 EXPORT_SYMBOL(sock_common_setsockopt);
3697 
sk_common_release(struct sock * sk)3698 void sk_common_release(struct sock *sk)
3699 {
3700 	if (sk->sk_prot->destroy)
3701 		sk->sk_prot->destroy(sk);
3702 
3703 	/*
3704 	 * Observation: when sk_common_release is called, processes have
3705 	 * no access to socket. But net still has.
3706 	 * Step one, detach it from networking:
3707 	 *
3708 	 * A. Remove from hash tables.
3709 	 */
3710 
3711 	sk->sk_prot->unhash(sk);
3712 
3713 	/*
3714 	 * In this point socket cannot receive new packets, but it is possible
3715 	 * that some packets are in flight because some CPU runs receiver and
3716 	 * did hash table lookup before we unhashed socket. They will achieve
3717 	 * receive queue and will be purged by socket destructor.
3718 	 *
3719 	 * Also we still have packets pending on receive queue and probably,
3720 	 * our own packets waiting in device queues. sock_destroy will drain
3721 	 * receive queue, but transmitted packets will delay socket destruction
3722 	 * until the last reference will be released.
3723 	 */
3724 
3725 	sock_orphan(sk);
3726 
3727 	xfrm_sk_free_policy(sk);
3728 
3729 	sk_refcnt_debug_release(sk);
3730 
3731 	sock_put(sk);
3732 }
3733 EXPORT_SYMBOL(sk_common_release);
3734 
sk_get_meminfo(const struct sock * sk,u32 * mem)3735 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3736 {
3737 	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3738 
3739 	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3740 	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3741 	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3742 	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3743 	mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk);
3744 	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3745 	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3746 	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3747 	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3748 }
3749 
3750 #ifdef CONFIG_PROC_FS
3751 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3752 
sock_prot_inuse_get(struct net * net,struct proto * prot)3753 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3754 {
3755 	int cpu, idx = prot->inuse_idx;
3756 	int res = 0;
3757 
3758 	for_each_possible_cpu(cpu)
3759 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3760 
3761 	return res >= 0 ? res : 0;
3762 }
3763 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3764 
sock_inuse_get(struct net * net)3765 int sock_inuse_get(struct net *net)
3766 {
3767 	int cpu, res = 0;
3768 
3769 	for_each_possible_cpu(cpu)
3770 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3771 
3772 	return res;
3773 }
3774 
3775 EXPORT_SYMBOL_GPL(sock_inuse_get);
3776 
sock_inuse_init_net(struct net * net)3777 static int __net_init sock_inuse_init_net(struct net *net)
3778 {
3779 	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3780 	if (net->core.prot_inuse == NULL)
3781 		return -ENOMEM;
3782 	return 0;
3783 }
3784 
sock_inuse_exit_net(struct net * net)3785 static void __net_exit sock_inuse_exit_net(struct net *net)
3786 {
3787 	free_percpu(net->core.prot_inuse);
3788 }
3789 
3790 static struct pernet_operations net_inuse_ops = {
3791 	.init = sock_inuse_init_net,
3792 	.exit = sock_inuse_exit_net,
3793 };
3794 
net_inuse_init(void)3795 static __init int net_inuse_init(void)
3796 {
3797 	if (register_pernet_subsys(&net_inuse_ops))
3798 		panic("Cannot initialize net inuse counters");
3799 
3800 	return 0;
3801 }
3802 
3803 core_initcall(net_inuse_init);
3804 
assign_proto_idx(struct proto * prot)3805 static int assign_proto_idx(struct proto *prot)
3806 {
3807 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3808 
3809 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3810 		pr_err("PROTO_INUSE_NR exhausted\n");
3811 		return -ENOSPC;
3812 	}
3813 
3814 	set_bit(prot->inuse_idx, proto_inuse_idx);
3815 	return 0;
3816 }
3817 
release_proto_idx(struct proto * prot)3818 static void release_proto_idx(struct proto *prot)
3819 {
3820 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3821 		clear_bit(prot->inuse_idx, proto_inuse_idx);
3822 }
3823 #else
assign_proto_idx(struct proto * prot)3824 static inline int assign_proto_idx(struct proto *prot)
3825 {
3826 	return 0;
3827 }
3828 
release_proto_idx(struct proto * prot)3829 static inline void release_proto_idx(struct proto *prot)
3830 {
3831 }
3832 
3833 #endif
3834 
tw_prot_cleanup(struct timewait_sock_ops * twsk_prot)3835 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3836 {
3837 	if (!twsk_prot)
3838 		return;
3839 	kfree(twsk_prot->twsk_slab_name);
3840 	twsk_prot->twsk_slab_name = NULL;
3841 	kmem_cache_destroy(twsk_prot->twsk_slab);
3842 	twsk_prot->twsk_slab = NULL;
3843 }
3844 
tw_prot_init(const struct proto * prot)3845 static int tw_prot_init(const struct proto *prot)
3846 {
3847 	struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3848 
3849 	if (!twsk_prot)
3850 		return 0;
3851 
3852 	twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3853 					      prot->name);
3854 	if (!twsk_prot->twsk_slab_name)
3855 		return -ENOMEM;
3856 
3857 	twsk_prot->twsk_slab =
3858 		kmem_cache_create(twsk_prot->twsk_slab_name,
3859 				  twsk_prot->twsk_obj_size, 0,
3860 				  SLAB_ACCOUNT | prot->slab_flags,
3861 				  NULL);
3862 	if (!twsk_prot->twsk_slab) {
3863 		pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3864 			prot->name);
3865 		return -ENOMEM;
3866 	}
3867 
3868 	return 0;
3869 }
3870 
req_prot_cleanup(struct request_sock_ops * rsk_prot)3871 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3872 {
3873 	if (!rsk_prot)
3874 		return;
3875 	kfree(rsk_prot->slab_name);
3876 	rsk_prot->slab_name = NULL;
3877 	kmem_cache_destroy(rsk_prot->slab);
3878 	rsk_prot->slab = NULL;
3879 }
3880 
req_prot_init(const struct proto * prot)3881 static int req_prot_init(const struct proto *prot)
3882 {
3883 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3884 
3885 	if (!rsk_prot)
3886 		return 0;
3887 
3888 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3889 					prot->name);
3890 	if (!rsk_prot->slab_name)
3891 		return -ENOMEM;
3892 
3893 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3894 					   rsk_prot->obj_size, 0,
3895 					   SLAB_ACCOUNT | prot->slab_flags,
3896 					   NULL);
3897 
3898 	if (!rsk_prot->slab) {
3899 		pr_crit("%s: Can't create request sock SLAB cache!\n",
3900 			prot->name);
3901 		return -ENOMEM;
3902 	}
3903 	return 0;
3904 }
3905 
proto_register(struct proto * prot,int alloc_slab)3906 int proto_register(struct proto *prot, int alloc_slab)
3907 {
3908 	int ret = -ENOBUFS;
3909 
3910 	if (prot->memory_allocated && !prot->sysctl_mem) {
3911 		pr_err("%s: missing sysctl_mem\n", prot->name);
3912 		return -EINVAL;
3913 	}
3914 	if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
3915 		pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
3916 		return -EINVAL;
3917 	}
3918 	if (alloc_slab) {
3919 		prot->slab = kmem_cache_create_usercopy(prot->name,
3920 					prot->obj_size, 0,
3921 					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3922 					prot->slab_flags,
3923 					prot->useroffset, prot->usersize,
3924 					NULL);
3925 
3926 		if (prot->slab == NULL) {
3927 			pr_crit("%s: Can't create sock SLAB cache!\n",
3928 				prot->name);
3929 			goto out;
3930 		}
3931 
3932 		if (req_prot_init(prot))
3933 			goto out_free_request_sock_slab;
3934 
3935 		if (tw_prot_init(prot))
3936 			goto out_free_timewait_sock_slab;
3937 	}
3938 
3939 	mutex_lock(&proto_list_mutex);
3940 	ret = assign_proto_idx(prot);
3941 	if (ret) {
3942 		mutex_unlock(&proto_list_mutex);
3943 		goto out_free_timewait_sock_slab;
3944 	}
3945 	list_add(&prot->node, &proto_list);
3946 	mutex_unlock(&proto_list_mutex);
3947 	return ret;
3948 
3949 out_free_timewait_sock_slab:
3950 	if (alloc_slab)
3951 		tw_prot_cleanup(prot->twsk_prot);
3952 out_free_request_sock_slab:
3953 	if (alloc_slab) {
3954 		req_prot_cleanup(prot->rsk_prot);
3955 
3956 		kmem_cache_destroy(prot->slab);
3957 		prot->slab = NULL;
3958 	}
3959 out:
3960 	return ret;
3961 }
3962 EXPORT_SYMBOL(proto_register);
3963 
proto_unregister(struct proto * prot)3964 void proto_unregister(struct proto *prot)
3965 {
3966 	mutex_lock(&proto_list_mutex);
3967 	release_proto_idx(prot);
3968 	list_del(&prot->node);
3969 	mutex_unlock(&proto_list_mutex);
3970 
3971 	kmem_cache_destroy(prot->slab);
3972 	prot->slab = NULL;
3973 
3974 	req_prot_cleanup(prot->rsk_prot);
3975 	tw_prot_cleanup(prot->twsk_prot);
3976 }
3977 EXPORT_SYMBOL(proto_unregister);
3978 
sock_load_diag_module(int family,int protocol)3979 int sock_load_diag_module(int family, int protocol)
3980 {
3981 	if (!protocol) {
3982 		if (!sock_is_registered(family))
3983 			return -ENOENT;
3984 
3985 		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3986 				      NETLINK_SOCK_DIAG, family);
3987 	}
3988 
3989 #ifdef CONFIG_INET
3990 	if (family == AF_INET &&
3991 	    protocol != IPPROTO_RAW &&
3992 	    protocol < MAX_INET_PROTOS &&
3993 	    !rcu_access_pointer(inet_protos[protocol]))
3994 		return -ENOENT;
3995 #endif
3996 
3997 	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3998 			      NETLINK_SOCK_DIAG, family, protocol);
3999 }
4000 EXPORT_SYMBOL(sock_load_diag_module);
4001 
4002 #ifdef CONFIG_PROC_FS
proto_seq_start(struct seq_file * seq,loff_t * pos)4003 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
4004 	__acquires(proto_list_mutex)
4005 {
4006 	mutex_lock(&proto_list_mutex);
4007 	return seq_list_start_head(&proto_list, *pos);
4008 }
4009 
proto_seq_next(struct seq_file * seq,void * v,loff_t * pos)4010 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4011 {
4012 	return seq_list_next(v, &proto_list, pos);
4013 }
4014 
proto_seq_stop(struct seq_file * seq,void * v)4015 static void proto_seq_stop(struct seq_file *seq, void *v)
4016 	__releases(proto_list_mutex)
4017 {
4018 	mutex_unlock(&proto_list_mutex);
4019 }
4020 
proto_method_implemented(const void * method)4021 static char proto_method_implemented(const void *method)
4022 {
4023 	return method == NULL ? 'n' : 'y';
4024 }
sock_prot_memory_allocated(struct proto * proto)4025 static long sock_prot_memory_allocated(struct proto *proto)
4026 {
4027 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
4028 }
4029 
sock_prot_memory_pressure(struct proto * proto)4030 static const char *sock_prot_memory_pressure(struct proto *proto)
4031 {
4032 	return proto->memory_pressure != NULL ?
4033 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
4034 }
4035 
proto_seq_printf(struct seq_file * seq,struct proto * proto)4036 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
4037 {
4038 
4039 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
4040 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
4041 		   proto->name,
4042 		   proto->obj_size,
4043 		   sock_prot_inuse_get(seq_file_net(seq), proto),
4044 		   sock_prot_memory_allocated(proto),
4045 		   sock_prot_memory_pressure(proto),
4046 		   proto->max_header,
4047 		   proto->slab == NULL ? "no" : "yes",
4048 		   module_name(proto->owner),
4049 		   proto_method_implemented(proto->close),
4050 		   proto_method_implemented(proto->connect),
4051 		   proto_method_implemented(proto->disconnect),
4052 		   proto_method_implemented(proto->accept),
4053 		   proto_method_implemented(proto->ioctl),
4054 		   proto_method_implemented(proto->init),
4055 		   proto_method_implemented(proto->destroy),
4056 		   proto_method_implemented(proto->shutdown),
4057 		   proto_method_implemented(proto->setsockopt),
4058 		   proto_method_implemented(proto->getsockopt),
4059 		   proto_method_implemented(proto->sendmsg),
4060 		   proto_method_implemented(proto->recvmsg),
4061 		   proto_method_implemented(proto->sendpage),
4062 		   proto_method_implemented(proto->bind),
4063 		   proto_method_implemented(proto->backlog_rcv),
4064 		   proto_method_implemented(proto->hash),
4065 		   proto_method_implemented(proto->unhash),
4066 		   proto_method_implemented(proto->get_port),
4067 		   proto_method_implemented(proto->enter_memory_pressure));
4068 }
4069 
proto_seq_show(struct seq_file * seq,void * v)4070 static int proto_seq_show(struct seq_file *seq, void *v)
4071 {
4072 	if (v == &proto_list)
4073 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
4074 			   "protocol",
4075 			   "size",
4076 			   "sockets",
4077 			   "memory",
4078 			   "press",
4079 			   "maxhdr",
4080 			   "slab",
4081 			   "module",
4082 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
4083 	else
4084 		proto_seq_printf(seq, list_entry(v, struct proto, node));
4085 	return 0;
4086 }
4087 
4088 static const struct seq_operations proto_seq_ops = {
4089 	.start  = proto_seq_start,
4090 	.next   = proto_seq_next,
4091 	.stop   = proto_seq_stop,
4092 	.show   = proto_seq_show,
4093 };
4094 
proto_init_net(struct net * net)4095 static __net_init int proto_init_net(struct net *net)
4096 {
4097 	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
4098 			sizeof(struct seq_net_private)))
4099 		return -ENOMEM;
4100 
4101 	return 0;
4102 }
4103 
proto_exit_net(struct net * net)4104 static __net_exit void proto_exit_net(struct net *net)
4105 {
4106 	remove_proc_entry("protocols", net->proc_net);
4107 }
4108 
4109 
4110 static __net_initdata struct pernet_operations proto_net_ops = {
4111 	.init = proto_init_net,
4112 	.exit = proto_exit_net,
4113 };
4114 
proto_init(void)4115 static int __init proto_init(void)
4116 {
4117 	return register_pernet_subsys(&proto_net_ops);
4118 }
4119 
4120 subsys_initcall(proto_init);
4121 
4122 #endif /* PROC_FS */
4123 
4124 #ifdef CONFIG_NET_RX_BUSY_POLL
sk_busy_loop_end(void * p,unsigned long start_time)4125 bool sk_busy_loop_end(void *p, unsigned long start_time)
4126 {
4127 	struct sock *sk = p;
4128 
4129 	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
4130 		return true;
4131 
4132 	if (sk_is_udp(sk) &&
4133 	    !skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
4134 		return true;
4135 
4136 	return sk_busy_loop_timeout(sk, start_time);
4137 }
4138 EXPORT_SYMBOL(sk_busy_loop_end);
4139 #endif /* CONFIG_NET_RX_BUSY_POLL */
4140 
sock_bind_add(struct sock * sk,struct sockaddr * addr,int addr_len)4141 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4142 {
4143 	if (!sk->sk_prot->bind_add)
4144 		return -EOPNOTSUPP;
4145 	return sk->sk_prot->bind_add(sk, addr, addr_len);
4146 }
4147 EXPORT_SYMBOL(sock_bind_add);
4148